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Abstract
For some time, it has been known that the model checking problem for first-order formulas is fixed-
parameter tractable on nowhere dense graph classes, so we shall ask in which direction there is space
for improvements. One of the possible directions is to go beyond first-order formulas: Augmenting
first-order logic with general counting quantifiers increases the expressiveness by far, but makes the
model checking problem hard even on graphs of bounded tree-depth. The picture is different if we
allow only “simple” – but arbitrarily nested – counting terms of the form #y φ(x̄, y) > N . Even
then, only approximate model checking is possible on graph classes of bounded expansion. Here,
the largest known logic fragment, on which exact model checking is still fpt, consists of formulas of
the form ∃x1 . . .∃xk#y φ(x̄, y) > N , where φ(x̄, y) is a first-order formula without counting terms.
An example of a problem that can be expressed in this way is partial dominating set: Are there
k vertices that dominate at least a given number of vertices in the graph? The complexity of the
same problem is open if you replace at least with exactly. Likewise, the complexity of “are there k
vertices that dominate at least half of the blue and half of the red vertices?” is also open. We answer
both questions by providing an fpt algorithm that solves the model checking problem for formulas
of the more general form ψ ≡ ∃x1 . . .∃xk P (#y φ1(x̄, y), . . . ,#y φℓ(x̄, y)), where P is an arbitrary
polynomially computable predicate on numbers. The running time is f(|ψ|)nℓ+1 polylog(n) on graph
classes of bounded expansion. Under SETH, this running time is tight up to almost linear factor.
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1 Introduction

Many problems on finite structures, in particular on graphs, can be expressed by logical
formulas and then solved by meta-algorithms for the model checking problem. One of the
best known meta-algorithms is due to Courcelle that solves all problems that can be expressed
in monadic second order logic on graph classes with bounded tree-width in linear fpt when
parameterized by length of the formula [3], that is, in time f(|φ|)n where n is the size of the
input graph for some function f . Taking a less expressive logic, for example MSO1 instead
of full MSO, you can solve the model checking problem on larger classes of graphs, i.e., on
bounded clique width [4]. Unfortunately, there is some evidence that it is unlikely we can
extend these results beyond bounded tree-width, resp. bounded clique-width [20, 14].
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35:2 Multivariate Optimization and Decision Problems

First-order logic (FO) is still less expressive, but powerful enough to model many decision
problems. For example, the dominating set problem can be expressed by the FO-formula

ψ ≡ ∃x1 . . . ∃xk∀y
k∨
i=1

(y = xi ∨ y ∼ xi),

which says “are there vertices x1, . . . , xk such that every vertex y is one of them or adjacent
to one of them?” Viewing the dominating set problem as parameterized problem, where the
solution size k is the parameter, the parameter for for the model checking problem beocomes
the length of the fomula |φ|. Many other problems like this, for example independent set or
chordal deletion, can be modeled in FO-logic, making FO model checking a powerful tool to
solve parameterized problems. As FO is less expressive than MSO, it is not surprising that
efficient model checking algorithms exist beyond bounded tree-width. There is a series of
results proving fpt running times on bounded degree graphs, planar graphs, minor-closed
classes, topological minor-closed classes, locally bounded tree-width and many more [26,
13, 6, 18]. All these graph classes are generalized by bounded expansion or nowhere dense
classes which are part of the beautiful sparsity theory introduced by Nešetřil and Ossona de
Mendez [24]. Dvořák, Král’, and Thomas [11] showed that FO model checking is linear fpt
on bounded expansion and Grohe, Kreutzer, and Siebertz [16] showed an almost linear fpt
run time on nowhere dense graph classes (the run time is f(|φ|)n1+o(1) for some function f

depending on the graph class). The latter result is in some sense final for sparse graph classes:
If a graph class is monotone, that is, closed under taking subgraphs, then FO model checking
is fpt on this class iff the class is nowhere dense. One recent development that reaches beyond
sparsity is the result by Dreier, Mählmann, and Siebertz who look at structurally sparse
graph classes [7].

If we turn from decision problems to optimization problems, the picture changes again. In
some cases an optimization problem can be solved by using the underlying decision problem
as a subroutine. For example, we can easily find the smallest dominating set for a graph by
trying all k’s. On the other hand if we fix k and ask what is the best partial dominating
set with k vertices, i.e., how many vertices can be dominated by k vertices, a self-reduction
seems to be impossible. For such questions, we need a more expressive logic. Kuske and
Schweikardt introduced the logic FOC(P), which is FO with powerful counting extensions [21]
and showed that its model checking problem is fpt on classes of bounded degree. However,
FOC(P) is so expressive that its model checking problem becomes hard on trees of bounded
depth. This stays true even for the fragment FO({>0}), which is still very expressive, but
at least allows for an approximative model checking algorithm in fpt time [10] on classes
of bounded expansion; the algorithms gives the correct answer or responds with “I do not
know”. The latter answer is allowed only if small pertubations in the number symbols of the
formula make it both satisfied and unsatisfied.

The most general type of counting formulas known so far that can efficiently and exactly
be evaluated on graph classes of bounded expansion are of the form

∃x1 . . . ∃xk #y φ(y, x1, . . . , xk) > N, (1)

where N is a number that can depend on the order of the graph [8]. The semantics
of the counting term #y φ(y, u1, . . . , uk) for ui ∈ V (G) is the number of vertices v ∈
V (G) with G |= φ(v, u1, . . . , uk). In this way, partial dominating set can be expressed as
∃x1 . . . ∃xk #y

∨
i=1,...,k(y = xi ∨ y ∼ xi) > N , where u∼ v denotes adjacency in the graph.

Instead of graphs we consider colored graphs, where nodes can have colors. In a formula
we talk about colors by using a unary predicate for each color. In that way we can express
questions like “are there k nodes dominating at least N of the blue nodes?” A corresponding
formula might look like
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∃x1 . . . ∃xk #y
k∨
i=1

(
blue(y) ∧ (y = xi ∨ y ∼ xi)

)
> N. (2)

While we know that formulas like that can be evaluated efficiently on classes of bounded
expansion, as it is of the form of (1), not much is known how much further we can extend the
fragment of counting formulas beyond (1) without losing fixed parameter tractability. One
might expect that changing “> N” into “= N” in (2) should not make the problem W -hard,
yet neither is such a result known, nor does it follow from a simple self-reducibility argument
such as using (2) and binary search. Similarly, asking for k vertices that simultaneously
dominate at least N blue and N red vertices seems not fundamentally harder than the same
problem with only one color class, but cannot be expressed in the form of (1) either.

For the sake of completeness, we mention two other fragments, which are orthogonal
to the ones discussed before. The fragment FOC1(P) of FOC(P) introduced by Grohe
and Schweikardt extends FO by allowing to formulate cardinality constraints on counting
terms that have at most one free variable. The model checking problem for FOC1(P) is
fpt on nowhere dense classes [17]. For bounded expansion classes, Toruńczyk introduced a
stronger query language (also orthogonal to ours) extending FO logic by aggregation over
semirings [27].

Algorithmic Results and Techniques. The main result (Theorem 6) of this paper is to
answer these questions affirmatively and to go significantly further. We develop an algorithm
that evaluates formulas of the form

ψ ≡ ∃x1 . . . ∃xk P
(
#y φ1(x1, . . . , xk, y), . . . ,#y φℓ(x1, . . . , xk, y)

)
, (3)

where P is an arbitrary polynomially computable predicate on numbers and the φi’s are FO
formulas. If P can be evaluated in constant or at least in g(ℓ) time1 (in the uniform cost
model for some function g) then evaluating ψ can be done in time f(|ψ|)nℓ+1 polylog(n) for
some function f on graph classes of bounded expansion. If P is a boolean combination of
≥- or ≤-comparisons to constants, then the running time of the model checking problem
improves to f(|ψ|)nℓ polylog(n) (see Lemma 11). This subsumes the result of [10, Theorem
1.2] up to polylogarithmic factors. Later, we will extend the result to counting tuples with
the counting quantifier, which means that #y can be replaced by #(y1, . . . , yp) in formula 3.

Note that formulas of the form (3) are quite expressive. They capture many multivariate
optimization problems where you look for k vertices that optimize a possibly quite complicated
target function. For example, you might want to find a set of k vertices U such that every
other vertex is reachable from U by a path of length at most ten. You pay a penalty for each
vertex v proportional to the distance of v to U . Finding the k vertices with the lowest penalty
is fpt on every graph class of bounded expansion because the problem can be expressed by a
formula of the form (3). Moreover, the algorithm will not depend on the graph class (but
its running time will). In a multivariate optimization problem we can also find witnesses
for each Pareto-optimal solution size. For example, if we look for k vertices that dominate
as many red and as many blue vertices as possible, there might exist Ω(n) many different
Pareto-optimal ways.

1 Technically it is sufficient that there is a pseudo-polynomial fpt algorithm that evaluates P (n1, . . . , nℓ)
in time f(ℓ)(n1 + · · · + nℓ)O(1) in order to achieve an fpt running time for evaluating ψ.
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35:4 Multivariate Optimization and Decision Problems

In a nutshell, the results about formulas of the form (1) were proved as follows (see [10] for
more details): First, the innermost existential and universal quantifiers of the input formula
are treated with quantifier-elimination, resulting in a simpler formula. In this process, the
graph is augmented with additional colored edges while still being part of (another) class
of bounded expansion. Then, a counting term #y φ(yx̄), where φ is now quantifier-free, is
replaced in a sequence of transformations by a sum of simpler counting terms. These are
simple enough to be directly evaluated, and the evaluation is represented as a family of vertex
weight functions. Then, the original task is reduced to finding a certain kind of induced
subgraph of maximal weight (which is described by one of the quantifier-free formulas). Then
one can use low treedepth colorings to reduce the problem to the case of bounded treedepth
and use LinEMSOL optimization [4] as a black box to find the result.

This approach breaks down at several places if we want to evaluate a formula of the
more complicated form (3). For example, LinEMSOL optimization always finds the biggest
weighted solution and cannot be used to establish the existence of a given weight. Moreover,
it can handle only univariate weights. In order to prove our main result, we use dynamic
programming on the treedepth decomposition using vectors of weights. This is achieved by
formulating the problem of finding a subgraph described by a quantifier-free formula with
constraints on the multivariate weights as an MSO-evaluation problem. This means that the
problem can be expressed as a homomorphism that maps the satisfying assignments of the
MSO-formula into a semiring. After applying treedepth colorings as in [10] those problems
can be evaluated quickly on graphs of bounded treedepth by the result of Courcelle and
Mosbah [2].

Lower Bounds. The second result is a conditional lower bound for formulas of the form (3)
(Theorem 18). Under SETH we cannot evaluate formulas of the restricted form

∃x1 . . . ∃xk
ℓ∧
i=1

#y φi(x1, . . . , xk, y) = Ni,

on star forests2 where the φi’s are quantifier-free formulas and the Ni’s are numbers, in time
f(k + ℓ)nℓ−ε for any ε > 0 and function f . We reduce from the k-Sum problem, using a
tight conditional lower bound on dense k-Sum instances under SETH [1]. The upper and
lower bounds given by Theorems 6 and 18 are tight up to an almost linear factor in n.

In Theorem 20 we show that introducing an additional universal quantifier between the
existential quantifiers and the counting quantifier makes evaluating those formulas on forests
of depth 2 W[1]-hard. The same holds if one has two nested counting quantifiers.

2 Preliminaries

We write Z and N for the integers and natural numbers (including 0), [k] = {1, . . . , k}.

Graphs. We consider labeled graphs G = (V,E, P1, . . . , Pm) where V is the vertex set,
E the edge set and P1, . . . , Pm ⊆ V the labels of G. The order |G| of G equals |V |. The
size ∥G∥ of G is |V | + |E| + |P1| + · · · + |Pm|. We often write V (G) and E(G) for the vertex
and edge sets of G. Unless stated otherwise, graphs are undirected. An expansion G′ of a
graph G is a graph on the same vertex set as G and its edges form a superset of E(G).

2 A star forest is a disjoint union of stars.
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Sparse graph classes. A treedepth decomposition of a graph G is a rooted forest F on the
same vertices as G, such that for every edge uv ∈ E(G) either u is an ancestor of v in F or
vice versa. The treedepth of a graph G is the minimum depth any treedepth decomposition
of G.

A graph G is a topological depth-r minor of another graph H if an ≤r-subdivision of G is
isomorphic to a subgraph of H [24, 5].

▶ Definition 1 ([24]). A graph class C has bounded expansion if for all r ∈ N there exists
t = t(r) ∈ N such that for all G ∈ C, and all topological depth-r minors H of G, ∥H∥/|H| ≤ t.

It is nowhere dense if for all r ∈ N there exists a t ∈ N such that no G ∈ C contains Kt

as a topological depth-r minor. If a graph class is not nowhere dense it is somewhere dense.

▶ Remark 2. Following [16], a class has effectively bounded expansion if t(r) is computable.
If the class C in Lemmas 3 and 5 and Theorem 18 has effectively bounded expansion, then
the algorithms in those statements are uniform and their running times are computable.

Logic. The notation x̄ stands for x1 . . . x|x̄|. Usually |x̄| is denoted by k. We write φ(x̄) if
φ has x̄ as free variables. Let G be a structure and β be the assignment with β(xi) = ui for
i ∈ [k]. For simplicity, we write G |= φ(ū) instead of the satisfaction relation (G, β) |= φ(x̄)
and Jφ(ū)KG instead of the interpretation Jφ(x̄)K(G,β) which can be a number if φ is a counting
term from FOC(P). A formula is quantifier-free if it contains no ∃,∀ or # quantifiers. A
conjunctive clause is a conjunction over (possibly negated) predicates. The length of a formula
φ is denoted by |φ| and is the number of symbols in φ. In particular, the length of any
number-symbol N ∈ Z is one (and should not be confused with the length of the binary
encoding of N). Adjacency between two variables x, y is denoted by x∼y. For two signatures
we write σ ⊆ ρ to indicate that ρ extends σ. All signatures are finite and the cardinality |σ|
of a signature equals its number of symbols.

We interpret a labeled graph G = (V,E, P1, . . . , Pm) as a logical structure with universe
V (G) := V , binary relation E(G) := E and unary relations P1, . . . , Pm.

Counting Logic. We are interested in fragments of the counting logic FO(P), introduced by
Kuske and Schweikardt [21], which is a fragment of FOC(P). Compared to traditional first-
order logic, it introduces counting over one variable and comparing the number of witnesses
using numerical predicates from a set P. We give an informal definition. Given a FO(P)
formula φ and a variable y, #y φ(yx̄) is a counting term. The semantics of J#y φ(yū)KG

are the number of vertices v satisfying Jφ(vū)KG. Multiple counting terms t1, . . . , tm with
a predicate P ∈ P yield an FO(P) formula P (t1, . . . , tm). The semantics of this formula is
true iff the evaluation of the counting terms is in JP K. This is generalized by FOC(P), which
allows counting tuples #ȳ φ(ȳx̄) and allows addition and multiplication of counting terms.
For more details, we refer the reader to [21]. The logic FO({>0}) [10] is a special case of
FO(P) where the unary predicates are of the form ≥ t for t ∈ N. That is, counting terms
can be used only in the form #y φ(yx̄) ≥ t. This logic is also known as FO(C) [12].

Computational model. We use the RAM model with a uniform cost measure.
If a function f : Zℓ → Z is part of the output of an algorithm, it is represented by a list

of its non-zero entries. Thus, even if the domain has infinite size, the representation is finite
if f ’s support is. In most of our cases, the support of f will be {−N, . . . , N}ℓ for some N ,
which usually is linear in the input.

SWAT 2024



35:6 Multivariate Optimization and Decision Problems

3 Applications

Before we get into the main part of this work, we want to illustrate in detail its possible
applications with a few examples. Let us consider a variation of the partial dominating set
problem, the Exactly t-Dominating Set Problem [19]. We are interested in set D of
size k that dominates exactly t vertices in a graph G. By deciding G |= ψ using Theorem 6
for the formula

ψ ≡ ∃x1 . . . ∃xk#y
( k∨
i=1

y = xi ∨ y ∼ xi
)
= t

we can solve the Exactly t-Dominating Set Problem on classes of bounded expansion
in time f(k)n2 polylogn. As a byproduct we get a list of all t such that there exists such a
set of size k. Hence, one could also solve the problem of finding a partial dominating set
of size k where the number of dominated vertices t has to satisfy some (easily computable)
numerical predicate P , e.g., that t has to be prime.

Another variation: Given a graph where the vertices are colored red or blue, we want
to find a set D of k vertices that dominates at least t1 many red and at least t2 many blue
vertices. This can be expressed by the following formula:

∃x1 . . . ∃xk(#y
(
blue(y)∧

k∨
i=1

(y = xi∨y∼xi)
)

≥ t1 ∧#y
(
red(y)∧

k∨
i=1

(y = xi∨y∼xi)
)

≥ t2)

Thus, we can evaluate this problem in f(k)n2 polylogn time on classes of bounded expansion
by Lemma 11. If “≥” is replaced by “=” in the formula above, by Theorem 6 we can even
compute all pairs (t1, t2) where the adjusted formula holds, but in time f(k)n3 polylogn.
Additionally, it is also possible to express that the vertices x1, . . . , xk are, e.g., connected or
independent. This increases the run time only in the function f(k).

4 Algorithms

In this section we show the algorithmic results, most importantly Theorem 6 in Sec-
tions 4.1 and 4.2. Namely, that both the query evaluation and query counting problem
for formulas of the form ψ ≡ ∃x1 . . . ∃xk P (#y φ1(x̄, y), . . . ,#y φℓ(x̄, y)) can be solved in
f(|ψ|)nℓ+1 polylogn time on graph classes of bounded expansion. This is followed by an
improvement in the running time by a factor n for the special case of Lemma 11 that deals
with ≤-constraints in Section 4.3. In a nutshell, we put the information needed to evaluate
general counting terms depending on multiple variables into vertex weights that depend
on only one variable. The resulting combinatorial problem is then reduced to the case
of bounded treedepth. Solving this problem on bounded treedepth is then deferred to its
own Section 4.2 as it is the main technical contribution of this paper. There, we introduce
Mosbah’s and Courcelle’s concept of MSO-evaluation problems. Then we show that our
problem can indeed be modeled as an MSO-evaluation problem and that we get the desired
running time. In Section 4.3 we consider the special case of ≤-constraints, which can be
handled more efficiently. At last, in Section 4.4 we show that the previous results also hold if
the counting quantifier can count tuples instead of single variables.
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4.1 Reduction to Weighted Sets
We build upon the tools used in [10]3 as there a similar but weaker fragment of FO({>0})
was considered, namely formulas of the form ∃x1 . . . ∃xk #y φ(y, x1, . . . , xk) > N, (see (1)).
However, we need to adapt them to the multivariate case, i.e., where we consider multiple
counting terms #y φ(yx̄) at once.

The result of the following lemma is similar to [9, Theorem 4]. The only difference is that
equality between J#y φ(yū)KG⃗ and

∑|x̄|
i=1 cω,i(ui) is generalized to the ℓ formulas φ1, . . . , φℓ

and ℓ sums over “families” of weight functions c(j)
ω,i. Note that the set Ω is the same for

every φj and that the running time does not change compared to [9, Theorem 4].
The following lemma allows us to represent counting terms that depend on k + 1 vertices

as a sum of vertex weights which depend only on one variable. This procedure works even
for multiple counting terms at once.

▶ Lemma 3. Let C be a class of bounded expansion with signature σ. One can compute for
first-order formulas φ1(yx̄), . . . , φℓ(yx̄) with signature σ a set of conjunctive clauses Ω with
free variables x̄, and signature ρ ⊇ σ that satisfies the following property:

There exists a class C′ of bounded expansion with signature ρ. such that for every G⃗ ∈ C
one can compute in time O(∥G⃗∥) an expansion G⃗′ ∈ C′ of G⃗ and functions c(j)

ω,i(v) : V (G⃗) → Z
for ω ∈ Ω, i ∈ [|x̄|], and j ∈ [ℓ] with c(j)

ω,i(v) = O(|G⃗|) such that for every ū ∈ V (G⃗)|x̄| there
exists exactly one formula ω ∈ Ω with G⃗′ |= ω(ū). For this formula

(
J#y φ1(yū)KG⃗, . . . . . . , J#y φℓ(yū)KG⃗

)
=

( |x̄|∑
i=1

c
(1)
ω,i(ui), . . . . . . ,

|x̄|∑
i=1

c
(ℓ)
ω,i(ui)

)
.

Proof. When we look into the proof of [9, Theorem 4], we see that the expansion G⃗′ of G⃗
does not depend on any formula, but only on G. Moreover, the set of conjunctive clauses Ω
depends only on the signature ρ. Thus, when applying [9, Theorem 4] to the formulas
φ1, . . . , φℓ sequentially both the graph extension G⃗′ and the set of clauses Ω are identical
for each application. Only the weight functions depend on φ1, . . . , φℓ. Thus, we get our
result. ◀

For simplicity, let us define C(j)
ω (ū) :=

∑|x̄|
i=1 c

(j)
ω,i(ui) and abbreviate it as C(j)(ū) if ω is clear

from context.
With Lemma 3, the original task boils down to finding a vertex tuple ū that satisfies

a simple quantifier-free formula ω and has “correct” vertex weights, i.e., C(j)(ū) = wj for
all j ∈ ℓ. Let us give a formal definition.

▶ Definition 4.

Counting ℓ-Weighted k-Set Problem
Input: k, ℓ ∈ N, a graph G, a quantifier-free FO-formula ω with variables x1 . . . xk and
weight functions c(j)

i : V (G) → Z for i ∈ [k], j ∈ [ℓ]
Output: a partial function a : Zℓ → N where a(w) is the number of ū ∈ V (G)k
satisfying
1. G |= ω(ū)
2. C(j)(ū) =

∑
i∈[k] c

(j)
i (ui) = wj for all j ∈ [ℓ]

3 The relevant results for our approach can be found in more detail in the full version on arXiv [9].
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35:8 Multivariate Optimization and Decision Problems

To solve the Counting ℓ-Weighted k-Set Problem, we follow the approach in [9,
Theorem 2] and reduce the case for graphs of bounded expansion to graphs of bounded
treedepth. These graphs are structurally much simpler and have a rich landscape of meta-
theorems. The reduction is achieved by a so-called low treedepth coloring [24].

For now, let us assume we can solve the problem above in time f(|ω|, d)nℓ+1 polylogn on
graphs of tree-depth d, as stated in the following lemma. We give the proof in Section 4.2.

▶ Lemma 5. Assume we are given k, ℓ ∈ N, a quantifier-free first-order formula ω(x1 . . . xk),
a treedepth-decomposition of a graph G of depth d and weight functions c(j)

i : V (G) → Z
with |C(j)(v1, . . . , vk)| ≤ N for j ∈ [ℓ] and i ∈ [k]. Then, we can solve the Counting
ℓ-Weighted k-Set Problem with G, ω and c(j)

i as input in time f(|ω|, d)nN ℓ logN for
some function f .

With this result at hand, we use a similar technique as in the proof of [9, Theorem 2].

▶ Theorem 6. Let C be a class of bounded expansion. There exists a function f such
that for all graphs G ∈ C and first-order formulas φ1(yx̄), . . . , φℓ(yx̄), one can compute a
function a : Zℓ → N where a(w1, . . . , wℓ) is the number of solutions ū ∈ V (G)k with

G |= ψ(ū) where ψ(x̄) ≡
∧
j∈[ℓ]

#y φj(yx̄) = wj

in time f(|ψ|)nℓ+1 polylog(n).

Proof. We apply Lemma 3 to G and φ1, . . . , φℓ yielding a functional graph G⃗′ from a class
of bounded expansion, a set of conjunctive clauses Ω over an extended signature, and weight
functions c(j)

ω,i : V (G) → Z for ω ∈ Ω, i ∈ [k], j ∈ [ℓ]. Then

G |=
∧
j∈[l]

#y φj(yū) = wj

iff there exists an ω ∈ Ω such that both

G⃗′ |= ω(ū) and C(j)
ω (ū) = wj for all j ∈ [ℓ].

The latter is an instance of the Counting ℓ-Weighted k-Set Problem. Using the
techniques from the proof of [9, Theorem 2] we reduce this problem from graphs of bounded
expansion to graphs of bounded treedepth with the help of low treedepth colorings.

Before we continue, it will be easier to transform G⃗′ into a relational structure G′: Every
function f is replaced by a binary relation Ef with Ef (G′) = {(v, f G⃗′(v)) | v ∈ V (G⃗′)}, and
we keep unary predicates. For every (functional) conjunctive clause ω(x̄) we construct a
relational conjunctive clause ω′(x̄z̄) with G⃗′ |= ω(ū) iff G′ |= ∃z̄ω′(x̄z̄) for every ū ∈ V (G⃗′)|x̄|.

There exists a vertex coloring χ of G, so called k-treedepth colorings, such that each
subgraph of G induced by at most k colors has at most treedepth k. Denote the set of all
such subgraphs with H. As G is from a class of bounded expansion C, one can compute in
fC(k)n time a k-treedepth coloring that uses at most fC(k) colors [24]. Hence, if we want to
“find” a fixed k-vertex tuple ū ∈ V (G)k, there must exist k colors such that ū is contained in
the subgraph induced by those k colors. So, we need to consider only

(
f(k)
k

)
such subgraphs

when looking for a solution to the ℓ-Weighted k-Set Problem and solve the problem on
such a subgraph which has treedepth k. For more details, see the proof of [9, Theorem 2].

Thus, for every ω ∈ Ω, possible colorings of ū with colors from χ and H ∈ H we apply
Lemma 5 to solve the counting problem. Then, for every weight tuple (w1, . . . , wℓ) ∈
{−N, . . . ,+N}ℓ we add up the counts over all subgraphs H ∈ H, possible colorings of
ū, and ω ∈ Ω, and output this sum for (w1, . . . , wℓ). In total, the computation time is
O

(
|Ω|

(
f(k)
k

)
knN ℓ poly(ℓ) polylog(N) + f ′(|ψ|)n

)
= O

(
g(|ψ|)nℓ+1 polylog(n)

)
. ◀
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By using Theorem 6 and looking for a tuple (w1, . . . , wℓ) which is contained in P and
has strictly positive output we get the following corollary.

▶ Corollary 7. Let C be a class of bounded expansion. There exists a function f such that
for all graphs G ∈ C, first-order formulas φ1(yx̄), . . . , φℓ(yx̄), and all computable relations
P ⊆ Nℓ one can decide

G |= ∃x1 . . . ∃xkP (#y φ1(yx̄), . . . ,#y φℓ(yx̄))

in time O
(
f(|φ1| + · · · + |φℓ|)nℓ+1 polylog(n) + rnℓ

)
where r is the time needed to decide

membership in P .

4.2 Solving the ℓ-Weighted k-Set Problem on bounded treedepth
In order to construct an algorithm satisfying Lemma 5 (that is, solving the ℓ-Weighted
k-Set Problem on bounded treedepth graphs), we will use the machinery of monadic
second-order evaluations on graphs of bounded treewidth (on bounded treedepth even),
introduced by Courcelle and Mosbah [2]. (This should not be confused with Courcelle’s
theorem for MSO model checking on graphs of bounded treewidth [3]). Monadic second order
evaluations can be used to compute a function of an optimal solution if the function can be
computed iteratively on a tree decomposition. In the case of a join node the values of the
children have to be combined in some way and in the case of introduce and forget nodes the
values have to be updated in the right way. When you use this machinery, and typically in
other DP algorithms as well, the values you use carry more information than is needed in the
end. Therefore, the needed information has to be extracted by an homomorphism. Updating
the values is done by operations on a semiring. For example, if you want to find a vertex cover
of minimal size in a node-weighted graph, your semiring would be (N ∪ {∞},min,+,∞, 0)
and the homomorphism would map a (partial) solution to its weight, which is the sum of the
weights of each contained vertex.

We have to show that Counting ℓ-Weighted k-Set Problem is an MSO-evaluation
problem. We refer the reader to [22, Section 3.3.3] for definitions of semirings, weak
homomorphism, MSO logic, assignments and the semiring of assignments. We also follow
their notation.

Let us very briefly mention the most relevant definitions. Let G be a graph and φ a
first-order formula.4 Then, sat(φ,G) denotes the set of assignments to variables of φ over G,
and assignring(φ,G) = (2assignments(φ,G),∪, ∪̂, ∅, ∅̂) denotes the semiring over the power set
of assignments where ∪̂ is the Cartesian product of assignments and ∅̂ the set containing
only the empty assignment. The operation ∪̂ combines assignments from G1 and G2 when a
graph G can be “decomposed” into two graphs G1 and G2, e.g., as in tree-decompositions.

▶ Definition 8. A graph problem P is an MSO-evaluation problem if there is an MSO-formula
φ and a semiring R = (UR,⊕,⊗, 0̂, 1̂) such that P can be stated as computing h(sat(φ,G)),
where G = (V,E) and the weak semiring homomorphism h between assignring(φ,G) and R

are part of the input.

The following fact follows from Proposition 3.1 and Theorem 2.10 from [2].

▶ Proposition 9. Let P be an MSO-evaluation problem, expressed by a weak homomorphism h

into a semiring R. Then, P can be computed on a graph G given a tree decomposition T of
width w in time O(fP (w)|T |η) where η is the time complexity of evaluating the homomorphism
and performing the semiring operations.

4 The formula can also be from MSO in general. For our needs, FO suffices.
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To express the Counting ℓ-Weighted k-Set Problem as an MSO-evaluation problem,
we define the semiring ℓ-WeightedSolCount := (U,⊕,⊗, 0̂, 1̂) where elements of U = NW

are infinite sequence of natural numbers indexed by ℓ-tuples in W = Zℓ. An entry a ∈ U

means that, for a tuple w ∈ W , there are aw many assignments ū ∈ V (G)k with multivariate
weight w.

More formally, given a graph G with weight functions c(j)
i and a first-order formula φ, we

define a weak homomorphism h : assignring(φ,G) → ℓ-WeightedSolCount by

h(A) := a and for w ∈ W with aw :=
∣∣{ ū ∈ A | C(j)(ū) = wj for all j ∈ [ℓ] }

∣∣
where A is some set of assignments5 ū ∈ V (G)k to φ.

Hence, this problem is an MSO-evaluation problem by Definition 8. Equivalently, instead
of a being a vector indexed by ℓ-tuples, we can imagine a being a function mapping an
ℓ-tuple w to the number a(w) of solutions with multivariate weight w.

But first, we need to complete the definition of ℓ-WeightedSolCount by defining the
operations and constants. The addition ⊕ is the element-wise addition defined as

(a⊕ b)w := aw + bw for w ∈ W

with the neutral element 0̂ := (0)W , the all-zero vector indexed by W . The multiplication ⊗
is defined by the convolution

(a⊗ b)w :=
∑

r+s=w
ar · bs for w ∈ W

with neutral element 1̂, where 1̂(0,...,0) = 1 and 1̂w = 0 for w ̸= (0, . . . , 0).
The weak homomorphism h is then defined by

h({ū}) = (aw)w∈W with aw =
{

1 if C(j)(ū) = wj for all j ∈ [ℓ]
0 otherwise

where ū is an assignment from V (G)k. The image of h for other sets of assignments is derived
from the singleton sets and semiring properties.

One can easily verify that ℓ-WeightedSolCount is a semiring. Indeed, ℓ-WeightedSolCount
is similar to the CardCounting semiring in [22, Example 28.4]. However, we are not interested
in the number of solutions of some cardinality but of some certain weight. Moreover, the
weight is multivariate and not univariate. Also, it should not be confused with the evaluation
problem described in [2, Section 4.8]. There, a linear combination of multiple weight functions
is considered, which is fundamentally different from our approach.

▶ Example 10. To show the Counting ℓ-Weighted k-Set Problem and ℓ-
WeightedSolCount in action, let us consider the problem of finding an independent set
of certain weight on a graph with two vertex weight functions, c(v) and c′(v). Let us say we
are interested in an independent set with weights 24 and 96 w.r.t to c and c′ respectively,

This problem can be easily modeled as Counting ℓ-Weighted k-Set Problem with
ℓ = 2 and ω(x̄) =

∧
i<j xi ≁ xj . The output function a(24, 96) tells us the number of

(ordered) independent sets ū with weight
∑
i c(ui) = 24 and

∑
i c

′(ui) = 96.

5 Here, we only consider assignments of k vertex variables as φ is constrained to have only those as free
variables. For MSO formulas, we would need to consider set variables, but this is out of scope for our
work.
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The weak homomorphism h maps a set A ⊆ V (G)k of independent sets to a vector
a ∈ ZNℓ . The entry h(A)(24,96) tells us the number of independent sets in A that have weight
24 and 96 w.r.t. c and c′.

Before we apply the result about MSO-evaluation problems, discuss the complexity of the
operations on ℓ-WeightedSolCount. Even though elements of U have a priori infinite size,
in our application their size will be bounded. The weights in the graph are finite, even
bounded by O(n) by Lemma 3. Thus, the highest weight possible of a k-vertex tuple is
O(kn) which we will denote by N . So let us assume we are given two elements a, b from
ℓ-WeightedSolCount, which are N -bounded. That is, aw = 0 if ∥w∥∞ > N . Such vectors can
be represented naturally in O(N ℓ) space. Then the addition a⊕ b trivially needs time O(N ℓ).
As a⊗ b is a convolution, it can be computed in time O(ℓN ℓ logN) using DFT [28].

The following lemma follows from Counting ℓ-Weighted k-Set Problem being an
MSO-evaluation problem and applying the result of Courcelle and Mosbah.

▶ Lemma 5. Assume we are given k, ℓ ∈ N, a quantifier-free first-order formula ω(x1 . . . xk),
a treedepth-decomposition of a graph G of depth d and weight functions c(j)

i : V (G) → Z
with |C(j)(v1, . . . , vk)| ≤ N for j ∈ [ℓ] and i ∈ [k]. Then, we can solve the Counting
ℓ-Weighted k-Set Problem with G, ω and c(j)

i as input in time f(|ω|, d)nN ℓ logN for
some function f .

Proof. First, from a treedepth decomposition T of depth d we can easily construct a tree
decomposition of width d. Also, we know the ℓ-Weighted k-Set Problem is an MSO-
evaluation problem, which can be expressed by evaluating h(sat(φ,G)) as described above
in the definition of ℓ-WeightedSolCount. Hence, we can apply Proposition 9 on G, φ and the
weight functions c(j)

i for this problem. This yields us an algorithm solving the given problem
in time O(f(d)|T | · η) = O(f(d)nℓN ℓ logN) where η is the complexity of the operations
in the semiring ℓ-WeightedSolCount. Indeed, η is bounded by O(ℓN ℓ logN) as the vectors
appearing during the computation are N -bounded and the image of C(j) is bounded by N
as well. ◀

4.3 Run Time Improvements for ≤-Relations
For the special case, where P consists of boolean combinations of ℓ ≤-relations, i.e.,
#y φ(yx̄) ≥ t for constant t ∈ N , we shave of a factor of n in the running time.

This case can easily be reduced to a bounded number of conjunctions of counting terms
#y φ(yx̄) ≥ t of length at most ℓ, by transforming the boolean combination into disjunctive
normal form (DNF). Then each conjunctive clause is regarded separately by pushing the
existential quantifier into the disjunction.

▶ Lemma 11. Let C be a graph class of bounded expansion. There exists a function f such
that for all graphs G ∈ C, first-order formulas φ1(yx̄), . . . , φℓ(yx̄), and numbers t1, . . . , tℓ ∈ N
one can decide in time O(f(|φ1| + · · · + |φℓ|)nℓ polylog(n)) whether

G |= ∃x1 . . . ∃xk(#y φ1(yx̄) ≥ t1 ∧ · · · ∧ #y φℓ(yx̄) ≥ tℓ).

Proof. In the proof of Theorem 6, the subroutine of Lemma 5 computes semiring operations
O(n) times which determines the overall run time. The run time of such operations is
almost linear in the table size of the dynamic program. There, the number of tuples was
assumed to be the worst-case, namely O(N ℓ), resulting in a running time for the semiring
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operations of O(poly(ℓ)N ℓ polylog(N)). In our case, we do not need all tuples, only the
Pareto-optimal ones. That is, for any (partial) solutions ū, v̄ ∈ V (G)k if ū dominates v̄, that
is, J#y φi(yū)KG ≥ J#y φi(yv̄)KG for all i ∈ [ℓ], then v̄ can be disregarded further on.

The number of Pareto-optimal solutions in the domain {−N, . . . ,+N}ℓ is bounded
by O(N ℓ−1). (Fix values for the first ℓ − 1 dimensions, then there can be at most one
Pareto-optimal tuple agreeing with the first ℓ− 1 values.)

Thus, the application of the semiring operations in Lemma 5 takes only O(ℓN ℓ−1 logN)
time instead of O(ℓN ℓ logN). Continuing the run time analysis as in Lemma 5 and Theorem 6,
we get the desired result. ◀

Note that this only improves the run time for the decision problem for this fragment. This
approach does not work for the counting problem.

We can achieve the same run time improvement for modulo counting. If the predicate is a
boolean combination of modulo counting terms, that is, the predicate checks if #y φ(yx̄) ≡ a

(mod b) then both the decision and even the counting problem is in time O(f(|φ1| + · · · +
|φℓ|)nℓ polylog(n)) for classes of bounded expansion. However, Nešetřil, Ossona de Mendez
and Siebertz [25] showed recently an even stronger result; they achieve a linear fpt time
algorithm for the model checking problem of the logic FO+Mod which contains arbirarily
nested modulo counting quantifiers.

4.4 Lifting to Counting Tuples #(y1, . . . , yp)
The algorithmic results (Theorem 6, Corollary 7, and Lemma 11) can be lifted to counting
tuples, that is, to counting quantifiers #ȳ φ(ȳx̄) that are also part of FOC(P) (where ȳ is
tuple of variables (y1, y2, . . . , yp)).6 This comes at a cost: The polynomial factor of the run
time increases to n(ℓ+1)p.

▶ Corollary 12. Let C be a class of bounded expansion. There exists a function f such that
for a given graph G ∈ C, first-order formulas φ1(ȳx̄), . . . , φℓ(ȳx̄) and all computable relations
P ⊆ Nℓ one can decide

G |= ∃x1 . . . ∃xkP (#ȳ φ1(ȳx̄), . . . ,#ȳ φℓ(ȳx̄))

in time O
(
f(|φ1| + · · · + |φℓ|)n(ℓ+1)|ȳ| polylog(n) + rnℓ

)
where r is time needed to decide

membership in P .

We achieve this result by adapting both the statements made in this paper and their
dependencies, which originate from [10]. This adaptation is quite straightforward; it suffices
to replace every occurrence of #y with the more general counting quantifier #ȳ . Additionally,
the monovariate weight functions c(j)

i must be extended to c
(j)
I : V (G)p → Z, where I ∈

V (G)p.
In the statements [9, Lemma 2, 3, 6, 15, and Theorem 2, 4], we apply the same changes.

Furthermore, if, for some i ∈ [|x̄|], clauses are restricted to the form τ(y) ∧ ψ(x̄) ∧ f(y) =
g(xi) ∧ ∆ ̸=(yx̄) (with non-empty or empty ∆ ̸=) in the statements or proofs, we extend
them to the form τ(ȳ) ∧ ψ(x̄) ∧ f1(y1) = g1(xi1) ∧ · · · ∧ fp(yp) = gp(xip) ∧ ∆̸=(yx̄) for some
I = (i1, . . . , ip) ∈ [k]p. Note that the runtime increase in adapting [9] mostly occurs in [9,
Lemma 6], where its running time increases to ∥G∥p.

6 We want to thank Michał Pilipczuk as he brought to our attention that this approach may likely extend
to counting tuples which we formerly thought to be impossible.
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The same applies to Definition 4 and Lemmas 3 and 5 in Section 4.1. It’s worth mentioning
that the N in Theorem 6 is now O(np) instead of being linear in n, which explains the
increase in time complexity.

As these changes are rather trivial and clutter the presentation of the results, we decided
to omit explicit proofs here.

5 Hardness

We have seen that formulas ψ of the form ∃x1 . . . ∃xk P (#y φ1(x̄, y), . . . ,#y φℓ(x̄, y)) can be
evaluated in time O(f(|ψ|)nℓ+1 polylog(n)) on graph classes of bounded expansion. We now
show that this cannot be improved by more than an almost linear factor in n under SETH.

For this, let us recall the Subset Sum Problem, which is often used as a starting point
in fine-grained complexity theorem. Here, we need a recent conditional lower bound for this
problem.

▶ Definition 13 (k-Sum). Given n integers x1, . . . , xn ∈ N and a target value T , the task in
the SubsetSum problem is to decide whether there is a subset of the numbers above which
sums to T . For the k-Sum problem, the task for the same instance is to decide where there
are k numbers which add up to T .

▶ Proposition 14 ([1]). Assuming SETH, for any ε > 0 there exists a δ > 0 such that
Subset Sum is not in time O(T 1−ε2δn), and k-Sum is not in time O(T 1−εnδk).

Note that δ does not depend on k, only on ε.
We will show a conditional lower bound of the following problem on star forests. Note

that those graphs have treedepth 2.

▶ Definition 15 (ℓ-Variate k-Satisfaction). Given a graph G, quantifier-free FO formulas
φ1(x1, . . . , xk, y), . . . , φℓ(x1, . . . , xk, y) and integers w1, . . . , wℓ the problem ℓ-Variate k-
Satisfaction asks whether

G |= ∃x1 . . . ∃xk
ℓ∧
i=1

φi(x1, . . . , xk, y) = wi.

First, we make a simple observation that any number can be uniquely represented in any
(natural) base. The following is tailored to our use case.

▶ Observation 16. Observe, that for every ℓ, T ∈ N, every number 0 ≤ x ≤ T can be
uniquely expressed as x =

∑ℓ
j=1 aj · τ j−1 for some aj ∈ {0, . . . , τ − 1} and where τ = ⌈ ℓ

√
T ⌉.

Now, we relax the conditions on the base and allow an “overlap”. As an example, consider
the number 35 in base-10. If we allowed the digits to range from 0 to 15 (represented by
0, . . . , 9, A, . . . , F ), 35 can then be expressed also by 2F (= 2 · 101 + 15 · 100 in “base-10 with
A-F”). The representation is then of course not unique, but the number of such representations
is small.

▶ Lemma 17. Consider Observation 16 but where the aj are allowed to range from 0 to
kτ − 1 instead. Then the number of such representations of x is bounded by kℓ.

Proof. We prove the claim by induction over ℓ. First, let us notice that
∑ℓ
j=1 aj · τ j−1 < kτ ℓ

for aj ∈ {0, . . . , kτ − 1}.
For the induction, let x ∈ {0, . . . , kτ ℓ}. Consider a representation of x with x =∑ℓ
j=1 aj · τ j−1 and aj ∈ {0, . . . , kτ − 1} for all j ∈ [ℓ].
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For ℓ = 1, x = a1 holds. Hence, there is only one representation.
For ℓ > 1, let us consider furthermore y = x − aℓτ

ℓ−1. Then, by our first note y =∑ℓ−1
j=1 aj · τ j−1 < kτ ℓ−1. By the induction hypothesis there are at most kℓ−1 representations

of y in this form (where j ranges from 1 to ℓ− 1). There are at most k valid choices for aℓ,
as x − aℓτ

ℓ−1 has to fall into the range {0, . . . , kτ ℓ−1 − 1}. Thus, there are k · kℓ−1 = kℓ

possibilities to represent x as described. ◀

▶ Theorem 18. Assuming SETH, for any ε > 0 and ℓ ∈ N the ℓ-Variate k-Satisfaction
on star forests is not in time f(ℓ, k) · |G|ℓ−ε for all k ∈ N and functions f .

A few words about the implications of the theorem are in order: The result does not rule
out that there exists a pair of ℓ and k and an ε > 0 such that ℓ-Variate k-Satisfaction
can be solved in time f(k, ℓ)|G|ℓ−ε. It only says that (for any fixed ℓ) there cannot be a
(family of) algorithms which achieves this “form” of running time. Indeed, if one looks closer
into the proof, one can show that for every fixed ℓ there can be at most finitely many k

where a faster running time can be achieved. Note especially that for k < ℓ, one can achieve
a running time of f(k, ℓ)nk < f(k, ℓ)nℓ+1 by essentially brute-forcing all solution candidates.

Before we come to the proof, let us consider the (hopefully easier) case of ℓ being 1 or 2.
We can express a given k-Sum instance as a graph where every number x is expressed as a
star with x endpoints. Now a set of k numbers from the k-sum instance adds up to T iff
there are k stars with T endpoints in total.

Generalizing this to ℓ = 2, we change the construction such that a star does not have x
endpoints but ⌊x/

√
T ⌋ blue endpoints and x− ⌊x/

√
T ⌋ red endpoints, which represent the

most significant bits (MSB) and least significant bits (LSB) of x respectively. Now, a set of
k numbers add up to T iff the k corresponding stars have ⌊T/

√
T ⌋ blue and T − ⌊T/

√
T ⌋

red neighbors in total, where the numbers are the MSB and the LSB of T respectively. Due
to carryovers the above statement does not hold technically. This issue can be fixed with a
small overhead by guessing the form of the carryovers. The number of possible carryovers is
small.

In the proof, the technique is generalized to all ℓ ∈ N and the technicalities concerning
carryovers are addressed as well.

Proof. Let k, ℓ ∈ N. Consider a k-Sum instance with n numbers x1, . . . , xn and a target
value T . We reduce this to a ℓ-Variate k-Satisfaction instance, where |G| = Θ(nℓ ℓ

√
T )

and where G is a star forest with n components. The reduction represents the numbers of the
k-Sum instance as a graph G with colors [ℓ] and each number xi as a star in G with ai,j many
endpoints of color j ∈ [ℓ] where xi =

∑ℓ
j=1 ai,j · τ j−1, τ = ⌈ ℓ

√
T ⌉ and ai,j ∈ {0, . . . , τ − 1}

(see Observation 16). Then, there exist k numbers in the k-Sum instance which add up to T
if and only if there are k vertices v1, . . . , vk in G with (in total) Bj many neighbors of color j
for every j ∈ [ℓ] such that T =

∑ℓ
j=1 Bjτ

j−1.
After having constructed the graph, let us look at the formula. Each number Bj ranges

from 0 to k(τ−1) as each vertex vi has at most τ−1 neighbors of a given color. Let T be sets
of ℓ-tuples (w1, . . . , wℓ) ∈ {0, . . . , k(τ − 1)}ℓ with T =

∑ℓ
j=1 wj · τ j−1. By Lemma 17 the size

of T is bounded in a function of k and ℓ. Let (w1, . . . , wℓ) ∈ T . Then, the following formula
expresses that there are k (central) vertices whose neighbors of color j ∈ [ℓ] (expressed by
the predicate Cj) add up to wj

ψ(w1,...,wℓ) ≡ ∃x1 . . . ∃xk
ℓ∧
j=1

(
#y

(
Cj(y) ∧

k∨
i′=1

y ∼ xi′
)

= wj

)
.

Thus, G together with the formula above and (w1, . . . , wℓ) is the instance of ℓ-Variate
k-Satisfaction constructed above.
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Hence, for each tuple (w1, . . . , wℓ) ∈ T we check whether G satisfies ψ(w1,...,wℓ). If this is
the case for some tuple, the k-Sum instance is accepted, otherwise it is not.

The size of the resulting graph G is nℓ⌈ ℓ
√
T ⌉, the size of each ψ(w1,...,wℓ) is O(kℓ), the

construction of a single instance takes linear time in |G| and |ψ|. This construction is repeated
|T | = f(k, ℓ) times for each ψ(w1,...,wℓ).

To show the theorem statement, assume for contradiction that there exist ℓ ∈ N and ε > 0
such that for every K ∈ N there exists k ≥ K such that the ℓ-Variate k-Satisfaction
on star forests can be solved in time O(|G|ℓ(1−ε)f(l, k)) some function f . We consider any
k-Sum instance for k. It has n numbers and a target value T . As we have seen above, it can
be reduced to |T | instances of ℓ-Variate k-Satisfaction on star forests of size nℓ ℓ

√
T .

Then, k-Sum could be solved in time

Θ(|G| + |φ|) + |T |O(|G|ℓ(1−ε)f(k, ℓ))=O((nℓ ℓ
√
T )ℓ(1−ε)f(k, ℓ))=O(T 1−εnℓ(1−ε)f(k, ℓ)).

Recall Proposition 14 and let us assume that SETH holds. The above run time contradicts
the non-existence of an algorithm for k-Sum with run time T 1−εnδk if ℓ(1 − ε) < δk. As δ
depends only on ε, the inequality can be satisfied by “big enough” k. To be more precise,
it holds for k ≥ ℓ(1 − ε)/δ. Thus, we get that the existence of an algorithm for ℓ-Variate
k-Satisfaction in time O(|G|ℓ(1−ε)f(l, k)) contradicts SETH. ◀

From this result, we get directly a lower bound for model checking of formulas with
inequality, that is, ∃x1 . . . ∃xk

∧ℓ
i=1 #y φi(yx̄) ≥ Ni. Note that by Lemma 11 we have an

algorithm with a running time of f(k, ℓ)nℓ polylogn.

▶ Corollary 19. Assuming SETH, for any ε > 0 and ℓ ∈ N the ℓ-Variate k-Satisfaction
with inequalities on star forests is not in time O(f(ℓ, k)|G|1/2ℓ−ε) for all k and functions f .

Proof. Note that an equality #y φ(yx̄) = N can be expressed by two inequalities #y φ(yx̄) ≤
N ∧ #y φ(yx̄) ≥ N , and equivalently by #y ¬φ(yx̄) ≥ |G| −N ∧ #y φ(yx̄) ≥ N . A formula
∃x1 . . . ∃xk

∧
i∈[ℓ] #y φi(yx̄) = Ni from ℓ-Variate k-Satisfaction with ℓ counting terms is

then equivalent to the formula ∃x1 . . . ∃xk
∧
i∈[ℓ] #y φi(yx̄) ≤ Ni ∧ #y ¬φi(yx̄) ≤ |G| − Ni

with 2ℓ counting terms using inequalities. The result is weaker in the degree of the polynomial
by a factor of 1/2, as the number ℓ of counting terms doubles when going from equalities to
inequalities as discussed above. ◀

Lower Bounds for Other Fragments
In the following we show that our algorithmic results cannot be generalized to slightly more
general fragments. Firstly, consider the existential fragment with nested counting, that is, we
add another counter formula inside the counting formulas considered in Section 4. Secondly,
we show that one cannot add even one universal quantifier between the existential quantifiers
and the counting quantifier.

Here, we regard the equality predicate = t only (where t is a constant which depends on
the graph). This can easily be extended to inequality predicates by replacing #y φ = t with
both #y φ ≥ t ∧ #y φ ≤ t. Also note that the constant t depends on the graph. It is also
possible to construct a formula which is independent of the graph. However, this formula
needs a comparison between two counting terms instead.

The reduction is based on the reduction from [17, Theorem 4.1] and [9, Lemma 16]. The
proof is omitted and can be found in the appendix.

SWAT 2024



35:16 Multivariate Optimization and Decision Problems

▶ Theorem 20. The model checking problem on forests of depth 2 is W[1]-hard for FO({=})-
formulas ψ of the form
1. ∃x1 . . . ∃xk∀z#y φ(x̄yz) = t

2. ∃x1 . . . ∃xk#z [#y φ(x̄yz) = t] = s

3. ∃x1 . . . ∃xk∀z∀z′#y φ(x̄yzz′) = t

where φ is a quantifier-free FO-formula.
Moreover, under ETH there is no algorithm with a running time of no(

√
|ψ|) for formulas

of the form 1 and 2, and no(|ψ|) for formulas of form 3.

6 Concluding Remarks

We have shown that on classes of bounded expansion, we can solve the query evaluation and
query counting problem of formulas of the form ∃x1 . . . ∃xk P (#y φ1(x̄, y), . . . ,#y φℓ(x̄, y))
in time f(|ψ|)nℓ+1 polylogn, and it cannot be improved to f(|ψ|)nℓ−ε for any ε > 0. For the
case of ≤-constraints we improved the running time for the query evaluation problem to
f(|ψ|)nℓ polylogn.

It would be interesting to close the gap between the lower bound of Theorem 18 and the
upper bound of Theorem 6. One approach could be improving the algorithm of Lemma 5.
For such approaches it is certainly needed to maintain a table of size Õ(nℓ) in the worst
case. However, it could be possible that in many nodes of the treedepth decomposition, the
maintained tables have considerably smaller size, e.g., at the leaves and that together with
output sensitive FFT algorithms, e.g., ones that have almost linear run time in the size of
the output [23], one could achieve a better run time amortized across all n nodes of the
treedepth decomposition. But we do not know if the table size during the dynamic program
on the treedepth decomposition permits an improved run time analysis.

Also, for the case that P consists of a boolean combination of constraints lower bounding
the counting terms by a constant, the gap between lower and upper bound is quite large.
As the Pareto-front for those should have size Θ(nℓ−1) it seems that the lower bound could
be improved. However, the numerical problems known to us which have strong conditional
lower bounds as subset sum are not based on such inequalities.

Moreover, extending our results to the class of nowhere dense graphs would be certainly
interesting. The results of [10] for FO({>0}) are already partially lifted to such classes [8].
They used very different techniques, however. Especially, they did not use (or show) an
equivalent result to Lemma 3. On top of that , recently the non-existence of quantifier
elimination for FO on nowhere dense classes was shown [15] which implies that different
techniques are needed.
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