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Abstract
The capacitated tree cover problem with edge loads is a variant of the tree cover problem, where we
are given facility opening costs, edge costs and loads, as well as vertex loads. We try to find a tree
cover of minimum cost such that the total edge and vertex load of each tree does not exceed a given
bound. We present an O(m log n) time 3-approximation algorithm for this problem.

This is achieved by starting with a certain LP formulation. We give a combinatorial algorithm
that solves the LP optimally in time O(m log n). Then, we show that a linear time rounding and
splitting technique leads to an integral solution that costs at most 3 times as much as the LP solution.
Finally, we prove that the integrality gap of the LP is 3, which shows that we can not improve the
rounding step in general.
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1 Introduction

Graph cover problems deal with the following base problem. Given a graph G, the task is to
find a set of (connected) subgraphs of G, the cover, such that each vertex of G is contained
in at least one of the subgraphs. Usually, the subgraphs are restricted to some class of
graphs, like paths, cycles or trees. Different restrictions can be imposed on the subgraphs,
like a maximum number of edges, or a total weight of the nodes for some given node weights.
Recently, Schwartz [12] published an overview of the literature on different covering and
partitioning problems.

We consider the capacitated tree cover problem with edge loads. It is a variation of the
tree cover problem that has not been studied so far to the best of our knowledge.

In the capacitated tree cover problem with edge loads, we are given a complete graph
G = (V, E), metric edge costs c : E → R+, vertex loads b : V → [0, 1), metric edge loads
u : E → R≥0 with u(e) < u(f) ⇒ c(e) ≤ c(f), and a facility opening cost γ ≥ 0. The task is
to find a number of components k ∈ N≥1 and a forest F in G consisting of k trees minimizing∑

e∈E(F )

c(e) + γk,

such that each tree Ti has total load

u(Ti) :=
∑

e∈E(Ti)

u(e) +
∑

v∈V (Ti)

b(v) ≤ 1.

For simplicity of presentation, we additionally require that u > 0. This is not necessary
in general and the extended proofs for u ≥ 0 are covered in the full paper [11].
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39:2 A Fast 3-Approximation for the Capacitated Tree Cover Problem with Edge Loads

The capacitated tree cover problem with edge loads is closely related to the facility location
problem with service capacities discussed by Maßberg and Vygen in [10]. Their problem uses
Steiner trees to connect the nodes, not spanning trees. Furthermore, in their case edge cost
and edge load are the same. They make use of this fact to prove a lower bound on the value
of an optimum solution. Both problems have important practical applications in chip design.
In [4] they are called the sink clustering problem and used for clock tree construction. In
[2] they are used for repeater tree construction. In these applications terminals and edges
have an electrical capacitance. A source can drive only a limited capacitance. Edge cost and
capacitance usually are proportional to the length of an edge. As the edge length is given by
the l1-distance between its endpoints, this naturally matches our problem.

Our problem is also related to other facility location and clustering problems, like the
(capacitated) k-center problem ([5, 8]) or the k-means problem ([6, 9]).

Other tree cover problems include the k-min-max tree cover problem and the bounded
tree cover problem ([1, 3, 7]). In the k-min-max tree cover problem, we are given edge weights
and want to find k trees such that the maximum of the total weights of the trees is minimized.
In the bounded tree cover problem, we are given a bound on the maximum weight of a tree
in the cover and try to minimize the number of trees that are required. For these problems
Khani and Salavatipour [7] gave a 3- and 2.5-approximation respectively. They improve
over the previously best known results by Arkin et al. [1], who presented a 4-approximation
algorithm for the min-max tree cover problem and a 3-approximation algorithm for the
bounded tree cover problem. Even et al. [3] independently gave a 4-approximation algorithm
for the min-max tree cover problem. Furthermore, a rooted version of these problems has
been studied. The best known approximation ratio for the capacitated tree case is 7 and was
developed by Yu and Liu [15].

Many algorithms for cycle cover problems are also based on tree cover algorithms ([3,
13, 14]). An example is the capacitated cycle covering problem, where the cover consists of
cycles (and singletons) and are given an upper bound on the total nodeweight of the cycles.
The task is to minimize the total weight of the cycles plus the facility opening costs. Traub
and Tröbst [13] presented a 2 + 2

7 -approximation for this problem. They use an algorithm for
the capacitated tree cover problem as a basis for their 2 + 2

7 -approximation. In particular,
they present a 2-approximation for the capacitated tree cover problem without edge loads.

2 Our contribution

In Section 3, we present an LP formulation of the capacitated tree cover problem with edge
loads that is based on the formulation in [13].

Then, we will present a combinatorial algorithm that can optimally solve the LP in time
O(m log n) in Section 4, where n is the number of vertices and m is the number of edges of
the graph.

Next, we show how to round the solution to an integral solution in Section 5, employing
a splitting technique that runs in linear time from [10], and show that the resulting integral
solution costs at most 3 times as much as the LP-solution. This proves our main theorem:

▶ Theorem 1. There is a 3-approximation algorithm for the capacitated tree cover problem
with edge loads that runs in time O(m log n).

While the overall approach is similar to the one used in [13], edges with load require
a different algorithm for solving the LP. Furthermore, we need to be more careful in the
analysis of our rounding step.

Finally, in Section 6, we will give an example proving that the integrality gap of our LP
is at least 3.
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3 The LP-formulation

We may assume that γ ≥ c(e) for all e ∈ E, as an edge with c(e) > γ will never be used
in an optimum solution (and could be removed from the solution of the algorithm without
increasing the cost).

For simplicity, we will introduce some notation here: For any function f : A → B ⊆ R
from a finite set A into a set B ⊆ R and X ⊆ A we write f(X) :=

∑
x∈X f(x).

Given a solution F to our problem with k components {T1, . . . , Tk}, we know that each
tree Ti contains exactly |V (Ti)|−1 edges and hence k = |V |−|E(F )|. Each induced subgraph
of F is a forest. So we know

|E(F [A])| ≤ |A| − 1 for each A ⊆ V.

Let us now consider the load on the subgraph of F , induced by A ⊆ V . Each connected
component in F [A] can have load at most 1. So there must be at least b(A) + u(E(F [A]))
components in F [A]. As each of the components is a tree, the inequality

|E(F [A])| ≤ |A| − (b(A) + u(E(F [A])))

must be fulfilled. Using these properties, we can formulate the following LP relaxation of
this problem:

min ctx + γ(|V | − x(E)) (1)

s.t. x(E(G[A])) ≤ |A| − 1 for each A ⊆ V (2)∑
e∈E(G[A])

(1 + u(e))x(e) ≤ |A| − b(A) for each A ⊆ V (3)

0 ≤ x(e) ≤ 1 for each e ∈ E (4)

Here x(e) denotes the fractional usage of the edge e. We will call an edge e active if x(e) > 0.
The LP can be reformulated by using variables y(e) := x(e)(1 + u(e)):

min
∑
e∈E

c(e)
1 + u(e)y(e) + γ

(
|V | −

∑
e∈E

y(e)
1 + u(e)

)
(5)

s.t.
∑

e∈E(A)

y(e)
1 + u(e) ≤ |A| − 1 for each A ⊆ V (6)

y(E(G[A])) ≤ |A| − b(A) for each A ⊆ V (7)
0 ≤ y(e) ≤ 1 + u(e) for each e ∈ E (8)

For simplicity, we will always consider solutions x, y of both LPs at once. In the following,
we will denote by ux(e) := x(e) · u(e) the fractional load of edge e.

▶ Definition 2. For a solution x, y to the LP, we define the support graph Gx := (V, {e ∈
E | x(e) > 0}), i.e. the graph consisting of the vertices V and all active edges.

We call an edge tight if y(e) = 1 + u(e), and we call a set A ⊆ V of vertices tight if
inequality (7) is tight.

SWAT 2024
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Our goal will be to solve the LP exactly and then round to a forest that may violate the
capacity constraints. This increases the edge cost by at most a factor of 2. In a final step
each tree T in the forest with a load b(V (T )) + u(E(T )) > 1 can be split into at most
2 · (b(V (T )) + u(E(T ))) trees. This may decrease the edge cost, but loses a factor of 3 in the
number of components, compared to the LP solution.

4 Solving the LP

Altough the LP has an exponential number of inequalities, we can solve it using a simple
greedy algorithm, shown in Algorithm 1. We will focus on solving the second LP (5) – (8).

As a first step, we sort the edges {e1, . . . , em} = E(G) such that

c(e1) − γ

1 + u(e1) ≤ . . . ≤ c(em) − γ

1 + u(em) .

In each iteration, we compute a partition Ai ⊂ 2V (G) of the vertices of G, based on the
previous partition Ai−1. We initialize y to 0 and start with A0 := {{v}|v ∈ V (G)}. Then
we iterate through the edges from e1 to em. For each edge ei, we do the following:

If ei has endpoints in two different sets of the partition A1
i , A2

i ∈ Ai−1, we increase y(ei)
to the maximum possible value. This maximum value is the sum of the slacks of inequalities
(7) for the sets A1

i and A2
i : |A1

i |−b(A1
i )−y(E(G[A1

i ]))+ |A2
i |−b(A2

i )−y(E(G[A2
i ])). However,

we assign at most 1+u(ei), such that we do not violate inequality (8). Finally, if we increased
y(ei) by a positive amount, we create the new partition Ai that arises from Ai−1 by removing
A1

i and A2
i and adding their union.

We set A :=
⋃

i=1,...,m Ai. Observe that A is a laminar family. This guarantees that the
support graph is always a forest and inequality (6) is automatically fulfilled.

Algorithm 1 Algorithm for solving the LP (5) – (8).

Input : G, c, u.
Output : y optimum solution of the LP (5) – (8).

1 Sort edges such that c(e1)−γ
1+u(e1) ≤ . . . ≤ c(em)−γ

1+u(em) ;
2 Set A0 := {{v}|v ∈ V (G)} and y := 0;
3 for i = 1 . . . m do
4 if there are sets A1

i , A2
i ∈ Ai−1 with ei ∩ A1

i ̸= ∅, ei ∩ A2
i ̸= ∅ and A1

i ̸= A2
i then

5 y(ei) := min{1 + u(ei), |A1
i | − b(A1

i ) − y(E(A1
i )) + |A2

i | − b(A2
i ) − y(E(A2

i ))};
6 if y(ei) > 0 then
7 Ai := (Ai−1 \ {A1

i , A2
i }) ∪ {A1

i ∪ A2
i };

8 else
9 Ai := Ai−1

▶ Lemma 3. Let x, y be the solution computed by Algorithm 1. If a set A ∈ A from the
algorithm is not tight, then all the edges in its induced subgraph Gx[A] of the support graph
are tight.

Proof. Assume this were false. Take a minimal counterexample A. As the claim certainly
holds for sets consisting only of one vertex (Gx[A] has no edges if |A| = 1), we know that
|A| ≥ 2. We can write A = A1

i ∪ A2
i with their associated edge ei (for some i). We know
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that ei has to be tight by line 5, as A is not tight. Otherwise, the algorithm could have
increased y(ei) further. At least one of the subsets A1

i and A2
i of A is not tight, otherwise, A

were tight. W.l.o.g we may assume that A1
i is not tight. Then all of its edges are tight, by

minimality of A. However, then we know that x(E(G[A1
i ])) = |A1

i | − 1. Thus,

|A1
i | − b(A1

i ) − y(E(G[A1
i ])) = |A1

i | − b(A1
i ) − x(E(G[A1

i ])) − ux(E(G[A1
i ]))

= |A1
i | − b(A1

i ) − (|A1
i | − 1) − ux(E(G[A1

i ])) = 1 − (ux(E(G[A1
i ]) + b(A1

i )) < 1 + u(ei).

This implies that A1
i does not have enough slack to make ei tight. Thus A2

i cannot be tight.
As A contains an edge that is not tight in its support graph, this edge must be contained in
A2

i . We can conclude that A2
i is a smaller counterexample. This contradicts the minimality

of A. ◀

▶ Corollary 4. Let ei ∈ E, A1
i and A2

i fulfill the conditions in line 4 of Algorithm 1. If ei is
tight then neither A1

i , nor A2
i are tight.

▶ Theorem 5. Algorithm 1 works correctly and has running time O(m log n).

Proof. The running time is dominated by sorting. Due to space constraints, we will only
give the ideas of the correctness proof. The details are contained in the full version [11] of
this paper.

We first check that the algorithm outputs a solution to our LP. The minimum in line 5
guarantees that inequality (8) is fulfilled. We have already seen that the support graph of our
solution is a forest, which means that inequality (6) is also satisfied. It remains to check that
inequality (7) holds. Each A ∈ A fulfills the inequality, when it is introduced by line 5. Since
A is a laminar family, we never change the value of y(E(G[A])) after A has been introduced,
so we already know that all A ∈ A satisfy inequality (7) when the algorithm is finished.

We define the slack of a set A ⊆ V as the slack of inequality 7 for that set and denote it
by σ(A) := |A| − b(A) − y(E(G[A])).

Then we can prove that when the algorithm introduces a new set A, it has no more slack
than each of the joined subsets.

▷ Claim 6. Let A1
i , A2

i , A ∈ A such that A = A1
i ∪ A2

i . We claim that σ(A) ≤ σ(Aj
i ) for

j = 1, 2.

The idea to prove this, is to show that σ(A) = σ(A1
i ) + σ(A2

i ) − y(ei). Then we use Corollary
4 and Lemma 3 to derive that max{σ(A1

i ), σ(A2
i )} ≤ y(ei), which proves the claim. As a

next step, we extend Claim 6 to all subsets of A.

▷ Claim 7. Let A ∈ A. We claim that each subset B ⊆ A has slack σ(B) ≥ σ(A).

We prove this by induction on the number of iterations. The main idea here is to first split
B into subsets B1, B2 of the two sets A1

i , A2
i that have been merged to form A. We show

that σ(B) ≥ σ(B1) + σ(B2) − y(ei). Then we apply our induction hypothesis to both sets
and use the equality from Claim 6 to prove Claim 7.

Finally, we observe that for B1 ⊆ V and B2 ⊆ V from different connected components
of Gx, we have σ(B1 ∪ B2) = σ(B1) + σ(B2). This means that we can split any subset of
the vertices B ⊆ V into subsets of the toplevel sets of A, which are exactly the connected
components of Gx. Then we can use Claim 7 on each of the subsets to see that they have
nonnegative slack. The observation implies that also B has nonnegative slack. So inequality 7
is always satisfied.

SWAT 2024



39:6 A Fast 3-Approximation for the Capacitated Tree Cover Problem with Edge Loads

Next we want to prove optimality. Assume that y were not optimum. Let y∗ be an
optimum solution that fulfills the following: It maximizes the index of the first edge in the
order of the algorithm in which y and y∗ differ. Among those it minimizes the difference in
this edge. Let this index be denoted by k. As the algorithm always sets the values to the
maximum that is possible without violating an inequality, we know that y∗(ek) < y(ek).

By the ordering of the algorithm, we know that

c(ek) − γ

1 + u(ek) ≤ c(ei) − γ

1 + u(ei)

for all i > k. Our goal will be, to find an edge ei with i > k such that we can increase y∗(ek)
and avoid violating constraints or increasing the objective by decreasing y∗(ei) in x∗, y∗.

Let Gk be the connected component of ek in the subgraph of G that contains only ek

and the active edges with index less than k. Define

Γ := {ei ∈ E(Gx∗) | i > k and ei incident to v ∈ V (Gk)}.

Note that Γ ̸= ∅, because otherwise, we could increase y∗(ek) to y(ek) without violating any
constraints. Since c(e) ≤ γ, this would not increase the objective value.

We will prove that all tight sets containing the vertices of Gk must have a common edge
in Γ.

▷ Claim 8. Let T := {B ⊆ V | V (Gk) ⊆ B and B tight} be the family of tight sets of x∗, y∗

containing the vertices of Gk. We claim that

Γ ∩
⋂

B∈T
E(Gx∗ [B]) ̸= ∅.

If there is an edge in Γ between vertices of Gk, then this certainly holds. Otherwise, we
know that V (Gk) is not tight, because the algorithm was able to set y(ek) > y∗(ek).

Let S := {S1, . . . , Sp} ⊆ T be a set of p ≥ 2 tight sets containing the vertices of Gk

and set Z :=
⋃

Si∈S Si. First, we observe that Z is tight as well. Then, we will prove our
claim by induction on p. The key idea is to use the tightness of Z and the Si to decompose
y∗(E(G[Z])) into an alternating sum of y∗ on intersections of the Si and then reassemble
y∗(E(G[Z])) from the parts (see [11]). Then, we see that there must be slack on the cut
defined by Gk in the intersection of all Si. Thus there must be an edge in the cut, which
proves our claim.

Finally, we can pick an edge f ∈ Γ that is contained in all tight sets that contain the
vertices of Gk. If u(f) ≤ u(ek), we know that 1

1+u(f) ≥ 1
1+u(ek) . So we can decrease y∗(f)

and increase y∗(ek) by the same amount without violating any constraints. By the ordering
of our algorithm, this can not increase the objective value. This would contradict our choice
of y∗. Hence u(f) > u(ek). But then c(f) ≥ c(ek) and we could decrease x∗(f) and increase
x∗(ek) without increasing the objective value. Furthermore, we also do not create a violation
this way, because ϵ · (1 + u(f)) > ϵ · (1 + u(ek)) for ϵ > 0. This contradicts our choice of y∗

and concludes the proof. ◀

The support graph of the LP solution computed by Algorithm 1 is always a forest. Thus,
Theorem 5 implies the following:

▶ Corollary 9. There is always a solution x, y to both LPs, such that the support graph Gx

is a forest.
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5 The Rounding Strategy

Now we want to round the LP solution, computed by Algorithm 1, to get an integral solution.
We do so by rounding up edges e with x(e) ≥ α, for some 0 ≤ α ≤ 1 to be determined
later. All other edges are rounded down. The forest arising from this rounding step may
contain components T with b(V (T )) + u(E(T )) > 1. These large components will be split
into at most 2 · (b(V (T )) + u(E(T ))) legal components. We achieve this by using a splitting
technique that is often used for these cases, for example in [10] and also in [13]. During
splitting, we need to shortcut some paths. This is possible, because G is a complete graph
and u and c are metric.

The splitting technique traverses the trees in a bottom up fashion (for an arbitrary root).
At each node, it approximately solves a bin packing problem to split off components that are
too heavy. However, for the analysis, we only require the result that it is possible to split the
trees into 2 · (b(V (T )) + u(E(T ))) legal components.

▶ Lemma 10 (Maßberg and Vygen 2008 [10]). If G is a complete graph and u and c are
metric, there is a linear time algorithm that splits a tree with total load b(V (T ))+u(E(T )) > 1
into at most 2 · (b(V (T )) + u(E(T ))) legal trees and does not increase the total edge cost.

In Section 5.1, we will study the LP solution, that we get from Algorithm 1. We will
exploit the structure of this solution in our analysis. Then we will bound the number of
components that we get after rounding and splitting in Section 5. We do this by providing an
upper bound on the value of each edge after rounding and splitting. Finally, in Section 5.2.4,
we show that α := 2

3 will lead to an approximation factor of 3 independent of the edge loads.

5.1 The general structure of the LP solution
Let x, y be a solution found by the algorithm. Recall that for edges e ∈ E(G), ux(e) :=
x(e) · u(e) was the fractional load of the edge e in our solution. Note that then it holds for
each set A ⊆ V (G) and edge e ∈ E(G) that

y(E(G[A])) = x(E(G[A])) + ux(E(G[A])) and y(e) = x(e) + x(e)u(e).

Without loss of generality, we can assume that 0 < x(e) < 1 for all edges and Gx does
not contain singletons. We simply remove all edges with x(e) = 0. Then we contract all
inclusionwise maximal sets A ∈ A such that all edges in their respective induced support
graph are tight and set the load of the new vertex to b(A) +ux(E(G[A])). Corollary 4 implies
that we contracted all tight edges this way. These operations only make the approximation
guarantee worse, because these components will have the same value in the rounded solution
as in the LP-solution. In the remaining graph the following assertions hold:
1. |{v}| − b({v}) − y(E(G[{v}])) = 1 − b(v) ≤ 1 for all v ∈ V .
2. All A ∈ A containing more than 1 vertex are tight, by Lemma 3.
Now, we will take a closer look at the sets Aj

i for i = 1, . . . , m and j = 1, 2. In the following
analysis, we will assume without loss of generality that |A1

i | ≤ |A2
i |. By the above assertions,

we have for an edge ei and the two associated sets A1
i , A2

i , either
(i) both A1

i and A2
i contain only one vertex and one of them is not tight, or

(ii) A1
i contains only one vertex and is not tight and A2

i contains more vertices and is tight
To make the following easier to read, we add the following definitions

▶ Definition 11. Edges that fulfill condition (i) are called seed edges and edges that fulfill
condition (ii) are called extension edges. For each edge ei we denote by vei the unique vertex
in set A1

i .

SWAT 2024



39:8 A Fast 3-Approximation for the Capacitated Tree Cover Problem with Edge Loads

Note that every edge ei is either a seed edge or an extension edge, but this only holds after
contracting the sets of tight edges as described above.

Thus, whenever ei is a seed edge, the algorithm sets

y(ei) := |A1
i | − b(A1

i ) − y(E(G[A1
i ])) + |A2

i | − b(A2
i ) − y(E(G[A2

i ])) = 1 − b(A1
i ) + 1 − b(A2

i ),

where we use the fact that E(G[Aj
i ]) = ∅ for j = 1, 2. Since both A1

i and A2
i were singletons,

we can conclude

x(ei) + u(ei)x(ei) = y(ei) = 2 − b(A1
i ∪ A2

i ).

Similarly, for extension edges, we get

x(ei) + u(ei)x(ei) = 1 − b(A1
i ).

In the analysis of the rounding step, we need some further observations:

▶ Observation 12. Let T be a connected component in Gx. Then
T is a tree.
If |V (T )| > 1, then T contains exactly one seed edge and all other edges are extension
edges.
If T contains a seed edge ei, then i = min

ej∈E(T )
j or in other words, ei was the first edge of

T considered in the algorithm.
A proof of these observations is not difficult, but deferred to the full version of this paper for
space reasons.

5.2 Analyzing the rounding step
First note that by our rounding procedure, the sum of the edge-weights can increase by
at most 1

α . So for the edge-weights it is sufficient to make sure that α ≥ 1
2 and the main

difficulty is to bound the number of components.
Before we choose α, let us estimate how many components we get after rounding and

splitting. To do this, we take a look at the connected components after rounding. Let T be
such a component. We denote by comp(T ) the number of connected components we need to
split T into.

Let C∗ be the set of components before splitting and C be the set of components after
splitting. Our goal here is to estimate |C| by a contribution est(e) of each edge e ∈ E(G),
such that the number of components after splitting is

|C| =
∑

T ∈C∗

comp(T ) ≤
∑

T ∈C∗

|V (T )| −
∑

e∈E(G)

est(e) = |V (G)| −
∑

e∈E(G)

est(e)

There are three cases:
1. singletons: T consists of only one vertex.
2. good trees: T consists of more than one vertex and u(E(T )) + b(V (T )) ≤ 1
3. large trees: T consists of more than one vertex and u(E(T )) + b(V (T )) > 1

Case 1. T is a singleton. Its number of components is

comp(T ) := 1 = |V (T )| − 0.
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Case 2. T is a good tree. So we can keep this component for a solution to the problem.
The number of components is

comp(T ) := 1 = |V (T )| − (|V (T )| − 1) ≤ |V (T )| −
∑

e∈E(T )

[1 − 2b(ve) − 2u(e)] .

For all e ∈ E(T ), we set est(e) := 1 − 2b(ve) − 2u(e).

Case 3. T is a large tree. So we have to split this component to get a feasible solution.
Denote by e′ the edge in T with the lowest index according to the sorting of the algorithm.
Let v̄ ̸= ve′ be incident to e′. Note that this does not have to be a seed edge, as the
components after rounding do not necessarily contain a seed edge. We rewrite the number of
components:

comp(T ) ≤ 2 · (u(E(T )) + b(V (T ))) = |V (T )| − [2 − 2b(ve′) − 2u(e′) − 2b(v̄)]

−
∑

e′ ̸=e∈E(T )

[1 − 2b(ve) − 2u(e)] .

If T contains a seed edge, then this edge is e′. This means that the number of components
can be estimated by edges in T . We set est(e′) := 2 − 2b(ve′) − 2u(e′) − 2b(v̄) and est(e) :=
1 − 2b(ve) − 2u(e) for all e ∈ E(T ) \ {e′}.

Otherwise T only consists of extension edges. In this case, we write

[2 − 2b(ve′) − 2u(e′) − 2b(v̄)] +
∑

e′ ̸=e∈E(T )

[1 − 2b(ve) − 2u(e)]

= [1 − 2b(v̄)] +
∑

e∈E(T )

[1 − 2b(ve) − 2u(e)] .

Then, we set est(e) := 1 − 2b(ve) − 2u(e) for all e ∈ E(T ). However, in this case we need
to account for the additional 1 − 2b(v̄). To do so, we call the edge incident to v̄ that is not
contained in T a filler edge. For all filler edges {v, w} = e ∈ E(G), we w.l.o.g. assume that e

is a filler edge for the component that contains v and set

est(e) :=
{

2 − (b(v) + b(w)), if e is the filler edge of two components
1 − b(v), otherwise.

For all edges not considered before, we set est(e) := 0.
Now we have that

|C| ≤ |V (G)| −
∑

e∈E(G)

est(e)

Our next goal is to find a lower bound on
∑

e∈E(G)
est(e). Here we will leave out most of the

computations, due to space restrictions, but they are contained in the full version [11] of this
paper.

5.2.1 Lower bounds for the extension edges
We start with the simpler case of extension edges. An overview over the cases in which they
can appear is shown in Figure 1. Let e be an extension edge. If it appears inside a good tree
or a large tree. Then

est(e) = 2x(e) − 1 − 2u(e)(1 − x(e)).
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(a) Inside a (good or large) tree. (b) Leading towards a good tree
or a singleton.

(c) As a filler edge leading to a
large tree.

Figure 1 The cases in which extension edges can occur. Dashed edges have been rounded down,
while solid ones have been rounded up. Thick edges belong to a large tree. For each edge e the
arrowhead points towards ve.

If it is incident to a singleton or a good tree, we can estimate

est(e) = 0 ≥ 2x(e) − 1 − (2x(e) − 1).

If it is a filler edge, we can estimate

est(e) = 1 − 2b(ve) = 1 − 2(1 − x(e) − x(e)u(e)) = 2x(e) − 1 + x(e)u(e) ≥ 2x(e) − 1.

5.2.2 Lower bounds for the seed edges

Next we consider seed edges. An overview over the cases in which they can appear is shown
in Figure 2. Let e be a seed edge. e = {ve, v̄} can not be contained in a singleton. It can
also not be contained in a good tree, as we have

1 + u(e) > y(e) = 1 − b(ve) + 1 − b(v̄) ⇔ b(ve) + b(v̄) + u(e) > 1.

So if it is contained in a connected component, then this component is a large tree and it
was the first edge considered in this component. We estimate

est(e) = 2x(e) − 2 − 2u(e)(1 − x(e)).

Otherwise both endpoints are incident to different components. This means that it was
rounded down. If these components are singletons or good trees, we can estimate

est(e) = 0 ≥ 2x(e) − 2.

If both are large trees, then e is a filler edge for both and we have

est(e) = 2−2(b(ve)+b(v̄)) = 2−2(2−x(e)−x(e)u(e)) = 2x(e)−2+2u(e)x(e) ≥ 2x(e)−2.

The last case is that e is incident to one large tree and a good tree or a singleton. This
means it is a filler edge for only one endpoint. W.l.o.g. let this endpoint be ve. We set
y1 := (1 + u(e)), x1 := 1 − b(ve) and y2 := (1 + u(e)), x2 := 1 − b(v̄). For a later estimate
note that then x2 ≤ α as x(e) ≤ α. We can estimate

est(e) ≥ 2x(e) − 2 − (2x2 − 1).

Now almost all estimates are of the same form.



B. Rockel-Wolff 39:11

(a) Inside a large tree. (b) Incident only to
good trees or single-
tons.

(c) As a filler edge for
two large trees.

(d) As a filler edge for
one large tree and incid-
ent to a good tree or a
singleton.

Figure 2 The cases in which seed edges can occur. Dashed edges have been rounded down, while
solid ones have been rounded up. Thick edges belong to a large tree. For each extension edge e the
arrowhead points towards ve. Seed edges have arrowheads on both ends.

5.2.3 Summary of the estimates
Before we choose α and derive the approximation guarantee, let us summarize the derived
estimates.

est(e) ≥
seed edges

2x(e) − 2 − 0 incident to good trees or singletons, filler for both ends
2x(e) − 2 − (2x2 − 1) filler for one end
2x(e) − 2 − 2u(e)(1 − x(e)) in a large tree

extension edges
2x(e) − 1 − 0 filler edge
2x(e) − 1 − (2x(e) − 1) incident to good tree or singleton
2x(e) − 1 − 2u(e)(1 − x(e)) inside a component

The base part, which is left in black, now sums up to at most 2x(E(G))−|V (G)|, because there
is exactly one seed edge for every component that is not a singleton. So it remains to estimate
the parts marked in blue. Our goal will be to estimate this part in terms of |V (G)|−x(E(G)).
That is, find a β, such that we have “sum of blue parts” ≤ β(|V (G)| − x(E(G)). We will
achieve this by first estimating for each {ve, w} ∈ E(Gx∗) that

“blue part” ≤

{
β(b(ve) + b(w) + x(e)u(e)) for seed edges
β(b(ve) + x(e)u(e)) for extension edges.

Then, we can use that to sum up the estimates of the differences

“sum of blue parts” ≤ β(b(V (G)) + u(x(E(G)))) ≤ β(|V (G)| − x(E(G))),

where the last inequality follows directly from the LP-inequalities.
In total, we are left with

|C| ≤ |V (G)| −
∑

e∈E(G)

est(e)

≤ |V (G)| − (2x(E(G)) − |V (G)| − β(|V (G)| − x(E(G)))) = (2 + β)(|V (G)| − x(E(G)))
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For some special instances, we can get approximation ratios that are better than 3, but
in general we can not be better than a factor 3 with this technique. We will show this in the
last section.

5.2.4 A general approximation guarantee
For a general approximation guarantee, we will choose α := 2

3 to achieve a 3-approximation
(so β = 1).

We start with the edges {ve, w} = e with a “blue part” of 0: Seed edges that are incident
to good trees or singletons, filler edges for both ends or extension edges that are filler edges.
Here, we directly see that

0 ≤ b(ve) + b(w) + x(e)u(e) for seed or 0 ≤ b(ve) + x(e)u(e) for extension edges.

Next, we cover extension edges that are incident to good trees or singletons. They have been
rounded down as well, so we have x(e) ≤ 2

3 . This implies

2x(e) − 1 ≤ 1
3 ≤ 1 − x(e) = b(ve) + x(e)u(e).

Analogously, for seed edges that are filler edges for one end, we get

2x2 − 1 ≤ b(ve) + b(w) + x(e)u(e).

Finally, we cover the edges that have been rounded up. These are seed edges in a large tree
or extension edges inside a component. Here we have x(e) ≥ 2

3 ≥ 2(1 − x(e)). So we can get

2u(e)(1 − x(e)) ≤ x(e)u(e)

and again from this 2u(e)(1−x(e)) ≤ b(ve)+b(w)+x(e)u(e) for seed edges or 2u(e)(1−x(e)) ≤
b(ve) + x(e)u(e) for extension edges.

6 The integrality gap of the LP

We will now prove that the integrality gap of the LP is 3. This means that using the approach
discussed here, we can not achieve a better approximation guarantee.

▶ Theorem 13. The integrality gap of the LP-relaxation given in Section 3 is at least 3.

Proof. For an instance I denote by OPT(I) the value of an optimum (integral) solution
and by OPTLP(I) the value of an optimum LP-solution. We will provide a sequence Ik of
instances, such that lim

k→∞
OPT(Ik)

OPTLP(Ik) = 3.
Let 0 < ϵ < 1

2 . For some k ≥ 3, let G be a k-star. That is a graph with k + 1 vertices
{C} ∪ {v1, . . . , vk} and edges {{C, vi} | i = 1, . . . , k}. We set c ≡ 0 and γ := 1. For all edges
e ∈ E(G), we set u(e) := 1

2 . Finally, we set b(C) := 1 − ϵ and b(vi) := ϵ for i = 1, . . . , k.
In order to get to a complete graph, we extend G, by adding edges between all pairs vi, vj

for i < j and set c({vi, vj}) = 0 and u({vi, vj}) := 1 − ϵ. Clearly, the resulting u and c are
metric. We will denote this instance by Ik,ϵ. A depiction of Ik,ϵ is shown in Figure 3.

In an optimum integral solution to this instance, no edge can be used. This means that
OPT(Ik,ϵ) = k + 1. Now we solve the LP using the algorithm from section 2, showing that

OPTLP(Ik,ϵ) = |V | −
∑

i=1,...,k

x(ei) = k + 1 − 2
3 − (k − 1)

(
2
3 − ϵ

3

)
= k

3 + (k − 1)ϵ
3 + 1.
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v1
ϵ

v2ϵ
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1
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1
2

1
2

1
2

1
2

1
2
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Figure 3 A picture showing the instance described in the proof of Theorem 13. The solid edges
belong to the k-star. Edge loads are marked in blue and node loads are marked in green. The
dashed edge is an example for the edges added to complete the graph.

Setting Ik := I
k,

1
k2

, we get

lim
k→∞

OPT(Ik)
OPTLP(Ik) = lim

k→∞

k + 1
k
3 + (k−1)

3k2 + 1
= 3. ◀

Together with the upper bound of 3 given by the analysis of the algorithm, we can conclude:

▶ Corollary 14. The integrality gap of the LP is 3.
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