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Abstract
The sliding cubes model is a well-established theoretical framework that supports the analysis of
reconfiguration algorithms for modular robots consisting of face-connected cubes. As is common
in the literature, we focus on reconfiguration via an intermediate canonical shape. Specifically, we
present an in-place algorithm that reconfigures any n-cube configuration into a compact canonical
shape using a number of moves proportional to the sum of coordinates of the input cubes. This
result is asymptotically optimal and strictly improves on all prior work. Furthermore, our algorithm
directly extends to dimensions higher than three.
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1 Introduction

Modular robots consist of a large number of comparatively simple robotic units. These
units can attach and detach to and from each other, move relative to each other, and in
this way form different shapes or configurations. This shape-shifting ability allows modular
robots to robustly adapt to previously unknown environments and tasks. One of the major
questions regarding modular robots is universal reconfiguration: is there a sequence of moves
which transforms any two given configurations into each other, and if so, how many moves
are necessary? There are a variety of real-world mechatronics or theoretical computational
models for modular robots and the answer to the universal reconfiguration question differs
substantially between systems [3].

In this paper, we study the sliding cube model, which is a well-established theoretical
framework that supports the analysis of reconfiguration algorithms for modular robots
consisting of face-connected cubes. In this model, a module (cube) can perform two types of
moves: straight-line moves called slides and moves around a corner called convex transitions
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(a) (b)

Figure 1 Moves in the sliding cube model: slide (a) and convex transition (b). Solid cubes are
part of the configuration.

(see Figure 1). Maintaining connectivity during a sequence of moves is the main challenge
when developing algorithms in the sliding cube model. During a move, the configuration
(excluding the moving cube) must stay connected. Furthermore, there have to be sufficient
empty cells to perform the move. This connectivity is crucial for most actual modular robotic
systems since it allows them to retain their structure, communicate, and share other resources
such as energy.

Almost 20 years ago, Dumitrescu and Pach [8] showed that the sliding cube model in
2D (or sliding square model) is universally reconfigurable. More precisely, they presented
an algorithm that transforms any two given configurations with n squares into each other
in O(n2) moves. This algorithm transforms any given configuration into a canonical shape
(a horizontal line) and then reverts the procedure to reach the final configuration. It was
afterwards adapted to be in-place using flooded bounding boxes as canonical intermediate
configurations [15]. Recently, Akitaya et al. [4] presented Gather&Compact: an input-
sensitive in-place algorithm which uses O(Pn) moves, where P is the maximum among the
perimeters of the bounding boxes of the initial and final configurations. The authors also
show that minimizing the number of moves required to reconfigure is NP-hard.

These algorithms in 2D do not directly transfer to 3D: they fundamentally rely on the
fact that a connected cycle of squares encloses a well-defined part of the configuration.
One could ask whether the fact that enclosing space in 3D is more difficult has positive
or negative impact on universal reconfiguration in 3D. Miltzow et al. [14] showed that
there exist 3D configurations in which no module on the external boundary is able to move
without disconnecting the configuration. Hence, simple reconfiguration strategies [11, 13]
can generally not guarantee reconfiguration for all instances.

Until very recently, the most efficient algorithm for the reconfiguration problem in 3D
was the algorithm by Abel and Kominers [1], which uses O(n3) moves to transform any
n-cube configuration into any other n-cube configuration. As is common in the literature,
this algorithm reconfigures the input into an intermediate canonical shape. Stock et al. [17]
just announced a worst-case bound of O(n2) moves for the Abel and Kominers algorithm.
Furthermore, their paper presents an in-place reconfiguration algorithm, which runs in
time proportional to a measure of the size of the bounding box times the number of cubes.
Specifically, their algorithm requires O(n(wd + h)) moves in the worst-case, where w, d, and
h are the width, depth, and height of the bounding box, respectively.

Results. In this paper we present an in-place algorithm that reconfigures any n-cube
configuration into a compact canonical shape using a number of moves proportional to the
sum of coordinates of the input cubes. This result is asymptotically optimal and strictly
stronger than the bounds obtained by Stock et al. [17]. Furthermore, our algorithm directly
extends to hypercube reconfiguration in dimensions higher than three. Last but not least, the
restriction of our algorithm to two dimensions improves upon the best bound for compacting
sliding squares [4].
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Additional related work. For more restricted sliding models, for example, only allowing
one of the two moves in the sliding cube model, reconfiguration is not always possible.
Michail et al. [13] explore universal reconfiguration using helpers or seeds (dedicated cubes
that help other cubes move). They show that the problem of deciding how many seeds are
needed is in PSPACE.

Another popular model for modular robots is the pivoting cube model, in which the
modules move by rotating around an edge shared with a neighboring module. In this model
the extra free-space requirements for the moves that come from pivoting instead of sliding
mean that there are configurations in which no move is possible. Akitaya et al. [3] show
that the reconfiguration problem in this setting is PSPACE-complete. In contrast, adding
five additional modules to the outer boundary guarantees universal reconfigurability in 2D
using O(n2) moves [2]. Other algorithms for pivoting modules require the absence of narrow
corridors in both the initial and final configurations [10, 18]. A more powerful move is to
allow the modules to tunnel through the configuration. With it, O(n) parallel steps suffice
to reconfigure 2D and 3D cubes [5, 6, 12]. However, for most real-world prototype systems,
tunnelling requires the use of metamodules [16] which are sets of modules which act as a
single unit with enhanced capabilities, increasing the granularity of the configurations.

We require that the configuration stays connected at all times. In a slightly different
model that relaxes the connectivity requirement (referred to as the backbone property), Fekete
et al. [9] show that scaled configurations of labeled squares can be efficiently reconfigured
using parallel coordinated moves with a schedule that is a constant factor away from optimal.

2 Preliminaries

In this paper, we study cubical modules moving in the 3-dimensional grid Z3. The handedness
of the coordinate system does not have any impact on the correctness of our algorithm.

A configuration C is a subset of coordinates in the grid. The elements of C are called
cubes. We call two cubes adjacent if they lie at unit distance. For a configuration C, denote
by GC the graph with vertex set C, whose edges connect all adjacent cubes. We say a cell is
a vertex of GZ3 which is not occupied by a cube in C. We always require a configuration
to remain connected, that is, GC must be connected. For ease of exposition we assume C
consists of at least two cubes. Let BC be the bounding box of a configuration C. W.l.o.g. we
assume that the vertex in BC with minimum x-, y-, and z-coordinate is the origin of GZ3 .

In the sliding cubes model, a configuration can rearrange itself by letting cubes perform
moves. A move replaces a single cube c ∈ C by another cube c′ /∈ C. Moves come in two
types: slides and convex transitions (see Figure 1). In both cases, we consider a 4-cycle γ

in GZ3 . For slides, exactly three cubes of γ are in C; c′ is the cell of γ not in C, and c is
adjacent to c′. For convex transitions, γ has exactly two adjacent cubes in C; c is one of
these two cubes, and c′ is the vertex of γ not adjacent to c. The slide or convex transition is
a move if and only if C \ {c} is connected.

SWAT 2024
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Call a cube c = (x, y, z) finished if the cuboid spanned by the origin and c is completely
in C, that is, if {0, . . . , x}×{0, . . . , y}×{0, . . . , z} ⊆ C. We call C finished if all cubes in C are
finished. The compaction problem starts with an arbitrary connected configuration C with
bounding box BC and is solved when all cubes are finished. An algorithm for this problem is
in-place if at most a single cube simultaneously moves through cells face-adjacent to BC .

Most of the algorithm works on vertical contiguous strips of cubes in C called subpillars.
More precisely, a subpillar of C is a subset of C of the form {x} × {y} × {zb, . . . , zt}. In the
remainder of this paper, we denote this subpillar by ⟨x, y, zb .. zt⟩. The cube (x, y, zt) is called
the head, and the remainder ⟨x, y, zb .. zt − 1⟩ is called the support of the subpillar. A pillar
is a maximal subpillar, that is, a subpillar that is not contained in any other subpillar. Note
that there can be multiple pillars above each other with the same x- and y-coordinates, as
long as there is a gap between them. Two sets S and S′ of cubes are adjacent if S contains a
cube adjacent to a cube in S′. The pillar graph PS of a set S of cubes is the graph whose
vertices are the pillars of S and whose edges connect adjacent pillars.

3 Algorithm

For a set of cubes S ⊆ C, let its coordinate vector sum be (XS , YS , ZS) =
∑

(x,y,z)∈S(x, y, z).
Let C>0 be the subset of cubes (x, y, z) ∈ C for which z > 0, and C0 be the subset of cubes for
which z = 0. Let the potential of a cube c = (cx, cy, cz) be Πc = wc(cx + 2cy + 4cz), where
the weight wc depends on the coordinates of c in the following way. If cz > 1, then wc = 5;
if cz = 1, then wc = 4. If cz = 0, then wc depends on cy. If cy > 1, then wc = 3; if cy = 1,
then wc = 2 and lastly, if cz = cy = 0, then wc = 1. We aim to minimize the potential
function ΠC =

∑
c∈C Πc. From now on, let C be an unfinished configuration. We call a

sequence of m moves applied to C safe if the result is a configuration C′, such that ΠC′ < ΠC
and m = O(ΠC − ΠC′). This means that the sequeence of moves reduces the potential by at
least some constant fraction of m by going from C to C′. We show that if C is unfinished, it
always admits a safe move sequence.

The main idea is as follows. For a configuration C, whenever possible, we try to reduce
ZC by some sequence of moves. If that is not possible, then the configuration must admit
another sequence of moves, where a complete pillar is moved to a different x- or y-coordinate.
In this way, by reducing either the z-coordinate of cubes, or the x- or y-coordinate, we
guarantee that eventually every cube becomes finished.

In this paper, we describe the algorithm in three dimensions. However, it naturally
extends to higher dimensions, and also works for squares in two dimensions. In fact, we will
use the algorithm in two dimensions as a subroutine for the three-dimensional case.

Local z reduction. Let P = ⟨x, y, zb .. zt⟩ be a subpillar of C. We refer to the four
coordinates {(x − 1, y), (x + 1, y), (x, y − 1), (x, y + 1)} as the sides of P . On each side, P

has zero or more adjacent pillars. We order these by their z-coordinates; as such, we may
refer to the top- or bottommost adjacent pillar on a side of P . We say that a set of cubes
S ⊆ C is non-cut if GC\S is connected or empty. A pillar of C is non-cut if and only if it is a
non-cut vertex of the pillar graph PC .

Let P = ⟨x, y, zb .. zt⟩ be a non-cut subpillar, and let P ′ = ⟨x′, y′, z′
b .. z′

t⟩ be a pillar
adjacent to P . We define a set of operations of at most three moves within P which locally
reduce ZC (see Figure 2). Because P is non-cut, C \ P is connected. Therefore, if cubes of P

move in such a way that each component (of cubes originally in P ) remains adjacent to a
cube of C \ P , then the result of that operation is a valid configuration.
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Figure 2 Examples of operations (a–d); hatched cubes are non-cut and dashed outlines indicate
cells that must be empty. Each case admits a move sequence that reduces ZC .

(a) If P ′ is a topmost adjacent pillar of P and z′
t ≤ zt − 2, then the topmost cube of P

admits a convex transition that decreases ZC .
(b) If z′

b > zb and (x, y, z′
b −1) is a non-cut cube, then there is a move sequence that decreases

ZC: first slide (x, y, z′
b − 1) to (x′, y′, z′

b − 1) and then slide (x, y, z′
b) to (x, y, z′

b − 1).
There is one special case. We say that P is locked if the head of P has no adjacent
cubes except for P ’s support. If P is locked and z′

b = zt − 1, then the second slide would
disconnect P ’s head from the rest of the configuration. To avoid this, before performing
the second slide, we unlock P by sliding the head of P from (x, y, zt) to (x′, y′, zt), as
shown in the right part of Figure 2b.

(c) If (x, y, zb − 1) /∈ C and z′
b < zb, then (after unlocking P , if necessary) (x, y, zb) admits a

slide to (x, y, zb − 1) that decreases ZC .
(d) If (x, y, zb − 1) /∈ C, P ′ is a bottommost adjacent pillar of P , and zb = z′

b > 0, then (after
unlocking P , if necessary) (x, y, zb) admits a convex transition to (x′, y′, z′

b − 1) that
decreases ZC .

▶ Lemma 1. Let P = ⟨x, y, zb .. zt⟩ be a non-cut pillar. Assume P does not admit any
operation of type (a–d). Then, on each side, P has at most one adjacent pillar P ′ =
⟨x′, y′, z′

b .. z′
t⟩. For these pillars P ′, we have zt ≤ z′

t + 1, and either zb < z′
b or zb = z′

b = 0.

Proof. Consider one side s of P . Because (a) does not apply to P , for any adjacent
pillar P ′ = ⟨x′, y′, z′

b .. z′
t⟩, we know that zt ≤ z′

t + 1. Consider the case that (x, y, z′
b − 1)

is a non-cut cube. Because (b) does not apply, zb ≥ z′
b, and because (c) does not apply

either, zb = z′
b, and finally because (d) does not apply, we have zb = z′

b = 0. Now consider
the case that (x, y, z′

b − 1) is a cut cube. Then because (c) does not apply, we have zb ≤ z′
b,

and finally because (d) does not apply, we have zb < z′
b or zb = z′

b = 0. If zb = z′
b = 0 for

each adjacent pillar P ′, then each side of P can have at most one pillar. If zb < z′
b, then,

because (b) does not apply, (x, y, z′
b − 1) is a cut cube. Therefore, also in this case, there can

be no cube adjacent to the subpillar ⟨x, y, zb .. z′
b − 2⟩, and therefore also in this case there

can be at most one adjacent pillar on each side. ◀

Pillar shoves. Next, we consider longer move sequences that still involve a single subpillar. A
central operation of our algorithm is a pillar shove, which takes as parameters a subpillar P =
⟨x, y, zb .. zt⟩ and a side (x′, y′) of P . The result of the pillar shove is the set of cubes

shove(C, P, (x′, y′)) := (C \ P ) ∪ ⟨x′, y′, zb .. zt − 1⟩ ∪ {(x, y, zb)},

in which the support is effectively shifted to the side (x′, y′), and the head is effectively
moved from (x, y, zt) to (x, y, zb). Although shove(C, ⟨x, y, zb .. zt⟩, (x′, y′)) is well-defined, it
is not necessarily a connected configuration, let alone safely reachable from C.

SWAT 2024
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(e)

P
→ →

→ →3 2

3

(|P | − 9 times)

11

2

→

P ′

(e′)

P

P ′

→ →

Figure 3 Examples of pillar shoves for a long pillar (e) and a short pillar (e′). The zipper
operation on the left is executed |P | − 9 times.

Let P = ⟨x, y, zb .. zt⟩ be a non-cut subpillar, and assume that on at least two sides (x′, y′)
and (x′′, y′′) of P , no cube except possibly the head (x, y, zt) has an adjacent cube. Moreover,
assume that (x′, y′, zt) ∈ C. We define two types of pillar shoves, each of which transforms C
into shove(C, ⟨x, y, zb .. zt⟩, (x′, y′)): a long pillar shove (for |P | ≥ 9; see Figure 3(e)) and a
short pillar shove (for |P | < 9; see Figure 3(e’)). Note that the short pillar shove could be
applied to the |P | ≥ 9 case as well. However, a short pillar shove takes a number of moves
quadratic in |P | and hence would not be safe. A long pillar shove, on the other hand, takes
a number of moves linear in |P | as for each cube, we take a constant number of moves to
move it to its new location (the “zipper” operation shown in the framed part of Figure 3(e)).
As such, both pillar shoves reduce ZC by zt − zb and take O(zt − zb) moves, so they are safe.

(e) Assume that no operations of type (a–d) are possible. Then, by Lemma 1, P =
⟨x, y, zb .. zt⟩ has at most one adjacent pillar on each side, and there exists an adjacent
pillar P ′ = ⟨x′, y′, z′

b .. z′
t⟩ with z′

b > zb (assume that P ′ is such a pillar with the lowest
z′

b), and there is a side (x′′, y′′) ̸= (x′, y′) of P such that (x′′, y′′, zb) /∈ C. Together, this
implies that both sides (x′′, y′′) and (x′, y′) are empty up to at least z′

b − 1 (otherwise
P ′ would not be the pillar with lowest z′

b > zb). Then the subpillar ⟨x, y, zb .. z′
b⟩ (after

unlocking P , if necessary) admits a pillar shove.

▶ Lemma 2. Let P = ⟨x, y, zb .. zt⟩ be a non-cut subpillar. Assume P does not admit any
operation of type (a–e). Then P has no adjacent pillar ⟨x′, y′, z′

b .. z′
t⟩ with z′

b > zb.

Proof. Assume that P has at least two adjacent pillars, say P ′ = ⟨x′, y′, z′
b .. z′

t⟩ and P ′′ =
⟨x′′, y′′, z′′

b .. z′′
t ⟩, such that zb < z′

b and zb < z′′
b ; let P ′ denote the lowest one, such that

zb < z′
b ≤ z′′

b . Then (x′′, y′′, zb) /∈ C, which contradicts that (e) does not apply. Therefore,
there can be at most one such pillar. However, this, together with Lemma 1, implies that
on all other sides (x′′, y′′) ̸= (x′, y′), (x′′, y′′, zb) ∈ C. This means that (x, y, z′

b − 1) is a
non-cut cube, contradicting that (b) does not apply. Therefore, there can be no such adjacent
pillars. ◀
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Figure 4 An example configuration C and its low-high graph LHC . This configuration does still
admit operations of type (a–g).

In summary, if (a–e) do not apply to any non-cut subpillar, then for any non-cut pillar P =
⟨x, y, zb .. zt⟩ and any adjacent pillar ⟨x′, y′, z′

b .. z′
t⟩, we have z′

b = zb = 0.

Local potential reduction. Let C>0 be the subconfiguration consisting of cubes with z > 0.
We may greedily reduce the potential by moving individual cubes in C>0.

(f) Perform any move of C that moves a cube c of C>0, reduces the potential, and keeps c

inside the bounding box BC of C.

▶ Lemma 3. If an unfinished configuration C does not admit any operation of type (a–f),
and some maximal connected component of C>0 consists of a single pillar P = ⟨x, y, zb .. zt⟩,
then P = {(0, 0, 1)} and (0, 0, 0) ∈ C.

Proof. Because C>0 does not contain cubes with z = 0, we have zb = 1 or zb > 1. If zb > 1,
then ⟨x, y, zb .. zt⟩ would be disconnected from the rest of C, so this cannot be the case.
Likewise, if zb = 1 then (x, y, 0) /∈ C would mean that ⟨x, y, zb .. zt⟩ is disconnected from C,
so this cannot be the case either. Therefore zb = 1 and (x, y, 0) ∈ C. If zt > 1, then the
topmost cube of P can do a convex transition to (x + 1, y, zt − 1), reducing the potential.
Therefore zt = 1 and P = {(x, y, 1)}. If x > 0 or y > 0, then we can move the single cube
of P : using the cube at (x, y, 0), the cube of P can slide or convex transition closer to the
origin (0, 0, 0). Therefore, zb = zt = 1 and x = y = 0. ◀

▶ Corollary 4. If a configuration C does not admit any operation of type (a–f) then of the
connected components of C>0, at most one consists of a single pillar.

Low and high components. Let LHC be the bipartite graph obtained from GC by contracting
the components of GC0 and GC>0 to a single vertex (see Figure 4). We call LHC the low-high
graph of C, and we call the vertices of LHC that correspond to components of GC0 and GC>0

low and high components, respectively. For brevity, we may refer to a low or high component
by its corresponding vertex in LHC and vice versa.

We will use the following lemma several times.

▶ Lemma 5. Let H be a high component and P be a pillar of H. For every component H ′

of H \ P , there exists a non-cut pillar of H ′ that is also a non-cut pillar of H.

Proof. Any component with at least two pillars contains at least two non-cut pillars and
every component contains at least one non-cut pillar, so let P ′ be an arbitrary non-cut pillar
of H ′. H \P ′ has at most two components, namely H ′ \P ′ and H \H ′. If P ′ is a non-cut pillar

SWAT 2024
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of H, the lemma holds. Else, if P ′ is a cut pillar of H, then it has exactly these components,
so H ′ \ P ′ is nonempty and P is adjacent to P ′. Therefore, H ′ consists of multiple pillars and
hence contains at least two non-cut pillars. Let P ′′ ̸= P ′ be a second non-cut pillar of H ′.
We claim that P ′′ is also a non-cut pillar of H. Indeed, because P and P ′ are adjacent, the
sets H ′ \ P ′′ ⊇ P ′ and H \ H ′ ⊇ P are adjacent. Hence, H \ P ′′ = (H ′ \ P ′′) ∪ (H \ H ′) has
a single component, so P ′′ is a non-cut pillar of H. ◀

▶ Lemma 6. Assume C does not admit any operation of type (a–f). Suppose that H is a high
component such that C \ H is connected. Then any pillar of H is a non-cut subpillar of C.

Proof. Suppose for a contradiction that a pillar P of H is a cut subpillar of C. Then C \ P

contains at least one component H ′ that does not intersect C \ H. Therefore, H ′ is also a
component of H \ P , so by Lemma 5, there exists a non-cut pillar P ′ = ⟨x′, y′, z′

b .. z′
t⟩ of H ′

that is also a non-cut pillar of H. If z′
b > 1 or (x′, y′, 0) /∈ C, then P ′ would be a non-cut

pillar of C. If C does not admit any operation of type (a–f), all non-cut pillars of C start
at z = 0, which contradicts z′

b > 1 or (x′, y′, 0) /∈ C. Therefore, z′
b = 1 and (x′, y′, 0) ∈ C,

but then H ′ would not be a component of C \ P , as H ′ is adjacent to (x′, y′, 0) ∈ C \ P .
Hence, H ′ cannot exist, completing the proof. ◀

▶ Corollary 7. If H is a high component such that C \ H is connected, then every pillar of H

is part of a pillar of C starting at z = 0.

▶ Lemma 8. Assume C does not admit any operation of type (a–f). If H is a high component
such that C \ H is connected, then H consists entirely of finished cubes.

Proof. Assume for contradiction that H contains an unfinished cube. Because of Corollary 7,
every pillar of H is part of a pillar of C starting at z = 0. Therefore, H contains an unfinished
cube (x, y, z) with x > 0 or y > 0. Let c be such a cube that lexicographically maximizes
(z, −y, −x). If x > 0 and (x − 1, y, z) /∈ H (and thus (x − 1, y, z) /∈ C), then we can move
c to either (x − 1, y, z) or (x − 1, y, z − 1), reducing the potential while keeping all cubes
within the bounding box BC , so (f) would apply. If y > 0 and (x, y − 1, z) /∈ H, then we can
similarly move c to either (x, y −1, z) or (x, y −1, z −1). On the other hand, if both (1) x = 0
or (x − 1, y, z) ∈ H and (2) y = 0 or (x − 1, y, z) ∈ H, then because c is the unfinished cube
of H that maximizes (z, −y, −x), the cubes (x − 1, y, z) (if x > 0) and (x, y − 1, z) (if y > 0)
are finished, but then (x, y, z) would also be finished. Contradiction. ◀

▶ Corollary 9. There is at most one high component that contains a finished cube, as any
high component that contains a finished cube also contains (0, 0, 1).

Handling low components. We pick a vertex R of LHC that we call the root of LHC.
If (0, 0, 0) ∈ C, pick R to be the low component that contains (0, 0, 0). Otherwise, pick R to
be an arbitrary low component. Let d be the maximum distance in the graph LHC from R

to any vertex. Let U be the set of vertices of LHC that are locally furthest away (in LHC)
from R. That is, all neighbors v of a vertex u ∈ U lie closer to R. All vertices of U are
non-cut subsets of C. Therefore, if U contains a high component H, then H consists entirely
of finished cubes (and H is adjacent to R), so U contains at most one high component.

If d = 0, then C consists of a single low component. If d = 1, then C consists of one high
and one low component. Set U contains exactly one high component, and it consists entirely
of finished cubes. If d ≥ 2, then C consists of at least two low components and U consists of
at least one low component, and at most one high component. We now give operations that
can be executed when d ≥ 2, such that we end up with a configuration where d = 0 or d = 1.
We will show how to handle the case where d = 0 or d = 1 afterwards.
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We call a low component L clear if C \ L is connected, L ≠ R, and L is connected to a
non-cut pillar P in C \ L. We call such a pillar P a clearing pillar. We show in Lemma 10
that if d ≥ 2, there is at least one clear low component. For this, consider a low component
that is furthest from R (that is, at distance d), and let H be an adjacent high component.
Let LH be the set of low components in U that are adjacent to H (and hence also lie at
distance d from R).

▶ Lemma 10. At least one low component L ∈ LH is connected to H via a non-cut pillar
of C \ L.

Proof. Let C′ = C \
⋃

L∈LH
L. Let HLH

be the set of cubes of H that are adjacent to a low
component in LH . Fix an arbitrary cube cs of R, and in the graph GC′ , consider a cube
c of HLH

that is farthest from cs. Let P be the pillar of H that contains c. We will show
that P is a non-cut pillar of C′. Suppose for a contradiction that P is a cut pillar, then C′ \ P

contains at least two components, at most one of which contains R. Let H ′ be a component
of C′ \ P not containing R. If H ′ contains a cube not in H, then that cube lies in a low or
high component of C′ that lies closer to R, which therefore remains connected to R after
removing P . Therefore, H ′ is a subset of H.

All cubes (x, y, z) ∈ H ′ with z = 1 lie farther from cs than c, and therefore H ′ does not
contain any cubes of HLH

, so H ′ is not adjacent to any cubes of LH . Therefore, H ′ is not
adjacent to any cubes of (C \ P ) \ H ′. By Lemma 5, H ′ contains at least one non-cut pillar
P ′ that is also a non-cut pillar of H. P ′ is also a non-cut pillar of C, but all non-cut pillars
of C start at z = 0 (Corollary 7), which is a contradiction. ◀

We will now present an algorithm that repeatedly selects a (non-root) clear low compo-
nent L, and performs the following operation on it:

(g) Perform any move of C that moves a cube c of L, reduces the potential, and keeps c

inside the bounding box BC of C.

Note that (g) is essentially the same as (f), but now executed on a low rather than a high
component. When operations of type (g) are executed, one of three special events can occur:
(1) L connects to a different low component, merging them.
(2) L connects to the root, and becomes part of the root.
(3) L reaches the origin (at which point it becomes the root).

When none of the operations (a–g) are available for a clear low component L with
clearing pillar ⟨px, py, zb .. zt⟩, there are two cases. Either L contains enough cubes to reach
the origin (|L| ≥ x + y), or L does not contain enough cubes to reach the origin (|L| < x + y).
We call these low components big and small respectively and we handle them differently. For
small low components, we would like to shove the clearing pillar. However, this might not
be valid and might disconnect the configuration in the process. Therefore, we will devise a
special operation that is only safe on small low components.

Small low components. If a clear low component is too small to reach the origin, we want
to move the clearing pillar and do a pillar shove. However, it could be that moving the
clearing pillar would disconnect the low component, or that there are cubes around the
clearing pillar obstructing the shove. For both of these situations, we devise a new operation.
Let NP be the set of cells c with z = 1 in BC neighboring P .
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▶ Lemma 11. Let C be a configuration that does not admit operations of type (a–g). Let L

be a clear component and P = ⟨x, y, zb .. zt⟩ be its clearing pillar. Assume zt ≥ 2. The cubes
in NP need to be either all present, or all absent from C.

Proof. Assume for a contradiction that at least one, but at most three of the cubes neighboring
P with z = 1 are present. Denote these cubes by c1, c2, and c3; not all need to be present.
Since P is a clearing pillar, (C\L)\P is connected. If the cube (x, y, 2) is completely surrounded
by cubes, then it can do a potential reducing operation of type (b). Otherwise, the cube
(x, y, 2) can do a potential reducing operation of type (f). Both lead to a contradiction. ◀

Depending on if the cubes in NP are present, we perform the following operations on L.

(h) Let L be a clear component and P = ⟨x, y, zb .. zt⟩ be its clearing pillar. Assume at least
one of the cubes in NP is present. By definition, L ̸= R. Therefore, there exists an
empty cell e, with coordinates (ex, ey, 0), with ex < x or ey < y. Let e be such an empty
cell with highest y, and from those, the one with highest x. We now want to take the
cube c = (x, y, 0) and move it on a shortest path via z = −1 towards e, reducing its
potential. This however, could disconnect parts of L if c is a cut cube of L and if zt = 1.
(If zt ≥ 2, then by Lemma 11, all cubes in NP are present and c is not a cut cube of
the configuration.) In this case, we first gather cubes from L to fill the 3 × 3 horizontal
square centered around c, making c a non-cut cube, before moving c towards e. Now the
configuration stays connected when moving c to e. If we gathered cubes because zt = 1,
the head of P at (x, y, 1) is not a cut cube, and can subsequently move down.

If (a–h) do not apply, then all cubes from NP are not in C.
(i) Let L be a clear component and P = ⟨x, y, zb .. zt⟩ be its clearing pillar. All cubes in NP

are absent from C. Gather cubes from L towards P according to Figure 5 and do a pillar
shove on P . Then, move the extra cubes back to their original location.

The only reason that (e) is not possible, is that P is a cut pillar, since it is the only
pillar connecting L to the other components. Therefore, gathering cubes from L to P makes
the operations (h) and (i) viable. This is done in the following way. Let the clearing pillar
of L be P = ⟨x, y, zb .. zt⟩. Let zt be the highest z such that only (x, y, zt) has a horizontal
neighboring cube (x′, y′, zt). Let c = (x, y, 0) ∈ L be the cube below P . Assume that P has at
least size 5. Then, repeatedly select the non-cut cube c ∈ L that lexicographically maximizes
(z, y, x) and move it towards P to fill the 3 × 3 square (for (h)), or create the configuration
shown in Figure 5a (for (i)). The cubes that were gathered keep the configuration connected
during the operation. For (i), if P has fewer than 5 cubes, we gather cubes towards P in a
different way. Because P is too small to gather enough cubes for a pillar shove, we simply
fill the cells that P would want to go towards, see Figure 5b. Then, the original P can be
deconstructed. Again, using a constant number of moves, we can decrease the potential
vector, while maintaining connectivity.

▶ Lemma 12. Operations of type (h) and (i) are safe.

Proof. For an operation of type (h) or (i), let c = (cx, cy, cz) be the head of P . We will show
that any operation of type (i) strictly decreases PC by O(cz +cy +cx) and uses O(cz +cy +cx)
moves to do so. First we analyze the operations of type (h) or (i) with a pillar of size larger
than one: the head c = (cx, cy, cz) of the pillar involved moves down from cz to z = 1, so PC
reduces by 4(cz − 1). The cubes beneath c from z = 1 up to cz might increase their x- or
y-coordinate by 1. Therefore, the potential also increases by 2(cz − 1) at most. The cubes
that are gathered and then returned do not move positions and therefore do not affect the
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(a) (b)

(x′, y′)
(x′, y′)

Figure 5 The start configuration for a pillar shove for a clearing pillar. The white pillar is the
clearing pillar. The red cube is part of L. The blue cubes are required and need to be gathered. (a)
Clearing pillar of height at least 5. (b) The configuration for a pillar shove of height at most 4.

potential. Moreover, wc becomes one lower, because cz decreases from cz > 1 to cz = 1. In
total, the potential PC decreases by 2(cz − 1) + cx + cy. For operations of this type with a
pillar of size one, the potential decreases by cz + cy + cx, since the head moves from z = 1 to
z = 0.

Now we will show that executing one of these operations, which reduces ΠC by O(cz +
cy + cx), takes O(cz + cy + cx) moves and is therefore safe. Moving via a shortest path over
a component with x cubes takes O(x) moves. Gathering the seven cubes from L to the
clearing pillar and moving them back takes at most O(cx + cy) moves, since L is a small
low component and has therefore size at most O(cx + cy). Then, the normal pillar shove
takes O(cz) moves. Hence, the total operation takes O(cz + cy + cx) moves and is safe. ◀

Big low components. If a low component L is big, that is, if it contains enough cubes to
reach the origin from its clearing pillar, we want L to actually contain the origin. Performing
operations of types (g) is not sufficient to achieve this, and operations (h) and (i) are only
safe on small low components. To make L contain the origin, note that all of our operations
not only work in 3D, but also in 2D when instead of prioritizing reducing the z-coordinate,
we prioritize reducing the y-coordinate. We run the algorithm on L in 2D, with an additional
constraint. We fix an arbitrary clearing pillar of L, and call the cube p of L below that
clearing pillar its pinned cube. When executing the algorithm in 2D, we never move p. With
minor changes, all of the lemmas above still hold in the presence of at most one pinned cube.

We abstract from L being a clear low component, and instead consider a component C in
which we disallow a single cube p ∈ C from moving. We again call this cube p the pinned cube.
We adapt our algorithm for configurations without pinned cubes to one for configurations
with pinned cubes as follows. Whenever we are looking for the next operation to perform,
simply disregard any operation that would move the pinned cube. We cannot guarantee
that this adapted algorithm results in a finished configuration, but for our purposes, it is
sufficient to prove that it reaches the origin if it is big enough.

Recall that R is a vertex of LHC chosen as follows. If C contains a low component that
contains the origin, then let R be that low component. Otherwise, we choose R to be an
arbitrary low component. If C already contains the origin, the lemma trivially holds, so we
would choose R to be an arbitrary low component. However, since there exists a pinned
cube p, we need to be more careful with our choice and instead pick R as follows. If there
exists a low component that either contains p or that neighbors a pillar containing p, let R

be that low component. We are now ready to prove the following lemma.
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▶ Lemma 13. Let C be a configuration with a single pinned cube p = (px, py, pz) and assume
C has at least px + py + pz cubes. If C does not admit operations of type (a–i) that do not
move p, then C contains the origin.

Proof. Assume there are at least two low components. Let L1 and L2 be the low components
such that the distance between them in LHC is maximized. Hence, if there would be no pinned
cube p, we could pick any of them and the other would be clear (Lemma 10). Because C only
contains a single pinned cube, we pick R to be either L1 or L2 such that the other one is
clear. Therefore, there is always a clear low component. While a clear low component exists,
we can execute operations (g–i) if it is small, or perform operations one dimension lower if it
is big and does not contain the origin. This is a contradiction and therefore there can be at
most one low component L.

Because no operations of type (h) or (i) are possible on L, its clearing pillar must contain p.
Furthermore, no operations are possible on L in one dimension lower, so L must contain
its own origin by recursion. Because there are no possible operations of type (g) on L and
because it is big enough, this means that L also contains the global origin. ◀

If none of the operations (a–g) are possible, every clear low component either contains
the origin, or is too small to do so.

The algorithm terminates when no clear low component (and hence only the root low
component) remains. Recall that d is the maximum distance from the root R of LHC over
all vertices. We are left with two cases. Either no high component remains (d = 0), or there
is at most one high component (d = 1), which consists of entirely finished cubes.

As stated before, all operations (a–i) not only work in 3 dimensions, they also work in 2
dimensions when instead of prioritizing reducing the z-coordinate, we prioritize reducing the
y-coordinate. Moreover, these operations never move the origin. Therefore, we can now run
the exact same operations on the bottom layer in 2D, until the root component is finished. If
there is still a high component, it stays connected via the origin. We end up with a finished
configuration.

Running time. Recall that the potential of a cube c = (cx, cy, cz) is Πc = wc(cx + 2cy + 4cz),
where the weight wc depends on the coordinates of c in the following way. If cz > 1, then
wc = 5, if cz = 1, then wc = 4. If cz = 0, then wc depends on cy. If cy > 1, then wc = 3,
if cy = 1, then wc = 2 and lastly, if both cz = cy = 0, then wc = 1. The potential of the
complete configuration is the sum of potential of the individual cubes. Moreover, a sequence
of m moves is safe if the result is a configuration C′ inside BC, such that ΠC′ < ΠC and
m = O(ΠC − ΠC′). Each operation of type (a–i) strictly reduces the potential function.
Moreover, each of the operations (a–g) is trivially safe. We have shown that operations (h)
and (i) are also safe (see Lemma 12).

Because all operations are safe and reduce the potential, the algorithm performs at most
O(ΠC) = O(XC + YC + ZC) moves. For the problem of reconfiguring the cubes into a finished
configuration, this is worst-case optimal. An example achieving this bound is a configuration
consisting of a path of cubes in a bounding box of equal side lengths w tracing from the
origin to the opposite corner of the bounding box. To see that, note that any finished cube
at position (x, y, z) requires there to exist n ≥ x · y · z cubes, so at least one of x, y, and z

is at most n1/3 for any candidate finished position. There are Ω(n) cubes (x′, y′, z′) that
are initially Ω(w − n1/3) = Θ(n) = Θ(x′ + y′ + z′) away from any such potential finished
position.
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4 Conclusion

We presented an in-place algorithm that reconfigures any configuration of cubes into a compact
canonical shape using a number of moves proportional to the sum of coordinates of the
input cubes. This result is asymptotically optimal. However, just as many other algorithms
in the literature, our bounds are amortized in the sense that we make use of a number of
dedicated cubes which help other cubes move by establishing the necessary connectivity in
their neighborhood. This is in particular the case with our pillar shoves, that need some
additional cubes to gather at the pillar, to then move up and down the pillar to facilitate
moves. These extra moves are charged to one cube in the pillar reducing its coordinates. In
the literature such cubes are referred to as helpers, seeds, or even musketeers [2, 7, 13, 17].

Such helping cubes are in many ways in conflict with the spirit of modular robot
reconfiguration: ideally each module should be able to run the same program more or less
independently, without some central control system sending helpers to those places where
they are needed. The input-sensitive Gather&Compact algorithm in 2D by Akitaya et al. [4]
does not require amortized analysis and gives a bound on the number of moves for each
square in terms of the perimeters of the input and output configurations. The question
hence arises whether it is possible to arrive at sum-of-coordinates bounds either in 2D or 3D
without amortization? For example, is there a compaction algorithm in which each cube in
the configuration that starts at position (x, y, z) performs at most O(x + y + z + a) moves,
where a is the average L1-distance that cubes lie from the origin?
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