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Abstract
Given a geometric domain P , visibility-based search problems seek routes for one or more mobile
agents (“watchmen”) to move within P in order to be able to see a portion (or all) of P , while
optimizing objectives, such as the length(s) of the route(s), the size (e.g., area or volume) of
the portion seen, the probability of detecting a target distributed within P according to a prior
distribution, etc. The classic watchman route problem seeks a shortest route for an observer, with
omnidirectional vision, to see all of P . In this paper we study bicriteria optimization problems for a
single mobile agent within a polygonal domain P in the plane, with the criteria of route length and
area seen. Specifically, we address the problem of computing a minimum length route that sees at
least a specified area of P (minimum length, for a given area quota). We also study the problem
of computing a length-constrained route that sees as much area as possible. We provide hardness
results and approximation algorithms. In particular, for a simple polygon P we provide the first
fully polynomial-time approximation scheme for the problem of computing a shortest route seeing
an area quota, as well as a (slightly more efficient) polynomial dual approximation. We also consider
polygonal domains P (with holes) and the special case of a planar domain consisting of a union
of lines. Our results yield the first approximation algorithms for computing a time-optimal search
route in P to guarantee some specified probability of detection of a static target within P , randomly
distributed in P according to a given prior distribution.
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1 Introduction

We investigate the Quota Watchman Route problem (QWRP) and the Budgeted
Watchman Route problem (BWRP) for a single mobile agent (a “watchman”) within a
polygonal domain P in the plane. These problems naturally arise in various applications,
including motion planning, search-and-rescue, surveillance, and exploration of a polygonal
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27:2 Optimizing Visibility-Based Search in Polygonal Domains

domain, where complete coverage is not feasible due to shortage of fuel, time, etc. The
QWRP seeks a route/tour that sees at least some specified area of the domain P with a
shortest length, while the BWRP seeks a route/tour that sees the maximum area subject to
a length constraint. Both can be seen as extensions of the well-known Watchman Route
Problem (WRP) with different objectives and constraints.

The challenge in addressing the trade-off between area seen and tour length is that one is
not able to exploit the optimality structure that is implied by having to see all of a polygon
P . It is this structure, yielding an ordered sequence of “essential cuts”, that allows the WRP
to be solved efficiently, e.g., as an instance of the “touring polygons problem” [13].

Results. We address the challenge by establishing new structural results that enable a
careful discretization and analysis, along with carefully crafted dynamic programs. We
provide several new results on optimal visibility search in a polygon:
(1) We prove that the QWRP and the BWRP are (weakly) NP-hard, even in a simple polygon;

this is to be contrasted with the WRP, for which exact polynomial-time algorithms are
known in simple polygons.

(2) For the QWRP in a simple polygon P , we give the first fully polynomial-time approx-
imation scheme (FPTAS), as well as a dual-approximation (with slightly more efficient
running time than the FPTAS) that computes a tour having length at most (1 + ε1)
times the length of an optimal tour that sees area at least A (where A is the area quota),
while seeing area at least (1 − ε2)A for any ε1, ε2 > 0.

(3) For the BWRP in simple P , we compute, in polynomial time, a tour of length at most
(1 + ε)B that sees a region within P of area at least that seen by an optimal tour of
length at most B.

(4) In a multiply connected domain, in a polygon P with holes, we provide hardness of
approximations and a (1 + ε, O(log n))-dual approximation (n is the number of vertices of
P ) for the BWRP. In the special case of an arrangement of lines, we obtain polynomial-
time exact algorithms for both problems.

(5) We solve two visibility-based stochastic search problems that seek to locate a static
target given a prior probability distribution of its location within P : (a) compute the
minimum time to achieve a specified detection probability; (b) compute a search route
maximizing the probability of detection by time T for a mobile searcher.

Related Work
Chin and Ntafos introduced the classic Watchman Route Problem (WRP) [10]: compute
a shortest closed route (tour) within a polygon P from which every point of P can be seen;
they gave an O(n)-time algorithm for computing an optimal tour in a simple orthogonal
polygon, and later results established polynomial-time exact algorithms for the WRP in a
simple polygon P , both with and without an anchor point (depot) [5, 10, 11, 13, 26, 29, 30]. In
a polygon P with holes, the WRP is NP-hard [10, 17] and is, in fact, NP-hard to approximate
better than a logarithmic factor [25]; however, an O(log2 n)-approximation algorithm is
known [25]. The BWRP and the QWRP are natural variants of the WRP.

Another related problem is that of maximum visibility coverage with point guards: Given
an integer k, place k point guards within P to maximize the area of P seen by the guards.
When k is arbitrary, the problem is NP-hard [26], since an exact solution to this problem
would yield a method to compute the minimum number of guards needed to see a polygon.
Viewed as a maximum coverage problem, one can greedily compute an approximation, with
factor

(
1 − 1

e

)
, by iteratively placing a guard that sees the most unseen area [9, 26].
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The BWRP is related to the Orienteering problem. Given a budget constraint and
an edge-weighted graph where each vertex is associated with a prize, the objective of
Orienteering is to find a path/tour within the length budget maximizing the total reward
of the vertices visited. On the other hand, the QWRP is related to the Quota Traveling
Salesperson problem, which aims to minimize the distance travelled to achieve a given
quota of reward. The Euclidean versions of Orienteering and Quota TSP have polynomial-
time approximation schemes [8, 20, 24]. Both the QWRP and the BWRP can be considered a
reward (the area of P seen by the watchman) collecting process; however, the main difference
lies in the continuous nature of visibility, since we see portions of the domain as we travel to
checkpoints, we must take into account the area that has been seen previously.

Optimal search theory has been extensively studied in discrete, graph theoretic settings;
see, e.g., [18, 19, 31]. In geometric contexts, searching and target tracking have been studied
in the form of Visibility-based Pursuit-Evasion games. In [22], the visibility-based
version of the pursuit-evasion game was introduced and formulated as a geometric problem,
in which an evader moves unpredictably, arbitrarily fast within a polygonal domain, and
the goal is to strategically coordinate one or multiple pursuers to guarantee a finite time of
detection. See the survey [12] on visibility-based pursuit-evasion games.

2 The QWRP in a Simple Polygon

2.1 Preliminaries and Hardness Results

A simple polygon P is a simply connected subset of R2 whose boundary, ∂P , is a polygonal
cycle consisting of a finite set of line segments, whose endpoints are the vertices, v1, v2, . . . , vn,
of P . A vertex is reflex (resp. convex) if its internal angle is at least (resp. at most) 180
degrees. We consider polygons to be closed sets, including the interior and the boundary.
We use the notation | · | to denote the measure of several types of objects. In the case of a
segment or a route γ, |γ| denotes its length, while for a polygon P , |P | denotes the area of
P . For a finite set S, |S| is the cardinality of S. Based on the object within the notation,
the interpretation should be apparent.

Point x ∈ P sees point y ∈ P if the line segment connecting them lies entirely within P .
The visibility polygon of x, denoted V (x), is the closed region of P that x sees; necessarily,
V (x) is a simple polygon within P . For a subset X ⊂ P , let V (X) be the set of points that
are seen by at least one point in X; formally, V (X) =

⋃
x∈X V (x). The visibility polygon

of a point or a segment can be computed in time O(n) for a simple polygon, or in time
O(n + h log h) for a polygonal domain with n vertices and h holes [27]. Given a domain P

(a simple polygon or a polygon with holes) and an area quota 0 ≤ A ≤ |P |, in the QWRP,
the objective is to find a tour (a polygonal cycle) γ ⊂ P of minimum length |γ| such that
|V (γ)| ≥ A; see Figure 1. Note that when A = |P |, the QWRP is the classic Watchman
Route Problem.

We also distinguish between the anchored version (in which γ must pass through a given
depot point s) and the floating version (in which no depot is given). We provide the following
NP-hardness results (proved in the full version) for both the anchored and floating cases:

▶ Theorem 1. The QWRP in a simple polygon is weakly NP-hard, with or without an
anchor.

Throughout the paper, we assume a real RAM model of computation [28].

SWAT 2024
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Figure 1 A route γ (red) that sees the white portion of P (the gray regions are unseen).

2.2 Structural Lemma
Let πP (x, y) denote the geodesic shortest path (shortest path constrained to stay within P )
between x ∈ P and y ∈ P ; πP (x, y) is unique in a simple P , and is the segment xy if x sees
y. For a subset S ⊆ P , the relative/geodesic convex hull of S is the minimal set that contains
S and is closed under taking shortest paths. Equivalently, the relative convex hull of S is
the minimum-perimeter connected subset of P that contains S. A set is relatively convex
if it is equal to its relative convex hull, and a closed curve is relatively convex if it is the
boundary of a relatively convex set. Let Pγ denote the connected region bounded by some
closed polygonal chain γ. If Pγ is a (sub)polygon of P and Pγ is relatively convex, then Pγ

is the relative convex hull of its convex vertices, and all reflex vertices of Pγ are necessarily
reflex vertices of P . We similarly define relative convexity of an open polygonal chain γ: if γ

is a connected subset of the boundary of the relative convex hull of γ, then we say that γ

is relatively convex. Geodesic shortest paths and relative convex hulls have been studied
extensively and can be computed efficiently [24].

An optimal solution to the QWRP in a simple polygon P satisfies a structural lemma:

▶ Lemma 2. For a simple polygon P with n vertices, and no depot, an optimal QWRP tour
is a relatively convex simple polygonal cycle of at most 2n vertices.

Proof. Let γ be an optimal QWRP tour and let P ′ = V (γ) be the visibility polygon of γ.
Since γ is connected, P ′ is a simple subpolygon of P ; some edges of P ′ coincide with edges
of P and some are shadow chords (chords separating V (γ) from the rest of P ) supported by
reflex vertices of P . Then γ is a shortest watchman route in the simple polygon P ′. Thus, γ

is relatively convex in P ′, and thus in P , and γ has at most 2n vertices, since P ′ is easily
seen to have at most n vertices. (See [11, 25].)

Specifically, the polygon P ′ = V (γ) is obtained from P by removing certain subpolygons
(“shadow pockets”) of P that are each defined by a chord, vv′, extending from a reflex vertex,
v, of P , along the line through v and a convex vertex of γ, to the first point v′ on the
boundary of P . This process introduces a (convex) vertex v′ (on an edge of P , in general on
its interior), and removes at least one vertex of P , on the boundary of the pocket that is cut
off by the chord. Refer to Figure 1. Thus, P ′ has at most n vertices. For a simple polygon
with n vertices, any shortest watchman route has at most 2n vertices [5, 10, 11, 13, 26, 29, 30].
Moreover, all reflex vertices of P ′ must be reflex vertices of P , hence all reflex vertices of γ

must also be reflex vertices of P . ◀
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If there is a specified depot s ∈ ∂P , a statement similar to Lemma 2 holds. If s is interior
to P , an optimal tour γ = (s, w1, w2, . . . , wk, s) through s need not be relatively convex;
however, it is “nearly” relatively convex in that the tour obtained by replacing the two edges
sw1 and wks with the geodesic path πP (w1, wk) is relatively convex.

2.3 Dual approximation algorithm for anchored QWRP
An optimal tour for the QWRP will, in general, have (convex) vertices that are interior
to P , at locations within the continuum that are not known to come from a discrete set.
This poses a challenge to algorithms that are to compute solutions for the QWRP exactly
or approximately. We address this challenge by discretizing an appropriate portion of the
domain P using a (Steiner) triangulation whose faces are small enough that we can afford to
round an optimal tour to vertices of the triangles, while increasing the length of the tour
only slightly, and assuring that the rounded tour continues to see at least as much of P as
the optimal tour did. We focus here on the anchored case, with a specified depot s, which
we assume to be on ∂P for now.

First, we triangulate P (in O(n) time [6]), including s as a vertex of the triangulation.
We then overlay, centered on s, a regular square grid of pixels of side lengths δ within an
axis-aligned square of size L-by-L for a length L that is at least the optimal tour length;
we specify how to determine δ and L below. The overlay of the grid with the triangulation
yields a partition of P into convex cells of constant complexity, each of which we triangulate,
resulting in an overall Steiner triangulation of P , such that every triangle within distance
L/2 of s has diameter at most

√
2δ and perimeter at most 4δ; we let Sδ,L denote the set of

vertices of these triangles. We refer to Sδ,L as the set of candidate turn points for a route.

▶ Lemma 3. For an optimal tour γ for the QWRP with area quota A, there exists a polygonal
tour γ′ whose vertices are in the set Sδ,L of candidates, such that γ′ is relatively convex,
|γ′| ≤ |γ| + (8 + 4

√
2)δn and V (γ) ⊆ V (γ′).

Proof. Let c1, c2, . . . be convex vertices of the optimal tour γ (γ is the relative convex hull
of such vertices) and let σ1, σ2, . . . be (closed) cells of the decomposition that contain the
vertices. Let γ′ be the boundary of the relative convex hull of the cells. By construction, γ′

is a relatively convex tour enclosing γ, implying that any point seen by γ is also seen by γ′.
Furthermore, since s ∈ ∂P , it follows that s cannot be in the interior of Pγ′ , a subpolygon of
P , thus s ∈ γ′.

We claim that |γ′| is at most |γ| + (8 + 4
√

2)δn. For each edge e′ of γ′ going from σi to σj ,
we can bound its length by the sum of the length of the edge e of γ going from σi to σj (γ′

visits the cells containing the vertices of γ in the same order) and at most two connections
from endpoints of e to vertices of σi, σj , which is no more than 2

√
2δ, see Figure 2, right.

Additionally, the part of γ′ along the perimeters of σ1, σ2, . . . is no longer than 8δn. Hence,
|γ′| ≤ |γ| + (8 + 4

√
2)δn. ◀

From Lemma 3, if δ = O
(

ε|γ|
n

)
, then for approximation purposes within factor (1 + ε), it

suffices to search for a tour whose vertices come from Sδ,L. In fact, our algorithm returns
a tour no longer than (1 + ε1)|γ| for any ε1 > 0; however, due to discretization of the area
quota, we only guarantee the tour sees at least (1 − ε2)A for any ε2 > 0.

We now establish an ordering on the point set Sδ,L, so that a relatively convex chain of
the candidate points moves in increasing order. First, we compute T , the tree of shortest
paths rooted at s to all the candidate points; this takes O(|Sδ,L|) time [21]. The path from s

to a candidate point s′ in T is the geodesic shortest path πP (s, s′). Define a geodesic angular

SWAT 2024
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σi

σj

e

e′

√
2δ

Figure 2 Left: γ′ (blue) is the relative convex hull of the vertices (blue) of the cells that contain
convex vertices of γ (red). Right: Each edge of γ′ that traverses between two different cells σi, σj

by triangle inequality, is no longer than the edge of γ between the same cells plus at most two
connections to two vertices of σi, σj .

order as follows: for two candidate points si, sj , if si is to the left of the extended geodesic
shortest path between s and sj , i.e πP (s, sj) with the last segment extending up to ∂P , then
si precedes sj . In case of ties, we break ties by increasing distance to s. For each reflex
vertex ri of P , we add another candidate sri

to the list to account for the possibility that
ri can appear as two different vertices of a relatively convex polygonal chain; sri obeys the
aforementioned geodesic angular order but precedes every candidate point in the subtree of T
rooted at ri. Sort the candidates accordingly, then append sm := s1 to the end of the sorted
list. Any relatively convex chain with vertices sequence oriented clockwise (s, si1 , si2 , . . .) has
1 < i1 < i2 < . . .. Without loss of generality, we consider any relatively convex polygonal
chain to be oriented clockwise.

Next, we examine the optimal substructure of the problem.

▶ Lemma 4 ([3]). The visibility region of the geodesic shortest path πP (s, sj) is the inclusion-
wise minimal set among all visibility regions of all paths from s to sj.

Let C be a relatively convex polygonal chain from s to a candidate point sj , and let si be
the vertex of C immediately preceding sj . We identify the overlap of visibility between the
segment sisj and Csi

, the subchain of C from s to si in Lemma 5.

▶ Lemma 5. V (Csi
) ∩ V (sisj) = V (πP (s, si)) ∩ V (sisj).

Proof. Refer to Figure 3. Let x ∈ P be a point seen by both πP (s, si) and sisj . Since
x ∈ V (πP (s, si)), it follows that x ∈ V (Csi) (Lemma 4). Thus, x ∈ V (Csi) ∩ V (sisj) and
V (πP (s, si)) ∩ V (sisj) ⊆ V (Csi

) ∩ V (sisj).
On the other hand, let x ∈ P be seen by both Csi and sisj . Since x ∈ V (Csi) ∩ V (sisj)

there exists x1 ∈ Csi
and x2 ∈ sisj such that xx1 and xx2 are contained within P . Thus,

the (pseudo)triangle xx1x2 is contained within P since P has no holes. By our ordering
scheme, sj is to the right of πP (s, si) with the last segment extended up to ∂P , while Csi is
to the left of it. This implies that in the relatively convex polygon PC∪πP (s,sj), x1, x2 are
in opposite sides with respect to πP (s, si). As we pivot a line of sight around x from x1 to
x2, it must intersect πP (s, si) at some point due to continuity as well as (relative) convexity,
therefore πP (s, si) sees x. Hence, V (Csi) ∩ V (sisj) ⊆ V (πP (s, si)) ∩ V (sisj). ◀

Based on Lemma 5, the overlap of visibility between the segment sisj , for i < j, and any
relatively convex chain Csi

from s to si does not depend on the vertices between s and si.
This leads to the optimal substructure utilized by our dynamic programming algorithm.
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Figure 3 Proof of Lemma 5.

▶ Lemma 6. C is a shortest relatively convex polygonal chain from s to sj that sees at least
some area A if and only if Csi

is a shortest relatively convex polygonal chain from s to si

that sees at least area A − |V (sisj) \ V (πP (s, si))|.

Proof. We write V (C) as the union of 2 disjoint sets V (Csi
) and V (sisj) \ V (Csi

). Notice
that

V (sisj) \ V (Csi) = V (sisj) \ (V (Csi) ∩ V (sisj)) = V (sisj) \ (V (πP (s, si)) ∩ V (sisj))
= V (sisj) \ V (πP (s, si)),

therefore |V (Csi)| ≥ A − |V (sisj) \ V (πP (s, si))|. As a result, Csi must be the shortest chain
to achieve a visibility area of A − |V (sisj) \ V (πP (s, si))|, since the existence of a shorter
chain contradicts the optimality of C, and vice versa. ◀

A subproblem in the dynamic program is determined by a candidate point sj and an
area quota A. Let π(sj , A) denote the length of a shortest relatively convex polygonal
chain from s to sj that can see area at least A; and let C(sj , A) denote the associated
optimal chain. Initialize π(s, |V (s)|) = 0. The Bellman recursion for each subproblem with
j = 1, 2, . . . , m and all values of A would be given as follows, for all i < j such that sj sees
si and C(si, A − |V (sisj) \ V (πP (s, si))|) ∪ sisj is relatively convex:

i = arg min
i

{
π(si, A − |V (sisj) \ V (πP (s, si))|) + |sisj |

}
,

π(sj , A) = π(si, A − |V (sisj) \ V (πP (s, si))|) + |sisj |,
C(sj , A) = C(si, A − |V (sisj) \ V (πP (s, si))|) ∪ sisj .

Finally, return C(sm, A). Correctness of the algorithm follows from the principle of optimality.
Note that there always exists an optimal solution i to the above recursion such that

C(si, A − |V (sisj) \ V (πP (s, si))|) ∪ sisj is relatively convex. Otherwise, we can shortcut
C(si, A − |V (sisj) \ V (πP (s, si))|) ∪ sisj by connecting sj to the closest reflex vertex (of
P ) or the point of tangency in C(si, A − |V (sisj) \ V (πP (s, si))|).

Since A can take values from a continuous set, it is impractical to tabulate all such values.
Instead, we bucket A into uniform intervals, and let the subproblems be defined by interval
endpoints. We round down the area of any visibility polygon to the nearest interval. Since
we sum up the area of at most 2(n − 3) + 2L

δ visibility polygons (each of the n − 3 diagonals
in the triangulation of P and L

δ horizontal/vertical grid lines potentially has at most 2

SWAT 2024
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s

si

sj

∂P

πP (s, si)

Figure 4 Solving subproblem (sj , A).

vertices of the tour returned by the dynamic programming algorithm since we enforce relative
convexity), if we denote by I the length of each interval, the area lost by rounding down is
at most I

(
2(n − 3) + 2L

δ

)
. We run the algorithm on the “rounded down” instance with area

quota A − I
(
2(n − 3) + 2L

δ

)
, and since the optimal solution of the original instance is a

feasible solution of the new instance, the algorithm returns a tour no longer than an optimal
tour γ′ (that sees at least area A).

It remains to compute an appropriate L such that an optimal tour γ is contained within
the bounding box of the grid. Denote by Cg(r) the geodesic disk of radius r centered at s

(the locus of points whose length of the geodesic path to s is no greater than r). Let r := rmin
where rmin is the smallest value of r such that |V (Cg(r))| = A; then, r is a lower bound on
|γ|, since a tour of length r has geodesic radius at most r/2 and thus cannot see an area of A.
We can compute r by the “visibility wave” methods in [1] by considering all O(n2) edges of
the visibility graph Gv of P (nodes are vertices of P and two nodes are adjacent if they are
visible to one another); we have a sequence of visibility edges hit by Cg(r) for the first time
in the process of increasing r, obtained by sorting the distance from every visibility edge to s

in O(n2 log n) time.
Moreover, |∂Cg(r)| + 2r is an upper bound on |γ|, since if the watchman goes from s

to ∂Cg(r) (s may not be on ∂Cg(r)), follows along ∂Cg(r) then goes back to s, he sees an
area of A. We argue that |∂Cg(r)| + 2r = O(nr) as follows: ∂Cg(r) consists of polygonal
chains that are portions of ∂P and circular arcs; the circular arcs have total length at most
2πr. For each segment in the polygonal part of ∂Cg(r), we can bound its length by the sum
of geodesic distances from its endpoints to s (triangle inequality), which is no more than
2r. There are at most n segments in the polygonal portions of ∂Cg(r), therefore their total
length is no longer than 2nr, implying |γ| ≤ |∂Cg(r)| + 2r = 2nr + 2πr + 2r ≤ 6nr.

We initialize L := r and run the dynamic program with the following δ and I:

δ = ε1L

16 + 8
√

2n
, I = ε1ε2A

2(n − 3)ε1 + (32 + 16
√

2)n
.

Then, set L := 2L, and repeat until L ≥ 6nr. At some point, we must have |γ| ≤ L ≤ 2|γ|,
which means the approximate tour γ′ returned by the dynamic program will be such that
V |γ′| ≥ (1 − ε2)|V (γ)| and |γ′| ≤ (1 + ε1)|γ|. We return the shortest tour out of all tours



K. C. Huynh, J. S. B. Mitchell, L. Nguyen, and V. Polishchuk 27:9

that achieve the visibility area quota as we increase r. Since r ≤ |γ| = O(nr), the number of
iterations of the doubling search is O(log n). The resulting theorem (proof details in the full
version):

▶ Theorem 7. Given a starting point s, a dual approximation γ′ to an optimal solution γ of the
QWRP, with area quota A, in a simple polygon with n vertices, satisfying |V (γ′)| ≥ (1 − ε2)A
and |γ′| ≤ (1 + ε1)|γ| for any ε1, ε2 > 0, can be computed in O

(
n5

ε5
1ε2

log n
)

time if s ∈ ∂P

or O
(

n9

ε9
1ε2

log n
)

time if s /∈ ∂P .

3 The BWRP in a Simple Polygon

▶ Theorem 8 (proof in the full version). The BWRP in a simple polygon is weakly NP-hard.

3.1 Approximation algorithm for anchored BWRP
For a given budget length B > 0, and any fixed ε > 0, we compute a route of length at most
(1 + ε)B that sees at least as much area as an area-maximizing route γ of length B.

▷ Claim 9. Without loss of generality, we can assume that B is less than the length of
an optimal watchman route for P ; otherwise, the solution is simply an optimal WRP tour.
Hence, an optimal budgeted watchman route γ is necessarily the shortest watchman route of
the subpolygon V (γ), and so γ is relatively convex (otherwise, we can shortcut γ and expand
the remaining length budget to see more area, contradicting the optimality of γ).

Since it suffices to consider only relatively convex routes for the BWRP, the observation
in Lemma 5 allows us to prove the structure of an optimal BWRP tour.

▶ Lemma 10. C is a relatively convex polygonal chain from s to sj of length at most B that
sees the largest area possible if and only if Csi

is a relatively convex polygonal chain from s

to si of length at most B − |sisj | that sees the largest area possible.

Proof. The proof is identical to that of Lemma 6 and hence omitted in this version. ◀

We decompose P by overlaying a triangulation and regular square grid of δ-sized pixels
within an axis-aligned square of size B-by-B, centered on s, then sort the set of candidates
Sδ,B according to the geodesic angular order defined for the QWRP. Similarly, there exists a
route γ′ of length at most |γ| + (8 + 4

√
2)δn with vertices in Sδ,B .

Let a(sj , B) be the optimal area that a relatively convex polygonal chain from s to sj

that is no longer than B can see; and let C(sj , B) be the associated optimal chain of the
subproblem (sj , B). Initialize a(s, 0) = |V (s)|. The Bellman recursion for each subproblem
with j = 1, 2, . . . , m and all values of B would be given as follows, for all i < j such that sj

sees si and C(si, B − |sisj |) ∪ sisj is relatively convex

i = arg max
i

{
a(si, B − |sisj |) + |V (sisj) \ V (πP (s, si))|

}
a(sj , B) = a(si, B − |sisj |) + |V (sisj) \ V (πP (s, si))|,
C(sj , B) = C(si, B − |sisj |) ∪ sisj .

Then, return γ′ := C(sm, B + (8 + 4
√

2)δn).
To bound the number of subproblems, we consider a partition of an interval of length

B + (8 + 4
√

2)δn into uniform intervals, and round up the length of any segment sisj to the
nearest interval endpoint. Let I be the length of each interval, we run the algorithm on a
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new instance with budget B + (8 + 4
√

2)δn +
(
2(n − 3) + 2B

δ

)
I and the subproblems defined

by intervals’ endpoints. The optimal solution of the original instance is a feasible solution of
the new instance; thus, we find a route seeing as much as the optimal route of the original
instance. The values of δ and I can be set as follows:

δ = εB

(16 + 8
√

2)n
, I = ε2B

4(n − 3)ε + (64 + 32
√

2)n
,

so that B + (8 + 4
√

2)δn +
(
2(n − 3) + 2B

δ

)
I ≤ (1 + ε)B. In the full paper we prove:

▶ Theorem 11. Given a starting point s, a route of length at most (1 + ε)B seeing at least
as much area as is seen by an optimal route of length B for the BWRP in a simple polygon
with n vertices can be computed in O

(
n5

ε6

)
time if s ∈ ∂P or O

(
n9

ε10

)
time if s /∈ ∂P .

3.2 From anchored BWRP to an FPTAS for anchored QWRP
We can adapt the algorithm for the anchored BWRP above to obtain an FPTAS for the
anchored QWRP. Let γ be an optimal QWRP tour, suppose we have some L such that
|γ| ≤ L ≤ 2|γ|. We divide L into L

⌈ 2
ε ⌉

uniform intervals, each of length no greater than ε|γ|.

The smallest interval endpoint L′ that is no smaller than |γ|, is a (1 + ε)-approximation
to |γ|. We can iterate through interval endpoints as the budget constraint and use the
approximation algorithm for the BWRP to compute a route of length at most (1 + ε)L′

that sees as much as an area-maximizing route of length L′ does, which sees more area than
does γ. The result is the following theorem, which, in contrast with the earlier Theorem 7, is
not a dual approximation (allowing for a relaxation of the quota constraint), but an FPTAS
for optimizing the length, subject to a hard constraint on the area seen. The running time of
the algorithm in the dual approximation of Theorem 7, however, is better than that of the
FPTAS, so it may be preferred in some settings.

▶ Theorem 12 (proof in the full version). Given a starting point s, an approximation γ′

to an optimal solution γ of the QWRP, with area quota A, in a simple polygon with n

vertices, satisfying |V (γ′)| ≥ A and |γ′| ≤ (1 + ε)|γ| for any ε > 0, can be computed in
O

(
n5

ε6 log n log 1
ε

)
if s ∈ ∂P or O

(
n9

ε10 log n log 1
ε

)
if s /∈ ∂P .

4 Floating QWRP and BWRP

When the starting point s of the tour is not specified (the so called “floating” case), the
WRP tends to be trickier: known algorithms for the floating WRP are O(n)-factor slower
than in the non-floating case [10, 5, 11, 30, 13, 26, 29]. If the optimal tour is not convex (but
only relatively convex), one can iterate through all reflex vertices of P as choices for s, and
thus reduce the floating version to the basic WRP; the same can be done for QWRP and
BWRP. Thus, the remaining challenge is to find the shortest (strictly, not just relatively)
convex tour.

Any convex polygon can be outer-approximated by a convex polygon with a constant
number of vertices: Dudley’s approximation [2, 14, 23] implies that for any length-L tour
γ, there is a length-(1 + ε)L tour γ′ with O

(
1√
ε

)
vertices that sees at least as much area

as γ does. To find γ′ (either for QWRP or BWRP), we use the techniques from [26]: For
each of the O(n4) cells of the visibility decomposition D (the visibility graph Gv of P as
defined Section 2.3, with maximally extended edges), points within the cell have visibility
polygons that are combinatorially equivalent, implying that the area seen by any point in
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Figure 5 What is seen from the interior of a segment does not change as the segment is moved
locally: whatever was hidden, but becomes seen from an interior point (red), was seen by a
neighboring point (black) before the move.

the cell is given by the same formula. Moreover, if each vertex of a tour sits within a fixed
cell of D and each edge of the tour passes through the same set of cells, the total area
seen from the tour is given by the same formula: the interiors of the edges do not add to
the area seen, so the total seen area is a function, f(v1, . . . , vk), of only the positions vi

of the tour’s k = O
(

1√
ε

)
vertices (Fig. 5). We further decompose the cells of D by lines

through all of D’s vertices. If the vertices of the tour are in the same cells of this refined
O(n8)-complex decomposition D′, then the edges of the tour pass through the same cells
of D. We iterate through all O(n8k) placements of vertices of the tour into cells of D′. For
each placement, finding v⃗ maximizing the seen area, f(v⃗), amounts to solving an O(k)-sized
system of polynomial equations having O(k) algebraic degree (the Lagrangian of the problem
will contain the constraint that the tour’s length is L, consisting of k terms and will have to
be squared O(k) times before becoming a polynomial). The solution can be found in kO(k)

time [4, Section 3.4]. We summarize in the following theorems:

▶ Theorem 13. Let γ be an optimal QWRP (no starting point) tour. In n
O

(
1√
ε

)
time, a

tour of length at most (1 + ε)|γ| can be found that sees at least as much area as does γ.

▶ Theorem 14. In n
O

(
1√
ε

)
time, a BWRP (no starting point) tour of length (1 + ε)L can

be found that sees at least as much area as does any tour of length L.

5 Domains that are a Union of Lines

We consider the QWRP and the BWRP in a domain P that is a connected union (arrangement)
of lines; it suffices to truncate the lines within a bounding box that encloses all vertices of the
line arrangement, so that P is bounded. Such domains, which are a special case of polygons
with holes, have been studied in the context of the Watchman Route Problem [15, 16].
In this setting, the QWRP seeks to minimize the length of a route contained within P that
visits at least a specified number of (truncated) lines, and the BWRP seeks to maximize the
number of lines visited by a route within P of length at most some budget. In this section
we do not assume a depot s is specified.

For a set of lines L, let A(L) denote the arrangement formed by L. We assume that not
all of the lines are parallel so that the union is connected. All of a line can be seen from
any point incident on it. Let G(L) denote the weighted planar graph with vertex V (A(L))
of intersections between lines. Two vertices in the graph are connected by an edge with
Euclidean weight if they share the same edge in L. Since the watchman is constrained to
travel within A(L) and the only time the route can have turning points not in V (A(L))
is when it traces out the same edge of G(L) consecutively in opposite directions, turning
somewhere interior to that edge. However, then we can shortcut that portion of the route
altogether while maintaining visibility coverage, it is easy to see that any optimal route for
BWRP or QWRP is polygonal and its vertices is a subset of V (A(L)).
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We first explain our results for the QWRP, then we use them to solve the BWRP. The
following observation is essential to our algorithm: a line intersects a tour γ if and only if
it intersects the convex hull of γ. We define the quota intersecting convex hull problem as
follows: compute a cyclic sequence (v1, v2, . . . , vh) of vertices vi ∈ V (A(L)) in convex position
such that the number of lines intersecting the convex polygon (v1, v2, . . . , vh) is at least some
specified Q > 0 and

∑h
i |π(vi, vi+1)| is minimized (vh+1 = v1), where π(s, t) = πG(s, t) is

the shortest path connecting s and t in G(L). We show the relationship between the quota
intersecting convex hull problem and the QWRP in an arrangement of lines.

▶ Lemma 15. An optimal solution to the quota intersecting convex hull problem yields an
optimal solution to the QWRP in an arrangement of lines.

Proof. Suppose (v1, v2, . . . , vh) is an optimal solution to the quota intersecting convex hull
problem of length L intersecting Q lines. We concatenate π(v1, v2), . . . , π(vh−1, vh) and
π(vh, v1) to form γ. Every line intersecting the convex polygon (v1, v2, . . . , vh) must intersect
γ as well. Thus, γ is a route of length

∑h
i |π(vi, vi+1)| = L seeing Q lines.

We claim that there is no solution γ′ to the QWRP intersecting Q lines that is strictly
shorter than γ. Suppose to the contrary, take the convex hull of γ′, which has vertices in
V (A(L)) since vertices of γ′ are in V (A(L)). The vertices of the convex hull of γ′ form a
cyclic sequence that is feasible for the quota intersecting convex hull problem, and the length
is exactly |γ′| (or γ′ could be shortened while still intersecting Q lines), which is strictly
smaller than L. Thus, γ′ yields a feasible cyclic sequence intersecting Q lines while the length
is shorter than γ, violating the assumption that (v1, v2, . . . , vh) is optimal. ◀

Note that there can be many optimal solutions to the quota intersecting convex hull problem
yielding the same tour (Figure 6).

. . . . . .

. . .

Figure 6 Multiple optimal solutions to the quota intersecting convex hull problem corresponding
to the same optimal solution of the QWRP.
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We give a dynamic programming algorithm to solve the quota intersecting convex hull
problem. Fix one vertex to be the lowest vertex, let that vertex be v1. We will examine
all possible choices of v1, and find the optimal cyclic sequence with each choice. Let
{v2, v3, . . . , vm−1} be the list of vertices above v1 sorted by increasing angle with the left
horizontal ray passing through v1, breaking ties by increasing distance to v1. Then, set
a new element vm := v1 and append it to the list. Thus, an optimal cyclic sequence
(v1, vi2 , vi3 , . . . , vm) has 1 < i2 < i3 < . . . < m. We can restrict ourselves to ordered pairs
(vi, vj) of consecutive vertices where 1 ≤ i < j ≤ m and either i ̸= 1 or j ̸= m in the sequence.

For 1 ≤ i < j ≤ m and either i ̸= 1 or j ̸= m, denote by Li,j the lines that intersect
the segment vivj (including at the endpoints vi, vj). Each vertex vj and a quota value
Q define a subproblem. Let π(vj , Q) be the shortest length of a sequence of vertices in
convex position from (v1, . . . , vj) intersecting at least Q lines. Starting from v1, we initialize
π(v1, |L1,1|) = 0 with the associated sequence (v1). For j = 2, . . . , m and Q = 1, 2, . . . , n, we
solve the subproblems (vj , Q) by the following Bellman recursion, for all i < j such that the
sequence associated with (vi, Q − |Li,j \ L1,i|) and vj are in convex position (Figure 7)

π(vj , Q) = min
i

{
π(vi, Q − |Li,j \ L1,i|) + |π(vi, vj)|

}
.

v1

vi

vj

v1

vi

vj

Figure 7 Solving subproblem (vj , Q). The sequence of vertices in convex position is drawn on
the left with a dashed red chain, and the corresponding part of γ is drawn with solid red segments
on the right.

Correctness of the algorithm follows from these two claims:
Given a sequence of vertices in convex position (v1, . . . , vi, vj), any line intersecting both
π(vi, vj) and the subsequence from v1 to vi, (v1, . . . , vi) must intersect the segment v1vi

and vice versa due to continuity and convexity. If a sequence (v1, . . . , vi, vj) is the shortest
among all sequences from v1 to vj intersecting at least Q lines, then the subsequence
from v1 to vi is the shortest sequence from v1 to vi intersecting Q − |Li,j \ L1,i|.
The sequence (v1, . . . , vi) associated with optimal solution i to the Bellman recursion is
such that (v1, . . . , vi) ∪ (vj) are in convex position.

▶ Theorem 16 (proof in the full version). The QWRP and the BWRP in an arrangement of
lines can be solved in O(n7) time.

▶ Remark 17. When Q = n, the algorithm solves the classic WRP in an arrangement of
lines, thus our result improves upon the O(n8) solution in [16].
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6 The QWRP and BWRP in a Polygon With Holes

6.1 Hardness of approximation
▶ Theorem 18 (proof in the full version). The QWRP in a polygon with holes cannot be
approximated, in polynomial time, within a factor of c log n for some constant c > 0, unless
P = NP.

▶ Theorem 19 (proof in the full version). The BWRP in a polygon with holes cannot be
approximated, in polynomial time, within a factor of (1 − ε) for arbitrary ε > 0, unless P =
NP.

6.2 Approximation algorithm for the BWRP in a polygon with holes
We decompose P into small convex cells and obtain the set of candidates Sδ,B as in the case
with the BWRP in a simple polygon.

▶ Theorem 20. There exists a route γ′ whose vertices are a subset of Sδ,B such that
V (γ) ⊆ V (γ′) and |γ′| ≤ (1 + ε)B.

Proof. Consider an edge e of γ whose endpoints lie in cells σi and σj . We append ∂σi and
∂σj to γ. If the endpoints of e are not vertices of σi and σj , we replace e with a set of
edges whose endpoints are candidate points. The procedure can be described with a physical
analog: we slide an elastic string between the two intersection points of e with σi and σj

towards the exterior of γ until the two endpoints coincide with vertices of σi and σj , the
string is pulled taut and never passes through a hole; see Figure 8. The result is a geodesic
path e′ between two vertices of σi and σj that is no longer than |e| + 2

√
2δ.

Repeating the process for every edge of γ, we obtain γ′. If a point x seen by γ is inside
of Pγ′ , the extended line of vision between x and γ must intersect with γ′ since there is
no hole between γ and γ′. If x is outside of Pγ′ , then the line of vision between x and γ

must intersect γ′ due to the Jordan Curve Theorem. Thus, γ′ sees everything that γ sees,
moreover γ′ passes through s, a vertex in the decomposition. Since γ has O(n2) vertices [25],
for an appropriate choice of δ = O

(
εB
n2

)
we have |γ′| ≤ (1 + ε)B. ◀

σi σj

e

Figure 8 Replacing each edge (red) with the perimeters of the two cells containing its endpoints
and a geodesic path of the same homotopy type (blue).

We apply a known result for the Submodular Orienteering problem [7]: Given a
weighted directed graph G, two nodes s and t (which need not be distinct), a budget B > 0,
and a monotone submodular reward function defined on the nodes, find an s-t walk that
maximizes the reward, under the constraint that the length of the walk is no greater than B.

Let G1 be the visibility graph on the candidates set with Euclidean edge weights. Let
G2 be the line graph of G1: nodes of G2 correspond to edges of G1, and two nodes in G2
are adjacent if their respective edges in G1 are incident. The weight of an edge of G2 is the
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sum of the weights of the two edges in G1 corresponding to its endpoints, divided by two,
thus a closed walk of length B in G1 corresponds to a closed walk of length B in G2 and
vice versa. We apply the approximation algorithm from [7] on G2 to compute a closed walk
from any node in G2 corresponding to an edge incident with s, with the area of visibility as
the reward function and budget (1 + ε)B. The reason for using the line graph G2 is that, in
the Submodular Orienteering problem, rewards are associated with nodes, while in the
context of the BWRP, rewards are accumulated when traversing edges of the visibility graph
G1. We obtain the following:

▶ Theorem 21 (proof in the full version). Given a polygon P with holes with n vertices, let
β ≥ 2 be any constant of choice and OPT be the maximum area that a route of length B can
see. The BWRP has a dual approximation algorithm that computes a tour of length at most
(1+ε)B that sees an area of at least Ω

(
OP T log β

log n

)
, with running time

(
n
ε log B

)O(β log n
ε / log β).

7 Optimal Visibility-based Search for a Randomly Distributed Target

Our results can be applied to solve two problems of searching a randomly distributed static
target in a simple polygon P : Given a prior distribution of the target’s location in P , (1)
compute a route that achieves a given detection probability within the minimum amount of
time, where the target is detected if the watchman can see it; and (2) (dual to (1)) for a
given time budget T , compute a search route maximizing the probability of detecting the
target by time T . Denote by µ(.) the probability measure on all subsets of P ; µ(P1) is the
probability measure of P1 ⊆ P , i.e the probability that the target is in P1, then

0 ≤ µ(.) ≤ 1, µ(∅) = 0, µ(P ) = 1,
µ(P1 ∪ P2) = µ(P1) + µ(P2) if P1 ∩ P2 = ∅.

We assume that we have access to µ(.) via an oracle: Given a triangular region in P , the
oracle returns its probability measure in O(1) time. Thus, for a point or a segment, the
probability measure of its visibility region can be computed in O(n) time. Furthermore, if
the watchman has constant speed, a time constraint/objective is equivalent to that of length.
An optimal search route for each problem can be computed using the algorithms given with
probability measure instead of area.
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