
Sparsity-Parameterised Dynamic Edge Colouring
Aleksander B. G. Christiansen #

Technical University of Denmark, Lyngby, Denmark

Eva Rotenberg #

Technical University of Denmark, Lyngby, Denmark

Juliette Vlieghe #

Technical University of Denmark, Lyngby, Denmark

Abstract
We study the edge-colouring problem, and give efficient algorithms where the number of colours is
parameterised by the graph’s arboricity, α. In a dynamic graph, subject to insertions and deletions,
we give a deterministic algorithm that updates a proper ∆ + O(α) edge colouring in poly(log n)
amortized time. Our algorithm is fully adaptive to the current value of the maximum degree and
arboricity.

In this fully-dynamic setting, the state-of-the-art edge-colouring algorithms are either a ran-
domised algorithm using (1 + ε)∆ colours in poly(log n, ϵ−1) time per update, or the naive greedy
algorithm which is a deterministic 2∆ − 1 edge colouring with log(∆) update time.

Compared to the (1 + ε)∆ algorithm, our algorithm is deterministic and asymptotically faster,
and when α is sufficiently small compared to ∆, it even uses fewer colours. In particular, ours is
the first ∆ + O(1) edge-colouring algorithm for dynamic forests, and dynamic planar graphs, with
polylogarithmic update time.

Additionally, in the static setting, we show that we can find a proper edge colouring with ∆ + 2α

colours in O(m log n) time. Moreover, the colouring returned by our algorithm has the following
local property: every edge uv is coloured with a colour in {1, max{deg(u), deg(v)} + 2α}. The time
bound matches that of the greedy algorithm that computes a 2∆ − 1 colouring of the graph’s edges,
and improves the number of colours when α is sufficiently small compared to ∆.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases edge colouring, arboricity, hierarchical partition, dynamic algorithms, amort-
ized analysis

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.20

Related Version This paper is based on the master’s thesis of Juliette Vlieghe, supervised by Eva
Rotenberg and Aleksander B. G. Christiansen and defended on 30th June 2023.
Master’s Thesis: https://doi.org/10.13140/RG.2.2.18471.52648

Funding This work was supported by the VILLUM Foundation grant VIL37507 “Efficient Recompu-
tations for Changeful Problems”.

Acknowledgements We thank Jacob Holm for his interest in this work, and for comments and
improvements to an earlier version of this manuscript. We also thank an anonymous reviewer for
their highly detailed feedback and suggestions for improvement.

1 Introduction and related work

When working on rapidly evolving, large scale graphs, algorithms need to adapt to the
change in data quickly. The dynamic model is interested in maintaining some property in a
graph undergoing edge insertions and/or deletions, and has led to many fast algorithms, with
polylogarithmic update and query time, in particular through the use of amortized analysis.

© Aleksander B. G. Christiansen, Eva Rotenberg, and Juliette Vlieghe;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 20; pp. 20:1–20:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abgch@dtu.dk
https://orcid.org/0000-0002-9486-9115
mailto:erot@dtu.dk
https://orcid.org/0000-0001-5853-7909
mailto:jmvvl@student.dtu.dk
https://orcid.org/0009-0004-0079-8523
https://doi.org/10.4230/LIPIcs.SWAT.2024.20
https://doi.org/10.13140/RG.2.2.18471.52648
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Sparsity-Parameterised Dynamic Edge Colouring

Graph colouring is a family of fundamental problems with many applications in computer
science. We study the edge-colouring problem: the goal is to assign edges colours such that
edges sharing an endpoint are coloured differently. This problem has implications in resource
allocation and scheduling, for example to allocate bandwidth in an optical network [17].

A C-edge colouring of a graph G = (V,E) can be represented by a function f : E →
{1, ..., C}, and the smallest palette size C for which there exists a proper C edge colouring is
called the edge chromatic number of G, denoted χ′. If ∆ is the maximum degree of G, then the
edge chromatic number is clearly at least ∆. Vizing [30] proved that G can always be coloured
with ∆ + 1 colours. On the other hand, Holyer showed that it is NP-complete to determine
the edge chromatic index of an arbitrary graph [21], and the problem remains NP-complete
even for cubic graphs. A (∆(uv) +C)-edge colouring is a proper colouring of the graph where
each edge uv receives a colour from {1, ...,∆(uv) + C}. Here ∆(uv) = max{d(u), d(v)}.

Vizing’s proof is constructive and suggests a way to extend a proper partial colouring to
a larger subgraph by recolouring O(∆ + n) edges. Furthermore, the colour changes can be
performed in polynomial time. However, so far the fastest algorithms for statically (∆ + 1)
edge colouring a graph spend O(m

√
n) [28] or Õ(m∆) [18] time. For certain graphs, faster

algorithms are known [4, 8].
It is interesting to see whether one can reduce the running time by slightly increasing

the palette size. This line of research has been pursued before. In particular, the problem
of 2∆ − 1 edge colouring can be solved greedily, yielding static algorithms running in near-
linear time [14] and dynamic algorithms with O(log ∆) update time [6]. In this dynamic
setting, there are known algorithms [13, 16] that achieve a randomized (1 + ϵ)∆ colouring in
poly(logn, ϵ−1) time, with ϵ > 0 by Duan, He, and Zhang [16], and later Christiansen [13].

In the distributed setting, Chang, He, Li, Pettie and Uitto [11] designed a randomized
∆ + O(

√
∆) edge colouring in poly(logn) rounds based on the Lovasz Local Lemma and

Barenboim, Elkin and Maimon [2] describe a simple deterministic distributed algorithm for
∆ +O(α) colouring in polylogarithmic time. There are many more papers achieving different
trade-offs between time and palette size. See for instance [3, 15, 19, 29] for different trade-offs
in the distributed setting, or the papers [11, 19] for a more extensive discussion.

For some algorithmic problems, especially ones where recourse is an important part of
the running time of an algorithm, or the recourse is of interest on its own, the best known
analysis follows a specific proof strategy; “solution oblivious analysis”. By solution oblivious,
we mean that we do not only give guarantees against worst case input graphs at each step of
the algorithm, we furthermore always, when analysing the next step, are robust against an
adversary changing the solution to the worst-possible solution before every update. Examples
of such analysis include the analysis of the SAP protocol for maintaining maximum matchings
in bipartite graphs of Bernstein, Holm and Rotenberg [5], the analysis of recourse in the
edge-colouring algorithms of Bernshteyn [3], Christiansen [13], and Duan, He and Zhang [16],
and the analysis of the fully-dynamic out-orientation scheme due to Brodal & Fagerberg [10],
in which a potential function bounds the reorientations by comparing to an existing (but
not necessarily efficient) algorithm that augments paths whose lengths are bounded in an
oblivious manner.

For the edge-colouring problem, an interesting lower bound has been proved by Chang,
He, Li, Pettie and Uitto: they show that there exists a graph, and a partial colouring of this
graph with a single uncoloured edge, such that to colour this edge, one needs to recolour a
subgraph of diameter Ω(∆

c log(cn
∆)). This is then also a lower bound on the number of edges

that need to be recoloured. This means that if we restrict ourselves to solution oblivious
analysis, a dynamic algorithm with polylogarithmic update time will need a palette of size

A. B. G. Christiansen, E. Rotenberg, and J. Vlieghe 20:3

at least ∆ +O
(

∆
poly(log n)

)
. The analysis of Christiansen [13], and Duan, He and Zhang [16]

for their (1 + ϵ)∆ dynamic edge-colouring algorithms are solution oblivious, which results in
algorithms that have a polynomial dependency on ϵ−1.

Whether one can design an algorithm with poly log update time that only uses ∆+O(∆1−ε)
colours for some constant ε > 0 remains a fundamental open problem. Improved results for
special classes of graphs, like forests, planar graphs or sparse graphs, also receive attention
in the community. In the static setting, it was shown by Bhattacharya, Costa, Panski and
Solomon [8] that one can compute a (∆ + 1) edge colouring in Õ(min{m

√
n,m∆} · α

∆)-time.
Here α is the arboricity of the graph, and it is equal to the smallest number of forests needed
to cover the edges of a graph. It is within a factor of 2 of other sparsity measures like the
maximum subgraph density and the degeneracy. Many other problems like, for instance,
maintaining dynamic matchings [22, 26], maintaining a dynamic data structure that can
answer adjacency queries efficiently [10] and maintaining a maximal independent set [25]
also have solutions that run faster in graphs with low arboricity.

Our contribution. A natural question is therefore to ask if one can further reduce the
palette size in dynamic graphs that are at all times sparse. In this paper, we show that this is
the case. More specifically, we show that there exists a dynamic algorithm that can maintain
an edge colouring with only ∆ +O(α) colours in poly-logarithmic update time. Since the
arboricity can be as large as ∆

2 , this is not always an improvement, however for many graph
classes like forests, planar graphs, and graphs with constant arboricity, the number of colours
used is significantly reduced compared to other efficient dynamic edge-colouring algorithms.

Tables 1, 2 and 3 summarise the results mentioned above and are not a comprehensive
overview of the state of the art.

Table 1 A comparison of static edge-colouring algorithms.

Palette size Time Notes Reference

∆ O(m log ∆) bipartite multigraph [14]

2∆(uv) − 1 O(m log ∆) [6]

∆ + 1 O(m
√

n) randomised [28]

∆ + 1 Õ(m∆) [18]

∆ + 1 Õ(min{m
√

n, m∆} · α
∆) [8]

∆(uv) + 1 O(n2∆) [13]

∆(uv) + 2α − 2 O(m log ∆) new

Independent work. In independent and concurrent work, Bhattacharya, Costa, Panski, and
Solomon also maintain a ∆ + O(α) edge colouring in amortised polylogarithmic time per
insertion or deletion [7].

SWAT 2024

20:4 Sparsity-Parameterised Dynamic Edge Colouring

Table 2 A comparison of dynamic edge-colouring algorithms. If G goes through a sequence
of insertions and deletions G1...GT , ∆max = max

1≤t≤T
∆(Gt) is the maximum ∆ on all graphs in the

sequence. αmax is defined similarly.

Palette size Update time Notes Reference

2∆(uv) − 1 O(log ∆) worst case [6]

(1 + ϵ)∆ O(log9 n log6 ∆/ϵ6) worst-case, randomised [13]

(1 + ϵ)∆ O(log8 n/ϵ4) amortized, randomised [16]

∆ ∈ Ω(log2 n/ϵ2)

∆max + O(αmax) O(log n log ∆max) amortized new

∆(uv) + O(α) O(log2n log αmax log α log ∆max) amortized new

Table 3 State-of-the-art for edge-colouring algorithms in the LOCAL model.

Palette size Rounds Notes Reference

∆ + O(α) O(
√

α log n) LOCAL model [2]

∆ + 1 poly(∆, log n) LOCAL model [3]

1.1 Notations

In this paper, we focus on simple graphs. According to many definitions of edge colouring,
an edge from a vertex to itself can not be coloured.

Let G = (E, V) be the undirected input graph and H a subgraph of G. Define ΓH(v) to
be the neighbourhood of v with respect to a graph H, and given a subset of vertices U ⊆ V ,
define ΓU (v) to be the neighbourhood of v with respect to the subgraph induced by U in G.
Later, we use NH(v) to refer to a data structure containing ΓH(v). Define degH(v) to be
the degree of v with respect to a graph H. Formally, given H ⊆ G and U ⊆ V :

ΓH(v) = {u ∈ V | (u, v) ∈ E(H)}
ΓU (v) = {u ∈ U | (u, v) ∈ E(G)}

degH(v) = |ΓH(v)|
degU (v) = |ΓU (v)|

Let G go through a sequence of insertions and deletions G1...GT . At any iteration t, we
denote by ∆t(uv) the maximum degree of the endpoints of the edge uv and ∆t the maximum
degree of the graph considered. ∆max is the maximum ∆ on all graphs in the sequence.
Formally, at iteration t:

A. B. G. Christiansen, E. Rotenberg, and J. Vlieghe 20:5

∆t(uv) = max{degGt
(u),degGt

(v)}
∆t = ∆(Gt)

∆max = max
1≤t≤T

∆(Gt)

If the context is not ambiguous, we drop the subscript and write ∆,∆(uv) to refer to the
maximum degree and the maximum degree between u and v in the current iteration.

Arboricity. The arboricity α of a graph G = (V,E) is defined as:

α = max
U⊆V, |U |>1

⌈
|E(U)|
|U | − 1

⌉
On a more intuitive level, the arboricity can also be defined as the smallest number α such
that the edges of the graph can be partitioned in α forests. The two definitions are equivalent
by Nash-Williams theorem [24]. A relevant consequence is that there exists an orientation of
G where each vertex has at most α out-neighbours.

H-partition. Let H = {H1, ...Hk} be a partition of the vertex set V (G). If a vertex v is in
Hi, we say that the level of v is l(v) = i. We denote by Zi =

⋃
j≥i Hj the vertices in levels i

and above (Figure 1). We may abuse these notations and use Hi, Zi to refer to the subgraph
induced in G by those sets.

H1 H2 ... Hk

Zk = Hk

Z2

Z1 = V (G)

Figure 1 Hierarchical partition of the vertex set of a graph G.

Orientation. Consider the following orientation of the graph: if l(u) < l(v), we orient the
edge from u to v (Figure 2). If u and v are on the same level, we have an edge in both
directions. This orientation enables us, given a vertex v, to refer to the neighbours of v in
Zl(v) as the out-neighbours of v. We denote by deg+(v) the out-degree of v.

deg+(v) = degZl(v)
(v)

1.2 Palettes
In the following, a palette is a data structure that keeps track of the colours that are used or
not at a vertex. They cover colours [1, 2⌈log(2∆−1)⌉], where the value of ∆ can change. In the
dynamic algorithms, we will use the following result:

SWAT 2024

20:6 Sparsity-Parameterised Dynamic Edge Colouring

H1 H2 ... Hk

Figure 2 Hierarchical partition. In the static setting, the out degree of a vertex is bounded by d.

▶ Theorem 1 (Palettes). Consider two palettes P , Q such that there are a colours used in P

and b colours used in Q. We can find a colour that is available in [1, a+ b+ 1] in log ∆ time.

Proof. The proof is in the full version of the paper [12], along with the description of the
data structure, which is generalised from the palettes in [6]. ◀

1.3 Roadmap
Baremboim, Elkin and Maimon describe a simple distributed algorithm for ∆ + O(α)
colouring [2]. They form a hierarchical partition (or H-partition) of the graph, colour each
set greedily, then colour the edges going out of the sets in an appropriate order. In Section 2,
we show that this technique can easily be adapted into an efficient algorithm in the static
setting. We also show a simpler algorithm that yields a ∆ + 2α− 2 edge colouring within
the same time by building a degeneracy order of the graph instead of an H-partition.

In Sections 3 and 4, we maintain a valid edge colouring in poly logarithmic time. We first
present a simplified version of our algorithm that maintain a fully dynamic ∆max +O(αmax)
edge colouring in Section 3. This relies on two ideas: first, we maintain a dynamic H-partition,
which only requires simple changes from the decomposition of Bhattacharya, Henzinger,
Nanongkai, and Tsourakakis [9], namely, we need to maintain two palettes of available colours
at each vertex, one for its neighbours and one for its out-neighbours. Then it is easy to
colour an edge in a valid partition.

Then we present an algorithm that is adaptative to the maximum degree and arboricity
and maintains a ∆(uv) +O(α) edge colouring. Our data structure is derived from the Level
Data Structure of Henzinger, Neumann and Wiese [20], which has the following property:
instead of having an out-degree that depends on α, the levels of the partition have an
increasingly large out-degree, and the sequence of maximum out-degree is such that it will
be bounded by the current value of the arboricity, within a constant factor. Adapting to the
current maximum can be done by updating the few problematic neighbours of a vertex when
its degree decreases.

In the full version of the paper [12], we study the constants, and show that with small
modifications of the data structure, we can get ∆max + (4 + ϵ)αmax and ∆(uv) + (8 + ϵ)α
colours in the dynamic setting.

2 Static ∆(uv) + O(α) colouring

In this section, we describe a static edge-colouring algorithm. We arrange the vertices in a
hierarchical partition that results in a O(α) out-orientation, then we colour vertices from
right to left, so that for one of the endpoints, only the out-edges may already have colours.
As the other endpoint has at most ∆ coloured edges, the algorithm results in a ∆ +O(α)
edge colouring.

The partition as it will be a crucial part of the dynamic algorithm. However, in the static
setting, we could perform this algorithm with any α out-orientation. We show how this leads
to a ∆ + 2α− 2 edge colouring within the same asymptotic running time. We describe this
algorithm first.

A. B. G. Christiansen, E. Rotenberg, and J. Vlieghe 20:7

Arboricity and degeneracy. A graph G of arboricity α can be partitioned into α forests
has at most α(n − 1) edges, therefore it has a vertex of degree at most 2m/n ≤ 2α − 1:
the degeneracy of G is less than twice the arboricity. Therefore, the degeneracy is a 2-
approximation of the arboricity. We can compute a degeneracy order of the graph, in linear
time [23], and colour the edges as follows: we colour the out-edges of the vertices from right
to left. We describe this in more details in the following proof.

▶ Theorem 2. Given a graph of arboricity α, we can compute a ∆(uv) + 2α− 2 colouring
of the graph in O(m log ∆) time.

Proof. For this proof only, let d ≤ 2α− 1 denote the degeneracy of the graph. We compute
a degeneracy ordering, which can be done in linear time [23]. We greedily colour the edges
from vi to vj>i for i = n − 1, ..., 1. Let us prove by induction that we can always find an
available colour in a palette of size ∆(uv) + d − 1. At the first iteration, we can greedily
colour a potential edge from vn−1 to vn with one colour.

Assume that for i < n − 1, we have coloured any edge vjvj′ s.t. j, j′ > i with at most
∆(vjvj′) + d − 1 colours. Consider an uncoloured edge e = vivj with j > i. vj is incident
to at most deg(vj) − 1 coloured edges and vi is adjacent to at most d − 1 coloured edges,
therefore e sees at most deg(vj) + d− 2 colours and can find an available colour in a palette
of size deg(vj) + d− 1.

If we maintain a binary tree over the palette at each vertex, we can find an available
colour for an edge in O(log ∆) time according to Theorem 1. Therefore, colouring all the
edges takes O(m log ∆) time. ◀

This could conclude the static version. However, this algorithm does not translate into
an efficient dynamic algorithm, as far as we can say; therefore we introduce the notion of
hierarchical partition, which will be crucial in our dynamic algorithms. The rest of the
section proves a slightly weaker theorem through the use of such a partition:

▶ Theorem 3. We can compute a static ∆(uv) +O(α) edge colouring in O(mlog∆) time.

H-partition. In the following, we want to compute a partition such that in the corresponding
orientation, each vertex has out-degree at most O(α). Barenboim, Elkin and Maimon H-
partition from [1] describe a distributed algorithm which translates well to the static setting:
we call a vertex active if it does not have a level assigned yet. Initially, all the vertices are
active. A vertex that is active at iteration i will be part of the set Zi. We call active degree
the number of active neighbours of a vertex. Initially, the active degree of a vertex is its
degree. Then at iterations i = 1...k, we group all the vertices of active degree at most d = 4α
into a set Hi. For each vertex in Hi, we decrement the active degree of its neighbours and
continue.

▶ Lemma 4. We can compute a H-partition H = {H1, ...Hk} of a graph G of arboricity α
such that the size of the partition is at most k = ⌊logn⌋ + 1 and for all i, for all v ∈ Hi, the
degree of v in G(Zi) is at most 4α.

Proof. Consider a set Hi. The average degree is:

2 |E(Zi)|
|V (Zi)|

≤ 2α ≤ 4α
2

SWAT 2024

20:8 Sparsity-Parameterised Dynamic Edge Colouring

At most half of the vertices have a degree more than 4α, otherwise we would have an average
degree greater than 2α, leading to a contradiction. Therefore:

|Zi+1| ≤ |Zi|/2
|Zi| ≤ n/2i−1

|Z⌈log n⌉+1| < 1

Therefore, we can safely set k = ⌈logn⌉ ◀

▶ Lemma 5. We can compute the H-partition described in lemma 4 in O(m) time.

Proof. The sum of the degrees is 2m, so we cannot decrement the active degrees more than
O(m) time in total, and decrementing a degree takes constant time. Then, at iteration i, we
can search the vertices of low active degree in O(n/2i) time. Therefore, the running time to
compute the H-partition is O(m+ n). ◀

▶ Lemma 6. Given a H-partition, we can compute a ∆(uv) +O(α) colouring of the graph
in O(m log ∆) time.

Proof. Let d = 4α.
We greedily colour the edges from Hi to Hj≥i for i = k, ..., 1. Let us prove by induction

that we can always find an available colour in a palette of size ∆(uv) + d− 1. At the first
iteration, we can greedily colour Hk with 2d− 1 colours.

Assume that for i < k, we have coloured G(Hi+1 ∪ ...Hk) with at most ∆ + d− 1 colours.
Consider an uncoloured edge e = uv such that u ∈ Hi, v ∈ Hi ∪ ...Hk. v is incident to at
most deg(v) − 1 coloured edges and u is adjacent to at most d− 1 coloured edges, therefore e
sees deg(v) + d− 2 colours and can find an available colour in a palette of size deg(v) + d− 1.

If we maintain a binary tree over the palette at each vertex, we can find an available
colour for an edge in O(log ∆) time according to theorem 1. Therefore, colouring all the
edges given the H-partition takes O(m log ∆) time using theorem 1. ◀

3 Dynamic ∆max + O(αmax) colouring

In this section, we show how to update a dynamic edge colouring. We first discuss how we
can recolour an edge within a valid H-partition, then we show how we can maintain such a
partition. The algorithm requires αmax and ∆max to be known in advance.

3.1 Data structure
We consider a H-partition that maintains the following invariants, with d = 4αmax:
1. Each vertex v such that l(v) > 1 has at most βd neighbours in Zl(v) (out-neighbours). In

this section, we choose β = 5.
2. Each vertex v has at least d neighbours in Zl(v)−1
For each vertex v ∈ Hi, we store the following:

For each j < i, we store the neighbours of v at level j, ΓHj (v), in a linked list NHj (v).
We store the out-neighbours of v, ΓZi

(v), in a linked list NZi
(v).

We store the length of each linked list.
For each edge uv, we store a pointer to the position of u in the appropriate neighbour
list N·(v) and conversely.
We store two palettes: one for the neighbours of v and one for its out-neighbours. We
refer to those palettes as PG(v) and PZi

(i).

A. B. G. Christiansen, E. Rotenberg, and J. Vlieghe 20:9

3.2 Recolouring an edge
Let us start with a key sub problem: given an uncoloured edge in an otherwise valid data
structure, what is the cost of colouring the edge? We colour the edge uv as we would have in
section 2.

Let u be the leftmost vertex, i.e. i = l(u) ≤ l(v). We ignore the neighbours of u that
have a lower level, which can be done in practice by searching for an available colour in
PZi

(u) ∩ PG(v). The colour picked may conflict with a single edge from a neighbour of u on
a lower level. If that is the case, we recolour that edge in the same way.

▶ Lemma 7. An uncoloured edge uv in an otherwise valid data structure can be coloured in
O(min(l(u), l(v)) · log ∆) time.

Proof. Assume wlog. l(u) ≤ l(v). If uv is not coloured, at most βd−1 colours are represented
at u in the palette P (Zl(u)), and at most deg(v) − 1 colours are represented at v. Therefore,
there exists an available colour in the palette [deg(v) + βd − 1]. If there exists w such
that uw conflict with uv, then l(w) < l(u). Therefore, the level of the left endpoint of the
conflicting edge decrease at each iteration, which can happen at most l(u) − 1 times (Figure
1). Therefore, recolouring an edge and recursively resolving conflicts take O(l(u) · log ∆)
time. ◀

H1 H2

...

Hl(u)−1 Hl(u)

w u
v

Figure 3 We may need to recolour at most l(u) edges.

Algorithm 1 Recolour.

procedure Recolour(uv)
if l(u) > l(v) then

u, v = v, u

i = l(u)
// Pick a colour available in G(Zi) in the palette [deg(v) + βd− 1].
Colour(uv,deg(v) + βd− 1, PZi(u), PG(v))
if c(uv) is represented at u then

Use the pointer C(u)[c] to find the conflicting edge wu
Recolour(wu)

3.3 Updating the hierarchical partition and full algorithm
Updates. The algorithm for the updates is the following: let us say that a vertex that
violates Invariant 1 or 2 is dirty. As long as we have a dirty vertex v: if v violate the first
invariant, we increment its level. If it violates Invariant 2, we decrement it. when doing so,
we need to update our linked lists of neighbours and our tree palettes. Updating the trees is
the limiting factor. The details of the updates are described in Algorithm 5. The algorithm
terminates, which will be justified later, as we will define a positive potential that strictly
decreases at each step.

SWAT 2024

20:10 Sparsity-Parameterised Dynamic Edge Colouring

▶ Lemma 8. Increasing the level of a vertex takes O
(
deg+(v) log ∆

)
time. Decreasing the

level of a vertex takes O (d log ∆) time.

Proof. When we increment the level of a vertex, we first update the lists of neighbours
of v: we traverse NZi(v) to split it in NHi(v) and NZi+1(v) in O(deg+(v)) time. Then
we discard PZi

(v) and create PZi+1(v): we traverse the linked list NZi+1(v) and insert the
degZi+1(v) = O(deg+(v)) elements in the tree, which takes O(deg+(v) log ∆) time. We also
need to update the data structures of at most deg+(v) neighbours, which takes constant
time per neighbour for the linked lists and log ∆ time per neighbour for trees.

Finally, we need to check which vertices became dirty as a result of the operation. The
set Zi+1 has one more element, and for j ≠ i+ 1, Zj is unchanged. Therefore, we check if v
itself, or any vertex in NZi+1(u), breaks the first invariant, which takes O(degZi+1(v)) time.

The procedure for decrementing a level is similar. If we decrement the level of a vertex, we
know that the second invariant was not respected, i.e. degZi−1(v) < d. After the operation,
Zi does not include v any more and for j ̸= i, Zj is unchanged. To update the lists of
neighbours of v, we merge NHi−1(v) and NZi(v), which takes O(degZi−1(v)) = O(d) time.
We create the palette of v for the set Zi−1 in O(degZi−1(v)) log ∆ = O(d log ∆) time. Then
we need to update the neighbour lists and the palettes of the neighbours of u in Zi, which
also takes constant time per neighbour for the lists and O(log ∆) time per neighbour for the
palettes. Finally, we check if v or any of its neighbours in Zi is dirty, which takes constant
time per vertex. ◀

Algorithm 2 Insert the edge uv.

procedure Add(uv)
if l(u) > l(v) then

Add(vu)
End procedure.

Add v to the out-neighbours of u and store the corresponding pointer.
if l(u) < l(v) then

Add u to NHl(u)(v), the neighbours of v at level l(u)
Store the corresponding pointer.

else
Add u to the out-neighbours of v and store the corresponding pointer.

// The palettes will be updated when uv gets a colour.
Check if u or v became dirty.
Recover
Recolour(uv)

▶ Theorem 9. We can maintain a dynamic ∆max +O(αmax) edge colouring of a graph in
O(logn log ∆max) amortized update time.

Proof. We define the following potential.

B = log ∆max

∑
v∈V

ϕ(v) + log ∆max

∑
e∈E

ψ(e)

ϕ(v) =
l(v)−1∑

j=1
max(0, βd− degZj

(v))

ψ(u, v) = 2(k − min(l(u), l(v))) + 1l(u)=l(v)

A. B. G. Christiansen, E. Rotenberg, and J. Vlieghe 20:11

Algorithm 3 Delete the edge uv.

procedure Delete(uv)
if l(u) > l(v) then

Delete(vu)
End procedure.

Remove the colour of uv from the palettes of neighbours of u and v.
Remove the colour of uv from the palette of out-neighbours of u.
if l(u) == l(v) then

Remove the colour of uv from the palette of out-neighbours of v.
Remove v from the neighbours of u using the corresponding pointer.
Remove u from the neighbours of v using the corresponding pointer.
Check if u or v became dirty.
Recover

Algorithm 4 Recursively fix the invariants.

procedure Recover
while there exists a dirty vertex v do

i = l(v)
if deg+(v) > βd then Increment(v)
else if degZi−1(v) < d then Decrement(v)

When we insert an edge, we create a potential ψ(u, v) ≤ 2k. The potential of the other
edges do not change and the potential of a vertex can only decrease, therefore the potential
B increase by at most 2k log ∆max. When we delete an edge, ϕ(u) and ϕ(v) increase by
at most k each, ψ(u, v) is deleted, and the other potentials are not affected, therefore the
potential increase by at most 2k log ∆max.

When a dirty vertex increment its level, the cost of the operation will be paid by the
drop in potential from the edges. When a dirty vertex decrements its level, the cost of the
operation is paid by the drop in potential from the vertex, despite the increase in potential
from the edges. For completeness, we repeat the details of the analysis that follows closely
that of [9]. Let i be the level of v before the operation.

Incrementing the level of a dirty vertex

When l(v) increases, we get l(v) = i+ 1, so we add max(0, βd− degZi
(v)) to ϕ(v). As

invariant 1 was violated, we must have had degZi
(v) > βd and therefore max(0, βd −

degZi
(v)) = 0: the potential of v is unchanged.

The potential of the other vertices can not increase (though it might decrease for a
neighbour of v).
The potential of an edge may only change if one of the endpoints is v and the other
endpoint u verifies l(u) ≥ i. Therefore, there are exactly deg+(v) edges whose potential
drop by one or two.

The total drop in potential is at least:

deg+(v) log ∆max = Ω(deg+(v) log ∆)

SWAT 2024

20:12 Sparsity-Parameterised Dynamic Edge Colouring

Algorithm 5 Incrementing / decrementing the level of a vertex.

procedure Increment(v)
i = l(v).
Split NZi(v) in NHi(v) and NZi+1(v).
Create the palette of v for Zi+1.
Discard the palette of v for Zi.
for u ∈ NZi+1(u) do

Using the pointer in uv, remove v from NHi(u), add v to NZi+1(u) or NHi+1(u).
Update the pointers accordingly.
if l(u) = i+ 1 then

Update the palette of u for the set Zi+1: add colour c(uv).
Increment l(v)

procedure Decrement(v)
i = l(v).
Merge NZi

(v) and NHi−1(v) into NZi−1(v).
Create the palette of v for Zi−1.
Discard the palette of v for Zi.
for u ∈ NZi

(v) do
Move v from NHi(u) or NZi(u) to NHi−1(u).
Update the pointers accordingly.
if l(u) = i then

Update the palette of u for the sets Zi: remove colour c(uv).
Decrement l(v)

Decrementing the level of a dirty vertex
We must have degZi−1(v) < d ⇒ max(0, βd− degZi−1(v) ≥ (β − 1)d = 4d. Therefore, the
ϕ(v) drops by at least 4d.
If u is a neighbour of v, degZj

(v) is decremented if j = i and is unchanged otherwise.
This affects the potential of u if l(u) > i. Therefore,

∑
u∈Γ(v) ϕ(u) increase by at most

degZi+1(v) < degZi−1(v) < d.
The potential of an edge may only change if one of the endpoints is v and the other
endpoint u verifies l(u) ≥ i. Therefore, there are exactly deg+(v) ≤ degZi−1(v) ≤ d edges
whose potential increase by one or two.

The total drop of potential is at least:

log ∆max (4d− d− 2d) = d log ∆max = Ω(d log ∆) ◀

4 Dynamic ∆(uv) + O(α) colouring

The data structure from the previous section could maintain a dynamic ∆max +O(αmax)
colouring. We modify it further to create a data structure that adapts to the maximum
degree and arboricity. We adapt the arboricity by making a structure that does not depend
explicitly on α: instead, we give the level increasingly large out-degrees and show how the
out-degree ends up being bounded by the current value of the arboricity within a constant
factor. To adapt to the maximum degree, we locally adapt to the degree of the vertices: when
the degree of a vertex decrease, we can recolour its problematic edges in polylogarithmic
time.

A. B. G. Christiansen, E. Rotenberg, and J. Vlieghe 20:13

4.1 Data Structure
In the following, L = 1 + ⌈logn⌉ . We now consider a H-partitions with k = L · ⌈logn⌉
levels. Let k′ = maxv∈V l(v) denote the maximum level of any vertex, that is, the highest
non-empty level.

We partition the levels into ⌈logn⌉ groups of size L (Figure 4).
Let g(v) denote the group of a vertex and d(v) = 2g(v). We will maintain the following:

1. Each vertex v has at most 2βd(v) neighbours in Zl(v). In this section, we choose β = 5,
so any vertex has at most 10d(v) out-neighbours.

2. Each vertex v has at least d(v) neighbours in Zl(v)−1
3. The colour of an edge uv is chosen from the first ∆(uv) + 2βd(v) colours of the palette.

This condition enables the data structure to adapt to changes in the arboricity. In
the following, we prove that for any vertex, g(v) ≤ ⌈log(4α)⌉, which will result in a
∆(uv) +O(α) colouring.

H1

...

HL

...

Hk−L−1

...

Hk

group 1 ... group ⌈log(n)⌉

Figure 4 Hierarchical partition with two levels. The in degree of a vertex v is still only bounded
by ∆, when the bound on the out degree depends on its group g(v).

We store the neighbours and palettes of the vertices as described in the previous section.

▶ Lemma 10 (Maximum level). The index of the highest non empty level, k′, is at most
O(logα logn).

Proof. Consider the group ⌈log(4α)⌉ and a level i in this group. We can repeat the arguments
from the proof of lemma 4 and show that the last set of the group ZL⌈log(4α)⌉, with L =
1+⌈logn⌉ = O(logn), has at most one element, therefore, all the higher groups are empty. ◀

▶ Lemma 11. An uncoloured edge uv in an otherwise valid data structure can be coloured in
time O(logα logn log ∆).

Proof. Following the same reasoning as in the previous section, we have to recolour O(k′)
edges, which we can do in O(k′ log ∆) time. ◀

4.2 Updating the hierarchical partition and full algorithm
When edges are deleted, the arboricity α or the maximum degree ∆ may decrease. To
adapt to the degree, we recolour the edges from in-neighbours of v when uv is deleted. To
maintain the arboricity, we will recolour the edges to the out-neighbours of v when its level
decrease. As a result, we maintain that an edge uv, l(u) ≤ l(v), has a colour from the palette
[deg(v) + βd(u) − 1]

▶ Lemma 12 (Adapting to the maximum degree). We can recolour the edges from the
in-neighbours of v in O(logn log2 α log ∆) time.

SWAT 2024

20:14 Sparsity-Parameterised Dynamic Edge Colouring

Proof. In each group i ≤ g(v), v might have at most one neighbour u such that uv has colour
deg(v) + 2βd(u) − 1. For each such group, it takes constant time to find this edge using the
pointer C(v)[deg(v) + 10 · 2i − 1]. There are therefore at most g(v) edges that we may have
to recolour, each in O(l(v) log ∆) time, when the degree of v decreases. When we delete an
edge, we do this for each of its two endpoints, which takes O(g(v)l(v) log ∆) time. ◀

...
u

v

Figure 5 When the degree of a vertex v decrease, we may need to recolour at most l(v) edges.

▶ Lemma 13 (Adapting to the arboricity). Increasing the level of a vertex v takes
O(deg+(v) log ∆) time. Decreasing the level of a vertex takes O(d · k′ log ∆) time.

Proof. The difference with the previous section is the following: when we decrement the
level of a vertex v, we may need to recolour any edge uv such that min(l(u), l(v)) decrease,
i.e. u was on the same level as v or higher. There are at most deg+(v) = O(d) such edges,
which can be recoloured in O(k′ log ∆) time. ◀

Algorithm 6 Decrementing the level of a vertex with adaptative arboricity.

procedure Adaptative Decrement(v)
i = l(v).
Merge NZi

(v) and NHi−1(v) into NZi−1(v).
Create the palette of v for Zi−1.
Discard the palette of v for Zi.
for u ∈ NZi(v) do

Move v from NHi
(u) or NZi

(u) to NHi−1(u).
Update the pointers accordingly.
if l(u) = i then

Update the palette of u for the sets Zi: remove colour c(uv).
Recolour(uv)

Decrement l(v)

▶ Theorem 14. We can maintain a dynamic ∆(uv) + O(α) edge colouring of a graph in
amortized O(logn logαmax log ∆max) time for insertions, O(log2n logαmax logα log ∆max)
for deletions.

A. B. G. Christiansen, E. Rotenberg, and J. Vlieghe 20:15

Proof. We define the following potential:

B = k′
max log ∆max

∑
v∈V

ϕ(v) + log ∆max

∑
e∈E

ψ(e)

ϕ(v) =
l(v)−1∑

j=1
max

(
0, βd(v) − degZj

(v)
)

ψ(u, v) = 2(k′
max − min(l(u), l(v))) + 1l(u)=l(v)

k′
max = L⌈log(4αmax)⌉ ∈ O(logn logαmax)

When we insert an edge, we create a potential ψ(u, v) ≤ 2k′
max. The potential of the other

edges do not change and the potential of a vertex can only decrease, therefore the potential B
increase by at most log ∆max · 2k′

max. When we delete an edge, we need O(logn log2α log ∆)
time to update the overflowing colours of the in-neighbours of v (lemma 12). Then for the
potentials: ϕ(u) and ϕ(v) increase by at most k′ each, ψ(u, v) is deleted, and the other
potentials are not affected, therefore the potential increase by at most k′

max log ∆max · 2k′,
therefore the costs.

Incrementing the level of a dirty vertex. Let d denote the value of d(v) before the change
of level and d′ the value after the modification.

If v changes group, we have d′ = 2d, otherwise d′ = d. Either way, we have deg+(v) >
10d ⇒ max(0, βd′ − deg+(v)) = 0. It follows that ϕ(v) is unchanged. The potential of
the other vertices can not increase (though it might decrease for a neighbour of v).
The potential of an edge may only change if one of the endpoints is v and the other
endpoint u verifies l(u) ≥ i. Therefore, there are exactly deg+(v) edges whose potential
drop by one or two.

The total drop in potential is at least:

deg+(v) log ∆max = Θ(deg+(v) log ∆)

Decrementing the level of a dirty vertex.
We must have degZi−1(v) < d ⇒ max

(
βd− degZi−1(v)

)
≥ 4d. Therefore, the ϕ(v) drops

by at least 4d. If the level of v decreases, the potential only decreases further.
If u is a neighbour of v, degZj

(v) is decremented if j = i and is unchanged otherwise.
This affects the potential of u if l(u) > i. Therefore,

∑
u∈Γ(v) ϕ(u) increase by at most

6 degZi+1(v) < degZi−1(v) < d.
The potential of an edge may only change if one of the endpoints is v and the other
endpoint u verifies l(u) ≤ i. Therefore, there are exactly deg+(v) < degZi−1(v) < d edges
whose potential increase by one or two.

The total drop of potential is at least:

k′
max log ∆max (4d− d) − log ∆max · 2d ≥ k′

max log ∆max · d ◀

5 Conclusion

In this paper, we show how to maintain a ∆(uv) +O(α) edge colouring in polylogarithmic
time through the use of dynamic hierarchical partition. We also propose a simpler data
structure to maintain a ∆max +O(αmax) edge colouring, which can be done faster than the
aforementioned algorithm.

SWAT 2024

20:16 Sparsity-Parameterised Dynamic Edge Colouring

We give an amortized analysis of the running time of our dynamic algorithms. This raises
the question of what can be done in worst case time. In our case, we are only limited by the
updates of our hierarchical partitions, so it motivates the search for hierarchical partitions
with efficient worst-case update times.

The question that motivated our research is still open for graphs that have a large
arboricity compared to their maximum degrees: is it possible to maintain a ∆ +O(∆1−ϵ)
edge colouring, with ϵ a positive constant, in polylogarithmic time?

In the static setting, we showed that we can make a ∆(uv) + 2α − 2 edge colouring
in O(m log ∆) time, which is as fast as the greedy 2∆(uv) − 1 algorithm. Thus, we get a
∆(uv) + O(1) edge colouring for graphs of constant arboricity, such as planar graphs, in
near-linear time: more precisely, a planar graph has arboricity at most 3 [27], so by our
result, it can in near-linear time be edge-coloured with ∆(uv) + 2α− 2 = ∆(uv) + 4 colours.

Recently, it was shown by Bhattacharya, Costa, Panski and Solomon [8] that one can
compute a (∆ + 1) edge colouring in Õ(min{m

√
n,m∆} · α

∆)-time, which gives a near linear
time algorithm for graphs of polylogarithmic arboricity. It emphasises the question whether
a near-linear time ∆ +O(1) edge-colouring algorithm could be obtained for a wider class of
graphs.

References
1 Leonid Barenboim and Michael Elkin. Sublogarithmic distributed MIS algorithm for sparse

graphs using Nash-Williams decomposition. In Proceedings of the Twenty-Seventh ACM
Symposium on Principles of Distributed Computing, PODC ’08, pages 25–34, New York, NY,
USA, 2008. Association for Computing Machinery. doi:10.1145/1400751.1400757.

2 Leonid Barenboim, Michael Elkin, and Tzalik Maimon. Deterministic distributed (∆ + o(∆))-
edge-coloring, and vertex-coloring of graphs with bounded diversity. In Elad Michael Schiller
and Alexander A. Schwarzmann, editors, Proceedings of the ACM Symposium on Principles of
Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27, 2017, pages 175–184.
ACM, 2017. doi:10.1145/3087801.3087812.

3 Anton Bernshteyn. A Fast Distributed Algorithm for ((∆ + 1))-Edge-Coloring. Journal of
Combinatorial Theory, Series B, 152:319–352, 2022. doi:10.1016/j.jctb.2021.10.004.

4 Anton Bernshteyn and Abhishek Dhawan. Fast algorithms for vizing’s theorem on bounded
degree graphs. CoRR, abs/2303.05408, 2023. doi:10.48550/arXiv.2303.05408.

5 Aaron Bernstein, Jacob Holm, and Eva Rotenberg. Online bipartite matching with amortized
O(log 2 n) replacements. J. ACM, 66(5):37:1–37:23, 2019. doi:10.1145/3344999.

6 Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai.
Dynamic algorithms for graph coloring. In Artur Czumaj, editor, Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018, pages 1–20. SIAM, 2018. doi:10.1137/1.9781611975031.1.

7 Sayan Bhattacharya, Martín Costa, Nadav Panski, and Shay Solomon. Arboricity-dependent
algorithms for edge coloring. CoRR, abs/2311.08367, 2023. doi:10.48550/arXiv.2311.08367.

8 Sayan Bhattacharya, Martín Costa, Nadav Panski, and Shay Solomon. Density-sensitive
algorithms for (∆+1)-edge coloring. CoRR, abs/2307.02415, 2023. doi:10.48550/arXiv.2307.
02415.

9 Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos E. Tsouraka-
kis. Space- and time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic
streams. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015, pages 173–182. ACM, 2015. doi:10.1145/2746539.2746592.

https://doi.org/10.1145/1400751.1400757
https://doi.org/10.1145/3087801.3087812
https://doi.org/10.1016/j.jctb.2021.10.004
https://doi.org/10.48550/arXiv.2303.05408
https://doi.org/10.1145/3344999
https://doi.org/10.1137/1.9781611975031.1
https://doi.org/10.48550/arXiv.2311.08367
https://doi.org/10.48550/arXiv.2307.02415
https://doi.org/10.48550/arXiv.2307.02415
https://doi.org/10.1145/2746539.2746592

A. B. G. Christiansen, E. Rotenberg, and J. Vlieghe 20:17

10 Gerth Stølting Brodal and Rolf Fagerberg. Dynamic representations of sparse graphs. In
Frank Dehne, Jörg-Rüdiger Sack, Arvind Gupta, and Roberto Tamassia, editors, Algorithms
and Data Structures, Lecture Notes in Computer Science, pages 773–782, Netherlands, 1999.
Springer. 6th International Workshop on Algorithms and Data Structures. WADS 1999 ;
Conference date: 11-08-1999 Through 14-08-1999. doi:10.1007/3-540-48447-7_34.

11 Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. The complexity of
distributed edge coloring with small palettes. In Artur Czumaj, editor, Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New
Orleans, LA, USA, January 7-10, 2018, pages 2633–2652. SIAM, 2018. doi:10.1137/1.
9781611975031.168.

12 Aleksander B. G. Christiansen, Eva Rotenberg, and Juliette Vlieghe. Sparsity-parameterised
dynamic edge colouring. CoRR, abs/2311.10616, 2023. doi:10.48550/arXiv.2311.10616.

13 Aleksander Bjørn Grodt Christiansen. The power of multi-step vizing chains. In Barna Saha
and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory
of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 1013–1026. ACM,
2023. doi:10.1145/3564246.3585105.

14 Richard Cole, Kirstin Ost, and Stefan Schirra. Edge-coloring bipartite multigraphs in O(E log D

time. Combinatorica, 21(1):5–12, January 2001. doi:10.1007/s004930170002.
15 Peter Davies. Improved distributed algorithms for the lovász local lemma and edge coloring.

In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages
4273–4295. SIAM, 2023. doi:10.1137/1.9781611977554.ch163.

16 Ran Duan, Haoqing He, and Tianyi Zhang. Dynamic edge coloring with improved approxima-
tion. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’19, pages 1937–1945, USA, 2019. Society for Industrial and Applied Mathematics.

17 Thomas Erlebach and Klaus Jansen. The complexity of path coloring and call scheduling.
Theoretical Computer Science, 255(1):33–50, 2001. doi:10.1016/S0304-3975(99)00152-8.

18 Harold N. Gabow, Takao Nishizeki, Oded Kariv, Daniel Leven, and Osamu Terada. Algorithms
for edge-colouring graphs. Technical Report, 1985.

19 Mohsen Ghaffari, Fabian Kuhn, Yannic Maus, and Jara Uitto. Deterministic Distributed
Edge-Coloring with Fewer Colors. In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, pages 418–430, 2018.

20 Monika Henzinger, Stefan Neumann, and Andreas Wiese. Explicit and implicit dynamic
coloring of graphs with bounded arboricity, 2020. doi:10.48550/arXiv.2002.10142.

21 Ian Holyer. The np-completeness of edge-coloring. SIAM J. Comput., 10(4):718–720, 1981.
doi:10.1137/0210055.

22 Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. Orienting fully dynamic
graphs with worst-case time bounds. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt,
and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II,
volume 8573 of Lecture Notes in Computer Science, pages 532–543. Springer, 2014. doi:
10.1007/978-3-662-43951-7_45.

23 David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and graph coloring
algorithms. J. ACM, 30(3):417–427, July 1983. doi:10.1145/2402.322385.

24 C. St.J. A. Nash-Williams. Decomposition of Finite Graphs Into Forests. Journal of the
London Mathematical Society, s1-39(1):12–12, January 1964. doi:10.1112/jlms/s1-39.1.12.

25 Krzysztof Onak, Baruch Schieber, Shay Solomon, and Nicole Wein. Fully dynamic MIS in
uniformly sparse graphs. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx,
and Donald Sannella, editors, 45th International Colloquium on Automata, Languages, and
Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs,
pages 92:1–92:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/
LIPIcs.ICALP.2018.92.

SWAT 2024

https://doi.org/10.1007/3-540-48447-7_34
https://doi.org/10.1137/1.9781611975031.168
https://doi.org/10.1137/1.9781611975031.168
https://doi.org/10.48550/arXiv.2311.10616
https://doi.org/10.1145/3564246.3585105
https://doi.org/10.1007/s004930170002
https://doi.org/10.1137/1.9781611977554.ch163
https://doi.org/10.1016/S0304-3975(99)00152-8
https://doi.org/10.48550/arXiv.2002.10142
https://doi.org/10.1137/0210055
https://doi.org/10.1007/978-3-662-43951-7_45
https://doi.org/10.1007/978-3-662-43951-7_45
https://doi.org/10.1145/2402.322385
https://doi.org/10.1112/jlms/s1-39.1.12
https://doi.org/10.4230/LIPIcs.ICALP.2018.92
https://doi.org/10.4230/LIPIcs.ICALP.2018.92

20:18 Sparsity-Parameterised Dynamic Edge Colouring

26 David Peleg and Shay Solomon. Dynamic (1 + ϵ)-approximate matchings: A density-sensitive
approach. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016, pages 712–729. SIAM, 2016. doi:10.1137/1.9781611974331.ch51.

27 K. S. Poh. On the linear vertex-arboricity of a planar graph. J. Graph Theory, 14(1):73–75,
1990. doi:10.1002/jgt.3190140108.

28 Corwin Sinnamon. A randomized algorithm for edge-colouring graphs in O(m
√

n) time. CoRR,
abs/1907.03201, 2019. arXiv:1907.03201.

29 Hsin-Hao Su and Hoa T Vu. Towards the Locality of Vizing’s Theorem. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, pages 355–364, 2019.

30 V. G. Vizing. The chromatic class of a multigraph. Cybernetics, 1(3):32–41, May 1965.
doi:10.1007/BF01885700.

https://doi.org/10.1137/1.9781611974331.ch51
https://doi.org/10.1002/jgt.3190140108
https://arxiv.org/abs/1907.03201
https://doi.org/10.1007/BF01885700

	1 Introduction and related work
	1.1 Notations
	1.2 Palettes
	1.3 Roadmap

	2 Static colouring
	3 Dynamic colouring
	3.1 Data structure
	3.2 Recolouring an edge
	3.3 Updating the hierarchical partition and full algorithm

	4 Dynamic colouring
	4.1 Data Structure
	4.2 Updating the hierarchical partition and full algorithm

	5 Conclusion

