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Abstract
In the classic Directed Steiner Tree problem (DST), we are given an edge-weighted directed
graph G = (V, E) with n nodes, a specified root node r ∈ V , and k terminals X ⊆ V − {r}. The
goal is to find the cheapest F ⊆ E such that r can reach any terminal using only edges in F .

Designing approximation algorithms for DST is quite challenging, to date the best approximation
guarantee of a polynomial-time algorithm for DST is O(kϵ) for any constant ϵ > 0 [Charikar et
al., 1999]. For network design problems like DST, one often relies on natural cut-based linear
programming (LP) relaxations to design approximation algorithms. In general, the integrality gap of
such an LP for DST is known to have a polynomial integrality gap lower bound [Zosin and Khuller,
2002; Li and Laekhanukit, 2021]. So particular interest has been invested in special cases or in
strengthenings of this LP.

In this work, we show the integrality gap is only O(log k) for instances of DST where no Steiner
node has both an edge from another Steiner node and an edge to another Steiner node, i.e. the
longest path using only Steiner nodes has length at most 1. This generalizes the well-studied case
of quasi-bipartite DST where no edge has both endpoints being Steiner nodes. Our result is also
optimal in the sense that the integrality gap can be as bad as poly(n) even if the longest path with
only Steiner nodes has length 2.
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1 Introduction

The Directed Steiner Tree problem (DST) is one of the most foundational models in
combinatorial optimization and network design. Given a directed graph G = (V, E) with
n nodes, a specified root node r ∈ V , and k terminals X ⊆ V − {r}, the goal is to buy the
cheapest F ⊆ E such that r can reach any terminal using only edges in F . Throughout, we
say nodes in V − (X ∪ {r}) are Steiner nodes.

Despite its central position in discrete optimization, there is a large gap in our under-
standing concerning its approximability. Namely, the best polynomial-time approximation is
currently an O(kϵ)-approximation for any constant ϵ > 0 by Charikar et al. [4]. Grandoni,
Laekhanukit, and Li show DST cannot be approximated within o(log2 n/ log log n) unless
NP ⊆ ∩0<δZTIME(2nδ ) [12], improving on a slightly weaker lower bound than the one
inherited from Group Steiner Tree [13]. These bounds differ by an order of magnitude.
On the other hand, Grandoni, Laekhanukit, and Li do obtain matching O(log2 k/ log log k)-
approximation in quasi-polynomial time. Still, a polylogarithmic approximation in polynomial
time remains elusive.
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23:2 A Logarithmic Gap for Generalizions of Quasi-Bipartite DST

1.1 Linear Programming Relaxations and Previous Work
In this paper, we consider the following natural linear programming (LP) relaxation for DST
in which we have a variable xe for each edge e ∈ E modelling whether we include edge e in
the solution or not.

minimize :
∑

e∈E ce · xe

subject to : x(δin(S)) ≥ 1 ∀ S ⊆ V − {r}, S ∩X ̸= ∅
x(δin(v)) ≤ 1 ∀ v ∈ V

x ≥ 0

(DST-LP)

Here, for any S ⊆ V we let δin(S) = {(u, v) ∈ E : u /∈ S, v ∈ S} and we use the shorthand
δin(v) := δin({v}) for any v ∈ V . The cut constraints capture the fact that every cut
separating the root from some terminal must be crossed by at least one edge in a feasible
DST solution. In any minimal DST solution (i.e. a feasible F ⊆ E that can not be made
smaller by dropping an edge), every node will have indegree at most one since the solution
is a directed tree spanning all terminals and, perhaps, some Steiner nodes. This justifies
the indegree constraints. So the optimum LP solution value, denoted OPTLP , is at most
the cost of an optimal Steiner tree solution. We remark that (DST-LP) admits a simple
polynomial-time separation oracle by simply checking that we can send one unit of r− t flow
to each terminal when edges have capacity xe.

The integrality gap of this relaxation is well studied. First, Zosin and Khuller demonstrated
the gap can be Ω(

√
k) [19] in some instances. The number of vertices in their construction

is exponential in the number of terminals, so the possibility of an O(logc n) integrality gap
bound was open. More recently, this was refuted by Li and Laekhanukit [15] who gave an
example with integrality gap Ω(n0.0418). We remark that both [19] and [15] considered a
different flow-based relaxation and their relaxation did not include the indegree bound for
non-root nodes, but their examples are valid for (DST-LP).

Special Cases

Perhaps the first polylogarithimic integrality gap bound recorded for DST in certain settings
was an O(log k) upper bound in quasi-bipartite instances. These are instances of DST such
that every edge has at most one of its endpoints being a Steiner node. Another way to say this
is that the subgraph induced by Steiner nodes contains no edges. Hibi and Fujito first gave
an O(log k)-approximation for this setting [14] and Friggstad, Könemann, and Shadravan
then gave a primal-dual algorithm that demonstrated the integrality gap of (DST-LP) (even
without the indegree constraints) is bounded by O(log k) [7]. In quasi-bipartite instances of
DST where the underlying undirected graph excludes a fixed minor (e.g. planar graphs),
(DST-LP) is known to have an integrality gap of O(1) [8].

Chan et al. [3] generalized the O(log k) integrality gap bound to higher connectivity
settings. They demonstrate an appropriate generalization of (DST-LP) (without the
indegree constraints) for the problem of finding the cheapest F ⊆ E ensuring r is at least
R-edge connected to each terminal has an integrality gap bound of O(log k · log R).

Nutov [16] extended this to more settings involving more general supermodular cut
requirement functions in with relaxations to the quasi-bipartite property. Namely, [16]
considers a cut requirement function f : 2V −{r} → Z≥0 satisfies f(A) + f(B) ≤ f(A ∩B) +
f(A ∪B) whenever f(A) > 0, f(B) > 0 and A ∩B ∩ T = ∅. If one further has the property
that every edge has an endpoint v such that v ∈ X or f(A) = 0 for each {v} ⊆ A ⊆ V − {r}.
In this case, [16] gives an O(log k · log R)-approximation where R is the maximum value
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taken by f . Note, this does not capture our setting as our graphs can have edges (u, v) with
both u, v being Steiner nodes yet any A ⊆ V − {r} with u, v ∈ A and A ∩X ̸= ∅ requires an
incoming edge.

Layered Graphs

An instance of DST is ℓ-layered if V is partitioned as V1 = {r}, V2, V3, . . . , Vℓ = X and all
edges (u, v) ∈ E have u ∈ Vi, v ∈ Vi+1 for some 1 ≤ i < ℓ. An α-approximation for DST in
ℓ-layered graphs is known to yield an O(α · ℓ · k1/ℓ)-approximation in general [18, 2]. This
was the starting point for a kϵ-approximation by Charikar et al. [4].

The bad integrality gap examples in [19] and [15] are 5-layered instances of DST. It can
easily be seen that 3-layered instances of DST (which are necessarily quasi-bipartite) have
an integrality gap of O(log k) by adapting randomized Set Cover rounding techniques.

Friggstad et al. show the integrality gap of (DST-LP) remains O(log k) even in 4-layered
instances [6]. They do this by mapping an LP solution to a natural relaxation for a related
instance of Group Steiner Tree in a tree with constant height and using the known
integrality gap bound for such instances [10]. Intuitively, this is possible since the first two
layers of edges can only be reached in one way and each edge in the last layer is only used to
connect to one terminal.

The behavior of LP relaxations for DST under hierarchies has also been considered.
First, Rothvoss showed for ℓ-layered graphs that lifting a related flow-based LP relaxation
through O(ℓ) layers of the Laserre hierarchy reduces the integrality gap to O(ℓ · log k) [17].
Later, [6] showed the result holds for a considerably weaker version of (DST-LP) that is
valid only for layered graphs and using only the LP-based hierarchies of Lovasz-Schrijver
and Sherali-Adams.

Undirected Graphs

Finally, it should be noted that in undirected graphs, the integrality gap of a related relaxation
with undirected cut constraints x(δ(S)) ≥ 1 (and no vertex degree constraints) is well-known
to be exactly 2. If one considers the bi-directed cut relaxation, i.e. the directed graph
having both orientations of each undirected edge, then it is an open problem to determine if
(DST-LP) has an integrality gap being some constant smaller than 2. It is at least known
for quasi-bipartite graphs that the integrality gap of this bi-directed relaxation is better than
2 [9, 5]. Finally, a significant strengthening of the standard relaxation for general instances
of undirected Steiner Tree, known as they hypergraphic relaxation, is known to have an
integralty gap of ln(4) and can be efficiently solved to within any constant factor of the
optimum solution cost in polynomial time [1, 11].

1.2 Our Results
We consider a generalization of DST in quasi-bipartite graphs and prove the following result.

▶ Theorem 1. Suppose no Steiner node has both incoming and outgoing edges to other
Steiner nodes. Then the integrality gap of (DST-LP) is O(log k).

In other words, we consider instances where the subgraph induced by Steiner nodes may
contain edges but not paths with more than one edge. Thus, this is a generalization of
quasi-bipartite DST. This is also extends the integrality gap bound of O(log k) in 4-layered
graphs [6] to a more general setting.

SWAT 2024



23:4 A Logarithmic Gap for Generalizions of Quasi-Bipartite DST

We emphasize that an O(log k)-approximation for such graphs was already given by Hibi
and Fujito [14]. The main purpose of our paper is to establish integrality gap bounds. The
techniques in [14] seem unlikely to produce integrality gap bounds because they also produce
O(log k)-approximation for DST in 5-layered graphs, for which we know the integrality gap
is not polylogarithmic (see Section 1.1).

Our algorithm can be seen as a common generalization of the rounding algorithm for
quasi-bipartite instances from Chan et al. [3] and the analysis of Group Steiner Tree presented
by Rothvoss [17]. At a high level, we round edges in phases: each phase will reduce the
number of terminals we are required to connect by a constant while only paying O(OPTLP )
for the edges purchased each round.

In more detail, [3] identifies a maximal violated set around each such terminal (that
excludes other required terminals) is identified and each iteration will “cover” the violated
cuts in those sets. They show that no edge can be fully contained in more than one such
maximal violated set around the required terminals. Unfortunately, that is not the case in
our setting. Still, we can show the only edges shared between these maximal sets have at
least one endpoint being a terminal, so the overlap in these sets is limited to edges between
Steiner nodes. Then we use a variation of Group Steiner Tree rounding to ensure the edges e

that might be used to connect to multiple nodes are only sampled with probability O(xe) in
our algorithm.

2 Preliminaries

We call an edge e = (u, v) a Steiner edge if both u and v are Steiner nodes. Call a
Steiner node v a source-Steiner node if there is an edge (v, w) to another Steiner node w.
Otherwise, call v a sink-Steiner node.

Recall for a subset of edges F ⊆ E and a subset of nodes S ⊆ V we let δin
F (S) = {(u, v) ∈

F : u /∈ S, v ∈ S} be all edges of F entering S. Similarly, δout
F (S) are edges leaving S. If

F = E, we may omit the subscript and simply write δin(S) and δout(S). For brevity, we also
write δin

F (v) and δout
F (v) for a single node v ∈ V to mean δin

F ({v}) and δout
F ({v}).

Without loss of generality, we assume there is no edge entering r (they can be deleted),
no direct edge from X ∪ {r} to X (such an edge e can be subdivided with two Steiner nodes
into a path of length 3 with each edge having cost ce/3), and no Steiner node has no edge to
any other Steiner node (such a Steiner node v can be split into two Steiner nodes v+, v−

with a 0-cost edge from v+ to v−). It is straightforward to check these reductions do not
change the optimal value of (DST-LP) and that we can map solutions between the original
graph and the modified graph without increasing their costs. Again, throughout we will let
OPTLP denote the optimum solution value of (DST-LP).

2.1 Representative Terminals for Partial Solutions
Our algorithm will iteratively purchase subsets of edges over phases while making progress
toward a feasible solution. So we need to understand the structure of a partial solution
F ⊆ E that does not necessarily connect r to each terminal. If some terminals can already
reach other terminals in (V, F ), we only need to focus on purchasing edges to ensure r is
connected to a subset of terminals that can reach all other terminals.

For F ⊆ E, we consider the following pruning process. First, consider the strongly-
connected components (SCCs) of (V, F ). Since r has no incoming edges in G, then {r} is
an SCC of (V, F ). Say an SCC C is a terminal-source component if C ∩X ̸= ∅ and the
only nodes in X ∪ {r} that can reach C ∩X in the graph (V, F ) are those already in C.
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Let XF consist of a single arbitrarily-chosen terminal in each terminal-source SCC. Note
that in the graph (V, F ) all terminals in X can be reached from some node in XF but no
node in XF can be reached from any other node in XF . To prune F means to iteratively
remove edges from F arbitrarily as long as doing so preserves the property that every node
in X can be reached from a node in XF ∪ {r}. After pruning, F looks like a directed forest
where all non-singleton components have a node in XF ∪ {r} as a root and only terminals
as leaf nodes. We say F is pruned with respect to XF after this process and we call XF

representative terminals.

▶ Lemma 2. Let F ⊆ E be pruned and F ′ ⊆ E − F . If (V, F ∪ F ′) contains an r − t path
for each t ∈ XF , then in fact it contains an r − t path for each t′ ∈ X.

Proof. Each t ∈ X is reachable from some t′ ∈ XF ∪{r} using edges in F . Since r can reach
t′ using edges in F ∪ F ′, it can also reach t using edges in F ∪ F ′ ◀

Additional useful properties of a pruned set of edges having roots XF ∪ {r} are:
Each terminal t ∈ X can be reached from exactly one t′ ∈ XF ∪ {r}.
Each Steiner node u can be reached from at most one t ∈ XF ∪ {r}. If u can be reached
this way, it is not a leaf node in its corresponding tree. If u cannot be reached from any
XF ∪ {r}, it is isolated (has no incoming or outgoing edges in F ).

2.2 Tracking Progress
We will find a set of edges F ′ ⊆ E − F with cost bounded by the optimum solution value of
(DST-LP) that, in some sense, improves overall connectivity when added to F . If we could
also ensure the number of terminals not connected from r decreases by a constant factor
when adding F ′ to F , we would be done since it would be sufficient to iterate the procedure
O(log k) times.

This view too optimistic. Rather, we track progress a different way by showing |XF |
decreases by a constant factor each iteration. First, we show it suffices to ensure a constant
fraction of terminals in XF can be reached by another node in XF ∪ {r}. This is essentially
the same as Lemma 5 in [3], we include its proof for completeness in Appendix A.

▶ Lemma 3. 0 < α < 1 and let F ′ ⊆ E − F be such that for at least an α-fraction
of t ∈ XF , there is some other t′ ∈ XF − {t} that can reach t in (V, F ∪ F ′). Then
|XF ′∪F | ≤ (1− α/2) · |XF |.

Thus, our main algorithm boils down to finding such a set F ′.

▶ Theorem 4. Suppose XF ̸= ∅. There is a universal constant 0 < α < 1 and a randomized
algorithm with polynomial expected running time that is guaranteed to find a set F ′ ⊆ E − F

such that (a) at least an α-fraction of t ∈ XF are reachable from some t′ ∈ XF − {t} in
(V, F ∪ F ′), and (b) the cost of F ′ is O(OPTLP ).

Proving Theorem 4 is the focus of Section 3.
Our final algorithm iterates the procedure from Theorem 4 and adds the resulting set

F ′ to the current set of given edges F . Since |XF | starts at k and decreases geometrically,
after O(log k) iterations the set of all edges F purchased satisfies XF = ∅ (i.e. all terminals
are reachable from r) and cost(F ) = O(log k) · OPTLP . This procedure is summarized in
Algorithm 1.

SWAT 2024



23:6 A Logarithmic Gap for Generalizions of Quasi-Bipartite DST

Algorithm 1 DST Rounding.

Compute an optimal solution x to (DST-LP).
F ← ∅
XF ← X ∪ {r}
while XF ̸= {r} do

Obtain F ′ ⊆ E − F using the algorithm from Theorem 4.
F ← F ∪ F ′

Let XF be a set of terminals, one from each source SCC in (V, F ).
Prune F with respect to XF .

return F

3 The Rounding Algorithm

This section is dedicated to the proof of Theorem 4. Let x be an optimal solution to
(DST-LP). We further assume that we cannot decrease any xe by any positive amount.

▶ Lemma 5. For each edge e = (u, v) ∈ E, xe ≤ 1. Additionally, if u ̸= r then xe ≤
x(δin(u)).

In fact, these properties would hold for any optimal solution if G had no 0-cost edges, we are
just making sure 0-cost edges are well-behaved under x for our algorithm.

Proof. That xe ≤ 1 is obvious because all cut constraints require 1 edge, so no edge would
be chosen to an extent of more than 1 in a minimal solution.

For the sake of contradiction, suppose u ̸= r yet xe > x(δin(u)). We claim that xe could
be decreased, contradicting minimality of x again. To see the latter, suppose otherwise, i.e.
x(δin(S)) = 1 for some constraint S with e ∈ δin(S). One easily checks

x(δin(S ∪ {u})) = x(δin(S)) + x(δin(u) ∩ δout(V − S))− x(δout(u) ∩ δin(S))
≤ x(δin(S)) + x(δin(u))− xe

< x(δin(S)) = 1.

This contradicts feasibility of x. ◀

Now let F ⊆ E be a set of given edges (i.e. purchased in previous iterations). Our
rounding procedure helps extend paths outward from nodes reachable from a node in XF ∪{r}
toward other nodes in XF . It does this in three phases, with the first two being very simple.

Step 1 – Forming F1

Consider an edge e = (u, v) with u ∈ X ∪{r} and v being a Steiner node. Let F1 ⊆ E−F be
formed by including each e ∈ E −F independently with probability xe. Clearly the expected
cost of F1 at most the cost of x.

Step 2 – Forming F2

Form F2 ⊆ E as follows. For each Steiner edge e = (u, v), if δin
F1

(u) ̸= ∅ then add f to F2
with probability xe

x(δin(u)) . Note the denominator cannot be 0 if we had successfully added
an edge of δin(u) to F1. So by Lemma 5, this is a valid probability. Now,
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Rt

Figure 1 A depiction of the sets Ot ∪ H and Rt for some t ∈ XF . Terminals are drawn as squares,
Steiner nodes as circles. The edges shown are those in the pruned set F (though we do not show
edges of F contained in Rt). The set Rt, which will be contracted to a single node we call rt, consists
of all nodes reachable from some other node in XF ∪ {r} other than t. We just need to extend a
path from Rt to t, the rounding algorithm we describe below will do this with constant probability.

Pr[e ∈ F2] = Pr[e ∈ F2|δin
F1

(u) ̸= ∅] ·Pr[δin
F1

(u) ̸= ∅]

= xe ·
1−

∏
e∈δin(u)(1− xe)
x(δin(u))

≥ xe ·
1− exp(−x(δin(u))

x(δin(u))
≥ (1− exp(−1)) · xe

The first inequality is a standard application of the arithmetic-geometric mean inequality
and the bound (1 − z/B)B ≤ exp(−z) for B ≥ 1 and z ≥ 0. The second holds because
(1 − exp(−1)) · z ≤ 1 − exp(−z) ≤ z holds for any z ∈ [0, 1] and recalling the constraint
x(δin(u)) ≤ 1 from (DST-LP)1.

We also note a corresponding upper bound. The probability δin
F1

(u) ̸= ∅ is, by the union
bound, at most x(δin(u)). Using this upper bound above, we see Pr[e ∈ F2] ≤ xe.

Step 3 – Selecting the final set of edges

This step is considerably more involved, most of our new ideas are contained here. First, we
discuss intuition.

Let H be all Steiner nodes v with δin
F (v) = δout

F (v) = ∅. For each terminal t ∈ XF , let Ot

be the set of all nodes (including t) that t can reach in (V, F ). Since F is pruned, Ot∩Ot′ = ∅
for distinct t, t′ ∈ XF . Note that Rt := V − (Ot ∪ H) is the set of all nodes that can be
reached by a node in XF −{t} using only edges in F , i.e. to reach t from XF −{t} it suffices
to have any node in Rt reach t.

Finally, consider the graph Gt obtained by contracting Rt to a single vertex, keeping
parallel edges that are created but discarding any loops. We let rt denote this new node.
Figure 1 illustrates these sets.

Now consider the following flow graph over Gt. For each edge e of Gt (i.e. an edge of G

that was not contracted to a loop), install a capacity of xe. Since r ∈ Rt, the LP constraints
ensure we can send one unit of rt − t flow in Gt. We would like to sample a path from a

1 This is the only point in our algorithm and analysis where we rely on this constraint.
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<latexit sha1_base64="a6ql2g27xIRn3iVNsLZOWZX56gQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRC0dI5JHAhswOvTAyO7uZmTUhhC/w4kFjvPpJ3vwbB9iDgpV0UqnqTndXkAiujet+O7m19Y3Nrfx2YWd3b/+geHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hofua3nlBpHssHM07Qj+hA8pAzaqxUr/aKJbfszkFWiZeREmSo9Ypf3X7M0gilYYJq3fHcxPgTqgxnAqeFbqoxoWxEB9ixVNIItT+ZHzolZ1bpkzBWtqQhc/X3xIRGWo+jwHZG1Az1sjcT//M6qQlv/QmXSWpQssWiMBXExGT2NelzhcyIsSWUKW5vJWxIFWXGZlOwIXjLL6+S5kXZuy5f1S9LlbssjjycwCmcgwc3UIEq1KABDBCe4RXenEfnxXl3PhatOSebOYY/cD5/AKC5jNY=</latexit>

H

<latexit sha1_base64="04r1TcXFmrIMSIT8tITaLupiPMU=">AAAB6nicbVDJSgNBEK2JW4xb1KOXxiB4CjPidgx68RiXLJAMoafTkzTp6Rm6a4Qw5BO8eFDEq1/kzb+xk8xBow8KHu9VUVUvSKQw6LpfTmFpeWV1rbhe2tjc2t4p7+41TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj66nfeuTaiFg94DjhfkQHSoSCUbTS/V0Pe+WKW3VnIH+Jl5MK5Kj3yp/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiFHVumTMNa2FJKZ+nMio5Ex4yiwnRHFoVn0puJ/XifF8NLPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwFl/+S5onVe+8enZ7Wqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OdJ6dN+d93lpw8pl9+AXn4xs6mI3H</latexit>

Rt

<latexit sha1_base64="jBrBb6PU3L6Y/VGWLvT3qbcxveo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgadn1mWPAi8eI5gHJEmYns8mQ2dllplcIIZ/gxYMiXv0ib/6Nk2QPGi1oKKq66e4KUykMet6XU1hZXVvfKG6WtrZ3dvfK+wdNk2Sa8QZLZKLbITVcCsUbKFDydqo5jUPJW+HoZua3Hrk2IlEPOE55ENOBEpFgFK1077nnvXLFc705yF/i56QCOeq98me3n7As5gqZpMZ0fC/FYEI1Cib5tNTNDE8pG9EB71iqaMxNMJmfOiUnVumTKNG2FJK5+nNiQmNjxnFoO2OKQ7PszcT/vE6GUTWYCJVmyBVbLIoySTAhs79JX2jOUI4toUwLeythQ6opQ5tOyYbgL7/8lzTPXP/Kvby7qNSqeRxFOIJjOAUfrqEGt1CHBjAYwBO8wKsjnWfnzXlftBacfOYQfsH5+AZWwo0p</latexit>

0.3
<latexit sha1_base64="2x+/jI/Qzp0ErW+luib1Y3XHTic=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgadkVHzkGvHiMaB6QLGF2MpsMmZ1dZnqFEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dYSqFQc/7dgpr6xubW8Xt0s7u3v5B+fCoaZJMM95giUx0O6SGS6F4AwVK3k41p3EoeSsc3c781hPXRiTqEccpD2I6UCISjKKVHjzX75UrnuvNQVaJn5MK5Kj3yl/dfsKymCtkkhrT8b0UgwnVKJjk01I3MzylbEQHvGOpojE3wWR+6pScWaVPokTbUkjm6u+JCY2NGceh7YwpDs2yNxP/8zoZRtVgIlSaIVdssSjKJMGEzP4mfaE5Qzm2hDIt7K2EDammDG06JRuCv/zyKmleuP61e3V/WalV8ziKcAKncA4+3EAN7qAODWAwgGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNTuo0n</latexit>

0.1
<latexit sha1_base64="tdXVQLcAlxApHpzX+mMmkqWE3Is=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8LbvBR44BLx4jmgckS5idzCZDZmeXmV4hhHyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXmEph0PO+nbX1jc2t7cJOcXdv/+CwdHTcNEmmGW+wRCa6HVLDpVC8gQIlb6ea0ziUvBWObmd+64lrIxL1iOOUBzEdKBEJRtFKD55b6ZXKnuvNQVaJn5My5Kj3Sl/dfsKymCtkkhrT8b0UgwnVKJjk02I3MzylbEQHvGOpojE3wWR+6pScW6VPokTbUkjm6u+JCY2NGceh7YwpDs2yNxP/8zoZRtVgIlSaIVdssSjKJMGEzP4mfaE5Qzm2hDIt7K2EDammDG06RRuCv/zyKmlWXP/avbq/LNeqeRwFOIUzuAAfbqAGd1CHBjAYwDO8wpsjnRfn3flYtK45+cwJ/IHz+QNVPo0o</latexit>

0.2

<latexit sha1_base64="2x+/jI/Qzp0ErW+luib1Y3XHTic=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgadkVHzkGvHiMaB6QLGF2MpsMmZ1dZnqFEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dYSqFQc/7dgpr6xubW8Xt0s7u3v5B+fCoaZJMM95giUx0O6SGS6F4AwVK3k41p3EoeSsc3c781hPXRiTqEccpD2I6UCISjKKVHjzX75UrnuvNQVaJn5MK5Kj3yl/dfsKymCtkkhrT8b0UgwnVKJjk01I3MzylbEQHvGOpojE3wWR+6pScWaVPokTbUkjm6u+JCY2NGceh7YwpDs2yNxP/8zoZRtVgIlSaIVdssSjKJMGEzP4mfaE5Qzm2hDIt7K2EDammDG06JRuCv/zyKmleuP61e3V/WalV8ziKcAKncA4+3EAN7qAODWAwgGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNTuo0n</latexit>

0.1
<latexit sha1_base64="2x+/jI/Qzp0ErW+luib1Y3XHTic=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgadkVHzkGvHiMaB6QLGF2MpsMmZ1dZnqFEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dYSqFQc/7dgpr6xubW8Xt0s7u3v5B+fCoaZJMM95giUx0O6SGS6F4AwVK3k41p3EoeSsc3c781hPXRiTqEccpD2I6UCISjKKVHjzX75UrnuvNQVaJn5MK5Kj3yl/dfsKymCtkkhrT8b0UgwnVKJjk01I3MzylbEQHvGOpojE3wWR+6pScWaVPokTbUkjm6u+JCY2NGceh7YwpDs2yNxP/8zoZRtVgIlSaIVdssSjKJMGEzP4mfaE5Qzm2hDIt7K2EDammDG06JRuCv/zyKmleuP61e3V/WalV8ziKcAKncA4+3EAN7qAODWAwgGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNTuo0n</latexit>

0.1

Figure 2 The Steiner node u is special for t as more than half of the value of x(δin(u)) comes
from nodes in Ot. Note u cannot be special for any other t′ ∈ XF since their associated sets Ot′ are
disjoint.

path decomposition of this flow, this would connect t from some other node in XF and the
expected cost of this path would be at most OPTLP since no edge would be added with
probability exceeding its x-value. The problem is that we cannot do this independently for
different representative terminals in XF since some edges are at risk of being considered
multiple times.

We will show there is an rt − t flow of value ≥ 1/2 that is safer to round. Intuitively, it
will be that only the first two edges of any path in a path decomposition of this “safer” flow
are at risk of supporting flows in Gt for too many terminals. The first two phases will have
decided whether these edges will be included so we don’t worry about oversampling them in
this step.

Say a node u ∈ H is special for terminal t ∈ XF if u is a source-Steiner node and the
following holds:∑

(w,u)∈δin
G (u)

s.t. w∈Ot

x(w,u) > x(δin
G (u))/2.

That is, u is special if more than half of the LP weight entering u comes from nodes only
reachable from t. This is illustrated in Figure 2.

▷ Claim 6. Each node u is special for at most one terminal in XF .

Proof. This is because Ot ∩Ot′ = ∅ for distinct t, t′ ∈ XF , so at most one terminal t ∈ XF

can have Ot claim more than half the LP weight of edges entering u. ◁

Finally, form a subgraph G′
t of Gt by including all vertices and edges except {(w, u) : w ∈

Ot and u is as source-steiner node that is not special for t}. We can still push a constant
amount of flow from rt to t in G′

t, as the following shows.

▶ Theorem 7. The maximum rt − t flow value in G′
t is at least 1/2.

Proof. For a graph G′, we use notation δG′(S) to denote the set of edges of G′ entering S

to emphasize which graph we are discussing. Let S ⊆ Ot ∪H be a subset of nodes in G′
t

including t. Viewed as a subset of nodes in G, we have x(δin
G (S)) ≥ 1 by feasibility of the LP.

Since Gt is obtained by contracting a subset of nodes lying outside of S, then x(δGt(S)) ≥ 1
as well. Next we show in G′

t that this cut still has at least 1/2 total x-weight in G′
t.
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Consider any (w, u) ∈ δin(S). If u is not a source-Steiner or if u is special for t node then
(w, u) ∈ δin

S′ . Otherwise, we know at least half of the weight of edges entering u comes from
outside Ot, these would all be in δin

G′
t
(S) as required. That is, x(δin(S)) ≥ 1/2. Since this

holds for all rt − t cuts S, by the max-flow/min-cut theorem, G′
t supports at least 1/2 units

of rt − t flow. ◀

Now consider any rt− t flow of value exactly 1/2 in G′
t and perform a path decomposition

of this flow. That is, for various simple rt − t paths P we have a value zP ≥ 0 such that∑
P zP = 1/2 and

∑
P :e∈P zP ≤ xe for each edge e of G′

t. It is well known that such a
decomposition exists with at most |E| paths and can be computed in polynomial time.

Creating F t
3

Finally we will create a set of edges F t
3 for each terminal t ∈ XF as follows. Consider an

rt − t path P in the support of the path decomposition of G′
t. Let E(P ) denote the edges of

G that correspond to edges of P . Let e1(P ), e2(P ) ∈ E(P ) be the first two edges of P (it
may be that |P | = 1 in which case e2(P ) is not defined). Write e1(P ) = (v1(P ), v2(P )).

We consider the following random process to add some edges of E(P ), in doing so we
also identify some initial edges i(P ) for the path P . Generally speaking, these are edges
that we require to have been sampled in the formation of F1 ∪ F2 in order for us to consider
sampling the rest of the path P , though Case (iv) below differs slightly from this rule. Some
of these cases are illustrated in Figure 3.

Case (i): v1(P ) is a sink-Steiner node.
Set i(P ) := ∅. With probability zP , add all of E(P ) to F t

3 .
Case (ii): v1(P ) is a source-Steiner node
Set i(P ) := {e1(P )}. If e1(P ) ∈ F2, then with probability zP /xe1(P ) add E(P )− i(P ) to
F t

3 .
Case (iii): v1(P ) ∈ X ∪ {r} and v2(P ) is special for t

Set i(P ) := {e1(P )}. If e1(P ) ∈ F1, then with probability zP /xe1(P ) add E(P )− i(P ) to
F t

3 .
Case (iv): v1(P ) ∈ X ∪ {r} and v2(P ) is not special for t

Then it must be that e2(P ) is defined; set i(P ) := {e1(P ), e2(P )}. If e2(P ) ∈ F2 and if
some edge in δin(v2(P )) ∩ δout(Rt) was added to F1, then with probability zP /xe2(P )
add E(P )− i(P ) to F t

3 with.

While case (ii) and (iii) are similar, there are important technical distinctions so we
distinguish these cases for clarity in our analysis below. Note in all cases, if the random
process adds edges of a path P to F t

3 it adds exactly the non-initial edges, i.e. P − i(P ).

3.1 Analysis of the Formation of the Sets F t
3

We start by showing the probability any edge is added to a particular F t
3 is bounded by its

x-value.

▶ Lemma 8. For any rt−t path, the probability we added E(P )−i(P ) to F3 due to processing
P in its corresponding case is at most zP . Consequently, for any t ∈ XF − {r} and any
e ∈ E, Pr[e ∈ F t

3 ] ≤ xe.

SWAT 2024
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<latexit sha1_base64="+Qkwz+X2O5yVhzLNBohcWo7l818=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQizcjmgckS5idzCZDZmeXmV4hLPkELx4U8eoXefNvnCR70GhBQ1HVTXdXkEhh0HW/nMLS8srqWnG9tLG5tb1T3t1rmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpG11O/9ci1EbF6wHHC/YgOlAgFo2il+9se9soVt+rOQP4SLycVyFHvlT+7/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUKOrNInYaxtKSQz9edERiNjxlFgOyOKQ7PoTcX/vE6K4aWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb78lzRPqt559ezutFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d6Tw7b877vLXg5DP78AvOxzc2Bo3E</latexit>

Ot

<latexit sha1_base64="a6ql2g27xIRn3iVNsLZOWZX56gQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRC0dI5JHAhswOvTAyO7uZmTUhhC/w4kFjvPpJ3vwbB9iDgpV0UqnqTndXkAiujet+O7m19Y3Nrfx2YWd3b/+geHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hofua3nlBpHssHM07Qj+hA8pAzaqxUr/aKJbfszkFWiZeREmSo9Ypf3X7M0gilYYJq3fHcxPgTqgxnAqeFbqoxoWxEB9ixVNIItT+ZHzolZ1bpkzBWtqQhc/X3xIRGWo+jwHZG1Az1sjcT//M6qQlv/QmXSWpQssWiMBXExGT2NelzhcyIsSWUKW5vJWxIFWXGZlOwIXjLL6+S5kXZuy5f1S9LlbssjjycwCmcgwc3UIEq1KABDBCe4RXenEfnxXl3PhatOSebOYY/cD5/AKC5jNY=</latexit>

H

<latexit sha1_base64="04r1TcXFmrIMSIT8tITaLupiPMU=">AAAB6nicbVDJSgNBEK2JW4xb1KOXxiB4CjPidgx68RiXLJAMoafTkzTp6Rm6a4Qw5BO8eFDEq1/kzb+xk8xBow8KHu9VUVUvSKQw6LpfTmFpeWV1rbhe2tjc2t4p7+41TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj66nfeuTaiFg94DjhfkQHSoSCUbTS/V0Pe+WKW3VnIH+Jl5MK5Kj3yp/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiFHVumTMNa2FJKZ+nMio5Ex4yiwnRHFoVn0puJ/XifF8NLPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwFl/+S5onVe+8enZ7Wqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OdJ6dN+d93lpw8pl9+AXn4xs6mI3H</latexit>

Rt

<latexit sha1_base64="PVLoYEu6FXWuB+ATQdbeVkWK+5s=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoMQL2E3+DoGvHiMYB6QLGF20puMmZ1ZZmaFEPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dYcKZNp737eTW1jc2t/LbhZ3dvf2D4uFRU8tUUWxQyaVqh0QjZwIbhhmO7UQhiUOOrXB0O/NbT6g0k+LBjBMMYjIQLGKUGCs1seeX6+e9YsmreHO4q8TPSAky1HvFr25f0jRGYSgnWnd8LzHBhCjDKMdpoZtqTAgdkQF2LBUkRh1M5tdO3TOr9N1IKlvCuHP198SExFqP49B2xsQM9bI3E//zOqmJboIJE0lqUNDFoijlrpHu7HW3zxRSw8eWEKqYvdWlQ6IINTaggg3BX355lTSrFf+qcnl/UapVszjycAKnUAYfrqEGd1CHBlB4hGd4hTdHOi/Ou/OxaM052cwx/IHz+QNTfo5G</latexit>

e1(P )

<latexit sha1_base64="rG++UvcL+wJU6DtaiF2xp7YJNHM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoMQL2E3+DoGvHiMYB6QLGF20knGzO4sM7NCWPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dQSy4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8tEMWwwKaRqB1Sj4BE2DDcC27FCGgYCW8H4dua3nlBpLqMHM4nRD+kw4gPOqLFSE3vVcv28Vyy5FXcOskq8jJQgQ71X/Or2JUtCjAwTVOuO58bGT6kynAmcFrqJxpiyMR1ix9KIhqj9dH7tlJxZpU8GUtmKDJmrvydSGmo9CQPbGVIz0sveTPzP6yRmcOOnPIoTgxFbLBokghhJZq+TPlfIjJhYQpni9lbCRlRRZmxABRuCt/zyKmlWK95V5fL+olSrZnHk4QROoQweXEMN7qAODWDwCM/wCm+OdF6cd+dj0Zpzsplj+APn8wdVBY5H</latexit>

e2(P )

<latexit sha1_base64="T6/tpmmd614gJEvW0CJF8SPkkO4=">AAAB7XicbVDLTgJBEOzFF+IL9ehlIjHBC9kl+DiSePGIiTwS2JDZYRZGZmc2M7MkZMM/ePGgMV79H2/+jQPsQcFKOqlUdae7K4g508Z1v53cxubW9k5+t7C3f3B4VDw+aWmZKEKbRHKpOgHWlDNBm4YZTjuxojgKOG0H47u5355QpZkUj2YaUz/CQ8FCRrCxUmvS98qNy36x5FbcBdA68TJSggyNfvGrN5AkiagwhGOtu54bGz/FyjDC6azQSzSNMRnjIe1aKnBEtZ8urp2hC6sMUCiVLWHQQv09keJI62kU2M4Im5Fe9ebif143MeGtnzIRJ4YKslwUJhwZieavowFTlBg+tQQTxeytiIywwsTYgAo2BG/15XXSqla868rVQ61Ur2Zx5OEMzqEMHtxAHe6hAU0g8ATP8ApvjnRenHfnY9mac7KZU/gD5/MHbZeOVw==</latexit>

v1(P )

<latexit sha1_base64="m3L26ZUkU1DH+pziMZzvTxHq8tg=">AAAB7XicbVDLTgJBEOzFF+IL9ehlIjHBC9kl+DiSePGIiTwS2JDZYRZGZmc2M7MkZMM/ePGgMV79H2/+jQPsQcFKOqlUdae7K4g508Z1v53cxubW9k5+t7C3f3B4VDw+aWmZKEKbRHKpOgHWlDNBm4YZTjuxojgKOG0H47u5355QpZkUj2YaUz/CQ8FCRrCxUmvSr5Ybl/1iya24C6B14mWkBBka/eJXbyBJElFhCMdadz03Nn6KlWGE01mhl2gaYzLGQ9q1VOCIaj9dXDtDF1YZoFAqW8Kghfp7IsWR1tMosJ0RNiO96s3F/7xuYsJbP2UiTgwVZLkoTDgyEs1fRwOmKDF8agkmitlbERlhhYmxARVsCN7qy+ukVa1415Wrh1qpXs3iyMMZnEMZPLiBOtxDA5pA4Ame4RXeHOm8OO/Ox7I152Qzp/AHzucPbx6OWA==</latexit>

v2(P )

<latexit sha1_base64="PhAYtT5eT6K+un76XRbfMZST1OM=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBDjJewGX8eAF48RzAOSJcxOJsmQ2dllpjcQlnyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXEEth0HW/nbX1jc2t7dxOfndv/+CwcHTcMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmM7md+c8y1EZF6wknM/ZAOlOgLRtFKzXHXK9UuLruFolt25yCrxMtIETLUuoWvTi9iScgVMkmNaXtujH5KNQom+TTfSQyPKRvRAW9bqmjIjZ/Oz52Sc6v0SD/SthSSufp7IqWhMZMwsJ0hxaFZ9mbif147wf6dnwoVJ8gVWyzqJ5JgRGa/k57QnKGcWEKZFvZWwoZUU4Y2obwNwVt+eZU0KmXvpnz9eFWsVrI4cnAKZ1ACD26hCg9QgzowGMEzvMKbEzsvzrvzsWhdc7KZE/gD5/MHz0aOiA==</latexit>

v1(P
0)

<latexit sha1_base64="xlPlvNXqQgwWrLkh0WToXCglf9w=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMYL2E3+DoGvHiMYB6QLGF20psMmZ1dZmaFEPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju5nfekKleSwfzThBP6IDyUPOqLFSC3teuX5+0SuW3Io7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+7pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJrz1J1wmqUHJFovCVBATk9nvpM8VMiPGllCmuL2VsCFVlBmbUMGG4C2/vEqa1Yp3Xbl6uCzVqlkceTiBUyiDBzdQg3uoQwMYjOAZXuHNSZwX5935WLTmnGzmGP7A+fwBtRyOdw==</latexit>

e1(P
0)

Figure 3 The graph G′
t except we have expanded node rt to the full set Rt again. The top rt − t

path (larger dashes) illustrates a path P that could either be from Case (iii) or Case (iv), depending
on whether v2(P ) is special for t or not. The lower path (with finer dots on the edges) illustrates a
path P ′ from Case (ii). It might even be that some other path in the decomposition exits Ot after
entering it before it eventually reaches t, but such a path could only use a Steiner edge (u, v) in H if
after entering Ot if u was special for t since.

Proof. Focus on an rt − t path P and consider the corresponding case case for path P : (i)
we simply added E(P ) with probability zP , (ii) we added E(P ) − i(P ) with probability
zP /xe1(P ) but only if e1(P ) ∈ F2. As argued in Step 2, the latter happens with probability
at most xe1 so multiplying this against zP /xe1 finishes this case, (iii) e1(P ) lies in F1 with
probability xe1(P ) so the total probability we added E(P )− i(P ) is exactly zP .

For the final case (iv), P is sampled with probability zP

xe2(P )
but only if the condition

that includes e2(P ) ∈ F2 is satisfied. Again, such a condition can only be satisfied with
probability at most xe2(P ). Thus P is sampled with probability at most zP overall.

The last statement in the lemma holds because the expected number of times an edge e

is added to F t
3 is then at most

∑
P :e∈P zP ≤ xe because P is a path decomposition of a flow

with capacity xe on edge e. ◀

But this is not enough for a good overall cost bound, one should be concerned that an
edge was added to multiple F t

3 sets for various t. The following effectively shows each edge
that is a candidate to be added to some F t

3 can only support flow for at most one terminal
t ∈ XF .

▶ Lemma 9. For each e ∈ E, there is at most one t such that e ∈ E(P ) − i(P ) for some
path P in the decomposition of the rt − t flow.

Proof. Suppose e = (u, v) has v ∈ X ∪ {r}. The only such edges in G′
t have v ∈ Ot since

the only terminals not contracted into tt are those in Ot. So e will only be an edge in G′
t for

at most one t.
Next, suppose u ∈ X ∪ {r}. If u /∈ Ot then u ∈ Rt and e = e1(P ) so we are in case (iii)

or case (iv) for any path P containing e, but in either case e ∈ i(P ). Thus, we can only have
e ∈ E(P )− i(P ) for the terminal t with u ∈ Ot.

Finally, suppose (u, v) is a Steiner edge. Suppose (u, v) lies on some path P in some G′
t.

If u ∈ Rt we are in case (ii) and (u, v) ∈ i(P ). If u /∈ Rt, then either u is special for t or else
the edge (w, u) prior to u is the first edge (i.e. w ∈ Rt) since we deleted all edges from Ot

to u as u was not special for t. In the latter, we are in case (iv), so (u, v) = e2(P ) means
(u, v) ∈ i(P ). ◀

▶ Theorem 10. The expected cost of F1 ∪ F2 ∪
⋃

t∈XF −{r} F t
3 is O(OPTLP ).
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Proof. We have already shown the expected costs of F1 and F2 are bounded by O(OPTLP )
since each edge is in F1 or F2 with probability at most xe. We also know each e appears in
any given F t

3 with probability at most x3. Lemma 9 shows there is at most one F t
3 such that

e has a nonzero probability of appearing in F t
3 , so e lies in

⋃
t∈XF −{r} F t

3 with probability at
most xe. ◀

3.2 Success Probability
The last step is to show each terminal t ∈ XF can be reached from another node in XF −{r}
with good probability. This is a bit subtle as there is shared randomness between the various
rt−t paths P that reach t. Our analysis mirrors that in [17], which is providing an alternative
analysis of the Group Steiner Tree rounding algorithm from [10].

We first require a general result about random variables. A proof was provided in [17] for
the case E[X] = 1. We need it in a slightly more general context so we include its proof in
Appendix B for completeness.

▶ Lemma 11. Let µ, γ ≥ 0 and let X1, X2, . . . , Xm be indicator random variables and
X =

∑m
i=1 Xi be their sum. Suppose E[X] ≥ µ and E[X|Xj = 1] ≤ γ for any j. Then

Pr[X ≥ 1] ≥ µ/γ.

▶ Theorem 12. There is a fixed constant α′ > 0 such that for each t ∈ XF , with probability
at least α′ there is some t′ ∈ Xf ∪ {r} − {t} such that t′ can reach t in (V, F ∪ F ′).

Proof. We show we added E(P )−i(P ) to F t
3 for at least one path P with constant probability,

which suffices to prove the main result as then Rt could reach t along this path P . Consider
the path decomposition and corresponding weights zP . The subscripts in the sums on the
right-hand side indicate which case the path corresponds to.

1
2 =

∑
P

zP =
∑
P :(i)

zP +
∑

P :(ii)

zP +
∑

P :(iii)

zP +
∑

P :(iv)

zP

At least one of these sums is is at least 1/8.

Case:
∑

P :(i) zP ≥ 1/8. These paths were independently sampled with probability zP

each. The probability we did not pick one of them is then at most

∏
P :(i)

(1− zP ) ≤ exp

−∑
P :(i)

zP

 ≤ exp(−1/8)

So at least one path was picked with probability ≥ 1− exp(−1/8).

Case:
∑

P :(ii) zP ≥ 1/8. All paths discussed here are those corresponding to case (ii) so
we omit that qualifier throughout. We employ Lemma 11 where we have an indicator XP

for every path P and let X =
∑

P XP . A path is added if both e1(P ) ∈ F1 and then if P is
sampled after that. This happens with probability xe1(P ) · zP

xe1(P )
= zP . So E[X] ≥ 1/8.

Consider any particular path P ′, we want to bound E[X|XP ′ = 1]. We claim for any
path P that

Pr[XP = 1|XP ′ = 1] =


1 if P = P ′

zP if e1(P ) ̸= e1(P ′)
zP

xe1(P ′)
otherwise
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The first one is clear, the second is because Pr[XP = 1] = Pr[e1(P ) ∈ F1] · zP

xe
= zP and

because the variables XP , XP ′ are independent (since the random choice to add their initial
edges F1 were made independently). If e1(P ) = e1(P ′) then the only shared randomness
between XP and XP ′ was in the decision to add e1(P ′) to F1. If we are given XP ′ = 1, then
we know e1(P ′) ∈ F1 but the choice to extend this to selecting P entirely was then made
independently with probability zP

xe1(P ′)
.

So we have

E[X : XP ′ ≥ 1] = Pr[XP ′ = 1|XP ′ = 1] +
∑

P :e1(P )̸=e1(P ′)

Pr[XP = 1|XP ′ = 1]

+
∑

P :P ̸=P ′ and e1(P )=e1(P ′)

Pr[XP = 1|XP ′ = 1]

= 1 +
∑

P :e1(P )̸=e1(P ′)

zP +
∑

P :P ̸=P ′ and e1(P )=e1(P ′)

zP

xe1(P ′)

≤ 1 + 1
2 +

xe1(P ′)

xe1(P ′)

= 5/2

That is, the total weight of all paths in the decomposition is at most the value of the flow,
which is 1/2. Similarly, the total weight of all paths including the edge e1(P ′) is at most
xe1(P ′) since the flow respects capacities.

Using Lemma 11 with µ = 1/8 and γ = 5/2 shows at least one path is sampled with
probability at least 1/20.

Case:
∑

P :(iii) zP ≥ 1/8. The proof is essentially identical to the previous case and is
omitted. We get the probability at least one path is sampled is at least 1/20.

Case:
∑

P :(iv) zP ≥ 1/8. Use similar indicator variables XP and their sum X as in case
(ii), but this time for the paths of form (iv). For any such path P , we have

Pr[XP = 1] = zP

xe
·Pr[δin(v2(P )) ∩ δout(Rt) ∩ F1 ̸= ∅ ∧ e2(P ) ∈ F2]

= zP

xe
·Pr[δin(v2(P )) ∩ δout(Rt) ∩ F1 ̸= ∅]

·Pr[e2(P ) ∈ F2|δin(v2(P )) ∩ δout(Rt) ∩ F1 ̸= ∅]

= zP

xe
·Pr[δin(v2(P )) ∩ δout(Rt) ∩ F1 ̸= ∅] ·

xe

x(δin(u))

= zP

x(δin(u)) ·Pr[δin(v2(P )) ∩ δout(Rt) ∩ F1 ̸= ∅]

For brevity, let B = δin(v) ∩ δout(Rt). The last probability is

1−
∏
e∈B

(1− xe) ≥ 1− exp
(
−
∑
e∈B

xe

)
≥ 1− exp(−x(δin(v))/2)

The final inequality is because v2(P ) is not special for t. For z ∈ [0, 1], we have2 1 −
exp(−z/2) ≥ (1− exp(−1/2)) · z, so the last expression is at least (1− exp(−1/2)) · x(δin(u))
and we finally see Pr[XP = 1] ≥ (1− exp(−1/2)) · zP . Thus, E[X] ≥ 1−exp(−1/2)

8 .

2 This holds since 1 − exp(−z/2) = (1 − exp(−1/2)) · z for z ∈ {0, 1} and since 1 − exp(−z/2) is concave.
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Finally, we upper bound E[X|XP ′ = 1] by a constant for any path P ′ considered in this
case. Partition the set of paths from this case (iv) into four sets essentially based on how they
interact with P ′ along their prefixes: {P ′},P0 = {P : v2(P ) ̸= v2(P ′)},P1 = {P : v2(P ) =
v2(P ′) yet e2(P ) ̸= e2(P ′)}, and P2 = {P : e2(P ) = e2(P ′)}.

For P ∈ P0, simple inspection shows XP and XP ′ are independent random variables so∑
P ∈P0

Pr[XP = 1|XP ′ = 1] =
∑

P ∈P0
Pr[XP = 1] ≤

∑
P ∈P0

zP ≤ 1
2 .

For P ∈ P1, we are given δin(v2(P )) ∩ δout(Rt) ∩ F1 ̸= ∅ since XP ′ = 1, so

Pr[XP = 1|XP ′ = 1] = zP

xe2(P )
·Pr[e2(P ) ∈ F2|XP ′ = 1]

= zP

xe2(P )
·

xe2(P )

x(δin(v2(P ))

= zP

x(δin(v2(P )) .

The total flow passing through v2(P ) is at most its incoming edge capacity, so summing over
all P ∈ P1 shows

∑
P ∈P1

Pr[XP = 1|XP ′ = 1] ≤ 1.
For P ∈ P2, we simply have Pr[XP = 1|XP ′ = 1] = zP

xe2(P )
since the condition to be met

before sampling P is satisfied if we are given XP ′ = 1. So
∑

P ∈P2
Pr[XP = 1|XP ′ = 1] =∑

P ∈P2
zP

xe2(P )
≤ 1. Thus,

∑
P

Pr[XP = 1|XP ′ = 1] = 1 +
∑

i∈{0,1,2}

∑
P ∈Pi

Pr[XP = 1|XP ′ = 1] ≤ 1 + 1
2 + 1 + 1 = 7/2.

Using Lemma 11 with µ = 1−exp(−1/2)
8 and γ = 7/2 shows in the probability at least one

path is sampled is at least some universal constant. Summarizing, no matter which case has
at least 1/8 of the weight of paths we see there is a constant probability at least one path
will be sampled. This completes the proof. ◀

We have shown the expected cost of the set F ′ := F1 ∪ F2 ∪
⋃

t∈XF −{r} F t
3 is at most

c ·OPTLP for some universal constant c. We also showed each terminal t ∈ XF − {r} will
be reachable from some other t′ ∈ Xt − {t} with probability at least some universal constant
α′ > 0. So the expected number of terminals of this kind is at least α′ · |XF |.

Say this procedure failed if the cost of F ′ exceeds ∆ · c ·OTLP for some constant ∆ to
be determined soon, or if the number of representative terminals that are now reachable
from another representative is smaller than α′

2 · |XF |. Note we can check this condition in
polynomial time.

The former happens with probability at most 1/∆ by Markov’s inequality. A standard
variant of Markov’s inequality for lower tails shows that if Y is a random variable with
E[Y ] ≥ α′·M where M is the maximum possible value of Y , then Pr[Y < α′

2 ·M ] ≤ 1−α′

1−α′/2 < 1.
In our setting, we let Y be the number of representative terminals that become connected
from another node in Xt after buying F ′, so the maximum value of Y is |Xt| and the expected
value is at least α · |Xt|.

Thus, by the union bound the procedure fails with probability at most 1
∆ + 1−α

1−α/2 . For
sufficiently large constant ∆ depending only on α, this is a constant less than one. That
is, the procedure succeeds with constant probability. The final randomized algorithm then
iterates this procedure until it does not fail, the expected number of iterations is constant.
This proves Theorem 4.
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A Proof of Lemma 3

Proof. For each t ∈ XF that can be reached from some other t′ ∈ XF ∪ {r} − {t} in
(V, F ∪ F ′), let d(t) = t′. If t can be reached from multiple such t′, pick one arbitrarily to be
d(t). Finally, let F ∗ be all such edges (d(t), t). We note that (V, F ∪F ′) and (V, F ∪F ′ ∪F ∗)
have the same SCCs because F ∗ provides direct connections between nodes that were already
reachable in (V, F ∪ F ′).

We add the edges of F ∗ one at a time to (V, F ) and track how the number of terminal-
source SCCs decreases. Recall an SCC of (V, F ) is a strongly connected component C

containing a terminal that cannot be reached from any other terminal apart from those in C.
When adding et = (d(t), t), let Sd(t) and St be the SCCs containing d(t) and t respectively

at that time. We note St was a source SCC just before adding et because no edge entered
the source component containing t before this addition.

If the number of terminal-source SCCs does not decrease after adding St, it must have
been that St could already reach Sd(t) by some path P . Let e′ be the edge entering Sd(t).
Note e′ ∈ F ∗ since no vertex outside of d(t)’s SCC in (V, F ) could reach d(t) before (as it
was a source SCC). Also note that et and e′ are now drawn into the same SCC as St after
et is added so e′ will never enter another SCC again as we continue adding edges of F ∗.
That is, the number of iterations of adding an edge of the form et that do not cause the
number of source SCCs to drop is at most α/2 · |XF |, meaning the number of source SCCs
in (V, F ∪ F ∗) is at most (1 − α/2) · |XF |. Thus, the number of terminal-source SCCs in
(V, F ∪ F ′) is also bounded by (1− α/2) · |XF | as required. ◀

B Proof of Lemma 11

Proof. This proof essentially just verifies the arguments in [17] generalize as required.
Including the proof here also keeps our paper self-contained.

We do this in two steps. First, suppose we knew E[X|X ≥ 1] ≤ γ. Then

µ ≤ E[X] = E[X|X = 0] ·Pr[X = 0] + E[X|X ≥ 1] ·Pr[X ≥ 1] ≤ γ ·Pr[X ≥ 1].

Rearranging shows Pr[X ≥ 1] ≥ µ/γ which is what we wanted to show.
Now we show E[X|X ≥ 1] ≤ γ follows if E[X|Xj = 1] ≤ γ for any j. By Jensen’s

inequality applied to the conditioned distribution, we have

E[X|X ≥ 1]2 ≤ E[X2|X ≥ 1]

=
∑
(i,j)

Pr[Xi = 1 ∧ Xj = 1|X ≥ 1]

=
∑
(i,j)

Pr[Xj = 1|X ≥ 1 ∧ Xi = 1] · Pr[Xi = 1|X ≥ 1]

=
∑
(i,j)

Pr[Xj = 1|Xi = 1] · Pr[Xi = 1|X ≥ 1]

=
∑

i

Pr[Xi = 1|X ≥ 1] ·
∑

j

Pr[Xj = 1|Xi = 1]

=
∑

i

Pr[Xi = 1|X ≥ 1] · E[X|Xi = 1]

≤ γ ·
∑

i

Pr[Xi = 1|X ≥ 1]

= γ · E[X|X ≥ 1]

All sums over (i, j) are over all m2 ordered pairs of indices. To conclude, E[X|X ≥ 1]2 ≤
γ ·E[X|X ≥ 1] and γ ≥ 0 can only happen if E[X|X ≥ 1] ≤ γ. ◀

SWAT 2024


	1 Introduction
	1.1 Linear Programming Relaxations and Previous Work
	1.2 Our Results

	2 Preliminaries
	2.1 Representative Terminals for Partial Solutions
	2.2 Tracking Progress

	3 The Rounding Algorithm
	3.1 Analysis of the Formation of the Sets F_3^t
	3.2 Success Probability

	A Proof of Lemma 3
	B Proof of Lemma 11

