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Abstract
Given a spanning tree T of a planar graph G, the co-tree of T is the spanning tree of the dual graph
G∗ with edge set (E(G) − E(T ))∗. Grünbaum conjectured in 1970 that every planar 3-connected
graph G contains a spanning tree T such that both T and its co-tree have maximum degree at
most 3.

While Grünbaum’s conjecture remains open, Biedl proved that there is a spanning tree T such
that T and its co-tree have maximum degree at most 5. By using new structural insights into
Schnyder woods, we prove that there is a spanning tree T such that T and its co-tree have maximum
degree at most 4. This tree can be computed in linear time.
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1 Introduction

Let a k-tree be a spanning tree whose maximum degree is at most k. In 1966, Barnette
proved the fundamental theorem that every planar 3-connected graph contains a 3-tree [3].
Both assumptions in this theorem are essential in the sense that the statement fails for
arbitrary non-planar graphs (as the arbitrarily high degree in any spanning tree of the
complete bipartite graphs K3,n−3 show) as well as for graphs that are not 3-connected (as
the planar graphs K2,n−2 show).

Since then, Barnette’s theorem has been extended and generalized in several directions.
First, one may try to relax the 3-connectedness assumption: Indeed, Barnette’s original proof
holds for the slightly more general class of circuit graphs1, and may also be extended to
arbitrary planar graphs G in form of a local version that guarantees for every 3-connected2

vertex set X of G a (not necessarily spanning) tree of G that has maximum degree at
most 3 and contains X [6]. Alternatively, one may relax the planarity assumption. Ota
and Ozeki [22] proved that for every k ≥ 3, every 3-connected graph with no K3,k-minor
contains a (k − 1)-tree if k is even and a k-tree if k is odd. Further sufficient conditions for
the existence of k-trees may be found in the survey [23].

Second, one may see spanning trees as 1-connected spanning subgraphs and generalize
these to k-connected spanning subgraphs for any k > 1. In this direction, Barnette [4] proved
that every planar 3-connected planar graph contains a 2-connected spanning subgraph whose
maximum degree is at most 15, and Gao [17] improved this result subsequently to the tight
bound of maximum degree at most 6. Interestingly, Gao showed that his result holds as well
for the 3-connected graphs that are embeddable on the projective plane, the torus or the
Klein bottle.

1 that is, planar internally 3-connected graphs with a designated outer face
2 X ⊆ V (G) such that G contains three internally vertex-disjoint paths between every two vertices of X
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37:2 Toward Grünbaum’s Conjecture

Third, one may try to strengthen the 3-tree in question. A recent alternative proof of
Barnette’s theorem based on canonical orderings by Biedl [5, Corollary 1] (which was also
mentioned by Chrobak and Kant) reveals that further degree constraints may be imposed on
the 3-tree for prescribed vertices (for example, two vertices of a common face may be forced
to be leaves of the tree). To strengthen this further, Barnette’s theorem can be seen as a
side-result of a structure obtained in Hamiltonicity studies from generalizing the theory of
Tutte paths and Tutte cycles: Gao and Richter [18] proved that every planar 3-connected
graph contains a 2-walk, which is a walk that visits every vertex exactly once or twice. By
going along such 2-walks and omitting the last edge whenever a vertex is revisited, these
2-walks imply the existence of 3-trees. Here, planar 3-connected graphs may again be replaced
with circuit graphs, and all results have been successfully lifted to higher surfaces. Even
more, the surfaces on which every embedded 3-connected graph contains a 2-walk have been
classified [7].

Perhaps one of the most severe strengthenings of the 3-tree in question is a long-standing
and to the best of our knowledge still open conjecture made by Grünbaum in 1970. Since the
planar dual G∗ = (V ∗, E∗) of every (simple) planar 3-connected graph G is again planar and
3-connected, G∗ contains a 3-tree as well. By the well-known cut-cycle duality, any spanning
tree T of G implies that also ¬T ∗ := (V ∗, (E(G) − E(T ))∗) is a spanning tree of G∗; we call
¬T ∗ the co-tree of T . Taking the best of these two worlds, Grünbaum made the following
conjecture.

▶ Conjecture (Grünbaum [19, p. 1148], 1970). Every planar 3-connected graph G contains a
3-tree T whose co-tree ¬T ∗ is also a 3-tree.

While Grünbaum’s conjecture is to the best of our knowledge still unsolved, progress has
been made by Biedl [5], who proved the existence of a 5-tree, whose co-tree is a 5-tree. We
prove the existence of a 4-tree, whose co-tree is a 4-tree. Our methods exploit insights into
the structure of Schnyder woods. We discuss Schnyder woods, their lattice structure and
ordered path partitions in Section 2, our main result in Section 3 and computational aspects
of this main result in Section 5.

2 Schnyder Woods and Ordered Path Partitions

We only consider simple undirected graphs. A graph is plane if it is planar and embedded
into the Euclidean plane without intersecting edges. The neighborhood of a vertex set A is
the union of the neighborhoods of vertices in A. Although parts of this paper use orientation
on edges, we will always let vw denote the undirected edge {v, w}.

2.1 Schnyder Woods
Let σ := {r1, r2, r3} be a set of three vertices of the outer face boundary of a plane graph
G in clockwise order (but not necessarily consecutive). We call r1, r2 and r3 roots. The
suspension Gσ of G is the graph obtained from G by adding at each root of σ a half-edge
pointing into the outer face. With a little abuse of notation, we define a half-edge as an arc
that has a startvertex but no endvertex. A plane graph G is σ-internally 3-connected if the
graph obtained from the suspension Gσ of G by making the three half-edges incident to a
common new vertex inside the outer face is 3-connected. Note that the class of σ-internally
3-connected plane graphs properly contains all 3-connected plane graphs.
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▶ Definition 1 (Felsner [11]). Let σ = {r1, r2, r3} and Gσ be the suspension of a σ-internally
3-connected plane graph G. A Schnyder wood of Gσ is an orientation and coloring of the
edges of Gσ (including the half-edges) with the colors 1,2,3 (red, green, blue) such that
(a) Every edge e is oriented in one direction (we say e is unidirected) or in two opposite

directions (we say e is bidirected). Every direction of an edge is colored with one of the
three colors 1,2,3 (we say an edge is i-colored if one of its directions has color i) such
that the two colors i and j of every bidirected edge are distinct (we call such an edge
i-j-colored). Similarly, a unidirected edge whose direction has color i is called i-colored.
Throughout the paper, we assume modular arithmetic on the colors 1,2,3 in such a way
that i + 1 and i − 1 for a color i are defined as (i mod 3) + 1 and (i + 1 mod 3) + 1.
For a vertex v, a uni- or bidirected edge is incoming (i-colored) in v if it has a direction
(of color i) that is directed toward v, and outgoing (i-colored) of v if it has a direction
(of color i) that is directed away from v.

(b) For every color i, the half-edge at ri is unidirected, outgoing and i-colored.
(c) Every vertex v has exactly one outgoing edge of every color. The outgoing 1-, 2-, 3-colored

edges e1, e2, e3 of v occur in clockwise order around v. For every color i, every incoming
i-colored edge of v is contained in the clockwise sector around v from ei+1 to ei−1 (see
Figure 1).

(d) No inner face boundary contains a directed cycle (disregarding possible opposite edge
directions) in one color.

1

23
1

1
1

2

2

2
3

3

Figure 1 Properties of Schnyder woods. Condition 1c at a vertex.

For a Schnyder wood and color i, let Ti be the directed graph that is induced by the
directed edges of color i. The following result justifies the name of Schnyder woods.

▶ Lemma 2 ( [12,24]). For every color i of a Schnyder wood of Gσ, Ti is a directed spanning
tree of G in which all edges are oriented to the root ri.

For a directed graph H, we denote by H−1 the graph obtained from H by reversing the
direction of all its edges.

▶ Lemma 3 (Felsner [14]). For every i ∈ {1, . . . , 3}, T −1
i ∪ T −1

i+1 ∪ Ti+2 is acyclic.

2.2 Dual Schnyder Woods
Let G be a σ-internally 3-connected plane graph. Any Schnyder wood of Gσ induces
a Schnyder wood of a slightly modified planar dual of Gσ in the following way [9, 13]
(see [21, p. 30] for an earlier variant of this result given without proof). As common for plane
duality, we will use the plane dual operator ∗ to switch between primal and dual objects
(also on sets of objects).
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37:4 Toward Grünbaum’s Conjecture

Extend the three half-edges of Gσ to non-crossing infinite rays and consider the planar
dual of this plane graph. Since the infinite rays partition the outer face f of G into three
parts, this dual contains a triangle with vertices b1, b2 and b3 instead of the outer face vertex
f∗ such that b∗

i is not incident to ri for every i (see Figure 2). Let the suspended dual Gσ∗ of
Gσ be the graph obtained from this dual by adding at each vertex of {b1, b2, b3} a half-edge
pointing into the outer face.

r1

r2r3

b1

b2 b3

Figure 2 The completion of G obtained by superimposing Gσ and its suspended dual Gσ∗
(the

latter depicted with dotted edges). The primal Schnyder wood is not the minimal element of the
lattice of Schnyder woods of G, as this completion contains a clockwise directed cycle (marked in
yellow).

Consider the superposition of Gσ and its suspended dual Gσ∗ such that exactly the primal
dual pairs of edges cross (here, for every 1 ≤ i ≤ 3, the half-edge at ri crosses the dual edge
bi−1bi+1).

▶ Definition 4. For any Schnyder wood S of Gσ, define the orientation and coloring S∗ of
the suspended dual Gσ∗ as follows (see Figure 2):
(a) For every unidirected (i − 1)-colored edge or half-edge e of Gσ, color e∗ with the two

colors i and i + 1 such that e points to the right of the i-colored direction.
(b) Vice versa, for every i-(i + 1)-colored edge e of Gσ, (i − 1)-color e∗ unidirected such that

e∗ points to the right of the i-colored direction.
(c) For every color i, make the half-edge at bi unidirected, outgoing and i-colored.

The following lemma states that S∗ is indeed a Schnyder wood of the suspended dual.
The vertices b1, b2 and b3 are called the roots of S∗.

▶ Lemma 5 ([20], [13, Prop. 3]). For every Schnyder wood S of Gσ, S∗ is a Schnyder wood
of Gσ∗ .

Since S∗∗ = S, Lemma 5 gives a bijection between the Schnyder woods of Gσ and the
ones of Gσ∗ . Let the completion G̃ of G be the plane graph obtained from the superposition
of Gσ and Gσ∗ by subdividing each pair of crossing (half-)edges with a new vertex, which
we call a crossing vertex (see Figure 2). The completion has six half-edges pointing into its
outer face.
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Any Schyder wood S of Gσ implies the following natural orientation and coloring G̃S of
its completion G̃: For any edge vw ∈ E(Gσ) ∪ E(Gσ∗), let z be the crossing vertex of Gσ

that subdivides vw and consider the coloring of vw in either S or S∗. If vw is outgoing of v

and i-colored, we direct vz ∈ E(G̃) toward z and i-color it; analogously, if vw is outgoing
of w and j-colored, we direct wz ∈ E(G̃) toward z and j-color it. In the case that vw is
unidirected, say without loss of generality incoming at v and i-colored, we direct zv ∈ E(G̃)
toward v and i-color it. The three half-edges of Gσ∗ inherit the orientation and coloring of S∗

for G̃S . By Definition 4, the construction of G̃S implies immediately the following corollary.

▶ Corollary 6. Every crossing vertex of G̃S has one outgoing edge and three incoming edges
and the latter are colored 1, 2 and 3 in counterclockwise direction.

Using results on orientations with prescribed outdegrees on the respective completions,
Felsner and Mendez [8,12] showed that the set of Schnyder woods of a planar suspension Gσ

forms a distributive lattice. The order relation of this lattice relates a Schnyder wood of Gσ

to a second Schnyder wood if the former can be obtained from the latter by reversing the
orientation of a directed clockwise cycle in the completion. This gives the following lemma,
of which the computational part is due to Fusy [15].

▶ Lemma 7 ([8, 12,15]). For the minimal element S of the lattice of all Schnyder woods of
Gσ, G̃S contains no clockwise directed cycle. Also, S and G̃S can be computed in linear time.

We call the minimal element of the lattice of all Schnyder woods of Gσ the minimal
Schnyder wood of Gσ.

2.3 Ordered Path Partitions
▶ Definition 8. For any j ∈ {1, 2, 3} and any {r1, r2, r3}-internally 3-connected plane graph
G, an ordered path partition P = (P0, . . . , Ps) of G with base-pair (rj , rj+1) is an ordered
partition of V (G) into the vertex sets of induced paths such that the following holds for every
i ∈ {0, . . . , s − 1}, where Vi :=

⋃i
q=0 Pq and the contour Ci is the clockwise walk from rj+1

to rj on the outer face of G[Vi].
(a) P0 is the vertex set of the clockwise path from rj to rj+1 on the outer face boundary of

G, and Ps = {rj+2}.
(b) Every vertex in Pi has a neighbor in V (G) \ Vi.
(c) Ci is a path.
(d) Every vertex in Ci has at most one neighbor in Pi+1.
For the ease of notation we often refer to vertex sets of paths as paths.
▶ Remark 9. Our definition of an ordered path partition P = (P0, . . . , Ps) is essentially the
definition of Badent et al. [2], in which the vertex sets Pi have to induce paths (this is not
explicitly stated in [2], but used in the proof of their Theorem 5). Because a part of the
proof of Theorem 5 in [2] (correspondence of ordered path partitions and Schnyder woods)
was incomplete, Alam et al. [1, Lemma 1] corrected the result, but unfortunately outsourced
the corrected proof into the extended abstract [1, arXiv version, Section 2.2] only. In this
correction however, Alam et al. [1] give an incomplete definition3 of ordered path partitions
that misses Condition b. This incompleteness does however not affect the proof of their
Lemma 4 [1, arXiv version], as this only gives a correction of [2, Theorem 5] regarding the
order of the paths. In this paper, we only use Lemma 4 of [1, arXiv version] which is identical
to [1, Lemma 1].

3 Confirmed by personal communication with the authors of [1].

SWAT 2024



37:6 Toward Grünbaum’s Conjecture

By Definition 8a and 8b, G contains for every i and every vertex v ∈ Pi a path from v to
rj+2 that intersects Vi only in v. Since G is plane, we conclude the following.

▶ Lemma 10. Every path Pi of an ordered path partition is embedded into the outer face of
G[Vi−1] for every 1 ≤ i ≤ s.

Compatible Ordered Path Partitions
We describe a connection between Schnyder woods and ordered path partitions that was first
given by Badent et al. [2, Theorem 5] and then revisited by Alam et al. [1, Lemma 1].

▶ Definition 11. Let j ∈ {1, 2, 3} and S be any Schnyder wood of the suspension Gσ of G.
As proven in [1, arXiv version, Section 2.2], the vertex sets of the inclusion-wise maximal
j-(j + 1)-colored paths of S then form an ordered path partition of G with base pair (rj , rj+1),
whose order is a linear extension of the partial order given by reachability in the acyclic graph
T −1

j ∪ T −1
j+1 ∪ Tj+2; we call this special ordered path partition compatible with S and denote

it by Pj,j+1.

For example, for the Schnyder wood given in Figure 2, P2,3 consists of the vertex sets
of six maximal 2-3-colored paths, of which four are single vertices. We denote each path
Pi ∈ Pj,j+1 by Pi := {vi

1, . . . , vi
k} such that vi

1vi
2 is outgoing j-colored at vi

1 and, for every
l ∈ {1, . . . , k − 1}, vi

lv
i
l+1 is a j-(j + 1)-colored edge.

Let Ci be as in Definition 8. By Definition 8c and Lemma 10, every path Pi = {vi
1, . . . , vi

k}
of an ordered path partition satisfying i ∈ {1, . . . , s} has a neighbor vi

0 ∈ Ci−1 that is closest
to rj+1 and a different neighbor vi

k+1 ∈ Ci−1 that is closest to rj (see Figure 3). We call
vi

0 the left neighbor of Pi, vi
k+1 the right neighbor of Pi and P e

i := {vi
0} ∪ Pi ∪ {vi

k+1} the
extension of Pi; we omit superscripts if these are clear from the context. For 0 < i ≤ s,
let the path Pi cover an edge e or a vertex x if e or x is contained in Ci−1, but not in Ci,
respectively.

▶ Lemma 12. Every path Pi ̸= P0 of a compatible ordered path partition Pj,j+1 satisfies the
following (see Figure 3):
(a) Every neighbor of Pi that is in Vi−1 is contained in the path of Ci−1 between vi

0 and
vi

k+1.
(b) vi

0vi
1 and vi

kvi
k+1 are edges of G[Vi].

(c) vi
0vi

1 is (j + 1)-colored outgoing at vi
1 and vi

kvi
k+1 is j-colored outgoing at vi

k.
(d) Every edge vi

lx incident to Pi and Vi−1 except for vi
0vi

1 and vi
kvi

k+1 is unidirected toward
Pi, (j + 2)-colored and satisfies x /∈ {vi

0, vi
k+1}.

Proof. The statement a follows directly from Lemma 10 and the definition of left and right
neighbor of Pi.

Now, we prove statements b and c. According to Definition 11, the order of Pj,j+1 on
the vertex sets of paths is a linear extension of the partial order given by reachability in the
acyclic graph T −1

j ∪ T −1
j+1 ∪ Tj+2. This allows us to characterize the color of the edges that

join Pi with vertices of Vi−1 and V − Vi, respectively. Edges that join Pi with vertices of
Vi−1 are incoming (j + 2)-colored, unidirected outgoing j-colored or unidirected outgoing
(j + 1)-colored at a vertex of Pi. Edges that join Pi with vertices of V − Vi are outgoing
(j + 2)-colored, unidirected incoming j-colored or unidirected incoming (j + 1)-colored at a
vertex of Pi.

Recall that all edges of G[Pi] are j-(j +1)-colored. Let wvi
1 be the outgoing (j +1)-colored

edge at vi
1 and vi

ku be the outgoing j-colored edge at vi
k. If k > 1, vi

1vi
2 is outgoing j-colored

by definition. Thus, as G[Pi] is induced, w /∈ Pi. If k = 1, Pi consists of only one vertex and
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hence w /∈ Pi. Thus, as G[Pi] is a maximal j-(j + 1)-colored path, wvi
1 is either unidirected

(j + 1)-colored or (j + 1)-(j + 2)-colored. As observed above, this implies w ∈ Vi−1 and by a
w ∈ Ci−1. Similarly, we obtain u ∈ Ci−1.

Assume to the contrary that u is closer to rj+1 on Ci−1 than w is. By definition of Pi,
for every vertex of Pi, the outgoing j-colored edge is directed toward u and the outgoing
(j + 1)-colored edge points toward w on G[Pi] ∪ {wvi

1, vi
ku}. By Definition 1c, the outgoing

(j +2)-colored edge e of a vertex of Pi occurs in the counterclockwise sector from the outgoing
j-colored to the outgoing (j + 1)-colored edge excluding both. As we assumed that u is
closer to rj+1 on Ci−1 than w is, this sector is in the interior of the region bounded by
G[Pi] ∪ {wvi

1, vi
ku} and the path from u to w on Ci−1. Hence, by planarity, e joins Pi with a

vertex of Ci−1 ⊆ Vi−1, contradicting our above characterization of edges that join Pi with
vertices of Vi−1. Thus, w is closer to rj+1 on Ci−1 than u is or we have w = u. If u = w,
then Lemma 3 is violated by the cycle formed by Pi ∪ u in Tj ∪ T −1

j+1 ∪ T −1
j+2, which is a

contradiction. Thus, w is closer to rj+1 on Ci−1 than u.
Since Pi is a maximal j-(j+1)-colored path, the outgoing j-colored and (j+1)-colored edges

at every of its vertices are either in Pi or in {wvi
1, vi

ku}. Hence, by our above characterization,
the edges that join Pi with vertices of Ci−1 ⊆ Vi−1 are exactly vi

ku, vi
1w and the unidirected

incoming (j + 2)-colored edges at vertices of Pi. Let vx be such an unidirected incoming
(j + 2)-colored edge with v ∈ Pi. By Definition 1c, vx occurs in the clockwise sector from
the outgoing j-colored edge to the outgoing (j + 1)-colored edge around v excluding both.
By planarity and the fact that w is closer to rj+1 on Ci−1 than u, x is contained in the path
of Ci−1 between w and u. By definition of the left and right neighbor vi

0 and vi
k+1 of Pi, we

thus have vi
0 = w and vi

k+1 = u, which proves b and c.
For d, let vi

lx /∈ {vi
kvi

k+1, vi
1vi

0} be an edge that joins Pi with a vertex x of Vi−1. By
a, x ∈ Ci−1. In the last paragraph, we observed that vi

lx is incoming (j + 2)-colored at a
vertex of Pi. We showed also that the outgoing j-colored and the outgoing (j + 1)-edge of
any vertex in Pi is either in Pi or vi

1vi
0 or vi

kvi
k+1. Thus, we obtain that vi

lx is unidirected
incoming (j + 2)-colored at a vertex of Pi. Assume, for the sake of contradiction, that x = vi

0.
Then the path from vi

l to vi
1 on Pi, vi

0vi
1 and vi

lv
i
0 form an oriented cycle in Tj ∪ T −1

j+1 ∪ T −1
j+2,

which contradicts Lemma 3. A similar argument shows x ̸= vi
k+1. ◀

3 Spanning Trees with Maximum Degree at Most 4

In this section, we prove our main result. The following new lemma on the structure of
minimal Schnyder woods and their compatible ordered path partitions is crucial for this
proof. For 0 < i ≤ s, let the path Pi cover an edge e or a vertex x if e or x is contained in
Ci−1, but not in Ci, respectively.

▶ Lemma 13. Let G be a σ-internally 3-connected plane graph, S be the minimal Schnyder
wood of Gσ and P2,3 = (P0, . . . , Ps) be the ordered path partition that is compatible with S.
Let Pi := {v1, . . . , vk} ̸= P0 be a path of P2,3 and v0 and vk+1 be its left and right neighbor.
Then every edge vlw /∈ {v0v1, vkvk+1} with vl ∈ Pi and w ∈ Vi−1 is unidirected, 1-colored
and incoming at vk and w /∈ {v0, vk+1}.

Proof. Consider any edge vlw /∈ {v0v1, vkvk+1} that is incident to vl ∈ Pi and w ∈ Vi−1
(see Figure 3). By Lemma 12a, w is either v0, vk+1 or a vertex that is covered by Pi. As
vlw /∈ {v0v1, vkvk+1}, vlw must be 1-colored incoming at vl such that w /∈ {v0, vk+1} by
Lemma 12d. It thus remains to show that l = k.

Assume to the contrary that l ̸= k. Observe that, by Definition 1c, all edges in the
clockwise sector from vlvl+1 to vlvl−1 are incoming 1-colored. Choose w such that vlw is
the clockwise first incoming 1-colored edge at vl (see Figure 3). By Corollary 6, the dual

SWAT 2024



37:8 Toward Grünbaum’s Conjecture

edge of vlvl+1 is unidirected 1-colored in the completion G̃S of G and the dual edge of vlw is
2-3-colored. Hence, G̃S contains the clockwise cycle shown in Figure 3, which contradicts
the assumption that S is the minimal Schnyder wood. ◀

G[Vi−1]

Pi

e

Ci−1

P0

r3 r2

v0

v1 vl vk ̸= v1

vk+1

w

Figure 3 The clockwise cycle of G̃S of the proof of Lemma 13, depicted in yellow.

For a spanning subgraph T of a plane graph G, let the co-graph ¬T ∗ be the spanning
subgraph (V ∗, (E(G) − E(T ))∗) of G∗. As stated in the introduction, ¬T ∗ is a spanning tree
if T is one and in that case called a co-tree.

▶ Theorem 14. Every {r1, r2, r3}-internally 3-connected plane graph G contains a 4-tree T

whose co-tree ¬T ∗ is a 4-tree.

Proof. We first sketch the general idea of the proof: First, we identify a spanning candidate
graph H ⊆ G such that ¬H∗ is a subgraph of G∗ that has the same structural properties as
H. We then define a subset D of the edges of H such that H − D is acyclic and ¬H∗ + D∗

has maximum degree 4. We use the same arguments to define a similar subset D′ for ¬H∗.
In the end, we need to show that D′∗ and D∗ do not create new cycles in ¬H∗ and H,
respectively. That way we obtain that the co-graph of H − D + D′∗ is ¬H∗ − D′ + D∗,
and both graphs are acyclic and of maximum degree 4. Since a spanning subgraph G′ of
G is connected if and only if G − E(G′) does not contain any edge cut of G, the cut-cycle
duality [10, Prop. 4.6.1] proves that those two graphs are both connected, which gives the
claim.

Let S be the minimal Schnyder wood of Gσ. By Lemma 7, the completion G̃S of G

contains no clockwise directed cycle. Since G̃S contains the completion of the suspended
dual Gσ∗ except for its three outer vertices (which do not affect clockwise cycles), S∗ is a
minimal Schnyder wood of Gσ∗ .

Let H be the spanning subgraph of G whose edge set consists of the bidirected edges of S.
Recall that an edge e ∈ E(G) is not in H if and only if e∗ is in ¬H∗. By Definition 4, ¬H∗

contains therefore exactly the bidirected edges of S∗, except for the three bidirected edges on
the outer face boundary of Gσ∗ , as these are not dual edges of G (in fact, these three edges
appear only in the suspended dual Gσ∗ and were necessary to define dual Schnyder woods).

Since every vertex is incident to at most three bidirected edges by Definition 1c for S and
as well for S∗, both H and ¬H∗ have maximum degree at most three. However, H and ¬H∗

may neither be connected nor acyclic. In fact, H contains always the outer face boundary of
G as a cycle, as all edges are bidirected by the definition of the first paths of the compatible
ordered path partitions P1,2, P2,3 and P3,1.
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We will therefore iteratively identify edges of cycles of H such that ¬H∗ still has maximum
degree at most four when those cycles are deleted in H. In order to do this, we iteratively
define edge sets D and D′ that are deleted from H and ¬H∗, starting with D := D′ := ∅.

Let C be a cycle of H and let (P0, . . . , Ps) be the paths of the compatible ordered path
partition P2,3 of S. Let P be the path of maximal length in C such that P ⊆ PM with
M := max{i | Pi ∩ V (C) ̸= ∅}; we call P the index maximal subpath of C, as it is the fraction
of C highest up in the order of P2,3. Since C has only bidirected edges, the statement of
Lemma 13 about e being unidirected implies that P = PM and that C contains the extension
of P ; in particular, P ∈ P2,3.

Denote by Pmax the set of index maximal subpaths of all cycles of H. For a path
P ∈ Pmax \ {Ps}, let PL with L := min{i | Pi covers an edge of the extension of P} be the
minimal-covering path of P (recall that this extension is part of the cycle and the minimal-
covering path exists, as Ps is excluded). Denote by Pcover the set of the minimal-covering
paths of all index maximal subpaths in Pmax \ {Ps}. In particular, Ps = r1 is the index
maximal subpath of the outer face boundary of G, which is a bidirected cycle, as shown
before. Since no edge of the extension of Ps is covered by another path of P2,3, we add the
outgoing 2-colored edge of r1 to D in order to destroy the outer face cycle.

Next, we process the paths of Pcover in reverse order of P2,3, i.e., from highest to lowest
index. Let Pc = {v1, . . . , vk} ∈ Pcover for some c ∈ {1, . . . , s} be the path under consideration.
Let P ′

1, . . . , P ′
l be the index maximal paths for which Pc is the minimal-covering path, ordered

clockwise around the outer face of G[Vc−1] (see Figure 4); note that there may also be other
paths covered by Pc that are not index maximal. Let f1, . . . , fa be the faces incident to vk

in counterclockwise order from the outgoing 3-colored edge to the outgoing 2-colored edge;
we say that f1, . . . , fa are below Pc. For every path of {P ′

1, . . . , P ′
l }, we will add an edge to

D that is on the extension of that path. Thus, after having processed every path in Pcover

in this way, a cycle in H does not exist in H − D anymore.

Pc

P ′
1

P ′
2

P ′
3

f1

f2
f3 f4

v0

v1 vk

vk+1

Figure 4 Illustration for some of the definitions used in the proof of Theorem 14. If Case 1
applies to Pc, we add the edges marked in yellow to D.

Consider the case that vk+1 = w1 for a path P ′
l = {w1, . . . , wt}. Assume for the sake of

contradiction that then vkvk+1 is not 1-2-colored. Since P ′
l is an index maximal subpath,

w0w1 is 1-3-colored. By Lemma 12c, then vkvk+1 is unidirected 2-colored. By Corollary 6,
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Pc

P ′
l

v0

v1 vk

vk+1 = w1

w0

f∗
a

Figure 5 If vkvk+1 is unidirected 2-colored, then G̃S contains the clockwise cycle depicted in
yellow.

this implies that (vkvk+1)∗ is 1-3-colored. Hence, G̃S contains the clockwise cycle in Figure 5,
which contradicts the assumption that S is the minimal Schnyder wood. We conclude that
vkvk+1 is 1-2-colored in that case.

We will now select one edge from each of the extensions of the paths P ′
1, . . . , P ′

l and add
it to D. We generally aim for selecting those edges that have smallest possible impact on the
maximum degree of the dual graph: we prefer always edges of the paths P ′

1, . . . , P ′
l that are

covered by Pc. For example, for P ′
2 in Figure 4, adding its edge to D causes a higher degree

at the dual vertex f∗
2 while connecting the dual to it; this is fine, as f2 is a triangle by the

mandatory outgoing 1-colored edges and thus the degree of f∗
2 never exceeds 3 anyway. In

detail, we distinguish the following two cases.

Augmentation procedure of D for the path Pc

Case 1: Pc is not an index maximal subpath (see Figure 4).
For every i ∈ {1, . . . , l}, if Pc covers an edge of G[P ′

i ], then we add one such edge to
D. If for P ′

l = {w1, . . . , wt}, we have w1 = vk+1 (note that this excludes the previous
condition), then we add w0w1 to D. For all remaining i ∈ {1, . . . , l} for which none of
the above conditions apply, we set P ′

i = {u1, . . . , ut} and add the edge utut+1 to D.
Case 2: Pc is an index maximal subpath.

Since the minimal-covering path of Pc has higher index than Pc itself, there already is
either an edge of G[Pc], v0v1 or vkvk+1 in D.
Case 2.1: An edge of G[Pc] or v0v1 is in D (see Figure 6a).

We proceed as in Case 1.
Case 2.2: vkvk+1 ∈ D (see Figure 6b)

For every i ∈ {1, . . . , l}, if Pc covers an edge of G[P ′
i ], then we add one such edge to

D. If for P ′
1 = {p1, . . . , pb}, we have pb = v0 (note that this excludes the previous

condition), then we add pbpb+1 to D. For all remaining i ∈ {1, . . . , l} for which none
of the above conditions apply, we set P ′

i = {u1, . . . , ut} and add the edge u0u1 to D.

We now need to show that the maximum degree of ¬H∗ + D∗ does not exceed 4. We
prove that, after having processed Pc, no further boundary edge of any f ∈ {f1, . . . , fa} is
added to D: Assume to the contrary that there is a face f ∈ {f1, . . . , fa} and an edge e
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Pc

v0

v1 v2 v3 v4

v5

(a) The situation in Case 2.1. Here the edge v2v3 is marked in orange and in D before we
consider Pc. The edges that we add to D are marked in yellow.

Pc

v0

v1

v2

(b) The situation in Case 2.2. The edge v1v2 is marked in orange and in D before we consider
Pc. The edges that we then add to D are marked in yellow.

Figure 6 Subcases for which Pc is an index maximal subpath in Theorem 14.

on the boundary of f such that e is not in D after having processed Pc but will be added
later. Let Pi ∈ P2,3 be the path whose extension contains e. Then the minimal-covering
path Pc′ ∈ P2,3 of Pi needs to have lower index than Pc, i.e., c′ < c. As e is covered by Pc,
it is not covered by the minimal-covering path of Pi. Hence e will not be added to D, which
is a contradiction.

First, consider the case a > 1, in which there at least two faces below Pc. By Definition 8b,
the boundary of every fj with j ∈ {1, . . . , a} contains at most two edges that are in the
union of the extensions of paths in {P ′

1, . . . , P ′
l }. For j ∈ {2, . . . , a − 1}, the augmentation

procedure adds at most one of those edges to D, which implies that deg¬H∗+D∗(f∗
j ) ≤ 4 for

every j ∈ {2, . . . , a − 1} (see Figure 6).
Now, consider j = 1, i.e., the face f1 in the case a > 1. Let P ′

1 = {p1, . . . , pb}. In Case 1
of the augmentation procedure, we add at most one edge of the boundary of f1 to D, hence
deg¬H∗+D∗(f∗

1 ) ≤ 4. In Case 2, v0v1 is 1-3-colored, since Pc is an index maximal subpath
(see Figure 6). By Corollary 6, (v0v1)∗ is unidirected 2-colored and outgoing at f∗

1 . This

SWAT 2024



37:12 Toward Grünbaum’s Conjecture

implies deg¬H∗(f∗
1 ) ≤ 2, as f∗

1 is incident to at most two bidirected edges. In Case 2.1, there
is an edge of Pc or v0v1 in D. And if pb = v0, the edge pbpb+1 is in D. Those are the only
edges of the boundary of f1 in D in Case 2.1 and hence deg¬H∗+D∗(f∗

1 ) ≤ 4. In Case 2.2,
there is neither an edge of Pc nor v0v1 in D. As above, if pb = v0, the edge pbpb+1 is in D.
And if the left neighbor of P ′

2 is no the boundary of f1, then also the edge from P ′
2 to its

left neighbor is in D. Thus, also in Case 2.2, the augmentation procedure adds at most two
edges of the boundary of f1 to D and hence deg¬H∗+D∗(f∗

1 ) ≤ 4.
Now consider j = a, i.e., the face fa in the case a > 1. Let P ′

l = {w1, . . . , wt}. If vkvk+1
is 1-2-colored, then (vkvk+1)∗ is unidirected 3-colored and outgoing at f∗

a by Corollary 6
and hence deg¬H∗(f∗

a ) ≤ 2. The augmentation procedure adds at most two edges of the
boundary of fa to D and hence deg¬H∗+D∗(f∗

a ) ≤ 4. Assume now that vkvk+1 is unidirected
2-colored. Then Pc is not an index maximal subpath and we are in Case 1. As we observed
above, then w1 ≠ vk+1. The augmentation procedure adds at most one edge of the boundary
of fa to D and we have deg¬H∗+D∗(f∗

a ) ≤ 4.
In the remaining case a = 1, there is exactly one face below Pc. If Pc is not an

index maximal subpath, we use exactly the same arguments as we used to show that
deg¬H∗+D∗(f∗

a ) ≤ 4 for a ̸= 1. If Pc is an index maximal subpath, then, by the same
arguments as above, we know that (vkvk+1)∗ and (v1v0)∗ are unidirected and outgoing at
f∗

1 . This implies deg¬H∗(f∗
1 ) ≤ 1. There are at most three edges of the boundary of f1 in D.

Those potential edges are an edge of the extension of Pc, the outgoing 2-colored edge of v0
and the outgoing 3-colored edge of vk+1.

In addition, there are faces that are never below a path of Pcover. Those faces have at
most one edge of their boundary in D. Thus, their dual vertices in ¬H∗ + D∗ have degree at
most 4 (see Figure 6).

The clockwise path from r2 to r3 on the outer face boundary is not an index maximal
subpath. Hence, the augmentation procedure does not add any edge of the clockwise path
from r2 to r3 on the outer face boundary to D. However, by our assumption, D includes the
outgoing 2-colored edge at r1, which is the only edge of D that is on the boundary of the
outer face of G.

So far we showed that H −D is acyclic and ¬H∗ +D∗ has maximum degree at most 4. We
now apply the same arguments that we used for H to ¬H∗ ∪ {b1b2, b2b3, b3b1} and obtain D′.
Hence, we have that ¬H∗ ∪ {b1b2, b2b3, b3b1} − D′ is acyclic and H + D′∗ \ {b1b2, b2b3, b3b1}∗

has maximum degree at most 4.
The edges b1b2, b2b3 and b3b1 are not in G∗ and there is only one edge on the boundary of

the outer face of G that is also in D. We may thus ignore b1b2, b2b3 and b3b1 in the following
and freely switch from ¬H∗ ∪ {b1b2, b2b3, b3b1} to ¬H∗. Hence, we also remove any of the
edges b1b2, b2b3, b3b1 from D′.

Then the graphs H − D + D′∗ and ¬H∗ − D′ + D∗ have maximum degree at most 4 and
by construction ¬(H − D + D′∗)∗ = ¬H∗ − D′ + D∗. An edge set E ⊆ E(G) is the edge set
of a cycle in G if and only if the edge set E∗ is a minimal edge cut in G∗ [10, Prop. 4.6.1].
So in order to show that ¬H∗ − D′ + D∗ and H − D + D′∗ are both trees it suffices to show
that they are both acyclic. We show that ¬H∗ − D′ + D∗ is acyclic. Applying the same
arguments then shows that H − D + D′∗ is acyclic.

Assume to the contrary that there is a cycle C in ¬H∗ − D′ + D∗. Remember that for
each index maximal subpath in Pmax we pick exactly one edge of the extension and add it
to D. This will finally lead to a contradiction. By construction, every cycle in ¬H∗ has at
least one edge that is also in D′. Hence, C has at least one edge of D∗. Since every edge of
D is in a cycle of H, by [10, Prop. 4.6.1], every edge in D∗ joins two vertices of two different
connected components of ¬H∗.
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For a connected component K of ¬H∗, let EK ⊆ E(G∗) be the minimal edge cut separating
K and G∗ − K. Let CK be the cycle of G with E(CK) = E∗

K and let P CK = Pi ∈ P2,3 be
the index maximal subpath of CK (see Figure 7). Choose K such that K shares a vertex
with C and P CK = Pi has smallest index. Since C is a cycle and intersects at least two
connected components of ¬H∗, there are two edges e, e′ ∈ EK that are also in C. Observe
that these edges need to be in D∗.

K

CK

e′

e′∗

C e

G∗ − K

Figure 7 Illustration for the proof of Theorem 14. The extension of the path P CK is highlighted
in yellow.

Then either e∗ or e′∗ is not in the extension of the index maximal subpath P CK . Assume
w.l.o.g. that e∗ is not in the extension of P CK . Let P ′ = Pj ∈ P2,3 for some j ∈ {1, . . . , s}
be the path such that e∗ is in the extension of P ′. Since P CK is the index maximal subpath
of CK , we have j < i. So there exists a connected component K ′ of ¬H∗ such that K ′ and
C have a vertex in common and P ′ is the index maximal subpath of the cycle CK′ with
(E(CK′))∗ being the minimal cut separating K ′ and G∗ − K ′. This contradicts the definition
of K. So ¬H∗ − D′ + D∗ and H − D + D′∗ are our desired trees. ◀

▶ Corollary 15. Every 3-connected planar graph G contains a 4-tree T whose co-tree ¬T ∗ is
also a 4-tree.

▶ Corollary 16. The root r1 is a leaf in H−D+D′∗ and all edges on the outer face of G except
for the outgoing 2-colored edge at r1 are in H − D + D′∗. We have degH−D+D′∗(r3) = 2 and
degH−D+D′∗(r2) ≤ 3. Also, the dual vertex of the outer face of G is a leaf in ¬H∗ − D′ + D∗.

Proof. The proof of Theorem 14 yields that all edges on the outer face of G except for the
outgoing 2-colored edge at r1 are in H − D + D′∗. In Gσ∗, the path P1 ∈ P2,3 is given by the
duals of the unidirected incoming 1-colored edges at r1 (see Figure 2). Since the outgoing
2-colored and the outgoing 3-colored edge at r1 are bidirected, P1 is not an index maximal
subpath and hence none of the duals of the unidirected incoming 1-colored edges at r1 is
added to D′. Thus, r1 is a leaf in H − D + D′∗.
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The dual edges of the incoming unidirected edges at r2 and r3 are all covered by the
last singleton b1 of P2,3 of ¬H∗ ∪ {b1b2, b2b3, b3b1} (see Figure 2). Let e2 be the dual of
the clockwise first unidirected 2-colored incoming edge at r2 and e3 be the dual of the
counterclockwise first unidirected 3-colored incoming edge at r3. Let Ii be the set of the
duals of the unidirected i-colored incoming edges at ri, i = 2, 3. For e ∈ Ii, i = 2, 3 let
Pe ∈ P2,3 be the path such that e belongs to the extension of Pe. Observe that, for all edges
e ∈ (I2 \ {e2}) ∪ (I3 \ {e3}), b1 is not the minimal-covering path of Pe. Hence, those edges are
not added to D′. On the other hand b1 might be the minimal-covering path of Pe2 and/or
Pe3 . Since we added b1b2 to D′, we do not add e3 to D′ but might do so for e2 (compare
Case 2.2 in the proof of Theorem 14). Hence, degH−D+D′∗(r3) = 2 and degH−D+D′∗(r2) ≤ 3.

Since the outgoing 2-colored edge at r1 is the only edge on the boundary of the outer face
f that is not in H − D + D′∗, we know that the vertex f∗ is a leaf in ¬H∗ − D′ + D∗. ◀

4 Relaxing Connectivity Assumptions

In this section, we relax the connectivity condition. A common relaxation of σ-internal
3-connectedness is internal 3-connectedness. A plane graph G is internally 3-connected if
adding a vertex, the apex vertex, in the outer face and connecting this new vertex with
all the vertices on the outer face of G results in a 3-connected graph. Observe that every
σ-internally 3-connected graph is also internally 3-connected.
▶ Remark 17. The statement of Theorem 14 does not hold for internally 3-connected graphs.
There exist internally 3-connected plane graphs Gk on 2k vertices such that every spanning
tree of the dual graph has maximum degree at least ⌈k/2⌉.

Proof. In order to define Gk, fix an embedding of the cycle Ck on k vertices. Let w0, . . . , wk−1
be the vertices of this cycle in clockwise order. For every i = 0, . . . , k − 1, add a vertex pi

in the outer face and add edges piwi and piwi+1 (indices taken modulo k) such that the
resulting graph Gk is still plane (see Figure 8). Clearly, Gk is internally 3-connected. The
dual of Gk contains parallel edges. Its underlying graph, in which all those vertex pairs
joined by parallel edges are only joined by one edge, is the complete bipartite graph K2,k.
By pigeonhole principle, every spanning tree of K2,k has maximum degree at least ⌈k/2⌉. ◀

f1

f2

Figure 8 The graph G11 of Remark 17. In every spanning tree of the dual graph, f∗
1 or f∗

2 has
degree at least 6.

However, we can apply Theorem 14 to G + x for an internally 3-connected graph G with
an apex vertex x. Then, we obtain after small modifications a 4-tree of G and a tree of
G∗ such that all vertices except for the dual of the outer face have degree at most 4. This
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motivates the notion of k-internally 3-connected graphs. G is k-internally 3-connected if
there are k vertices w1, . . . , wk on the outer face of G such that adding an apex vertex x in
the outer face and the edges xwi for all i ∈ {1, . . . , k} yields a 3-connected graph. Observe
that every σ-internally 3-connected graph is k-internally 3-connected for k ≥ 3 and every
k-internally 3-connected graph is also internally 3-connected.

▶ Lemma 18. For every k-internally 3-connected plane graph G there exists a 4-tree such
that all vertices of its co-tree except for the dual of the outer face have degree at most 4. The
dual of the outer face has degree at most 2k − 2.

Proof. Let Gx be the plane graph obtained by adding and connecting the apex vertex
as described in the statement. Define r1 := x and r2 and r3 to be its clockwise and
counterclockwise neighbor on the outer face of Gx, respectively. Let w1, . . . , wk be ordered
clockwise around the outer face of G such that w1 = r3, wk = r2 and wix ∈ E(Gx) for all
i ∈ {1, . . . , k} (Figure 9). We now apply Theorem 14 to Gx with this choice of roots. We
obtain a 4-tree T of Gx such that ¬T ∗ is a 4-tree of Gx∗. Observe that by Corollary 16 all
edges on the outer face of Gx except for r1r2 are in T , degT (r1) = 1 and degT (r3) = 2 (see
Figure 9). Thus, we have that w1x ∈ E(T ) and wix /∈ E(T ) for all i ∈ {2, . . . , k}. Hence,
T − w1x is a 4-tree of G. We consider the dual graph. As T − w1x is a 4-tree of G, its co-tree
is also a spanning tree of G∗. As ¬T ∗ is a 4-tree of Gx∗, we obtain that in the co-tree of
T − w1x every vertex except for the dual of the outer face has degree at most 4.

We consider the outer face. Take a Schnyder wood as in the proof of Theorem 14. Let
di be the dual vertex of the face incident to wix and wi+1x for i ∈ {1, . . . , k − 1} in Gx. In
¬T ∗, those vertices have degree at most 4. Consider d1. The dual edge (r1r3)∗ is outgoing
at d1. The edge e preceding r1r3 on the face d∗

1 in clockwise order is unidirected 3-colored
and incoming at r3. Thus, there is no index maximal subpath that contains e. And hence,
in the algorithm of the proof of Theorem 14, we add at most one edge to D that is incident
to d1. Furthermore, (xw2)∗ is incident to d1 and in E(¬T ∗). Therefore, there are at most
two edges on the clockwise path from r3 to w2 on the outer face of G that are not in T .

As (wix)∗ and (wi+1x)∗ are incident to di and (wix)∗, (wi+1x)∗ ∈ E(¬T ∗) for all i ∈
{2, . . . , k − 1}, we obtain, that there are at most two edges on the clockwise path from wi to
wi+1 on the outer face of G that are not in T . And hence, the dual vertex of the outer face
of G has degree at most 2k − 2 in the co-tree of T − w1x. ◀

5 Computational Aspects

Let Gσ be the suspension of a σ-internally 3-connected plane graph and let S be the minimal
Schnyder wood of Gσ. Badent et al. showed that an ordered path partition P2,3 that is
compatible to S can be computed in time O(n) [2, Theorem 7]. This P2,3 can also be used
to compute S itself in the same time [2, Theorem 5], which in turn allows to compute the
dual S∗ and thus also the candidate graphs H and ¬H∗in linear time.

For i := 1, . . . , s, we detect whether H ∩ G[Vi] has a cycle that contains the extension
of Pi by maintaining the connected components of the previous graph H ∩ G[Vi−1] and
querying whether the left and right neighbor of Pi are in the same connected component
of H ∩ G[Vi−1]. This can be done in amortized constant time per step using the special
union-find data structure in [16], since the structure of possible union operations is a tree.
This gives the set Pmax of all index maximal subpaths in P2,3 and their minimial-covering
paths.
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r2 = w5

w4

w3
w2

r3 = w1

r1 = x

G

d1
d2 d3

d4

Figure 9 Situation as in Lemma 18. A 5-internally 3-connected graph G with its apex vertex x.
Some edges of the 4-tree T of Gx and its co-tree are highlighted in yellow.

Since the case distinction and every step of the augmentation procedure for every minimal-
covering path Pc can be computed in constant time per index-maximal subpath, we obtain
an algorithm with running time O(n) to compute a 4-tree of G whose co-tree is also a 4-tree.

6 Conclusion

We used Schnyder woods in order to prove that every (σ-)internally 3-connected graph has
a 4-tree such that its co-tree is also a 4-tree. Also, we showed that there is a linear time
algorithm computing such a tree. If we further relax the connectivity condition to (k-)internal
3-connectedness, then we cannot expect a 4-tree on the dual anymore. However, we always
manage to find a tree such that at most one vertex of its co-tree has degree larger than 4.

Grünbaum’s conjecture still remains open. We believe that it could prove worthwhile to
assume further restrictions on the graph in order to decrease the maximum degree in both
the tree and its co-tree or only one of them.
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