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Abstract

There are a lot of recent works on generalizing the spectral theory of graphs and graph partitioning to
k-uniform hypergraphs. There have been two broad directions toward this goal. One generalizes the
notion of graph conductance to hypergraph conductance [Louis, Makarychev – TOC’16; Chan, Louis,
Tang, Zhang – JACM’18]. In the second approach, one can view a hypergraph as a simplicial complex
and study its various topological properties [Linial, Meshulam – Combinatorica’06; Meshulam,
Wallach – RSA’09; Dotterrer, Kaufman, Wagner – SoCG’16; Parzanchevski, Rosenthal – RSA’17]
and spectral properties [Kaufman, Mass – ITCS’17; Dinur, Kaufman – FOCS’17; Kaufman, Openheim
– STOC’18; Oppenheim – DCG’18; Kaufman, Openheim – Combinatorica’20].

In this work, we attempt to bridge these two directions of study by relating the spectrum
of up-down walks and swap walks on the simplicial complex, a downward closed set system, to
hypergraph expansion. More precisely, we study the simplicial complex obtained by downward
closing the given hypergraph and random walks between its levels X(l), i.e., the sets of cardinality
l. In surprising contrast to random walks on graphs, we show that the spectral gap of swap walks
and up-down walks between level m and l with 1 < m ⩽ l cannot be used to infer any bounds on
hypergraph conductance. Moreover, we show that the spectral gap of swap walks between X(1)
and X(k − 1) cannot be used to infer any bounds on hypergraph conductance. In contrast, we
give a Cheeger-like inequality relating the spectra of walks between level 1 and l for any l ⩽ k to
hypergraph expansion. This is a surprising difference between swaps walks and up-down walks!

Finally, we also give a construction to show that the well-studied notion of link expansion in
simplicial complexes cannot be used to bound hypergraph expansion in a Cheeger-like manner.
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33:2 Sparse Cuts in Hypergraphs from Random Walks on Simplicial Complexes

1 Introduction

In recent years, there have been two broad directions of generalizations of graph partitioning
and the spectral theory of graphs to hypergraphs. One direction attempts to generalize the
notion of conductance in graphs to hypergraphs [23, 8]. The graph expansion (also referred
to as graph conductance) is defined as

ϕG
def= min

S⊆V

volG(S)⩽ volG(V )
2

ϕG(S), where ϕ(S) def= w(∂G(S))
volG(S)

with volG(S) being the sum of degrees of the vertices in S and ∂G(S) being the edges crossing
the boundary of the set S, hence w(∂G(S)) is the sum of weights of the edges on the boundary.
Analogously, the hypergraph expansion/conductance is defined as

ϕH
def= min

S⊆V

volH (S)⩽ volH (V )
2

ϕH(S), where ϕH(S) def= Π (∂H(S))
volH(S)

with volH(S) being the sum of degrees of the vertices in S, and ∂H(S) being the edges
crossing the boundary of the set S, and Π(∂H(S)) is the sum of the weight of edges on the
boundary.

Another direction views a hypergraph as a simplicial complex, a downward closed set
system, and studies its various topological properties [22, 24, 12, 26] and spectral properties
[19, 11, 20, 21, 25]. The work [11] introduced a generalization of random walks on graphs
to random walks over the faces1 of the simplicial complex; this random walk has found
numerous applications in a myriad of other problems [11, 9, 4, 3, 1], etc., to state a few.

There has been a lot of work on understanding the relationship between random walks
on graphs (including the spectra of the random walk operator) and graph partitioning. The
celebrated Cheeger’s inequality gives one such relation between the graph expansion and the
second eigenvalue of the random walk matrix λ2 as,

1 − λ2

2 ⩽ ϕG ⩽
√

2(1 − λ2).

In this work, we aim to bridge the gap between these two directions by studying the
relationship between hypergraph expansion and random walks on the corresponding simplicial
complex.

In a seminal work, [5] showed that if a graph has a “small” threshold rank2, then they
can compute a near-optimal assignment to unique games in time exponential in the threshold
rank. The works [7, 15] gave an SoS hierarchy-based algorithm generalizing this result to
any 2-CSP. The work [2] introduces the notion of swap walks and uses that to define a
notion of threshold rank for simplicial complexes. Using their notion of threshold rank, they
generalized the results of [7, 15] to k-CSPs. Further, [5] showed that large threshold rank
graphs must have a small non-expanding set (they also gave a polynomial time algorithm to
compute such a set). A natural open question from the work of [2, 17] is whether hypergraphs
with large threshold rank (the hypergraph analogue is called non-splittability) have a small,
non-expanding set. Our first result answers this question negatively.

1 The faces (the hyperedges) here may belong to different levels. A level X(l) denotes the set of hyperedges
of cardinality l.

2 the number of “large” eigenvalues of the adjacency matrix, see Definition 30 for formal definition.
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▶ Theorem 1 (Informal Version of Theorem 34 and Corollary 35). For any n ⩾ 6, k ⩾ 3, there
exists a k-uniform hypergraph H with at least n vertices such that ϕH ⩾ 1

k but for any m, l,
if either m, l ⩾ 2 or m = k − l, the swap walk from X(m) to X(l) has threshold rank at least
Ωk(n) (for any τ ∈ [−1, 1] as choice of threshold). Moreover, H is not (τ, Ωk(n))-splittable
for any τ ∈ [−1, 1].

For a splittable hypergraph, there is some l, such that the swap walk graph between
X(l) and X(k − l) has low threshold rank. Then, it follows from Theorem 1 that there are
non-splittable expanding hypergraphs (see Corollary 35 for the precise statement).

[2, 9] show that for a high dimensional expander (HDX)3 the swap walks indeed have a
large spectral gap4. However, we are interested in the case when the hypergraph instance is
not an HDX. One recalls that for a non-expanding graph, Cheeger’s inequality and Fiedler’s
algorithm allow us to compute a combinatorial sparse cut in the graph. Similarly, we ask
whether one can compute a sparse cut in the input hypergraph in this setting.

Unfortunately, in the light of Theorem 1, computing a sparse cut in the hypergraph when
swap walks (in the setting studied by [2, 17]; see Theorem 34 for the precise statement)
have a small spectral gap is generally not possible. This is in surprising contrast to the case
of graphs where the swap walk reduces to the usual random walk, and the second largest
eigenvalue of the random walk matrix is related to graph expansion via Cheeger’s inequality.

Next, we investigate whether the spectral gap of the up-down walk introduced by [11] can
be related to hypergraph expansion. More formally, we investigate whether the spectral gap
of the up-down walk between levels X(m) and X(l) (l > m) be related to the hypergraph
expansion in a Cheeger-like manner. Here, the answer depends on m and l. We first show
that if m ⩾ 2, then no such relation is possible.

▶ Theorem 2 (Informal Version of Theorem 36). For any positive integers n, k with n ⩾
6, k ⩾ 3, there exists a k-uniform hypergraph H on at least n vertices such that ϕH ⩾ 1

k and
for all positive integers 2 ⩽ m < l ⩽ k the threshold rank of the up-down walk matrix between
levels X(m) and X(l) is at least Ωk(n) (for any τ ∈ [−1, 1] as choice of threshold).

Contrasting this, we show that if m = 1, then such a relationship is indeed possible.

▶ Theorem 3 (Informal Version of Theorem 18). Given a hypergraph, where the second largest
eigenvalue of the up-down walk matrix (of simplicial complex induced by the hypergraph)
between levels X(1) and X(l), for some l ∈ [k] is 1 − ε we have ε

k ⩽ ϕH ⩽ 4
√

ε. Furthermore,
there exists a polynomial time algorithm which, when given such a hypergraph, outputs a set
S such that its expansion in the hypergraph ϕH(S) ⩽ 4

√
ε.

Theorem 3 and Theorem 1 also show a surprising difference between up-down walks and
swap walks whereby we can compute sparse cut on the hypergraph using up-down walk from
X(1) to X(l), l ∈ [k] using a Cheeger-like inequality, whereas it is not possible (in general)
to compute a sparse cut by considering the spectrum of swap walks from X(1) to X(k − 1).

Yet another notion of spectral expansion called link expansion of a simplicial complex has
been studied recently in many works [19, 11, 20, 21, 25] having applications in [11, 9, 4, 3, 1]
(see Definition 9 for formal definition). Our final result shows that hypergraphs with large
hypergraph expansion and arbitrarily small link expansion exist. Therefore, hypergraph
expansion cannot be bounded by link expansion in a Cheeger-like manner.

3 For formal definition see Definition 9.
4 For a linear operator A : V → W where V ̸= W the spectral gap refers to σ1(A) − σ2(A), while for a

linear operator B : V → V , it refers to λ1(A) − λ2(A).
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▶ Theorem 4 (Informal Version of Theorem 43). Let n, k be any positive integers such that
n ⩾ 3k and k ⩾ 3, there exists a k-uniform hypergraph H on n + k − 2 vertices such that the
link expansion of the induced simplicial complex X is at most O( 1

n2 ) and the expansion of H

is at least Ωk(1).

To the best of our knowledge, this is the first construction to show this.
The work [23] (see Remark 1.9) used an example similar in spirit to our constructions to

show that another notion of expansion on simplicial complexes called co-boundary expansion
is incomparable to the hypergraph expansion. In particular, they constructed a class of
k-uniform hypergraphs, each with co-boundary expansion (at dimension k) as one but
containing hypergraphs with essentially arbitrary hypergraph expansion. Still, [23] did
not give an explicit example that shows a separation between hypergraph expansion and
quantities like the link expansion, spectral gap, or threshold rank of the random walks on a
simplicial complex (i.e., up-down walk, swap walk).

The m-dimensional co-boundary expansion may also seem related to the expansion of
the up-walk from the level m − 1 to m as both of these consider the ratio of the number
of m-dimensional faces containing a set of m − 1-dimensional faces to the volume of the
set with the only difference being how the volume is computed. Yet, we do not know if
such a relation exists. One may similarly compare the expansion of the down-walk and
the boundary expansion. But still, Steenbergen, Klivian, and Mukherjee [28] and Gundert
and Wagner [14] were able to show that for the m-dimensional co-boundary expansion no
Cheeger-type inequality can be shown, whereas such a relation is immediate from Cheeger’s
inequality in case of up-walk. Nevertheless, [28] obtained (under some minor assumptions)
an extension of Cheeger’s inequality on the m-dimensional boundary expansion. Finally, [10]
showed that the operator norm of the difference between up-down and down-up walks between
two consecutive levels is within an O(k) factor of link expansion. In contrast, no such relation
between up-Laplacian, down-Laplacian (see [28] for definition) and link expansion is known.

1.1 Additional Related Works
The work [8] generalized the Laplacian of graphs to hypergraphs by expressing the graph
Laplacian in terms of a non-linear diffusion process. They showed an analogue of Cheeger’s
inequality relating the expansion of the hypergraph to the second smallest eigenvalue of the
Laplacian. Yoshida [30] introduced the notion of submodular transformations and extended
the notions of degree, cut, expansion, and Laplacian to them. They derived the Cheeger’s
inequality in this setting. This generalizes Cheeger’s inequality on graphs and hypergraphs
(as in [8]) while showing similar inequalities for entropy.

There are also several works exploring Cheeger-like inequalities for simplicial complexes.
Parzanchevski, Rosenthal, and Tessler [27] defined the notion of Cheeger constant h(X) for
a simplicial complex, a generalization of the sparsity of a graph. The quantity h(X) is the
minimum over all partitions of the vertex set V into k sets the fraction of k-dimensional
faces present crossing the partition compared to the maximum possible k-dimensional faces
crossing the partition. They also showed that for simplicial complex X with a complete
skeleton h(X) ⩾ λ(X) where λ(X) is the link expansion of the simplicial complex. Gundert
and Szedlák [13] extended this result to any simplicial complex. Very recently, Jost and
Zhang [18] extended the Cheeger-like inequality for bipartiteness ratio5 on graphs due to
Trevisan [29] to a cohomology based definition of bipartiteness ratio for simplicial complexes.

5 The bipartiteness ratio of G is defined as βG = minS⊆V,L⊔R=S
2∂(L)+2∂(R)+∂(S)

volG(S) .
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In the case of an HDX, Bafna, Hopkins, Kaufmann, and Lovett [6] consider high-
dimensional walks (a generalization of swap walks and up-down walks) on levels i < k.
They then relate the (non-)expansion of a link6 of a level-j face (with j ⩽ i) in the graph
corresponding to the walk and level-j approximate eigenvalue of the walk. Here λj is the
level-j approximate eigenvalue of a high-dimensional walk M if there is a function fj such
that ∥Mfj − λjfj∥ ⩽ O(√γ) ∥fj∥ and fi = Ui−jg where g ∈ RX(j).

1.2 Preliminaries

1.2.1 Simplicial Complexes

▶ Definition 5. A simplicial complex X is a set system that consists of a ground set V and
a downward closed collection of subsets of V , i.e., if s ∈ X and t ⊆ s then t ∈ X. The sets
in X are called the faces of X.

We define a level/slice X(l) of the simplicial complex X as X(l) = {s ∈ X||s| = l}. Note
that for the simplicial complex corresponding to the hypergraph, the top level X(k) is the set
of k-uniform hyperedges and the ground set of vertices7 is denoted by X(1). By convention
we have that X(0) = {∅}. Similarly, we define X(⩽ l) = {s ∈ X||s| ⩽ l}.

We call a simplicial complex X as k-dimensional if k is the smallest integer for which
X(⩽ k) = X.8 A k-dimensional simplicial complex X is a pure simplicial complex if for all
s ∈ X there exists t ∈ X(k) such that s ⊆ t.

▶ Remark 6. We note that our definition of dimension deviates slightly from the standard
definition. In the standard definition, the dimension is the cardinality of the largest face
minus 1.

Given a k-uniform hypergraph H = (V, E), we obtain a pure simplicial complex X where
the ground set is V and downward close the set system E of hyperedges. Given a distribution
Πk on the hyperedges, we have an induced distribution Πl on sets s in level X(l) given by
Πl(s) = 1

(k
l)

∑
e∈E|s⊆e Πk(e). We refer to the joint distribution as Π = (Πk, Πk−1, . . . , Π1).

If the input hypergraph is unweighted, then we take the distribution Πk to be the uniform
distribution on X(k). We thus obtain a weighted simplicial complex (X, Π). We refer to
(X, Π) as the (weighted9) simplicial complex induced by (H, Πk).

▶ Lemma 7 (Folkore). For any two non-negative integers m ⩽ l and any s ∈ X(m), we have
that

∑
t∈X(l)|t⊇s Πl(t) =

(
l

m

)
Πm(s).

In this work, we consider a notion of expansion for weighted simplicial complexes called
link expansion. To that end, we first define the notion of a link of a complex and its skeleton.

▶ Definition 8. For a simplicial complex X and some s ∈ X, Xs denotes the link complex
of s defined by Xs = {t \ s|s ⊆ t ∈ X}. The skeleton of a link Xs for a face s ∈ X(⩽ k − 2)
(where k is the size of the largest face) denoted by G(Xs) is a weighted graph with vertex set
Xs(1), edge set Xs(2) and weights proportional to Π2.

6 [6] uses a different (albeit related) notion of the link of a face σ ∈ X(j). There, the link of a face σ is
the set of level-i faces containing σ.

7 We shall often simply write v for a face {v} ∈ X(1)
8 We shall often write X(⩽ k) for X to stress the fact that X is k-dimensional
9 Whenever it is clear from the context, we use X in place of (X, Π) for the sake of brevity.

SWAT 2024
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▶ Definition 9 (γ-HDX, [19, 11]). A simplicial complex X(⩽ k) is a γ-High Dimensional
Expander (γ-HDX) if for all s ∈ X(⩽ k − 2), the second singular value of the adjacency
matrix of the graph G(Xs) (denoted by σ2(G(Xs))) satisfies σ2(G(Xs)) ⩽ γ. We refer to
1 − γ as the link-expansion of X.

▶ Definition 10 (Weighted inner product). Given two functions f, g ∈ RS, i.e., f, g : S → R
and a measure µ on S, we define the weighted inner product of these functions as, ⟨f, g⟩µ =
Es∼µ[f(s)g(s)] =

∑
s∈S f(s)g(s)µ(s) . We drop the subscript µ from ⟨·, ·⟩µ whenever µ is

clear from context.

▶ Remark. In this paper, we will use the weighted inner product between two functions f, g ∈
RX(m) on levels X(m) of the simplicial complex X under consideration and with the measure
Πm, unless otherwise specified. In particular, for any linear operator A : RX(m) → RX(l) the
adjoint A† and the i-th largest singular value σi(A) are with respect to this inner-product.

1.2.2 Walks on a Simplicial Complex

▶ Definition 11 (Up and Down operators). Given a simplicial complex (X, Π), we define the
up operator Ui : RX(i) → RX(i+1) that acts on a function f ∈ RX(i) as

[Uif ](s) = E
s′∈X(i),s′⊆s

[f(s′)] = 1
i + 1

∑
x∈s

f(s \ {x})

and the down operator Di+1 : RX(i+1) → RX(i) that acts on a function g ∈ RX(i+1) as

[Di+1g](s) = E
s′∼Πi+1,s′⊃s

[g(s′)] = 1
i + 1

∑
x/∈s

g(s ∪ {x})Πi+1(s ∪ {x})
Πi(s) .

As a consequence of the definition of the up and down operators, the following holds.

▶ Lemma 12 (Folklore). U†
i = Di+1.

The up operator, Ui, can be thought of as defining a random walk moving from X(i + 1)
to X(i) where a subset of size i is selected uniformly for a given face s ∈ X(i + 1). Similarly,
the down operator Di+1 can be thought of as defining a random walk moving from X(i) to
X(i + 1) where a superset s′ ∈ X(i + 1) of size i + 1 is selected for a given face s ∈ X(i) with
probability Πi+1(s′)

Πi(s) . This leads us to the following definition.

▶ Definition 13. Given a simplicial complex (X, Π) and its two levels X(m), X(l), we
define a bipartite graph on X(m) ∪ X(l) as Bm,l = (X(m) ∪ X(l), Em,l, wm,l) where Em,l =
{{s, t} |s ∈ X(m), t ∈ X(l), and s ⊆ t} and m ⩽ l. The weight of an edge {s, t} where
s ∈ X(m) and t ∈ X(l) is given by wm,l(s, t) =

(
k
l

)
Πl(t).

As we will show in Fact 16, in the random walk on Bm,l the block corresponding to the
transition from a vertex in X(m) to a vertex in X(l) is the up walk (i.e., the down operator)
and the block corresponding to the transition from a vertex in X(l) to a vertex in X(m) is
the down-walk (i.e., the up operator).

Now, we define the B
(2)
m,l graph such that the random walk on it corresponds to the two-

step walk starting from vertices in X(m) on Bm,l, i.e., the random walk on B
(2)
m,l corresponds

to an up-walk followed by a down-walk. Fact 17 shows that this correspondence indeed holds.
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▶ Definition 14. Given a simplicial complex (X, Π) and its two levels X(m), X(l) with
m ⩽ l, we define a graph on X(m) as B

(2)
m,l = (X(m), E

(2)
m,l, w

(2)
m,l) where

E
(2)
m,l = {{s, t} |s, t ∈ X(m) and ∃s′ ∈ X(l) such that s′ ⊇ s ∪ t} .

The weight of an edge {s, t} where s, t ∈ X(m) is given by w
(2)
m,l(s, t) =

∑
s′⊇s∪t wm,l(s, s′) =(

k
l

) ∑
s′⊇s∪t Πl(s′). The normalized adjacency matrix corresponding to B

(2)
m,l is denoted by

A(2)
m,l.

▶ Definition 15 (Up-Down Walk, [19, 20]). For positive integers m ⩽ l, let Dm,l and
Ul,m denote the products, Dm+1Dm+2 . . . Dl−1Dl and Ul−1Ul−2 . . . Um+1Um respectively. We
denote the following walk between X(m) and X(l) as Nm,l,

Nm,l =
[

0 Dm,l

Ul,m 0

]
=

[
0 Dm,l

D†
m,l 0

]
,

where the second equality is due to Lemma 12. The up-down walk on X(m) through X(l) is a
random walk on X(m) whose transition matrix (denoted by N(2)

m,l) is given by N(2)
m,l = Dm,lUl,m.

▶ Fact 16. The transition matrix for random walk on Bm,l is Nm,l.

▶ Fact 17. The transition matrix for random walk on B
(2)
m,l is Dm,lUl,m.

1.2.3 Notations
We use [n] for the set {1, 2, . . . , n} and A ⊔ B for disjoint union of sets A and B.

2 Computing Sparse Cut in Hypergraphs

Theorem 18 shows an analogue of Cheeger’s inequality based on the eigenvalues of up-down
walks N1,l.

▶ Theorem 18. Let H = (V, E) be a k-uniform hypergraph such that the induced simplicial
complex X has a up-down walk N(2)

1,l such that λ2(N1,l) = 1 − ε for some ε > 0 and some
l ∈ {2, 3, . . . , k}. Then ε

k ⩽ ϕH ⩽ 4
√

ε. Furthermore there is an algorithm which on input H,
outputs a set S ⊂ V such that ϕH(S) ⩽ 4

√
ε in poly(|V |, |E|) time where poly is a polynomial.

Fact 19 will allow us to work with D1,2 instead of N1,l for some l ∈ {3, 4, . . . , k}.

▶ Fact 19 (Folklore). Let A ∈ Rn×m, B ∈ Rm×p and σi denote the ith singular value. Then,
we have

σi(AB) ⩽ σ1(A)σi(B) and σi(AB) ⩽ σi(A)σ1(B),

for i = 1, . . . , r, where r = rank(AB).

▶ Corollary 20. If σ2 (D1,l) = 1−ε for an arbitrary l ∈ {2, 3, . . . , k}, we have that σ2(D1,2) ⩾
1 − ε.

Proof. The proof follows by using Fact 19 and writing D1,l = D1,2D2,l to get

σ2 (D1,l) = σ2 (D1,2D2,l)
Fact 19
⩽ σ2(D1,2)σ1(D2,l) = σ2 (D1,2) ,

where the last equality holds since σ1 (D2,l) = 1. ◀

SWAT 2024
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Next, we show that we can use this information about σ2(D1,2) to compute a set S ⊂ V

such that its expansion in the graph B
(2)
1,2 is at most 2

√
ε.

▶ Lemma 21. If σ2(D1,2) = 1 − ε for some ε ∈ (0, 1), then there exists a set S ⊆ X(1) such
that ϕ

B
(2)
1,2

(S) ⩽ 2
√

ε. Furthermore, there is a poly(|V
B

(2)
1,2

|, |E
B

(2)
1,2

|) time algorithm to compute
such a set S.

A natural choice for our set S with low conductance in input hypergraph is this set S

guaranteed by Fiedler’s algorithm for which ϕ
B

(2)
1,2

(S) is small. We show in Lemma 22 that

B
(2)
1,2 is a weighted graph where the weight of an edge between two distinct vertices in X(1)

is the multiplicity of that edge in the construction of B
(2)
1,2 graph. We note that a hyperedge

e, induces a clique on the vertices in the hyperedge e, in the B
(2)
1,2 graph. This is commonly

known as the clique expansion of the hypergraph.

▶ Lemma 22. For any k-uniform hypergraph H = (V, E), let X be the induced sim-
plicial complex and let {s, t} be an edge in B

(2)
m,l with s, t ∈ X(m). Then w(s, t) =(

k−|s∪t|
l−|s∪t|

) ∑
e∈E|s∪t⊆e Πk(e) and deg

B
(2)
m,l

(s) =
(

l
m

)2 (k
l)

( k
m)

∑
e∈E|e⊇s Πk(e).

Now in Lemma 23, we show how the weight of edges cut in the boundary of the weighted
graph B

(2)
1,2 and the input hypergraph are related.

▶ Lemma 23. Given a set S ⊂ X(1) we have

(k − 1)Πk (∂H(S)) ⩽ w(∂
B

(2)
1,2

(S)) .

Proof. By Lemma 22, B
(2)
1,2 is a weighted graph where the weight w(i, j) of an edge {i, j}

where i ̸= j is given by w(i, j) =
∑

e∈E|{i,j}⊆e Πk(e). Therefore, to compute w(∂
B

(2)
1,2

(S)) we
sum over all i ∈ S and j ∈ V \ S, the number of hyperedges containing {i, j}, i.e.,

w(∂
B

(2)
1,2

(S)) =
∑

i∈S,j∈V \S

∑
e∈H

e⊇{i,j}

Πk(e) =
∑
e∈H

∑
i∈S,j∈V \S

{i,j}⊆e

Πk(e),

where the last equality in the equation above follows by exchanging the order of summation.
Now, we note that the number of {i, j} ⊆ e where i ∈ S and j ∈ V \ S is non-zero if and
only if e ∈ ∂H(S), and hence,

w(∂
B

(2)
1,2

(S)) =
∑

e∈∂H (S)

∑
i∈S,j∈V \S

{i,j}⊆e

Πk(e). (1)

Now, let e ∩ S = {i1, i2, . . . , it} for some t ∈ {1, 2, . . . , k − 1}. For the lower bound, we
note that the number of {i, j} ⊆ e where i ∈ S and j ∈ V \ S is t(k − t). Therefore, for some
e ∈ ∂H(S), we have the minimum value of t(k − t) as k − 1 and hence u eqn. (1) to get,

w(∂
B

(2)
1,2

(S)) ⩾
∑

e∈∂H (S)

(k − 1)Πk(e)=(k − 1)Πk (∂H(S))

Πk(∂H(S)) =
∑

e∈∂H (S)

Πk(e)

 .

◀

We now show an upper bound for the boundary of B
(2)
1,l in terms of the boundary of H.
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▶ Lemma 24. For any l, such that 2 ⩽ l ⩽ k, Given a set S ⊂ X(1) we have

w(∂
B

(2)
1,l

(S)) ⩽
(

k

l

)(
l

2

)
Πk (∂H(S)) .

Next, in Lemma 25, we will use these bounds to analyze the expansion of this set S in
the input hypergraph.

▶ Lemma 25. For an arbitrary set S ⊂ X(1), we have that ϕH(S) ⩽ 2ϕ
B

(2)
1,2

(S).

Proof. We start by comparing the numerator in the expressions for expansion of the given
arbitrary set S in original hypergraph |∂H(S)| and in the B

(2)
1,2 graph, i.e., w(∂

B
(2)
1,2

(S)). Using
Lemma 23 we have that, Πk (∂H(S)) ⩽ 1

(k−1) · w(∂
B

(2)
1,2

(S)).
Next, we compare the denominators in the respective expression for expansions, i.e.,

volH(S) and vol
B

(2)
1,2

(S). For the hypergraph, by definition we have that volH(S) =∑
i∈S deg(i). By Lemma 22 we have

vol
B

(2)
1,2

(S) =
∑
i∈S

deg
B

(2)
1,2

(i) =
∑
i∈S

(
2
1

)2
k(k − 1)

2k
degH(i) = 2(k − 1)volH(S).

Now, putting everything together, we have

ϕH(S) = Πk (∂H(S))
volH(S) = 2(k − 1)Πk (∂H(S))

vol
B

(2)
1,2

(S) ⩽ 2 · (k − 1)
(k − 1) ·

w(∂
B

(2)
1,2

(S))

vol
B

(2)
1,2

(S) = 2ϕ
B

(2)
1,2

(S) . ◀

▶ Lemma 26. For an arbitrary set S ⊂ X(1), we have that ϕH(S) ⩾ 2
k ϕ

B
(2)
1,l

(S).

Proof of Theorem 18. First, we note by Fact 51, 1 − ε ⩽
√

1 − ε ⩽
√

λ2(N(2)
1,l ) = σ2(D1,l).

Now, using Corollary 20 we conclude that σ2(D1,2) = 1 − ε′ ⩾ 1 − ε for some ε′ ⩽ ε.
Further, in Lemma 21, we show that we can use this information about the spectrum of D1,2

to compute a set S ⊂ V such that its expansion in the graph B
(2)
1,2 is at most 2

√
ε. We fix

this as the set S we return in our sparse cut. In Lemma 25 we show that expansion of this
set S in the input hypergraph is at most 2ϕ

B
(2)
1,2

(S) and hence

ϕH(S) ⩽ 2ϕ
B

(2)
1,2

(S) ⩽ 4
√

ε .

Now, by Fact 17 the matrices N(2)
1,l and A(2)

1,l are similar and hence have the same eigenvalues
and therefore by Cheeger’s inequality, we have ϕ

B
(2)
1,l

⩾ ε
2 . Therefore by Lemma 26, we have

ϕH ⩾
2
k

ϕ
B

(2)
1,l

⩾
ε

k
. ◀

3 An expanding hypergraph with walks having small spectral gap

3.1 Splittability of a Hypergraph
In this section, we consider a “non-lazy” version of the up-down walk. While typically, for
a walk on the graph to be non-lazy, we require that there be no transition from a vertex
to itself, we obtain the swap walks by imposing an even stronger condition where we don’t
allow any face to have a transition to another face with a non-empty intersection with the
starting face.

SWAT 2024
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▶ Definition 27 (Swap walk, [2, 9]). Given a k-dimensional simplicial complex (X, Π),
for non-negative integers m, l such that l + m ⩽ k we define the swap walk denoted by
Sm,l : RX(l) → RX(m) that acts on a f ∈ RX(l) as,

[Sm,lf ](s) = E
s′∼Πm+l|s′⊇s

f(s′ \ s).

▶ Lemma 28 ([2]). S†
m,l = Sl,m.

Again, the swap walk Sm,l can be thought of as defining a random walk moving from X(m)
to X(l) where we first move from s ∈ X(m) to a superset s′′ ∈ X(m + l) with probability
Πm+l(s′′)

Πm(s) and then determistically move to s′ = s′′ \ s, i.e., we move from face s ∈ X(m) to a
disjoint face s′ ∈ X(l) with probability Πm+l(s⊔s′)

Πm(s) . This leads us to the following definition
for swap graphs.

▶ Definition 29 (Swap graph, Section 6 in [2]). Given a simplicial complex (X, Π) and its two
levels X(m), X(l), the swap graph (denoted by Gm,l) is defined as a bipartite graph Gm,l =
(X(m) ∪ X(l), E(m, l), wm,l) where the weight function is defined as, wm,l(s, t) = Πm+l(s⊔t)

(m+l
m )

and E(m, l) = {{s, t} |s ∈ X(m), t ∈ X(l), and s ⊔ t ∈ X(m + l)}.

The random walk matrix corresponding to these walks denoted by Wm,l is a matrix of
size (|X(m)| + |X(l)|) × (|X(m)| + |X(l)|) and is given by,

Wm,l =
[

0 Sm,l

Sl,m 0

]
=

[
0 Sm,l

S†
m,l 0

]
, (2)

where the last equality is a consequence of Lemma 28.
Arora, Barak, and Steurer [5] introduced the notion of the threshold rank of a graph.

▶ Definition 30 (Threshold rank of a graph, [5] ). Given a weighted graph G = (V, E, w) and
its normalized random walk matrix W such that λn(W) ⩽ λn−1(W) ⩽ . . . ⩽ λ1(W) = 1 and a
threshold τ ∈ (0, 1], we define the τ -threshold rank of the graph G (denoted by rank⩾τ (W)) as
rank⩾τ (W) = |{i|λi(W) ⩾ τ}|.

[2] proposed an analogue of the threshold rank for hypergraphs called (τ, r)-splittability
by considering specific sets of swap walks given by the following class of binary tree.

▶ Definition 31 (k-splitting tree, Section 7 in [2]). A binary tree T given with its labeling is
called a k-splitting tree if

T has exactly k leaves.
The root of T is labeled with k and all other vertices in T are labeled with a positive
integer.
All the leaves are labeled with 1.
The label of every internal node of T is the sum of the labels of its two children.

Now, we define a set of swap walks and its threshold rank based on a k-splitting tree T .

▶ Definition 32 (Swap graphs in a tree, Section 7 in [2]). For a simplicial complex X(⩽ k)
and a k-splitting tree T , we consider all swap graphs (denoted by Swap(T , X)) from X(a) to
X(b) where a and b are labels of a non-leaf node in T . Further, we extend the definition of
threshold rank as

rank⩾τ (Swap(T , X)) = max
G∈Swap(T ,X)

rank⩾τ (G) .
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Finally, define (τ, r)-splittability by considering all such sets of swap walks.

▶ Definition 33 ((τ, r)-splittability, Definition 7.2 in [2]). A k-uniform hypergraph with an
induced simplicial complex X(⩽ k) is said to be (τ, r)-splittable if there exists some k-splittable
tree T such that rank⩾τ (Swap(T , X)) ⩽ r.

3.2 The main results
In Theorem 34, we show an example of an expanding hypergraph such that for all m, l such
that m + l ⩽ k the swap walk from X(m) to X(l) in the corresponding simplicial complex
has its top r singular values as 1 (for r ≈ n/k) if either m, l ⩾ 2 or m = k − l.

▶ Theorem 34. For any positive integers r, k with r ⩾ 2, k ⩾ 3, there exists an k-uniform
hypergraph H on n(= r(k − 1) + 1) vertices such that ϕH ⩾ 1

k and for any m, l such that
m + l ⩽ k, if either m, l ⩾ 2 or m = k − l then λr(Gm,l) = σr(Sm,l) = 1, where Sm,l, Gm,l

are the swap walk and the swap graph on the induced simplicial complex X, respectively.

Now, Corollary 35 is a simple consequence of Theorem 34 and the definition of splittability.

▶ Corollary 35. For any positive integers r, k with r ⩾ 2, k ⩾ 3, there exists an k-uniform
hypergraph H on n(= r(k − 1) + 1) vertices, such that ϕH ⩾ 1

k and the induced simplicial
complex X is not (τ, r)-splittable for all τ ∈ [−1, 1].

We were also able to show that in the above example, for all m, l such that 2 ⩽ m < l ⩽ k,
the up-down walk from X(m) to X(l) has its top r singular value as 1 (for r ≈ n/k).

▶ Theorem 36. For any positive integers r, k with r ⩾ 2, k ⩾ 3, there exists a k-uniform
hypergraph H on n(= r(k − 1) + 1) vertices such that rank⩾τ

(
N(2)

m,l

)
⩾ r for all τ ∈ [−1, 1]

but ϕH ⩾ 1
k .

We use the following construction to show Theorem 34, Corollary 35 and Theorem 36.

▶ Construction 37. Take the vertex set of the hypergraph H(V, E) to be V =
[n] where n = r(k − 1) + 1 and the edge set E = {e1, e2, . . . , er} where ei =
{0, (k − 1)(i − 1) + 1, . . . , (k − 1)i}. Let X be the simplicial complex induced by H and
Sm,l, Nm,l be the corresponding walk matrices.

▶ Remark 38. Remark 1.9 of [23] considers all hypergraphs whose edges intersected at most
k−2 vertices to show a separation between co-boundary expansion and hypergraph expansion.
Here, we consider a sub-class of such hypergraphs with edges intersecting exactly one vertex.
Although the second singular value of the up-down walks and co-boundary expansion may
seem related, a relation between them is not known. Also, the way in which [23] bounds
the co-boundary expansion is similar to how we bound the spectrum of the up-down walks.
However, here, we also prove that the threshold rank (for any threshold) can be made
arbitrarily large while having the same bound on the hypergraph expansion.

First, we show that any swap walk Sl,k−l has σi = 1, for any i ∈ [r].

▶ Lemma 39. Given a hypergraph as per Construction 37,
we have that λr(G1,k−1) = σr(S1,k−1) = σr(Sk−1,1) = 1.

Proof. Firstly, using Fact 52 and eqn. (2) we have λi(G1,k−1) = σi(S1,k−1), ∀i ∈ [r].
We note that for any i ∈ [r], the edge {{(k − 1)(i − 1)} , ei \ {(k − 1)(i − 1)}} is the only

edge in G1,k−1 (and Gk−1,1) incident on the vertices {(k − 1)(i − 1)} , ei \ {(k − 1)(i − 1)}.
Again, G1,k−1 has r connected components, and hence λr(G1,k−1) = σr(S1,k−1) =
σr(Sk−1,1) = 1. ◀

SWAT 2024
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▶ Lemma 40. Given a hypergraph as per Construction 37, and for any m, l ⩾ 2 such that
m + l ⩽ k, we have that λr(Gm,l) = σr(Sm,l) = 1.

▶ Lemma 41. Given a hypergraph as per Construction 37 and an arbitrary set S ⊆ V where
volH(S) ⩽ volH(V )/2, we have that ϕH(S) ⩾ 1

k .

Proof. We consider an arbitrary (non-empty) set S ⊂ V such that volH(S) ⩽ volH(V )/2.
Let |S ∩ e1| = t1, |S ∩ e2| = t2, . . . , |S ∩ er| = tr and let t = t1 + t2 + . . . tr. We note that
volH(V ) = r(k − 1) + r where r(k − 1) is the contribution from the vertices in V \ {0} and we
have a contribution of r from the vertex {0}. Next, we will precisely compute the expansion
ϕH(S). We will break into cases depending upon whether {0} ∈ S or {0} /∈ S.

First, consider the case where {0} ∈ S. We note that in this case, ti ⩾ 1, ∀i ∈ [r]. In this
case, we have that |{i|ti = k}| < r/2. This is because otherwise volH(S) ⩾ r + r

2 (k − 1) > rk
2

which contradicts volH(S) ⩽ volH(V )/2. Thus, |{i|ti < k}| ⩾ r/2 and hence ∂H(S) ⩾ r/2.
Next we have that volH(S) = r+

r∑
i=1

(ti −1) = t1 +t2 + . . . tr = t. Using volH(S) ⩽ volH(V )/2,

we have that t ⩽ rk/2 and we get

ϕH(S) = |∂H(S)|
volH(S) ⩾

r

2t
⩾

1
k

.

Next, we consider the case where {0} /∈ S. Let t+ = |{i} |ti > 0|. Since {0} /∈ S, we
know that ti < k, ∀i ∈ [r] and hence the number of edges in the boundary of S is exactly t+.
Moreover we can bound the volume of S as volH(S) ⩽ t+(k − 1) and hence we have

ϕH(S) = |∂H(S)|
volH(S) ⩾

t+

t+(k − 1) ⩾
1
k

. ◀

Proof of Theorem 34. Immediate from Lemma 41, Lemma 40, and Lemma 39. ◀

Proof of Corollary 35. Consider the hypergraph H (and the induced simplicial complex)
guaranteed by Theorem 34. Fix any τ ∈ [−1, 1] and any k-splitting tree T . We note
Gl,k−1 ∈ Swap(T , X) for some l ∈ [k − 1] as children of the root of T must be labeled l and
k − l for some l. Note that we have λr(Gl,k−l) = 1. Hence, we have rank⩾τ (Swap(T , X)) ⩾
rank⩾τ (Gl,k−l) ⩾ r. Since, rank⩾τ (Swap(T , X)) ⩾ r for any k-splitting tree T , therefore
(X, Π) is not (τ, r)-splittable for any τ ∈ [−1, 1]. ◀

▶ Lemma 42. Given a hypergraph as per Construction 37, and any m, l ∈ [k] such that
2 ⩽ m ⩽ l, we have that λr(N(2)

m,l) = 1.

Proof of Theorem 36. Immediate from Lemma 41 and Lemma 42. ◀

4 An expanding hypergraph with low link expansion

In Theorem 43, we show that there is a family of expanding k-uniform hypergraphs H with
the induced simplicial complex having low link expansion.

▶ Theorem 43. Let n, k be any positive integers such that n ⩾ 3k and k ⩾ 3, there exists a
k-uniform hypergraph H on n + k − 2 vertices such that the link expansion of the induced
simplicial complex X is at most 1 − cos 2π

n and the expansion of H is at least 1
(3k)k .

Construction 44 is a k-hypergraph with n + k − 2 vertices such that its expansion is 1
(3k)k

while the link expansion for the induced simplicial complex is 1 − cos 2π
n .
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▶ Construction 44. Take the vertex set of the hypergraph H(V, E) to be V = [n+k−2] and the
edge set E =

([n]
k

)
∪{e ∪ {n + 1, . . . , n + k − 2} |e ∈ Cn} where Cn = {{i, i + 1} |i ∈ [n − 1]}∪

{{n, 1}}, i.e., Cn is the set of edges in a cycle on [n]. Let X be the simplicial complex induced
by H.

The idea behind this construction is to have the cycle Cn as the link of
{n + 1, ..., n + k − 2} while adding sufficient edges to make the hypergraph into an expanding
hypergraph.

▶ Lemma 45. For any n, k such that n ⩾ 3k and k ⩾ 3, the hypergraph H as defined in
Construction 44 has expansion ϕH ⩾ 1

(3k)k .

We now show that the simplicial complex X is not a γ-HDX (refer to Definition 9). For
this we consider the face τ = {n + 1, n + 2, . . . , n + k − 2} and the link complex Xτ .

By definition of Xτ and our construction in Construction 44, the two-dimensional link
complex Xτ is the downward closure of Cn. Hence, the corresponding skeleton graph G(Xτ )
is the cycle on [n].

▶ Fact 46 (Folklore). The second singular value of the normalized adjacency matrix of an
n-cycle is cos 2π

n .

Therefore, we have the following lemma by Definition 9.

▶ Lemma 47. X has link expansion at most 1 − cos 2π
n .

Theorem 43 follows directly from Lemma 47 and Lemma 45.
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A Additional Preliminaries

Linear Algebra
We recall a few facts and definitions from linear algebra.

▶ Fact 48 ([16]). Let V, W be two vector spaces with inner products ⟨·, ·⟩V , ⟨·, ·⟩W . If
A : V → W be a linear operator, then there exists a unique linear operator B : W → V such
that ⟨Af, g⟩W = ⟨f, Bg⟩V . If v ∈ V then there exists a unique linear operator C : V → R
such that Cu = ⟨v, u⟩V for any u ∈ V .

▶ Definition 49. Given a linear operator A : V → W between two vector spaces V and W

with inner products ⟨·, ·⟩V and ⟨·, ·⟩W defined on them, the adjoint of A is defined as the
(unique) linear operator A† : W → V such that ⟨Af, g⟩W =

〈
f, A†g

〉
V

for any f ∈ V and
g ∈ W . Furthermore, given any v ∈ V we define v† : V → R as the linear operator which
satisfies v†u = ⟨v, u⟩V for any u ∈ V .

It can be easily verified that most properties of the transpose of an operator also hold for
the adjoint, e.g., (A†)† = A, (AB)† = B†A†, etc.

▶ Definition 50. Given a linear operator A : V → W between two inner product spaces V

and W a singular value σ is a non-negative real number such that there exists v ∈ V and
w ∈ W which satisfy Av = σw and w†A = σv†. The vectors v and w are called the right and
left singular vectors, respectively, associated with the singular value σ. We denote the i-th
largest singular value of A by σi(A).

▶ Fact 51. Let V ,W be two inner product spaces, and A : V → W be a linear operator.
Then the eigenvalues λi(A†A) are non-negative. Furthermore, the singular values σi(A) =√

λi(A†A).

▶ Fact 52. Let V ,W be two inner product spaces and A : V → W be a linear operator and
let B be defined by the expression,

B =
[

0 A
A† 0

]
then for any i ∈ {1, . . . , r}, σi(A) = λi(B) where r = rank(A).
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