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Abstract
Given an undirected weighted graph, an (approximate) distance oracle is a data structure that
can (approximately) answer distance queries. A Path-Reporting Distance Oracle, or PRDO, is a
distance oracle that must also return a path between the queried vertices. Given a graph on n

vertices and an integer parameter k ≥ 1, Thorup and Zwick [22] showed a PRDO with stretch 2k − 1,
size O(k · n1+1/k) and query time O(k) (for the query time of PRDOs, we omit the time needed to
report the path itself). Subsequent works [20, 7, 8] improved the size to O(n1+1/k) and the query
time to O(1). However, these improvements produce distance oracles which are not path-reporting.
Several other works [12, 13] focused on small size PRDO for general graphs, but all known results
on distance oracles with linear size suffer from polynomial stretch, polynomial query time, or not
being path-reporting.

In this paper we devise the first linear size PRDO with poly-logarithmic stretch and low query
time O(log log n). More generally, for any integer k ≥ 1, we obtain a PRDO with stretch at most
O(k4.82), size O(n1+1/k), and query time O(log k). In addition, we can make the size of our PRDO
as small as n + o(n), at the cost of increasing the query time to poly-logarithmic. For unweighted
graphs, we improve the stretch to O(k2).

We also consider pairwise PRDO, which is a PRDO that is only required to answer queries from
a given set of pairs P. An exact PRDO of size O(n + |P|2) and constant query time was provided in
[13]. In this work we dramatically improve the size, at the cost of slightly increasing the stretch.
Specifically, given any ϵ > 0, we devise a pairwise PRDO with stretch 1 + ϵ, constant query time,
and near optimal size no(1) · (n + |P|).
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1 Introduction

Given an undirected weighted graph G = (V, E) with n vertices and positive weights on the
edges w : E → R+, the distance dG(u, v) between two vertices u, v ∈ V is the minimal weight
of a path between them in G. For a parameter α ≥ 1, a distance oracle with stretch α is a
data structure, that given a query for a pair of vertices (u, v), returns an estimated distance
d̂(u, v) such that

dG(u, v) ≤ d̂(u, v) ≤ α · dG(u, v) .

A Path-Reporting Distance Oracle, or PRDO, is a distance oracle that must also return a
path in G of weight d̂(u, v) between the queried vertices u, v.
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Distance oracles have been the subject of extensive research in the last few decades. They
are fundamental objects in Graph Algorithms, due to their both practical and theoretical
usefulness. The main interest is in the triple tradeoff between the stretch of a distance oracle,
its size, and its query time. In some cases, the preprocessing time, (that is, the time needed
to construct the distance oracle) is also considered. Note that for every query, a PRDO must
return a path P , thus the running time of the query algorithm is always in the general form
of O(q + |P |). We usually omit the term1 |P | from the query time and write only O(q).

This work focuses on path-reporting distance oracles for general graphs. The path-
reporting property is more appealing for certain applications that require navigation or
routing [17, 11, 24]. See the survey [21] and the references therein for additional applications
of distance oracles.

1.1 Linear Size Path-Reporting Distance Oracles
In [22], a PRDO with stretch 2k − 1, size O(kn1+1/k) and query time O(k) was shown.
Assuming the girth conjecture of Erdős [15], this result is best possible, up to the factor of
k in the size and query time.2 The query time was improved to O(log k) by [23]. Observe
that kn1/k ≥ log n for any k ≥ 1, so the PRDO of [22, 23] cannot be sparser than Θ(n log n).
Subsequent works [20, 7, 8] obtained distance oracles with stretch 2k − 1, improved size
O(n1+1/k) and constant query time. However, these distance oracles are not path-reporting.

Of particular interest is trying to achieve a PRDO of linear size. The first such result [12]
obtained a PRDO with size O(tn), for any parameter t ≥ 1, and O(log t) query time, but
had a polynomial stretch O(tn2/

√
t), and required that the aspect ratio of the weights is

polynomially bounded. This result was improved by [13], who showed a PRDO with stretch
O(k) and size O(n1+1/k), but at the cost of increasing the query time to O(n1/k+ϵ), where
ϵ > 0 is a constant. Note that the query time O(n1/k+ϵ) is prohibitively large - this term
dominates the length of many of the output paths, so the PRDO suffers from large query time
for these paths. For this reason, it is of special interest to construct linear size PRDOs with
query time that is far less than polynomial in n, say polylogarithmic in n. Another variant
of [13] does achieve a PRDO with query time O(log log n) and stretch logO(1) n, however its
size O(n log log n) is no longer linear.

We conclude that in all previous results, every linear size distance oracle suffers from a
polynomial stretch [12], has polynomial query time [13], or simply cannot report paths [8].

1.1.1 Our Results
In this work we devise the first linear size PRDO for general graphs with polylogarithmic
stretch and low query time. Specifically, for any integer k ≥ 1 our PRDO has stretch O(k4.82),
size O(n1+1/k), and query time O(log k). Indeed, setting k = log n yields linear size, logO(1) n

stretch and O(log log n) query time. Our main result is for the case k = log n, where we get
a linear size PRDO with low query time. In fact, for any k > log n

log log log n , our new PRDO
improves all previous bounds.

Note that since the query time is low, in most cases it is dominated by the length of the
reported path. Therefore, the strength of this result is not in the precise expression for the
query time, but in the fact that the query time is far less than polynomial in n.

1 Throughout this paper, |P | denotes the number of edges in a path P .
2 In fact, Erdős girth conjecture only implies that to achieve stretch 2k − 1, any distance oracle must use

Ω(n1+ 1
k ) bits. However, in [8] a lower bound of Ω(n1+ 1

k ) words (each of size log n bits) for PRDOs is
proved.
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We can refine our result to obtain an ultra-compact PRDO, whose size is as small as
n + o(n) (we measure the size by words, that is, the oracle uses storage of n log n + o(n log n)
bits), at the cost of increasing the query time to logO(1) n. In view of the lower bound of [8],
this space usage is optimal, up to additive lower order terms. If the graph is unweighted, we
offer a simpler construction with improved stretch O(k2).

1.2 Pairwise Path-Reporting Distance Oracles
A pairwise distance oracle is a distance oracle that is also given as input a set of pairs P,
and is required to answer queries only for pairs in P. The problem of designing such oracles
is related to the extensive research on distance preservers: these are subgraphs that preserve
exactly all distances between pairs in P. When allowing some stretch, these are sometimes
called pairwise spanners.3 Distance preservers were introduced in [9], and pairwise spanners
have been studied in [10, 18, 4, 3, 6, 19].

In [13], an exact pairwise PRDO was shown with constant query time and size O(n+ |P|2).
For distance preservers, [9] showed a lower bound of Ω(n2/3|P|2/3). Note that for |P| = n2−δ,
the lower bound implies that any distance preserver must have size Ω(|P| · nδ/3), so there
are no distance preservers with near-linear size (except for the trivial case when P contains
a constant fraction of all pairs). In [5], it was proved that exact pairwise PRDOs suffer
from the same lower bounds of exact preservers (see Theorem 14 in [5]). Thus, it is very
natural to ask if the size of a pairwise PRDO can be reduced when allowing a small stretch.
Specifically, we would like to obtain a very small stretch (e.g., 1 + ϵ for any ϵ > 0), and size
that is proportional to |P| + n (which is the basic lower bound).

1.2.1 Our Results
In this work we devise a pairwise PRDO with near optimal size no(1) · (|P| + n), constant
query time, and stretch 1 + ϵ, for any ϵ > 0 (the o(1) term in the size depends logarithmically
on ϵ). This result uses the techniques of [19] on hopsets and spanners, and extends them for
pairwise path-reporting distance oracles.

1.3 Our Techniques
Our main result on linear size (and ultra-compact) PRDO uses a conceptually simple idea:
we partition the graph into O(n/k) clusters, and define the cluster-graph by contracting every
cluster to a single vertex (keeping the lightest edge among parallel edges). Next, we apply
the [22] distance oracle on this cluster-graph. In addition, we store a certain spanning tree
for every cluster. Given a query (u, v), the algorithm first finds a path in the cluster-graph
between the clusters containing u, v, and for each cluster in this path, it finds an inner-cluster
path between the entry vertex and the exit vertex of the cluster, using the spanning tree.

In order to implement this framework, it is required to find a clustering so that the
overhead created by going through the spanning tree of every cluster is small enough. For
unweighted graphs, we apply a simple clustering with radius O(k), and maintain a BFS
tree for each cluster. However, for weighted graphs a more intricate clustering is required.
Note that we cannot enforce a small diameter bound on all clusters, since by only restricting
the diameter, each cluster can be very small, and we need to have at most O(n/k) clusters.
Instead, we use a variant of Borůvka clustering [1].

3 In [19] pairwise spanners with small 1 + ϵ stretch are called near-exact preservers.
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In Borůvka’s algorithm for minimum spanning tree, in each phase, every vertex adds its
adjacent edge of minimal weight to a forest F (breaking ties consistently), and the connected
components of F are contracted to yield the vertices of the next phase. If we truncate this
process after t phases, we get a clustering, analyzed in [1]. Unfortunately, any phase in
this clustering may produce long chains, in which case the stretch cannot be controlled. To
rectify this, we delete certain edges in F , so that every cluster is a star, while ensuring that
the number of non-singleton clusters is large enough. These stars are also the basis for the
spanning tree of each cluster. The main technical part is analyzing the stretch induced by
this clustering on the paths returned by calling the distance oracle on the cluster-graph.

1.4 Organization
After some preliminaries in Section 2, we show our PRDO for unweighted graph is in Section 3,
and for weighted graphs in Section 4. Our result for pairwise PRDO appears in Section 5.

1.5 Bibliographic Note
Following this work, [14] showed (among other results) a PRDO of linear size with stretch
Õ(log n) and query time O(log log log n).

2 Preliminaries

Let G = (V, E) be an undirected weighted graph. In all that follows we assume that G is
connected.

Spanners. For a parameter α ≥ 1, an α-spanner is a subgraph S of G, such that for every
two vertices u, v ∈ V ,

dS(u, v) ≤ α · dG(u, v) . (1)

The spanner is called a pairwise spanner, if for a given a set of pairs P, we only require (1)
to hold for all (u, v) ∈ P.

Trees. Let x, y be two vertices in a rooted tree. We denote by p(x) the parent of x, which
is the unique neighbor of x that lies on the path from x to the root, and by h(x) its height,
which is the number of edges on the path from x to the root. Denote by lca(x, y) the lowest
common ancestor of x, y, which is a vertex z such that x, y are both in its sub-tree, but not
both in the sub-tree of any child of z. Note that the unique path between x, y in the tree is
the concatenation of the unique paths from x to lca(x, y), and from lca(x, y) to y.

The following lemma let us easily find paths within a tree T .

▶ Lemma 1. Let T be a rooted tree, and assume we are given h(x) and p(x) for every vertex
x in T . There is an algorithm that given two distinct vertices a, b in a tree T , finds the
unique path between a, b in T . The running time of this algorithm is proportional to the
number of edges in the output path (or O(1) if the path is empty).

Proof. First, if a = b, then the desired path is empty and we return it in O(1) time.
Otherwise, if h(a) > h(b), recursively find the unique path Pp(a),b in T between p(a) and b,
and return {a, p(a)} ◦ Pp(a),b. Symmetrically, if h(b) ≥ h(a), return {b, p(b)} ◦ Pp(b),a.

The correctness of this algorithm follows from the fact that if, for example, h(a) ≥ h(b),
and a ̸= b, then b cannot be in the sub-tree of a in T , hence the unique path between a, b

must pass through p(a). In each recursive call we reduce the sum h(a) + h(b) by 1, and
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therefore the algorithm ends when a = b = lca(a, b). Therefore the running time of this
algorithm is proportional to the length of the unique paths from a to lca(a, b) and from b to
lca(a, b). The concatenation of these paths is exactly the returned path by our algorithm,
which is the unique path in T between a, b. Hence, the running time is proportional to the
number of edges in the output path, as desired. ◀

2.1 Thorup-Zwick PRDO
A main component of our new PRDO relies on a well-known construction by Thorup and
Zwick [22]. Given a weighted graph G with n vertices and an integer parameter k ≥ 1, they
constructed a PRDO with stretch 2k − 1, query time O(k) and size O(kn1+1/k).

A useful property of the Thorup-Zwick (TZ) PRDO is that for every query, it returns a
path that is contained in a sub-graph S of G, such that |S| = O(kn1+1/k). Notice that since
the stretch of this PRDO is 2k − 1, then S must be a (2k − 1)-spanner of G. We call S the
underlying spanner of the PRDO. One can compute the underlying spanner S either during
the PRDO construction, or after its construction by querying the PRDO on every pair of
vertices, and computing the union of the resulting paths.

A result of [23] improved the query time of the TZ PRDO to O(log k) instead of O(k),
while returning the same path that the TZ PRDO returns. Indeed, when we use here the
TZ PRDO, we consider its query time to be O(log k). The following theorem concludes this
discussion.

▶ Theorem 2 (By [22] and [23]). Let G be an undirected weighted graph with n vertices, and
let k ≥ 1 be an integer parameter. There is a PRDO for G with stretch 2k − 1, query time
O(log k) and size O(kn1+1/k), with an underlying spanner of the same size.

3 Path-Reporting Distance Oracle for Unweighted Graphs

In this section we introduce a simple variant of our construction, tailored for unweighted
graphs. We first apply a simple clustering, and store a BFS (Breadth First Search) tree for
each cluster. We next apply the TZ PRDO on the resulting cluster-graph. Finally, each query
(u, v) is answered by taking the path in the cluster-graph between the clusters containing u

and v, and completing it to a path in G using the BFS trees.

3.1 Clustering
We start by dividing the graph into clusters, using the following lemma.

▶ Lemma 3. Let G = (V, E) be an undirected unweighted graph with n vertices. Let k ∈ [1, n]
be some integer. There is an algorithm that finds a partition V =

⋃q
i=1 Ci, such that every

Ci has a spanning tree Ti = (Ci, Ei) with root ri, where Ei ⊆ E and for every v ∈ Ci,
dTi

(v, ri) ≤ k. In addition, the number of sets in this partition, q, is at most n
k .

Proof. Fix some r ∈ V , and let T = (V, ET ) be the BFS tree with r as a root. The tree T is
actually the shortest paths tree from r in G, and so the path from every v ∈ V to r in T is of
length exactly dG(v, r), i.e., dT (v, r) = dG(v, r). If every vertex v ∈ V satisfies dG(v, r) ≤ k,
then we can return the trivial partition {V }, with the spanning tree T and root r.

Otherwise, let v be the furthest leaf of T from r, that is, v maximizes the length dT (v, r).
We know that dT (v, r) > k, and since G is unweighted, there is a vertex r′ on the path in T

from v to r, with dT (v, r′) = k. Denote by T ′ the sub-tree of T rooted at r′.

SWAT 2024
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Let u ∈ V be a vertex in T ′. Since r′ is on the path from u to r, and on the path from v

to r, we have

dT ′(u, r′) = dT (u, r) − dT (r′, r) ≤ dT (v, r) − dT (r′, r) = dT (v, r′) = k .

Therefore, if C is the set of vertices of T ′, we can return C as one of the sets in the desired
partition, where its spanning tree is T ′ and its root is r′. We then delete C from G and
continue recursively.

Note that the tree T ′ contains the path from v to r′, which is of length k. Since G is
unweighted, that means that T ′ contains at least k vertices, and so does C. Hence, the
number of vertices in the graph, after the deletion of C, is at most n − k. Notice also that
the tree T is still a tree, after the removal of T ′, thus the remaining graph is still connected.
As a result, we can assume that our algorithm recursively partitions the remaining graph
into at most n−k

k = n
k − 1 sets, with spanning trees and roots as desired. Together with the

last set C, we obtain a partition into at most n
k parts, with the wanted properties. ◀

Given the unweighted graph G = (V, E) and the integer k, let C be a partition as in
Lemma 3. For every C ∈ C, let T [C] and r[C] be the spanning tree of C and its root. We
define a new graph H = (C, E) as follows.

▶ Definition 4. The graph H = (C, E) is defined as follows. The set E consists of all the
pairs {C, C ′}, where C, C ′ ∈ C, such that there is an edge in G between C, C ′.

Given an edge {C, C ′} ∈ E, we denote by e(C, C ′) the edge {x, y} of G, where {x, y} is
some choice of an edge that satisfies x ∈ C, y ∈ C ′.

We denote by F the forest that consists of the disjoint union of the trees T [C], for every
C ∈ C. For a vertex x ∈ V , define h(x) to be the height of x in the tree T [C] such that
x ∈ C, and p(x) its parent in this tree.

3.2 Stretch Analysis
Fix any cluster C, let T = T [C] be its spanning tree with root r = r[C]. For any two vertices
a, b ∈ T , the unique path between them is a sub-path of the union between the two paths
from a to r and from b to r. Both of these paths are of length at most k. Hence, the resulting
path is of length at most 2k, and this path is exactly the one that the algorithm from Lemma
1 returns.

▶ Lemma 5. There is an algorithm that given two vertices u, v ∈ V , and a simple path
Q = (C1, C2, ..., Ct) in the graph H, such that u is in C1 and v is in Ct, returns a path P in
G between u and v, with number of edges

|P | ≤ t · (2k + 1) .

The running time of the algorithm is proportional to the number of edges in the output
path. The required information for the algorithm is the set {h(x), p(x)}x∈V , and the set
{e(Cj , Cj+1)}t−1

j=1.

Proof. Given the edges {Cj , Cj+1}, the set {e(Cj , Cj+1)}t−1
j=1 can be used to find xj , yj ∈ V

(vertices of the original graph G = (V, E)), such that xj ∈ Cj , yj ∈ Cj+1 and {xj , yj} ∈ E.
Define also y0 = u, xt = v. For every j ∈ [1, t], using the set {h(x), p(x)}x∈V , we can use
Lemma 1 to find a path Pj in G between yj−1 and xj , with length at most 2k. Finding all
of these paths takes time that is proportional to the sum of lengths of these paths.
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The returned path by this algorithm is

P = P1 ◦ {x1, y1} ◦ P2 ◦ {x2, y2} ◦ · · · ◦ {xt−1, yt−1} ◦ Pt .

The time needed to report this path is O(
∑t

j=1 |Pj |) = O(|P |). The length of this path is

t − 1 +
t∑

j=1
|Pj | ≤ t − 1 + t · 2k < t · (2k + 1) .

This concludes the proof of the lemma. ◀

3.3 A PRDO for Unweighted Graphs
We are now ready to introduce the construction of our small size PRDO.

▶ Theorem 6. Let G = (V, E) be an undirected unweighted graph with n vertices, and let
k ∈ [1, log n] be some integer parameter. There is a path-reporting distance oracle for G with
stretch 2k(2k + 1) = O(k2), query time O(log k) and size O(n1+ 1

k ).

Proof. Denote by TZ the PRDO from Theorem 2 with the parameter k, when constructed
over the graph H = (C, E) (the clustering C is constructed with k as the radius4). Let
ST Z ⊆ E be the set of the edges of the underlying spanner of TZ. In addition, for a given
vertex x ∈ V , denote by C(x) the vertex of H (i.e., cluster) that contains x. Recall also that
h(x) is the height of x in the tree spanning C(x) and p(x) denotes the parent of x in this
tree.

We define our new PRDO for the undirected unweighted graph G = (V, E). This PRDO
contains the following information.
1. The TZ PRDO.
2. The set {e(C, C ′) | {C, C ′} ∈ ST Z}.
3. The variables {h(x), p(x)}x∈V .
4. The variables {C(x)}x∈V .

Given a query (u, v) ∈ V 2, our PRDO queries TZ on the vertices C(u), C(v) of H.
Let Q = (C(u) = C1, C2, ..., Ct = C(v)) be the resulting path, and note that all of its
edges are in ST Z . Then, using the sets {e(Cj , Cj+1)}t−1

j=1 ⊆ {e(C, C ′) | {C, C ′} ∈ ST Z} and
{h(x), p(x)}x∈V , we find a path P in G between u, v using the algorithm from Lemma 5.
The resulting path P has length of

|P | ≤ (|Q| + 1)(2k + 1) = t · (2k + 1) ,

and it is returned as an output to the query.
Note that the path Q that TZ returned satisfies |Q| = t − 1 ≤ (2k − 1)|R|, where R is

the shortest path in H between C(u) and C(v). Let Pu,v be the actual shortest path in G

between u and v. Suppose that the vertices of H that Pu,v passes through, by the order that
it passes through them, are (T1, T2, ...Tq). By the definition of H, there must be an edge
{Tj , Tj+1} in H for every j ∈ [1, q − 1]. Hence, R′ = (T1, T2, ..., Tq) is a path in H, between
T1 = C(u) and Tq = C(v), with length of at most |Pu,v| = dG(u, v). Since R is the shortest
path in H between C(u) and C(v), we have |R| ≤ dG(u, v).

4 Actually, by constructing the clustering C with radius k
8 instead of k, the stretch of our new PRDO

decreases from 4k2 to k2. In the same way, one can achieve an arbitrarily small leading constant in the
stretch.
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As a result,

|P | ≤ t · (2k + 1)
≤ ((2k − 1)|R| + 1)(2k + 1)
≤ ((2k − 1)dG(u, v) + 1)(2k + 1)
= (4k2 − 1)dG(u, v) + 2k + 1
≤ (4k2 + 2k)dG(u, v) = 2k(2k + 1)dG(u, v) .

Thus, the stretch of our PRDO is at most 2k(2k + 1).
The query time of our oracle consists of the time required for running a query of TZ,

and of the time required for finding the path P . By Theorem 2 and Lemma 5, the total time
for these two computations is O(log k + |P |) which is O(log k) by our conventional PRDO
notations.

As for the size of our PRDO, note that the variables {h(x), p(x)}x∈V (item 3 in the
description of the oracle) can be stored using only O(n) space. The size of the set
{e(C, C ′) | {C, C ′} ∈ ST Z} equals to the size of ST Z . Therefore, by Theorem 2, the
size of TZ, as well as the size of this set (items 1 and 2), is

O(k|C|1+ 1
k ) .

Recall that by Lemma 3, the size of C is at most n
k . We conclude that the total size of our

new PRDO is

O(n + k · (n

k
)1+ 1

k ) = O(n1+ 1
k ) . ◀

An Ultra-Compact PRDO for Unweighted Graphs. We can modify our PRDO for un-
weighted graphs, and get a PRDO of size n + o(n). Here, the required storage for our PRDO
is measured by words - each of size at most log n bits. Decreasing the size of our PRDO
is done at the cost of increasing the query time and (slightly) the stretch. The details are
deferred to the full version of this paper.

4 Path-Reporting Distance Oracle for Weighted Graphs

In this section we devise our PRDO for weighted graphs. The basic framework is similar to
the unweighted case: create a clustering of the graph, select a spanning tree for each cluster,
and then apply the TZ PRDO over the cluster-graph. To answer a query (u, v), we use the
path in the cluster-graph between the clusters containing u, v, and complete it inside each
cluster via the spanning trees edges.

The main differences from the unweighted setting are: 1) we use a more intricate clustering,
Borůvka’s clustering, and 2) the trees spanning each cluster are not BFS trees, but are a
subset of the MST (Minimum Spanning Tree) of the graph. These changes are needed in
order to achieve the desired properties - that the number of clusters is small enough, while
the stretch caused by going through the spanning trees of the clusters is controlled.

4.1 Clustering via Borůvka Forests
In this section we construct a clustering via a spanning forest of a graph. This construction
is based on the well-known algorithm by Borůvka for finding a minimum spanning tree in a
graph. Similar constructions can be found in [16, 1, 2].
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▶ Definition 7. Given an undirected weighted graph G = (V, E), and a vertex v ∈ V , we
denote by ev the minimum-weight edge among the adjacent edges to v in the graph G. If
there is more than one edge with this minimum weight, ev is chosen to be the one that is the
smallest lexicographically.

▶ Definition 8. Given an undirected weighted graph G = (V, E), the Borůvka Forest of G is
the sub-graph G′ = (V, E′) of G, where

E′ = {ev | v ∈ V } .

Each connected component T of G′ is called a Borůvka Tree. The root of T is chosen to
be one of the adjacent vertices to the minimum-weight edge in T (if there are several such
minimum-weight edges, we pick the smallest one lexicographically, and the choice between its
two adjacent vertices is arbitrary).

To justify the use of the words “forest” and “tree”, we prove the following lemma.

▶ Lemma 9. The graph G′ is a forest. Moreover, if T is a tree in G′, x is a vertex of T ,
and p(x) is x’s parent in T (that is, the next vertex on the unique path from x to the root of
T ), then {x, p(x)} = ex.

Proof. First, we prove that G′ is a forest. Seeking contradiction, assume that G′ contains a
cycle C, and let {u, v} be the heaviest edge in C (if there are several edges with the largest
weight, choose the one that is largest lexicographically). Note that since u has at least one
adjacent edge in C, that is lighter than {u, v}, then it cannot be that eu = {u, v} (recall that
eu is the lightest edge adjacent to u). Similarly, it cannot be that ev = {u, v}. Hence, we get
a contradiction to the fact that {u, v} is an edge of G′ - since every such edge must be the
edge ev of one of its endpoints v.

Next, Let T be a tree in G′, denote its root by v, and let x ≠ v be a vertex of T . We
prove by induction over the height of x, h(x), which is the number of edges in the unique
path between x and v in T .

When h(x) = 1, we have p(x) = v. We consider two cases. If {x, v} is the minimum-weight
edge in T , then by definition ex must be this edge, i.e., ex = {x, p(x)}. If {x, v} is not the
minimum-weight edge in T , then ev must be some other adjacent edge to v, thus ev ̸= {x, v}.
But then, the reason that {x, v} is in E′ must be that {x, p(x)} = {x, v} = ex.

For h(x) > 1, notice that h(p(x)) = h(x) − 1, and therefore by the induction hypothesis,
{p(x), p(p(x))} = ep(x). But then, the edge {x, p(x)} cannot be equal to ep(x), so it must be
equal to ex. ◀

The following lemma bounds the number of connected components (i.e., trees) in G′.

▶ Lemma 10. The number of connected components in G′ is at most 1
2 |V |.

Proof. Let C = (VC , E′
C) be a connected component of G′, and let x ∈ VC . The edge

ex = {x, y} is in C, hence y is also a vertex of C. In particular, |VC | ≥ 2. Hence, if {Ci}t
i=1

are the connected components of G′, then |VCi
| ≥ 2 for every i ∈ [1, t]. Thus,

1
2 |V | = 1

2

t∑
i=1

|VCi
| ≥ 1

2 · 2t = t . ◀

Next, we trim the trees in the Borůvka forest so that each of them will be a star, instead
of a general tree. For this purpose, we will need the following definitions.
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▶ Definition 11. Let G′ be the Borůvka forest of G. For a vertex x ∈ V , denote by h(x) the
height of x in the Borůvka tree containing it. Define

E′
0 = {{a, b} ∈ E′ | min{h(a), h(b)} = 0 mod 2} ,

E′
1 = {{a, b} ∈ E′ | min{h(a), h(b)} = 1 mod 2} .

We denote by E′′ the largest set among these two.
Given an undirected weighted graph G = (V, E), the Partial Borůvka Forest of G is the

graph G′′ = (V, E′′).

▶ Definition 12. A Star is a rooted tree S = (VS , ES) with root v such that for every
x ∈ VS \ {v}, {x, v} ∈ ES.

▶ Lemma 13. The partial Borůvka forest G′′ = (V, E′′) is a forest, where every tree is a
star. In addition, if S is a star in G′′, x is its root and z ≠ x is some other vertex of S, then
{z, x} = ez.

Proof. Notice that G′′ is a sub-graph of the Borůvka forest G′, hence G′′ is also a forest.
We assume that E′′ = E′

0, and the proof for the case where E′′ = E′
1 is symmetric.

Let T be a tree in G′, with root r. Note that for any vertex x ̸= r we always have
h(x) = h(p(x)) + 1, and thus min{h(x), h(p(x))} = h(p(x)) = h(x) − 1. We conclude that if
h(x) is even, then {x, p(x)} /∈ E′′, and if h(x) is odd, then {x, p(x)} ∈ E′′.

Now let S be a tree in G′′, and let x be the vertex in S that has minimal h(x). It cannot
be that h(x) is odd, otherwise p(x) is connected to x in E′′, thus p(x) is also in S and has a
smaller value of h(p(x)) = h(x) − 1. Therefore, h(x) is even. By the discussion above we
know that all of the children of x in T (y’s that satisfy p(y) = x) have an edge in E′′ to x,
but their children have no such edge. That is, S is a star with x as a root, where all the
other vertices in S are the children of x.

The last part of the lemma follows from the fact that we just proved, that the only other
vertices in a star S with a root x, are the children of x. By Lemma 9, for every such child z,
the edge {z, x} = {z, p(z)} = ez. ◀

The following lemma bounds the number of trees in the partial Borůvka forest of a graph.

▶ Lemma 14. The number of stars in G′′ is at most 3
4 |V |.

Proof. Recall the Borůvka forest G′ = (V, E′). In every spanning forest (V, F ) of a graph
G = (V, E), the number of trees is exactly |V | − |F |. Thus, by Lemma 10, we get

|V | − |E′| ≤ 1
2 |V | ,

and therefore |E′| ≥ 1
2 |V |. By the definition of E′′, it contains at least half of these edges

(since it equals to the larger set among two sets that cover the entire set E′). We conclude
that |E′′| ≥ 1

4 |V |, and the number of trees in G′′, which are stars, is

|V | − |E′′| ≤ |V | − 1
4 |V | = 3

4 |V | . ◀

4.1.1 A Hierarchy of Forests
Given an undirected weighted graph G = (V, E), we construct a sequence of forests {Fi =
(V, Ei)}l

i=0, where the integer parameter l ≥ 0 will be determined later. For i = 0, define
E0 = ∅. Then, for every i ∈ [0, l], define the cluster-graph Hi = (Ci, Ei) as follows.
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The set Ci is defined to be the set of the disjoint trees of the forest Fi. For every T, T ′ ∈ Ci,
denote by e(T, T ′) the minimum-weight edge in E among the edges between T and T ′. If
there is no such edge, denote e(T, T ′) = ⊥. Then define

Ei = {{T, T ′} | e(T, T ′) ̸= ⊥} .

The weight of an edge {T, T ′} ∈ Ei is defined to be the same as the weight of the edge
e(T, T ′) ∈ E.

For any i ∈ [0, l], given the graph Hi, let H′′
i = (Ci, E ′′

i ) be the partial Borůvka forest of
Hi. The graph H′′

i is a disjoint union of stars. Let S be such star and let T0 be its root.
Define the tree Z in G to be the tree that is formed by the union of the trees in S and

the edges e(T, T0), for every T ̸= T0 in S. The root of the tree Z is defined to be the root
of T0. Finally, for any i ∈ [0, l − 1], the forest Fi+1 = (V, Ei+1) is defined to be the disjoint
union of the rooted trees Z that are formed as was described, for all stars in H′′

i .

▶ Lemma 15. For every i ∈ [0, l], the forest Fi has at most ( 3
4 )i|V | trees.

Proof. We prove the lemma by induction over i ∈ [0, l]. For i = 0, F0 is defined to be the
graph (V, ∅), so the number of trees in F0 is |V | and the claim holds.

For i > 0, recall the graphs Hi−1 and H′′
i−1 that were used in the definition of Fi. By

the induction hypothesis, Fi−1 consists of at most ( 3
4 )i−1|V | trees, which are exactly the

vertices of Hi−1. Then, by Lemma 14, the graph H′′
i−1 has at most 3

4 · ( 3
4 )i−1|V | = ( 3

4 )i|V |
stars. The forest Fi consists of a single tree Z for every star S in H′′

i−1, thus the number of
trees in Fi is at most ( 3

4 )i|V |, as desired. ◀

4.2 Stretch Analysis
Due to space considerations, we only state here the main lemma that will be used for
bounding the stretch of our PRDO, without proof. The proof of this lemma, as well as some
other lemmata , appears in the full version of this paper.

In the next lemma, we use the notations pi(x) and hi(x) to denote the parent and the
height of x in the tree of Fi that contains x.

▶ Lemma 16. There is an algorithm that given two vertices u, v ∈ V , and a simple path
Q = (S1, S2, ..., St) in the graph Hi, such that u is in S1 and v is in St, returns a path P in
G between u and v, with

w(P ) ≤ 3i+1(dG(u, v) + w(Q)) .

The running time of the algorithm is proportional to the number of edges in the output
path P . The required information for the algorithm is the set {hi(x), pi(x)}x∈V , and the set
{e(Sj , Sj+1)}t−1

j=1.

4.3 A PRDO for Weighted Graphs
We are now ready to introduce our small size path-reporting distance oracle.

▶ Theorem 17. Let G = (V, E) be an undirected weighted graph with n vertices, and let
k ≥ 1 be an integer parameter. There is a path-reporting distance oracle for G with stretch
klog4/3 4 < k4.82, query time O(log k) and size O(n1+ 1

k ).
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Proof. Given the graph G = (V, E), we construct the hierarchy of forests {Fi}l
i=0 from

Section 4.1.1, where l = ⌊log4/3 k⌋ − 2. Consider the graph Hl = (Cl, El) that is defined in
Section 4.1.1. For every x ∈ V , denote by hl(x) the number of edges in the unique path from
x to the root of the tree of Fl that x belongs to. Let pl(x) be the parent of x in that tree.
Lastly, let S(x) be the vertex of Hl (i.e., tree) that contains x.

Denote by TZ the PRDO from Theorem 2 with the parameter k, when constructed over
the graph Hl. Let ST Z ⊆ El be the set of edges of the underlying spanner of TZ.

Our new PRDO D stores the following information.
1. The oracle TZ.
2. The set {e(T, T ′) | {T, T ′} ∈ ST Z}.
3. The variables {hl(x), pl(x)}x∈V .
4. The variables {S(x)}x∈V .

Given a query (u, v) ∈ V 2, the oracle D queries TZ on the vertices S(u), S(v) of Hl.
Let Q = (S(u) = S1, S2, ..., St = S(v)) be the resulting path, and note that all of its
edges are in ST Z . Then, using the sets {e(Sj , Sj+1)}t−1

j=1 ⊆ {e(T, T ′) | {T, T ′} ∈ ST Z} and
{hl(x), pl(x)}x∈V , the oracle D uses the algorithm from Lemma 16 to find a path P in G

between u, v with

w(P ) ≤ 3l+1(dG(u, v) + w(Q)) .

The path P is returned as an output to the query. Note that the path Q that TZ returned
satisfies

w(Q) ≤ (2k − 1)w(R) ,

where R is the shortest path in Hl between S(u) and S(v). Similarly to the proof of Theorem
17, it is easy to verify that w(R) ≤ dG(u, v).

As a result,

w(P ) ≤ 3l+1(dG(u, v) + w(Q))
≤ 3l+1(dG(u, v) + (2k − 1)w(R))
≤ 3l+1(dG(u, v) + (2k − 1)dG(u, v))
= 2k · 3l+1dG(u, v)
≤ 2k · 3log4/3 k−1dG(u, v)
< k1+log4/3 3dG(u, v) = klog4/3 4dG(u, v) .

Thus the stretch of our PRDO is smaller than klog4/3 4.
The query time of our oracle consists of the time required for running a query of TZ, and

of the time required for computing the resulting path P by Lemma 16. By Theorem 2 and
Lemma 16, the total time for these two computations is O(log k + |P |), which is O(log k) by
our conventional PRDO notations.

As for the size of the PRDO D, note that the variables {hl(x), pl(x), S(x)}x∈V (items
3 and 4 in the description of D) can be stored using only O(n) space. The size of the set
{e(T, T ′) | {T, T ′} ∈ ST Z} equals to the size of ST Z . Therefore, by Theorem 2, the size of
TZ, as well as the size of this set (items 1 and 2 in the description of D), is

O(k|Cl|1+ 1
k ) .
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Recall that Cl is the set of vertices of Hl. This set consists of the trees in the forest Fl. By
Lemma 15, the number of these trees is at most

(3
4)l|V | = (3

4)⌊log4/3 k⌋−2n ≤ (3
4)log4/3 k−3n = 64n

27k
.

Hence, the total size of our PRDO is

O(n + k · (64n

27k
)1+ 1

k ) = O(n + n1+ 1
k ) = O(n1+ 1

k ) . ◀

An Ultra-Compact PRDO for Weighted Graphs. As in the unweighted version, the PRDO
presented above can be fine-tuned into an ultra-compact PRDO (with size n + o(n)), at the
cost of increasing the stretch and the query time. The details are deferred to the full version
of this paper.

5 Pairwise Path-Reporting Distance Oracle

Our construction of a pairwise PRDO relies on the pairwise spanner of Kogan and Parter,
from their recent paper [19] (in which the pairwise spanner is called a “near-exact preserver”).
One of their useful results, that they also relied on for constructing their pairwise spanners,
is the following lemma on hopsets. We first recall the definition of hopsets.

Let G = (V, E) be a weighted undirected graph. For vertices u, v ∈ V and some positive
integer β, d

(β)
G (u, v), denotes the weight of the lightest path between u and v in G, among

the paths that have at most β edges. An (α, β)-hopset is a set H ⊆
(

V
2
)
, such that for every

two vertices u, v ∈ V ,

dG(u, v) ≤ d
(β)
G∪H(u, v) ≤ α · dG(u, v) ,

where the weight of an edge (x, y) ∈ H is defined to be dG(x, y).
The proof of the following lemma can be found in [19].

▶ Lemma 18 (Lemma 4.4 from [19]). Let G = (V, E) be an undirected weighted graph on
n vertices, and let k, D ≥ 1 be integer parameters. For every 0 < ϵ < 1, there exists a
(1 + ϵ, β)-hopset H for G, where β = O( log k

ϵ )log k · D and

|H| = O

((
n log n

D

)1+ 1
k

)
.

Similarly to the constructions in [19], we now show how a pairwise PRDO can be produced,
using the hopsets from Lemma 18. We will use the notation β(ϵ, k) = O( log k

ϵ )log k for brevity.

▶ Theorem 19. Let G = (V, E) be an undirected weighted graph on n vertices and let P ⊆ V 2

be a set of pairs of vertices. For every ϵ ∈ (0, 1), there exists a pairwise path-reporting distance
oracle with stretch 1 + ϵ, query time O(1) and size

O

(
log n · (log log n)2

ϵ

)log log n

· Õ
(
|P| + n

)
= noϵ(1) · O(n + |P|) .

Proof. Let n = D0 > D1 > · · · > Dl = 2 be some sequence of integer parameters that
will be determined later. Denote k = log n, and for a given ϵ ∈ (0, 1), denote ϵ′ = ϵ

2(l+1) .
Let H0, H1, ..., Hl be the resulting hopsets when applying Lemma 18 on ϵ′, k = log n and
D0, D1, ..., Dl respectively. That is, Hi is a (1+ϵ′, βi)-hopset with size O(( n log n

Di
)1+ 1

k ), where
βi = β(ϵ′, k) · Di. For i = 0, note that βi ≥ n, thus we can simply assume that H0 = ∅ (if it
is not the case, we define H0 to be ∅, which is a (1, n)-hopset).
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We now define our oracle D to contain the following information. For every i ∈ [1, l] and
for every (x, y) ∈ Hi, let Qx,y be the shortest path in G ∪ Hi−1 between x, y, among the
paths that contain at most βi−1 edges. In addition, for every (x, y) ∈ P, let Px,y be the
shortest path in G ∪ Hl between x, y, among the paths with at most βl edges. Our oracle D

stores all of these paths:
⋃l

i=1{Qx,y}(x,y)∈Hi
∪ {Px,y}(x,y)∈P .

Given a query (u, v) ∈ P, we find the path Pl = Pu,v ⊆ G ∪ Hl that is stored in D.
Then, we replace every edge (x, y) ∈ Hl on Pl by the corresponding path Qx,y ⊆ G ∪ Hl−1.
The result is a path Pl−1 between u, v in G ∪ Hl−1. Every edge (x, y) ∈ Hl−1 on Pl−1 is
then replaced by the path Qx,y ⊆ G ∪ Hl−2, to get a path Pl−2 between u, v in G ∪ Hl−2.
We continue in the same way, until finally reaching to a path P0 between u, v in the graph
G ∪ H0 = G. We return P0 as an output to the query.

By the hopset property, we know that

w(Pl) = w(Pu,v) = d
(βl)
G∪Hl

(u, v) ≤ (1 + ϵ′)dG(u, v) .

Similarly, every (x, y) ∈ Pl that is also in Hl, is replaced with the path Qx,y, that has a
weight of

w(Qx,y) = d
(βl−1)
G∪Hl−1

(x, y) ≤ (1 + ϵ′)dG(x, y) = (1 + ϵ′)w(x, y) .

Thus, the resulting path Pl−1 has a weight of at most 1 + ϵ′ times the weight of Pl, that is

w(Pl−1) ≤ (1 + ϵ′)w(Pl) ≤ (1 + ϵ′)2dG(u, v) .

Proceeding in the same way, we conclude that w(P0) ≤ (1+ϵ′)l+1dG(u, v). Hence, the stretch
of our distance oracle is

(1 + ϵ′)l+1 = (1 + ϵ

2(l + 1))l+1 ≤ e
ϵ
2 ≤ 1 + ϵ .

For analysing the query time of our distance oracle, we can think of the query algorithm
as a single pass on the path Pl, where every time that an edge of Hl is reached, we replace
it with the appropriate path Qx,y, and continue inside Qx,y recursively. Since every step
produces an edge that will appear in the output path, the query time is proportional to
this output path. Observe, however, that the resulting path is actually a walk, and not
necessarily a simple path. By our convention of writing the query time of PRDOs, this query
time is O(1).

Lastly, we analyse the size of our pairwise PRDO. Note that by their definitions, the
paths Px,y, for every (x, y) ∈ P are of length at most βl. Similarly, the length of Qx,y, for
(x, y) ∈ Hi is at most βi−1. Therefore, the total space required for storing these paths is at
most

|P| · βl +
l∑

i=1
|Hi| · βi−1 = |P| · β(ϵ′, k) · Dl +

l∑
i=1

O

((
n log n

Di

)1+ 1
k

)
· β(ϵ′, k) · Di−1

= β(ϵ′, k) ·

(
|P| · 2 +

l∑
i=1

O

((
n log n

Di

)1+ 1
k

)
· Di−1

)

= β(ϵ′, k) · O
(
|P| + (n log n)1+ 1

k

l∑
i=1

Di−1

D
1+ 1

k
i

)
= O

(
log k

ϵ/2l

)log k

· O
(
|P| + (n log n)1+ 1

log n

l∑
i=1

Di−1

D
1+ 1

k
i

)
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= O

(
l · log k

ϵ

)log k

· O
(
|P| + n log n ·

l∑
i=1

Di−1

D
1+ 1

k
i

)
= O

(
l · log k

ϵ

)log k

· Õ
(
|P| + n ·

l∑
i=1

Di−1

D
1+ 1

k
i

)
.

For making the last term small, we choose Di =
⌈
n( k

k+1 )i
⌉
, and thus

Di−1

D
1+ 1

k
i

≤ n
( k

k+1 )i−1
+1

n
( k

k+1 )i·(1+ 1
k

)
= n

( k
k+1 )i−1

+1
n

( k
k+1 )i−1 ≤ 2 . For this choice of Di, since we want Dl to be 2,

we must have n( k
k+1 )l

≤ 2, that is, l ≥ log k+1
k

(log n). Notice that log k+1
k

(log n) = log log n
log(1+ 1

k ) ≤
log log n

log(2
1
k )

= k log log n , thus we can choose l = ⌈k log log n⌉ = ⌈log n · log log n⌉.
In conclusion, the size of our pairwise PRDO is at most

O

(
l · log k

ϵ

)log k

· Õ
(
|P| + n ·

l∑
i=1

Di−1

D
1+ 1

k
i

)
= O

(
l · log k

ϵ

)log k

· Õ
(
|P| + n ·

l∑
i=1

2
)

= O

(
l · log k

ϵ

)log k

· Õ
(
|P| + l · n

)
= O

(
log n · (log log n)2

ϵ

)log log n

· Õ
(
|P| + n

)
= noϵ(1) · O

(
|P| + n

)
◀
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