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Abstract
In the last decade, algorithmic frameworks based on a structural graph parameter called mim-
width have been developed to solve generally NP-hard problems. However, it is known that the
frameworks cannot be applied to the Clique problem, and the complexity status of many problems
of finding dense induced subgraphs remains open when parameterized by mim-width. In this
paper, we investigate the complexity of the problem of finding a maximum induced subgraph
that satisfies prescribed properties from a given graph with small mim-width. We first give a
meta-theorem implying that various induced subgraph problems are NP-hard for bounded mim-
width graphs. Moreover, we show that some problems, including Clique and Induced Cluster
Subgraph, remain NP-hard even for graphs with (linear) mim-width at most 2. In contrast to
the intractability, we provide an algorithm that, given a graph and its branch decomposition with
mim-width at most 1, solves Induced Cluster Subgraph in polynomial time. We emphasize
that our algorithmic technique is applicable to other problems such as Induced Polar Subgraph
and Induced Split Subgraph. Since a branch decomposition with mim-width at most 1 can be
constructed in polynomial time for block graphs, interval graphs, permutation graphs, cographs,
distance-hereditary graphs, convex graphs, and their complement graphs, our positive results reveal
the polynomial-time solvability of various problems for these graph classes.
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1 Introduction

Efficiently solving intractable graph problems by using structural graph parameters has
been extensively studied over the past few decades. Tree-width is arguably one of the most
successful parameters in this research direction. Courcelle’s celebrated result indicates that
every problem expressible in MSO2 logic is solvable in linear time for bounded tree-width
graphs [12]. Various graph problems, including Independent Set, Clique, Dominating
Set, Independent Dominating Set, k-Coloring for a fixed k, Feedback Vertex Set,
and Hamiltonian Cycle, can be written in MSO2 logic, and hence Courcelle’s theorem
covers a wide range of problems. Later, Courcelle et al. also gave an analogous result for a
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38:2 Finding Induced Subgraphs from Graphs with Small Mim-Width

more general parameter than tree-width, namely, clique-width: every problem expressible in
MSO1 logic is solvable in linear time for bounded clique-width graphs (under the assumption
that a k-expression for a fixed k of an input graph is given) [13]. However, these results
are not applicable directly to problems on interval graphs and permutation graphs, because
these graph classes have unbounded clique-width (and thus unbounded tree-width).

In 2012, Vatshelle introduced mim-width [33], and recently, algorithms based on mim-
width have been widely developed [1, 2, 3, 4, 5, 7, 8, 9, 15, 16, 21, 23, 24]. Roughly speaking,
mim-width is an upper bound on the size of maximum induced matching along a branch
decomposition of a graph. (In Section 2, its formal definition will be given.) Mim-width
is a more general structural parameter than clique-width in the sense that the class of
bounded mim-width graphs properly contains the class of bounded clique-width graphs.
Furthermore, many graph classes of unbounded clique-width have bounded mim-width: for
example, interval graphs, permutation graphs, convex graphs, k-polygon graphs for a fixed
k, circular k-trapezoid graphs for a fixed k, and H-graphs for a fixed graph H. (See [1, 14]
for more details.) Bergougnoux et al. gave an algorithmic meta-theorem [2], which states
that every problem expressible in A&C DN logic is solvable in polynomial time for bounded
mim-width graphs (under the assumption that a suitable branch decomposition of an input
graph is given). Independent Set, Dominating Set, Independent Dominating Set,
k-Coloring for a fixed k, Feedback Vertex Set etc. can be expressed in A&C DN logic.
Thus, Bergougnoux et al. showed that many problems are solvable in polynomial time for a
much wider range of graph classes than the class of bounded clique-width graphs.

Unfortunately, A&C DN logic does not cover all problems expressible in MSO2 logic.
Clique and Hamiltonian Cycle cannot be written in A&C DN logic, whereas they can be
expressed in MSO1 logic and MSO2 logic, respectively. This means that the meta-theorem
by Bergougnoux et al. is not applicable to these problems. In fact, it is known that Clique
is NP-hard for graphs with linear mim-width1 at most 6 [33] and Hamiltonian Cycle is
NP-hard for graphs with linear mim-width 1 [23]. Note that by combining some known facts,
we can show that Clique on graphs with mim-width at most 1 can be solved in polynomial
time (see the discussion in the second paragraph of Section 4). These results lead us to ask
the following questions:

What kind of problems expressible in MSO2 logic are NP-hard for bounded mim-width
graphs?
Is Clique NP-hard for graphs with mim-width less than 6?
Given a graph with mim-width at most 1, which MSO2-expressible problems are poly-
nomial-time solvable?

1.1 Our contributions
To answer the questions above, in this paper, we systematically study the complexity of
the Induced Π Subgraph problems and their complementary problems, called the Π
Vertex Deletion problems, on bounded (linear) mim-width graphs. We first show that
for any nontrivial hereditary graph property Π that admits all cliques, there is a constant
w such that Induced Π Subgraph and Π Vertex Deletion are NP-hard for graphs
with (linear) mim-width at most w. For example, Clique, Induced Cluster Subgraph,
Induced Polar Subgraph, and Induced Split Subgraph satisfy the aforementioned
conditions, and hence all of them are NP-hard for bounded (linear) mim-width graphs. As a

1 The linear mim-width of a graph G is the mim-width when a branch decomposition of G is restricted to
a caterpillar. The formal definition will be given in Section 2.
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byproduct, we also show that connected and dominating variants of them are NP-hard for
bounded (linear) mim-width graphs. Moreover, we give sufficient conditions for Induced Π
Subgraph and Π Vertex Deletion to be NP-hard for graphs with (linear) mim-width
at most 2. Clique, Induced Cluster Subgraph, Induced Polar Subgraph, and
Induced Split Subgraph are proven to be in fact NP-hard even for graphs with (linear)
mim-width at most 2. We thus reveal that there are various NP-hard problems for bounded
mim-width graphs, although they can be expressed in MSO2 logic. Especially, our result for
Clique strengthens the known result that Clique is NP-hard for graphs with mim-width at
most 6 [33].

To complement the intractability, we next seek polynomial-time solvable cases for graphs
with mim-width at most 1. Here we focus on Induced Cluster Subgraph, also known
as Cluster Vertex Deletion. Induced Cluster Subgraph is known to be NP-hard
for bipartite graphs [19, 34], while it is solvable in polynomial time for split graphs, block
graphs, interval graphs [10], cographs [27], bounded clique-width graphs [13], and convex
graphs2. Surprisingly, the complexity status of Induced Cluster Subgraph on chordal
graphs is still open. We show that, given a graph G with mim-width at most 1 accompanied
by its branch decomposition with mim-width at most 1, Induced Cluster Subgraph is
solvable in polynomial time. Although the complexity of computing a branch decomposition
with mim-width at most 1 of a given graph is still open in general, our result yields a
unified polynomial-time algorithm for Induced Cluster Subgraph that works on block
graphs, interval graphs, permutation graphs, cographs, distance-hereditary graphs, convex
graphs, and their complement graphs because all these graphs have mim-width at most 1
and their branch decompositions of mim-width at most 1 can be obtained in polynomial
time [1, 20, 33]3. Consequently, we give independent proofs for some of the results in [10, 27]
via mim-width. Moreover, to the best of our knowledge, this is the first polynomial-time
algorithm for Induced Cluster Subgraph on permutation graphs. We also emphasize
that our algorithmic technique can be applied to other problems such as Induced Polar
Subgraph, Induced Split Subgraph, and so on. Combining our results, we give the
complexity dichotomy of the above problems with respect to mim-width.

Due to the space limitation, the proofs of claims marked ♠ are omitted in this paper,
which can be found in the full version.

1.2 Previous work on mim-width

Mim-width is a relatively new graph structural parameter introduced by Vatshelle [33] and
it has attracted much attention in recent years to design efficient algorithms of problems
on graph classes that have unbounded tree-width and clique-width. Combined with the
result of Belmonte and Vatshelle [1], Bui-Xuan et al. provided XP algorithms of Locally
Checkable Vertex Subset and Vertex Partitioning problems (LC-VSVP for short)
parameterized by mim-width w, assuming that a branch decomposition with mim-width
w of a given graph can be computed in polynomial time [9]. Many problems, including
Independent Set, Dominating Set, Independent Dominating Set, and k-Coloring,
are expressible in the form of LC-VSVP. Jaffke et al. later generalized the result to the

2 If a given graph is convex (more generally K3-free), Induced Cluster Subgraph is equivalent to
Induced Π Subgraph such that Π is the class of graphs with maximum degree at most 1, which is
solvable in polynomial time for convex graphs [9].

3 As far as we know, it was not explicitly stated in any literature that block graphs and distance-hereditary
graphs have mim-width at most 1. This follows from the facts that a graph is distance-hereditary if and
only if its rank-width is at most 1 [20], and block graphs are distance-hereditary graphs.
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distance versions of LC-VSVP [21]. As the name suggests, LC-VSVP can capture problems
whose solutions are defined only by local constraints. Longest Induced Path [23] and
Feedback Vertex Set [24] are the first problems with global constraints for which it
was shown that there exist XP algorithms parameterized by mim-width. Bergougnoux and
Kanté designed a framework to deal with problems with global constraints for bounded
mim-width graphs [3]. The remarkable meta-theorem given by Bergougnoux et al. is not
only a generalization of all the above results in this section, but also a powerful tool for
solving more complicated problems on bounded mim-width graphs [2]. Subset Feedback
Vertex Set is one of the few examples where there exists an XP algorithm parameterized
by mim-width [4] although the meta-theorem does not work for it.

Unfortunately, computing the mim-width of a given graph is W[1]-hard, and there is
no polynomial-time approximation algorithm within constant factor unless NP = ZPP [32].
Even the complexity of determining whether a given graph has mim-width at most 1 is a
long-standing open problem. Fortunately, it is known that various graph classes have constant
mim-width and their branch decompositions with constant mim-width are computable in
polynomial time [1, 7, 8, 14, 26, 30]. In particular, some famous graphs, such as block
graphs, interval graphs, permutation graphs, cographs, distance-hereditary graphs, and
convex graphs, have mim-width at most 1 and their branch decomposition with mim-width
at most 1 can be obtained in polynomial time [1, 20]. The class of leaf power graphs, which
is the more general class than interval graphs and block graphs, also have mim-width at
most 1 [22], although it is not known whether an optimal branch decomposition of a given
leaf power graph can be obtained in polynomial time. On the other hand, the following graph
classes have unbounded mim-width: strongly chordal split graphs [29], co-comparability
graphs [26, 29], circle graphs [29], and chordal bipartite graphs [6].

In contrast to a wealth of research on developing XP algorithms parameterized by mim-
width and establishing lower and upper bounds on mim-width for specific graph classes, there
has been limited research on the NP-hardness of problems for graph classes with constant
mim-width [23, 25, 33].

2 Preliminaries

Let G = (V, E) be a graph. We assume that all the graphs in this paper are simple,
undirected, and unweighted. We denote by V (G) and E(G) the vertex set and the edge set
of G, respectively. For a vertex v of G, we denote by N(G; v) the (open) neighborhood of v in
G, that is, N(G; v) = {w ∈ V | vw ∈ E}. The degree of a vertex v of G is the size of N(G; v).
For a vertex subset V ′ ⊆ V , we denote by G[V ′] the subgraph induced by V ′. We use the
shorthand G − V ′ for G[V \ V ′]. For positive integers i and j with i ≤ j, we write [i, j] as
the shorthand for the set {i, i + 1, . . . , j} of integers. In particular, we write [1, j] = [j].

For two graphs G1 = (V1, E1) and G2 = (V2, E2) with V1 ∩ V2 = ∅, the disjoint union
of G1 and G2 is the graph whose vertex set is V1 ∪ V2 and edge set is E1 ∪ E2. For a
graph H and a positive integer ℓ, ℓH means the disjoint union of ℓ copies of H. The
complement of G, denoted by G, is the graph on the same vertex set V (G) with the edge set
{uv | u, v ∈ V (G), uv /∈ E(G)}. An independent set I of G is a vertex subset of G such that
any two vertices in I are non-adjacent. A clique K of G is a vertex subset of G such that
any two vertices in K are adjacent. Obviously, an independent set of G forms a clique of G,
and vice versa. A dominating set D of G is a vertex subset of G such that N(G; v) ∩ D ̸= ∅
for every vertex v ∈ V (G) \ D. A graph G is said to be connected if there is a path between
any two vertices of G. A maximal connected subgraph of G is called a connected component
of G. A cut vertex of G is a vertex whose removal from G increases the number of connected
components.
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2.1 Graph classes

A graph is bipartite if its vertex set can be partitioned into two independent sets. For disjoint
vertex sets A and B of a graph G, we denote by G[A, B] the bipartite subgraph with the vertex
set A ∪ B and the edge set {ab ∈ E(G) | a ∈ A, b ∈ B}. A bipartite graph G = (A ∪ B, E)
consisting of disjoint independent sets A and B is called a chain graph if there is an ordering
a1, a2, . . . , a|A| of vertices in A such that N(G; a1) ⊆ N(G; a2) ⊆ · · · ⊆ N(G; a|A|). Note
that, if A has such an ordering, then B also has an ordering b1, b2, . . . , b|B| of vertices in B

such that N(G; b1) ⊆ N(G; b2) ⊆ · · · ⊆ N(G; b|B|).
A tree is a connected acyclic graph. A vertex of a tree is called a leaf if it has degree 1;

otherwise, it is an internal vertex. A rooted tree T is a tree with a specific vertex r called the
root of T . For a rooted tree T and two adjacent vertices x and y of T , we say that x is the
parent of y, and conversely, y is a child of x if x lies on a path from y to r. A full binary
tree is a rooted tree such that each vertex has zero or exactly two children. A tree T is a
caterpillar if it contains a path P called a spine such that every leaf of T is adjacent to a
vertex of P . In this paper, we assume that the spine P is maximum, that is, there is no path
longer than P . The vertices of degree at most 1 in P are called the endpoints of P . A tree T

is called subcubic if every internal vertex of T has degree exactly 3.
We denote by Kn and Pn the complete graph and the path graph with n vertices,

respectively. We say that a graph G is H-free if G does not contain a graph isomorphic to
H as an induced subgraph.

2.2 Mim-width

For an edge subset E′ of a graph G, we denote V (E′) = {v, w ∈ V (G) | vw ∈ E′}. An
edge subset M ⊆ E(G) is an induced matching of G if every vertex of G[V (M)] has degree
exactly 1. For a vertex subset A ⊆ V (G), let mim(A) be the maximum size of an induced
matching in the bipartite subgraph G[A, A], where A = V (G) \ A.

A branch decomposition of a graph G is a pair (T, L), where T is a subcubic tree with
|V (G)| leaves and L is a bijection from V (G) to the leaves of T . In particular, a branch
decomposition (T, L) is called linear if T is a caterpillar. To distinguish vertices of T from
those of the original graph G, we call the vertices of T nodes. For each edge e of T , as
T is acyclic, removing e from T results in two trees T e

1 and T e
2 . Let (Ae

1, Ae
2) be a vertex

bipartition of G, where Ae
i = {L−1(ℓ) | ℓ is a leaf of T e

i } for each i ∈ {1, 2}. The mim-width
mimw(T, L) of a branch decomposition (T, L) of G is defined as maxe∈E(T ) mim(Ae

1). The
mim-width mimw(G) of G is the minimum mim-width over all branch decompositions of G.
Similarly, the linear mim-width lmimw(G) of G is the minimum mim-width over all linear
branch decompositions of G. Note that mimw(G) ≤ lmimw(G) holds for any graph G.

In this paper, to make a branch decomposition easier to handle, we often consider its
rooted variant. A rooted layout of a graph G is a pair (T ′, L), where T ′ is a rooted full binary
tree with |V (G)| leaves and L is a bijection from V (G) to the leaves of T ′. The mim-width
of a rooted layout (T ′, L) is defined in the same way as a branch decomposition. A rooted
layout of G is obtained from a branch decomposition (T, L) of G with the same mim-width
by inserting a root r to an arbitrary edge of T . (If |V (T )| = 1, we regard the unique node of
T as the root r of T ′.)

Here we note propositions concerning mim-width. Vatshelle showed that for a graph G

and a vertex v ∈ V (G), it holds that mimw(G − v) ≤ mimw(G) [33]. One can see that the
proof given by Vatshelle suggests the next proposition.

SWAT 2024



38:6 Finding Induced Subgraphs from Graphs with Small Mim-Width

▶ Proposition 1. For a graph G and an induced subgraph G′ of G, it holds that mimw(G′) ≤
mimw(G) and lmimw(G′) ≤ lmimw(G).

We here focus on graphs with mim-width at most 1. It is known that a graph G is a
chain graph if and only if G is a bipartite graph with a maximum induced matching of size
at most 1 [18]. Thus, we obtain the following proposition.

▶ Proposition 2. Let (T, L) be a branch decomposition of a graph G. Then, mimw(T, L) ≤ 1
if and only if for any edge e of T , the bipartite subgraph G[Ae

1, Ae
2] of G is a chain graph.

Moreover, for a graph G and a vertex subset A ⊂ V (G), it is not hard to see that
mim(A) ≤ 1 on G if and only if mim(A) ≤ 1 on G from the definition of a chain graph. This
implies the following proposition.

▶ Proposition 3 ([33]). Suppose that a graph G has mim-width at most 1. Then, any branch
decomposition (T, L) of G with mimw(T, L) ≤ 1 is also the branch decomposition of G with
mimw(T, L) ≤ 1. Consequently, mimw(G) ≤ 1 if and only if mimw(G) ≤ 1.

Combined with the observation that any cycle of length at least 5 has mim-width 2 and
the strong perfect graph theorem [11], Proposition 3 leads to the following proposition.

▶ Proposition 4 ([33]). All graphs with mim-width at most 1 are perfect graphs.

2.3 Graph properties and problems
Let Π be a fixed graph property. We often regard Π as a collection of graphs satisfying
the graph property. A graph property Π is nontrivial if there exist infinitely many graphs
satisfying Π and there exist infinitely many graphs that do not satisfy Π. A graph property
Π is said to be hereditary if for any graph G satisfying Π, every induced subgraph of G also
satisfies Π. We denote by Π the complementary property of Π, that is, Π = {G : G ∈ Π}.

For a graph G, a vertex subset S ⊆ V (G) is called a Π-set of G if G[S] satisfies Π. The
Induced Π Subgraph problem asks for a Π-set S of maximum size for a given graph G. If
G[S] is also required to be connected, then the problem is called the Connected Induced
Π Subgraph problem. For example, Independent Set is equivalent to Induced K2-free
Subgraph, and Clique is equivalent to Induced 2K1-free Subgraph and Connected
Induced P3-free Subgraph. Note that a vertex set S of G is a Π-set if and only if S is a
Π-set of G. In Induced Π Subgraph, if the Π-set S is also required to be a dominating set
of G, then the problem is called the Dominating Induced Π Subgraph problem.

Under the polynomial-time solvability, Induced Π Subgraph is equivalent to the Π
Vertex Deletion problem, which asks for a minimum vertex subset S′ of G such that
G − S′ satisfies Π. The vertex subset S′ is called a Π-deletion set of G. The Vertex
Cover problem is equivalent to K2-free Vertex Deletion. If G[S′] is also required to
be connected, then the problem is called the Connected Π Vertex Deletion problem.
In Π Vertex Deletion, if the Π-deletion set S′ is also required to be a dominating set of
G, then the problem is called the Dominating Π Vertex Deletion problem.

3 NP-hardness

In this section, we show the NP-hardness of Induced Π Subgraph and Π Vertex Deletion
on graphs with linear mim-width at most w, where w is some constant.
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▶ Theorem 5. Let Π be a fixed nontrivial hereditary graph property that admits all cliques.
Then there is a constant w such that Induced Π Subgraph and Π Vertex Deletion, as
well as their connected variants and their dominating variants, are NP-hard for graphs with
linear mim-width at most w, even if a branch decomposition with mim-width at most w of an
input graph is given.

Since Induced Π Subgraph is the complementary problem of Π Vertex Deletion,
we only prove the hardness of Π Vertex Deletion.

The girth of a graph G is the length of a shortest cycle in G. We reduce Vertex Cover
on graphs with girth at least 7, which is known to be NP-complete [31], to Π Vertex
Deletion by following the classical reduction technique of Lewis and Yannakakis [28].

First, we define a sequence on a graph. Consider a graph H with p connected components
H1, H2, . . . , Hp. Suppose that Hi for i ∈ [p] has a cut vertex c and the removal of c from
Hi results in q connected components Ci,1, Ci,2, . . . , Ci,q with |V (Ci,1)| ≥ |V (Ci,2)| ≥ · · · ≥
|V (Ci,q)|. For each j ∈ [q], we denote by Hi,j the subgraph induced by V (Ci,j) ∪ {c} and
ni,j = |V (Hi,j)|. The cut vertex c gives a non-increasing sequence αc = ⟨ni,1, ni,2, . . . , ni,q⟩.
For two sequences αc and αc′ according to cut vertices c and c′ of Hi, we write αc′ <L αc if
αc′ is smaller than αc in the sense of lexicographic order. Let αi be the lexicographically
smallest sequence among all sequences according to the cut vertices of Hi. If Hi has no
cut vertex, we let αi = ⟨|V (Hi)|⟩. Define βH = ⟨α1, α2, . . . , αp⟩, where we assume that
α1 ≥L α2 ≥L · · · ≥L αp. For example, for the graph H depicted in Figure 1(a), we have
βH = ⟨⟨4, 2⟩, ⟨2, 2⟩⟩. For two graphs H with p connected components and H ′ with q connected
components, we write βH′ <R βH if βH′ is smaller than βH in the sense of lexicographic
order: more precisely, assuming that βH = ⟨α1, α2, . . . , αp⟩ and βH′ = ⟨α′

1, α′
2, . . . , α′

q⟩, there
exists an integer i ∈ [min{p, q}] such that α′

j = αj for every j ∈ [i − 1] and α′
i <L αi; or

q < p and α′
i = αi for every i ∈ [q].

Consider the complementary property Π of Π. Note that, since all cliques satisfy Π, all
independent sets satisfy Π. Let F be a graph satisfying the following two conditions:
1. there is an integer ℓ ≥ 1 such that ℓF violates Π, whereas (ℓ − 1)F satisfies Π; and
2. for any integer ℓ′ ≥ 1 and any graph F ′ with βF ′ <R βF , ℓ′F ′ satisfies Π.
We call F the base of Π-forbidden subgraphs. Notice that the existence of F is guaranteed
because Π is nontrivial. Moreover, F and ℓ depend on Π solely and are independent of an
instance of Vertex Cover, that is, F and ℓ are fixed.

Let F1, F2, . . . , Fp be p connected components of F , where α1 ≥L α2 ≥L · · · ≥L αp. We
denote by c1 the cut vertex of F1 that realizes α1 (see Figure 1(a)) and by F1,1 the induced
subgraph of F1 corresponding to n1,1 (see Figure 1(b)). If F1 has no cut vertex, then c1
is any vertex of F1. We then arbitrarily choose a vertex from N(F1,1; c1) and label it as d.
Notice that N(F1,1; c1) ̸= ∅; otherwise, since α1, α2, . . . , αp are lexicographically sorted, ℓF

is an independent set and violates Π, which contradicts that all independent sets satisfy Π.
Let F ′ be the graph obtained by removing V (F1,1) \ {c1} from F (see Figure 1(c)).

We now construct an input graph G for Π Vertex Deletion from an input graph H

with girth at least 7 for Vertex Cover. Let n = |V (H)| and H∗ be the disjoint union of
ℓn copies of H. We assume that n ≥ 2, k < n − 1, and H has at least one edge; otherwise,
Vertex Cover is trivially solvable. For each vertex u of H∗, make a copy of F ′ and identify
c1 with u. For each edge uv of H∗, make a copy of F1,1 and identify c1 and d with u and v,
respectively. (See Figure 2.) Let H ′ be the graph resulting from the above transformation.
Finally, we let G = H ′. Since ℓ, F ′, and F1,1 are fixed, G can be constructed in polynomial
time in the size of H.

SWAT 2024
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c1 c2
c1

d

c1

(a) (b) (c)

Figure 1 Let F be the graph depicted in (a). The cut vertex c1 of the left connected component
F1 of F gives α1 = ⟨4, 2⟩ and the cut vertex c2 of the right connected component F2 of F gives
α2 = ⟨2, 2⟩, where α1 >L α2. Thus, if F is selected as the base of Π-forbidden subgraphs, F1,1 and
F ′ are defined as the graphs depicted in (b) and (c), respectively.

u v u v

Figure 2 A transformation of an edge uv with F1,1 and F ′, which are the graphs depicted in
Figure 1(b) and (c), respectively.

In [28], it is shown that H has a vertex cover of size at most k if and only if H ′ has
a Π-deletion set S of size at most kℓn. Notice that H ′ has ℓn ≥ 2 connected components
because H ′ is obtained from H∗, which is the disjoint union of ℓn copies of H. Moreover, we
have the following lemma.

▶ Lemma 6. Suppose that H ′ has a Π-deletion set S of size at most kℓn. Then the following
two claims (a) and (b) are true:
(a) there are two connected components C1 and C2 of H ′ such that V (C1) \ S ̸= ∅ and

V (C2) \ S ̸= ∅; and
(b) there are two connected components C ′

1 and C ′
2 of H ′ such that V (C ′

1) ∩ S ̸= ∅ and
V (C ′

2) ∩ S ̸= ∅.

Proof. In the claim (a), assume for a contradiction that there is at most one connected
component C of H ′ such that V (C)\S ≠ ∅. In other words, V (H ′ −C) ⊆ S holds. Recall that
k < n − 1 and H ′ has ℓn ≥ 2 connected components. Moreover, each connected component
of H ′ − C has at least n vertices from the construction of H ′. Thus, we have

|S| ≥ |V (H ′ − C)| ≥ n(ℓn − 1) > (k + 1)(ℓn − 1) = kℓn + ℓn − k − 1 > kℓn,

a contradiction.
To prove the claim (b), assume for a contradiction that there is at most one connected

component C ′ of H ′ such that V (C ′) ∩ S ̸= ∅. In other words, there are at least ℓn − 1 (≥ ℓ

because n ≥ 2) connected components of H ′ − C ′ that contain no vertex in S. Consider ℓ

connected components of H ′ − C ′. Since each of them contains F as an induced subgraph,
H ′ − C ′ contains ℓF as an induced subgraph. However, ℓF violates Π because F is the base
of Π-forbidden subgraphs. This contradicts that S is a Π-deletion set of H ′. ◀

Observe that S is a Π-deletion set of H ′ of size at most kℓn if and only if S is a Π-deletion
set of G = H ′ of size at most kℓn. Combined with Lemma 6, this implies that H has a
vertex cover of size at most k if and only if G has a Π-deletion set S of size at most kℓn such
that the induced subgraphs G[S] and G − S are both connected, and S and V (G) \ S are
dominating sets of G.
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Our remaining task is to show that G has linear mim-width at most w for some constant
w. To this end, we consider a sequence of subgraphs of H ′. Let V (H∗) = {v1, v2, . . . , vn}
and E(H∗) = {e1, e2, . . . , em}, where n and m are the numbers of vertices and edges of H∗,
respectively. We make a sequence H = ⟨H∗ = H0, H1, . . . , Hn+m = H ′⟩ such that Hi for
i ∈ [n] is obtained from Hi−1 by attaching a copy of F ′ to vi, and Hi for i ∈ [n + 1, n + m]
is obtained from Hi−1 by attaching a copy of F1,1 to ei−n. Since G = H ′, the following
lemma completes the proof of Theorem 5. (Recall that F is fixed and hence lmimw(F ) is a
constant.)

▶ Lemma 7. For any graph Hi in the sequence H = ⟨H∗ = H0, H1, . . . , Hn+m = H ′⟩, a
linear branch decomposition of Hi with mim-width at most lmimw(F ) + 2 can be obtained in
polynomial time in the size of H∗.

Proof. We prove the lemma by induction, where the base case is H0 = H∗. Note that H∗

has girth at least 7 because H∗ consists of copies of H whose girth is at least 7. Consider a
linear branch decomposition (T0, L0) of H0, where L0 is an arbitrary bijection from V (H0) to
the leaves of T0. To show that mimw(T0, L0) ≤ 2 ≤ lmimw(F ) + 2, assume for a contradiction
that there is an edge e of T0 such that mim(Ae

1) ≥ 3 for the bipartition (Ae
1, Ae

2). Let
x1x2, y1y2, z1z2 be edges that form an induced matching in G[Ae

1, Ae
2], where x1, y1, z1 ∈ Ae

1
and x2, y2, z2 ∈ Ae

2. Then, x1y2, y2z1, z1x2, x2y1, y1z2, z2x1 /∈ E(H) and hence they form a
cycle of length 6 in H0. This contradicts that the girth of H0 is at least 7.

Consider the case of i > 0. We here define a concatenation of two linear branch
decompositions. Let G1 and G2 be vertex-disjoint induced subgraphs of a graph G such that
V (G1) ∪ V (G2) = V (G), and let (T1, L1) and (T2, L2) be linear branch decompositions of G1
and G2, respectively. A concatenation of (T1, L1) and (T2, L2) is to construct a new linear
branch decomposition (T, L) of G as follows. For each i ∈ {1, 2}, let ei be an edge incident
to an endpoint of the spine of Ti. Insert nodes t1 and t2 into e1 and e2, respectively, and
then connect t1 and t2 by an edge. (If |V (Ti)| = 1 for i ∈ {1, 2}, we define ti as the unique
node of Ti.) Observe that T is a subcubic caterpillar. Finally, set a bijection L from V (G)
to the leaves of T such that L(v) = L1(v) if v ∈ V (G1) and L(v) = L2(v) if v ∈ V (G2).

By the induction hypothesis, there exists a linear branch decomposition (Ti−1, Li−1)
of Hi−1 such that mimw(Ti−1, Li−1) ≤ lmimw(F ) + 2. Recall that Hi is constructed by
attaching a copy of F ′ to vi or a copy of F1,1 to ei−n. We denote by Fi the subgraph
of Hi obtained by removing all vertices in V (Hi−1). We may assume that |V (Fi)| ≥ 1;
otherwise, Hi = Hi−1 and thus we immediately conclude that lmimw(Hi) ≤ lmimw(F ) + 2.
Let (T ′

i , L′
i) be a linear branch decomposition of Fi such that mimw(T ′

i , L′
i) ≤ lmimw(F ).

Notice that, since Fi is an induced subgraph of F , such a linear branch decomposition exists
by Proposition 1. Moreover, it can be constructed in constant time because F is fixed. We
define (Ti, Li) as a linear branch decomposition obtained by a concatenation of (Ti−1, Li−1)
and (T ′

i , L′
i). Clearly, the construction of (Ti, Li) can be done in polynomial time in the size

of H∗.
To show that mimw(Ti, Li) ≤ lmimw(F ) + 2, assume for a contradiction that there is

an edge e of Ti such that the bipartite subgraph G[Ae
1, Ae

2] of Hi has an induced matching
M of size lmimw(F ) + 3, where (Ae

1, Ae
2) is the bipartition of V (Hi) given by e. From the

construction of (Ti, Li), the following two cases are considered: (I) Ae
1 ⊆ V (Hi−1) and

V (Fi) ⊆ Ae
2; and (II) Ae

1 ⊆ V (Fi) and V (Hi−1) ⊆ Ae
2.

Case (I). Let e′ be an edge of Ti−1 such that Ae′

1 = Ae
1 and Ae′

2 = Ae
2 \ V (Fi). If V (M) ⊆

V (Hi−1), then M is also an induced matching of the bipartite subgraph G[Ae′

1 , Ae′

2 ] defined
by the linear branch decomposition (Ti−1, Li−1). This implies that mimw(Ti−1, Li−1) ≥
|M | = lmimw(F ) + 3, which contradicts that mimw(Ti−1, Li−1) ≤ lmimw(F ) + 2.

SWAT 2024



38:10 Finding Induced Subgraphs from Graphs with Small Mim-Width

Without loss of generality, we assume that M has three distinct edges x1x2, y1y2, z1z2
such that x1, y1, z1 ∈ Ae

1 ⊆ V (Hi−1), x2 ∈ Ae
2 ∩ V (Fi), and y2, z2 ∈ Ae

2. Then, the sequence
⟨x2, y1, z2, x1, y2, z1, x2⟩ of vertices forms a cycle C of length 6 of Hi. If i ∈ [n], as x2 ∈ V (Fi)
is adjacent to at most one vertex in V (Hi−1) from the construction of Hi, then we have
y1 = z1, a contradiction. Suppose that i ∈ [n + 1, n + m]. Recall that, from the construction
of Hi, each vertex of Fi is not adjacent to vertices in V (Hi−1) except for the endpoints
of ei−n. Since x2 ∈ V (Fi) is adjacent to the distinct vertices y1, z1 ∈ V (Hi−1), we have
ei−n = y1z1. Furthermore, x1 ∈ V (Hi−1) is not adjacent to any vertex in V (Fi) and hence
we have y2, z2 ∈ V (Hi−1). Therefore, we obtain the cycle C1 = ⟨y1, z2, x1, y2, z1, y1⟩ with
smaller length than that of C, where the vertices of C1 are in V (Hi−1). Similarly, if C1
contains vertices of Fj for j ∈ [n + 1, i], there exists a smaller cycle of Hi−1 that contains no
vertices of Fj . We eventually obtain a cycle C ′ of H of length less than 6, which contradicts
that H has girth at least 7.

Case (II). Recall that at most two vertices in V (Hi−1), say u and w, are adjacent to some
vertex in V (Fi) on Hi and thus no vertex in V (Hi−1) \ {u, w} is adjacent to any vertex in
V (Fi) on Hi. If some vertex in V (M) is in V (Hi−1) \ {u, w}, then we can take three distinct
edges x1x2, y1y2, z1z2 ∈ M such that x1, y1, z1 ∈ Ae

1 ⊆ V (Fi), x2 ∈ V (Hi−1) \ {u, w} ⊆ Ae
2,

and y2, z2 ∈ Ae
2. However, this implies that x2 is adjacent to y1 and z1 on Hi, which

contradicts that no vertex in V (Hi−1) \ {u, w} is adjacent to any vertex in V (Fi) on Hi.
If there is no vertex in V (M) is in V (Hi−1) \ {u, w}, then there is an induced matching

M ′ ⊆ M of G[Ae
1, Ae

2] such that V (M ′) ⊆ V (Fi) and |M ′| ≥ |M | − |V (M) ∩ {u, w}| ≥
lmimw(F ) + 1. For an edge e′ of T ′

i such that Ae′

1 = Ae
1 and Ae′

2 = Ae
2 \ V (Hi−1), M ′ is

also an induced matching of G[Ae′

1 Ae′

2 ] defined by the linear branch decomposition (T ′
i , L′

i).
This implies that mimw(T ′

i , L′
i) ≥ lmimw(F ) + 1, which contradicts that mimw(T ′

i , L′
i) ≤

lmimw(F ). ◀

Refining the proof of Lemma 7 yields stronger claims for some problems. (See the full
version of this paper.)

▶ Theorem 8 (♠). All the following problems, as well as their connected variants and their
dominating variants, are NP-hard for graphs with linear mim-width 2: (i) Clique; (ii)
Induced Cluster Subgraph; (iii) Induced Polar Subgraph (iv) Induced P3-free
Subgraph; (v) Induced K3-free Subgraph; and (vi) Induced Split Subgraph. The
NP-hardness for these problems holds even if a linear branch decomposition with mim-width
at most 2 of an input graph is given.

Theorem 8 strongly suggests that the complements of graphs with linear mim-width 2
have unbounded mim-width, because Independent Set, the complementary problem of
Clique, is solvable in polynomial time for bounded mim-width graphs.

4 Polynomial-time algorithms for graphs with mim-width at most 1

A graph G is called a cluster if every connected component of G is a complete graph. Induced
Cluster Subgraph is equivalent to Induced P3-free Subgraph and Cluster Vertex
Deletion (in terms of polynomial-time solvability). From Theorem 8, Induced Cluster
Subgraph is NP-hard for graphs with linear mim-width at most 2.

Recall that all graphs with mim-width at most 1 are perfect graphs by Proposition 4. It
is known that Clique is solvable in polynomial time for perfect graphs [17] and hence also
for graphs with mim-width at most 1. In contrast, Induced Cluster Subgraph remains
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NP-hard for bipartite graphs [19, 34], which are perfect graphs. Thus, the same argument
as Clique is not applicable to Induced Cluster Subgraph. Nevertheless, assuming
that a rooted layout (T, L) of an input graph with mimw(T, L) = 1 is given, we design a
polynomial-time algorithm for Induced Cluster Subgraph.

▶ Theorem 9. Given a graph and its rooted layout of mim-width at most 1, Induced
Cluster Subgraph is solvable in polynomial time.

It is known that all interval graphs, permutation graphs, distance-hereditary graphs, and
convex graphs have mim-width at most 1 and their rooted layout of mim-width at most 1
can be obtained in polynomial time [1, 20]. Moreover, by Proposition 3, rooted layouts with
mim-width at most 1 for the complement of these graphs can also be obtained in polynomial
time. Thus, our algorithm directly indicates the following corollary.

▶ Corollary 10. There is an algorithm that solves Induced Cluster Subgraph in polyno-
mial time for interval graphs, permutation graphs, distance-hereditary graphs, convex graphs,
and their complements.

Here we give an idea of our algorithm. For a rooted layout (T, L) of a given graph with
mim-width at most 1, we compute an optimal solution by means of dynamic programming
from the leaves to the root of T . To complete the computation in polynomial time, for each
node t of T , we discard redundant partial solutions and store essential ones of polynomial
size. This approach was also employed in the previous algorithmic work of mim-width [2, 3,
4, 9, 21, 23, 24]. Especially, an equivalence relation called the d-neighbor equivalence plays
a key role in compressing partial solutions and designing XP algorithms parameterized by
mim-width [2, 3, 4, 9, 21]. However, Theorem 8 suggests that the d-neighbor equivalence
does not work for designing an algorithm for Induced Cluster Subgraph; otherwise,
we would obtain an XP algorithm parameterized by mim-width, which is quite unlikely
by Theorem 8. A rooted layout with mim-width at most 1 resolves the difficulty. Recall
that mimw(T, L) ≤ 1 if and only if G[Ae

1, Ae
2] for any edge e of T is a chain graph as in

Proposition 2. This property allows us to give strict total orderings of vertices in Ae
1 and

Ae
2 with respect to neighbors of vertices. We define new equivalence relations over the strict

total orderings, which enables the dynamic programming to run in polynomial time.
Let G be a graph and <A be a strict total order on A ⊆ V (G). For a vertex subset

C ⊆ A, we denote by head(C, <A) and tail(C, <A) the largest and smallest vertices in C

with respect to <A, respectively. More precisely, for a vertex u ∈ C, u = head(C, <A) if
and only if v <A u for any vertex v ∈ C \ {u}, and u = tail(C, <A) if and only if u <A w

for any vertex w ∈ C \ {u}, respectively. (For the sake of convenience, we allow C = ∅ and
in this case we let head(C, <A) = ∅ and tail(C, <A) = ∅.) For a subset S ⊆ A, a partition
(C1, C2, . . . , Cp) of S into p disjoint subsets C1, C2, . . . , Cp is called a component partition of
S over G if for every i ∈ [p], the subgraph of G induced by Ci is a connected component of
G[S]. We say that a partition (C1, C2, . . . , Cp) of S ⊆ A is indexed by <A if it holds that
head(Cj , <A) <A head(Ci, <A) for any pair of integers i, j with 1 ≤ i < j ≤ p.

For a non-empty vertex subset A of G such that mim(A) ≤ 1, a strict total order <A

of A is called a chain order if for any two distinct vertices v, w in A, v <A w means
N(G; v) \ A ⊆ N(G; w) \ A. (If |A| = 1, we define that the trivial strict total order of A is
also a chain order.) By Proposition 2 and the definition of chain graphs, there is a chain
order of A if and only if mim(A) ≤ 1. Note that mim(A) ≤ 1 also holds and thus there is a
chain order <A of A.

For subsets SA and S′
A of A, let (C1, C2, . . . , Cp) denote the component partition of SA

over G and let (C ′
1, C ′

2, . . . , C ′
q) denote the component partition of S′

A over G, where p and
q are positive integers and both the component partitions are indexed by a chain order
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<A. We write SA ≡cl
G,<A

S′
A if head(C1, <A) = head(C ′

1, <A), tail(C1, <A) = tail(C ′
1, <A),

and head(C2, <A) = head(C ′
2, <A). If the graph G and the chain order <A involved in the

component partitions of SA and S′
A are clear from the context, then we use the shorthand ≡cl

A.
It is not hard to see that ≡cl

A is an equivalence relation over subsets of A. A representative
of SA, denoted by repA(SA), is the set R = {head(C1, <A), tail(C1, <A), head(C2, <A)}. In
the same way, we define an equivalence relation ≡cl

<
A

over subsets of A according to a chain
order <A and a representative repA(SA) of SA ⊆ A.

Consider two subsets SA, S′
A ⊆ A with |SA| ≥ |S′

A|. Assume that for any subset SA ⊆ A,
SA ∪ SA is a cluster set of G if and only if S′

A ∪ SA is a cluster set of G. This suggests that
there is no need to store S′

A during dynamic programming over T . Formally, we give the
following lemma.

▶ Lemma 11 (♠). For a vertex subset A of a graph G such that mim(A) ≤ 1, let SA, S′
A ⊆ A

be cluster sets of G with SA ≡cl
A S′

A and let SA be any subset of A. Then, SA ∪ SA is a
cluster set of G if and only if S′

A ∪ SA is a cluster set of G.

Lemma 11 asserts that the equivalence relation ≡cl
A allows us to determine vertex sets to

be stored. However, Lemma 11 is not enough to construct a dynamic programming algorithm.
If a chain order is arbitrarily given for each node t of T , then the ordering of the stored
sets may change, which causes the algorithm to output an incorrect solution. To avoid the
inconsistency, we need to define chain orders with additional constraints.

Let (T, L) be a rooted layout of a graph G = (V, E). For a node t of T , we denote by
Tt the subtree of T rooted at t. We define Vt = {L−1(ℓ) | ℓ is a leaf of Tt}, Vt = V \ Vt,
Gt = G[Vt], and Gt = G[Vt]. We use the shorthand notations Gt,t for the bipartite subgraph
G[Vt, Vt] and rept for the representative repVt

. We define a strict total order <t on vertices
in Vt, called a lower chain order, that satisfies the two conditions below:
(ℓ-1) <t is a chain order of Vt; and
(ℓ-2) if t has a child c, then for any pair of distinct vertices v, w in Vc, it holds that v <c w

if and only if v <t w.

We also define an upper chain order <t as a strict total order on vertices in Vt that holds
the following three conditions:
(u-1) <t is a chain order of Vt;
(u-2) if t has a child c, then for any pair of distinct vertices v, w in Vt, it holds that v <t w

if and only if v <c w; and
(u-3) if t has the parent p, then for any pair of distinct vertices v, w in Vt ∩ Vp, it holds that

v <t w if and only if v <p w, where <p is a lower chain order on Vp.

Lemma 12 asserts that the above strict total orders can be found in polynomial time.

▶ Lemma 12 (♠). Let (T, L) be a rooted layout of a graph G with mimw(T, L) ≤ 1. For
every node t of T , a lower chain order <t and an upper chain order <t exist and can be
obtained in polynomial time.

We here give the following two lemmas, which are keys to show the correctness of our
algorithm given later.

▶ Lemma 13 (♠). Let (T, L) be a rooted layout of a graph G with mimw(T, L) ≤ 1 and
t be an internal node of T with a child c. For any subset S ⊆ Vc ∩ Vt of G, it holds that
repc(S) = rept(S).
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▶ Lemma 14 (♠). Let (T, L) be a rooted layout of a graph G with mimw(T, L) ≤ 1 and
let t be an internal node of T with children a and b. For disjoint cluster sets X ⊆ Va and
Y ⊆ Vb, if X ∪ Y is a cluster set of G, then rept(X ∪ Y ) = rept(rept(X) ∪ rept(Y )) holds.
Moreover, for a cluster set Z ⊆ Vt of G, if X ∪ Z (resp. Y ∪ Z) is a cluster set of G, then
repb(X ∪ Z) = repb(repb(X) ∪ repb(Z)) (resp. repa(Y ∪ Z) = repa(repa(Y ) ∪ repa(Z))) holds.

We now provide a polynomial-time algorithm for Induced Cluster Subgraph. Suppose
that (T, L) is a rooted layout of a graph G with mimw(T, L) ≤ 1 and t is a node of T . We let
Rt = {rept(St) : St ⊆ Vt} and Rt = {rept(St) : St ⊆ Vt}. For two sets Rt ∈ Rt and Rt ∈ Rt,
we define ft(Rt, Rt) as the function that returns the largest size of a subset St ⊆ Vt such that
1. rept(St) = Rt; and
2. St ∪ Rt is a cluster set of G.

We let ft(Rt, Rt) = −∞ if there is no subset satisfying the above conditions. For each
triple of t ∈ V (T ), Rt ∈ Rt, and Rt ∈ Rt, we compute ft(Rt, Rt) by means of dynamic
programming from the leaves to the root r of T . As G = Gr, we obtain the maximum size of
cluster sets of G by computing min{fr(Rr, ∅) : Rr ∈ Rr}. Notice that, for simplicity, our
algorithm computes the size of an optimal solution. One can easily modify our algorithm so
that it finds the largest cluster set in the same time complexity.

The case where t is a leaf of T . Denote by v the unique vertex in Vt. Then, Rt = {∅, {v}}.
If Rt = ∅, only St = ∅ satisfies the prescribed conditions for any Rt ∈ Rt. If Rt = {v}, then
St = {v} and we have to check that {v} ∪ Rt is a cluster set of G. In summary, we have

ft(Rt, Rt) =


0 if Rt = ∅ and Rt is a cluster set of G,
1 if Rt = {v} and {v} ∪ Rt is a cluster set of G,
−∞ otherwise.

The case where t is an internal node of T . Suppose that t has children a and b, and
fa(Ra, Ra) and fb(Rb, Rb) have already been computed for any Ra ∈ Ra, Ra ∈ Ra, Rb ∈ Rb,
and Rb ∈ Rb. For the largest subset St ⊆ Vt that satisfies the prescribed conditions, St

can be partitioned into two cluster sets St ∩ Va and St ∩ Vb. In addition, (St ∩ Vb) ∪ Rt

and (St ∩ Va) ∪ Rt form cluster sets of G[Va] and G[Vb], respectively. We guess that
rept(St ∩ Va) = repa(St ∩ Va) = Ra ∈ Ra and rept(St ∩ Vb) = repb(St ∩ Vb) = Rb ∈ Rb. By
Lemma 14, Rt can be represented as follows:

Rt = rept(St)
= rept((St ∩ Va) ∪ (St ∩ Vb))
= rept(rept(St ∩ Va) ∪ rept(St ∩ Vb))
= rept(Ra ∪ Rb).

To obtain the value ft(Rt, Rt), we calculate the sum of fa(Ra, repa((St ∩ Vb) ∪ Rt)) and
fb(Rb, repb((St ∩ Va) ∪ Rt)) for each pair (Ra, Rb) such that Ra ∈ Ra, Rb ∈ Rb, and
Rt = rept(Ra ∪ Rb). Combining Lemmas 13 and 14 with repa(Rt) = rept(Rt), which is
observed from the condition (u-2) for an upper chain order, it holds that

repa((St ∩ Vb) ∪ Rt) = repa(repa(St ∩ Vb) ∪ repa(Rt))
= repa(rept(St ∩ Vb) ∪ rept(Rt))
= repa(Rb ∪ Rt).
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Similarly, we have repb((St ∩ Va) ∪ Rt) = repb(Ra ∪ Rt). We conclude that

ft(Rt, Rt) = max
Ra∈Ra∧Rb∈Rb

{fa(Ra, repa(Rb ∪ Rt))

+ fb(Rb, repb(Ra ∪ Rt)) : Rt = rept(Ra ∪ Rb)}.

Since Rt and Rt are of polynomial size for every t of T , our algorithm runs in polynomial
time. This completes the proof of Theorem 9.

We can extend the above algorithm to other several problems. (For more details, see the
full version of this paper.) Combined with Theorem 8, we obtain the following dichotomy
theorem.

▶ Theorem 15 (♠). All the following problems, as well as their connected variants and their
dominating variants, are NP-hard for graphs with mim-width at most 2: (i) Clique; (ii)
Induced Cluster Subgraph; (iii) Induced Polar Subgraph; (iv) Induced P3-free
Subgraph; (v) Induced Split Subgraph; and (vi) Induced K3-free Subgraph. On
the other hand, given a graph and its branch decomposition of mim-width at most 1, all
the above problems, as well as their connected variants and their dominating variants, are
solvable in polynomial time.

5 Concluding remarks

We discuss future work here. Our proof of Theorem 5 relies on the assumption that all cliques
satisfy a fixed property Π, and hence Theorem 5 is not applicable to Induced Π Subgraph
such that Π excludes some clique. Such problems include Independent Set, Induced
Matching, Longest Induced Path, and Feedback Vertex Set. In fact, there exist
XP algorithms of the problems listed above when parameterized by mim-width [1, 9, 23, 24].
This motivates us to seek Π such that Induced Π Subgraph is NP-hard for bounded
mim-width graphs although Π excludes some clique. As the first step, it would be interesting
to consider Induced K3-free Subgraph.

In [2], Bergougnoux et al. showed that Clique is expressible in A&C DN + ∀, which is
A&C DN logic that allows to use a single universal quantifier ∀, and hence their meta-theorem
cannot be extended to A&C DN + ∀. Our results in this paper suggest that the barrier could
be broken down for graphs with mim-width at most 1. The next goal is to obtain a more
general logic than A&C DN such that all problems expressible in the logic are solvable in
polynomial time for graphs with mim-width at most 1.

Finally, we end this paper by leaving the biggest open problem concerning mim-width:
Given a graph G, is there a polynomial-time algorithm that computes a branch decomposition
with mim-width 1, or concludes that G has mim-width more than 1?
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