
Approximating Minimum Sum Coloring with
Bundles
Seyed Parsa Darbouy #

Department of Computing Science, University of Alberta, Canada

Zachary Friggstad1 #

Department of Computing Science, University of Alberta, Canada

Abstract
In the Minimum Sum Coloring with Bundles problem, we are given an undirected graph
G = (V, E) and (not necessarily disjoint) bundles V1, V2, . . . , Vp ⊆ V with associated weights
w1, . . . , wp ≥ 0. The goal is to give a proper coloring of G using positive integers to minimize the
weighted average/total completion time of all bundles, where the completion time of a bundle is
the maximum integer assigned to one of its nodes. This is a common generalization of the classic
Minimum Sum Coloring problem, i.e. when all bundles are singleton nodes, and the classic
Chromatic Number problem, i.e. the only bundle is all of V .

Despite its generality as an extension of Minimum Sum Coloring, only very special cases
have been studied with the most common being the line graph L(H) of a graph H (also known as
Coflow Scheduling). We provide the first constant-factor approximation in perfect graphs and,
more generally, graphs whose chromatic number is within a constant factor of the maximum clique
size in any induced subgraph. For example, we obtain constant-factor approximations for graphs
that are well-studied in minimum sum coloring such as interval graphs and unit disk graphs.

Next, we extend our results to get constant-factor approximations for a general model where
the bundles are disjoint (i.e. can be thought of as jobs brought by the corresponding client) and
we are only permitted to color/schedule a bounded number of jobs from each bundle at any given
time. Specifically, we get constant-factor approximations for this model if the nodes of graph G have
an ordering v1, v2, . . . , vn such that the left-neighborhood Nℓ(vi) := {vj : j < i, vivj ∈ E} can be
covered by O(1) cliques. For example, this applies to chordal graphs, unit disc graphs, and circular
arc graphs.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Scheduling algorithms

Keywords and phrases Approximation Algorithms, Scheduling, Coloring

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.21

Funding Zachary Friggstad: Supported by an NSERC Discovery Grant and an Accelerator Supple-
ment.

1 Introduction

The Minimum Sum Coloring (MSC) problem is a well-studied problem lying at the
intersection of scheduling theory and graph coloring. In it, we are given an undirected graph
G = (V, E) on n nodes. The goal is to find a proper coloring χ : V → {1, 2, . . .} of nodes
of V , i.e. χ(u) ̸= χ(v) for all uv ∈ E, with minimum total color

∑
v∈V χ(v). Viewed as a

scheduling problem, this models settings where unit-length jobs may be completed in parallel
but resource conflicts prevent certain pairs of jobs from being completed at the same time.

While different than standard graph coloring where the goal is to simply minimize the
number of distinct colors of the coloring, it is essentially just as hard to approximate. That
is, unless P = NP, there is no n1−δ-approximation for any constant δ > 0 [2]. However, in

1 Corresponding Author
© Seyed Parsa Darbouy and Zachary Friggstad;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 21; pp. 21:1–21:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:darbouy@ualberta.ca
mailto:zacharyf@ualberta.ca
https://orcid.org/0000-0003-4039-3235
https://doi.org/10.4230/LIPIcs.SWAT.2024.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Approximating Minimum Sum Coloring with Bundles

certain cases, it is possible to get improved approximations. For example, if it is possible
to efficiently compute a maximum independent set in G and any of its induced subgraphs
then greedily coloring by computing a maximum independent set I, coloring I with the next
unused integer, and then removing I from G yields a 4-approximation [2]. There is a large
body of work on getting improved constant-factor approximation in more structured special
cases or obtaining constant-factor approximations in other graph classes, see the related
works section below for further discussion.

In this work, we extend this model in two ways. The first extension is given as follows.

▶ Definition 1. In the Minimum Sum Coloring with Bundles problem (MSCB), we are
given an undirected graph G = (V, E) and collection of bundles V1, . . . , Vp ⊆ V with associated
weights w1, . . . , wp ≥ 0. The goal is to find a proper coloring χ : V → {1, 2, . . . , |V |} of V

in a way that minimizes the total weighted makespan of all bundles. That is, the coloring
should minimize

∑p
i=1 wi · maxv∈Vi χ(v).

If one views bundles as being associated with clients, then each client is interested in the
time it takes for their bundle to be complete. The objective of MSCB is then equivalent to
minimizing the average weighted completion time of all clients’ bundles. If all bundles are
singletons, then MSCB is the same as MSC. If the partition has only a single bundle, i.e.
p = 1, then MSCB is the same as computing the chromatic number of G. Thus, MSCB is
a common generalization of both problems.

It should be noted that MSCB has been studied previously in certain special cases. For
example, when G is the line graph of an undirected graph the problem is known as Coflow
Scheduling. See Section 1.1 for a discussion of this and other related problems.

Many techniques that are successful for MSC fail in MSCB. For example, while iteratively
computing a maximum independent set in G to color the nodes is a 4-approximation for MSC
[2], it could be as bad as an Ω(log n)-approximation for computing the chromatic number
even in trees (see Appendix A). Further difficulties in designing MSCB approximations will
be discussed in Section 1.3.

Our first main result is a constant-factor approximation for MSCB in perfect graphs.
Recall a graph G is perfect if the maximum clique size in G[U] equals the chromatic number
of G[U] for any U ⊆ V where G[U] = (U, {uv ∈ E : u, v ∈ U}) denotes the subgraph of G

induced by U . Examples of perfect graphs include bipartite graphs, line graphs of bipartite
graphs, interval graphs, comparability graphs, split graphs, permutation graphs, and chordal
graphs as well as the edge-complements of these graphs. For a broader discussion of perfect
graphs, we refer the reader to Golumbic’s excellent book [8].

▶ Theorem 2. MSCB on perfect graphs admits a polynomial-time 10.874-approximation.

Our presentation will first focus on proving Theorem 2 in the case of interval graphs. These
are graphs G = (V, E) where each v ∈ V is associated with an interval [sv, tv] ⊆ R and we
have an edge uv ∈ E whenever the corresponding intervals intersect, i.e. [su, tu] ∩ [sv, tv] ̸= ∅.
The linear programming (LP) relaxation we use in this case is simpler than in the general
case of perfect graphs. After presenting the algorithm for interval graphs, we discuss the few
necessary changes to extend it to perfect graphs in general.

Our techniques extend further to classes of graphs for which the chromatic number is
approximately equal to the maximum clique number and these quantities can be approximated
in polynomial time. Namely, we get the following extension. Recall a graph class G is
hereditary if for any G ∈ G we have G[U] ∈ G as well for all induced subgraphs of G.

S. P. Darbouy and Z. Friggstad 21:3

▶ Corollary 3. Let G be any hereditary graph class with the following properties: (a) the
maximum clique size is within a constant factor of the chromatic number of any G ∈ G,
(b) given vertex weights wv, v ∈ V for a graph G ∈ G, there is a constant-factor approx-
imation algorithm for the maximum-weight clique of G, and (c) there is a constant-factor
approximation for coloring any G ∈ G with the minimum number of colors. Then there is a
constant-factor approximation for MSCB for graphs in G.

For example, we get O(1)-approximations for the following graph classes:
Unit disc graphs: when vertices are associated with discs of radius 1 in the plane and edges
indicate when two discs intersect. The classic algorithm in [4] for computing a maximum-
size clique easily generalizes to compute a maximum-weight clique in polynomial time. It
is possible to color any unit disc graph with maximum clique size K using fewer than
3 · K colors in polynomial time [13].
Circular-arc graphs: when vertices are associated with arcs of a circle and edges indicate
when two such arcs intersect. A maximum weight clique can be found in polynomial time,
e.g. [3]. One can efficiently 2 · K-color a circular arc graph with maximum clique size
K by first coloring the arcs spanning one particular point with at most K colors. After
removing these arcs, we are left with an interval graph which can also be colored with K

additional colors since interval graphs are perfect.

Our general definition of MSCB allows bundles to overlap. A natural special case is
where the bundles constitute a partition V1, . . . , Vp of V , i.e. each client brings their own jobs
Vi to be processed. In this case, it is natural to imagine that clients themselves are somewhat
limited on how quickly they can interact with the service provider that is processing the jobs.
For example, perhaps clients can only deliver or take away a bounded number of jobs from
the processing center at any given time. We consider the following generalization of MSCB

▶ Definition 4. In the Minimum Sum Coloring with Bundles and Task Concurrency
problem (MSCB-TC), we are given a graph G = (V, E) and a partition V1, . . . , Vp of V

with associated weights w1, . . . , wp ≥ 0. Further, for each 1 ≤ i ≤ p we are given a bound
di ≥ 1 on the number of jobs from bundle i that may be processed at any moment. The goal
is still to find a proper coloring χ that minimizes the total weighted completion time of all
bundles, but we further require |{v ∈ Vi|χ(v) = t}| ≤ di for each 1 ≤ i ≤ p and each time
step/color t.

To the best of our knowledge, this extension of MSCB has not been previously studied even
in special cases. We obtain constant-factor approximations for this problem, though in more
restricted settings. Recall that a graph G is chordal if every cycle of length ≥ 4 has a chord.
That is, if v1, v2, . . . , vℓ, v1 is a cycle of length ℓ ≥ 4 then we also have vivj ∈ E for some
1 ≤ i, j ≤ ℓ where i, j are not consecutive indices around the cycle, i.e. 1 ≤ i ≤ j − 1 and if
i = 1 then j ̸= ℓ. Interval graphs, an important class of graphs in scheduling, are chordal.

▶ Theorem 5. MSCB-TC in chordal graphs admits a polynomial-time 16.31-approximation.

The key property of chordal graphs that drives our algorithm is that they admit perfect
elimination orderings. That is, it is possible to compute an ordering v1, v2, . . . , vn of all
nodes V such that the left-neighborhood Nℓ(vi) := {vj : j < i and vivj ∈ E} is a clique for
all 1 ≤ i ≤ n. In fact, a graph is chordal if and only if it admits such an ordering and this
ordering can be computed in linear time [8]. Our techniques extend more generally to other
classes of graphs.

SWAT 2024

21:4 Approximating Minimum Sum Coloring with Bundles

▶ Corollary 6. Let G be a hereditary graph class with the same properties as in Corollary
3. Further, for any G ∈ G suppose we can compute an ordering v1, . . . , vn of its nodes in
polynomial time such that the left-neighborhood Nℓ(vi) can be covered by a constant number
of cliques in polynomial time. Then MSCB-TC has a constant-factor when restricted to
inputs whose graphs lie in G.

For example, such an ordering exists for unit disk graphs (with each left-neighborhood being
covered by ≤ 3 cliques) [13]. Such an ordering can be also found for circular arc graphs with
each left-neighborhood being covered by ≤ 2 cliques, i.e. consider the coloring algorithm
mentioned above: if one orders the arcs spanning the selected point and then orders the
remaining arcs according to a perfect elimination ordering in the resulting interval graph.

The algorithm from Theorem 5 requires one additional structural result about coloring
than the algorithm from Theorem 2, namely Lemma 10 in Section 3. Unfortunately this
structural result fails to hold in perfect graphs, which is why Theorem 5 is only for chordal
graphs. Still, we are able to recover the following.

▶ Theorem 7. There is an O(
√

n)-approximation for MSCB-TC in perfect graphs.

While the ratio is quite large, it is at least better than the lower bound in general graphs
of n1−δ for any constant δ > 0, which is inherited from the same hardness for MSC [2].
Perhaps it is possible to design a constant-factor approximation for MSCB-TC in perfect
graphs, we leave this as an open problem.

1.1 Related Work
MSCB has been studied in certain special cases. The most notable example is Coflow
Scheduling, which is equivalent to MSCB when the input graph is the line graph2 of
a bipartite graph (i.e. at any given time step a matching of the edges/jobs is scheduled).
This problem was first introduced in [14] where a 22.34-approximation was given. Later,
4-approximations followed for Coflow Scheduling and generalizations with release times
for the jobs [1, 16, 6].

In a matroid setting, the jobs are given as items in the ground set X of a matroid rather
than as vertices in a graph and bundles are subsets of items in X. The set of jobs scheduled
at any given time must form an independent set of the matroid. A 2-approximation for the
problem of minimizing the total weighted completion time of all bundles was given in [12].

MSC itself is much more well studied. As mentioned earlier, a 4-approximation is known
in settings where the maximum independent set of the graph (and any induced subgraph)
can be computed in polynomial time [2]. Special attention has been given to particular
graph classes, in particular a 1.796-approximation is known in interval graphs [10] which
was recently extended to an algorithm with the same approximation guarantee for chordal
graphs [5]. In the more general setting of perfect graphs, a 3.591-approximation is known [7].
A broader summary of approximation algorithms for MSC in special graph classes can be
found in the survey article by Halldórsson and Kortsarz [9].

1.2 Organization
After discussing some challenges in adapting previous MSC and Coflow Scheduling
algorithms to MSCB, Section 2 presents our algorithm for MSCB and the proofs of Theorem
2 and Corollary 3. Section 3 extends these techniques to MSCB-TC and proves Theorem 5

2 Recall the line graph of G = (V, E) is the graph L(G) = (E, F) where two edges e, f ∈ E are considered
adjacent in L(G) if they share a common endpoint.

S. P. Darbouy and Z. Friggstad 21:5

B

A

C D1

2

3

4

A
A
B
B

A
A
C
C

B
B
C
C

C
C
D
D

Figure 1 An example of the reduction from an instance of the Maximum Independent Set
problem to a collection of intervals using t = 2. It is straightforward to verify a subset of nodes is
independent if and only if each point on the underlying line is spanned by at most t intervals in the
union of their bundles.

and Corollary 6. We also discuss why our MSCB-TC algorithm does not extend to perfect
graphs in general, point out that we can at least get an O(

√
n)-approximation in perfect

graphs for MSCB-TC, and leave further improvements for future work.

1.3 Challenges
While MSCB is a common generalization of MSC and Coflow Scheduling, it turns out
most techniques used to address these problems fail. For example, a 4-approximation for
MSC follows by iteratively finding a maximum independent set in the graph of unscheduled
tasks in each time step. But for the classic problem of computing the chromatic number of a
graph, i.e. the special case of MSCB where all nodes are in a single bundle, this can be as
bad as an Ω(log n)-approximation even if the underlying graph is a tree, see Appendix A for
a simple example.

Another strategy that is used to get refined approximations for MSC is to compute
maximum t-colorable subgraphs of G for a geometric sequence of values for t as in [10, 5].
For MSCB, one could consider an algorithm that for a geometric sequence of values t will
compute a maximum-size subset of bundles P ⊆ {1, 2, . . . , p} such that all nodes in these
bundles, i.e. ∪j∈PVj can be scheduled without conflict in t steps. That is, we do not just
compute a maximum-size t-colorable induced subgraph of G itself, rather we are concerned
with how many clients can have their bundles completed within t steps.

Unfortunately, even in the special case where G is an interval graph, this seems impossible
to approximate well.

▶ Lemma 8. Let G = (V, E) be an interval graph and V1, V2, . . . , Vp a partition of V . For
any t ≤ |V | and any constant δ > 0, there is no O(|V |1/3−δ)-approximation algorithm for
computing the maximum size P ⊆ {1, 2, . . . , p} such that ∪j∈PVj can be scheduled within t

steps unless P = NP.

Proof. We reduce from the Maximum Independent Set problem. Let H = (U, F) be an
undirected graph. Order F arbitrarily as e1, e2, . . . , e|F |. We build an interval graph over
the line [1, 2 · |F |]. Namely, for each v ∈ U and each ei having v as an endpoint, add t copies
of the interval [2 · i − 1, 2 · i]. Let Uv denote all intervals created from v ∈ U this way. Note,
there are exactly 2 · t intervals of the form [2 · i − 1, 2 · i] for each 1 ≤ i ≤ |F |, one for each
endpoint of ei. Let G be the resulting interval graph whose nodes/intervals are partitioned
as {Uv : v ∈ U}. Figure 1 illustrates this reduction.

Let I be a subset of bundles. It is straightforward to verify the intervals in ∪Uv∈IUv can
be t-colored (i.e. can be scheduled within t time steps) if and only if {v ∈ U : Uv ∈ I} is an
independent set in H.

SWAT 2024

21:6 Approximating Minimum Sum Coloring with Bundles

Finally, recall for any constant δ > 0, there is no |U |1−δ-approximation for the maximum
independent set problem unless P = NP [17]. Since t ≤ n, then G has 2 · |F | · t ≤ O(|U |3)
vertices, as required. Thus, an α = o(|V |1/3−δ/3)-approximation for the largest number of
parts that can be scheduled in t time steps would yield a o(|U |1−δ)-approximation for the
maximum independent set problem in H. Replacing δ by 3δ (again a constant) yields the
result. ◀

Since MSC techniques seem to fail for MSCB, one could look to techniques successfully
used for approximating Coflow Scheduling. Recall Coflow Scheduling is the special
case of MSCB when the graph G is the line graph L(H) of an undirected graph. A property
of Coflow Scheduling that is commonly leveraged to design approximation algorithms is
that for each edge e in H (i.e. a job), all other edges that conflict with e share one of two
endpoints with e.

For example, the algorithm in [1] solves a time-indexed LP relaxation and uses the familiar
trick of greedy scheduling jobs according to their fractional completion time. Their analysis
relies on the fact that there are only 2 “reasons” an edge may not be scheduled at a time
step (i.e. one of the two endpoints already has an edge at that time step). Also, in [6] a
hypergraph matching result by Haxell [11] is used to demonstrate that a good schedule of
jobs exists. However, the way this matching result is used in [6] crucially relies on the fact
that the formed hyperedges only have 3 nodes, which comes from the fact that each edge of
H has only two endpoints.

2 Approximating MSCB in Perfect Graphs

Despite the challenges pointed out in Section 1.3, we are still able to design a constant-factor
approximation for MSCB in perfect graphs. Our techniques can be seen as a workaround
to the problem highlighted in Lemma 8, though we also need to use LPs to do so. That is,
we use an LP-relaxation to fractionally schedule the jobs. For a geometrically-increasing
sequence of values t, we consider the jobs that are completed to an extent of at least 1/2 by
time t in the fractional solution. The LP constraints will witness that the size of the largest
clique among these jobs is O(t). The fact the graph is perfect then allows us to color these
jobs with O(t) colors, i.e. to schedule them all within O(t) time steps.

For simplicity of presentation, we suppose G = (V, E) is an interval graph with n = |V |
nodes and that V = {V1, V2, . . . , Vp}. This allows us to write a polynomial-size LP relaxation.
The straightforward extension to perfect graphs (albeit with an exponential-size LP) will
be discussed at the end of this section. Thus, we suppose each vertex v ∈ V is associated
with an interval [sv, tv] ⊆ R. It is a folklore result that we may further assume, without loss
of generality, that each endpoint of each interval lies in the set {1, 2, . . . , 2 · n}. For each
1 ≤ i ≤ 2 · n the set Ci := {v ∈ V : i ∈ [sv, tv]} is easily seen to be a clique in G. It is also
known [8] that every clique of G is a subset of Ci for some 1 ≤ i ≤ 2 · n.

Like some previous work in MSC [5] and Coflow Scheduling [1, 6], we consider a
time-indexed LP relaxation for MSCB. For each v ∈ V and 1 ≤ t ≤ n we let xv,t be a
variable indicating v should be colored t and for each 1 ≤ k ≤ p we let fk be a variable that is
intended to be the largest color used to color nodes in Vk (i.e. when all jobs for bundle k are
completed). Throughout this section, we adhere to the following indexing conventions: k will
be used for bundles, t for time steps/colors, i for points on the underlying line {1, 2, . . . , 2 · n}
in the interval graph, and j for indexing geometric groupings of jobs defined in the algorithm.

S. P. Darbouy and Z. Friggstad 21:7

minimize :
∑p

k=1 wk · fk

subject to : fk ≥
∑n

t=1 t · xv,t ∀ 1 ≤ k ≤ p, v ∈ Vk∑
v∈Ci

xv,t ≤ 1 ∀ 1 ≤ t ≤ n, ∀ 1 ≤ i ≤ 2 · n∑n
t=1 xv,t = 1 ∀ v ∈ V

x, f ≥ 0
(LP-MSCB)

The first constraint says that bundle k is considered finished only after each v ∈ Vk is
completed, and the second constraint ensures that at most one vertex from any clique in
the interval graph can be processed at a time. The third ensures each job is completed at
some point. Clearly, the optimum value of (LP-MSCB) is at most the optimum value of
the MSCB instance since the natural integer solution corresponding to the optimal MSCB
solution is feasible for this LP.

2.1 Rounding Algorithm
After computing an optimal solution to LP-MSCB, for each job v ∈ V we let τv denote the
smallest time t such that

∑
t′≤t xv,t′ ≥ 1/2, i.e. when the LP solution has completed v to an

extent of at least 1/2. Notice by minimality of τv we also have
∑

t′≥t xv,t′ = 1−
∑

t′<t xv,t′ >

1 − 1/2 = 1/2.
For a bundle k, we then let f̂k := maxv∈Vk

τv be the minimum time when all jobs in Vk

are completed to an extent of at least 1/2 by the LP solution. As we show below, it is not
hard to see

∑
k f̂k is within a constant factor of the optimal LP solution.

We then employ geometric grouping of the jobs v ∈ V . That is, for each time t in a
geometric sequence we form a group with all jobs v having τv ≤ t. Using properties of the LP
solution and interval graphs, we show we can properly color all jobs in each such group with
2 · t colors. Concatenating these schedules for the various groups in this geometric sequence
completes the algorithm.

To optimize our final ratio, we carefully choose the geometric growth rate and also pick an
initial random geometric offset, as has been done in many previous works in minimum-latency
problems, e.g. [10]. We could also try a different parameter than 1/2 as the choice of
threshold for the defining values τv, but it turns out that 1/2 is the optimal value for our
approach. Also, readers with experience in MSC algorithms may wonder about another
optimization. Namely, with MSC once one has colored a geometric group one may get a
slight improvement in the approximation guarantee by optimally ordering the colors so that
larger color classes are finished earlier. However, this optimization does not work in our
setting since we are concerned with the completion times of bundles and reordering color
classes within a group’s coloring may not affect the completion time of a bundle.

We let q > 1 be a constant. It turns out the optimal setting for q in our algorithm is
just e, the base of the natural logarithm. We leave q as an unspecified constant for now and
only set it at the point in the analysis where it is apparent that this was the best choice of
constant. The precise description of our rounding technique is presented in Algorithm 1.

2.2 Analysis
Recall the sets Uj described in Algorithm 1.

▷ Claim 9. For each j, the jobs in Uj can be scheduled without any conflicts using at most
2 · qj+α time steps.

SWAT 2024

21:8 Approximating Minimum Sum Coloring with Bundles

Algorithm 1 MSCB Scheduling.

Compute an optimal solution (x, f) to (LP-MSCB).
Set τv to the smallest integer such that

∑
t≤τv

xv,t ≥ 1/2 for each v ∈ V .
Sample α ∼ [0, 1) uniformly.
Let Uj = {v ∈ V : ⌊qj−1+α⌋ < τv ≤ ⌊qj+α⌋} for 0 ≤ j ≤ logq n.
for each Uj in increasing order of j do

Schedule all jobs in Uj within the next 2 · ⌊qj+α⌋ unused time steps. {Claim 9}

Proof. We claim the size of the largest clique contained in Uj is at most 2 · qj+α. If so, then
we can properly color all of Uj using at most 2 · qj+α colors because interval graphs are
perfect.

First, consider any v ∈ Uj and say v ∈ Vk. Then τ(v) ≤ f̂k ≤ qj+α, so

∑
t≤qj+α

xv,t ≥
∑

t≤τ(v)

xv,t ≥ 1
2 .

Now consider any point i ∈ {1, 2, . . . , 2 · n} on the interval, our goal is to show |Uj ∩ Ci| ≤
2 ·qj+α. Letting Xi,j :=

∑
v∈Uj∩Ci

∑
t≤qj+α xv,t, summing the above bound over v ∈ |Uj ∩Ci|

shows Xi,j ≥ |Uj ∩ Ci|/2.
On the other hand, by the LP constraints we also have

Xi,j =
∑

t≤qj+α

∑
v∈Uj∩Ci

xv,t ≤
∑

t≤qj+α

∑
v∈Ci

xv,t ≤
∑

t≤qj+α

1 = qj+α.

From these two bounds on Xi,j we have |Uj ∩ Ci|/2 ≤ Xi,j ≤ qj+α so |Uj ∩ Ci| ≤ 2 · qj+α.
Finally, consider any clique C ⊆ Uj . Any clique of G is contained in a clique of the form

Ci so C ⊆ Uj ∩ Ci. Thus, we have |C| ≤ |Uj ∩ Ci| ≤ 2 · qj+α, that is the bound holds for all
cliques C ⊆ Uj . ◁

Next, we show each bundle k finishes within time O(f̂k). Fix any such bundle k and
pick any vk ∈ Vk with τvk

= f̂k. For any value α sampled by the algorithm, the completion
time of bundle k is upper bounded by the completion time of all jobs in the bundle Uj that
contains vk. This is because no job of Vk will be placed in a bundle Uj′ having j′ > j and
because we concatenated the schedules for the various buckets in increasing order of j.

Since 0 ≤ α ≤ 1 then there is some integer jk such that vk ∈ Ujk−1 or k ∈ Ujk
, depending

on the value of α. The breaking point between these two events occurs at α = logq f̂k −(jk −1).
Letting Tα be the quantity 2 · qj+α for the group j ∈ {jk − 1, jk} that vk is assigned to for a
given α, we have:

Tα ≤

{
2 · qjk−1+α k ∈ Ujk−1

2 · qjk+α k ∈ Ujk

S. P. Darbouy and Z. Friggstad 21:9

Since we concatenate the schedules for the groups Uj in increasing order of index j and
each group Uj is completed by time 2 · qj+α (Claim 9), then for any j each job in Uj will be
completed by time

∑j
j′=1 2 · qj′+α ≤ 2·q

q−1 · qj+α. Therefore we have

Eα∼[0,1)[Tα] =
∫ 1

0
Tα dα

= 2 · q

q − 1 ·

(∫ logq f̂k−(jk−1)

0
qjk+α dα +

∫ 1

logq f̂k−(jk−1)
qjk−1+α dα

)

= 2 · q

q − 1 ·

 qjk+α

ln q

∣∣∣∣logq f̂k−(jk−1)

0
+ qjk−1+α

ln q

∣∣∣∣1
logq f̂k−(jk−1)


= 2 · q

ln q
· τvk

= 2 · q

ln q
· f̂k

At this point, we see the optimal choice of q is e ≈ 2.717, the base of the natural logarithm.
Setting q to e yields

Eα∼[0,1)[Tα] = 2 · q

ln q
· f̂k = 2 · e · f̂k

We complete the proof by bounding fk by O(f̂k). Recalling
∑

t≥τvk
xvk,t ≥ 1/2, we see

fk ≥
∑

t

t · xvk,t ≥
∑

t≥τvk

t · xvk,t ≥ τv ·
∑

t≥τvk

xvk,t ≥ τvk

2 = f̂k

2

To put this all together, by Claim 9 the completion time of a bundle k is at most Tα. In
expectation over the random choice of α, this is at most 2 · e · f̂k. Finally, from the bound
directly above we see the expected completion time of a bundle is then at most 4 · e · fk.
Thus, the expected total completion time of all bundles is at most 4 · e ≤ 10.874 times the
optimum value of (LP-MSCB).

2.3 Extensions
Perfect Graphs. The only change to the LP is that the second collection of constraints is
replaced by the following more general constraints:∑

v∈C

xv,t ≤ 1 ∀ t, ∀ cliques C of G (1)

In general there are exponentially many cliques (and even exponentially-many maximal
cliques) in a perfect graph. Still, these constraints can be separated in polynomial time
for perfect graphs (Theorem 67.6 in [15]) meaning the LP can still be solved optimally in
polynomial time.

The rest of the proof carries through essentially without modification: the size of a
maximum clique in Uj is still bounded to be at most 2 · qj+α. That is, let C ⊆ Uj be a clique.
Since each v ∈ Uj has τv ≤ ⌊qj+α⌋ then∑

v∈C

∑
t≤qj+α

xv,t ≥
∑
v∈C

1
2 = |C|/2.

SWAT 2024

21:10 Approximating Minimum Sum Coloring with Bundles

On the other hand, by the more general clique constraints (1) we have∑
t≤qj+α

∑
v∈C

xv,t ≤
∑

t≤qj+α

1 ≤ qj+α.

Since G is perfect, then by definition Uj can be colored using at most 2 · qj+α colors and such
a coloring can be done in polynomial time (Corollary 67.2c[15]). The rest of the analysis is
unchanged, thus the full form of Theorem 2 is proven.

Derandomizing. It is simple to efficiently derandomize our approach. We simply list all
break points α of the form logq f̂k − (jk − 1) over all bundles k and try all α between these
break points. Our algorithm is deterministic once α is given and these break points are
the only values of α where the behavior of the algorithm changes. Taking the best solution
found over all such α is surely no worse than the expected cost of the returned solution when
choosing α randomly

Extensions to Other Graph Classes. For Corollary 3, the assumptions mean we can
approximately separate the clique constraints

∑
v∈C xv,t ≤ 1 in polynomial time ultimately

leading to an efficient algorithm that finds an LP solution with cost at most OPT where
all constraints hold except perhaps these new clique constraints. Instead, we would have∑

v∈C xv,t ≤ c where c is the approximation factor of computing a maximum-weight clique
in G.

The approximate relationship between maximum cliques and the chromatic number of
graphs satisfying the assumptions of Corollary 3 allow us to conclude Uj can be colored with
at most c′ · qi+α colors where c′ is also a constant. Carrying this term through the rest of
the analysis shows the algorithm is an O(1)-approximation.

3 MSCB with Task Concurrencies

Recall in MSCB-TC, the bundles form a partition V1, . . . , Vp of P and for each bundle k

we have a bound dk on the number of jobs in Vk that can be scheduled at any single time.
This models settings where clients can only deliver/retrieve a bounded number of their jobs
at any single time. Also, recall that we assume G is a chordal graph.

The new algorithm starts with (LP-MSCB) except the cliques Ci used to define the
constraints are the polynomially-many maximal cliques of G [8] (which can be enumerated in
polynomial time) and two additional classes of constraints are added. First, for any bundle
1 ≤ k ≤ p and any time t we add the constraints∑

v∈Vk

xv,t ≤ dk.

That is, at any given time a maximum of dk jobs for bundle k can be processed. We call
these concurrency constraints. Next, For any bundle 1 ≤ k ≤ p we add the constraints

fk ≥ ⌈|Vk|/dk⌉

which enforces the trivial lower bound that ⌈|Vk|/dk⌉ time steps are required to finish bundle
k even if we processed dk of its jobs per step. Note, without this bound the LP could cheat
in the following way: if dk = 1 and Vk = {v1, . . . , vm} we could set xvi,t = 1/m for all
1 ≤ i ≤ m and 1 ≤ t ≤ m which would permit us to set fk = (m + 1)/2 whereas an integer
solution would clearly require fk ≥ m.

S. P. Darbouy and Z. Friggstad 21:11

For the rest of this section, by “schedule” we mean a proper coloring of G with the
additional constraint that for any bundle k and any time t we have at most dk jobs in Vk

being colored with t.
We need to make some minor modifications to the algorithm. First, we now define

f̂k := max{⌈|Vk|/dk⌉, maxv∈Vk
τv}. Next, we change Uj to be

Uj = {k : ⌊qj−1+α⌋ < f̂k ≤ ⌊qj+α⌋}.

Finally, when we color Uj , we will ensure that the new concurrency constraints are satisfied
with this coloring. The following structural result enables us to do this while limiting the
loss in the final approximation guarantee. Here, we are letting χ(G) denote the chromatic
number of G.

▶ Lemma 10. Let G = (V, E) be a chordal graph whose vertices are partitioned as V1, . . . , Vp.
Further, for each 1 ≤ k ≤ p let dk ≥ 1 be an integer. In polynomial time, we can compute a
proper coloring of G using at most χ(G)+maxk

⌈
|Vk|
dk

⌉
−1 colors such that for each 1 ≤ k ≤ p,

no color appears more than dk times among nodes in Vk.

Proof. Recall that a graph is a chordal graph if and only if it has a perfect elimination
ordering, i.e. an ordering v1, v2, . . . , vn such that for each 1 ≤ j ≤ n, the left-neighborhood
Nℓ(vj) = {i < j : vivj ∈ E} of each node is a clique and that this ordering can be computed
in linear time [8].

To compute the coloring we need, process the nodes vi in this order. When coloring vi,
we simply avoid using a color already assigned to a node in Nℓ(vi) or already assigned to
dk nodes in the same part Vk as vi. This can be done if we allow χ(G) + maxk

⌈
|Vk|
dk

⌉
− 1

colors. ◀

We briefly remark that Lemma 10 is tight even for interval graphs where dk = 1 for
all Vk. Consider the case where V1 consists of m jobs whose corresponding intervals are
[1, 2], [3, 4], [5, 6], . . . , [2m − 1, 2m] and V2, . . . , Vp each consists of a single job whose corres-
ponding interval is [1, 2m]. The chromatic number is exactly p but no two jobs can receive
the same color since the only non-intersecting pairs of intervals have their corresponding jobs
in the same bundle V1. Therefore, |V1| + |V2| + . . . + |Vp| = p + m − 1 colors are required.

Towards coloring Uj , we define Vj = {k : Vk ∩ Uj} ≠ ∅ to be all bundles having some job
in Uj and then we let Sj = maxk∈Vj

⌈|Vk ∩ Uj |/dk⌉. Since ⌈|Vk ∩ Uj |/dk⌉ is a lower bound
on the time required to finish all jobs Vk ∩ Uj due to the task concurrency constraint for
bundle k, we have that Sj is another lower bound for the time needed to complete all jobs in
the set Uj . The new LP constraints help assert this lower bound as well.

▶ Lemma 11. For each group j, Sj ≤ qj+α.

Proof. This is demonstrated by leveraging the additional constraint incorporated into our
LP. For every k ∈ Vj , we know that |Vk|

dk
≤ f̂k. Furthermore, based on the new definition

of Uj it is clear that f̂k ≤ qj+α. Consequently, |Vk|
dk

is less than equal to qj+α, implying
|Vk ∩ Uj | ≤ qj+α · dk. Therefore, it follows that Sj ≤ qj+α. ◀

As with the MSCB approximation, the maximum clique size in Uj is at most 2 · qj+α.
Further, we have just shown |Vk ∩ Uj | ≤ qj+α · dk for any k ∈ Vj . So Lemma 10 means there
is a proper coloring of Uj using at most 3 · qj+α colors such that no bundle in Vk has more
than dk jobs colored with the same color.

SWAT 2024

21:12 Approximating Minimum Sum Coloring with Bundles

The rest of the analysis is similar to the analysis of the algorithm for MSCB except the
approximation ratio has changed since we used 3 · qα+j colors instead of 2 · qα+j colors to
color each Uj . Thus, it is a 6 · e ≤ 16.31-approximation.

Corollary 6 essentially follows by how Corollary 3 followed from Theorem 2 but using a
more general form of Lemma 10. Namely, if there is an ordering of the nodes v1, v2, . . . , vn

such that the left-neighborhood Nℓ(vi) = {vj : vivj ∈ E, j < i} of any node vi can be
covered with R = O(1) cliques then we can find a proper coloring of G using at most
R · χ(G) + maxk⌊|Vk|/dk⌋ colors by picking the lowest available color not appearing in the
left-neighborhood of vi that is also not used dk times in the part Vk with vi.

4 MSCB-TC in Perfect Graphs – A Barrier

Lemma 10 fails to hold in perfect graphs even within any constant factor. That is, it may
require Θ(

√
n) · max{χ(G), maxk |Vk|/dk} colors to even if dk = 1 for all k. Consider the

following simple example on n = N2 nodes for some integer N . The graph GN = (V, E) is
partitioned into sets V1, . . . , VN and each Vk has exactly N nodes. We have an edge between
any pair of nodes in different parts, but each part is an independent set.

It is easy to see such graphs are perfect. More generally, a graph that is partitioned into
b nonempty independent sets and has all possible edges between these parts has chromatic
number b and maximum clique size b (pick one node from each part). Since any induced
subgraph of our graph GN is of this form, then GN is also perfect.

But any coloring satisfying task concurrency limits of dk = 1 for all parts must in fact
use n colors. Two nodes in different parts cannot receive the same color because they are
connected by an edge and two nodes in the same part cannot receive the same color because
the task concurrency limit is 1. Yet, χ(G) = N =

√
n and the maximum size of a part is

also N =
√

n.
Still, this is the worst case. The following variation of Lemma 10 leads to an O(

√
n)-

approximation for MSCB-TC in perfect graphs.

▶ Lemma 12. Let G = (V, E) be a graph whose vertices are partitioned as V1, . . . , Vp. Further,
for each 1 ≤ k ≤ p let dk ≥ 1 be an integer. There is a proper coloring of G using at most
√

n · max
{

χ(G), maxk

⌈
|Vk|
dk

⌉}
colors such that for each 1 ≤ k ≤ p, no color appears more

than dk times among nodes in Vk. Such a coloring can be computed in polynomial time if G

can be optimally colored in polynomial time.

Proof. If maxk⌈|Vk|/dk⌉ ≥
√

n, then the trivial n-coloring (i.e. all nodes get different colors)
suffices. Otherwise, consider a proper coloring σ : V → {1, 2, . . . , χ(G)} of G. Order the
nodes vk

1 , vk
2 , . . . , vk

|Vk| arbitrarily in each part Vk.
Recolor a vertex vk

i with the pair (χ(vk
i), ⌊i/dk⌋). Clearly, this is a proper coloring since

the first components of the new colors of nodes will differ on any edge of G. Further, at most
dk nodes in Vk will have the same second part of the pair describing their color. The number
of colors used is χ(G) · maxk⌈|Vk|/dk⌉ ≤ χ(G) ·

√
n, as required.

Finally, this can be done in polynomial time if we can compute a coloring of G with χ(G)
colors in polynomial time. ◀

Using this in place of Lemma 10 yields an O(
√

n)-approximation for MSCB-TC in
perfect graphs. This proves Theorem 7.

S. P. Darbouy and Z. Friggstad 21:13

5 Conclusion

We have given the first constant-factor approximations for MSCB in a large variety of graph
classes including perfect graphs and unit-disc graphs. Our techniques extend to give the
first constant-factor approximations for MSCB-TC in certain graphs like chordal graphs,
interval graphs, and unit-disc graphs.

It would be interesting to see what other graph classes admit constant-factor approxima-
tions for MSCB and, perhaps, also for MSCB-TC. Another interesting direction would be
to get a purely combinatorial constant-factor approximation for MSCB in certain graph
classes, i.e. one that avoids solving a linear program. Such algorithms exist for MSC in
many cases, e.g. [2, 10]. One barrier is that it seems hard to approximate the maximum
number of bundles that can be completed in a given number of time steps even in simple
graph classes like interval graphs (Lemma 8). Perhaps a bicriteria approximation could be
designed to circumvent this hardness, it would immediately lead to an O(1)-approximation
through standard minimum latency arguments.

References

1 S. Ahmadi, S. Khuller, M. Purohit, and S. Yang. On scheduling coflows – (extended abstract).
In Proceedings of 19th Conference on Integer Programming and Combinatorial Optimization
(IPCO), pages 13–24, 2017.

2 A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, and T. Tamir. On chromatic sums
and distributed resource allocation. Information and Computation, 140(2):183–202, 1998.

3 B. K. Bhattacharya and D. Kaller. An o(m + n log n) algorithm for the maximum-clique
problem in circular-arc graphs. Journal of Algorithms, 25(2):336–358, 1997.

4 B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Mathematics,
86(1):165–177, 1990. doi:10.1016/0012-365X(90)90358-O.

5 I. DeHaan and Z. Friggstad. Approximate minimum sum colorings and maximum k-colorable
subgraphs of chordal graphs. In Algorithms and Data Structures Symposium (WADS), pages
326–339, 2023.

6 T. Fukunaga. Integrality gap of time-indexed linear programming relaxation for coflow schedul-
ing. In In Proceedings of Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques(APPROX), volume 245, pages 36:1–36:13, 2022.

7 R. Gandhi, M. M. Halldórsson, G. Kortsarz, and H. Shachnai. Improved bounds for sum
multicoloring and scheduling dependent jobs with minsum criteria. In Approximation and
Online Algorithms, pages 68–82, 2005.

8 M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.
9 M. M. Halldórsson and G. Kortsarz. Algorithms for chromatic sums, multicoloring, and

scheduling dependent jobs. In Handbook of Approximation Algorithms and Metaheuristics,
Second Edition, Volume 1: Methologies and Traditional Applications, pages 671–684. Chapman
and Hall/CRC, 2018.

10 M. M. Halldórsson, G. Kortsarz, and H. Shachnai. Sum coloring interval and k-claw free
graphs with application to scheduling dependent jobs. Algorithmica, 37:187–209, 2003.

11 P. E. Haxell. A condition for matchability in hypergraphs. Graphs and Combinatorics,
11:245–248, 1995.

12 S. Im, B. Moseley, K. Pruhs, and M. Purohit. Matroid Coflow Scheduling. In 46th International
Colloquium on Automata, Languages, and Programming (ICALP), volume 132, pages 145:1–
145:13, 2019.

13 M. J. P. Peeters. On coloring j-unit sphere graphs. Research Memorandum FEW 512, Tilburg
University, School of Economics and Management, 1991.

SWAT 2024

https://doi.org/10.1016/0012-365X(90)90358-O

21:14 Approximating Minimum Sum Coloring with Bundles

14 Z. Qiu, C. Stein, and Y. Zhong. Minimizing the total weighted completion time of coflows in
datacenter networks. In Proceedings of the 27th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 294–303, 2015.

15 A. Schrijver. Combinatorial Optimization – Polyhedra and Efficiency. Springer, 2003.
16 M. Shafiee and J. Ghaderi. An improved bound for minimizing the total weighted completion

time of coflows in datacenters. IEEE/ACM Transactions on Networking, 26(4):1674–1687,
2018.

17 D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic
number. In Proc. of ACM Symposium on Theory of Computing (STOC 2006), pages 681–690,
2006.

A Greedy Coloring in Trees

We point out the greedy algorithm that iteratively picks a maximum independent set to color
a graph may be as bad as an Ω(log n)-approximation. We point this out to show that the
greedy 4-approximation for unweighted MSC does not extend to our setting which includes,
as a special case, computing the chromatic number of a graph. While this seems to be well
known in the community, we are unaware of a particular reference for such an example so we
provide a simple construction here for completeness.

Let T0 be the trivial tree with a single node. Inductively for i ≥ 1 let Ti be constructed
by attaching 2 leaf nodes to each node of Ti−1. So the number of nodes in Ti is 3i.

The only maximum independent set in Ti is the set of all leaves in Ti (which clearly forms
an independent set). To see this, let I be an independent set that includes an internal vertex
of Ti (i.e. a node of Ti−1). Neither leaf that was attached to v to form Ti is in I because I is
an independent set. But then we get a larger independent set by removing v from I and
adding in the two associated leaves.

The greedy algorithm to compute a maximum independent set in Ti will first pick all
of its leaves. Removing them leaves tree Ti−1. So by induction, with the base case i = 0
clearly requiring a single iteration to color, the number of iterations will be i + 1. Since i + 1
is logarithmic in the size of Ti (i.e. n := 3i) and since the chromatic number of Ti, i ≥ 1 is
2 (as is true for any tree with at least one edge), this is an Ω(log n)-approximation for the
chromatic number of a tree.

	1 Introduction
	1.1 Related Work
	1.2 Organization
	1.3 Challenges

	2 Approximating MSCB in Perfect Graphs
	2.1 Rounding Algorithm
	2.2 Analysis
	2.3 Extensions

	3 MSCB with Task Concurrencies
	4 MSCB-TC in Perfect Graphs – A Barrier
	5 Conclusion
	A Greedy Coloring in Trees

