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—— Abstract

For an optimization problem II on graphs whose solutions are vertex sets, a vertex v is called

c-essential for II if all solutions of size at most ¢ - OPT contain v. Recent work showed that
polynomial-time algorithms to detect c-essential vertices can be used to reduce the search space
of fixed-parameter tractable algorithms solving such problems parameterized by the size k of the
solution. We provide several new upper- and lower bounds for detecting essential vertices. For
example, we give a polynomial-time algorithm for 3-ESSENTIAL DETECTION FOR VERTEX MULTICUT,
which translates into an algorithm that finds a minimum multicut of an undirected n-vertex graph G
in time 20(*) -n®®) | where ¢ is the number of vertices in an optimal solution that are not 3-essential.
Our positive results are obtained by analyzing the integrality gaps of certain linear programs. Our
lower bounds show that for sufficiently small values of ¢, the detection task becomes NP-hard
assuming the Unique Games Conjecture. For example, we show that (2 — )-ESSENTIAL DETECTION
FOR DIRECTED FEEDBACK VERTEX SET is NP-hard under this conjecture, thereby proving that the
existing algorithm that detects 2-essential vertices is best-possible.
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1 Introduction

Preprocessing is an important tool for dealing with NP-hard problems. The idea is that
before starting a time-consuming computation on an input, one first exhaustively applies
simple transformation steps that provably do not affect the desired output, but which make
the subsequently applied solver more efficient. Preprocessing is often highly effective in
practice [1, 34].

There have been several attempts to theoretically explain the speed-ups obtained by
preprocessing. The concept of kernelization [12, 14], phrased in the language of parame-
terized complexity theory [9, 10], is one such attempt. Recently, Bumpus, Jansen, and de
Kroon [4] proposed an alternative framework for developing and analyzing polynomial-time
preprocessing algorithms that reduce the search space of subsequently applied algorithms
for NP-hard graph problems. They presented the first positive and negative results in this
framework, which revolves around the notion of so-called c-essential vertices. In this paper,
we revisit this notion by providing new preprocessing results and new hardness proofs.

? Bart M. P. Jansen .and Ruben F. A Verhaegh;

37 icensed under Creative Commons License CC-BY 4.0
19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 28; pp. 28:1-28:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany



mailto:b.m.p.jansen@tue.nl
https://orcid.org/0000-0001-8204-1268
mailto:r.f.a.verhaegh@tue.nl
https://orcid.org/0009-0008-8568-104X
https://doi.org/10.4230/LIPIcs.SWAT.2024.28
https://arxiv.org/abs/2404.09769
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2

Search-Space Reduction via Essential Vertices Revisited

To be able to discuss our results, we first introduce and motivate the concept of c-
essential vertices and the corresponding algorithmic preprocessing task. Our results apply
to optimization problems on graphs in which the goal is to find a minimum-size vertex set
that hits all obstacles of a certain kind. The (UNDIRECTED) VERTEX MULTICUT problem
is a prime example. Given an undirected graph G, annotated by a collection T consisting
of pairs of terminal vertices, the goal is to find a minimum-size vertex set whose removal
disconnects all terminal pairs. The decision version of this problem is NP-complete, but
fized-parameter tractable parameterized by the size of the solution: there is an algorithm by
Marx and Razgon [26] that, given an n-vertex instance together with an integer k, runs in
time 20" . nOM) and outputs a solution of size at most k, if one exists. The running time
therefore scales exponentially in the size of the solution, but polynomially in the size of the
graph. This yields a great potential for preprocessing: if an efficient preprocessing phase
manages to identify some vertices S C V(G) that are guaranteed to be part of an optimal
solution, then finding a solution of size k in G reduces to finding a solution of size k — | S|
in G — S, thereby reducing the running time of the applied algorithm and its search space.
To be able to give guarantees on the amount of search-space reduction achieved, the question
becomes: under which conditions can a polynomial-time preprocessing algorithm identify
vertices that belong to an optimal solution?

Essential vertices. The approach that Bumpus et al. [4] take when answering this question
originates from the idea that it may be feasible to detect vertices as belonging to an optimal
solution when they are essential for making an optimal solution. This is formalized as follows.
For a real number ¢ > 1 and fixed optimization problem IT on graphs whose solutions are
vertex subsets, a vertex v of an input instance G is called c-essential if vertex v is contained
in all c-approximate solutions to the instance. Hence a c-essential vertex is not only contained
in all optimal solutions, but even in all solutions whose size is at most ¢ - opT. To obtain
efficient preprocessing algorithms with performance guarantees, the goal then becomes to
develop polynomial-time algorithms to detect c-essential vertices in the input graph, when
they are present.

For some problems like VERTEX COVER (in which the goal is to find a minimum-size
vertex set that intersects each edge), it is indeed possible to give a polynomial-time algorithm
that, given a graph G, outputs a set S of vertices that is part of an optimal vertex cover and
contains all 2-essential vertices. For optimization problems whose structure is more intricate,
like ODD CYCLE TRANSVERSAL, finding c-essential vertices from scratch still seems like a
difficult task. Bumpus et al. [4] therefore formulated a slightly easier algorithmic task related
to detecting essential vertices and proved that solving this simpler task is sufficient to be
able to achieve search-space reduction. For a vertex hitting set problem II whose input is a
(potentially annotated) graph G and whose solutions are vertex sets hitting all (implicitly
defined) constraints, we denote by OPT1(G) the cardinality of an optimal solution to G. The
detection task is formally defined as follows, for each real ¢ > 1.

c-ESSENTIAL DETECTION FOR II

Input: A (potentially annotated) graph G and integer k.

Task: Find a vertex set S C V(G) such that:

G1 if orT(G) < k, then there is an optimal solution in G containing all of .S, and
G2 if orT(G) = k, then S contains all c-essential vertices.

The definition above simplifies the detection task by supplying an integer k in addition
to the input graph, while only requiring the algorithm to work correctly for certain ranges
of k. The intuition is as follows: when k is correctly guessed as the size of an optimal
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solution, the preprocessing algorithm should find all c-essential vertices, and is allowed to
find additional vertices as long as they are part of an optimal solution. Bumpus et al. [4] give
a dove-tailing-like scheme that manages to use algorithms for c-ESSENTIAL DETECTION FOR
IT to give improved fixed-parameter tractable running times for solving II from scratch. The
exponential dependence of the running time of the resulting algorithm is not on the total size

of the solution, but only on the number of vertices in the solution that are not c-essential.

Hence their results show that large optimal solutions can be found efficiently, as long as they
are composed primarily out of c-essential vertices. For example, they prove that a minimum
vertex set intersecting all odd cycles (a solution to ODD CYCLE TRANSVERSAL) can be
computed in time 2.3146¢ - n®1) | where £ is the number of vertices in an optimal solution

that are not 2-essential and which are therefore avoided by at least one 2-approximation.

Apart from polynomial-time algorithms for ¢-ESSENTIAL DETECTION FOR II for various
combinations of IT and ¢, they also prove several lower bounds. One of their main lower
bounds concerns the PERFECT DELETION problem, whose goal is to obtain a perfect graph
by vertex deletions [18]. They rule out the existence of a polynomial-time algorithm for

¢-ESSENTIAL DETECTION FOR PERFECT DELETION for any ¢ > 1, assuming FPT # W[1].

(They even rule out detection algorithms running in time f(k)-n®® for some function f.)
We continue exploring the framework of search-space reduction by detecting essential

vertices, from two directions. We provide both upper bounds (new algorithms for ¢-ESSENTIAL

DETECTION FOR II) as well as lower bounds. We start by discussing the upper bounds.

Our results: Upper bounds. The VERTEX MULTICUT problem is the subject of our first
results. The problem played a pivotal role in the development of the toolkit of parameterized
algorithms for graph separation problems and stood as a famous open problem for years, until
being independently resolved by two teams of researchers [3, 26]. The problem is not only
difficult to solve exactly, but also to approximate: Chawla et al. [7] proved that, assuming
Khot’s [21] Unique Games Conjecture (UGC), it is NP-hard to approximate the edge-deletion
version of the problem within any constant factor. A simple transformation shows that the
same holds for the vertex-deletion problem.

Our first result (Theorem 4.2) is a polynomial-time algorithm for 3-ESSENTIAL DETECTION
FOR VERTEX MULTICUT, which is obtained by analyzing the integrality gap of a restricted
type of linear program associated with the problem. Using known results, this preprocessing
algorithm translates directly into search-space reduction for the current-best FPT algorithms
for solving VERTEX MULTICUT. This results in an algorithm (Corollary 4.3) that computes
an optimal vertex multicut in an n-vertex graph in time 20(%) . O where ¢ is the number
of vertices in an optimal solution that are not 3-essential.

n

Our approach for essential detection also applies for the variation of VERTEX MULTICUT
on directed graphs. Since the directed setting is more difficult to deal with, vertices have
to be slightly more essential to be able to detect them, resulting in a polynomial-time

algorithm for 5-ESSENTIAL DETECTION FOR DIRECTED VERTEX MULTICUT (Theorem 4.5).

This detection algorithm does not directly translate into running-time guarantees for FPT
algorithms, though, as DIRECTED VERTEX MULTICUT is W[1]-hard parameterized by the
size of the solution [29]. (When the solution is forbidden from deleting terminals, the directed
problem is already W[l]-hard with four terminal pairs, although the case of three terminal
pairs is FPT [17].)

Our second positive result concerns the COGRAPH (VERTEX) DELETION problem. Given
an undirected graph G, it asks to find a minimum-size vertex set .S such that G—S is a cograph,
i.e., the graph G — S does not contain the 4-vertex path P, as an induced subgraph. The
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problem is motivated by the fact that efficient algorithms for solving optimization problems
on cographs can often be extended to work on graphs which are close to being cographs,
as long as a deletion set is known [6, §6]. The decision version of COGRAPH DELETION is
NP-complete due to the generic results of Lewis and Yannakakis [24]. Parameterized by
the size k of the desired solution, COGRAPH DELETION is fixed-parameter tractable via
the method of bounded-depth search trees [5]: branching on vertices of a P, results in a
running time of 4* - n®M . Nastos and Gao [27] proposed a refined branching strategy by
exploiting the structure of Py-sparse graphs, improving the running time to 3.115% - n©™),
following earlier improvements via the interpretation of COGRAPH DELETION as a 4-HITTING
SET problem [13, 16, 28]. The latter viewpoint also gives a simple polynomial-time 4-
approximation. Whether a (4 — €)-approximation can be computed in polynomial time is
unknown; Drescher poses this [11, §8 Question 5] as an open problem for vertex-weighted
graphs.

Our second result (Lemma 4.6) is a polynomial-time algorithm for 3.5-ESSENTIAL DE-
TECTION FOR COGRAPH DELETION. It directly translates into an FPT algorithm (Corol-
lary 4.8) that, given a graph G, outputs a minimum set S for which G — S is a cograph
in time 3.115¢ - n®W); here ¢ is the number of vertices in an optimal solution that are not
3.5-essential. Similarly as for VERTEX MULTICUT, our detection algorithm arises from a new
bound of 2.5 on the integrality gap of a restricted version of a natural linear-programming
relaxation associated to the deletion problem.

The fact that our algorithm detects 3.5-essential vertices is noteworthy. It is known [4,
§8] that for any ¢ > 1, an algorithm for ¢-ESSENTIAL DETECTION FOR II follows from an
algorithm that computes a factor-c approximation for the problem of finding a minimum-size
solution avoiding a given vertex v. In this setting, a 4-approximation algorithm for COGRAPH
DELETION easily follows since the problem is a special case of d-HITTING SET. We consider
it interesting that we can obtain a detection algorithm whose detection constant ¢ = 3.5 is
strictly better than the best-known approximation ratio 4 for the problem.

Since our positive results all arise from bounding the integrality gap of certain restricted
LP-formulations, we also study the integrality gap of a standard COGRAPH DELETION LP
and prove it to be 4 (Theorem 4.9) using the probabilistic method. This provides a sharp
contrast to the gap of 2.5 in our restricted setting.

Our results: Lower bounds. Our second set of results concerns lower bounds, showing
that for certain combinations of IT and ¢ there are no efficient algorithms for c-ESSENTIAL
DETECTION FOR II under common complexity-theoretic hypotheses. In their work, Bumpus
et al. [4] identified several problems IT such as PERFECT DELETION for which the detection
problem is intractable for all choices of ¢. Their proofs are based on the hardness of FPT-
approximation for DOMINATING SET [30]. The setting for our lower bounds is different.
We analyze problems for which the detection task is polynomial-time solvable for some
essentiality threshold ¢, and investigate whether polynomial-time algorithms can exist for a
smaller threshold ¢’ < c.

Our most prominent lower bound concerns the DIRECTED FEEDBACK VERTEX SET
problem (DFVS), which has attracted a lot of attention from the parameterized complexity
community [8, 25]. It asks for a minimum vertex set S of a directed graph G for which G — S
is acyclic. Svensson proved that under the UGC [32], the problem is NP-hard to approximate
to within any constant factor. Nevertheless, a polynomial-time algorithm for 2-ESSENTIAL
DETECTION FOR DFVS was given by Bumpus et al. [4, Lemma 3.3]. We prove (Theorem 5.2)
that the detection threshold 2 achieved by their algorithm is likely optimal: assuming the
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UGC, the detection problem for ¢/ = 2 — ¢ is NP-hard for any e € (0,1]. To prove this, we
show that an algorithm with ¢ = (2 — ¢) would be able to distinguish instances with small

solutions from instances with large solutions, while the hardness of approximation result
cited above [32] show this task to be NP-hard under the UGC.

Apart from DIRECTED FEEDBACK VERTEX SET, we provide two further lower bounds.
For the VERTEX COVER (VC) problem, an algorithm to detect 2-essential vertices is known [4].

Assuming the UGC, we prove (Theorem 5.6) that (1.5 — €)-ESSENTIAL DETECTION FOR VC
is NP-hard for all £ € (0,0.5]. A simple transformation then shows (1.5 — £)-DETECTION
FOR VERTEX MULTICUT is also NP-hard under the UGC. These bounds leave a gap with

respect to the thresholds of the current-best detection algorithms (2 and 3, respectively).

We leave it to future work to close the gap.

Organization. The remainder of the paper is organized as follows. In Section 2 we give
preliminaries on graphs and linear programming. Section 3 introduces our formalization for
hitting set problems on graphs and provides the connection between integrality gaps and
detection algorithms. Section 4 contains our positive results, followed by the negative results
in Section 5. We conclude with some open problems in Section 6. Due to space limitations,
the proofs of statements marked (%) are deferred to the full version of this paper [20].

2 Preliminaries

We consider finite simple graphs, some of which are directed. Directed graphs or objects
defined on directed graphs will always be explicitly indicated as such. We use standard
notation for graphs and parameterized algorithms. We re-iterate the most relevant terminology
and notation, but anything not defined here may be found in the textbook by Cygan et al. [9]
or in the previous work on essential vertices [4].

Graph notation. We let P, denote the path graph on ¢ vertices. The weight of a path in
a vertex-weighted graph is the sum of the weights of the vertices on that path, including
the endpoints. Given two disjoint vertex sets S; and Ss in a (directed) graph G, we call a
third vertex set X C V(G) a (directed) (S, S2)-separator in G if it intersects every (directed)
(S1,52)-path in G. Note that X may intersect S7 and So. If S7 or 59 is a singleton set, we

may write the single element of the set instead to obtain a (v, Ss)-separator for example.

Menger’s theorem relates the maximum number of pairwise vertex-disjoint paths between

two (sets of) vertices to the minimum size of a separator between those two (sets of) vertices.

We consider the following formulation of the theorem:

» Theorem 2.1 ([31, Corollary 9.1a]). Let G be a directed graph and let s,t € V(G) be
non-adjacent. Then the mazimum number of internally vertez-disjoint directed (s,t)-paths is
equal to the minimum size of a directed (s,t)-separator that does not include s or t.

A fractional (directed) (S1,S2)-separator is a weight function that assigns every vertex in
a graph a non-negative weight such that every (directed) (S1,S2)-path has a weight of at

least 1. The total weight of a fractional (directed) separator is the sum of all vertex weights.

Linear programming notation. We employ well-known concepts from linear programming
and refer to a textbook for additional background [31]. A solution to a linear program (LP)
where all variables are assigned an integral value is called an integral solution. As we only
consider LPs with a one-to-one correspondence between its variables and the vertices in a
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graph, integral solutions admit an alternative interpretation as vertex sets: the set of vertices
whose corresponding variables are assigned a positive value. We use the interpretations of
integral solutions as variable assignments or vertex sets interchangeably. We say that a
minimization LP has an integrality gap of at most ¢ for some ¢ € R if the cost of an optimal
integral solution is at most ¢ times the cost of an optimal fractional solution.

3 Essential vertices for Vertex Hitting Set problems

Our positive contributions all build upon the same result from Bumpus et al. [4, Theorem 4.1],
which relates integrality gaps of certain LPs to the existence of c-ESSENTIAL DETECTION
algorithms. A slightly generalized formulation of this can be found below as Theorem 3.1.
First, we introduce the required background and notation.

The result indicates a strategy towards constructing a polynomial-time algorithm for
c-ESSENTIAL DETECTION FOR II for a vertex selection problem II, by considering a specific
special variant of that problem, that we refer to as its v-AVOIDING variant. It is defined almost
identically to the original problem II, but the input additionally contains a distinguished
vertex v € V(G) which is explicitly forbidden to be part of a solution.

The original theorem from Bumpus et al. [4] is specifically targeted at C-DELETION
problems for hereditary graph classes C. A graph class C is said to be hereditary when
it exhibits the property that all induced subgraphs of a graph in C are again in C. The
corresponding C-DELETION problem is that of finding a minimum size vertex set whose
removal turns the input graph into one contained in C. We remark however that the theorem
holds for a broader collection of problems, namely those that can be described as VERTEX
HirTING SET problems. To define which problems qualify as a VERTEX HITTING SET
problem, we first recall the definition of the well-known optimization problem HITTING SET,
on which our definition of VERTEX HITTING SET problems is based.

HiTtTING SET

Input: A universe U and a collection S C 2V of subsets of U.
Feasible solution: A set X C U such that X NS #0 forall S €S.
Objective: Find a feasible solution of minimum size.

We define VERTEX HITTING SET problems as vertex selection problems that can be
described as a special case of HITTING SET where the universe U is the vertex set of the
input graph and the collection S is encoded implicitly by the graph.

This definition in particular contains all C-DELETION problems for hereditary graph
classes C. This is because every hereditary graph class can be characterized by a (possibly
infinite) set of forbidden induced subgraphs. A graph G is in C if and only if none of its
induced subgraphs are isomorphic to a forbidden induced subgraph. Therefore, a C-DELETION
instance G is equivalent to the HITTING SET instance (V(G),S), with S being the collection
of all the vertex subsets that induce a forbidden subgraph in G.

Now, as mentioned, the v-AVOIDING variants of vertex selection problems are of particular
interest. A useful consequence of considering VERTEX HITTING SET problems as special cases
of HITTING SET, is that this yields a well-defined canonical LP formulation for such problems
that can easily be modified to describe their v-AvOIDING variant. This LP formulation
is based on the following standard LP for a HITTING SET instance (U,S), which uses
variables x,, for every u € U:
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minimize Z Ty
uelU
subject to: Z Ty > 1 for every S € S
ues
0<z, <1 for every u € U

To describe the v-AvVOIDING variant of a VERTEX HITTING SET problem, this LP can simply
be modified by adding the constraint x,, = 0. For a given VERTEX HITTING SET problem II,
a graph G and a vertex v € V(G), we denote the resulting LP as LP (G, v).

Although the original theorem from Bumpus et al. [4] makes a statement about C-
DELETION problems only, it is not too hard to see that this statement also holds for any
other VERTEX HITTING SET problem. We therefore present this result as the following slight
generalization.

» Theorem 3.1. Let Il be a VERTEX HITTING SET problem and let ¢ € R>1. Then there
exists a polynomial-time algorithm for (¢ + 1)-ESSENTIAL DETECTION FOR 11 if the following
two conditions are met:

1. For oll G and v € V(G), there is a polynomial-time separation oracle for LPr(G,v).

2. For all G and v € V(G) for which {v} solves II on G, the integrality gap of LPr(G,v) is
at most c.

This statement admits a proof that is almost identical to the proof by Bumpus et al. [4,
Theorem 4.1]. At any point in that proof where the assumption is used that II is a C-
DELETION problem for some hereditary C, this assumption may be replaced by the property
that any superset of a solution to II is also a solution. This property is satisfied for every
VERTEX HITTING SET problem. Otherwise, no changes to the proof are required. We
therefore refer the reader to this prior work for the details of the proof.

Many known results about the approximation of HITTING SET or about the integrality
gap of HITTING SET LPs consider the restriction to d-HITTING SET. This is the problem
obtained by requiring every S € S in the input to be of size at most d for some positive
integer d. Both upper bounds and lower bounds are known for the integrality gaps of the
standard LP describing d-HITTING SET instances. The standard LP is the linear program
given above for the general HITTING SET problem.

It is well-known that this LP has an integrality gap of at most d and that there exist
instances for which this bound is tight. This result is for example mentioned as an exercise
in a book on approximation algorithms [33, Exercise 15.3], framed from the equivalent
perspective of the SET COVER problem.

4 Positive results

This section contains our positive results for essential vertex detection. For three different
problems IT and corresponding values of ¢, we provide polynomial-time algorithms for c-
ESSENTIAL DETECTION FOR II. The first two of these, being strongly related, are presented in
Section 4.1. There, we provide c-ESSENTIAL DETECTION algorithms for VERTEX MULTICUT
and DIRECTED VERTEX MULTICUT with ¢ = 3 and ¢ = 5 respectively. Afterward, we provide
a 3.5-ESSENTIAL DETECTION algorithm for the COGRAPH DELETION problem in Section 4.2.

28:7
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4.1 Vertex Multicut

Our first two positive results concern the well-studied VERTEX MULTICUT problem and
its directed counterpart DIRECTED VERTEX MULTICUT. These are optimization problems
defined as follows.

(DIRECTED) VERTEX MULTICUT

Input: A (directed) graph G and a set of (ordered) vertex pairs T = {(s1,t1),...,(sr,tr)}
called the terminal pairs.

Task:  Find a minimum size vertex set S C V(G) such that there is no (s;,¢;) € T for which
G — S contains a (directed) (s;,t;)-path.

We start by observing that both problems are VERTEX HITTING SET problems: if we
let P7(G) be the collection of vertex subsets that form a (directed) (s;,t;)-path in G, then
the (DIRECTED) VERTEX MULTICUT instance (G,7T) is equivalent to the HITTING SET
instance (V(G), P7(G)). This interpretation of the problems as special cases of HITTING SET
is also captured by the standard LP formulations of the problems, on which the v-AvOIDING
LP below is based:

minimize Z Ty,
ueV(G)
subject to: Z xy > 1 for every (directed) path P from some s; to t;
ueV (P)
Ty =10
0<z, <1 forueV(Q)

The set of constraints in this LP formulation not only depends on the structure of the
input graph G, but also on the set 7 of terminal pairs. Hence, we denote the LP above
as LPym (G, T,v) for undirected G or as LPpym(G, T, v) for directed G. The standard LP
formulations of VERTEX MULTICUT and DIRECTED VERTEX MULTICUT are obtained by
simply removing the constraint =, = 0.

The undirected case. We start with the undirected version of the problem and show
in Lemma 4.1 that LPyvym(G,T,v) has an integrality gap of at most 2 for all VERTEX
MULTICUT instances (G, T) where v € V(G) is such that {v} is a solution. This bound
yields a polynomial-time algorithm for 3-ESSENTIAL DETECTION FOR VERTEX MULTICUT
as presented in Theorem 4.2.

» Lemma 4.1. Let (G, T) be a VERTEX MULTICUT instance with some v € V(G) such that
{v} is a solution for this instance. Then LPyvym(G,T,v) has an integrality gap of at most 2.

Proof. Let x = (u)uev(c) be an optimal solution to LPym(G, T, v) andlet 2 = 3~ () Tu
be its value. If we interpret the values of x,, as given by x, as vertex weights, then by
definition of the LP, all (s;,t;)-paths have weight at least 1 for all {s;,¢;} € T. Moreover, all
such paths must pass through v because {v} is a solution, so we know for every {s;,t;} € T
that all (s;,v)-paths or all (t;,v)-paths (or both) have weight at least 1.

We proceed by stating a reformulation of this property. Let D C V(@) be the set of all
vertices u such that every (u,v)-path has weight at least 3. Then, the above property can
also be described as follows: for every {s;,t;} € T, at least one of s; and ¢; is in D.
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Using this alternate formulation, it follows that every (v, D)-separator X is also a valid
solution to the given VERTEX MULTICUT instance. To see this, consider an arbitrary (s;,¢;)-
path P for some arbitrary {s;,t;} € 7. Since {v} is a solution, P intersects v. If s; € D,
then the fact that X is a (v, D)-separator implies that X intersects the subpath of P between
v and s;. The same holds for ¢;. Since at least one of s; and t; is in D, it follows that X
must intersect P. Because P was an arbitrary (s;,t;)-path for an arbitrary terminal pair
{si,t;}, X hits all such paths and therefore it is a vertex multicut.

Now to prove that LPyvy (G, T, v) has an integrality gap of at most 2, it suffices to show
that there exists a (v, D)-separator X C V(G) of size at most 2z that does not contain v.
To see that this is indeed the case, we start by constructing a fractional (v, D)-separator
f: V(G) = R of weight at most 2z and with f(v) = 0. We obtain f by simply doubling
the values given by x, i.e.: f(u) := 2z, for all u € V(G). This step is inspired by a proof
from Golovin, Nagarajan, and Singh that shows an upper bound on the integrality gap of a
MULTICUT variant in trees [15].

We observe that indeed f(v) =2 -z, = 0, since x is a solution to LPynm (G, T, v), which
requires that x,, = 0. Furthermore, D was constructed such that all paths from v to a vertex
in D have a weight of at least % under the vertex weights as given by x. Hence, under the
doubled weights of f, all such paths have a weight of at least 1, witnessing that f is in fact a
fractional (v, D)-separator.

The final step of the proof is now to show that the existence of this fractional (v, D)-
separator of weight 2z implies the existence of an integral (v, D)-separator of size at most
2z that does not contain v. To do so, we use Menger’s theorem on the auxiliary directed
graph G’ obtained from G by turning all undirected edges into bidirected edges, while adding
a sink node ¢ with incoming edges from all vertices in D.

Consider a maximum collection P of internally vertex-disjoint directed (v,t)-paths in G'.
Let X C V(G') \ {v,t} be a directed (v,t)-separator in G’ of size |P|, whose existence is
guaranteed by Theorem 2.1. The construction of G’ ensures that X is a (v, D)-separator in G
that does not contain v, and therefore corresponds to an integral solution to LPvy (G, T, v).
To bound the integrality gap by 2, it therefore suffices to prove that |P| = | X| < 2z.

For each (v,t)-path P € P in G’, the prefix obtained by omitting its endpoint ¢ yields
a (v, D)-path in G. Since f is a fractional (v, D)-separator, it must assign every such prefix
of P € P a weight of at least 1. Because f(v) = 0 and because the paths in P are internally
vertex-disjoint, we find that the total weight of f must be at least |P| = |X|. Since the
weight of f is at most 2z, we find that |P| = | X| < 2z. This concludes the proof. |

We can even construct VERTEX MULTICUT instances (G, T) that are solved by some
{v} C V(G) for which the integrality gap of LPyM (G, T, v) is arbitrarily close to 2, showing
that the bound in Lemma 4.1 is tight. To construct such an instance, let G be a (large) star
graph, let v € V(@) be its center and let 7 = (V(G)Q\{U}). Clearly, {v} is a solution to the
VERTEX MULTICUT instance (G, T).

To determine the integrality gap of LPvym (G, T, v), we first note that any solution to the
VERTEX MULTICUT instance that avoids v must, at least, include all but one of the leaves
from G. Any such set is indeed a solution, which shows that the smallest integral solution to
LPyMm (G, T,v) has value |V(G)| — 2. A smaller fractional solution to the program may be
obtained by assigning every leaf of G a value of %, which would yield a solution with a total
value of 1 - (|[V(G)| —1). Observe that such a construction of G, T, and v can be used to get
an LP with an integrality gap arbitrarily close to 2 by having the star graph G be arbitrarily
large.
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Regardless of the bound on the integrality gap being tight, Lemma 4.1 and Theorem 3.1
combine to prove the following result.

» Theorem 4.2. (%) There exists a polynomial-time algorithm for 3-ESSENTIAL DETECTION
FOR VERTEX MULTICUT.

The algorithm to detect 3-essential vertices leads in a black-box fashion to a search-space
reduction guarantee for the current-best algorithm for solving VERTEX MULTICUT due to
Marx and Razgon [26]. This follows from a result of Bumpus et al. [4, Theorem 5.1] (cf. [20,
Theorem A.1]). While they originally stated their connection between essential detection
and search-space reduction for C-DELETION problems, it is easy to see that the same proof
applies for any VERTEX HITTING SET problem: the only property of C-DELETION that is
used in their proof is that for any vertex set X C V(G), a vertex set Y C V(G — X) is a
solution to G — X if and only if X UY is a solution to G; this property holds for any VERTEX
HiTrTING SET problem.

» Corollary 4.3. There is an algorithm that, given a VERTEX MULTICUT instance (G, T)
on n vertices, outputs an optimal solution in time 20(£) -n9W) where ¢ is the number of
vertices in an optimal solution that are not 3-essential.

The directed case. Keeping in mind the techniques used to prove Lemma 4.1, we proceed
to the next problem: DIRECTED VERTEX MULTICUT. By similar arguments, we find the v-
AvoOIDING LP of this problem to have a bounded integrality gap as well. However, adaptations
to these arguments are required to take the directions of edges into consideration, yielding a
higher bound on the integrality gap of the directed version of the problem.

» Lemma 4.4. (%) Let (G,T) be a DIRECTED VERTEX MULTICUT instance with some
v € V(Q) such that {v} is a solution for it. Then LPpym(G,T,v) has an integrality gap of
at most 4.

Similar to the undirected setting, this upper bound on the integrality gap leads to the
following algorithmic result when combined with Theorem 3.1.

» Theorem 4.5. There exists a polynomial-time algorithm for 5-ESSENTIAL DETECTION
FOR DIRECTED VERTEX MULTICUT.

This statement admits a proof that is almost identical to the proof of Theorem 4.2, since the
shortest-path algorithm that provides the separation oracle of the VERTEX MuvrTicUT LP
can also take directed graphs as input.

4.2 Cograph Deletion

Our next positive result concerns the COGRAPH DELETION problem. As this is a specific
case of C-DELETION, this is more in line with the original research direction for c-ESSENTIAL
DETECTION introduced by Bumpus et al. [4], where a framework was built around C-DELETION
problems. The COGRAPH DELETION problem is defined as follows.

COGRAPH DELETION
Input: An undirected graph G.

Task:  Find a minimum size set S C V(G) such that G — S is a cograph (i.e.: G — S does
not contain a path on 4 vertices as an induced subgraph).
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We start by observing that the COGRAPH DELETION problem is a VERTEX HITTING SET
problem: if we let P4(G) be the collection of vertex subsets that induce a Py in G, then the
COGRAPH DELETION instance G is equivalent to the HITTING SET instance (V(G), P4(G)).
Again, motivated by Theorem 3.1, we study the v-AvOIDING LP for this problem:

minimize Z Ty
ueV(G)
subject to: Z x, > 1 for every induced subgraph H of GG isomorphic to Py
ueV (H)
Ty =0
0<z,<1 forueV(G)

For a given graph G and vertex v € V(G), we denote the LP above as LPcp (G, v). Whenever
v is such that G — v is a cograph, the resulting LP admits a simple upper bound on the
integrality gap. This bound is derived from the observation that the v-AvOIDING COGRAPH
DELETION problem is a special case of 3-HITTING SET: the vertex sets to be hit in the
problem are the triplets of vertices that, together with v, induce a P, in G. As the natural
LP describing 3-HITTING SET has an integrality gap of at most 3, it follows that the natural
LP formulation of v-AvOIDING COGRAPH DELETION, to which the above LP is equivalent,
also has an integrality gap of at most 3.

This section is dedicated to proving a stronger result than this trivial bound. We prove
that, whenever v is such that G — v is a cograph, LPcp (G, v) has an integrality gap of at most
2.5. To prove this, we use a method inspired by iterative rounding [19], where an approximate
integral solution can be obtained by solving the LP, picking all vertices that receive a large
enough value, updating the LP to no longer contain these vertices and repeating these steps
until a solution is found.

For our purposes, we consider values of at least 0.4 to be “large enough”. However, we will
see that an extension to the original method is required since LPcp(G, v) is not guaranteed
to always have an optimal solution that assigns at least one vertex a value of > 0.4. This

issue is reflected in the inductive proof below by having the step case split into two subcases.

The first of these deals with the standard iterative rounding setup, while the second subcase
deals with the possibility of an optimal solution not assigning any vertex a large value.

» Lemma 4.6. Let G be a graph and let v € V(G) be such that G — v is a cograph. Then
LPcp(G,v) has an integrality gap of at most 2.5.

Proof. We prove the statement by induction on the value of an optimal fractional solution
to the linear program.

First, consider as base case that LPop(G, v) has an optimal fractional solution of value 0.

Then this solution is the all-zero solution. This is also an integral optimum solution to the
program, so the integrality gap of the program is 1 and the claim holds.

Next, let x = (74 )uev(a) be an optimal solution to LPcp(G,v), let 2z = Zuev(g) x, be
its value and let V>4 C V(G) be the set of vertices that are assigned a value of at least 0.4
in this solution. We distinguish two cases.

Case 1. Suppose Vg4 # 0. Consider the pair (G — V>0.4,v) and note that (G — V>g.4) — v,
being an induced subgraph of G — v, is a cograph. Also note that the restriction of x
to G — V>4 is a feasible solution to LPcp(G — V>g.4,v). This solution has a value of
2= uevey, Tu < 2 — 0.4+ [V>q.4], which is strictly smaller than z by the assumption that
Vs0.4 # 0. If we let zes be the value of an optimal solution to LPcp (G — V0.4, v), then this
implies that zyes < 2 — 0.4|V>0.4] < 2 as well.
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Then, by the induction hypothesis, an integral solution Vies to LPcp(G — V.4, v) with
[Vies| < 2.52;05 exists. To prove that LPep(G, v) has an integrality gap of at most 2.5, we
proceed by showing that Vies U V>0 4 is an integral solution to LPcp (G, v) with value at most
2.5z. We start by arguing that Vies U V>4 is a valid integral solution.

First note that neither Vies nor Vg4 contains v since both LPcp (G — V>g.4,v) and
LPcp(G,v) require x, = 0. Therefore, the union of these two sets also does not contain v.
Secondly, note that Vieg (by construction of LPcp (G — V>0.4,v)) contains a vertex from every
induced Py in G that does not already have a vertex in V>g.4. As such, Vies U V>4 contains
a vertex from every induced P; in G, which makes it a feasible solution to LPcp(G, v).

Knowing this, it remains to prove that Vies U V>4 has size at most 2.5z. Recall that we
derived zpes < 2z — 0.4 - |[V>0.4]. We can use this inequality to make the following derivation:

|‘/}es U V20.4| S |‘/;es‘ + |V20.4‘ S 2~5zres + |V20.4| by definition of eres
<25(z—04-|V>04|) + |V>o0.4] by the above inequality
=252 — |V20.4| + |V20.4| = 2.5z since 2.5-04 =1

Case 2. Suppose V>4 = 0. Let V* C V(G) \ {v} be the set of vertices other than v that
are part of at least one induced Py in G. To prove that LPcp (G, v) has an integrality gap of
at most 2.5, we show that the smaller set of V* N Ng(v) and V* \ Ng(v) is a solution to the
program with size at most 2.5z.

We start by proving that V* N Ng(v) and V* \ Ng(v) are both feasible solutions to
LPcp(G,v). We do so using an observation about the structure of the graph P;. Observe
that this graph has the property that each vertex has at least one neighbor and at least one
non-neighbor. Since v is part of every induced P, in G by assumption, this means that every
induced Py in G contains both a neighbor and a non-neighbor of v.

The above observation implies that V* N Ng(v) and V* \ Ng(v) both intersect all
induced subgraphs of GG isomorphic to P;. Hence, both of these sets are feasible solutions to
LPcp(G,v). It remains to prove that the smaller of the two sets has a size of at most 2.5z.

Since V*N Ng(v) and V*\ Ng(v) form a partition of V* into two parts, the smaller of the
two will always be of size at most |V*|/2. Therefore, it suffices to show that |V*|/2 < 2.5z.
To prove this, we start by showing that the assumption that V>o.4 = 0 implies that z,, > 0.2
for all vertices w € V*.

We prove this property by contradiction, so suppose there is some vertex w € V(G) \ {v}
that is part of an induced Py, but which has z,, < 0.2. Let H be an induced subgraph of G
that is isomorphic to Py and with w € V(H). Because G — v is a cograph, v is contained in
every induced Py and in particular v € V(H). By definition of LPcp (G, v), we have z,, = 0.
By the assumption that Vsg.4 = 0, the two vertices in V(H) \ {w, v} have value at most 0.4,
S0 ZuGV( i) Tu < 1, which contradicts the validity of x.

Knowing that z,, > 0.2 for all w € V*, it follows that z = > v/ (g Zu = 0.2]V7].
Rewriting this inequality, we obtain |[V*|/2 < 2.5z. <

At the moment, we are not aware of any examples of pairs (G, v) where G —v is a cograph
and for which LP¢p (G, v) has an integrality gap of 2.5. Therefore, the bound above does
not have to be tight and the integrality gap of such programs may even be as small as 2.
However, there do exist pairs (G,v) where G — v is a cograph and for which LPcp (G, v) has
an integrality gap arbitrarily close to 2.

Such a pair (G,v) may be obtained by constructing G as the union of m disjoint edges
and adding the vertex v to it which is adjacent to exactly one endpoint of each of these m
edges. Then, any integral solution to LPcp (G, v) must include, at least, one endpoint from
all but one of the original m edges. Any such set of vertices is in fact a feasible integral
solution, so a smallest integral solution has size m — 1.
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An optimal fractional solution may be obtained by assigning all m neighbors of v a
value of 0.5, which yields a total value of m/2. Hence, the integrality gap of LPcp(G,v) is
%721 =2 mT_l, which can be arbitrarily close to 2 for arbitrarily large m.

Like earlier, the upper bound on the integrality gap shown in Lemma 4.6 leads to the

following algorithmic result.

» Theorem 4.7. (%) There exists a polynomial-time algorithm for 3.5-ESSENTIAL DETECTION
FOR COGRAPH DELETION.

The algorithm to detect 3.5-essential vertices leads to a search-space reduction guarantee
for the current-best parameterized algorithm for COGRAPH DELETION [27] via Theorem 5.1
by Bumpus et al. [4].

» Corollary 4.8. There is an algorithm that, given a COGRAPH DELETION instance G on n
vertices, outputs an optimal solution in time 3.115¢ - n®W)  where € is the number of vertices
in an optimal solution that are not 3.5-essential.

In the full version of this paper [20, Section 4.2.1] we contrast the integrality gap of 2.5
for the v-avoiding version of COGRAPH DELETION to the standard version for the problem,
for which we provide the following lower bound using the probabilistic method.

» Theorem 4.9. (%) For all € > 0, the integrality gap of the standard COGRAPH DELETION
LP is larger than 4 — €.

5 Hardness results

In this section, we show two main hardness results regarding essential detection algorithms.

The first of these concerns DIRECTED FEEDBACK VERTEX SET (DFVS). The objective
in this problem is to find a smallest vertex set S in a directed input graph G such that
G — S is acyclic. We slightly abuse notation by using the acronym DFVS to denote both

a (not necessarily optimal) solution to a given input and the name of the problem itself.

Additionally, we let DFVS(G) denote the size of a smallest DFVS in G. The hardness result
obtained for DFVS can be extended to DIRECTED VERTEX MULTICUT. The second result
concerns VERTEX COVER (VC) and it can be extended to other vertex hitting set problems
on undirected graphs, including VERTEX MULTICUT.

Our results are based on the hardness assumption posed by the Unique Games Conjecture
(UGC) [21]. Although the conjecture has remained open since its introduction in 2002, many
conditional hardness results in the area of approximation algorithms follow from it. Before
stating our first new hardness result, we mention the known result it is derived from, which
itself is an implication of the UGC. By the nature of the UGC, many results derived from it
show the conditional hardness of distinguishing between two types of problem inputs: one
with a very small solution and one with a very large solution. Indeed, we derive our hardness
from one such result due to Svensson [32, Theorem 1.1] that implies the following.

» Lemma 5.1. (k) Assuming the UGC, the following problem is NP-hard for any integer
r > 2 and sufficiently small constant § > 0. Given a directed n-vertex graph G, distinguish
between the following two cases:

DFVS(G) < (12 +6)n

DFVS(G) > (1 —6)n

We use this formulation to prove the following.

» Theorem 5.2. Assuming the UGC, (2 — €)-ESSENTIAL DETECTION FOR DFVS is NP-hard
for any € € (0,1].
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Proof. Let ¢ € (0,1] be given. We can assume w.l.o.g. that % is integral. If not, we could
consider some &’ < & such that 2 is integer and prove hardness for (2 —’)-essential detection.
As a (2 — ¢)-essential detection algorithm is also a valid algorithm for (2 — &’)-essential
detection, this would imply the hardness of (2 — ¢)-essential detection as well.

Now, we use Lemma 5.1 as a starting point for hardness. To do so, let G be an arbitrary
directed graph on n vertices. To use Lemma 5.1, we show how to reduce G into a directed
graph G’, such that solving (2 — €)-ESSENTIAL DETECTION FOR DFVS on G’ allows us
to distinguish between DFVS(G) < (122 + §) n and DFVS(G) > (1 — &)n for some integer
r > 2 and arbitrarily small 6 > 0. We assume w.l.o.g. that n-e/2 is integer. If not, we could
consider the graph obtained by having 2/¢ independent copies of G instead, as the minimum
size of a DFVS relative to the total graph size would be the same. We proceed by explaining
the reduction, after which we prove its correctness.

Our reduction starts with the directed graph G and depends on the value of . The full
version of this paper contains a visual example [20, Figure 1]. We start the construction of G’
as a copy of G. To avoid confusion between vertices in G and G’, we denote the current vertex
set of G’ as P. Next, we expand the graph with two additional sets of vertices Q;, and Qout.
These sets each consist of m := (1 — §)n vertices, which is integer by our assumptions on n
and e. We denote the vertices of Qin as g1, . - ., ¢m and the vertices of Qout as 1, ..., q.,. We
define @ := Qin U Qout-

We complete the construction of G’ by adding more arcs to it. For every i € [m], we add
the arc (¢;,¢;). For every p € P and ¢; € Qin, we add the arc (p,¢;). For every p € P and
g} € Qout, we add the arc (g}, p). This completes the construction of G'. Observe that it
ensures that (p,q;, q;) is a directed cycle for every p € P and ¢ € [m].

To prove the correctness of this reduction, we show that the output of an algorithm for
(2 — £)-ESSENTIAL DETECTION FOR DFVS on G’ can be used as subroutine to distinguish
between DFVS(G) < (12 +6) n and DFVS(G) > (1 — &)n for some integer r > 2 and
arbitrarily small § > 0. In particular, we show that this is possible for r = g, which is integer
by the assumption that % is integer. From now on, we fix r = % and § > 0 to be arbitrarily
small so that 6 < % in particular.

Now, suppose that an algorithm for (2 — €)-ESSENTIAL DETECTION FOR DFVS exists
and let S C V(G') be its output when run on G’ with k set to n. (Recall, k represents a
guess for (an upper bound) of the size of an optimal solution in G’. In this setting, that
would be a guess for the size of a minimum size DFVS in G’.) We show that the following
two implications hold:

> Claim 5.3. (%) If DFVS(G) < (2 +6) n, then |S| < n.
> Claim 5.4. (%) If DFVS(G) > (1 — d)n, then |S| = n.

Then, simply checking the size of the output set S suffices to distinguish between DFVS(G) <
(=2 +6) n and DFVS(G) > (1 — §)n. From Lemma 5.1, we know that this distinction is
NP-hard to make under the UGC, meaning that (2 — ¢)-ESSENTIAL DETECTION FOR DFVS
is also NP-hard when assuming the UGC. To prove Theorem 5.2, it therefore suffices to
prove Claim 5.3 and Claim 5.4. The full proofs can be found in the full version.

Proof sketch for Claim 5.3. Let X be a smallest DFVS in G. It follows from the construction
of G’ that the set X U Qi is a DFVS in G’. Its size is strictly smaller than n, which follows
from our choice of r and by ¢ being arbitrarily small. Since we invoke the algorithm for
(2 — €)-ESSENTIAL DETECTION FOR DFVS with k = n, by Property (G1) the set S must be
a subset of some smallest DFVS in G’. This implies that |S| < n, proving the claim. <
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Proof sketch for Claim 5.4. Suppose that DFVS(G) > (1 — §)n. By construction of G’, the
set P is a DFVS in G’ so that DFVS(G’) < |P| = n. We aim to show that P is in fact the
unique smallest DFVS in G’, by showing that all vertices in P are (2 — ¢)-essential in G’
and therefore cannot be avoided in any (2 — ¢)-approximate solution, let alone in an optimal
solution. Assuming the (2 — €)-essentiality of the vertices in P, it follows from Property (G2)
that the set S (the output of running a (2 —&)-ESSENTIAL DETECTION FOR DFVS algorithm
on G’ with k set to n) must contain all of P, so |S| > n. By Property (G1), no other vertices
can be in S, so |S| = n.

To establish the claim, it therefore suffices to prove that all vertices of P are (2 — ¢)-
essential. By construction of G’, each vertex p € P forms a directed cycle with each of the m
pairs (¢;,¢}) in Q. Any solution avoiding p therefore contains at least m vertices from @, but
also contains at least DFVS(G) > (1 — §)n vertices from P to hit all cycles of G'[P] = G.
Our choice of m and § ensure m + (1 —d)n > (2 —e)n > (2 — e)DFVS(G'). <

This concludes the proof of Theorem 5.2. |

The lower bound of Theorem 5.2 yields an analogous lower bound for DIRECTED VERTEX
MurLTIcUT, since the set of solutions for DIRECTED FEEDBACK VERTEX SET on a graph G
equals the set of solutions to the DIRECTED VERTEX MULTICUT instance obtained from G
by introducing a terminal pair (ug,u;) for every arc (ug,us) of G.

» Corollary 5.5. Assuming the UGC, (2—¢)-ESSENTIAL DETECTION FOR DIRECTED VERTEX
Muvrricut is NP-hard for any € > 0.

By applying the proof technique above, but starting from a result about hardness of
approximation for d-HITTING SET [22], we prove the following lower bound for VERTEX
CoVER. It implies the same lower bound for UNDIRECTED VERTEX MULTICUT.

» Theorem 5.6. (%) Assuming the UGC, (1.5 — €)-ESSENTIAL DETECTION FOR VC is
NP-hard for any € € (0,0.5].

» Corollary 5.7. (k) Assuming the UGC, (1.5 — €)-ESSENTIAL DETECTION FOR VERTEX
Murticut is NP-hard for any € € (0,0.5].

6 Conclusion and discussion

We revisited the framework of search-space reduction via the detection of essential vertices.
The improved running-time guarantees for fixed-parameter tractable algorithms that result
from our detection algorithms give insight into which types of inputs of NP-hard vertex
hitting set problems can be solved efficiently and optimally: not only the inputs whose total
solution size is small, but also those in which all but a small number of vertices of an optimal
solution are essential. Our detection algorithms arise by analyzing the integrality gap for the
v-AVOIDING version of the corresponding LP-relaxation, which only has to be analyzed for
inputs in which {v} is a singleton solution. Our results show that the integrality gaps in this
setting are much smaller than for the standard linear program of the hitting set formulation.

For DIRECTED FEEDBACK VERTEX SET, our lower bound shows that the polynomial-time
algorithm that detects 2-essential vertices is best-possible under the UGC. For VERTEX
COVER and VERTEX MULTICUT, our lower bounds do not match the existing upper bounds.
It would be interesting to close these gaps.

Our positive results rely on standard linear programming formulations of the associated
hitting set problems. In several scenarios, algorithms based on the standard linear program
can be improved by considering stronger relaxations such as those derived from the Sherali-
Adams hierarchy or Lasserre-hierachy (cf. [23]). For example, Aprile, Drescher, Fiorini, and
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Huynh [2] proved that for the CLUSTER VERTEX DELETION problem (which asks to hit
all the induced Ps subgraphs) the integrality gap of the standard LP-formulation is 3, but
decreases to 2.5 using the first round of the Sherali-Adams hierarchy. Applying (1/¢)©™")
rounds further decreases the gap to 2 + . Can such hierarchies lead to better algorithms for
¢-ESSENTIAL DETECTION?

So far, the notion of c-essentiality has been explored for vertex hitting set problems on
graphs. For other optimization problems whose solutions are subsets of objects (for example,
edge subsets, or subsets of tasks in a scheduling problem) one can define c-essential objects as
those contained in all c-approximate solutions. Does this notion have interesting applications
for problems that are not about graphs?
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