A Logarithmic Integrality Gap for Generalizations of Quasi-Bipartite Instances of Directed Steiner Tree

Zachary Friggstad \square (ㄷ)
University of Alberta, Canada
Hao Sun
University of Alberta, Canada

Abstract

In the classic Directed Steiner Tree problem (DST), we are given an edge-weighted directed graph $G=(V, E)$ with n nodes, a specified root node $r \in V$, and k terminals $X \subseteq V-\{r\}$. The goal is to find the cheapest $F \subseteq E$ such that r can reach any terminal using only edges in F.

Designing approximation algorithms for DST is quite challenging, to date the best approximation guarantee of a polynomial-time algorithm for DST is $O\left(k^{\epsilon}\right)$ for any constant $\epsilon>0$ [Charikar et al., 1999]. For network design problems like DST, one often relies on natural cut-based linear programming (LP) relaxations to design approximation algorithms. In general, the integrality gap of such an LP for DST is known to have a polynomial integrality gap lower bound [Zosin and Khuller, 2002; Li and Laekhanukit, 2021]. So particular interest has been invested in special cases or in strengthenings of this LP.

In this work, we show the integrality gap is only $O(\log k)$ for instances of DST where no Steiner node has both an edge from another Steiner node and an edge to another Steiner node, i.e. the longest path using only Steiner nodes has length at most 1. This generalizes the well-studied case of quasi-bipartite DST where no edge has both endpoints being Steiner nodes. Our result is also optimal in the sense that the integrality gap can be as bad as poly (n) even if the longest path with only Steiner nodes has length 2 .

2012 ACM Subject Classification Theory of computation \rightarrow Routing and network design problems
Keywords and phrases Steiner Tree, Approximation Algorithms, Linear Programming
Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.23
Funding Zachary Friggstad: Research supported by an NSERC Discovery Grant and Accelerator Supplement.

1 Introduction

The Directed Steiner Tree problem (DST) is one of the most foundational models in combinatorial optimization and network design. Given a directed graph $G=(V, E)$ with n nodes, a specified root node $r \in V$, and k terminals $X \subseteq V-\{r\}$, the goal is to buy the cheapest $F \subseteq E$ such that r can reach any terminal using only edges in F. Throughout, we say nodes in $V-(X \cup\{r\})$ are Steiner nodes.

Despite its central position in discrete optimization, there is a large gap in our understanding concerning its approximability. Namely, the best polynomial-time approximation is currently an $O\left(k^{\epsilon}\right)$-approximation for any constant $\epsilon>0$ by Charikar et al. [4]. Grandoni, Laekhanukit, and Li show DST cannot be approximated within $o\left(\log ^{2} n / \log \log n\right)$ unless $\mathbf{N P} \subseteq \cap_{0<\delta} \mathbf{Z T I M E}\left(2^{n^{\delta}}\right)$ [12], improving on a slightly weaker lower bound than the one inherited from Group Steiner Tree [13]. These bounds differ by an order of magnitude. On the other hand, Grandoni, Laekhanukit, and Li do obtain matching $O\left(\log ^{2} k / \log \log k\right)$ approximation in quasi-polynomial time. Still, a polylogarithmic approximation in polynomial time remains elusive.

© Zachary Friggstad and Hao Sun;
licensed under Creative Commons License CC-BY 4.0

LIPICS Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

1.1 Linear Programming Relaxations and Previous Work

In this paper, we consider the following natural linear programming (LP) relaxation for DST in which we have a variable x_{e} for each edge $e \in E$ modelling whether we include edge e in the solution or not.

$$
\begin{aligned}
\operatorname{minimize}: & \sum_{e \in E} c_{e} \cdot x_{e} \\
\text { subject to : } & x\left(\delta^{i n}(S)\right) \geq 1 \quad \forall S \subseteq V-\{r\}, S \cap X \neq \emptyset \\
& x\left(\delta^{i n}(v)\right) \leq 1 \quad \forall v \in V
\end{aligned}
$$

(DST-LP)

Here, for any $S \subseteq V$ we let $\delta^{i n}(S)=\{(u, v) \in E: u \notin S, v \in S\}$ and we use the shorthand $\delta^{i n}(v):=\delta^{i n}(\{v\})$ for any $v \in V$. The cut constraints capture the fact that every cut separating the root from some terminal must be crossed by at least one edge in a feasible DST solution. In any minimal DST solution (i.e. a feasible $F \subseteq E$ that can not be made smaller by dropping an edge), every node will have indegree at most one since the solution is a directed tree spanning all terminals and, perhaps, some Steiner nodes. This justifies the indegree constraints. So the optimum LP solution value, denoted $O P T_{L P}$, is at most the cost of an optimal Steiner tree solution. We remark that (DST-LP) admits a simple polynomial-time separation oracle by simply checking that we can send one unit of $r-t$ flow to each terminal when edges have capacity x_{e}.

The integrality gap of this relaxation is well studied. First, Zosin and Khuller demonstrated the gap can be $\Omega(\sqrt{k})$ [19] in some instances. The number of vertices in their construction is exponential in the number of terminals, so the possibility of an $O\left(\log ^{c} n\right)$ integrality gap bound was open. More recently, this was refuted by Li and Laekhanukit [15] who gave an example with integrality gap $\Omega\left(n^{0.0418}\right)$. We remark that both [19] and [15] considered a different flow-based relaxation and their relaxation did not include the indegree bound for non-root nodes, but their examples are valid for (DST-LP).

Special Cases

Perhaps the first polylogarithimic integrality gap bound recorded for DST in certain settings was an $O(\log k)$ upper bound in quasi-bipartite instances. These are instances of DST such that every edge has at most one of its endpoints being a Steiner node. Another way to say this is that the subgraph induced by Steiner nodes contains no edges. Hibi and Fujito first gave an $O(\log k)$-approximation for this setting [14] and Friggstad, Könemann, and Shadravan then gave a primal-dual algorithm that demonstrated the integrality gap of (DST-LP) (even without the indegree constraints) is bounded by $O(\log k)$ [7]. In quasi-bipartite instances of DST where the underlying undirected graph excludes a fixed minor (e.g. planar graphs), (DST-LP) is known to have an integrality gap of $O(1)$ [8].

Chan et al. [3] generalized the $O(\log k)$ integrality gap bound to higher connectivity settings. They demonstrate an appropriate generalization of (DST-LP) (without the indegree constraints) for the problem of finding the cheapest $F \subseteq E$ ensuring r is at least R-edge connected to each terminal has an integrality gap bound of $O(\log k \cdot \log R)$.

Nutov [16] extended this to more settings involving more general supermodular cut requirement functions in with relaxations to the quasi-bipartite property. Namely, [16] considers a cut requirement function $f: 2^{V-\{r\}} \rightarrow \mathbb{Z}_{\geq 0}$ satisfies $f(A)+f(B) \leq f(A \cap B)+$ $f(A \cup B)$ whenever $f(A)>0, f(B)>0$ and $A \cap B \cap T=\emptyset$. If one further has the property that every edge has an endpoint v such that $v \in X$ or $f(A)=0$ for each $\{v\} \subseteq A \subseteq V-\{r\}$. In this case, [16] gives an $O(\log k \cdot \log R)$-approximation where R is the maximum value
taken by f. Note, this does not capture our setting as our graphs can have edges (u, v) with both u, v being Steiner nodes yet any $A \subseteq V-\{r\}$ with $u, v \in A$ and $A \cap X \neq \emptyset$ requires an incoming edge.

Layered Graphs

An instance of DST is ℓ-layered if V is partitioned as $V_{1}=\{r\}, V_{2}, V_{3}, \ldots, V_{\ell}=X$ and all edges $(u, v) \in E$ have $u \in V_{i}, v \in V_{i+1}$ for some $1 \leq i<\ell$. An α-approximation for DST in ℓ-layered graphs is known to yield an $O\left(\alpha \cdot \ell \cdot k^{1 / \ell}\right)$-approximation in general [18, 2]. This was the starting point for a k^{ϵ}-approximation by Charikar et al. [4].

The bad integrality gap examples in [19] and [15] are 5-layered instances of DST. It can easily be seen that 3 -layered instances of DST (which are necessarily quasi-bipartite) have an integrality gap of $O(\log k)$ by adapting randomized SET Cover rounding techniques.

Friggstad et al. show the integrality gap of (DST-LP) remains $O(\log k)$ even in 4-layered instances [6]. They do this by mapping an LP solution to a natural relaxation for a related instance of Group Steiner Tree in a tree with constant height and using the known integrality gap bound for such instances [10]. Intuitively, this is possible since the first two layers of edges can only be reached in one way and each edge in the last layer is only used to connect to one terminal.

The behavior of LP relaxations for DST under hierarchies has also been considered. First, Rothvoss showed for ℓ-layered graphs that lifting a related flow-based LP relaxation through $O(\ell)$ layers of the Laserre hierarchy reduces the integrality gap to $O(\ell \cdot \log k)$ [17]. Later, [6] showed the result holds for a considerably weaker version of (DST-LP) that is valid only for layered graphs and using only the LP-based hierarchies of Lovasz-Schrijver and Sherali-Adams.

Undirected Graphs

Finally, it should be noted that in undirected graphs, the integrality gap of a related relaxation with undirected cut constraints $x(\delta(S)) \geq 1$ (and no vertex degree constraints) is well-known to be exactly 2 . If one considers the bi-directed cut relaxation, i.e. the directed graph having both orientations of each undirected edge, then it is an open problem to determine if (DST-LP) has an integrality gap being some constant smaller than 2. It is at least known for quasi-bipartite graphs that the integrality gap of this bi-directed relaxation is better than $2[9,5]$. Finally, a significant strengthening of the standard relaxation for general instances of undirected Steiner Tree, known as they hypergraphic relaxation, is known to have an integralty gap of $\ln (4)$ and can be efficiently solved to within any constant factor of the optimum solution cost in polynomial time [1, 11].

1.2 Our Results

We consider a generalization of DST in quasi-bipartite graphs and prove the following result.

- Theorem 1. Suppose no Steiner node has both incoming and outgoing edges to other Steiner nodes. Then the integrality gap of (DST-LP) is $O(\log k)$.

In other words, we consider instances where the subgraph induced by Steiner nodes may contain edges but not paths with more than one edge. Thus, this is a generalization of quasi-bipartite DST. This is also extends the integrality gap bound of $O(\log k)$ in 4-layered graphs [6] to a more general setting.

We emphasize that an $O(\log k)$-approximation for such graphs was already given by Hibi and Fujito [14]. The main purpose of our paper is to establish integrality gap bounds. The techniques in [14] seem unlikely to produce integrality gap bounds because they also produce $O(\log k)$-approximation for DST in 5-layered graphs, for which we know the integrality gap is not polylogarithmic (see Section 1.1).

Our algorithm can be seen as a common generalization of the rounding algorithm for quasi-bipartite instances from Chan et al. [3] and the analysis of Group Steiner Tree presented by Rothvoss [17]. At a high level, we round edges in phases: each phase will reduce the number of terminals we are required to connect by a constant while only paying $O\left(O P T_{L P}\right)$ for the edges purchased each round.

In more detail, [3] identifies a maximal violated set around each such terminal (that excludes other required terminals) is identified and each iteration will "cover" the violated cuts in those sets. They show that no edge can be fully contained in more than one such maximal violated set around the required terminals. Unfortunately, that is not the case in our setting. Still, we can show the only edges shared between these maximal sets have at least one endpoint being a terminal, so the overlap in these sets is limited to edges between Steiner nodes. Then we use a variation of Group Steiner Tree rounding to ensure the edges e that might be used to connect to multiple nodes are only sampled with probability $O\left(x_{e}\right)$ in our algorithm.

2 Preliminaries

We call an edge $e=(u, v)$ a Steiner edge if both u and v are Steiner nodes. Call a Steiner node v a source-Steiner node if there is an edge (v, w) to another Steiner node w. Otherwise, call v a sink-Steiner node.

Recall for a subset of edges $F \subseteq E$ and a subset of nodes $S \subseteq V$ we let $\delta_{F}^{i n}(S)=\{(u, v) \in$ $F: u \notin S, v \in S\}$ be all edges of F entering S. Similarly, $\delta_{F}^{o u t}(S)$ are edges leaving S. If $F=E$, we may omit the subscript and simply write $\delta^{\text {in }}(S)$ and $\delta^{\text {out }}(S)$. For brevity, we also write $\delta_{F}^{\text {in }}(v)$ and $\delta_{F}^{\text {out }}(v)$ for a single node $v \in V$ to mean $\delta_{F}^{\text {in }}(\{v\})$ and $\delta_{F}^{\text {out }}(\{v\})$.

Without loss of generality, we assume there is no edge entering r (they can be deleted), no direct edge from $X \cup\{r\}$ to X (such an edge e can be subdivided with two Steiner nodes into a path of length 3 with each edge having cost $c_{e} / 3$), and no Steiner node has no edge to any other Steiner node (such a Steiner node v can be split into two Steiner nodes v^{+}, v^{-} with a 0 -cost edge from v^{+}to v^{-}). It is straightforward to check these reductions do not change the optimal value of (DST-LP) and that we can map solutions between the original graph and the modified graph without increasing their costs. Again, throughout we will let $O P T_{L P}$ denote the optimum solution value of (DST-LP).

2.1 Representative Terminals for Partial Solutions

Our algorithm will iteratively purchase subsets of edges over phases while making progress toward a feasible solution. So we need to understand the structure of a partial solution $F \subseteq E$ that does not necessarily connect r to each terminal. If some terminals can already reach other terminals in (V, F), we only need to focus on purchasing edges to ensure r is connected to a subset of terminals that can reach all other terminals.

For $F \subseteq E$, we consider the following pruning process. First, consider the stronglyconnected components (SCCs) of ($V, F)$. Since r has no incoming edges in G, then $\{r\}$ is an SCC of (V, F). Say an SCC C is a terminal-source component if $C \cap X \neq \emptyset$ and the only nodes in $X \cup\{r\}$ that can reach $C \cap X$ in the graph (V, F) are those already in C.

Let X_{F} consist of a single arbitrarily-chosen terminal in each terminal-source SCC. Note that in the graph (V, F) all terminals in X can be reached from some node in X_{F} but no node in X_{F} can be reached from any other node in X_{F}. To prune F means to iteratively remove edges from F arbitrarily as long as doing so preserves the property that every node in X can be reached from a node in $X_{F} \cup\{r\}$. After pruning, F looks like a directed forest where all non-singleton components have a node in $X_{F} \cup\{r\}$ as a root and only terminals as leaf nodes. We say F is pruned with respect to X_{F} after this process and we call X_{F} representative terminals.

Lemma 2. Let $F \subseteq E$ be pruned and $F^{\prime} \subseteq E-F$. If $\left(V, F \cup F^{\prime}\right)$ contains an $r-t$ path for each $t \in X_{F}$, then in fact it contains an $r-t$ path for each $t^{\prime} \in X$.

Proof. Each $t \in X$ is reachable from some $t^{\prime} \in X_{F} \cup\{r\}$ using edges in F. Since r can reach t^{\prime} using edges in $F \cup F^{\prime}$, it can also reach t using edges in $F \cup F^{\prime}$

Additional useful properties of a pruned set of edges having roots $X_{F} \cup\{r\}$ are:

- Each terminal $t \in X$ can be reached from exactly one $t^{\prime} \in X_{F} \cup\{r\}$.
- Each Steiner node u can be reached from at most one $t \in X_{F} \cup\{r\}$. If u can be reached this way, it is not a leaf node in its corresponding tree. If u cannot be reached from any $X_{F} \cup\{r\}$, it is isolated (has no incoming or outgoing edges in F).

2.2 Tracking Progress

We will find a set of edges $F^{\prime} \subseteq E-F$ with cost bounded by the optimum solution value of (DST-LP) that, in some sense, improves overall connectivity when added to F. If we could also ensure the number of terminals not connected from r decreases by a constant factor when adding F^{\prime} to F, we would be done since it would be sufficient to iterate the procedure $O(\log k)$ times.

This view too optimistic. Rather, we track progress a different way by showing $\left|X_{F}\right|$ decreases by a constant factor each iteration. First, we show it suffices to ensure a constant fraction of terminals in X_{F} can be reached by another node in $X_{F} \cup\{r\}$. This is essentially the same as Lemma 5 in [3], we include its proof for completeness in Appendix A.

- Lemma 3. $0<\alpha<1$ and let $F^{\prime} \subseteq E-F$ be such that for at least an α-fraction of $t \in X_{F}$, there is some other $t^{\prime} \in X_{F}-\{t\}$ that can reach t in $\left(V, F \cup F^{\prime}\right)$. Then $\left|X_{F^{\prime} \cup F}\right| \leq(1-\alpha / 2) \cdot\left|X_{F}\right|$.

Thus, our main algorithm boils down to finding such a set F^{\prime}.

- Theorem 4. Suppose $X_{F} \neq \emptyset$. There is a universal constant $0<\alpha<1$ and a randomized algorithm with polynomial expected running time that is guaranteed to find a set $F^{\prime} \subseteq E-F$ such that (a) at least an α-fraction of $t \in X_{F}$ are reachable from some $t^{\prime} \in X_{F}-\{t\}$ in $\left(V, F \cup F^{\prime}\right)$, and (b) the cost of F^{\prime} is $O\left(O P T_{L P}\right)$.

Proving Theorem 4 is the focus of Section 3.
Our final algorithm iterates the procedure from Theorem 4 and adds the resulting set F^{\prime} to the current set of given edges F. Since $\left|X_{F}\right|$ starts at k and decreases geometrically, after $O(\log k)$ iterations the set of all edges F purchased satisfies $X_{F}=\emptyset$ (i.e. all terminals are reachable from $r)$ and $\operatorname{cost}(F)=O(\log k) \cdot O P T_{L P}$. This procedure is summarized in Algorithm 1.

Algorithm 1 DST Rounding.

```
Compute an optimal solution \(x\) to (DST-LP).
    \(F \leftarrow \emptyset\)
    \(X_{F} \leftarrow X \cup\{r\}\)
    while \(X_{F} \neq\{r\}\) do
        Obtain \(F^{\prime} \subseteq E-F\) using the algorithm from Theorem 4.
        \(F \leftarrow F \cup F^{\prime}\)
        Let \(X_{F}\) be a set of terminals, one from each source SCC in \((V, F)\).
        Prune \(F\) with respect to \(X_{F}\).
    return \(F\)
```


3 The Rounding Algorithm

This section is dedicated to the proof of Theorem 4. Let x be an optimal solution to (DST-LP). We further assume that we cannot decrease any x_{e} by any positive amount.

- Lemma 5. For each edge $e=(u, v) \in E, x_{e} \leq 1$. Additionally, if $u \neq r$ then $x_{e} \leq$ $x\left(\delta^{i n}(u)\right)$.

In fact, these properties would hold for any optimal solution if G had no 0 -cost edges, we are just making sure 0 -cost edges are well-behaved under x for our algorithm.

Proof. That $x_{e} \leq 1$ is obvious because all cut constraints require 1 edge, so no edge would be chosen to an extent of more than 1 in a minimal solution.

For the sake of contradiction, suppose $u \neq r$ yet $x_{e}>x\left(\delta^{i n}(u)\right)$. We claim that x_{e} could be decreased, contradicting minimality of x again. To see the latter, suppose otherwise, i.e. $x\left(\delta^{i n}(S)\right)=1$ for some constraint S with $e \in \delta^{i n}(S)$. One easily checks

$$
\begin{aligned}
x\left(\delta^{i n}(S \cup\{u\})\right) & =x\left(\delta^{i n}(S)\right)+x\left(\delta^{i n}(u) \cap \delta^{\text {out }}(V-S)\right)-x\left(\delta^{o u t}(u) \cap \delta^{i n}(S)\right) \\
& \leq x\left(\delta^{i n}(S)\right)+x\left(\delta^{i n}(u)\right)-x_{e} \\
& <x\left(\delta^{i n}(S)\right)=1 .
\end{aligned}
$$

This contradicts feasibility of x.
Now let $F \subseteq E$ be a set of given edges (i.e. purchased in previous iterations). Our rounding procedure helps extend paths outward from nodes reachable from a node in $X_{F} \cup\{r\}$ toward other nodes in X_{F}. It does this in three phases, with the first two being very simple.

Step 1 - Forming $\boldsymbol{F}_{\mathbf{1}}$

Consider an edge $e=(u, v)$ with $u \in X \cup\{r\}$ and v being a Steiner node. Let $F_{1} \subseteq E-F$ be formed by including each $e \in E-F$ independently with probability x_{e}. Clearly the expected cost of F_{1} at most the cost of x.

Step 2 - Forming $\boldsymbol{F}_{\mathbf{2}}$

Form $F_{2} \subseteq E$ as follows. For each Steiner edge $e=(u, v)$, if $\delta_{F_{1}}^{i n}(u) \neq \emptyset$ then add f to F_{2} with probability $\frac{x_{e}}{x\left(\delta^{i n}(u)\right)}$. Note the denominator cannot be 0 if we had successfully added an edge of $\delta^{i n}(u)$ to F_{1}. So by Lemma 5 , this is a valid probability. Now,

Figure 1 A depiction of the sets $O_{t} \cup H$ and R_{t} for some $t \in X_{F}$. Terminals are drawn as squares, Steiner nodes as circles. The edges shown are those in the pruned set F (though we do not show edges of F contained in R_{t}). The set R_{t}, which will be contracted to a single node we call r_{t}, consists of all nodes reachable from some other node in $X_{F} \cup\{r\}$ other than t. We just need to extend a path from R_{t} to t, the rounding algorithm we describe below will do this with constant probability.

$$
\begin{aligned}
\operatorname{Pr}\left[e \in F_{2}\right] & =\operatorname{Pr}\left[e \in F_{2} \mid \delta_{F_{1}}^{i n}(u) \neq \emptyset\right] \cdot \operatorname{Pr}\left[\delta_{F_{1}}^{i n}(u) \neq \emptyset\right] \\
& =x_{e} \cdot \frac{1-\prod_{e \in \delta^{i n}(u)}\left(1-x_{e}\right)}{x\left(\delta^{i n}(u)\right)} \\
& \geq x_{e} \cdot \frac{1-\exp \left(-x\left(\delta^{i n}(u)\right)\right.}{x\left(\delta^{i n}(u)\right)} \\
& \geq(1-\exp (-1)) \cdot x_{e}
\end{aligned}
$$

The first inequality is a standard application of the arithmetic-geometric mean inequality and the bound $(1-z / B)^{B} \leq \exp (-z)$ for $B \geq 1$ and $z \geq 0$. The second holds because $(1-\exp (-1)) \cdot z \leq 1-\exp (-z) \leq z$ holds for any $z \in[0,1]$ and recalling the constraint $x\left(\delta^{i n}(u)\right) \leq 1$ from (DST-LP) ${ }^{1}$.

We also note a corresponding upper bound. The probability $\delta_{F_{1}}^{i n}(u) \neq \emptyset$ is, by the union bound, at most $x\left(\delta^{i n}(u)\right)$. Using this upper bound above, we see $\operatorname{Pr}\left[e \in F_{2}\right] \leq x_{e}$.

Step 3 - Selecting the final set of edges

This step is considerably more involved, most of our new ideas are contained here. First, we discuss intuition.

Let H be all Steiner nodes v with $\delta_{F}^{i n}(v)=\delta_{F}^{\text {out }}(v)=\emptyset$. For each terminal $t \in X_{F}$, let O_{t} be the set of all nodes (including t) that t can reach in (V, F). Since F is pruned, $O_{t} \cap O_{t^{\prime}}=\emptyset$ for distinct $t, t^{\prime} \in X_{F}$. Note that $R_{t}:=V-\left(O_{t} \cup H\right)$ is the set of all nodes that can be reached by a node in $X_{F}-\{t\}$ using only edges in F, i.e. to reach t from $X_{F}-\{t\}$ it suffices to have any node in R_{t} reach t.

Finally, consider the graph G_{t} obtained by contracting R_{t} to a single vertex, keeping parallel edges that are created but discarding any loops. We let r_{t} denote this new node. Figure 1 illustrates these sets.

Now consider the following flow graph over G_{t}. For each edge e of G_{t} (i.e. an edge of G that was not contracted to a loop), install a capacity of x_{e}. Since $r \in R_{t}$, the LP constraints ensure we can send one unit of $r_{t}-t$ flow in G_{t}. We would like to sample a path from a

[^0]

Figure 2 The Steiner node u is special for t as more than half of the value of $x\left(\delta^{i n}(u)\right)$ comes from nodes in O_{t}. Note u cannot be special for any other $t^{\prime} \in X_{F}$ since their associated sets $O_{t^{\prime}}$ are disjoint.
path decomposition of this flow, this would connect t from some other node in X_{F} and the expected cost of this path would be at most $O P T_{L P}$ since no edge would be added with probability exceeding its x-value. The problem is that we cannot do this independently for different representative terminals in X_{F} since some edges are at risk of being considered multiple times.

We will show there is an $r_{t}-t$ flow of value $\geq 1 / 2$ that is safer to round. Intuitively, it will be that only the first two edges of any path in a path decomposition of this "safer" flow are at risk of supporting flows in G_{t} for too many terminals. The first two phases will have decided whether these edges will be included so we don't worry about oversampling them in this step.

Say a node $u \in H$ is special for terminal $t \in X_{F}$ if u is a source-Steiner node and the following holds:

$$
\sum_{\substack{(w, u) \in \delta_{G}^{i n}(u) \\ \text { s.t. } w \in O_{t}}} x_{(w, u)}>x\left(\delta_{G}^{i n}(u)\right) / 2 .
$$

That is, u is special if more than half of the LP weight entering u comes from nodes only reachable from t. This is illustrated in Figure 2.
\triangleright Claim 6. Each node u is special for at most one terminal in X_{F}.
Proof. This is because $O_{t} \cap O_{t^{\prime}}=\emptyset$ for distinct $t, t^{\prime} \in X_{F}$, so at most one terminal $t \in X_{F}$ can have O_{t} claim more than half the LP weight of edges entering u.

Finally, form a subgraph G_{t}^{\prime} of G_{t} by including all vertices and edges except $\{(w, u): w \in$ O_{t} and u is as source-steiner node that is not special for $\left.t\right\}$. We can still push a constant amount of flow from r_{t} to t in G_{t}^{\prime}, as the following shows.

- Theorem 7. The maximum $r_{t}-t$ flow value in G_{t}^{\prime} is at least $1 / 2$.

Proof. For a graph G^{\prime}, we use notation $\delta_{G^{\prime}}(S)$ to denote the set of edges of G^{\prime} entering S to emphasize which graph we are discussing. Let $S \subseteq O_{t} \cup H$ be a subset of nodes in G_{t}^{\prime} including t. Viewed as a subset of nodes in G, we have $x\left(\delta_{G}^{i n}(S)\right) \geq 1$ by feasibility of the LP. Since G_{t} is obtained by contracting a subset of nodes lying outside of S, then $x\left(\delta_{G_{t}}(S)\right) \geq 1$ as well. Next we show in G_{t}^{\prime} that this cut still has at least $1 / 2$ total x-weight in G_{t}^{\prime}.

Consider any $(w, u) \in \delta^{i n}(S)$. If u is not a source-Steiner or if u is special for t node then $(w, u) \in \delta_{S^{\prime}}^{i n}$. Otherwise, we know at least half of the weight of edges entering u comes from outside O_{t}, these would all be in $\delta_{G_{t}^{\prime}}^{i n}(S)$ as required. That is, $x\left(\delta^{i n}(S)\right) \geq 1 / 2$. Since this holds for all $r_{t}-t$ cuts S, by the max-flow/min-cut theorem, G_{t}^{\prime} supports at least $1 / 2$ units of $r_{t}-t$ flow.

Now consider any $r_{t}-t$ flow of value exactly $1 / 2$ in G_{t}^{\prime} and perform a path decomposition of this flow. That is, for various simple $r_{t}-t$ paths P we have a value $z_{P} \geq 0$ such that $\sum_{P} z_{P}=1 / 2$ and $\sum_{P: e \in P} z_{P} \leq x_{e}$ for each edge e of G_{t}^{\prime}. It is well known that such a decomposition exists with at most $|E|$ paths and can be computed in polynomial time.

Creating $\boldsymbol{F}_{3}^{\boldsymbol{t}}$

Finally we will create a set of edges F_{3}^{t} for each terminal $t \in X_{F}$ as follows. Consider an $r_{t}-t$ path P in the support of the path decomposition of G_{t}^{\prime}. Let $E(P)$ denote the edges of G that correspond to edges of P. Let $e_{1}(P), e_{2}(P) \in E(P)$ be the first two edges of P (it may be that $|P|=1$ in which case $e_{2}(P)$ is not defined). Write $e_{1}(P)=\left(v_{1}(P), v_{2}(P)\right)$.

We consider the following random process to add some edges of $E(P)$, in doing so we also identify some initial edges $i(P)$ for the path P. Generally speaking, these are edges that we require to have been sampled in the formation of $F_{1} \cup F_{2}$ in order for us to consider sampling the rest of the path P, though Case (iv) below differs slightly from this rule. Some of these cases are illustrated in Figure 3.

- Case (i): $v_{1}(P)$ is a sink-Steiner node. Set $i(P):=\emptyset$. With probability z_{P}, add all of $E(P)$ to F_{3}^{t}.
- Case (ii): $v_{1}(P)$ is a source-Steiner node Set $i(P):=\left\{e_{1}(P)\right\}$. If $e_{1}(P) \in F_{2}$, then with probability $z_{P} / x_{e_{1}(P)}$ add $E(P)-i(P)$ to F_{3}^{t}.
- Case (iii): $v_{1}(P) \in X \cup\{r\}$ and $v_{2}(P)$ is special for t Set $i(P):=\left\{e_{1}(P)\right\}$. If $e_{1}(P) \in F_{1}$, then with probability $z_{P} / x_{e_{1}(P)}$ add $E(P)-i(P)$ to F_{3}^{t}.
- Case (iv): $v_{1}(P) \in X \cup\{r\}$ and $v_{2}(P)$ is not special for t

Then it must be that $e_{2}(P)$ is defined; set $i(P):=\left\{e_{1}(P), e_{2}(P)\right\}$. If $e_{2}(P) \in F_{2}$ and if some edge in $\delta^{\text {in }}\left(v_{2}(P)\right) \cap \delta^{\text {out }}\left(R_{t}\right)$ was added to F_{1}, then with probability $z_{P} / x_{e_{2}(P)}$ add $E(P)-i(P)$ to F_{3}^{t} with.

While case (ii) and (iii) are similar, there are important technical distinctions so we distinguish these cases for clarity in our analysis below. Note in all cases, if the random process adds edges of a path P to F_{3}^{t} it adds exactly the non-initial edges, i.e. $P-i(P)$.

3.1 Analysis of the Formation of the Sets $\boldsymbol{F}_{3}^{\boldsymbol{t}}$

We start by showing the probability any edge is added to a particular F_{3}^{t} is bounded by its x-value.

- Lemma 8. For any $r_{t}-t$ path, the probability we added $E(P)-i(P)$ to F_{3} due to processing P in its corresponding case is at most z_{P}. Consequently, for any $t \in X_{F}-\{r\}$ and any $e \in E, \operatorname{Pr}\left[e \in F_{3}^{t}\right] \leq x_{e}$.

Figure 3 The graph G_{t}^{\prime} except we have expanded node r_{t} to the full set R_{t} again. The top $r_{t}-t$ path (larger dashes) illustrates a path P that could either be from Case (iii) or Case (iv), depending on whether $v_{2}(P)$ is special for t or not. The lower path (with finer dots on the edges) illustrates a path P^{\prime} from Case (ii). It might even be that some other path in the decomposition exits O_{t} after entering it before it eventually reaches t, but such a path could only use a Steiner edge (u, v) in H if after entering O_{t} if u was special for t since.

Proof. Focus on an $r_{t}-t$ path P and consider the corresponding case case for path P : (i) we simply added $E(P)$ with probability z_{P}, (ii) we added $E(P)-i(P)$ with probability $z_{P} / x_{e_{1}(P)}$ but only if $e_{1}(P) \in F_{2}$. As argued in Step 2, the latter happens with probability at most $x_{e_{1}}$ so multiplying this against $z_{P} / x_{e_{1}}$ finishes this case, (iii) $e_{1}(P)$ lies in F_{1} with probability $x_{e_{1}(P)}$ so the total probability we added $E(P)-i(P)$ is exactly z_{P}.

For the final case (iv), P is sampled with probability $\frac{z_{P}}{x_{e_{2}(P)}}$ but only if the condition that includes $e_{2}(P) \in F_{2}$ is satisfied. Again, such a condition can only be satisfied with probability at most $x_{e_{2}}(P)$. Thus P is sampled with probability at most z_{P} overall.

The last statement in the lemma holds because the expected number of times an edge e is added to F_{3}^{t} is then at most $\sum_{P: e \in P} z_{P} \leq x_{e}$ because P is a path decomposition of a flow with capacity x_{e} on edge e.

But this is not enough for a good overall cost bound, one should be concerned that an edge was added to multiple F_{3}^{t} sets for various t. The following effectively shows each edge that is a candidate to be added to some F_{3}^{t} can only support flow for at most one terminal $t \in X_{F}$.

- Lemma 9. For each $e \in E$, there is at most one t such that $e \in E(P)-i(P)$ for some path P in the decomposition of the $r_{t}-t$ flow.

Proof. Suppose $e=(u, v)$ has $v \in X \cup\{r\}$. The only such edges in G_{t}^{\prime} have $v \in O_{t}$ since the only terminals not contracted into t_{t} are those in O_{t}. So e will only be an edge in G_{t}^{\prime} for at most one t.

Next, suppose $u \in X \cup\{r\}$. If $u \notin O_{t}$ then $u \in R_{t}$ and $e=e_{1}(P)$ so we are in case (iii) or case (iv) for any path P containing e, but in either case $e \in i(P)$. Thus, we can only have $e \in E(P)-i(P)$ for the terminal t with $u \in O_{t}$.

Finally, suppose (u, v) is a Steiner edge. Suppose (u, v) lies on some path P in some G_{t}^{\prime}. If $u \in R_{t}$ we are in case (ii) and $(u, v) \in i(P)$. If $u \notin R_{t}$, then either u is special for t or else the edge (w, u) prior to u is the first edge (i.e. $w \in R_{t}$) since we deleted all edges from O_{t} to u as u was not special for t. In the latter, we are in case (iv), so $(u, v)=e_{2}(P)$ means $(u, v) \in i(P)$.

- Theorem 10. The expected cost of $F_{1} \cup F_{2} \cup \bigcup_{t \in X_{F}-\{r\}} F_{3}^{t}$ is $O\left(O P T_{L P}\right)$.

Proof. We have already shown the expected costs of F_{1} and F_{2} are bounded by $O\left(O P T_{L P}\right)$ since each edge is in F_{1} or F_{2} with probability at most x_{e}. We also know each e appears in any given F_{3}^{t} with probability at most x_{3}. Lemma 9 shows there is at most one F_{3}^{t} such that e has a nonzero probability of appearing in F_{3}^{t}, so e lies in $\bigcup_{t \in X_{F}-\{r\}} F_{3}^{t}$ with probability at most x_{e}.

3.2 Success Probability

The last step is to show each terminal $t \in X_{F}$ can be reached from another node in $X_{F}-\{r\}$ with good probability. This is a bit subtle as there is shared randomness between the various $r_{t}-t$ paths P that reach t. Our analysis mirrors that in [17], which is providing an alternative analysis of the Group Steiner Tree rounding algorithm from [10].

We first require a general result about random variables. A proof was provided in [17] for the case $\mathbf{E}[X]=1$. We need it in a slightly more general context so we include its proof in Appendix B for completeness.

Lemma 11. Let $\mu, \gamma \geq 0$ and let $X_{1}, X_{2}, \ldots, X_{m}$ be indicator random variables and $X=\sum_{i=1}^{m} X_{i}$ be their sum. Suppose $\mathbf{E}[X] \geq \mu$ and $\mathbf{E}\left[X \mid X_{j}=1\right] \leq \gamma$ for any j. Then $\operatorname{Pr}[X \geq 1] \geq \mu / \gamma$.

- Theorem 12. There is a fixed constant $\alpha^{\prime}>0$ such that for each $t \in X_{F}$, with probability at least α^{\prime} there is some $t^{\prime} \in X_{f} \cup\{r\}-\{t\}$ such that t^{\prime} can reach t in $\left(V, F \cup F^{\prime}\right)$.

Proof. We show we added $E(P)-i(P)$ to F_{3}^{t} for at least one path P with constant probability, which suffices to prove the main result as then R_{t} could reach t along this path P. Consider the path decomposition and corresponding weights z_{P}. The subscripts in the sums on the right-hand side indicate which case the path corresponds to.

$$
\frac{1}{2}=\sum_{P} z_{P}=\sum_{P:(i)} z_{P}+\sum_{P:(i i)} z_{P}+\sum_{P:(i i i)} z_{P}+\sum_{P:(i v)} z_{P}
$$

At least one of these sums is is at least $1 / 8$.

Case: $\sum_{P:(i)} z_{P} \geq 1 / 8$. These paths were independently sampled with probability z_{P} each. The probability we did not pick one of them is then at most

$$
\prod_{P:(i)}\left(1-z_{P}\right) \leq \exp \left(-\sum_{P:(i)} z_{P}\right) \leq \exp (-1 / 8)
$$

So at least one path was picked with probability $\geq 1-\exp (-1 / 8)$.
Case: $\sum_{P:(i i)} z_{P} \geq 1 / 8$. All paths discussed here are those corresponding to case (ii) so we omit that qualifier throughout. We employ Lemma 11 where we have an indicator X_{P} for every path P and let $X=\sum_{P} X_{P}$. A path is added if both $e_{1}(P) \in F_{1}$ and then if P is sampled after that. This happens with probability $x_{e_{1}(P)} \cdot \frac{z_{P}}{x_{e_{1}(P)}}=z_{P}$. So $\mathbf{E}[X] \geq 1 / 8$.

Consider any particular path P^{\prime}, we want to bound $\mathbf{E}\left[X \mid X_{P^{\prime}}=1\right]$. We claim for any path P that

$$
\operatorname{Pr}\left[X_{P}=1 \mid X_{P^{\prime}}=1\right]=\left\{\begin{array}{cl}
1 & \text { if } P=P^{\prime} \\
\frac{z_{P}}{z_{P}} & \text { if } e_{1}(P) \neq e_{1}\left(P^{\prime}\right) \\
x_{e_{1}\left(P^{\prime}\right)} & \text { otherwise }
\end{array}\right.
$$

The first one is clear, the second is because $\operatorname{Pr}\left[X_{P}=1\right]=\operatorname{Pr}\left[e_{1}(P) \in F_{1}\right] \cdot \frac{z_{P}}{x_{e}}=z_{P}$ and because the variables $X_{P}, X_{P^{\prime}}$ are independent (since the random choice to add their initial edges F_{1} were made independently). If $e_{1}(P)=e_{1}\left(P^{\prime}\right)$ then the only shared randomness between X_{P} and $X_{P^{\prime}}$ was in the decision to add $e_{1}\left(P^{\prime}\right)$ to F_{1}. If we are given $X_{P^{\prime}}=1$, then we know $e_{1}\left(P^{\prime}\right) \in F_{1}$ but the choice to extend this to selecting P entirely was then made independently with probability $\frac{z_{P}}{x_{e_{1}\left(P^{\prime}\right)}}$.

So we have

$$
\begin{aligned}
& \mathbf{E}\left[X: X_{P^{\prime}} \geq 1\right]= \operatorname{Pr}\left[X_{P^{\prime}}=1 \mid X_{P^{\prime}}=1\right]+\sum_{P: e_{1}(P) \neq e_{1}\left(P^{\prime}\right)} \operatorname{Pr}\left[X_{P}=1 \mid X_{P^{\prime}}=1\right] \\
&+\sum_{P: P \neq P^{\prime}} \text { and } e_{1}(P)=e_{1}\left(P^{\prime}\right) \\
& \operatorname{Pr}\left[X_{P}=1 \mid X_{P^{\prime}}=1\right] \\
&= 1+\sum_{P: e_{1}(P) \neq e_{1}\left(P^{\prime}\right)} z_{P}+\sum_{P: P \neq P^{\prime} \text { and } e_{1}(P)=e_{1}\left(P^{\prime}\right)} \frac{z_{P}}{x_{e_{1}\left(P^{\prime}\right)}} \\
& \leq 1+\frac{1}{2}+\frac{x_{e_{1}\left(P^{\prime}\right)}}{x_{e_{1}\left(P^{\prime}\right)}} \\
&= 5 / 2
\end{aligned}
$$

That is, the total weight of all paths in the decomposition is at most the value of the flow, which is $1 / 2$. Similarly, the total weight of all paths including the edge $e_{1}\left(P^{\prime}\right)$ is at most $x_{e_{1}\left(P^{\prime}\right)}$ since the flow respects capacities.

Using Lemma 11 with $\mu=1 / 8$ and $\gamma=5 / 2$ shows at least one path is sampled with probability at least $1 / 20$.

Case: $\sum_{P:(i i i)} z_{P} \geq 1 / 8$. The proof is essentially identical to the previous case and is omitted. We get the probability at least one path is sampled is at least $1 / 20$.

Case: $\sum_{P:(i v)} z_{P} \geq 1 / 8$. Use similar indicator variables X_{P} and their sum X as in case (ii), but this time for the paths of form (iv). For any such path P, we have

$$
\begin{aligned}
\operatorname{Pr}\left[X_{P}=1\right] & =\frac{z_{P}}{x_{e}} \cdot \operatorname{Pr}\left[\delta^{\text {in }}\left(v_{2}(P)\right) \cap \delta^{\text {out }}\left(R_{t}\right) \cap F_{1} \neq \emptyset \wedge e_{2}(P) \in F_{2}\right] \\
& =\frac{z_{P}}{x_{e}} \cdot \operatorname{Pr}\left[\delta^{\text {in }}\left(v_{2}(P)\right) \cap \delta^{\text {out }}\left(R_{t}\right) \cap F_{1} \neq \emptyset\right] \\
& \left.=\frac{z_{P}}{x_{e}} \cdot \operatorname{Pr}\left[e_{2}(P) \in F_{2} \mid \delta^{\text {in }}\left(v_{2}(P)\right) \cap \delta^{\text {out }}\left(R_{t}\right) \cap F_{1}(P)\right) \cap \delta^{\text {out }}\left(R_{t}\right) \cap F_{1} \neq \emptyset\right] \cdot \frac{x_{e}}{x\left(\delta^{\text {in }}(u)\right)} \\
& =\frac{z_{P}}{x\left(\delta^{\text {in }}(u)\right)} \cdot \operatorname{Pr}\left[\delta^{\text {in }}\left(v_{2}(P)\right) \cap \delta^{\text {out }}\left(R_{t}\right) \cap F_{1} \neq \emptyset\right]
\end{aligned}
$$

For brevity, let $B=\delta^{i n}(v) \cap \delta^{o u t}\left(R_{t}\right)$. The last probability is

$$
1-\prod_{e \in B}\left(1-x_{e}\right) \geq 1-\exp \left(-\sum_{e \in B} x_{e}\right) \geq 1-\exp \left(-x\left(\delta^{i n}(v)\right) / 2\right)
$$

The final inequality is because $v_{2}(P)$ is not special for t. For $z \in[0,1]$, we have ${ }^{2} 1-$ $\exp (-z / 2) \geq(1-\exp (-1 / 2)) \cdot z$, so the last expression is at least $(1-\exp (-1 / 2)) \cdot x\left(\delta^{\text {in }}(u)\right)$ and we finally see $\operatorname{Pr}\left[X_{P}=1\right] \geq(1-\exp (-1 / 2)) \cdot z_{P}$. Thus, $\mathbf{E}[X] \geq \frac{1-\exp (-1 / 2)}{8}$.

[^1]Finally, we upper bound $\mathbf{E}\left[X \mid X_{P^{\prime}}=1\right]$ by a constant for any path P^{\prime} considered in this case. Partition the set of paths from this case (iv) into four sets essentially based on how they interact with P^{\prime} along their prefixes: $\left\{P^{\prime}\right\}, \mathcal{P}_{0}=\left\{P: v_{2}(P) \neq v_{2}\left(P^{\prime}\right)\right\}, \mathcal{P}_{1}=\left\{P: v_{2}(P)=\right.$ $v_{2}\left(P^{\prime}\right)$ yet $\left.e_{2}(P) \neq e_{2}\left(P^{\prime}\right)\right\}$, and $\mathcal{P}_{2}=\left\{P: e_{2}(P)=e_{2}\left(P^{\prime}\right)\right\}$.

For $P \in \mathcal{P}_{0}$, simple inspection shows X_{P} and $X_{P^{\prime}}$ are independent random variables so $\sum_{P \in \mathcal{P}_{0}} \operatorname{Pr}\left[X_{P}=1 \mid X_{P^{\prime}}=1\right]=\sum_{P \in \mathcal{P}_{0}} \operatorname{Pr}\left[X_{P}=1\right] \leq \sum_{P \in \mathcal{P}_{0}} z_{P} \leq \frac{1}{2}$.

For $P \in \mathcal{P}_{1}$, we are given $\delta^{\text {in }}\left(v_{2}(P)\right) \cap \delta^{\text {out }}\left(R_{t}\right) \cap F_{1} \neq \emptyset$ since $X_{P^{\prime}}=1$, so

$$
\begin{aligned}
\operatorname{Pr}\left[X_{P}=1 \mid X_{P^{\prime}}=1\right] & =\frac{z_{P}}{x_{e_{2}(P)}} \cdot \operatorname{Pr}\left[e_{2}(P) \in F_{2} \mid X_{P^{\prime}}=1\right] \\
& =\frac{z_{P}}{x_{e_{2}(P)}} \cdot \frac{x_{e_{2}(P)}}{x\left(\delta^{\text {in }}\left(v_{2}(P)\right)\right.} \\
& =\frac{z_{P}}{x\left(\delta^{i n}\left(v_{2}(P)\right)\right.}
\end{aligned}
$$

The total flow passing through $v_{2}(P)$ is at most its incoming edge capacity, so summing over all $P \in \mathcal{P}_{1}$ shows $\sum_{P \in \mathcal{P}_{1}} \operatorname{Pr}\left[X_{P}=1 \mid X_{P^{\prime}}=1\right] \leq 1$.

For $P \in \mathcal{P}_{2}$, we simply have $\operatorname{Pr}\left[X_{P}=1 \mid X_{P^{\prime}}=1\right]=\frac{z_{P}}{x_{x_{2}(P)}}$ since the condition to be met before sampling P is satisfied if we are given $X_{P^{\prime}}=1$. So $\sum_{P \in \mathcal{P}_{2}} \operatorname{Pr}\left[X_{P}=1 \mid X_{P^{\prime}}=1\right]=$ $\sum_{P \in \mathcal{P}_{2}} \frac{z_{P}}{x_{e_{2}(P)}} \leq 1$. Thus,

$$
\sum_{P} \operatorname{Pr}\left[X_{P}=1 \mid X_{P^{\prime}}=1\right]=1+\sum_{i \in\{0,1,2\}} \sum_{P \in \mathcal{P}_{i}} \operatorname{Pr}\left[X_{P}=1 \mid X_{P^{\prime}}=1\right] \leq 1+\frac{1}{2}+1+1=7 / 2
$$

Using Lemma 11 with $\mu=\frac{1-\exp (-1 / 2)}{8}$ and $\gamma=7 / 2$ shows in the probability at least one path is sampled is at least some universal constant. Summarizing, no matter which case has at least $1 / 8$ of the weight of paths we see there is a constant probability at least one path will be sampled. This completes the proof.

We have shown the expected cost of the set $F^{\prime}:=F_{1} \cup F_{2} \cup \bigcup_{t \in X_{F}-\{r\}} F_{3}^{t}$ is at most $c \cdot O P T_{L P}$ for some universal constant c. We also showed each terminal $t \in X_{F}-\{r\}$ will be reachable from some other $t^{\prime} \in X_{t}-\{t\}$ with probability at least some universal constant $\alpha^{\prime}>0$. So the expected number of terminals of this kind is at least $\alpha^{\prime} \cdot\left|X_{F}\right|$.

Say this procedure failed if the cost of F^{\prime} exceeds $\Delta \cdot c \cdot O T_{L P}$ for some constant Δ to be determined soon, or if the number of representative terminals that are now reachable from another representative is smaller than $\frac{\alpha^{\prime}}{2} \cdot\left|X_{F}\right|$. Note we can check this condition in polynomial time.

The former happens with probability at most $1 / \Delta$ by Markov's inequality. A standard variant of Markov's inequality for lower tails shows that if Y is a random variable with $\mathbf{E}[Y] \geq \alpha^{\prime} \cdot M$ where M is the maximum possible value of Y, then $\operatorname{Pr}\left[Y<\frac{\alpha^{\prime}}{2} \cdot M\right] \leq \frac{1-\alpha^{\prime}}{1-\alpha^{\prime} / 2}<1$. In our setting, we let Y be the number of representative terminals that become connected from another node in X_{t} after buying F^{\prime}, so the maximum value of Y is $\left|X_{t}\right|$ and the expected value is at least $\alpha \cdot\left|X_{t}\right|$.

Thus, by the union bound the procedure fails with probability at most $\frac{1}{\Delta}+\frac{1-\alpha}{1-\alpha / 2}$. For sufficiently large constant Δ depending only on α, this is a constant less than one. That is, the procedure succeeds with constant probability. The final randomized algorithm then iterates this procedure until it does not fail, the expected number of iterations is constant. This proves Theorem 4.

References

1 Jarosław Byrka, Fabrizio Grandoni, Thomas Rothvoss, and Laura Sanità. Steiner tree approximation via iterative randomized rounding. J. ACM, 60(1), 2013.
2 Gruia Calinescu and Alexander Zelikovsky. The polymatroid steiner problems. J. Combonatorial Optimization, 33(3):281-294, 2005.
3 Chun-Hsiang Chan, Bundit Laekhanukit, Hao-Ting Wei, and Yuhao Zhang. Polylogarithmic approximation algorithm for k-connected directed steiner tree on quasi-bipartite graphs. arXiv preprint, 2019. arXiv:1911.09150.
4 Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha, and Ming Li. Approximation algorithms for directed steiner problems. Journal of Algorithms, 33(1):73-91, 1999.
5 Andreas Emil Feldmann, Jochen Könemann, Neil Olver, and Laura Sanità. On the equivalence of the bidirected and hypergraphic relaxations for steiner tree. Mathematical Programming, 160:379-406, 2014.
6 Zachary Friggstad, Jochen Könemann, Young Kun-Ko, Anand Louis, Mohammad Shadravan, and Madhur Tulsiani. Linear programming hierarchies suffice for directed steiner tree. In International Conference on Integer Programming and Combinatorial Optimization, pages 285-296. Springer, 2014.
7 Zachary Friggstad, Jochen Könemann, and Mohammad Shadravan. A Logarithmic Integrality Gap Bound for Directed Steiner Tree in Quasi-bipartite Graphs. In Rasmus Pagh, editor, 15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016), volume 53 of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1-3:11, Dagstuhl, Germany, 2016. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

8 Zachary Friggstad and Ramin Mousavi. A Constant-Factor Approximation for Quasi-Bipartite Directed Steiner Tree on Minor-Free Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023), pages 13:1-13:18, 2023.

9 Isaac Fung, Konstantinos Georgiou, Jochen Könemann, and Malcolm Sharpe. Efficient algorithms for solving hypergraphic steiner tree relaxations in quasi-bipartite instances. CoRR, abs/1202.5049, 2012. arXiv:1202.5049.
10 Naveen Garg, Goran Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the group steiner tree problem. Journal of Algorithms, 37(1):66-84, 2000.
11 Michel X. Goemans, Neil Olver, Thomas Rothvoß, and Rico Zenklusen. Matroids and integrality gaps for hypergraphic steiner tree relaxations. In Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pages 1161-1176, 2012.
12 Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li. O (log2 k/log log k)-approximation algorithm for directed steiner tree: a tight quasi-polynomial-time algorithm. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 253-264, 2019.
13 Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages 585-594, 2003.
14 Tomoya Hibi and Toshihiro Fujito. Multi-rooted greedy approximation of directed steiner trees with applications. In International Workshop on Graph-Theoretic Concepts in Computer Science, pages 215-224. Springer, 2012.
15 Shi Li and Bundit Laekhanukit. Polynomial integrality gap of flow lp for directed steiner tree. arXiv preprint, 2021. arXiv:2110.13350.
16 Zeev Nutov. On rooted k-connectivity problems in quasi-bipartite digraphs. In Computer Science - Theory and Applications: 16th International Computer Science Symposium, pages 339-348. Springer-Verlag, 2021.
17 Thomas Rothvoß. Directed steiner tree and the lasserre hierarchy. arXiv preprint, 2011. arXiv:1111.5473.
18 Alexander Zelikovsky. A series of approximation algorithms for the acyclic directed steiner tree problem. Algorithmica, 18(1):99-110, 1997.
19 Leonid Zosin and Samir Khuller. On directed steiner trees. In SODA, volume 2, pages 59-63. Citeseer, 2002.

A Proof of Lemma 3

Proof. For each $t \in X_{F}$ that can be reached from some other $t^{\prime} \in X_{F} \cup\{r\}-\{t\}$ in $\left(V, F \cup F^{\prime}\right)$, let $d(t)=t^{\prime}$. If t can be reached from multiple such t^{\prime}, pick one arbitrarily to be $d(t)$. Finally, let F^{*} be all such edges $(d(t), t)$. We note that $\left(V, F \cup F^{\prime}\right)$ and $\left(V, F \cup F^{\prime} \cup F^{*}\right)$ have the same SCCs because F^{*} provides direct connections between nodes that were already reachable in $\left(V, F \cup F^{\prime}\right)$.

We add the edges of F^{*} one at a time to (V, F) and track how the number of terminalsource SCCs decreases. Recall an SCC of (V, F) is a strongly connected component C containing a terminal that cannot be reached from any other terminal apart from those in C.

When adding $e_{t}=(d(t), t)$, let $S_{d(t)}$ and S_{t} be the SCCs containing $d(t)$ and t respectively at that time. We note S_{t} was a source SCC just before adding e_{t} because no edge entered the source component containing t before this addition.

If the number of terminal-source SCCs does not decrease after adding S_{t}, it must have been that S_{t} could already reach $S_{d(t)}$ by some path P. Let e^{\prime} be the edge entering $S_{d(t)}$. Note $e^{\prime} \in F^{*}$ since no vertex outside of $d(t)$'s SCC in ($\left.V, F\right)$ could reach $d(t)$ before (as it was a source SCC). Also note that e_{t} and e^{\prime} are now drawn into the same SCC as S_{t} after e_{t} is added so e^{\prime} will never enter another SCC again as we continue adding edges of F^{*}. That is, the number of iterations of adding an edge of the form e_{t} that do not cause the number of source SCCs to drop is at most $\alpha / 2 \cdot\left|X_{F}\right|$, meaning the number of source SCCs in $\left(V, F \cup F^{*}\right)$ is at most $(1-\alpha / 2) \cdot\left|X_{F}\right|$. Thus, the number of terminal-source SCCs in $\left(V, F \cup F^{\prime}\right)$ is also bounded by $(1-\alpha / 2) \cdot\left|X_{F}\right|$ as required.

B Proof of Lemma 11

Proof. This proof essentially just verifies the arguments in [17] generalize as required. Including the proof here also keeps our paper self-contained.

We do this in two steps. First, suppose we knew $\mathbf{E}[X \mid X \geq 1] \leq \gamma$. Then

$$
\mu \leq \mathbf{E}[X]=\mathbf{E}[X \mid X=0] \cdot \operatorname{Pr}[X=0]+\mathbf{E}[X \mid X \geq 1] \cdot \operatorname{Pr}[X \geq 1] \leq \gamma \cdot \operatorname{Pr}[X \geq 1] .
$$

Rearranging shows $\operatorname{Pr}[X \geq 1] \geq \mu / \gamma$ which is what we wanted to show.
Now we show $\mathbf{E}[X \mid X \geq 1] \leq \gamma$ follows if $\mathbf{E}\left[X \mid X_{j}=1\right] \leq \gamma$ for any j. By Jensen's inequality applied to the conditioned distribution, we have

$$
\begin{aligned}
\mathbf{E}[X \mid X \geq 1]^{2} & \leq \mathbf{E}\left[X^{2} \mid X \geq 1\right] \\
& =\sum_{(i, j)} \operatorname{Pr}\left[X_{i}=1 \wedge X_{j}=1 \mid X \geq 1\right] \\
& =\sum_{(i, j)} \operatorname{Pr}\left[X_{j}=1 \mid X \geq 1 \wedge X_{i}=1\right] \cdot \operatorname{Pr}\left[X_{i}=1 \mid X \geq 1\right] \\
& =\sum_{(i, j)} \operatorname{Pr}\left[X_{j}=1 \mid X_{i}=1\right] \cdot \operatorname{Pr}\left[X_{i}=1 \mid X \geq 1\right] \\
& =\sum_{i} \operatorname{Pr}\left[X_{i}=1 \mid X \geq 1\right] \cdot \sum_{j} \operatorname{Pr}\left[X_{j}=1 \mid X_{i}=1\right] \\
& =\sum_{i} \operatorname{Pr}\left[X_{i}=1 \mid X \geq 1\right] \cdot \mathbf{E}\left[X \mid X_{i}=1\right] \\
& \leq \gamma \cdot \sum_{i} \operatorname{Pr}\left[X_{i}=1 \mid X \geq 1\right] \\
& =\gamma \cdot \mathbf{E}[X \mid X \geq 1]
\end{aligned}
$$

All sums over (i, j) are over all m^{2} ordered pairs of indices. To conclude, $\mathbf{E}[X \mid X \geq 1]^{2} \leq$ $\gamma \cdot \mathbf{E}[X \mid X \geq 1]$ and $\gamma \geq 0$ can only happen if $\mathbf{E}[X \mid X \geq 1] \leq \gamma$.

[^0]: 1 This is the only point in our algorithm and analysis where we rely on this constraint.

[^1]: ${ }^{2}$ This holds since $1-\exp (-z / 2)=(1-\exp (-1 / 2)) \cdot z$ for $z \in\{0,1\}$ and since $1-\exp (-z / 2)$ is concave.

