
19th Scandinavian Symposium on
Algorithm Theory

SWAT 2024, June 12–14, 2024, Helsinki, Finland

Edited by

Hans L. Bodlaender

LIPIcs – Vo l . 294 – SWAT 2024 www.dagstuh l .de/ l ip i c s

Editors

Hans L. Bodlaender
Utrecht University, The Netherlands
h.l.bodlaender@uu.nl

ACM Classification 2012
Theory of computation → Design and analysis of algorithms

ISBN 978-3-95977-318-8

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-318-8.

Publication date
June, 2024

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.SWAT.2024.0

ISBN 978-3-95977-318-8 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-9297-3330
mailto:h.l.bodlaender@uu.nl
https://www.dagstuhl.de/dagpub/978-3-95977-318-8
https://www.dagstuhl.de/dagpub/978-3-95977-318-8
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.SWAT.2024.0
https://www.dagstuhl.de/dagpub/978-3-95977-318-8
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University, Brno, CZ)
Meena Mahajan (Chair, Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)
Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

SWAT 2024

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Hans L. Bodlaender . 0:ix

List of Authors
. 0:xi

Regular Papers

Eliminating Crossings in Ordered Graphs
Akanksha Agrawal, Sergio Cabello, Michael Kaufmann, Saket Saurabh,
Roohani Sharma, Yushi Uno, and Alexander Wolff . 1:1–1:19

Local Spanners Revisited
Stav Ashur and Sariel Har-Peled . 2:1–2:15

Pairwise Rearrangement is Fixed-Parameter Tractable in the Single Cut-and-Join
Model

Lora Bailey, Heather Smith Blake, Garner Cochran, Nathan Fox, Michael Levet,
Reem Mahmoud, Inne Singgih, Grace Stadnyk, and Alexander Wiedemann 3:1–3:16

Succinct Data Structure for Chordal Graphs with Bounded Vertex Leafage
Girish Balakrishnan, Sankardeep Chakraborty, N. S. Narayanaswamy, and
Kunihiko Sadakane . 4:1–4:16

Recognition and Proper Coloring of Unit Segment Intersection Graphs
Robert D. Barish and Tetsuo Shibuya . 5:1–5:19

Destroying Densest Subgraphs Is Hard
Cristina Bazgan, André Nichterlein, and Sofia Vazquez Alferez 6:1–6:17

The Simultaneous Interval Number: A New Width Parameter that Measures the
Similarity to Interval Graphs

Jesse Beisegel, Nina Chiarelli, Ekkehard Köhler, Martin Milanič, Peter Muršič,
and Robert Scheffler . 7:1–7:20

Correlation Clustering with Vertex Splitting
Matthias Bentert, Alex Crane, Pål Grønås Drange, Felix Reidl, and
Blair D. Sullivan . 8:1–8:17

Daisy Bloom Filters
Ioana O. Bercea, Jakob Bæk Tejs Houen, and Rasmus Pagh . 9:1–9:19

Online Bin Covering with Frequency Predictions
Magnus Berg and Shahin Kamali . 10:1–10:17

Subexponential Algorithms in Geometric Graphs via the Subquadratic Grid
Minor Property: The Role of Local Radius

Gaétan Berthe, Marin Bougeret, Daniel Gonçalves, and Jean-Florent Raymond . . 11:1–11:18

Arboricity-Dependent Algorithms for Edge Coloring
Sayan Bhattacharya, Martín Costa, Nadav Panski, and Shay Solomon 12:1–12:15

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

On the Independence Number of 1-Planar Graphs
Therese Biedl, Prosenjit Bose, and Babak Miraftab . 13:1–13:13

Size-Constrained Weighted Ancestors with Applications
Philip Bille, Yakov Nekrich, and Solon P. Pissis . 14:1–14:12

Range Reporting for Time Series via Rectangle Stabbing
Lotte Blank and Anne Driemel . 15:1–15:15

On the Online Weighted Non-Crossing Matching Problem
Joan Boyar, Shahin Kamali, Kim S. Larsen, Ali Mohammad Lavasani,
Yaqiao Li, and Denis Pankratov . 16:1–16:19

Deterministic Cache-Oblivious Funnelselect
Gerth Stølting Brodal and Sebastian Wild . 17:1–17:12

Dynamic L-Budget Clustering of Curves
Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Lukas Plätz,
Lea Thiel, and Sampson Wong . 18:1–18:17

Fixed-Parameter Tractable Certified Algorithms for Covering and Dominating in
Planar Graphs and Beyond

Benjamin Merlin Bumpus, Bart M. P. Jansen, and Jaime Venne 19:1–19:16

Sparsity-Parameterised Dynamic Edge Colouring
Aleksander B. G. Christiansen, Eva Rotenberg, and Juliette Vlieghe 20:1–20:18

Approximating Minimum Sum Coloring with Bundles
Seyed Parsa Darbouy and Zachary Friggstad . 21:1–21:14

Stability in Graphs with Matroid Constraints
Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Saket Saurabh 22:1–22:16

A Logarithmic Integrality Gap for Generalizations of Quasi-Bipartite Instances
of Directed Steiner Tree

Zachary Friggstad and Hao Sun . 23:1–23:15

Optimizing Symbol Visibility Through Displacement
Bernd Gärtner, Vishwas Kalani, Meghana M. Reddy, Wouter Meulemans,
Bettina Speckmann, and Miloš Stojaković . 24:1–24:16

Delaunay Triangulations in the Hilbert Metric
Auguste H. Gezalyan, Soo H. Kim, Carlos Lopez, Daniel Skora,
Zofia Stefankovic, and David M. Mount . 25:1–25:17

No-Dimensional Tverberg Partitions Revisited
Sariel Har-Peled and Eliot W. Robson . 26:1–26:14

Optimizing Visibility-Based Search in Polygonal Domains
Kien C. Huynh, Joseph S. B. Mitchell, Linh Nguyen, and Valentin Polishchuk . . . 27:1–27:16

Search-Space Reduction via Essential Vertices Revisited: Vertex Multicut and
Cograph Deletion

Bart M. P. Jansen and Ruben F. A. Verhaegh . 28:1–28:17

Edge Multiway Cut and Node Multiway Cut Are Hard for Planar Subcubic Graphs
Matthew Johnson, Barnaby Martin, Sukanya Pandey, Daniël Paulusma,
Siani Smith, and Erik Jan van Leeuwen . 29:1–29:17

Contents 0:vii

Parameterized Complexity of Submodular Minimization Under Uncertainty
Naonori Kakimura and Ildikó Schlotter . 30:1–30:17

Optimal In-Place Compaction of Sliding Cubes
Irina Kostitsyna, Tim Ophelders, Irene Parada, Tom Peters, Willem Sonke,
and Bettina Speckmann . 31:1–31:14

Canonizing Graphs of Bounded Rank-Width in Parallel via Weisfeiler–Leman
Michael Levet, Puck Rombach, and Nicholas Sieger . 32:1–32:18

Sparse Cuts in Hypergraphs from Random Walks on Simplicial Complexes
Anand Louis, Rameesh Paul, and Arka Ray . 33:1–33:15

Reconfiguration Algorithms for Cubic Modular Robots with Realistic Movement
Constraints

MIT–NASA Space Robots Team, Josh Brunner, Kenneth C. Cheung,
Erik D. Demaine, Jenny Diomidova, Christine Gregg, Della H. Hendrickson,
and Irina Kostitsyna . 34:1–34:18

Solving a Family Of Multivariate Optimization and Decision Problems on Classes
of Bounded Expansion

Daniel Mock and Peter Rossmanith . 35:1–35:18

Path-Reporting Distance Oracles with Linear Size
Ofer Neiman and Idan Shabat . 36:1–36:16

Toward Grünbaum’s Conjecture
Christian Ortlieb and Jens M. Schmidt . 37:1–37:17

Finding Induced Subgraphs from Graphs with Small Mim-Width
Yota Otachi, Akira Suzuki, and Yuma Tamura . 38:1–38:16

A Fast 3-Approximation for the Capacitated Tree Cover Problem with Edge Loads
Benjamin Rockel-Wolff . 39:1–39:14

Approximation Algorithms for the Airport and Railway Problem
Mohammad R. Salavatipour and Lijiangnan Tian . 40:1–40:16

SWAT 2024

Preface

This volume contains the proceedings of the 19th Scandinavian Symposium on Algorithm
Theorym, which takes place from June 12–14, 2024 in Helsinki, Finland. Since 1988, the
Scandinavian Symposium on Algorithm Theory has been held every two years. The former
name of the conference was the Scandinavian Workshop on Algorithm Theory, and the
meetings with the former and current name use the acronym SWAT. SWAT alternates with
sister conference WADS, the Algorithms and Data Structures Symposium. SWAT is usually
hosted in a Nordic country, and WADS is usually hosted in Canada.

In total, 102 papers were submitted to SWAT 2024. The papers were assigned to at least
three members of the Program Committee. Each paper received at least three reviews, by
members of the Program Committee or external reviewers. The Program Committee selected
40 papers for presentation at the conference and publication in these proceedings. This
selection was based on originality, quality, and relevance to the topic of the conference. The
average quality of the submitted papers was very high, and even with the larger number of
accepted papers in the program of SWAT 2024, many excellent papers could not be selected.

In addition to the selected papers, SWAT 2024 has three invited lectures by distinguished
scientists:

Karen Aardal (Technical University Delft, the Netherlands): Machine-learning augmented
enumeration for integer optimization, and beyond.
Greg Bodwin (University of Michigan, US): Turán-type problems in Theoretical Computer
Science.
Michał Pilipczuk (University of Warsaw, Poland): Well-structured graphs through the
lens of logic.

Many thanks are due to the members of the Program Committee and all subreviewers for
their hard work to evaluate and discuss the submitted papers. The members of the Program
Committee were:

Anders Aamand, MIT, US,
Ahmad Biniaz, University of Windsor, Canada,
Hans Bodlaender, Utrecht University, the Netherlands (chair),
Flavia Bonomo, University of Buenos Aires, Argentina,
Kevin Buchin, Technical University Dortmund, Germany,
Pål Grønås Drange, University of Bergen, Norway,
Franziska Eberle, Technische Universität Berlin, Germany,
Klim Efremenko, Ben Gurion University, Israel,
Gramoz Goranci, University of Vienna, Austria,
Kazuo Iwama, National Tsing Hua University, Taiwan,
Matthew Johnson, Durham University, UK,
Matthew Katz, Ben Gurion University, Israel,
Jan Kratochvíl, Charles University, Czech Republic,
Stefan Kratsch, Humboldt-Universität zu Berlin, Germany,
Łukasz Kowalik, University of Warsaw, Poland,
Anil Maheshwari, Carleton University, Canada,
George B. Mertzios, Durham University, UK,
Yoshio Okamoto, The University of Electro-Communications, Japan,
Yota Otachi, Nagoya University, Japan,
Sang-il Oum, Institute for Basic Science / KAIST, Korea,

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Preface

Sharath Raghvendra, NCSU, US,
Laura Sanita, Bocconi University of Milan, Italy,
Subhash Suri, University of California, Santa Barbara, US,
Ioan Todinca, University of Orleans, France,
Jara Uitto, Aalto University, Finland,
Tandy Warnow, University of Illinois at Urbana - Champaign, US,
Prudence Wong, University of Liverpool, UK,
Meirav Zehavi, Ben Gurion University, Israel.

The organization of SWAT 2024 was done by the Local Organization committee, consisting of:
Jara Uitto, Aalto University, Finland,
Mikko Koivisto, University of Helsinki, Finland,
Sándor Kisfaludi-Bak, Aalto University, Finland, and
Alexandru Paler, Aalto University, Finland.

The series of SWAT conferences is guided by the SWAT Steering Committee. The members
of the Steering Committee are:

Per Austrin, KTH, Sweden (chair),
Fedor Fomin, University of Bergen, Norway,
Inge Li Gørtz, Technical University of Denmark, Denmark,
Magnús Halldórsson, Reykjavik University, Iceland,
Jukka Suomela, Aalto University, Finland.

I want to thank all authors who submitted a manuscript to the conference, all members
of the Program Committee and all subreferees for all the work in the evaluation and selection
of papers, the Local Organizing Committee for their great efforts to organize the conference
with all its different aspects, the SC chair Per Austrin for helpful advice and support, and the
three invited speakers Karen Aardal, Greg Bodwin and Michał Pilipczuk for their willingness
to give an invited lecture at SWAT 2024.

Hans Bodlaender, April 2024

List of Authors

Akanksha Agrawal (1)
Indian Institute of Technology Madras,
Chennai, India

Stav Ashur (2)
Department of Computer Science,
University of Illinois, Urbana, IL, USA

Lora Bailey (3)
Department of Mathematics, Grand Valley State
University, Allendale, MI, USA

Girish Balakrishnan (4)
Indian Institute of Technology Madras,
Chennai, India

Robert D. Barish (5)
Division of Medical Data Informatics, Human
Genome Center, Institute of Medical Science,
University of Tokyo, Japan

Cristina Bazgan (6)
Université Paris-Dauphine, PSL Research
University, CNRS, UMR 7243, LAMSADE,
Paris, France

Jesse Beisegel (7)
Institute of Mathematics, Brandenburg
University of Technology, Cottbus, Germany

Matthias Bentert (8)
University of Bergen, Norway

Ioana O. Bercea (9)
KTH Royal Institute of Technology,
Stockholm, Sweden

Magnus Berg (10)
University of Southern Denmark,
Odense, Denmark

Gaétan Berthe (11)
LIRMM, Université de Montpellier, CNRS,
Montpellier, France

Sayan Bhattacharya (12)
University of Warwick, UK

Therese Biedl (13)
David R. Cheriton School of Computer Science,
University of Waterloo, Canada

Philip Bille (14)
Technical University of Denmark,
Lyngby, Denmark

Heather Smith Blake (3)
Department of Mathematics and Computer
Science, Davidson College, NC, USA

Lotte Blank (15)
University of Bonn, Germany

Prosenjit Bose (13)
School of Computer Science, Carleton University,
Ottawa, Canada

Marin Bougeret (11)
LIRMM, Université de Montpellier, CNRS,
Montpellier, France

Joan Boyar (16)
Department of Mathematics and Computer
Science, University of Southern Denmark,
Odense, Denmark

Gerth Stølting Brodal (17)
Aarhus University, Denmark

Josh Brunner (34)
Massachusetts Institute of Technology,
Cambridge, MA, USA

Kevin Buchin (18)
Faculty of Computer Science,
TU Dortmund University, Germany

Maike Buchin (18)
Faculty of Computer Science,
Ruhr University Bochum, Germany

Benjamin Merlin Bumpus (19)
University of Florida, Gainesville, FL, USA

Sergio Cabello (1)
Faculty of Mathematics and Physics, University
of Ljubljana, Slovenia;
Institute of Mathematics, Physics and
Mechanics, Ljubljana, Slovenia

Sankardeep Chakraborty (4)
University of Tokyo, Japan

Kenneth C. Cheung (34)
NASA Ames Research Center,
Moffett Field, CA, USA

Nina Chiarelli (7)
FAMNIT and IAM, University of Primorska,
Koper, Slovenia

Aleksander B. G. Christiansen (20)
Technical University of Denmark,
Lyngby, Denmark

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0656-7572
https://doi.org/10.4230/LIPIcs.SWAT.2024.1
https://orcid.org/0000-0003-0533-8978
https://doi.org/10.4230/LIPIcs.SWAT.2024.2
https://doi.org/10.4230/LIPIcs.SWAT.2024.3
https://doi.org/10.4230/LIPIcs.SWAT.2024.4
https://orcid.org/0000-0001-5207-0375
https://doi.org/10.4230/LIPIcs.SWAT.2024.5
https://orcid.org/0000-0002-5460-6222
https://doi.org/10.4230/LIPIcs.SWAT.2024.6
https://orcid.org/0000-0002-8760-0169
https://doi.org/10.4230/LIPIcs.SWAT.2024.7
https://doi.org/10.4230/LIPIcs.SWAT.2024.8
https://orcid.org/0000-0001-8430-2441
https://doi.org/10.4230/LIPIcs.SWAT.2024.9
https://orcid.org/0000-0001-8637-7113
https://doi.org/10.4230/LIPIcs.SWAT.2024.10
https://orcid.org/0000-0003-0017-6922
https://doi.org/10.4230/LIPIcs.SWAT.2024.11
https://doi.org/10.4230/LIPIcs.SWAT.2024.12
https://doi.org/10.4230/LIPIcs.SWAT.2024.13
https://orcid.org/0000-0002-1120-5154
https://doi.org/10.4230/LIPIcs.SWAT.2024.14
https://doi.org/10.4230/LIPIcs.SWAT.2024.3
https://orcid.org/0000-0002-6410-8323
https://doi.org/10.4230/LIPIcs.SWAT.2024.15
https://doi.org/10.4230/LIPIcs.SWAT.2024.13
https://orcid.org/0000-0002-9910-4656
https://doi.org/10.4230/LIPIcs.SWAT.2024.11
https://doi.org/10.4230/LIPIcs.SWAT.2024.16
https://orcid.org/0000-0001-9054-915X
https://doi.org/10.4230/LIPIcs.SWAT.2024.17
https://doi.org/10.4230/LIPIcs.SWAT.2024.34
https://doi.org/10.4230/LIPIcs.SWAT.2024.18
https://doi.org/10.4230/LIPIcs.SWAT.2024.18
https://orcid.org/0000-0002-8686-2319
https://doi.org/10.4230/LIPIcs.SWAT.2024.19
https://orcid.org/0000-0002-3183-4126
https://doi.org/10.4230/LIPIcs.SWAT.2024.1
https://doi.org/10.4230/LIPIcs.SWAT.2024.4
https://doi.org/10.4230/LIPIcs.SWAT.2024.34
https://orcid.org/0000-0002-8169-0925
https://doi.org/10.4230/LIPIcs.SWAT.2024.7
https://orcid.org/0000-0002-9486-9115
https://doi.org/10.4230/LIPIcs.SWAT.2024.20
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xii Authors

Garner Cochran (3)
Department of Mathematics and Computer
Science, Berry College, Mount Berry, GA, USA

Martín Costa (12)
University of Warwick, UK

Alex Crane (8)
University of Utah, Salt Lake City, UT, USA

Seyed Parsa Darbouy (21)
Department of Computing Science,
University of Alberta, Canada

Erik D. Demaine (34)
Massachusetts Institute of Technology,
Cambridge, MA, USA

Jenny Diomidova (34)
Massachusetts Institute of Technology,
Cambridge, MA, USA

Pål Grønås Drange (8)
University of Bergen, Norway

Anne Driemel (15)
University of Bonn, Germany

Fedor V. Fomin (22)
University of Bergen, Norway

Nathan Fox (3)
Department of Quantitative Sciences,
Canisius University, Buffalo, NY, USA

Zachary Friggstad (21, 23)
Department of Computing Science,
University of Alberta, Canada

Auguste H. Gezalyan (25)
Department of Computer Science, University of
Maryland, College Park, MD, USA

Petr A. Golovach (22)
University of Bergen, Norway

Daniel Gonçalves (11)
LIRMM, Université de Montpellier, CNRS,
Montpellier, France

Christine Gregg (34)
NASA Ames Research Center,
Moffett Field, CA, USA

Joachim Gudmundsson (18)
Faculty of Engineering,
The University of Sydney, Australia

Bernd Gärtner (24)
Department of Computer Science,
ETH Zürich, Switzerland

Sariel Har-Peled (2, 26)
Department of Computer Science,
University of Illinois, Urbana, IL, USA

Della H. Hendrickson (34)
Massachusetts Institute of Technology,
Cambridge, MA, USA

Jakob Bæk Tejs Houen (9)
BARC, University of Copenhagen, Denmark

Kien C. Huynh (27)
Linköping University, Sweden

Bart M. P. Jansen (19, 28)
Eindhoven University of Technology,
The Netherlands

Matthew Johnson (29)
Durham University, UK

Naonori Kakimura (30)
Department of Mathematics, Keio University,
Yokohama, Japan

Vishwas Kalani (24)
Department of Computer Science and
Engineering, I.I.T. Delhi, India

Shahin Kamali (10, 16)
York University, Toronto, Canada

Michael Kaufmann (1)
Department of Computer Science,
Tübingen University, Germany

Soo H. Kim (25)
Wellesley College, MA, USA

Tuukka Korhonen (22)
University of Bergen, Norway

Irina Kostitsyna (31, 34)
TU Eindhoven, The Netherlands;
KBR at NASA Ames Research Center,
Moffett Field, CA, USA

Ekkehard Köhler (7)
Institute of Mathematics, Brandenburg
University of Technology, Cottbus, Germany

Kim S. Larsen (16)
Department of Mathematics and Computer
Science, University of Southern Denmark,
Odense, Denmark

Ali Mohammad Lavasani (16)
Department of CSSE, Concordia University,
Montreal, Canada

https://doi.org/10.4230/LIPIcs.SWAT.2024.3
https://doi.org/10.4230/LIPIcs.SWAT.2024.12
https://orcid.org/0009-0004-5466-3181
https://doi.org/10.4230/LIPIcs.SWAT.2024.8
https://doi.org/10.4230/LIPIcs.SWAT.2024.21
https://orcid.org/0000-0003-3803-5703
https://doi.org/10.4230/LIPIcs.SWAT.2024.34
https://doi.org/10.4230/LIPIcs.SWAT.2024.34
https://orcid.org/0000-0001-7228-6640
https://doi.org/10.4230/LIPIcs.SWAT.2024.8
https://orcid.org/0000-0002-1943-2589
https://doi.org/10.4230/LIPIcs.SWAT.2024.15
https://orcid.org/0000-0003-1955-4612
https://doi.org/10.4230/LIPIcs.SWAT.2024.22
https://doi.org/10.4230/LIPIcs.SWAT.2024.3
https://orcid.org/0000-0003-4039-3235
https://doi.org/10.4230/LIPIcs.SWAT.2024.21
https://doi.org/10.4230/LIPIcs.SWAT.2024.23
https://orcid.org/0000-0002-5704-312X
https://doi.org/10.4230/LIPIcs.SWAT.2024.25
https://orcid.org/0000-0002-2619-2990
https://doi.org/10.4230/LIPIcs.SWAT.2024.22
https://orcid.org/0000-0003-3228-9622
https://doi.org/10.4230/LIPIcs.SWAT.2024.11
https://doi.org/10.4230/LIPIcs.SWAT.2024.34
https://doi.org/10.4230/LIPIcs.SWAT.2024.18
https://doi.org/10.4230/LIPIcs.SWAT.2024.24
https://orcid.org/0000-0003-2638-9635
https://doi.org/10.4230/LIPIcs.SWAT.2024.2
https://doi.org/10.4230/LIPIcs.SWAT.2024.26
https://doi.org/10.4230/LIPIcs.SWAT.2024.34
https://orcid.org/0000-0002-8033-2130
https://doi.org/10.4230/LIPIcs.SWAT.2024.9
https://orcid.org/0000-0001-6247-8964
https://doi.org/10.4230/LIPIcs.SWAT.2024.27
https://orcid.org/0000-0001-8204-1268
https://doi.org/10.4230/LIPIcs.SWAT.2024.19
https://doi.org/10.4230/LIPIcs.SWAT.2024.28
https://orcid.org/0000-0002-7295-2663
https://doi.org/10.4230/LIPIcs.SWAT.2024.29
https://orcid.org/0000-0002-3918-3479
https://doi.org/10.4230/LIPIcs.SWAT.2024.30
https://doi.org/10.4230/LIPIcs.SWAT.2024.24
https://orcid.org/0000-0003-1404-2212
https://doi.org/10.4230/LIPIcs.SWAT.2024.10
https://doi.org/10.4230/LIPIcs.SWAT.2024.16
https://orcid.org/0000-0001-9186-3538
https://doi.org/10.4230/LIPIcs.SWAT.2024.1
https://doi.org/10.4230/LIPIcs.SWAT.2024.25
https://orcid.org/0000-0003-0861-6515
https://doi.org/10.4230/LIPIcs.SWAT.2024.22
https://orcid.org/0000-0003-0544-2257
https://doi.org/10.4230/LIPIcs.SWAT.2024.31
https://doi.org/10.4230/LIPIcs.SWAT.2024.34
https://doi.org/10.4230/LIPIcs.SWAT.2024.7
https://doi.org/10.4230/LIPIcs.SWAT.2024.16
https://doi.org/10.4230/LIPIcs.SWAT.2024.16

Authors 0:xiii

Michael Levet (3, 32)
Department of Computer Science,
College of Charleston, SC, USA

Yaqiao Li (16)
Department of CSSE, Concordia University,
Montreal, Canada

Carlos Lopez (25)
Montgomery Blair High School,
Silver Spring, MD, USA

Anand Louis (33)
Indian Institute of Science, Bangalore, India

Meghana M. Reddy (24)
Department of Computer Science,
ETH Zürich, Switzerland

Reem Mahmoud (3)
Department of Computer Science, Virginia
Commonwealth University, Richmond, VA, USA

Barnaby Martin (29)
Durham University, UK

Wouter Meulemans (24)
Department of Mathematics and Computer
Science, TU Eindhoven, The Netherlands

Martin Milanič (7)
FAMNIT and IAM, University of Primorska,
Koper, Slovenia

Babak Miraftab (13)
School of Computer Science,
Carleton University, Ottawa, Canada

Joseph S. B. Mitchell (27)
Stony Brook University, NY, USA

Daniel Mock (35)
RWTH Aachen University, Germany

David M. Mount (25)
Department of Computer Science, University of
Maryland, College Park, MD, USA

Peter Muršič (7)
FAMNIT, University of Primorska,
Koper, Slovenia

N. S. Narayanaswamy (4)
Indian Institute of Technology Madras,
Chennai, India

Ofer Neiman (36)
Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Yakov Nekrich (14)
Michigan Technological University,
Houghton, MI, US

Linh Nguyen (27)
Stony Brook University, NY, USA

André Nichterlein (6)
Algorithmics and Computational Complexity,
Technische Universität Berlin, Germany

Tim Ophelders (31)
Utrecht University, The Netherlands;
TU Eindhoven, The Netherlands

Christian Ortlieb (37)
Institute of Computer Science,
University of Rostock, Germany

Yota Otachi (38)
Graduate School of Informatics,
Nagoya University, Japan

Rasmus Pagh (9)
BARC, University of Copenhagen, Denmark

Sukanya Pandey (29)
Utrecht University, The Netherlands

Denis Pankratov (16)
Department of CSSE, Concordia University,
Montreal, Canada

Nadav Panski (12)
Tel Aviv University, Israel

Irene Parada (31)
Universitat Politècnica de Catalunya,
Barcelona, Spain

Rameesh Paul (33)
Indian Institute of Science, Bangalore, India

Daniël Paulusma (29)
Durham University, UK

Tom Peters (31)
TU Eindhoven, The Netherlands

Solon P. Pissis (14)
CWI, Amsterdam, The Netherlands;
Vrije Universiteit, Amsterdam, The Netherlands

Lukas Plätz (18)
Faculty of Computer Science,
Ruhr University Bochum, Germany

Valentin Polishchuk (27)
Linköping University, Sweden

Arka Ray (33)
Indian Institute of Science, Bangalore, India

SWAT 2024

https://doi.org/10.4230/LIPIcs.SWAT.2024.3
https://doi.org/10.4230/LIPIcs.SWAT.2024.32
https://doi.org/10.4230/LIPIcs.SWAT.2024.16
https://doi.org/10.4230/LIPIcs.SWAT.2024.25
https://orcid.org/0000-0002-4727-9219
https://doi.org/10.4230/LIPIcs.SWAT.2024.33
https://orcid.org/0000-0001-9185-1246
https://doi.org/10.4230/LIPIcs.SWAT.2024.24
https://doi.org/10.4230/LIPIcs.SWAT.2024.3
https://orcid.org/0000-0002-4642-8614
https://doi.org/10.4230/LIPIcs.SWAT.2024.29
https://doi.org/10.4230/LIPIcs.SWAT.2024.24
https://orcid.org/0000-0002-8222-8097
https://doi.org/10.4230/LIPIcs.SWAT.2024.7
https://doi.org/10.4230/LIPIcs.SWAT.2024.13
https://orcid.org/0000-0002-0152-2279
https://doi.org/10.4230/LIPIcs.SWAT.2024.27
https://orcid.org/0000-0002-0011-6754
https://doi.org/10.4230/LIPIcs.SWAT.2024.35
https://orcid.org/0000-0002-3290-8932
https://doi.org/10.4230/LIPIcs.SWAT.2024.25
https://orcid.org/0000-0002-7350-6809
https://doi.org/10.4230/LIPIcs.SWAT.2024.7
https://doi.org/10.4230/LIPIcs.SWAT.2024.4
https://doi.org/10.4230/LIPIcs.SWAT.2024.36
https://orcid.org/0000-0003-3771-5088
https://doi.org/10.4230/LIPIcs.SWAT.2024.14
https://orcid.org/0009-0009-3518-929X
https://doi.org/10.4230/LIPIcs.SWAT.2024.27
https://orcid.org/0000-0001-7451-9401
https://doi.org/10.4230/LIPIcs.SWAT.2024.6
https://orcid.org/0000-0002-9570-024X
https://doi.org/10.4230/LIPIcs.SWAT.2024.31
https://doi.org/10.4230/LIPIcs.SWAT.2024.37
https://orcid.org/0000-0002-0087-853X
https://doi.org/10.4230/LIPIcs.SWAT.2024.38
https://orcid.org/0000-0002-1516-9306
https://doi.org/10.4230/LIPIcs.SWAT.2024.9
https://orcid.org/0000-0001-5728-1120
https://doi.org/10.4230/LIPIcs.SWAT.2024.29
https://doi.org/10.4230/LIPIcs.SWAT.2024.16
https://doi.org/10.4230/LIPIcs.SWAT.2024.12
https://orcid.org/0000-0003-2401-8670
https://doi.org/10.4230/LIPIcs.SWAT.2024.31
https://orcid.org/0009-0002-5158-0247
https://doi.org/10.4230/LIPIcs.SWAT.2024.33
https://orcid.org/0000-0001-5945-9287
https://doi.org/10.4230/LIPIcs.SWAT.2024.29
https://orcid.org/0000-0002-2702-7532
https://doi.org/10.4230/LIPIcs.SWAT.2024.31
https://orcid.org/0000-0002-1445-1932
https://doi.org/10.4230/LIPIcs.SWAT.2024.14
https://doi.org/10.4230/LIPIcs.SWAT.2024.18
https://orcid.org/0000-0002-8292-2281
https://doi.org/10.4230/LIPIcs.SWAT.2024.27
https://orcid.org/0000-0002-2428-6504
https://doi.org/10.4230/LIPIcs.SWAT.2024.33

0:xiv Authors

Jean-Florent Raymond (11)
Univ Lyon, EnsL, CNRS, LIP, F-69342,
Lyon Cedex 07, France

Felix Reidl (8)
Birkbeck, University of London, UK

Eliot W. Robson (26)
Department of Computer Science,
University of Illinois, Urbana, IL, USA

Benjamin Rockel-Wolff (39)
Research Institute for Discrete Mathematics,
University of Bonn, Germany

Puck Rombach (32)
Department of Mathematics and Statistics,
University of Vermont, Burlington, VT, USA

Peter Rossmanith (35)
RWTH Aachen University, Germany

Eva Rotenberg (20)
Technical University of Denmark,
Lyngby, Denmark

Kunihiko Sadakane (4)
University of Tokyo, Japan

Mohammad R. Salavatipour (40)
Department of Computer Science,
University of Alberta, Edmonton, Canada

Saket Saurabh (1, 22)
Institute of Mathematical Sciences, HBNI,
Chennai, India

Robert Scheffler (7)
Institute of Mathematics, Brandenburg
University of Technology, Cottbus, Germany

Ildikó Schlotter (30)
HUN-REN Centre for Economic and Regional
Studies, Budapest, Hungary;
Budapest University of Technology and
Economics, Hungary

Jens M. Schmidt (37)
Institute of Computer Science,
University of Rostock, Germany

Idan Shabat (36)
Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Roohani Sharma (1)
University of Bergen, Norway

Tetsuo Shibuya (5)
Division of Medical Data Informatics, Human
Genome Center, Institute of Medical Science,
University of Tokyo, Japan

Nicholas Sieger (32)
Department of Mathematics, University of
California San Diego, La Jolla, CA, USA

Inne Singgih (3)
Department of Mathematical Sciences,
University of Cincinnati, OH, USA

Daniel Skora (25)
Indiana University, Bloomington, IN, USA

Siani Smith (29)
University of Bristol, UK;
Heilbronn Institute for Mathematical Research,
Bristol, UK

Shay Solomon (12)
Tel Aviv University, Israel

Willem Sonke (31)
TU Eindhoven, The Netherlands

Bettina Speckmann (24, 31)
Department of Mathematics and Computer
Science, TU Eindhoven, The Netherlands

Grace Stadnyk (3)
Department of Mathematics, Furman University,
Greenville, SC, USA

Zofia Stefankovic (25)
Stony Brook University, Stony Brook, NY, USA

Miloš Stojaković (24)
Department of Mathematics and Informatics,
Faculty of Sciences, University of Novi Sad,
Serbia

Blair D. Sullivan (8)
University of Utah, Salt Lake City, UT, USA

Hao Sun (23)
University of Alberta, Canada

Akira Suzuki (38)
Graduate School of Information Sciences,
Tohoku University, Sendai, Japan

Yuma Tamura (38)
Graduate School of Information Sciences,
Tohoku University, Sendai, Japan

MIT-NASA Space Robots Team (34)
Massachusetts Institute of Technology,
Cambridge, MA, USA;
NASA Ames Research Center,
Moffett Field, CA, USA

Lea Thiel (18)
Faculty of Computer Science,
Ruhr University Bochum, Germany

https://orcid.org/0000-0003-4646-7602
https://doi.org/10.4230/LIPIcs.SWAT.2024.11
https://orcid.org/0000-0002-2354-3003
https://doi.org/10.4230/LIPIcs.SWAT.2024.8
https://orcid.org/0000-0002-1476-6715
https://doi.org/10.4230/LIPIcs.SWAT.2024.26
https://orcid.org/0009-0008-5562-6920
https://doi.org/10.4230/LIPIcs.SWAT.2024.39
https://doi.org/10.4230/LIPIcs.SWAT.2024.32
https://orcid.org/0000-0003-0177-8028
https://doi.org/10.4230/LIPIcs.SWAT.2024.35
https://orcid.org/0000-0001-5853-7909
https://doi.org/10.4230/LIPIcs.SWAT.2024.20
https://doi.org/10.4230/LIPIcs.SWAT.2024.4
https://orcid.org/0000-0002-7650-2045
https://doi.org/10.4230/LIPIcs.SWAT.2024.40
https://doi.org/10.4230/LIPIcs.SWAT.2024.1
https://doi.org/10.4230/LIPIcs.SWAT.2024.22
https://orcid.org/0000-0001-6007-4202
https://doi.org/10.4230/LIPIcs.SWAT.2024.7
https://orcid.org/0000-0002-0114-8280
https://doi.org/10.4230/LIPIcs.SWAT.2024.30
https://orcid.org/0000-0003-3032-4834
https://doi.org/10.4230/LIPIcs.SWAT.2024.37
https://doi.org/10.4230/LIPIcs.SWAT.2024.36
https://orcid.org/0000-0003-2212-1359
https://doi.org/10.4230/LIPIcs.SWAT.2024.1
https://orcid.org/0000-0003-1514-5766
https://doi.org/10.4230/LIPIcs.SWAT.2024.5
https://doi.org/10.4230/LIPIcs.SWAT.2024.32
https://doi.org/10.4230/LIPIcs.SWAT.2024.3
https://doi.org/10.4230/LIPIcs.SWAT.2024.25
https://orcid.org/0000-0003-0797-0512
https://doi.org/10.4230/LIPIcs.SWAT.2024.29
https://doi.org/10.4230/LIPIcs.SWAT.2024.12
https://orcid.org/0000-0001-9553-7385
https://doi.org/10.4230/LIPIcs.SWAT.2024.31
https://orcid.org/0000-0002-8514-7858
https://doi.org/10.4230/LIPIcs.SWAT.2024.24
https://doi.org/10.4230/LIPIcs.SWAT.2024.31
https://doi.org/10.4230/LIPIcs.SWAT.2024.3
https://doi.org/10.4230/LIPIcs.SWAT.2024.25
https://orcid.org/0000-0002-2545-8849
https://doi.org/10.4230/LIPIcs.SWAT.2024.24
https://orcid.org/0000-0001-7720-6208
https://doi.org/10.4230/LIPIcs.SWAT.2024.8
https://doi.org/10.4230/LIPIcs.SWAT.2024.23
https://orcid.org/0000-0002-5212-0202
https://doi.org/10.4230/LIPIcs.SWAT.2024.38
https://orcid.org/0009-0001-5479-7006
https://doi.org/10.4230/LIPIcs.SWAT.2024.38
https://doi.org/10.4230/LIPIcs.SWAT.2024.34
https://doi.org/10.4230/LIPIcs.SWAT.2024.18

Authors 0:xv

Lijiangnan Tian (40)
Department of Computer Science,
University of Alberta, Edmonton, Canada

Yushi Uno (1)
Graduate School of Informatics, Osaka
Metropolitan University, Sakai, Japan

Erik Jan van Leeuwen (29)
Utrecht University, The Netherlands

Sofia Vazquez Alferez (6)
Université Paris-Dauphine, PSL Research
University, CNRS, UMR 7243, LAMSADE,
Paris, France

Jaime Venne (19)
Eindhoven University of Technology,
The Netherlands

Ruben F. A. Verhaegh (28)
Eindhoven University of Technology,
The Netherlands

Juliette Vlieghe (20)
Technical University of Denmark,
Lyngby, Denmark

Alexander Wiedemann (3)
Department of Mathematics,
Randolph-Macon College, Ashland, VA, USA

Sebastian Wild (17)
University of Liverpool, UK

Alexander Wolff (1)
Universität Würzburg, Germany

Sampson Wong (18)
Department of Computer Science,
University of Copenhagen, Denmark

SWAT 2024

https://orcid.org/0009-0002-8143-8938
https://doi.org/10.4230/LIPIcs.SWAT.2024.40
https://doi.org/10.4230/LIPIcs.SWAT.2024.1
https://orcid.org/0000-0001-5240-7257
https://doi.org/10.4230/LIPIcs.SWAT.2024.29
https://orcid.org/0000-0002-1541-8683
https://doi.org/10.4230/LIPIcs.SWAT.2024.6
https://doi.org/10.4230/LIPIcs.SWAT.2024.19
https://orcid.org/0009-0008-8568-104X
https://doi.org/10.4230/LIPIcs.SWAT.2024.28
https://orcid.org/0009-0004-0079-8523
https://doi.org/10.4230/LIPIcs.SWAT.2024.20
https://doi.org/10.4230/LIPIcs.SWAT.2024.3
https://orcid.org/0000-0002-6061-9177
https://doi.org/10.4230/LIPIcs.SWAT.2024.17
https://orcid.org/0000-0001-5872-718X
https://doi.org/10.4230/LIPIcs.SWAT.2024.1
https://doi.org/10.4230/LIPIcs.SWAT.2024.18

Eliminating Crossings in Ordered Graphs
Akanksha Agrawal
Indian Institute of Technology Madras, Chennai, India

Sergio Cabello
Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

Michael Kaufmann
Department of Computer Science, Tübingen University, Germany

Saket Saurabh
Institute of Mathematical Sciences, Chennai, India

Roohani Sharma
University of Bergen, Norway

Yushi Uno
Graduate School of Informatics, Osaka Metropolitan University, Sakai, Japan

Alexander Wolff Ñ

Universität Würzburg, Germany

Abstract
Drawing a graph in the plane with as few crossings as possible is one of the central problems in
graph drawing and computational geometry. Another option is to remove the smallest number of
vertices or edges such that the remaining graph can be drawn without crossings. We study both
problems in a book-embedding setting for ordered graphs, that is, graphs with a fixed vertex order.
In this setting, the vertices lie on a straight line, called the spine, in the given order, and each edge
must be drawn on one of several pages of a book such that every edge has at most a fixed number of
crossings. In book embeddings, there is another way to reduce or avoid crossings; namely by using
more pages. The minimum number of pages needed to draw an ordered graph without any crossings
is its (fixed-vertex-order) page number.

We show that the page number of an ordered graph with n vertices and m edges can be computed
in 2m · nO(1) time. An O(log n)-approximation of this number can be computed efficiently. We
can decide in 2O(d

√
k log(d+k)) · nO(1) time whether it suffices to delete k edges of an ordered graph

to obtain a d-planar layout (where every edge crosses at most d other edges) on one page. As an
additional parameter, we consider the size h of a hitting set, that is, a set of points on the spine
such that every edge, seen as an open interval, contains at least one of the points. For h = 1,
we can efficiently compute the minimum number of edges whose deletion yields fixed-vertex-order
page number p. For h > 1, we give an XP algorithm with respect to h + p. Finally, we consider
spine+t-track drawings, where some but not all vertices lie on the spine. The vertex order on the
spine is given; we must map every vertex that does not lie on the spine to one of t tracks, each of
which is a straight line on a separate page, parallel to the spine. In this setting, we can minimize in
2n · nO(1) time either the number of crossings or, if we disallow crossings, the number of tracks.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Fixed parameter tractability; Human-centered computing → Graph
drawings; Mathematics of computing → Graph theory

Keywords and phrases Ordered graphs, book embedding, edge deletion, d-planar, hitting set

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.1

Related Version Full Version: https://arxiv.org/abs/2404.09771

Funding Funded in part by Science and Engineering Research Board, Startup Research Grant
(SRG/2022/000962). Funded in part by the Slovenian Research and Innovation Agency (P1-0297,
J1-2452, N1-0218, N1-0285). Funded in part by the EU (ERC, KARST, project no. 101071836).

© Akanksha Agrawal, Sergio Cabello, Michael Kaufmann, Saket Saurabh, Roohani Sharma, Yushi Uno,
and Alexander Wolff;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 1; pp. 1:1–1:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0656-7572
https://orcid.org/0000-0002-3183-4126
https://orcid.org/0000-0001-9186-3538
https://orcid.org/0000-0003-2212-1359
https://www.informatik.uni-wuerzburg.de/en/algo/team/wolff-alexander/
https://orcid.org/0000-0001-5872-718X
https://doi.org/10.4230/LIPIcs.SWAT.2024.1
https://arxiv.org/abs/2404.09771
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Eliminating Crossings in Ordered Graphs

Views and opinions expressed are however those of the authors only and do not necessarily reflect
those of the EU or the ERC. Neither the EU nor the granting authority can be held responsible for
them. Partially supported by JSPS KAKENHI grant no. JP17K00017, 20H05964, and 21K11757.

Acknowledgements We thank the organizers of the 2023 Dagstuhl Seminar “New Frontiers of
Parameterized Complexity in Graph Drawing”, where this work was initiated.

1 Introduction

Many crossings typically make it hard to understand the drawing of a graph, and thus
much effort in the area of Graph Drawing has been directed towards reducing the number of
crossings in drawings of graphs. In terms of parameterized complexity, several facets of this
problem have been considered. For example, there are FPT algorithms that, given a graph G

and an integer k, decide whether G can be drawn with at most k crossings [17, 21]. Crossing
minimization has also been considered in the setting where each vertex of the given graph
must lie on one of two horizontal lines. This restricted version of crossing minimization is
an important subproblem in drawing layered graphs according to the so-called Sugiyama
framework [33]. There are two variants of the problem; either the vertices on both lines
may be freely permuted or the order of the vertices on one line is given. These variants are
called two-layer and one-layer crossing minimization, respectively. For both, FPT algorithms
exist [22, 23]. Zehavi [38] has surveyed parameterized approaches to crossing minimization.

Surprisingly, crossing minimization remains NP-hard even when restricted to graphs that
have a planar subgraph with just one edge less [9]. Another way to deal with crossings is
to remove a small number of vertices or edges such that the remaining graph can be drawn
without crossings. In fact, it is known that vertex deletion to planarity is FPT with respect
to the number of deleted vertices [18, 20, 28]. However, the running times of these algorithms
depends at least exponentially on the number of deleted vertices. On the kernelization front,
there exists an O(1)-approximate kernel for vertex deletion to planarity [19], whereas vertex
deletion to outerplanarity is known to admit an (exact) polynomial kernel [13].

In this paper, we focus on another model to cope with the problem of crossing edges,
namely book embeddings, drawings where the vertices lie on a straight line, called the spine,
and each edge must be drawn on one of several halfplanes, called pages, such that the drawing
on each page is crossing-free (planar) or such that each edge has at most a constant number
d of crossings (that is, the drawing is d-planar). We consider the variant of the problem
where the order σ of the vertices is given and fixed. The minimum number of pages to draw
an (ordered) graph without any crossings is its (fixed-vertex-order) page number.

In this paper, we study the problem of designing parameterized algorithms, where the
possible parameters are the number k of edges to be deleted, the number c of allowed crossings
per edge, the number p of pages, and their combinations.

Problem description. Given a graph G, let V (G) denote the vertex set and E(G) the edge
set of G. An ordered graph (G, σ) consists of a graph G and an ordering of the vertices of G,
that is, a bijective map σ : V (G) → {1, . . . , |V (G)|}. Henceforth, we specify every edge (u, v)
of (G, σ) such that σ(u) < σ(v). For two edges e = (u, v) and e′ = (u′, v′) of an ordered
graph (G, σ), we say that e and e′ cross with respect to σ if their endpoints interleave, that
is, if σ(u) < σ(u′) < σ(v) < σ(v′) or if σ(u′) < σ(u) < σ(v′) < σ(v). The ordered graph
models the scenario where the vertices of G are placed along a horizontal line in the given
order σ and all the edges are drawn above the line using curves that cross as few times as
possible. Whenever e and e′ cross with respect to σ, their curves must intersect. Whenever

A. Agrawal, S. Cabello, M. Kaufmann, S. Saurabh, R. Sharma, Y. Uno, and A. Wolff 1:3

e and e′ do not cross with respect to σ, their curves can be drawn without intersections; for
example, we may use halfcircles. In this setting, we get a drawing such that two edges of G

cross precisely if and only if they cross with respect to σ. Given a positive integer d, we say
that an ordered graph (G, σ) is d-planar if every edge in G is crossed by at most d other
edges (where 0-planar simply means planar).

In this paper, we focus on fast parameterized algorithms for the following problem.

Input: An ordered graph (G, σ) and positive integers k, p, and d.
Parameters: k, p, d

Question: Does there exist a set S of at most k edges of G such that (G − S, σ) is p-page
d-planar?

Edge Deletion to p-Page d-Planar

We stress that we view p and d, though they appear in the problem name, not as constants,
but as parameters.

Related work. Given an ordered graph (G, σ), its conflict graph H(G,σ) is the graph that
has a vertex for each edge of G and an edge for each pair of crossing edges of G. Note
that H(G,σ) is a circle graph, that is, the intersection graph of chords of a circle, because two
chords in a circle intersect if and only if their endpoints interleave.

We can express Edge Deletion to 1-Page d-Planar as the problem of deleting
from H(G,σ) a set of at most k vertices such that the remaining graph has maximum degree
at most d. For general graphs, this problem is called Vertex Deletion to Degree-d [31];
it admits a quadratic kernel [15, 37].

Testing whether (G, σ) has (fixed-vertex-order) page number p (without any edge deletions)
is equivalent to the p-colorability of the conflict graph H(G,σ). For p = 2, it suffices to test
whether the conflict graph H(G,σ) is bipartite. An alternative approach, discussed by Masuda,
Nakajima, Kashiwabara, and Fujisawa [29], is to add to G a cycle connecting the vertices
along the spine in the given order, and then test for planarity. Another possibility is to
use 2-Sat. For p = 4, Unger [34] showed that the problem is NP-hard. For p = 3, he [35]
claimed an efficient solution, but recently his approach was shown to be incomplete [4].

Edge Deletion to p-Page Planar is the special case where d = 0; it can be interpreted
as deletion of as few vertices as possible in the conflict graph H(G,σ) to obtain a p-colorable
graph. For p = 1, the problem can be solved by finding a maximum independent set in a circle
graph, which takes linear time [16, 30, 36]; see Lemma 3 in Section 2. Edge Deletion to
2-Page Planar can be phrased as Odd Cycle Transversal in the conflict graph, which
means that it is FPT with respect to the number of edges that must be deleted [32]. The
case p = 2 can also be modeled as a (geometric) special case of Almost 2-Sat (variable),
which can be solved in 2.3146k · nO(1) time, where k is the number of variables that need to
be deleted so that the formula becomes satisfiable [27, Corollary 5.2].

Masuda et al. [29] showed that the problem Fixed-Order 2-Page Crossing Number is
NP-hard. In this problem, we have to decide, for each edge of the given ordered graph (G, σ),
whether to draw it above or below the spine, so as to minimize the number of crossings.

Bhore, Ganian, Montecchiani, and Nöllenburg [7] studied the fixed-vertex-order page
number and provide an algorithm to compute it with running time 2O(vc3)n, where vc is the
vertex cover number of the graph. They also proved that the problem is fixed-parameter
tractable parameterized by the pathwidth (pw) of the ordered graph, with a running time
of pwO(pw2) n. Note that the pathwidth of an ordered graph is in general not bounded by
the vertex cover number [7]. This has been improved by Liu, Chen, Huang, and Wang [26]

SWAT 2024

1:4 Eliminating Crossings in Ordered Graphs

Table 1 New and known results concerning Edge Deletion to p-Page d-Planar.

k p d add. param. ref. result (runtime, ratio, or kernel size)

0 min 0 – Cor. 2 EXP: 2mnO(1)

0 min 0 – Thm. 4 approx: ratio O(log n)
0 min param. – Cor. 5 approx: ratio O((d + 1) log n)

param. 1 param. – Thm. 6 FPT: 2O(d
√

k log(d+k)) · nO(1)

min param. 0 – Sect. 4 EXP: 4mnO(1)

min param. 0 h = 1 Thm. 9 P: O(m3 log n log log p)
min param. 0 h Thm. 12 XP: O(m(4h−2)p+3 log n log log p)

0 – min t Thm. 14 EXP: 2nnO(1)

0 – min min t Cor. 15 EXP: 2nnO(1)

param. 1 param. – [15, 37] kernel: quadratic
0 ≥ 4 0 – [34] NPC.
0 ≤ 2 0 – folklore P: linear time; e.g., via 2-Sat

min 1 0 – e.g., [16] P: linear time
param. 2 0 – [32] FPT: Odd Cycle Transversal

0 2 min – [29] NPC.
0 min 0 vc [25] FPT: (d + 2)O(vc3)n

0 min 0 pw [25] FPT: (d + 2)O(pw2)n

0 param. cr pw [26] FPT: n · (cr +2)O(pw2)

0 param. param. pw [26] FPT: 2O(pw2)n; no poly. pw-kernel

to 2O(pw2)n. They also showed that the problem does not admit a polynomial kernel if
parameterized only by pw (unless NP ⊆ coNP/poly). Moreover, they gave an algorithm that
checks in (cr + 2)O(pw2)n time whether a graph with n vertices and pathwidth pw can be
drawn on a given number of pages with at most cr crossings in total.

Liu, Chen and Huang [25] considered the problem Fixed-Order Book Drawing with
bounded number of crossings per edge: decide if there is a p-page book-embedding of G

such that the maximum number of crossings per edge is upper-bounded by an integer d.
This problem was posed by Bhore et al. [7]. Liu et al. showed that this problem, when
parameterized by both the maximum number d of crossings per edge and the vertex cover
number vc of the graph, admits an algorithm running in (d + 2)O(vc3)n time. They also
showed that the problem, when parameterized by both d and the pathwidth pw of the vertex
ordering, admits an algorithm running in (d + 2)O(pw2)n time.

All these problems can be considered also in the setting where we can choose the ordering
of the vertices along the spine; see, for instance, [7, 11].

Our contribution. For an overview over our results and known results, see Table 1. First,
we show that the fixed-vertex-order page number of an ordered graph with m edges and
n vertices can be computed in 2m · nO(1) time; see Section 2. We use subset convolution [8].
Alternatively, given a budget p of pages, we can compute a p-page book embedding with
the minimimum number of crossings. By combining the greedy algorithm for Set Cover
with an efficient algorithm for Maximum Independent Set in circle graphs [16, 30, 36],
we obtain an efficient O((d + 1) log n)-approximation algorithm for the fixed-vertex-order
d-planar page number.

Second, we tackle Edge Deletion to 1-Page d-Planar; see Section 3. We show how
to decide in 2O(d

√
k log(d+k)) · nO(1) time whether deleting k edges of an ordered graph suffices

to obtain a d-planar layout on one page. Note that our algorithm is subexponential in k.

A. Agrawal, S. Cabello, M. Kaufmann, S. Saurabh, R. Sharma, Y. Uno, and A. Wolff 1:5

Third, we consider the problem Edge Deletion to p-Page Planar; see Section 4.
As an additional parameter, we consider the size h of a hitting set, that is, a set of points
on the spine such that every edge, seen as an open interval, contains at least one of the
points. For h = 1, we can efficiently compute the smallest set of edges whose deletion yields
fixed-vertex-order page number p. For h > 1, we give an XP algorithm with respect to h + p.

Finally, we consider spine+t-track drawings; see Section 5. In such drawings, some but
not all vertices lie on the spine. The vertex order on the spine is again given, but now we
must map every vertex that does not lie on the spine to one of t tracks, each of which is
a straight line on a separate page, parallel to the spine. Using subset convolution, we can
minimize in 2n · nO(1) time either the number of crossings or, if we disallow crossings, the
number of tracks.

We close with some open problems; see Section 6.

2 Computing the Fixed-Vertex-Order Page Number

Let (G, σ) be an ordered graph, and let p be a positive integer. In this section, we consider
p-page book-embeddings of (G, σ): the vertices of G are placed on a spine ℓ according to σ,
there are p pages (halfplanes) sharing ℓ on their boundary, and for each edge we have to
decide on which page it is drawn. The aim is to minimize the total number of crossings for a
given number of pages, or minimize the number of pages to attain no crossings; see Figure 1.

Let crp(G, σ) be the minimum number of crossings over all possible assignments of the
edges of E(G) to the p pages. As discussed in the introduction, we can decide in linear
time whether cr2(G, σ) = 0, but in general, computing cr2(G, σ) is NP-hard [29]. The
fixed-vertex-order page number of (G, σ) is the minimum p such that crp(G, σ) = 0.

▶ Theorem 1. Given an ordered graph (G, σ) with n vertices and m edges, and a positive
integer p, we can compute the values cr1(G, σ), . . . , crp(G, σ) in 2m ·nO(1) time. In particular,
given a budget p of pages, we can compute a p-page book embedding with the minimum number
of crossings within the given time bound.

Proof. Consider a fixed-vertex-order graph ((V, E), σ) with n vertices and m edges. We need
to consider only the case p < m because, for p ≥ m, it obviously holds that crp((V, E), σ) = 0.

First note that, for any fixed F ⊆ E, we can easily compute cr1((V, F), σ) in O(|F |2) =
O(m2) time by checking the order of the endpoints of each pair of edges. It follows that we
can compute cr1((V, F), σ) for all subsets F ⊆ E in 2m · nO(1) time.

For every q > 1 and every F ⊆ E, we have the recurrence

crq((V, F), σ) = min {cr1((V, F ′), σ) + crq−1((V, F \ F ′), σ) | F ′ ⊆ F} . (1)

Here, F ′ ⊆ F corresponds to the edges that in the drawing go to one page, and thus F \ F ′

goes to the remaining q − 1 pages, where we can optimize over all choices of F ′ ⊆ F .

ℓ

p1

p2

p3

Figure 1 A 3-page book embedding of K5 with fixed vertex order. For each edge, we can choose
on which page it is drawn. Note that K5 cannot be drawn on two pages without crossings.

SWAT 2024

1:6 Eliminating Crossings in Ordered Graphs

From the recurrence in Equation (1) we see that, for q > 1, the function F 7→ crq((V, F), σ)
is, by definition, the subset convolution of the functions F 7→ cr1((V, F), σ) and F 7→
crq−1((V, F), σ) in the (min, +) ring. Since crq((V, F), σ) takes integer values from {0, . . . , m2}
for every q and F , it follows from [8] that one can obtain crq((V, F), σ) for all F ⊆ E in
2m · nO(1) time, for a fixed q > 1, assuming that cr1((V, F), σ) and crq−1((V, F), σ) are
already available. Therefore, we can compute the values crq((V, F), σ) for q ∈ {2, . . . , p} in
2m · nO(1) time since p ≤ m < n2. ◀

▶ Corollary 2. The fixed-vertex-order page number of a graph with n vertices and m edges
can be computed in 2m · nO(1) time.

▶ Lemma 3. Given an ordered graph (G, σ), we can compute in polynomial time a smallest
subset S ⊆ E(G) such that cr1(G − S, σ) = 0.

Proof. Consider the conflict graph H(G,σ) of (G, σ), already defined in the introduction.
Note that H(G,σ) is a circle graph. Therefore, a largest independent set in H(G,σ) corresponds
to a largest subset F of edges with cr1((V, F), σ) = 0, which corresponds to a minimum set
S ⊆ E(G) such that cr1(G − S, σ) = 0. Finally, note that a largest independent set in circle
graphs can be computed in polynomial time [16, 30, 36]. ◀

▶ Theorem 4. We can compute an O(log n)-approximation to the fixed-vertex-order page
number of a graph with n vertices in polynomial time.

Proof. Let ((V, E), σ) be the given ordered graph, and let OPT be its fixed-vertex-order
page number. Define the family F = {F ⊆ E | cr1((V, F), σ) = 0}. Consider the Set Cover
instance (E, F), where E is the universe and F ⊆ 2E is a family of subsets of E. A feasible
solution of this Set Cover instance is a subfamily F ′ ⊆ F such that

⋃
F ′ = E. The task

in Set Cover is to find a feasible solution of minimum cardinality.
Each feasible solution F ′ to the Set Cover instance (E, F) corresponds to a fixed-

vertex-order drawing of (G, σ) with |F ′| pages. Similarly, each fixed-vertex-order drawing of
(G, σ) with p pages represents a feasible solution to Set Cover with p sets. In particular,
the size of the optimal solution to the Set Cover instance (E, F) is equal to OPT, the
fixed-vertex-order page number of (G, σ).

Consider the usual greedy algorithm for Set Cover, which works as follows. Set E1 = E

and i = 1. While Ei ̸= ∅, we set Fi to be the element of F that contains the largest
number of edges from Ei, increase i, and set Ei = Ei−1 \ Fi−1. Let i⋆ be the maximum
value of i with Ei ≠ ∅. Thus Ei⋆+1 = ∅, and the algorithm finishes. It is well known that
i⋆ ≤ OPT · log |E|; see for example [12, Section 5.4]. Therefore, this greedy algorithm yields
an O(log |V |)-approximation for our problem.

Finally, note that the greedy algorithm can be implemented to run efficiently. Indeed,
Fi can be computed from Ei in polynomial time because of Lemma 3, and the remaining
computations in every iteration are trivially done in polynomial time. The number of
iterations is polynomial because i⋆ ≤ |E|. ◀

▶ Corollary 5. We can compute an O((d + 1) log n)-approximation to the fixed-vertex-order
d-planar page number of a graph with n vertices in polynomial time.

Proof. Consider first an ordered graph (H, σ) that is d-planar if drawn on a single page,
with d > 0. Let Fd be the subset of E(H) such that each edge in Fc participates in exactly d

crossings, and let Sd be a maximal subset of Fd such that no two edges in Sd cross each other.
Then, (H − Sd, σ) is (d − 1)-planar because each edge of H has fewer than d crossings, is in
Sc, or is crossed by some edge in Sd. It follows by induction that (H, σ) can be embedded in
d + 1 pages without crossings.

A. Agrawal, S. Cabello, M. Kaufmann, S. Saurabh, R. Sharma, Y. Uno, and A. Wolff 1:7

Consider now the input ordered graph (G, σ) and let OPTd be the minimum number of d-
planar pages needed for (G, σ). By the argument before applied to each page, we know that the
minimum number of planar pages, OPT0, is at most (d+1) OPTd. Using Theorem 4, we obtain
a drawing of (G, σ) without crossings with at most OPT0 · O(log n) ≤ (d + 1) OPTd · O(log n)
(planar) pages, where n = |V (G)|. Such a drawing is of course also d-planar. ◀

3 Edge Deletion to 1-Page d-Planar

The main result of this section is as follows.

▶ Theorem 6. Edge Deletion to 1-Page d-Planar admits an algorithm with running
time 2O(d

√
k log(d+k)) · nO(1), where n is the number of vertices in the input graph and k is

the number of edges to be deleted.

In other words, we obtain a subexponential fixed-parameter tractable algorithm for Edge
Deletion to 1-Page d-Planar parameterized by k, the number of edges to be deleted;
note that we consider d to be a constant here (although we made explicit how the running
time depends on d). Our algorithm to prove Theorem 6 has two steps. First it branches
on edges that are crossed by at least d +

√
k other edges. When such edges do not exist,

we show that the conflict graph H(G,σ) has treewidth O(d +
√

k). This is done by showing
that the conflict graph has balanced separators. Finally the bound on the treewidth allows
us to use a known (folklore) algorithm [24] for Vertex Deletion to Degree-d whose
dependency is singly exponential in the treewidth of H(G,σ).

3.1 Branching
Let cross(G,σ)(e) denote the set of edges of G that cross e with respect to σ. We drop the
subscript (G, σ) when it is clear from the context. We show that we can use branching to
reduce any instance to a collection of instances where each edge e of the graph satisfies
|cross(e)| < d +

√
k. In particular we show the following lemma.

▶ Lemma 7. Let (G, σ, k) be an instance of Edge Deletion to 1-Page d-Planar. There
is a 2O(d

√
k log(d+k)) · nO(1)-time algorithm that outputs 2O(d

√
k log(d+k)) many instances of

Edge Deletion to 1-Page d-Planar (G1, σ, k1), . . . , (Gr, σ, kr) such that for each i ∈ [r],
Gi is a (d +

√
k)-planar graph, and (G, σ, k) is a Yes-instance of Edge Deletion to 1-

Page d-Planar if and only if (Gi, σ, ki) is a Yes-instance of Edge Deletion to 1-Page
d-Planar for some i ∈ [r].

Proof. Let e be an edge of G with |cross(e)| ≥ d + ⌈
√

k⌉. If |cross(e)| > d + k, then e

must be deleted, as we cannot afford to keep e and delete enough edges from cross(e). If
|cross(e)| ≤ d + k, then either e must be deleted or at least |cross(e)| − d many edges from
cross(e) must be deleted, so that at most d edges of cross(e) stay. This results in the
following branching rule, where we return an OR over the answers of the following instances:
1. Recursively solve the instance (G − e, σ, k − 1). This branch is called the light branch.
2. If |cross(e)| > d + k, we do not consider other branches. Otherwise, for each subset X of

cross(e) with |cross(e)|−d many edges, recursively solve the instance (G−X, σ, k−|X|).
Each of these branches is called a heavy branch.

We are going to show that the recursion tree has 2O(d
√

k log(d+k)) branches. Note that the
number of possible heavy branches at each is node is(

|cross(e)|
|cross(e)| − d

)
=

(
|cross(e)|

d

)
≤

(
d + k

d

)
≤ (d + k)d.

SWAT 2024

1:8 Eliminating Crossings in Ordered Graphs

To prove the desired upper bound, we interpret the branching tree as follows. First note that,
in each node, we have at most (d + k)d heavy branches. We associate a distinct word over the
alphabet Σ = {0, 1, . . . , (d + k)d} to each leaf (or equivalently each root to leaf path) of the
recurrence tree. For each node of the recurrence tree, associate a character from Σ with each
of its children such that the child node corresponding to the light branch gets the character
0 and the other nodes (corresponding to the heavy branches) get a distinct character from
Σ \ {0}. Now a word over the alphabet Σ for a leaf ℓ of the recurrence tree is obtained by
taking the sequence of characters on the nodes of the root to leaf ℓ path in order. In order to
bound the number of leaves (and hence the total number of nodes) of the recurrence tree, it
is enough to bound the number of such words. The character 0 is called a light label and all
other characters are called heavy labels. Recall that a light label corresponds to the branch
where k drops by 1, while the heavy labels correspond to the branches where k drops by
|cross(e)| − d ≥

√
k. This implies that each word (that is associated with the leaf of the

recurrence tree) has at most
√

k heavy labels. In order to bound the number of such words,
we first guess the places in the word that are occupied by heavy labels and then we guess the
(heavy) labels themselves at these selected places. All other positions have the light label on
them and there is no choice left. Hence, the number of such words is upper-bounded by

√
k∑

i=0

(
k

i

)
((d + k)d)i ≤

√
k

(
k√
k

)
((d + k)d)

√
k = 2O(d

√
k log(d+k)).

This shows that the number of such words is bounded by 2O(d
√

k log(d+k)), and hence the
number of leaves (and nodes) of the recurrence tree is bounded by 2O(d

√
k log(d+k)). ◀

3.2 Balanced Separators in the Conflict Graph
Let (G, σ) be an ordered graph. For any edge e = (u, v) of G, let span(G,σ)(e) be the set of
all edges (u′, v′) ̸= e of G such that σ(u) ≤ σ(u′) ≤ σ(v′) ≤ σ(v). For example, in Figure 2a,
span(e) = {e1}. For any vertex w of G, let left(G,σ)(w) be the set of all edges (u, v) of
G such that σ(u) < σ(v) ≤ σ(w). Whenever it is clear from the context, we will drop the
subscript (G, σ). We say that an edge e of G is maximal if G contains no edge e′ such that
e ∈ span(e′).

▶ Lemma 8 (Balanced Separator in the Conflict Graph). If (G, σ) is an ordered d-planar
graph, then G contains a set X of at most 3(d + 1) edges such that E(G) \ X = E1 ∪ E2,
E1 ∩ E2 = ∅, |E1| ≤ 2m/3, |E2| ≤ 2m/3, and no edge e1 ∈ E1 crosses an edge e2 ∈ E2 with
respect to σ.

The proof in the full version of this paper [1] considers three cases depending on the
spans of the edges of G; see Figure 2. Either there exists an edge e = (u, v) ∈ E(G) such that
m/3 ≤ |span(e)| ≤ 2m/3 (case 1), or for every edge e ∈ E(G), it holds that |span(e)| ≤ m/3
(case 2), or there exists an edge e ∈ E(G) such that |span(e)| > 2m/3 (case 3). Note that
every outer d-planar graph contains a balanced vertex separater of size at most 2d + 3 [10].

3.3 Proof of Theorem 6
We now need to establish a relation between the treewidth of the graph and the size of a
balanced separator in it. For this we use the result of Dvořák and Norin [14] that shows
a linear dependence between the treewidth and the separation number of a graph: the
separation number of a graph is the smallest integer s such that every subgraph of the given

A. Agrawal, S. Cabello, M. Kaufmann, S. Saurabh, R. Sharma, Y. Uno, and A. Wolff 1:9

e

u v

e1e2

u1 v1v2

e2

u2

(a) Case 1.

ua vaua+1 va+1

E1 = left(ua+1)
X

left(ua)

(b) Case 2.

X

E′
1 E′

2

E2 \ E′
2 E2 \ E′

2

Xe

u v

(c) Case 3.

Figure 2 Case distinction for the proof of Lemma 8.

graph has a balanced separator of size at most s. A balanced separator in a graph H is a set
of vertices B such that the vertex set of H − B can be partitioned into two parts V1 and V2
such that E(V1, V2) = ∅ and |V1|, |V2| ≤ 2|V (H)|/3. In other words, they show that if the
separation number of the graph is s, then the treewidth of such a graph is O(s).

Recall that (G, σ, k) is an instance of Edge Deletion to 1-Page d-Planar. By
Lemma 8, if the ordered graph (G, σ) is (d +

√
k)-planar, then the conflict graph H(G,σ) has

a balanced separator of size at most 3(d +
√

k + 1). Thus, due to the result of Dvořák and
Norin [14], the treewidth of H(G,σ) is O(d +

√
k).

Given a graph with N vertices and treewidth tw, one can compute, in (d + 2)tw · NO(1)

time, the smallest set of vertices whose deletion results in a graph of degree at most d [24].
Applying this result to the conflict graph H(G,σ), which has at most |V (G)|2 = n2 vertices
and treewidth O(d +

√
k), we conclude that Edge Deletion to 1-Page d-Planar can be

solved in 2O((d+
√

k) log d) · nO(1) time if the given ordered graph (G, σ) is (d +
√

k)-planar.
From Lemma 7, we can assume, at the expense of a multiplicative factor of 2O(d

√
k log(k+d))·

nO(1) on the running time, that the given ordered graphs (G, σ) to consider are (d +
√

k)-
planar. Thus, given (G, σ, k), we can solve Edge Deletion to 1-Page d-Planar in
2O(d

√
k log(d+k)) · nO(1) time. This concludes the proof of Theorem 6.

4 Edge Deletion to p-Page Planar

In this section we treat the problem Edge Deletion to p-Page Planar, which is the
special case of Edge Deletion to p-Page d-Planar for d = 0. It can be solved by brute
force in O((p + 1)m · n2) time: For each mapping of the m edges to the p pages, with the
“+1” to mark edge deletion, check for each pair of edges assigned to the same page whether
they intersect. It can also be solved in 4m · nO(1) time: for each of the 2m subsets of E(G),
use Corollary 2 to decide whether its fixed-vertex-order page number is at most p.

We now consider a new parameter in addition to p. The edge set of an ordered graph
(G, σ) corresponds to a set of open intervals on the real line; namely every edge (u, v) of G is
mapped to the interval (σ(u), σ(v)). Given a set I of intervals, a hitting set for I is a set
of points on the real line such that each interval contains at least one of the points. Note
that a hitting set can be much smaller than a vertex cover: an ordered graph (G, σ) with a
hitting set of size 1 can have linear vertex cover number (e.g., G = Kn,n). Given a set I of
m open intervals, a minimum-size hitting set for I can be found in O(m log m) time by a
simple greedy algorithm.

For two edges (u, v), (u′, v′) of (G, σ), we say that (u, v) contains (u′, v′) if the interval
(σ(u), σ(v)) contains the interval (σ(u′), σ(v′)). If (u, v) and (u′, v′) cross with respect to σ,
then there is no containment, otherwise one contains the other.

Hitting set of size 1. We start by treating the following special case of Edge Deletion
to p-Page Planar. Given an ordered graph (G, σ), a point z on the real line that is
contained in every interval defined by E(G), a number p of pages, and a threshold k ≥ 0, we

SWAT 2024

1:10 Eliminating Crossings in Ordered Graphs

z
v10v9v8v7v1 v2 v3 v4 v5 v6

(a) Intervals corrsponding to the edges of G;
auxiliary graph G+ without transitive edges.

ℓ

p1

p2

p3

v1

v10

(b) Optimal solution for (a): only the edge (v4, v10) is
deleted; the pages correspond to the colored paths in (a).

Figure 3 Instance with hitting set of size 1 and optimal solution for three pages.

want to decide whether there is a set E′ ⊆ E(G) of size at most k such that that G − E′ can
be drawn without crossings on p pages (respecting vertex order σ). Note that if there is a
hitting set of size 1, then G is necessarily bipartite and that z /∈ σ(V (G)). We show that
Edge Deletion to p-Page Planar can be solved efficiently if h(G, σ) = 1.

Alam et al. [3] have called this setting separated; they showed that the mixed page number
of an ordered Kn,n is ⌈2n/3⌉ in this case. While we study the (usual) page number of an
ordered graph where each page corresponds to a stack layout, the mixed page number asks
for the smallest number of stacks and queues (where nested edges are not allowed on the
same page) needed to draw an ordered graph.

▶ Theorem 9. Given an ordered graph (G, σ) with n vertices, m edges, and h(G, σ) = 1,
Edge Deletion to p-Page Planar can be solved in O(m3 log n log log p) time.

Proof. From (G, σ) we construct an acyclic directed auxiliary graph G+, from which we
then construct an s–t flow network N such that an integral maximum s–t flow of minimum
cost in N corresponds to p vertex-disjoint directed paths in G+ of maximum total length,
and each path in G+ corresponds to a set of edges in G that can be drawn without crossings
on a single page in a book embedding of (G, σ). The set E′ of edges that need to be deleted
from G such that G − E′ has page number p corresponds to the vertices of G+ that do not
lie on any of the p paths.

We now describe these steps in detail. The auxiliary graph G+ has a node for each
edge of G and an arc from edge node (a, b) to edge node (a′, b′) if in (G, σ) the edge (a′, b′)
contains the edge (a, b) (meaning that the edges do not cross); see Figure 3. Hence G+ has
exactly m nodes and at most

(
m
2
)

edges, and can be constructed from (G, σ) in O(m2) time.
The s–t flow network N is defined as follows. For each node v of G+, introduce two

vertices vin and vout in N , connected by the arc (vin, vout) of capacity 1 and cost −1. All
other arcs in N have cost 0. For each arc (u, v) of G+, add the arc (uout, vin) of capacity 1
to N . Then add to N new vertices s, s′, and t, the edge (s, s′) of capacity p, and the edges
{(s′, vin), (vout, t) : v ∈ V (G+)} of capacity 1. Summing up, N has 2m + 3 vertices, at most(

m
2
)

+ 3m + 1 edges, and can be constructed from G+ in O(m2) time.
Due to the edge (s, s′), a maximum flow in N has value at most p. If m ≥ p (otherwise

the instance is trivial, and no edge has to be deleted), then a maximum flow has value
exactly p. Since all edge capacities and costs are integral, the minimum-cost circulation
algorithm of Ahuja, Goldberg, Orlin, and Tarjan [2] yields an integral flow. Since all edges

A. Agrawal, S. Cabello, M. Kaufmann, S. Saurabh, R. Sharma, Y. Uno, and A. Wolff 1:11

(except for (s, s′)) have edge capacity 1 and N is acyclic, the edges (except for (s, s′)) with
non-zero flow form p paths of flow 1 from s′ to t that are vertex-disjoint except for their
endpoints. These paths (without s′ and t) correspond to vertex-disjoint paths in G+. Due to
the negative cost of the edges of type (vin, vout), the flow maximizes the number of such edges
with flow. This maximizes the number of vertices in G+ that lie on one of the p paths. This,
in turn, maximizes the number of edges of G that can be drawn without crossings on p pages
in a book embedding of (G, σ). Given a flow network with n′ vertices, m′ edges, maximum
capacity U , and maximum absolute cost value C, the algorithm of Ahuja et al. runs in
O(n′m′(log log U) log(n′C)) time. In our case, n′ ∈ O(m), m′ ∈ O(m2), U = p, and C = 1.
Hence computing the maximum flow of minimum cost in N takes O(m3 log n log log p) time.
This dominates the time needed to construct G+ and N . ◀

In our forthcoming algorithm, we will use an extension of this result, as follows. Two
subsets E′, E′′ ⊂ E(G) are compatible if |E′| = |E′′| and there is an enumeration e′

1, . . . , e′
|E′|

of E′ and an enumeration e′′
1 , . . . , e′′

|E′| of E′′ such that e′
i is contained in e′′

i for all i ∈ [|E′|].
Note that we may have E′ ∩ E′′ ̸= ∅.

▶ Lemma 10. Given an ordered graph (G, σ) with n vertices, m edges, h(G, σ) = 1, and
subsets E′, E′′ ⊂ E(G) with p = |E′| = |E′′|, we can decide, in O(m3 log n log log p) time,
whether E′ and E′′ are compatible and, if yes, solve a version of Edge Deletion to p-Page
Planar where, on each page, one edge of E′ is contained in all other edges and one edge of
E′′ contains all other edges on that page.

Proof. We adapt the proof of Theorem 9 by modifying the flow network N that is considered.
More precisely, we insert arcs from s′ only to the edges e′ ∈ E′, and we insert arcs to t only
from the edgs e′′ ∈ E′′. No other arcs go out from s′ nor go into t.

Note that E′ and E′′ are compatible if and only if the value of the maximum flow in the
modified flow network is exactly p. ◀

Our technique, based on flows, does not allow us to enforce a pairing of the edges in E′

and in E′′. With other words, we cannot select edges e′
1, e′

2 ∈ E′ and e′′
1 , e′′

2 ∈ E′′, and insist
that e′

1 and e′′
1 go to one page, and e′

2 and e′′
2 go to another page. This difficulty will play an

important role in our forthcoming extension.

An XP algorithm for the general case. Let H be a finite hitting set of (G, σ). We assume,
without loss of generality, that H ∩ σ(V (G)) = ∅. Given a subset X ⊆ H, we say that an
edge (u, v) of G with σ(u) < σ(v) bridges X if σ(u) < min X, max X < σ(v), and X is the
largest subset of H with this property. For each X ⊆ H, let EX be the subset of edges
of (G, σ) that bridge X. For example, in Figure 4, |H| = 3, and the edges in EH lie in the
outer gray region.

Consider any drawing of a subgraph of (G, σ) with edge set Ẽ on p pages without crossings.
For each page q ∈ [p], let Ẽq be the set of edges in Ẽ that are on page q, and let X q be the
family of subsets of H bridged by some edge of Ẽq. Since there are no crossings on page q,
the sets of X q form a so-called laminar family: any two sets in X q are either disjoint or one
contains the other. For each X ∈ X q, let eq

X be the smallest edge of Ẽq that bridges X, and
let fq

X be the largest edge of Ẽq that bridges X; it may be that eq
X = fq

X . Note that for each
X, Y ∈ X q with X ⊊ Y , the edge eq

Y contains fq
X . We say that the partial encoding of Ẽ on

page q is Eq = {(X, eq
X , fq

X) | X ∈ X q} and the encoding of Ẽ is ⟨E1, . . . , Ep⟩.
When a set X is bridged on only one page of an optimal drawing, say X ∈ X 1, then we

just have to select as many edges as possible without crossing from those contained between

SWAT 2024

1:12 Eliminating Crossings in Ordered Graphs

e1{b,c} = f1
{b,c}

a
b

c

e1{a,b,c}

f1
{a,b,c}

f2
{a,b}

e2{a,b}

f2
{a,b,c}

f2
{c}

e1{c}

Figure 4 Encoding ⟨E1, E2⟩ of a 2-page drawing for an instance with hitting set H = {a, b, c}
(red crosses). For each X ⊆ H and page q ∈ [2], the edges eq

X and fq
X (if they exist) are thicker than

the other edges. Each colored region corresponds to a set of edges that bridge the same subset of H.

e1
X and f1

X , because the edges of EX cannot appear in any other page. The challenge that
we face is the following: when the same set X appears in X q for different q ∈ [p], the choices
of which edges are drawn in each of those pages are not independent. However, we can treat
all such pages together, exchanging some parts of the drawings from one page to another, as
follows. For each X ⊆ H, let QX = {q ∈ [p] : X ∈ X q} be the set of pages where some edges
bridge X.

▶ Lemma 11. Consider Ẽ ⊆ E(G) that can be drawn in p pages without crossings, and let
⟨E1, . . . , Ep⟩ be the corresponding encoding. For every X ⊆ H with QX ̸= ∅, let Ẽ′

X = {eq
X |

q ∈ QX}, let Ẽ′′
X = {fq

X | q ∈ QX}, and let FX be the set of edges in EX obtained when
using Lemma 10 for p′ = |QX | pages with boundary edges Ẽ′

X and Ẽ′′
X . Then the ordered

subgraph with edge set
⋃

X FX can be drawn on p pages without crossings and contains at
least as many edges as Ẽ.

Proof. Consider a fixed X ⊆ H with QX ̸= ∅. For each q ∈ QX , let F q
X be the set of edges

in FX that appear on the same page as eq
X ∈ Ẽ′

X when using the algorithm of Lemma 10.
Since each element of Ẽ′′

X is on a different page, let σ : QX → QX be the permutation such
that f

σ(q)
X is the unique element of Ẽ′′

X in F q
X .

We make a drawing of Ê := (Ẽ \ EX) ∪ FX on p pages by assigning edges to pages, as
follows. For each q ∈ [p] \ QX , we just set Êq = Ẽq. For each q ∈ QX , let Êq be obtained
from Ẽσ(q) by removing the edges contained in f

σ(q)
X , adding the edges of F q

X , and adding the
edges of Ẽq contained in eq

X . For an example, see Figure 5. For each q, the edges of Êq can
be drawn on a single page without crossings. This is obvious for q ∈ [p] \ QX . For q ∈ QX ,
this is true because eq

X and f
σ(q)
X act as shields between F q

X and the other two groups of
edges, one containing f

σ(q)
X and the other contained in eq

X .
Since Ẽ ∩ EX =

(⋃
q∈QX

Ẽq
)

∩ EX is a feasible solution for the problem solved in
Lemma 10, we have |Ẽ ∩ EX | ≤ |FX |. Therefore Ê = (Ẽ \ EX) ∪ FX is at least as large as Ẽ.

Summarizing: for a fixed X, we have converted Ẽ into another set of edges Ê that is no
smaller and can be drawn without crossings on p pages such that FX = Ê ∩ EX and such
that no edge outside EX is changed (that is, Ẽ \ EX = Ê \ EX). In general, the encoding
⟨E1, . . . , Ep⟩ changes, but the sets Ẽ′

X , Ẽ′′
X remain unchanged for every set X. We now iterate

this process for each X ⊆ H. The last set Ê that we obtain is
⋃

X FX because every edge
of Ẽ is in EX for some X ⊆ H. The result follows. ◀

A. Agrawal, S. Cabello, M. Kaufmann, S. Saurabh, R. Sharma, Y. Uno, and A. Wolff 1:13

f1
X

e1X

e2X

f2
X

e1X

e2X

f
σ(1)
X

f
σ(2)
X

edges of Ẽ2 containing f2
X

edges of Ẽ1 containing f1
X edges of Ẽσ(1) containing f

σ(1)
X

edges of Ẽσ(2) containing f
σ(2)
X

Figure 5 Left: A 2-page drawing of Ẽ. The gray region corresponds to the set ẼX = Ẽ1
X ∪ Ẽ2

X

when X is the set of the inner five red crosses. Right: drawing of a set Ê = (Ẽ \ EX) ∪ FX where
σ(1) = 2 and σ(2) = 1. Note that ẼX and ÊX can be different; namely if FX ̸= Ẽ1

X ∪ Ẽ2
X .

We now argue that, on a single page q ∈ [p], the number of possible partial encodings Eq

is at most m4h−2. First note that X q contains at most 2h − 1 sets: at most h sets in X q

are inclusionwise minimal, and any non-minimal element X ∈ X q is obtained by joining two
others. This means that Eq is characterized by selecting at most 4h − 2 edges eq

X and fq
X ,

and such a selection already determines implicitly the sets X q. When considering all pages
together, there are at most m(4h−2)·p encodings ⟨E1, . . . , Ep⟩, and, for each X ∈

⋃
q∈[p] X q,

we have to apply the algorithm of Lemma 10, which takes O(|EX |3 log n log log p) time. Since
the edge sets EX are pairwise disjoint for different X ⊆ H, for each encoding we spend
O(m3 log n log log p) time. Finally, we return the best among all encodings that give rise
to a valid drawing without crossings. Since the encoding of an optimal solution will be
considered at least once, Lemma 11 implies that we find an optimal solution. Therefore, the
total running time is O(m(4h−2)·p+3 log n log log p). We summarize our result.

▶ Theorem 12. Edge Deletion to p-Page Planar is in XP with respect to h + p.

5 Multiple-Track Crossing Minimization

Let G = (A ∪ B, E) be a bipartite graph where all edges connect a vertex of A to a vertex
of B and A ∩ B = ∅. We further have a given linear order σA for the vertices of A. For the
vertices of B we do not have any additional information or constraints. In this section we
consider spine+t-track drawings of G, defined as follows:

the vertices of A are placed on a line ℓ0, called spine, in the order determined by σA;
the vertices of B are placed on t different lines ℓ1, . . . , ℓt parallel to the spine; each line ℓq

is placed on a different page (half-plane) πq of a book;
all pages π1, . . . , πt have ℓ0 as a common boundary and are otherwise pairwise disjoint;
for each q ∈ [t], the edges with endpoints in ℓ0 and ℓq are drawn as straight-lines edges in
the page πq.

One can interpret this as a drawing in three dimension, as shown in Figure 6. Note that
because the graph is bipartite and each edge has a vertex in A and a vertex in B, there are
no edges connecting two vertices in the spine, and in particular there are no “nested” edges.

SWAT 2024

1:14 Eliminating Crossings in Ordered Graphs

ℓ0

ℓ1

ℓ2

ℓ3

Figure 6 A spine+3-track drawing. In this example, B1 has two vertices, B2 has four vertices
and B3 has three vertices. The drawing has 2 + 5 + 2 = 9 crossings.

ℓ0, fixed order for A

ℓ1, variable order for B
b1 b2 b3 b1 b2b3

Figure 7 Two different orders σB give different number of crossings in the spine+1-track drawing:
10 on the left and 2 on the right.

To describe the drawing combinatorially, it suffices to partition B into sets B1, . . . , Bt,
one per line, and we have to decide for each Bq the order σBq

of the vertices Bq along ℓq.
The number of crossings of the drawing is the sum of the number of crossings within each
page, where the number of crossings within a page is the number of pairs of edges that
cross each other. The value crt((A, σA), B, E) is the minimum number of crossings over all
spine+t-track drawings, and the purpose of this section is to discuss its computation.

We start discussing spine+1-track drawings and its corresponding value cr1((A, σA), B, E).
See Figure 7 for examples of drawings. This is the minimum number of crossings in a two-layer
drawing with the order on one layer, A in this case, fixed. We want to choose the order σB

that minimizes the number of crossings. Let cr1((A, σA), (B, σB), E) be the crossing number
for a fixed order σB. Then cr1((A, σA), B, E) is the minimum of cr1((A, σA), (B, σB), E)
when we optimize over all orders σB of B. The obvious approach is to try all different
possible orders σB of B, compute cr1((A, σA), (B, σB), E) for each of them, and take the
minimum. This yields an algorithm with time complexity 2O(n log n). We improve over this
trivial algorithm as follows.

▶ Theorem 13. We can compute cr1((A, σA), B, E) in O(2nn) time, where n = |A| + |B|.

Proof. Construct a complete, directed, edge-weighted graph H as follows:
V (H) = B

put all directed edges in H;
the directed edge (x, y) of H gets weight cx,y = cr1((A, σA), ({x, y}, σx,y), E), where σx,y

is the order for {x, y} that places x before y.
An ordering of B corresponds to a Hamiltonian path in H. Consider any Hamiltonian path
in H defined by an order σB. Since each crossing happens between two edges incident to
different vertices of B, we have

cr1((A, σA), (B, σB), E) =
∑

x, y ∈ B
σB(x) < σB(y)

cx,y =
∑
x∈B

∑
y ∈ B

σB(x) < σB(y)

cx,y. (2)

With this interpretation, the task is to find in H a Hamiltonian path such that the sum
of the c·,·-weights from each vertex to all its successors is minimized. This problem is

A. Agrawal, S. Cabello, M. Kaufmann, S. Saurabh, R. Sharma, Y. Uno, and A. Wolff 1:15

amenable to dynamic programming across subsets of vertices, as it is done for the Traveling
Salesperson Problem; see [5] or [12, Section 6.6].

We define a table C by setting, for each X ⊆ B,

C[X] = cr1((A, σA), X, {(a, x) ∈ E | x ∈ X, a ∈ A}).

Then C[X] is the number of crossings when we remove the vertices B \ X from H. We are
interested in computing C[B] because C[B] = cr1((A, σA), B, E).

We obviously have C[X] = 0 for each X ⊆ B with |X| ≤ 1. Whenever |X| > 1, we use (2)
and the definition of C[X] to obtain the recurrence

C[X] = min
y∈X

C[X \ {y}] +
∑

x∈X\{y}

cx,y

 . (3)

The proof of this is a standard proof in dynamic programming, where y represents the last
vertex of X in the ordering.

Each value cx,y can be computed in O(degG(x) + degG(y)) = O(n) time, which means
that, over all pairs (x, y), we spend O(n3) time. Each value η[X, y] :=

∑
x∈X\{y} cx,y, defined

for X ⊆ B and y ∈ X, can be computed for increasing values of |X| in constant time per
value by noting that

for every X ⊆ B and distinct y, z ∈ X:
∑

x∈X\{y}

cx,y = cz,y +
∑

x∈X\{y,z}

cx,y.

Therefore, we compute the value η[X, y] for every X ⊆ B and y ∈ X in Θ
(∑n

k=0
(

n
k

)
k
)

=
Θ(2nn) total time. (The direct computation using the sums anew for each value would take
Θ

(∑n
k=0

(
n
k

)
k2)

= Θ(2nn2), which is strictly larger.)
After this we can compute C[X] for increasing values of |X| using the recurrence of

Equation (3), which means that we spend O(|X|) time for each X. This step also takes
O(2nn) time for all X. Finally we return C[B]. An optimal solution can be recovered using
standard book-keeping techniques. ◀

Now we consider the case of arbitrary track number t.

▶ Theorem 14. We can compute crt((A, σA), B, E) in 2nnO(1) time for every t > 1, where
n = |A| + |B|. For t = 1 and t = 2, the value can be computed in O(2nn) time.

Proof. Once we fix a set Bq for the qth page, we can optimize the order σBq
independently

of all other decisions. Therefore, we want to compute

min
t∑

q=1
cr1((A, σA), Bq, Eq),

where Eq is the set of edges connecting vertices from A to Bq, and where the minimum is
only over all the partitions B1, . . . , Bt of B.

As we did in the proof of Theorem 13, for each subset X ⊆ B, we define

C[X] = cr1((A, σA), X, {(a, x) ∈ E | x ∈ X, a ∈ A}).

In the proof of Theorem 13 we argued that the values C[X] can be computed in O(2nn)
time for all X ⊆ B simultaneously.

SWAT 2024

1:16 Eliminating Crossings in Ordered Graphs

We have to compute now

min
{

t∑
q=1

C[Bq] : B1, . . . , Bt is a partition of B

}
.

The case of t = 1 has been covered in Theorem 13. For t = 2, we have to compute

min {C[B1] + C[B \ B1] | B1 ⊆ B} ,

which can be done in O(2n) additional time iterating over all subsets B1 of B.
For t > 2, we use the algorithm of Björklund et al. [8] for subset convolution, as follows.

Define for each X ⊆ B and for q ∈ [t] the “entry table”

T [X, q] = crq((A, σA), X, {(a, x) ∈ E | x ∈ X, a ∈ A})
= min {C[B1] + . . . + C[Bq] | B1, . . . , Bq is a partition of X} .

We obviously have T [X, 1] = C[X] for all X. For q > 1, we have the recursive relation

T [X, q] = min {T [Y, q − 1] + C[X \ Y] | Y ⊆ X} .

Therefore, for q > 1, the function X 7→ T [X, q] is, by definition, the subset convolution of
the functions X 7→ T [X, q − 1] and X 7→ C[X] in the (min, +) ring. These functions take
integer values on {0, . . . , n4} because n4 is an upper bound for crq((A, σA), B, E) for any q.
It follows from [8] that one can obtain T [X, q] for all X ⊆ B in 2nnO(1) time, assuming that
T [·, q − 1] and C[·] are already available. We compute the entries T [·, q] for q = 2, . . . , t,
which adds a multiplicative t ≤ n to the final running time. ◀

Using the theorem for increasing values of t, we obtain the following.

▶ Corollary 15. We can compute the smallest value t such that crt((A, σA), B, E) = 0 in
2n · nO(1) time, where n = |A| + |B|.

6 Open Problems

1. Could we use the concept of the conflict graph for other crossing reduction problems?
2. Is Edge Deletion to 1-Page d-Planar W [1]-hard with respect to the natural

parameter k if d is part of the input? Can we reduce from Independent Set? Note
that Vertex Deletion to Degree-d is W [1]-hard with respect to treewidth [6] and
that outer-d planar graphs have treewidth O(d) [10] (which also follows from Lemma 8).

3. What if the vertex order is not given? In other words, what is the parameterized
complexity of edge deletion to outer-d planarity?

4. What about exact algorithms for computing the crossing number of an ordered graph? As
Masuda et al. [29] showed, the problem is NP-hard for two pages. In their NP-hardness
reduction, they use a large number of crossings, and it is easy to get an algorithm that
is exponential in the number of edges; see Theorem 1. Can we get a running time of
2n ·nO(1) or perhaps even subexponential in n? Recall that the algorithm of Liu et al. [26]
checks in n · (cr +2)O(pw2) time whether a graph with pathwidth pw can be drawn on a
given number of pages with at most cr crossings in total.

A. Agrawal, S. Cabello, M. Kaufmann, S. Saurabh, R. Sharma, Y. Uno, and A. Wolff 1:17

References
1 Akanksha Agrawal, Sergio Cabello, Michael Kaufmann, Saket Saurabh, Roohani Sharma,

Yushi Uno, and Alexander Wolff. Eliminating crossings in ordered graphs. arXiv report, 2024.
arXiv:2404.09771.

2 Ravindra K. Ahuja, Andrew V. Goldberg, James B. Orlin, and Robert E. Tarjan. Finding
minimum-cost flows by double scaling. Math. Progr., 53:243–266, 1992. doi:10.1007/
BF01585705.

3 Jawaherul Md. Alam, Michael A. Bekos, Martin Gronemann, Michael Kaufmann, and Sergey
Pupyrev. The mixed page number of graphs. Theoret. Comput. Sci., 931:131–141, 2022.
doi:10.1016/j.tcs.2022.07.036.

4 Patricia Bachmann, Ignaz Rutter, and Peter Stumpf. On the 3-coloring of circle graphs.
In Michael Bekos and Markus Chimani, editors, Proc. Int. Symp. Graph Drawing & Net-
work Vis. (GD), volume 14465 of LNCS, pages 152–160. Springer, 2023. doi:10.1007/
978-3-031-49272-3_11.

5 Richard Bellman. Dynamic programming treatment of the travelling salesman problem. J.
ACM, 9(1):61–63, 1962. doi:10.1145/321105.321111.

6 Nadja Betzler, Robert Bredereck, Rolf Niedermeier, and Johannes Uhlmann. On bounded-
degree vertex deletion parameterized by treewidth. Discrete Appl. Math., 160(1):53–60, 2012.
doi:j.dam.2011.08.013.

7 Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani, and Martin Nöllenburg. Parameterized
algorithms for book embedding problems. J. Graph Algorithms Appl., 24(4):603–620, 2020.
doi:10.7155/jgaa.00526.

8 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets Möbius:
Fast subset convolution. In David S. Johnson and Uriel Feige, editors, Proc. 39th Ann. ACM
Symp. Theory Comput. (STOC), pages 67–74, 2007. doi:10.1145/1250790.1250801.

9 Sergio Cabello and Bojan Mohar. Adding one edge to planar graphs makes crossing number
and 1-planarity hard. SIAM J. Comput., 42(5):1803–1829, 2013. doi:10.1137/120872310.

10 Steven Chaplick, Myroslav Kryven, Giuseppe Liotta, Andre Löffler, and Alexander Wolff.
Beyond outerplanarity. In Fabrizio Frati and Kwan-Liu Ma, editors, Proc. 25th Int. Symp.
Graph Drawing & Network Vis. (GD), volume 10692 of LNCS, pages 546–559. Springer, 2018.
doi:10.1007/978-3-319-73915-1_42.

11 Fan R. K. Chung, Frank Thomson Leighton, and Arnold L. Rosenberg. Embedding graphs in
books: A layout problem with applications to VLSI design. SIAM J. Algebr. Discrete Meth.,
8(1):33–58, 1987. doi:10.1137/0608002.

12 Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh V. Vazirani. Algorithms. McGraw-
Hill, 2008.

13 Huib Donkers, Bart M. P. Jansen, and Michał Włodarczyk. Preprocessing for outerplanar
vertex deletion: An elementary kernel of quartic size. Algorithmica, 84(11):3407–3458, 2022.
doi:10.1007/s00453-022-00984-2.

14 Zdeněk Dvořák and Sergey Norin. Treewidth of graphs with balanced separations. J. Comb.
Theory, Ser. B, 137:137–144, 2019. doi:10.1016/j.jctb.2018.12.007.

15 Michael R. Fellows, Jiong Guo, Hannes Moser, and Rolf Niedermeier. A generalization of
Nemhauser and Trotter’s local optimization theorem. J. Comput. Syst. Sci., 77(6):1141–1158,
2011. doi:10.1016/j.jcss.2010.12.001.

16 Fanica Gavril. Algorithms for a maximum clique and a maximum independent set of a circle
graph. Networks, 3(3):261–273, 1973. doi:10.1002/net.3230030305.

17 Martin Grohe. Computing crossing numbers in quadratic time. J. Comput. Syst. Sci.,
68(2):285–302, 2004. doi:10.1016/j.jcss.2003.07.008.

18 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In Chandra Chekuri, editor, Proc. Ann. ACM-SIAM Symp. Discrete Algorithms
(SODA), pages 1802–1811, 2014. doi:10.1137/1.9781611973402.130.

SWAT 2024

https://arxiv.org/abs/2404.09771
https://doi.org/10.1007/BF01585705
https://doi.org/10.1007/BF01585705
https://doi.org/10.1016/j.tcs.2022.07.036
https://doi.org/10.1007/978-3-031-49272-3_11
https://doi.org/10.1007/978-3-031-49272-3_11
https://doi.org/10.1145/321105.321111
https://doi.org/j.dam.2011.08.013
https://doi.org/10.7155/jgaa.00526
https://doi.org/10.1145/1250790.1250801
https://doi.org/10.1137/120872310
https://doi.org/10.1007/978-3-319-73915-1_42
https://doi.org/10.1137/0608002
https://doi.org/10.1007/s00453-022-00984-2
https://doi.org/10.1016/j.jctb.2018.12.007
https://doi.org/10.1016/j.jcss.2010.12.001
https://doi.org/10.1002/net.3230030305
https://doi.org/10.1016/j.jcss.2003.07.008
https://doi.org/10.1137/1.9781611973402.130

1:18 Eliminating Crossings in Ordered Graphs

19 Bart M. P. Jansen and Michał Włodarczyk. Lossy planarization: a constant-factor approximate
kernelization for planar vertex deletion. In Stefano Leonardi and Anupam Gupta, editors,
Proc. 54th Ann. ACM Symp. Theory Comput. (STOC), pages 900–913, 2022. doi:10.1145/
3519935.3520021.

20 Ken-ichi Kawarabayashi. Planarity allowing few error vertices in linear time. In Proc. Ann.
IEEE Symp. Foundat. Comput. Sci. (FOCS), pages 639–648, 2009. doi:10.1109/FOCS.2009.
45.

21 Ken-ichi Kawarabayashi and Bruce A. Reed. Computing crossing number in linear time. In
David S. Johnson and Uriel Feige, editors, Proc. 39th Ann. ACM Symp. Theory Comput.
(STOC), pages 382–390, 2007. doi:10.1145/1250790.1250848.

22 Yasuaki Kobayashi and Hisao Tamaki. A fast and simple subexponential fixed parameter
algorithm for one-sided crossing minimization. Algorithmica, 72:778–790, 2015. doi:10.1007/
s00453-014-9872-x.

23 Yasuaki Kobayashi and Hisao Tamaki. A faster fixed parameter algorithm for two-layer
crossing minimization. Inform. Process. Lett., 116(9):547–549, 2016. doi:j.ipl.2016.04.012.

24 Michael Lampis and Manolis Vasilakis. Structural parameterizations for two bounded degree
problems revisited. CoRR, abs/2304.14724, 2023. doi:10.48550/arXiv.2304.14724.

25 Yunlong Liu, Jie Chen, and Jingui Huang. Parameterized algorithms for fixed-order book
drawing with bounded number of crossings per edge. In Weili Wu and Zhongnan Zhang,
editors, Proc. 14th Int. Conf. Combin. Optim. Appl. (COCOA), volume 12577 of LNCS, pages
562–576. Springer, 2020. doi:10.1007/978-3-030-64843-5_38.

26 Yunlong Liu, Jie Chen, Jingui Huang, and Jianxin Wang. On parameterized algorithms
for fixed-order book thickness with respect to the pathwidth of the vertex ordering. Theor.
Comput. Sci., 873:16–24, 2021. doi:10.1016/j.tcs.2021.04.021.

27 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Trans. Algorithms,
11(2):15:1–15:31, 2014. doi:10.1145/2566616.

28 Dániel Marx and Ildikó Schlotter. Obtaining a planar graph by vertex deletion. Algorithmica,
62(3-4):807–822, 2012. doi:10.1007/s00453-010-9484-z.

29 Sumio Masuda, Kazuo Nakajima, Toshinobu Kashiwabara, and Toshio Fujisawa. Crossing
minimization in linear embeddings of graphs. IEEE Trans. Computers, 39(1):124–127, 1990.
doi:10.1109/12.46286.

30 Nicholas Nash and David Gregg. An output sensitive algorithm for computing a maximum
independent set of a circle graph. Inf. Process. Lett., 110(16):630–634, 2010. doi:10.1016/j.
ipl.2010.05.016.

31 Naomi Nishimura, Prabhakar Ragde, and Dimitrios M. Thilikos. Fast fixed-parameter tractable
algorithms for nontrivial generalizations of vertex cover. Discret. Appl. Math., 152(1-3):229–245,
2005. doi:10.1016/j.dam.2005.02.029.

32 Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper. Res.
Lett., 32(4):299–301, 2004. doi:10.1016/J.ORL.2003.10.009.

33 Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding
of hierarchical system structures. IEEE Trans. Syst. Man Cybernetics, 11(2):109–125, 1981.
doi:10.1109/TSMC.1981.4308636.

34 Walter Unger. On the k-colouring of circle-graphs. In Robert Cori and Martin Wirsing, editors,
Proc. 5th Ann. Symp. Theoret. Aspects Comput. Sci. (STACS), volume 294 of LNCS, pages
61–72. Springer, 1988. doi:10.1007/BFb0035832.

35 Walter Unger. The complexity of colouring circle graphs. In Alain Finkel and Matthias
Jantzen, editors, Proc. 9th Ann. Symp. Theoret. Aspects Comput. Sci. (STACS), volume 577
of LNCS, pages 389–400. Springer, 1992. doi:10.1007/3-540-55210-3_199.

36 Gabriel Valiente. A new simple algorithm for the maximum-weight independent set problem
on circle graphs. In Toshihide Ibaraki, Naoki Katoh, and Hirotaka Ono, editors, Proc. Int.
Symp. Algorithms Comput. (ISAAC), volume 2906 of LNCS, pages 129–137. Springer, 2003.
doi:10.1007/978-3-540-24587-2_15.

https://doi.org/10.1145/3519935.3520021
https://doi.org/10.1145/3519935.3520021
https://doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1145/1250790.1250848
https://doi.org/10.1007/s00453-014-9872-x
https://doi.org/10.1007/s00453-014-9872-x
https://doi.org/j.ipl.2016.04.012
https://doi.org/10.48550/arXiv.2304.14724
https://doi.org/10.1007/978-3-030-64843-5_38
https://doi.org/10.1016/j.tcs.2021.04.021
https://doi.org/10.1145/2566616
https://doi.org/10.1007/s00453-010-9484-z
https://doi.org/10.1109/12.46286
https://doi.org/10.1016/j.ipl.2010.05.016
https://doi.org/10.1016/j.ipl.2010.05.016
https://doi.org/10.1016/j.dam.2005.02.029
https://doi.org/10.1016/J.ORL.2003.10.009
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1007/BFb0035832
https://doi.org/10.1007/3-540-55210-3_199
https://doi.org/10.1007/978-3-540-24587-2_15

A. Agrawal, S. Cabello, M. Kaufmann, S. Saurabh, R. Sharma, Y. Uno, and A. Wolff 1:19

37 Mingyu Xiao. On a generalization of Nemhauser and Trotter’s local optimization theorem. J.
Comput. Syst. Sci., 84:97–106, 2017. doi:10.1016/j.jcss.2016.08.003.

38 Meirav Zehavi. Parameterized analysis and crossing minimization problems. Comput. Sci.
Rev., 45:100490, 2022. doi:10.1016/j.cosrev.2022.100490.

SWAT 2024

https://doi.org/10.1016/j.jcss.2016.08.003
https://doi.org/10.1016/j.cosrev.2022.100490

Local Spanners Revisited
Stav Ashur #

Department of Computer Science, University of Illinois, Urbana, IL, USA

Sariel Har-Peled #

Department of Computer Science, University of Illinois, Urbana, IL, USA

Abstract
For a set P ⊆ R2 of points and a family F of regions, a local t-spanner of P is a sparse graph G over
P , such that for any region r ∈ F the subgraph restricted to r, denoted by G∩ r, is a t-spanner for
all the points of r∩ P .

We present algorithms for the construction of local spanners with respect to several families of
regions such as homothets of a convex region. Unfortunately, the number of edges in the resulting
graph depends logarithmically on the spread of the input point set. We prove that this dependency
cannot be removed, thus settling an open problem raised by Abam and Borouny. We also show
improved constructions (with no dependency on the spread) of local spanners for fat triangles, and
regular k-gons. In particular, this improves over the known construction for axis-parallel squares.

We also study notions of weaker local spanners where one is allowed to shrink the region a “bit”.
Surprisingly, we show a near linear-size construction of a weak spanner for axis-parallel rectangles,
where the shrinkage is multiplicative. Any spanner is a weak local spanner if the shrinking is
proportional to the diameter of the region.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Geometric graphs, Fault-tolerant spanners

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.2

Related Version Full Version: https://arxiv.org/abs/2201.01715

Funding Sariel Har-Peled: Work on this paper was partially supported by a NSF AF award
CCF-1907400.

Acknowledgements The authors thanks Mohammad Abam for providing us with an early version
of [2]. The authors also thank the reviewers for the numerous detailed comments.

1 Introduction

For a set P of points in Rd, the Euclidean graph KP =
(
P,

(
P
2
))

of P is an undirected graph.
Here, an edge pq ∈

(
P
2
)

is associated with the segment pq, and its weight is the (Euclidean)
length of the segment. Let G = (P, E) and H = (P, E′) be two graphs over the same set of
vertices (usually H is a subgraph of G). Consider two vertices p, q ∈ P , and parameter t ≥ 1.
A path π between p and q in H is a t-path if the length of π in H is at most t · dG(p, q),
where dG(p, q) is the length of the shortest path between p and q in G. The graph H is a
t-spanner of G if there is a t-path in H for every p, q ∈ P . Thus, for a set P ⊆ Rd of points,
a graph G over P is a t-spanner if it is a t-spanner of the Euclidean graph KP . There is a
lot of work on building geometric spanners, see [10] and references there in.

Fault-tolerant spanners

An F-fault-tolerant spanner for P ⊆ Rd is a graph G = (P, E) such that for any region
r ∈ F (i.e., the “attack”), the graph G− r is a t-spanner of KP − r, where G− r denotes
the graph after one deletes from G all the vertices in P ∩ r, and all the edges in G whose
corresponding segments intersect r (See Definition 1 for a formal definition of this notation).

© Stav Ashur and Sariel Har-Peled;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 2; pp. 2:1–2:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stava2@illinois.edu
https://orcid.org/0000-0003-0533-8978
mailto:sariel@illinois.edu
https://orcid.org/0000-0003-2638-9635
https://doi.org/10.4230/LIPIcs.SWAT.2024.2
https://arxiv.org/abs/2201.01715
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Local Spanners Revisited

Surprisingly, as shown by Abam et al. [3], such fault-tolerant spanners can be constructed
where the attack region is any convex set. Furthermore, these spanners have a near linear
number of edges.

Fault-tolerant spanners were first studied with vertex and edge faults, meaning that some
arbitrary set of at most k of vertices and edges has failed. Levcopoulos et al. [8] showed
the existence of k-vertex/edge fault tolerant spanners for a set P of points in some metric
space. Their spanner had O(kn log n) edges, and weight, i.e. sum of edge weights, bounded
by f(k) · wt(MST (P)), where wt(MST (P)) is the weight of MST (P), for some function f .
Lukovszki [9] later achieved a similar construction, improving the number of edges to O(kn),
and was able to prove that the result is asymptotically tight.

Local spanners

Recently, Abam and Borouny [2] introduced the notion of local spanners, which can be
interpreted as having the complement property to being fault-tolerant. For a family F of
regions, a graph G = (P, E) is an F-local t-spanner for P if for any r ∈ F , the subgraph
of G induced on P ∩ r is a t-spanner. Specifically, this induced subgraph G ∩ r contains a
t-path between any p, q ∈ P ∩ r (note that we keep an edge in the subgraph only if both its
endpoints are in r, see Definition 1).

Abam and Borouny [2] showed how to construct such spanners for axis-parallel squares
and vertical slabs. In this work, we further extend their results. They also showed how to
construct such spanners for disks if one is allowed to add Steiner points, but left the question
of how to construct local spanners for disks (without Steiner points) as an open problem.

To appreciate the difficulty in constructing local spanners, observe that unlike regular
spanners, the construction has to take into account many different scenarios as far as which
points are available to be used in the spanner. As a concrete example, a local spanner for
axis-parallel rectangles requires a quadratic number of edges, see Figure 1.1.

Figure 1.1 For any point in the top diagonal and bottom diagonal, there is a fat axis-parallel
rectangle that contains only these two points. Thus, a local spanner requires a quadratic number of
edges in this case.

Namely, regular spanners can rely on using midpoints in their path under the assurance
that they are always there. For local spanners this is significantly harder as natural midpoints
might “disappear”. Intuitively, a local spanner construction needs to use midpoints that are
guaranteed to be present judging only from the source and destination points of the path.

A good jump is hard to find

Most constructions for spanners can be viewed as searching for a way to build a path from
the source to the destination by finding a “good” jump, either by finding a way to move
locally from the source to a nearby point in the right direction, as done in the θ-graph

S. Ashur and S. Har-Peled 2:3

Table 1.1 Known and new results. The notation Oε hides polynomial dependency on ε which is
not specified in the original work.

Region # edges Paper New # edges Location in paper
Local (1 + ε)-spanners

Halfplanes O(ε−2n log n) [3]
Axis-parallel squares Oε(n log6 n) [2] O

(
ε−3n log n

)
Remark 27

Vertical slabs O(ε−2n log n) [2]

Disks+Steiner points Oε(n log2 n) [2]

Disks O
(
ε−2n log Φ

)
Theorem 19

Ω
(
n log(1 + Φ

n
)
)

Lemma 20

Homothets of a convex body O
(
ε−2n log Φ

)
Theorem 19

Homothets of α-fat triangles O
(
(αε)−1n

)
Theorem 23

Homothets of triangles Ω
(
n log(1 + Φ

n
)
)

Lemma 21

δ-weak local (1 + ε)-spanners

Convex body O
(
(ε−1 + δ−2)n

)
Lemma 12

(1− δ)-local (1 + ε)-spanners

Axis-parallel rectangles O
(
(ε−2 + δ−2)n log2 n

)
Theorem 31

construction, or alternatively, by finding an edge in the spanner from the neighborhood of the
source to the neighborhood of the destination, as done in the spanner constructions using a
well-separated pair decomposition (WSPD). Usually, one argues inductively that the spanner
must have (sufficiently short) paths from the source to the start of the jump, and from the
end of the jump to the destination, and then, combining these implies that the resulting
new path is short. These ideas guide our constructions as well. However, the availability of
specific edges depends on the query region, making the search for a good jump significantly
more challenging. Intuitively, the constructions have to guarantee that there are many edges
available, and that at least one of them is useful as a jump regardless of the chosen region
(since slight perturbation in the region might make many of these edges unavailable).

Our results
Almost local spanners

We start by showing that regular geometric spanners are local spanners if one is required to
provide the spanner guarantee only to shrunken regions. Namely, if G is a (1 + ε)-spanner of
P , then for any convex region C, the graph G ∩ C is a spanner for C′ ∩ P , where C′ is the set
of all points in C that are in distance at least δ · diam(C) from its boundary, for δ = Ω(

√
ε) –

see Lemma 12.

Homothets

A homothet of a convex region C is a translated and scaled copy of C. In Section 3 we present
a construction of spanners which surprisingly is not only fault-tolerant for all smooth convex
regions, but is also a local spanner for homothets of a prespecified convex region. This
in particular works for disks, and resolves the aforementioned open problem of Abam and
Borouny [2]. Our construction is somewhat similar to the original construction of Abam

SWAT 2024

2:4 Local Spanners Revisited

et al. [3]. For a parameter ε > 0 the construction of a local (1 + ε)-spanner for homothets
takes O

(
ε−2n log Φ log n

)
time, and the resulting spanner is of size O

(
ε−2n log Φ

)
, where Φ

is the spread of the input point set P , and n = |P |.
The dependency on the spread Φ in the above construction is somewhat disappointing.

However, the lower bound constructions, provided in Section 3.3, show that this is unavoidable
for disks or homothets of triangles.

Thus, the natural question is what are the cases where one can avoid the “curse of the
spread” – that is, cases where one can construct local spanners of near-linear-size independent
of the spread of the input point set.

The basic building block: C-Delaunay triangulation

A key ingredient in the above construction is the concept of Delaunay triangulations induced
by homothets of a convex body. Intuitively, one replaces the unit disk (of the standard
L2-norm) by the provided convex region. It is well known [6] that such diagrams exist, have
linear complexity in the plane, and can be computed quickly. In Section 3.1 we review these
results, and restate the well-known property that the C-Delaunay triangulation is connected
when restricted to a homothet of C. By computing these triangulations for carefully chosen
subsets of the input point set, we get the results stated above.

Specifically, we use well-separated and semi-separated decompositions to compute these
subsets.

Fat triangles

In Section 3.4 we give a construction of local spanners for the family F of homothets of a
given triangle △, and get a spanner of size O

(
(αε)−1n

)
in O

(
(αε)−1n log n

)
time, where α

is the smallest angle in △. This construction is a careful adaptation of the θ-graph spanner
construction to the given triangle, and it is significantly more technically challenging than
the original construction.

k-regular polygons

It seems natural that if one can handle fat triangles, then homothets of k-regular polygons
should readily follow by a simple decomposition of the polygon into fat triangles. Maybe
surprisingly, this is not the case – a critical configuration might involve two points that are on
the interior of two non-adjacent edges of a homothet of the input polygon. We overcome this
by first showing that sufficiently narrow trapezoids provide us with a good jump somewhere
inside the trapezoid, assuming one computes the Delaunay triangulation induced by the
trapezoid, and that the source and destination lie on the two legs of the trapezoid. Next, we
show that such a polygon can be covered by a small number of narrow trapezoids and fat
triangles. By building appropriate graphs for each trapezoid/triangle in the collection, we get
a spanner for homothets of the given k-regular polygon, with size that has no dependency on
the spread. Of course, the size does depend polynomially on k. See Section 3.5 for details,
and Theorem 26 for the precise result.

Multiplicative weak local spanner for rectangles

In the final result we use a less known type of pair-decomposition to construct a weak local
spanner for axis-parallel rectangles. Here, the graph G, constructed over P , has the property
that for any axis-parallel rectangle R, the graph G ∩ R is a (1 + ε)-spanner for all the

S. Ashur and S. Har-Peled 2:5

points of
(
(1− δ)R

)
∩ P , where (1− δ)R is the scaling of the rectangle by a factor of 1− δ

around its center. Intuitively, δ is a parameterization of the weakness of the spanner, which
guarantees (1 + ε)-paths for smaller regions as δ approaches 1. Importantly, this works for
narrow rectangles where this form of multiplicative shrinking is still meaningful (unlike the
diameter based shrinking mentioned above). Contrast this with the lower bound (illustrated
in Figure 1.1) of Ω(n2) on the size of local spanner if one does not shrink the rectangles. See
Section 4 for details of the precise result.

See Table 1.1 for a summary of known results and comparisons to the results of this
paper.

2 Preliminaries

Residual graphs

▶ Definition 1. Let F be a family of regions in the plane. For a region r ∈ F and a
geometric graph G on a point set P , let G− r be the residual graph after removing from G all
the points of P in r and all the edges whose corresponding segments intersect r. Similarly,
let G ∩ r denote the graph restricted to r. Formally, let

G−r =
(
P \r, {uv ∈ E | uv ∩ int(r) = ∅}

)
and G∩r =

(
P∩r, {uv ∈ E | uv ⊆ r}

)
.

where int(r) denotes the interior of r,

2.1 On various pair decompositions
For sets X, Y , let X ⊗ Y = {{x, y} | x ∈ X, y ∈ Y, x ̸= y} be the set of all the (unordered)
pairs of points formed by the sets X and Y .

▶ Definition 2 (Pair decomposition). For a point set P , a pair decomposition of P is a
set of pairs

W =
{
{X1, Y1} , . . . , {Xs, Ys}

}
,

such that
(I) Xi, Yi ⊆ P for every i,

(II) Xi ∩ Yi = ∅ for every i, and
(III)

⋃s
i=1 Xi ⊗ Yi = P ⊗ P .

Its weight is ω(W) =
∑s

i=1(|Xi|+ |Yi|).

The closest pair distance of a set P ⊆ Rd of points is cp(P) = min
p,q∈P,p ̸=q

∥pq∥ . The

diameter of P is diam(P) = max
p,q∈P

∥pq∥ . The spread of P is Φ(P) = diam(P)/cp(P), which
is the ratio between the diameter and closest pair distance. While in general the weight of a
WSPD (defined below) can be quadratic, if the spread is bounded, the weight is near linear.
For X, Y ⊆ Rd, let d(X, Y) = min

p∈X,q∈Y
∥pq∥ be the distance between the two sets.

▶ Definition 3. Two sets X, Y ⊆ Rd are

1/ε-well-separated if max(diam(X), diam(Y)) ≤ ε · d(X, Y),
and 1/ε-semi-separated if min(diam(X), diam(Y)) ≤ ε · d(X, Y).

SWAT 2024

2:6 Local Spanners Revisited

For a point set P , a well-separated pair decomposition (WSPD) of P with parameter
ε is a pair decomposition of P with a set W =

{
{B1, C1} , . . . , {Bs, Cs}

}
, of pairs such that

for all i, the sets Bi and Ci are (1/ε)-well-separated. The notion of (1/ε)-SSPD (a.k.a.
semi-separated pair decomposition) is defined analogously.

▶ Lemma 4 ([1]). Let P be a set of n points in Rd, with spread Φ = Φ(P), and let
ε > 0 be a parameter. Then, one can compute a (1/ε)-WSPD W for P of total weight
ω(W) = O(nε−d log Φ). Furthermore, any point of P participates in at most O

(
ε−d log Φ

)
pairs.

▶ Theorem 5 ([1, 7]). Let P be a set of n points in Rd, and let ε > 0 be a parameter. Then,
one can compute a (1/ε)-SSPD for P of total weight O

(
nε−d log n

)
. The number of pairs in

the SSPD is O
(
nε−d

)
, and the computation time is O

(
nε−d log n

)
.

The following claim is straightforward.

▶ Lemma 6. Given an α-SSPD W of a set P of n points in Rd and a parameter β ≥ 2, one
can refine W into an αβ-SSPD W ′, such that |W ′| = O(|W|/βd) and ω(W ′) = O(ω(W)/βd).

▶ Definition 7. An ε-double-wedge is a region between two lines, where the angle between
the two lines is at most ε.

Two point sets X and Y that each lie in their own face of a shared ε-double-wedge are
ε-angularly separated.

▶ Theorem 8 (Proof in full version [5]). Given a (1/ε)-SSPD W of n points in the plane, one
can refine W into a (1/ε)-SSPD W ′, such that each pair Ξ = {X, Y } ∈ W ′ is contained in an
ε-double-wedge ×Ξ, such that X and Y are contained in the two different faces of the double
wedge ×Ξ. We have that |W ′| = O(|W|/ε) and ω(W ′) = O(ω(W)/ε). The construction time
is proportional to the weight of W ′.

▶ Corollary 9. Let P be a set of n points in the plane, and let ε > 0 be a parameter. Then,
one can compute a (1/ε)-SSPD for P such that every pair is ε-angularly separated. The total
weight of the SSPD is O

(
nε−3 log n

)
, the number of pairs in the SSPD is O

(
nε−3)

, and the
computation time is O

(
nε−3 log n

)
.

2.2 Weak local spanners for fat convex regions
▶ Definition 10. Given a convex region C, let

C⊟δ =
{

p ∈ C
∣∣ d

(
p,R2 \ C

)
≥ δ · diam(C)

}
.

In other words, C⊟δ is the Minkowski difference of C with a disk of radius δ · diam(C).

▶ Definition 11. Consider a (bounded) set C in the plane. Let rin(C) be the radius of
the largest disk contained inside C. Similarly, Rout(C) is the smallest radius of a disk
containing C.

The aspect ratio of a region C in the plane is ar(C) = Rout(C)/rin(C). Given a family
F of regions in the plane, its aspect ratio is ar(F) = maxC∈F ar(C).

Note, that if a convex region C has bounded aspect ratio, then C⊟δ is similar to the
result of scaling C by a factor of 1−O(δ). On the other hand, if C is long and skinny then
this region is much smaller. Specifically, if C has width smaller than 2δ · diam(C), then C⊟δ

is empty.

S. Ashur and S. Har-Peled 2:7

▶ Lemma 12 (Proof in full version [5]). Given a set P of n points in the plane, and parameters
δ, ε ∈ (0, 1), one can construct a graph G over P , in O((ε−1 + δ−2)n log n) time, and with
O

(
(ε−1 + δ−2)n

)
edges, such that for any (bounded) convex region C in the plane, we have

that for any two points p, q ∈ P ∩ C⊟δ the graph C ∩ P has a (1 + ε)-path between p and q.

3 Local spanners of homothets of convex region

Let C be a bounded convex and closed region in the plane (e.g., a disk). A homothet of C is
a scaled and translated copy of C. A point set P is in general position with respect to C, if
no four points of P lie on the boundary of a homothet of C, and no three points are colinear.

A graph G = (P, E) is a C-local t-spanner for P if for any homothet r of C we have that
G ∩ r is a t-spanner of KP ∩ r.

3.1 Delaunay triangulation for homothets
▶ Definition 13 ([6]). Given C as above, and a point set P in general position with respect
to C, the C-Delaunay triangulation of P , denoted by DC(P), is the graph formed by edges
between any two points p, q ∈ P such that there is a homothet of C that contains only p and
q and no other point of P .

▶ Theorem 14 ([6]). For a set P of points, DC(P) can be computed in O(n log n) time
for a pre-determined convex body C. Furthermore, the triangulation DC(P) has O(n) edges,
vertices, and faces.

Figure 3.1 Shrinking of a homothet so that two specific points would lie on its boundary.

▶ Lemma 15 (Proof in full version [5]). Let C be a convex body, and let P be a set of points
in general position with respect to C. Then, if C is a homothet of C that contains two points
p, q ∈ P , then there exists a homothet C ′ ⊆ C of C such that p, q ∈ ∂C ′.

See Figure 3.1 for An illustration of the claim in Lemma 15.
The following standard claim, usually stated for the standard Delaunay triangulations,

also holds for homothets.

▷ Claim 16 (Proof in full version [5]). Let C be a convex body. Given a set P ⊆ R2 of points
in general position with respect to C, let D = DC(P) be the C-Delaunay triangulation of P .
For any homothet C of C, we have that D ∩ C is connected.

3.2 The generic construction
The input is a set P of n points in the plane (in general position) with spread Φ = Φ(P),
a parameter ε ∈ (0, 1), and a convex body C that defines the “unit” ball. The task is to
construct C-local spanner.

SWAT 2024

2:8 Local Spanners Revisited

The algorithm computes a (1/ϑ)-WSPD W of P using the algorithm of Lemma 4,
where ϑ = ε/6. For each pair Ξ = {X, Y } ∈ W, the algorithm computes the C-Delaunay
triangulation DΞ = DC(X ∪ Y), and adds all the edges in DΞ ∩ (X ⊗ Y) to the computed
graph G.
▶ Remark 17. In the above algorithm, the idea of computing a triangulation for each WSPD
pair seems to be new.

3.2.1 Analysis
Size. For each pair Ξ = {X, Y } in the WSPD, its C-Delaunay triangulation contains at
most O(|X|+ |Y |) edges. As such, the number of edges in the resulting graph is bounded by∑

{X,Y }∈W O
(
|X|+ |Y |

)
= O(ω(W)) = O

(
nϑ−2 log Φ

)
, by Lemma 4.

Construction time. The construction time is bounded by∑
{X,Y }∈W

O
(
(|X|+ |Y |) log(|X|+ |Y |)

)
= O(ω(W) log n) = O

(
nϑ−2 log Φ log n

)
.

▶ Lemma 18 (Local spanner property). For P, C, ε as above, let G be the graph constructed
above for the point set P . Then, for any homothet C of C and any two points x, y ∈ P ∩C, we
have that G ∩ C has a (1 + ε)-path between x and y. That is, G is a C-local (1 + ε)-spanner.

Proof. Fix a homothet C of C, and consider two points p, q ∈ P ∩ C. The proof is by
induction on the distance between p and q (or more precisely, the rank of their distance
among the

(
n
2
)

pairwise distances). Consider the pair Ξ = {X, Y } such that x ∈ X and
y ∈ Y .

If xy ∈ DΞ then the claim holds, so assume this is not the case. By the connectivity of
DΞ ∩C, see Claim 16, there must be points x′ ∈ X ∩C, y′ ∈ Y ∩C, such that x′y′ ∈ E(DΞ).
Indeed, let x ∈ X ∩ C, y ∈ Y ∩ C, and let π be some (x, y)-path guaranteed to exist by
connectivity. π must contain an edge with one endpoint in X ∩C and the other in Y ∩C. As
such, by construction, we have that x′y′ ∈ E(G). Furthermore, by the separation property,
we have that

max(diam(X), diam(Y)) ≤ ϑ d(X, Y) ≤ ϑℓ,

where ℓ = ∥xy∥. In particular, ∥x′x∥ ≤ ϑℓ and ∥y′y∥ ≤ ϑℓ. As such, by induction, we have
dG(x, x′) ≤ (1 + ε) ∥xx′∥ ≤ (1 + ε)ϑℓ and dG(y, y′) ≤ (1 + ε) ∥yy′∥ ≤ (1 + ε)ϑℓ. Furthermore,
∥x′y′∥ ≤ (1 + 2ϑ)ℓ. As x′y′ ∈ E(G), we have

dG(x, y) ≤ dG(x, x′) + ∥x′y′∥+ dG(y′, y) ≤ (1 + ε)ϑℓ + (1 + 2ϑ)ℓ + (1 + ε)ϑℓ

≤ (2ϑ + 1 + 2ϑ + 2ϑ)ℓ
= (1 + 6ϑ)ℓ ≤ (1 + ε) ∥xy∥ ,

if ϑ ≤ ε/6. ◀

The result. We thus get the following.

▶ Theorem 19. Let C be a convex body in the plane, let P be a given set of n points in the
plane (in general position with respect to C), and let ε ∈ (0, 1/2) be a parameter. The above
algorithm constructs a C-local (1 + ε)-spanner G. The spanner has O

(
ε−2n log Φ

)
edges, and

the construction time is O
(
ε−2n log Φ log n

)
. Formally, for any homothet C of C, and any

two points p, q ∈ P ∩ C, we have a (1 + ε)-path in G ∩ C.

S. Ashur and S. Har-Peled 2:9

3.3 Lower bounds
3.3.1 A lower bound for local spanner for disks
The result of Theorem 19 is somewhat disappointing as it depends on the spread of the point
set (logarithmically, but still). Next, we show a lower bound proving that this dependency is
unavoidable, even in the case of disks.

Some intuition. A natural way to attempt a spread-independent construction is to try and
emulate the construction of Abam et al. [3] and use an SSPD instead of a WSPD, as the
total weight of the SSPD is near linear (with no dependency on the spread). Furthermore,
after some post-processing, one can assume every pair Ξ = {X, Y } is angularly ε-separated –
that is, there is a double wedge with angle ≤ ε, such that X and Y are on different sides
of the double wedge. The problem is that for a disk #, it might be that the bridge edge
between X and Y that is in DΞ ∩# is much longer than the distance between the two points
of interest. This somewhat counter-intuitive situation is illustrated in Figure 3.2.

Figure 3.2 A bridge too far – the only surviving bridge between the red and blue points is too
far to be useful if the sets of points are not well separated.

▶ Lemma 20. For ε = 1/4, and parameters n and Φ, there is a point set P of n + ⌈log2 Φ⌉
points in the plane, with spread O(nΦ), such that any local (1 + ε)-spanner of P for disks
must have Ω

(
n(1 + log Φ

n)
)

edges, as long as
√

n ≤ Φ ≤ n2n.

p1p2p3p4p5p6

q1

q2

Figure 3.3 The set of disks D1, and the construction of q2.

Proof. Let pi = (−i, 0), for i = 1, . . . , n. Let M = 1 + ⌈log2 Φ⌉, x1 = n2M and q1 = (x1,−1).
For a point p on the x-axis, and a point q below the x-axis and to the right of p, let #p

↓(q) be
the disk whose boundary passes through p and q, and its center has the same x-coordinate as
p. In the jth iteration, for j = 2, . . . , M − 1, Let xj = n2M−j+1 = xj−1/2, and let yj < 0 be
the maximum y-coordinate of a point that lies on the intersection of the vertical line x = xj

and the union of disks D1 ∪ · · · ∪Dj where

Dj =
{
#pi

↓ (qj−1)
∣∣∣ i = 1, . . . , n

}
,

see Figure 3.3 for an illustration of D1.

SWAT 2024

2:10 Local Spanners Revisited

o

c2

c1

c3
α1

α2

α3v2

v1

e2

e3

v3

4

e1

n2

n1

n3

Figure 3.4 For the triangle △ with angles α1, α2, and α3 we create the cones c1, c2, and c3.

Let qj = (xj , 0.99yj).
Clearly, the point qj lies outside all the disks of D1 ∪ . . . ∪ Dj . The construction

now continues to the next value of j. Let P = {p1, . . . , pn, q2, . . . , qM}. We have that
|P | = n + M − 1.

The minimum distance between any points in the construction is 1 (i.e., ∥p1p2∥). Indeed
xM−1 = 4n and thus ∥qM−1p1∥ ≥ 2n. The diameter of P is ∥p1q1∥ =

√
(n + n2M)2 + 1 ≤

2n2M . As such, the spread of P is bounded by ≤ n2M+1 = O(nΦ).
For any i and j, consider the disk #pi

↓ (qj). This disk does not contain any point of
p1, . . . , pi−1, pi+1, . . . , pn since its interior lies below the x-axis. By construction it does not
contain any point qj+1, . . . , qM−1. This disk potentially contains the points qj−1, . . . , q1, but
observe that for any index k ∈ Jj − 1K = {1, . . . , j − 1}, we have that

∥piqk∥ =
√

(i + n2M−k+1)2 +
(
y(qj)

)2
,

which implies that n2M−k+1 ≤ ∥piqk∥ < n(2M−k+1 + 2). We thus have that

∥piqk∥
∥piqj∥

≥ n2M−k+1

n(2M−j+1 + 2) = 2M−j · 2j−k

2M−j + 1 = 2j−k

1 + 1/2M−j
≥ 2

1 + 1/2 = 4
3 > 1 + ε,

since j ∈ JM − 1K. Namely, the shortest path in G between pi and qj , cannot use any of
the points q1, . . . qj−1. As such, the graph G must contain the edge piqj . This implies that
|E(G)| ≥ n(M − 1), which implies the claim. ◀

3.3.2 A lower bound for triangles

▶ Lemma 21 (Proof in full version [5]). For any n > 0, and Φ = Ω(n), one can compute a
set P of n +O(log Φ) points, with spread O(Φn), and a triangle △, such that any △-local
(3/2)-spanner of P requires Ω

(
n log(1 + Φ

n)
)

edges.

3.4 Local spanners for fat triangles

While local spanners for homothets of an arbitrary convex body are costly, if we are given
a triangle △ with the single constraint that △ is not too “thin”, then one can construct a
△-local t-spanner with a number of edges that does not depend on the spread of the points.

▶ Definition 22. A triangle △ is α-fat if the smallest angle in △ is at least α.

S. Ashur and S. Har-Peled 2:11

3.4.1 Construction

The input is a set P of n points in the plane, an α-fat triangle △, and an approximation
parameter ε ∈ (0, 1). Let vi denote the ith vertex of △, αi be the adjacent angle, and let
ei denote the opposing edge, for i ∈ J3K. Let ci = {(p− vi)t | p ∈ ei and t ≥ 0} denote the
cone with an apex at the origin induced by the ith vertex of △. Let ni be the outer normal
of △ orthogonal to ei. See Figure 3.4 for an illustration. Let Ci be a minimum size partition
of ci into cones each with angle in the range [β/2, β], where β = εα/γ, and γ > 1 is some
constant discussed shortly. For each point p ∈ P , and a cone c ∈ Ci, let nni(p, c) be the first
point in (P − p) ∩ (p + c) ordered by the direction ni (it is the “nearest-neighbor” to p in
p + c with respect to the direction ni).

The result

Let G be the graph over P formed by connecting every point p ∈ P to nni(p, c), for all
i ∈ J3K and c ∈ Ci. We get the following result (see full version [5] for details).

▶ Theorem 23. Let P be a set of n points in the plane, and let ε ∈ (0, 1) be an approximation
parameter. The above algorithm computes a △-local (1 + ε)-spanner G for an α-fat triangle
△. The construction time is O

(
(αε)−1n log n

)
, and the spanner G has O

(
(αε)−1n

)
edges.

3.5 A local spanner for nice polygons

3.5.1 A good jump for narrow trapezoids

As a reminder, a trapezoid is a quadrilateral with two parallel edges, known as its bases. The
other two edges are its legs. For ε ∈ (0, 1/4), a trapezoid T is ε-narrow if the length of each
of its legs is at most ε · diam(T).

▶ Lemma 24 (Proof in full version [5]). Let ε ∈ (0, 1) be some parameter, and ϑ = ε/16.
Let X, Y be two point sets that are (1/ϑ)-semi separated and ϑ-angularly separated (see
Definition 7), and let T be a ϑ-narrow trapezoid, with two points p ∈ X and q ∈ Y lying on
the two legs of T . Then, one can compute a homothet T ′ ⊆ T of T such that
1. there are two points p′ ∈ X and q′ ∈ Y , such that p′q′ is an edge of the T -Delaunay

triangulation of X ∪ Y , and
2. we have that (1 + ε) ∥pp′∥+ ∥p′q′∥+ (1 + ε) ∥q′q∥ ≤ (1 + ε) ∥pq∥.

3.5.2 Breaking a nice polygon into narrow trapezoids

For a convex polygon C, its sensitivity, denoted by sen(C), is the minimum distance between
any two non-adjacent edges (this quantity is no bigger than the length of the shortest edge in
the polygon). A convex polygon C is t-nice, if the outer angle at any vertex of the polygon
is at least 2π/t, and the length of the longest edge of C is O(sen(C)). As an example, a
k-regular polygon is k-nice.

▶ Lemma 25 (Proof in full version [5]). Let t be a positive integer. Given a t-nice polygon C,
and a parameter ϑ, one can cover it by a set T of O(t4/ϑ3) ϑ-narrow trapezoids, such that
for any two points p, q ∈ ∂C that belong to two edges of C that are not adjacent, there exists
a narrow trapezoid T ∈ T , such that p and q are located on two different short legs of T .

SWAT 2024

2:12 Local Spanners Revisited

3.5.3 Constructing the local spanner for nice polygons
▶ Theorem 26 (Proof in full version [5]). Let C be a k-nice convex polygon, P be a set of
n points in the plane, and let ε ∈ (0, 1) be a parameter. Then, one can construct a C-local
(1 + ε)-spanner of P . The construction time is O

(
(k4/ε6)n log2 n

)
, and the resulting graph

has O
(
(k4/ε6)n log n

)
edges. In particular these bounds hold if C is a k-regular polygon.

▶ Remark 27. For axis-parallel squares Theorem 26 implies a local spanner with O
(
ε−6n log n

)
edges. However, for this special case, the decomposition into narrow trapezoid can be skipped.
In particular, in this case, the resulting spanner has O(ε−3n log n) edges. We do not provide
the details here, as it is only a minor improvement over the above, and requires quite a bit
of additional work – essentially, one has to prove a version of Lemma 24 for squares. We
leave the question of whether this bound can be further improved as an open problem for
further research.

4 Weak local spanners for axis-parallel rectangles

4.1 Orthant separated pair decomposition
For the purpose of building the spanners in this section, we use a variation of a pair
decomposition introduced by Agarwal et al. [4]. For two points p = (p1, . . . , pd) and
q = (q1, . . . , qd) in Rd, let p ≺ q denote that q dominates p coordinate-wise. That is pi < qi,
for all i. More generally, let p <i q denote that pi < qi. For two point sets X, Y ⊆ Rd, we
use X <i Y to denote that x <i y ∀x ∈ X, y ∈ Y . In particular X and Y are i-coordinate
separated if X <i Y or Y <i X. A pair {X, Y } is orthant-separated, if X and Y are
i-coordinate separated, for all i = 1, . . . , d.

A orthant-separated pair decomposition of a point set P ⊆ Rd, is a pair de-
composition (see Definition 2) W =

{
{X1, Y1}, . . . , {Xs, Ys}

}
of P such that {Xi, Yi} are

orthant-separated for all i.
In the full version of the paper [5], we prove the properties regarding the computational

and combinatorial complexity of OSPDs that are used in the proof of Theorem 31

4.2 Weak local spanner for axis-parallel rectangles
For a parameter δ ∈ (0, 1), and an interval I = [b, c], let (1− δ)I = [t− (1− δ)r, t + (1− δ)r],
where t = (b + c)/2, and r = (c− b)/2, be the shrinking of I by a factor of 1− δ.

Let R be the set of all axis-parallel rectangles in the plane. For a rectangle R ∈ R with
R = I × J , let (1− δ)R = (1− δ)I × (1− δ)J denote the rectangle resulting from shrinking
R by a factor of 1− δ.

▶ Definition 28. Given a set P of n points in the plane, and parameters ε, δ ∈ (0, 1), a
graph G is a (1− δ)-local (1 + ε)-spanner for rectangles, if for any axis-parallel rectangle R,
we have that G ∩R is a (1 + ε)-spanner for all the points in

(
(1− δ)R

)
∩ P .

Observe that rectangles in R might be quite “skinny”, so the previous notion of shrinkage
used before is not useful in this case.

4.2.1 Construction for a single orthant separated pair
Consider a pair Ξ = {X, Y } in a OSPD of P . The set X is orthant-separated from Y , that
is, there is a point cΞ such that X and Y are contained in two opposing orthants in the
partition of the plane formed by the vertical and horizontal lines through cΞ.

S. Ashur and S. Har-Peled 2:13

p
x

y

x

y

x+ y

x+ y

Figure 4.1 The construction of the grid K(p, Ξ) for a point p = (−x,−y) and a pair Ξ.

For simplicity of exposition, assume that cΞ = (0, 0), and X ≺ (0, 0) ≺ Y . That is, the
points of X are in the negative orthant, and the points of Y are in the positive orthant.

For a point p = (−x,−y) ∈ X we construct a non-uniform grid K(p, Ξ) in the square
[0, x + y]2. To this end, we first partition it into four subrectangles

B↖ = [0, x]× [y, x + y] B↗ = [x, x + y]× [y, x + y]

B↙ = [0, x]× [0, y] B↘ = [x, x + y]× [0, y].

Let τ ≥ 4/ε + 4/δ be an integer number. We partition each of these rectangles into a
τ × τ grid, where each cell is a copy of the rectangle scaled by a factor of 1/τ . See Figure 4.1.
This grid has O(τ2) cells. For a cell C in this grid, let Y ∩ C be the points of Y contained in
it. We connect p to the left-most and bottom-most points in Y ∩ C. This process generates
two edges in the constructed graph for each grid cell (that contains at least two points), and
O(τ2) edges overall.

The algorithm repeats this construction for all the points p ∈ X, and does the symmetric
construction for all the points of Y .

4.2.2 The spanner construction algorithm
The algorithm computes a OSPD W of P . For each pair Ξ ∈ W, the algorithm generates
edges for Ξ using the algorithm of Section 4.2.1 and adds them to the generated spanner G.

4.2.3 Correctness
For a rectangle R, let ←→R =

{
(x, y) ∈ R2

∣∣ ∃x′ ∈ R such that (x′, y) ∈ R
}

be its expansion
into a horizontal slab. Restricted to a rectangle R′, the resulting set is ←→R ∩R′, depicted in
Figure 4.2. Similarly, we denote

↕R =
{

(x, y) ∈ R2 ∣∣ ∃y′ ∈ R such that (x, y′) ∈ R
}

.

SWAT 2024

2:14 Local Spanners Revisited

R′
R R′

R

←→
R ∩R′

Figure 4.2 Left: The two rectangles R, R′. Right: In green ←→R ∩R′, the restriction of the slab←→
R to the rectangle R′.

c

p

c

p

c

p

Figure 4.3 An illustration of K(p, Ξ) with three rectangles and their shrunken version.

▶ Lemma 29 (Proof in full version [5]). Assume that δ < 1/2, and τ ≥ ⌈20/ε + 20/δ⌉.
Consider a pair Ξ = {X, Y } in the above construction, and a point p = (−x,−y) ∈ X

with its associated grid K = K(p, Ξ). Consider any axis-parallel rectangle R, such that
p ∈ (1− δ)R = I × J , and (1− δ)R intersects a cell C ∈ K. We have the following.
1. If C ⊆ (1− δ)R then (1− δ)−1C ⊆ R.
2. diam(C) ≤ (ε/4)d(p, C).
3. If x ≥ y and C ⊆ R↙ ∪R↘ then (1− δ)−1C ⊆ R.
4. If x ≤ y and C ⊆ R↙ ∪R↖ then (1− δ)−1C ⊆ R.

5. If x ≥ y and C ⊆ R↖, then (1− δ)−1(←−−−−→
(1− δ)R ∩ C

)
⊆ R.

6. If x ≤ y and C ⊆ R↘, then (1− δ)−1
(
↕

(
(1− δ)R

)
∩ C

)
⊆ R.

▶ Lemma 30 (Proof in full version [5]). For any axis-parallel rectangle R, and any two points
p, q ∈ (1− δ)R ∩ P , there exists a (1 + ε)-path between p and q in G.

▶ Theorem 31 (Proof in full version [5]). Let P be a set of n points in the plane, and let
ε, δ ∈ (0, 1) be parameters. The above algorithm constructs, in O((1/ε2 + 1/δ2)n log2 n) time,
a graph G with O((1/ε2 + 1/δ2)n log2 n) edges. The graph G is a (1− δ)-local (1 + ε)-spanner
for axis-parallel rectangles. Formally, for any axis-parallel rectangle R, we have that R ∩ P

is an (1 + ε)-spanner for all the points of
(
(1− δ)R

)
∩ P .

S. Ashur and S. Har-Peled 2:15

References
1 M. A. Abam and S. Har-Peled. New constructions of SSPDs and their applications. Comput.

Geom. Theory Appl., 45(5–6):200–214, 2012. doi:10.1016/j.comgeo.2011.12.003.
2 Mohammad Ali Abam and Mohammad Sadegh Borouny. Local geometric spanners. Algorith-

mica, 83(12):3629–3648, 2021. doi:10.1007/s00453-021-00860-5.
3 Mohammad Ali Abam, Mark de Berg, Mohammad Farshi, and Joachim Gudmundsson.

Region-fault tolerant geometric spanners. Discret. Comput. Geom., 41(4):556–582, 2009.
doi:10.1007/s00454-009-9137-7.

4 Pankaj K. Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo Welzl. Euclidean
minimum spanning trees and bichromatic closest pairs. In Raimund Seidel, editor, Proceedings
of the Sixth Annual Symposium on Computational Geometry, Berkeley, CA, USA, June 6-8,
1990, pages 203–210. ACM, 1990. doi:10.1145/98524.98567.

5 Stav Ashur and Sariel Har-Peled. Local spanners revisited. CoRR, abs/2201.01715, 2022.
arXiv:2201.01715.

6 L Paul Chew and Robert L Dyrsdale III. Voronoi diagrams based on convex distance functions.
In Proc. 1st Annu. Sympos. Comput. Geom. (SoCG), pages 235–244, 1985.

7 S. Har-Peled. Geometric Approximation Algorithms, volume 173 of Math. Surveys & Mono-
graphs. Amer. Math. Soc., Boston, MA, USA, 2011. doi:10.1090/surv/173.

8 Christos Levcopoulos, Giri Narasimhan, and Michiel H. M. Smid. Improved algorithms
for constructing fault-tolerant spanners. Algorithmica, 32(1):144–156, 2002. doi:10.1007/
s00453-001-0075-x.

9 Tamás Lukovszki. New results of fault tolerant geometric spanners. In Frank K. H. A. Dehne,
Arvind Gupta, Jörg-Rüdiger Sack, and Roberto Tamassia, editors, Algorithms and Data
Structures, 6th International Workshop, WADS ’99, Vancouver, British Columbia, Canada,
August 11-14, 1999, Proceedings, volume 1663 of Lecture Notes in Computer Science, pages
193–204. Springer, 1999. doi:10.1007/3-540-48447-7_20.

10 Giri Narasimhan and Michiel H. M. Smid. Geometric Spanner Networks. Cambridge University
Press, 2007.

SWAT 2024

https://doi.org/10.1016/j.comgeo.2011.12.003
https://doi.org/10.1007/s00453-021-00860-5
https://doi.org/10.1007/s00454-009-9137-7
https://doi.org/10.1145/98524.98567
https://arxiv.org/abs/2201.01715
https://doi.org/10.1090/surv/173
https://doi.org/10.1007/s00453-001-0075-x
https://doi.org/10.1007/s00453-001-0075-x
https://doi.org/10.1007/3-540-48447-7_20

Pairwise Rearrangement is Fixed-Parameter
Tractable in the Single Cut-and-Join Model
Lora Bailey #

Department of Mathematics, Grand Valley State University, Allendale, MI, USA

Heather Smith Blake #

Department of Mathematics and Computer Science, Davidson College, NC, USA

Garner Cochran #

Department of Mathematics and Computer Science, Berry College, Mount Berry, GA, USA

Nathan Fox #

Department of Quantitative Sciences, Canisius University, Buffalo, NY, USA

Michael Levet1 #

Department of Computer Science, College of Charleston, SC, USA

Reem Mahmoud #

Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA

Inne Singgih #

Department of Mathematical Sciences, University of Cincinnati, OH, USA

Grace Stadnyk #

Department of Mathematics, Furman University, Greenville, SC, USA

Alexander Wiedemann #

Department of Mathematics, Randolph–Macon College, Ashland, VA, USA

Abstract
Genome rearrangement is a common model for molecular evolution. In this paper, we consider the
Pairwise Rearrangement problem, which takes as input two genomes and asks for the number of
minimum-length sequences of permissible operations transforming the first genome into the second.
In the Single Cut-and-Join model (Bergeron, Medvedev, & Stoye, J. Comput. Biol. 2010), Pairwise
Rearrangement is #P-complete (Bailey, et. al., COCOON 2023), which implies that exact sampling
is intractable. In order to cope with this intractability, we investigate the parameterized complexity
of this problem. We exhibit a fixed-parameter tractable algorithm with respect to the number
of components in the adjacency graph that are not cycles of length 2 or paths of length 1. As
a consequence, we obtain that Pairwise Rearrangement in the Single Cut-and-Join model is
fixed-parameter tractable by distance. Our results suggest that the number of nontrivial components
in the adjacency graph serves as the key obstacle for efficient sampling.

2012 ACM Subject Classification Theory of computation → Complexity classes; Mathematics of
computing → Graph theory

Keywords and phrases Genome Rearrangement, Phylogenetics, Single Cut-and-Join, Computational
Complexity

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.3

Related Version Full Version: https://arxiv.org/abs/2402.01942

Acknowledgements We wish to thank the American Mathematical Society for organizing the
Mathematics Research Community workshop where this work began. This material is based upon
work supported by the National Science Foundation under Grant Number DMS 1641020.

1 Corresponding author

© Lora Bailey, Heather Smith Blake, Garner Cochran, Nathan Fox, Michael Levet, Reem Mahmoud,
Inne Singgih, Grace Stadnyk, and Alexander Wiedemann;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 3; pp. 3:1–3:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:baileylo@gvsu.edu
mailto:hsblake@davidson.edu
mailto:gcochran@berry.edu
mailto:fox42@canisius.edu
mailto:levetm@cofc.edu
mailto:mahmoudr@vcu.edu
mailto:inne.singgih@uc.edu
mailto:grace.stadnyk@furman.edu
mailto:alexanderwiedemann@rmc.edu
https://doi.org/10.4230/LIPIcs.SWAT.2024.3
https://arxiv.org/abs/2402.01942
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Pairwise Rearrangement is FPT in SCaJ

1 Introduction

With the natural occurrence of mutations in genomes and the wide range of effects this can
incite, scientists seek to understand the evolutionary relationship between species. Several
discrete mathematical models have been proposed to model these mutations based on
biological observations. Genome rearrangement models consider situations in which large-
scale mutations alter the order of the genes within the genome. Sturtevant [17, 18] observed
the biological phenomenon of genome rearrangement in the study of strains of Drosophila
(fruit flies), only a few years after he produced the first genetic map [16]. Palmer & Herbon [15]
observed similar phenomenon in plants. McClintock [10] also found experimental evidence of
genes rearranging themselves, or “transposing” themselves, within chromosomes.

Subsequent to his work on Drosophila, Sturtevant together with Novitski [19] introduced
one of the first genome rearrangement problems, seeking a minimum length sequence of
operations, called a scenario, that would transform one genome into another. In investigating
these questions, it is of key importance to balance biological relevance with computational
tractability. One central issue is that of combinatorial explosion: the number of scenarios even
between small genomes may be too large to handle, making it difficult to test hypotheses on
all possible scenarios. Thus, we desire a polynomial time algorithm to uniformly sample from
the rearrangement scenarios. Since uniform sampling is no harder than exact enumeration [8],
we investigate the computational complexity of the Pairwise Rearrangement problem
(Definition 5) which asks for the number of minimum-length scenarios transforming one
genome into another.

The Pairwise Rearrangement problem has received significant attention in several
genome rearrangement models. Pairwise Rearrangement is known to be in FP for
the Single Cut or Join model [11], but is conjectured to be #P-complete for the Double
Cut-and-Join model [14]. The Single Cut-and-Join model sits between these two models.
Recently, Bailey, et al. [1], showed that Pairwise Rearrangement is #P-complete in the
Single Cut-and-Join model. However, in practice, the key structures that serve as obstacles
to efficient sampling may not necessarily appear. In particular, the relevant obstacles for
efficient sampling in the Single Cut-and-Join model remain opaque.

Main Results. In this paper, we investigate the Pairwise Rearrangement problem in
the Single Cut-and-Join model through the lens of parameterized complexity. Our main
result is the following.

▶ Theorem 1. In the Single Cut-and-Join model, Pairwise Rearrangement is fixed-
parameter tractable with respect to the number of components in the adjacency graph (see
Definition 6) that are not trivial (cycles of length 2 or paths of length 1).

Our parameterization in Theorem 1 has biological significance. Indeed, chromoanagenesis
is a carcinogenic mechanism that involves massive chromosomal rearrangements, which may
lead to fewer components in the adjacency graph [7].

The adjacency graph (see Definition 6) is a bipartite multigraph illustrating where two
genomes differ. Bergeron, Medvedev, and Stoye [2] established a precise relationship between
the adjacency graph and the distance between two genomes in the Single Cut-and-Join
model. The operations in this model induce structural changes on the adjacency graph [1,
Observation 2.7]. We leverage this crucially to establish Theorem 1. Our precise technique
involves developing a dynamic programming algorithm that, when the number of nontrivial
components is bounded, the corresponding lookup table only has a polynomial number
of entries. This establishes our claim of polynomial-time computation. We stress that
arriving at the recurrence relations for the dynamic programming algorithm and proving

L. Bailey et al. 3:3

their correctness is technical and nontrivial. Indeed this is not surprising, as Pairwise
Rearrangement is #P-complete [1]. While our work is theoretical in nature, the algorithm
underlying Theorem 1 in fact yields an efficient implementation (see GitHub).

We also note that if the distance (Equation (1)) between the two genomes is bounded [2],
then so is the number of nontrivial components. As a consequence, we obtain the following
corollary:

▶ Corollary 2. In the Single Cut-and-Join model, Pairwise Rearrangement is fixed
parameter tractable with respect to the distance between two genomes.

To the best of our knowledge, parameterized complexity has received minimal attention
in the genome rearrangement literature. For instance, a fixed-parameter tractable algorithm
(parameterized by the number of components in the adjacency graph) for Pairwise Re-
arrangement in the Double Cut-and-Join model can easily be deduced from the work
of [3], though the authors do not explicitly investigate the parameterized complexity of this
problem. Thus, beyond providing a means of coping with the intractability of Pairwise
Rearrangement in the Single Cut-and-Join model, Theorem 1 (together with the results
of [3]) makes precise that the number of components in the adjacency graph serves as a key
obstacle towards efficient sampling, across multiple models of genome rearrangement.

In contrast, there has been significant algorithmic work on approximation and sampling
(see, for instance, [11, 12, 4, 5, 13, 9]), to cope with the intractability of enumeration. To
the best of our knowledge, such approaches have not been fruitful against the Reversal
model, for which the complexity of Pairwise Rearrangement is a longstanding open
problem. We are not aware of any work on approximate counting or sampling for Pairwise
Rearrangement in the Single Cut-and-Join model.

2 Preliminaries

We recall preliminaries regarding genome rearrangement.

▶ Definition 3. A genome is an edge-labeled directed graph in which each label is unique and
the total degree of each vertex is 1 or 2 (in-degree and out-degree combined). In particular,
a genome consists of disjoint paths and cycles. The weak components of a genome we call
chromosomes. Each edge begins at its tail and ends at its head, collectively referred to as
its extremities. Degree 2 vertices are called adjacencies, and degree 1 vertices are called
telomeres. See Figure 1.

X1

X2

X3 X4 X5

X6

telomere Xh
1

adjacency Xt
5Xt

6

linear chromosome chromosome
circular

Genome

gene

Figure 1 An edge-labeled genome [1, Fig. 1].

Adjacencies can be viewed as sets of two extremities, and telomeres as sets containing
exactly one extremity. For simplicity, we write adjacency {a, b} as ab or ba and telomere {c}
as c. For example, the adjacency Xt

5Xt
6 in Figure 1 denotes that the tail of the edge X5 and

the tail of the edge X6 meet, and the telomere Xh
1 is where the edge X1 ends. Each genome

is then uniquely defined by its set of adjacencies and telomeres.

SWAT 2024

https://github.com/nhf216/scaj-fpt

3:4 Pairwise Rearrangement is FPT in SCaJ

Consider the following operations on a given genome:
(i) Cut: an adjacency ab is separated into two telomeres, a and b,
(ii) Join: two telomeres a and b become one adjacency, ab,
(iii) Cut-join: adjacency ab and telomere c are replaced with adjacency ac and telomere b,

and
(iv) Double-cut-join: adjacencies ab and cd are replaced with adjacencies ac and bd.

X1 X2

X3

cut

(i)

X1 X2

X3

X1 X2

X3

join
(ii)

X1 X2

X3

X1 X2

X3

cut-join
(iii)

X1 X2

X3

X3

X1 X2

X3

double-cut-join
(iv)

X1 X2

X3

X3

Figure 2 (i) Adjacency Xh
2 Xt

3 is cut. (ii) Telomeres Xh
1 and Xh

3 are joined. (iii) Adjacency
Xh

2 Xt
3 is cut, and resulting telomere Xh

2 is joined with Xh
1 . (iv) Adjacencies Xt

1Xt
2 and Xh

2 Xt
3 are

replaced with Xt
1Xh

2 and Xt
2Xt

3.

Note that a cut-join operation combines one cut and one join into a single operation, and
a double-cut-join operation performs two cuts and two joins in one operation. See Figure 2 [1]
for an illustration of these operations.

Several key models are based on these operations. The Double Cut-and-Join (DCJ) model
was initially introduced by Yancopoulos, Attie, & Friedberg [20] and permits all four opera-
tions. Later, Feijao & Meidanis [6] introduced the Single Cut-or-Join (SCoJ) model, which
only allows operations (i) and (ii). Alternatively, the Single Cut-and-Join (SCaJ) model [2]
allows operations (i)-(iii), but not operation (iv). In this paper, we consider the Single
Cut-and-Join model.

▶ Definition 4. For any two genomes G1 and G2 with the same set of edge labels, there is a
sequences of Single Cut-and-Join operations that transforms G1 into G2. Such a sequence is
called a scenario. The minimum possible length of such a scenario is called the distance and
is denoted d(G1, G2). An operation on a genome G1 that (strictly) decreases the distance
to genome G2 is called a sorting operation for G1 and G2. A scenario requiring d(G1, G2)
operations to transform G1 into G2 is called a most parsimonious scenario or sorting scenario.
When G2 is understood, we refer to the action of transforming G1 into G2 using the minimum
number of operations as sorting G1. The number of most parsimonious scenarios transforming
G1 into G2 is denoted #MPS(G1, G2).

We now turn to defining the key algorithmic problem that we will consider in this paper.

▶ Definition 5. Let G1 and G2 be genomes. The Distance problem asks to compute
d(G1, G2). The Pairwise Rearrangement problem asks to compute #MPS(G1, G2).

To investigate Pairwise Rearrangement, we begin by introducing the adjacency graph.

L. Bailey et al. 3:5

▶ Definition 6. Given two genomes G1 and G2 with the same set of edge labels, the adjacency
graph A(G1, G2) is a bipartite undirected multigraph (V1∪̇V2, E) where the vertices in Vi are
the adjacencies and telomeres in Gi and for any X ∈ V1 and Y ∈ V2, the number of edges
between X and Y is |X ∩ Y |.

X1 X2

X3 X4 X5

X6

G1

G1
Xh

1 Xt
1Xt

2 Xh
2 Xt

3 Xh
3 Xt

4Xh
6 Xh

4 Xh
5 Xt

5Xt
6

Xh
1 Xt

1Xh
2 Xt

2Xt
3 Xh

3 Xh
4 Xt

4Xh
6 Xt

5Xt
6 Xh

5

V1

V2

A(G1, G2)

X1 X2

X3
X4 X5

X6

G2

X6

Figure 3 (Taken from [1].) The adjacency graph A(G1, G2) is shown in the middle, for genomes
G1 and G2 shown above and below, respectively.

Note that each vertex in an adjacency graph A(G1, G2) must have either degree 1 or 2
(corresponding, respectively, to telomeres and adjacencies in the original genome), and so
A(G1, G2) is composed entirely of disjoint cycles and paths. Note also that every operation
on G1 corresponds to an operation on V1 in A(G1, G2). For example, in Figure 3 the cut
operation on G1 which separates adjacency Xh

4 Xh
5 into telomeres Xh

4 and Xh
5 equates to

separating the corresponding vertex Xh
4 Xh

5 in V1 into two vertices Xh
4 and Xh

5 , thus splitting
the path of length 2 in A(G1, G2) into two disjoint paths of length 1. In a similar fashion, a
join operation on G1 corresponds to combining two vertices a, b in V1 into a single vertex ab,
and a cut-join operation on G1 corresponds to replacing vertices ab, c in V1 with vertices ac,
b. Whether or not an operation on A(G1, G2) corresponds to a sorting operation on G1 –
that is, whether it decreases the distance to G2 or not – depends highly on the structure of
the components acted on. To better describe such sorting operations, we adopt the following
classification of components in A(G1, G2) and notion of their size:

▶ Definition 7. The possible connected components of A(G1, G2) are classified as follows:
A W -shaped component is an even path with its two endpoints in V1.
An M -shaped component is an even path with its two endpoints in V2.
An N -shaped component is an odd path.
A crown is an even cycle.

▶ Definition 8. The size of a component B in A(G1, G2) is defined to be ⌊ |E(B)|/2 ⌋. We
refer to an N -shaped component of size 0 (a single edge) as a trivial path, and a crown of
size 1 (a 2-cycle) as a trivial crown.

The language “trivial” is motivated by the fact that such components indicate where G1
and G2 already agree, and hence no sorting operations are required on vertices belonging to
trivial components (see, e.g., the trivial components in Figure 3). Indeed, a sorting scenario
can be viewed as a minimal length sequence of operations which produces an adjacency
graph consisting of only trivial components.

▶ Observation 9 ([1, Observation 2.7]). In the SCaJ model, a case analysis of all operations
yields precisely these as the only sorting operations on A(G1, G2):

SWAT 2024

3:6 Pairwise Rearrangement is FPT in SCaJ

(a) A cut-join operation on a nontrivial N -shaped component, producing an N -shaped com-
ponent and a trivial crown

(b) A cut-join operation on a W -shaped component of size at least 2, producing a trivial
crown and a W -shaped component

(c) A join operation on a W -shaped component of size 1, producing a trivial crown
(d) A cut operation on an M -shaped component, producing two N -shaped components
(e) A cut operation on a nontrivial crown, producing a W -shaped component
(f) A cut-join operation on an M -shaped component and a W -shaped component, where an

adjacency in the M -shaped component is cut and joined to a telomere in the W -shaped
component, producing two N -shaped components

(g) A cut-join operation on a nontrivial crown and an N -shaped component, where an
adjacency in the crown is cut and joined to the telomere in the N -shaped component,
producing an N -shaped component

(h) A cut-join operation on a nontrivial crown and a W -shaped component, where an adja-
cency from the crown is cut and joined with a telomere from the W -shaped component,
producing a W -shaped component

N

N T

(I)
W(size > 1)

W T

W(size 1)

T

M

N N

C

W

M ∼ W

N N

C ∼ N

N

C ∼ W

W

C W

T

M N

(II)

Figure 4 This figure depicts the operations described in Observation 9, where the arrows point
from the original component type(s) to the component type(s) produced by the three operations
allowed in the SCaJ model: cut, join, and cut-join. The eight diagrams in (I) show each of the sorting
operations (a)-(h) where bold single arrows represent cut-join operations, dashed arrows represent
cut operations, and the double arrow represents the join operation. Diagram (II) summarizes which
components can be produced. Note that all operations will only result in W -shaped components,
N -shaped components, and/or trivial crowns. Here, T denotes a trivial crown and C denotes a
non-trivial crown.

Note that (a) - (e) are sorting operations on G1 that operate on only one component
in the adjacency graph, though they may produce two different components. On the other
hand, (f) - (h) are sorting operations on G1 that operate on two separate components in the
adjacency graph. See Figure 4 for a visualization of each sorting operation.

Using these sorting operations on A(G1, G2), the distance between two genomes G1 and
G2 for the SCaJ model is given by

d(G1, G2) = n − #N

2 − #T + #C (1)

where n is the number of edges in G1 (equivalently, one half of the number of edges in
A(G1, G2)), #N is the number of N -shaped components, #T is the number of trivial crowns,
and #C is the number of nontrivial crowns [2].

L. Bailey et al. 3:7

Let B be the set of all components of A(G1, G2) and let B′ be a subset of B. Define

d(B′) :=
(∑

B∈B′

size(B)
)

− #TB′ + #CB′ (2)

where #TB′ and #CB′ are the number of trivial crowns and nontrivial crowns in B′, re-
spectively. The quantity d(B′) is the minimum number of operations needed to transform
all components of B′ into trivial components, with no operation acting on a component
not belonging to B′. Note that d(B) = d(G1, G2), as the #N

2 term is absorbed into the
summation of the sizes of all components.

▶ Definition 10 ([1, Definition 2.8]). Let A and B be components of an adjacency graph, and
consider a particular sorting scenario. We say A ∼ B if either A = B or there is a cut-join
operation in the scenario where an extremity a from A and an extremity b from B are joined
into an adjacency. The transitive closure of ∼ is an equivalence relation which we call sort
together. We will be particularly interested in subsets of the equivalence classes of “sort
together.” We abuse terminology by referring to such a subset as a set that sorts together.

Note that if two components A, B in A(G1, G2) satisfy A ∼ B, the cut-join operation
does not need to occur immediately. For example, two nontrivial crowns C1 and C2 can
satisfy C1 ∼ C2 by first cutting C1 to produce a W -shaped component, then operation (b)
can be applied multiple times before operation (h) sorts C2 and the remaining W -shaped
component together; see Figure 4.

We will now recall additional notation from [1] that we will use in this paper. For a
subset B′ of B, define #MPS(B′) as the number of sequences with d(B′) operations in which
the components of B′ are transformed into trivial components with no operation acting on a
component not belonging to B′. Note that #MPS(B) is the number of most parsimonious
scenarios transforming G1 into G2. Let #ST(B′) denote the number of sequences with d(B′)
operations in which the components of B′ sort together and are transformed into trivial
components with no operation acting on a component not belonging to B′.

Note that if B′ and B′′ are two subsets of B that have all the same component types with
all the same sizes, then #MPS(B′) = #MPS(B′′) and #ST(B′) = #ST(B′′). Going forward,
we will often care about values of #MPS and #ST only in the context of their component
types and sizes. Suppose we are given multisets C, M, W, and N of nonnegative integers
with every element of C at least 2 and every element of M and W at least 1. We define
#MPS(C, M, W, N) to equal #MPS(B′) for any set of components B′ with |C| nontrivial
crowns of sizes in C, |M| M -shaped components of sizes in M, |W| W -shaped components
of sizes in W, and |N | N -shaped components of sizes in N . We define #ST(C, M, W, N)
similarly.

3 Combinatorics of Genome Rearrangement

In this section, we will prove Theorem 1. Our strategy will be to build a lookup table for
dynamic programming. In particular, our technique relies crucially on the following lemma.

▶ Lemma 11 ([1, Lemma A.4]). Let B′ be a subset of components of an adjacency graph,
and let Π(B′) denote the set of all partitions of B′. We have

#MPS(B′) =
∑

π∈Π(B′)

(
d(B′)

d(π1), d(π2), . . . , d(πp(π))

) p(π)∏
i=1

#ST(πi),

where π = {π1, π2, . . . , πp(π)}.

SWAT 2024

3:8 Pairwise Rearrangement is FPT in SCaJ

We will utilize Lemma 11 in the following manner. Fix an entry in the lookup table,
and let B′ denote the set of components being considered at said entry. Now fix a partition
π ∈ Π(B′). In order to compute #MPS(B′), we will proceed as follows. For each i ∈ [p(π)],
we first check if #ST(πi) = 0. This step is computable in polynomial-time by checking
whether there exists a permissible sorting operation (see Observation 9). If #ST(πi) ̸= 0,
then we access the entry in the lookup table for #ST(πi). This will allow us to compute(

d(B′)
d(π1), d(π2), . . . , d(πp(π))

) p(π)∏
i=1

#ST(πi).

We will show later that as the number of nontrivial crowns in the adjacency graph is bounded
(by assumption), there are only a polynomial number of partitions π = (π1, . . . , πp(π)) ∈ Π(B′)
such that #ST(πi) ̸= 0 for all i ∈ [p(π)].

We will now investigate how to compute #ST(πi), which requires studying which sets of
components can and cannot sort together.

▶ Proposition 12. Given a set B′ of components of some adjacency graph G, #ST(B′) = 0
if B′ has any of the following properties:
1. B′ contains at least two components, at least one of which is a trivial crown.
2. B′ contains more than one W -shaped component.
3. B′ contains more than one M -shaped component.
4. B′ contains more than one path and at least one N -shaped component.

Proof. We refer to Observation 9 and Figure 4 for the permissible sorting operations, from
which the proof essentially follows. We provide full details in the proof of Proposition 3.2 in
the full version. ◀

If B′ consists of only one trivial crown, then #ST(B′) = 1. Otherwise there are five
possibilities for when #ST(B′) ̸= 0. Below we list each case and define a function along with
each that we will use to simplify #ST(C, M, W, N). In what follows, Z≥2 denotes the set of
finite multisets of integers in which each integer is at least 2. Also, for this paper we take N
to include 0. We will now list our cases:

The components are a single N -shaped component and zero or more nontrivial crowns.
Define #STN : Z≥2 × N → N as #STN (C, η) = #ST(C, ∅, ∅, {η}).
The components are a single W -shaped component and zero or more nontrivial crowns.
Define #STW : Z≥2 × Z+ → N as #STW (C, w) = #ST(C, ∅, {w}, ∅).
The components are one or more nontrivial crowns. Define #STC : Z≥2 − {∅} → N as
#STC(C) = #ST(C, ∅, ∅, ∅).
The components are a single M -shaped component and zero or more nontrivial crowns.
Define #STM : Z≥2 × Z+ → N as #STM (C, m) = #ST(C, {m}, ∅, ∅).
The components are a single M -shaped component, a single W -shaped component,
and zero or more nontrivial crowns. Define #STMW : Z≥2 × Z+ × Z+ → N as
#STMW (C, m, w) = #ST(C, {m}, {w}, ∅).

We recall the following lemma, which allows us to compute the number of sorting scenarios
for a single component.

▶ Lemma 13 ([1, Lemma 2.9]).
For all η ∈ N, #STN (∅, η) = 1.
For all w ∈ Z+, #STW (∅, w) = 2w−1.
For all m ∈ Z+, #STM (∅, m) = 2m−1.
For all c ∈ Z≥2, #STC({c}) = c · 2c−1.

L. Bailey et al. 3:9

Our goal now is to enumerate the number of sorting scenarios in each of these cases. We
first provide a recurrence relation for #STN (C, η).

▶ Proposition 14. We have the following recurrence relations for #STN :

#STN (C, η) =

1 : C = ∅, η = 0,∑

c∈C (2c · #STN (C − {c}, c)) : C ̸= ∅, η = 0,

#STN (C, η − 1) +
∑

c∈C (2c · #STN (C − {c}, c + η)) : otherwise.

Proof. First, #STN (∅, 0) is the case of a single path of size 0 (a single edge). This represents
that the given telomere has already been sorted, so there is only one way to sort this
component (do nothing). On the other hand, when sorting a collection of nontrivial crowns
together with an N -shaped component, the first operation either consists of applying a
cut-join on the N -shaped component alone if it has size greater than 0 (1 way to do this), or
applying a cut-join of a nontrivial crown to the N -shaped component. If the crown being
operated on has size c, there are c possible places to cut it, and there are 2 possible ways to
join it to to the N -shaped component (either telomere of the newly cut crown). The result
of this operation is one fewer crown and an increase in the size of the N -shaped component
by c. These considerations lead to the recursive formulas for #STN (C, η). ◀

We next provide a recurrence relation for #STW (C, w).

▶ Proposition 15. We have the following recurrence relations for #STW :

#STW (C, w) =

1 : C = ∅, w = 1,∑

c∈C (4c · #STW (C − {c}, c + 1)) : C ̸= ∅, w = 1,

2 · #STW (C, w − 1) +
∑

c∈C (4c · #STW (C − {c}, c + w)) : otherwise.

Proof. First, #STW (∅, 1) is the case of a single W -shaped component of size 1. To sort
such a path, join the telomeres in the top genome. So, there is only one way to sort this
component. On the other hand, when sorting a collection of nontrivial crowns together
with a W -shaped component, the first operation either consists of a cut-join of one end of
the W -shaped component if it has size greater than 1 (2 ways to do this) or a cut-join of
a nontrivial crown to the W -shaped component. If the crown being operated on has size
c, there are c possible places to cut it, and there are 4 possible ways to join it to to the
W -shaped component (either telomere of the newly cut crown could join with either telomere
of the W -shaped component). The result of this operation is one fewer nontrivial crown and
an increase in the size of the W -shaped component by c. These considerations lead to the
recursive formulas for #STW (C, w). ◀

We next provide an expression for #STC(C).

▶ Proposition 16. We have the following expression for #STC :

#STC(C) =
∑
c∈C

(c · #STW (C − {c} , c)) .

Note that C = ∅ is not in the domain of #STC , and so this expression is well-defined.

Proof. When a collection of crowns sorts together, the first operation must be a cut. If the
crown being operated on has size c, there are c possible places to cut it. The result of this
operation is one fewer crown and a W -shaped component of size c. These considerations
lead to the expression for #STC(C). ◀

SWAT 2024

3:10 Pairwise Rearrangement is FPT in SCaJ

▶ Remark 17. A closed-form expression for #STC(C) was previously established in [1,
Corollary 3.2].

We have already discussed #STW (C, w). Below we establish tools to show #STM (C, w)
is the same as #STW (C, w). We have thus far considered A(G1, G2), where operations act on
V1. We can also consider A(G2, G1), which is the same as A(G1, G2), but we now operate on
V2. Every component of A(G1, G2) corresponds to a component in A(G2, G1) (on the same
vertices), though component types are not necessarily the same. For example, an M -shaped
component A12 in A(G1, G2) corresponds to a W -shaped component A21 in A(G2, G1).
▶ Definition 18. For an operation α, define the reverse operation αrev as follows. If α is a
cut at adjacency ab, then αrev is a join of a and b. Similarly, the reverse of a join is a cut.
Further, if α is a cut-join ab, c to ac, b, then αrev is a cut-join ac, b to ab, c. For a sequence
σ of operations σ1, . . . , σk, let the reverse sequence σrev be σrev

k , . . . , σrev
1 .

Observe that reversing an operation does not change the extremities operated on. We
now show that reversal preserves the sort together relation.
▶ Proposition 19. For a sorting scenario σ and components A12 and B12 in A(G1, G2),
suppose we have that A12 ∼ B12. Then, for σrev and corresponding components A21 and B21
in A(G2, G1), we have A21 ∼ B21.
Proof. Let σ be a sorting scenario for A(G1, G2) that consists of a sequence of operations
σ1, . . . , σk. Suppose further that σ sorts two components A12 and B12 together such that
A12 ∼ B12. Since σ transforms G1 into G2, the sequence σrev transforms G2 into G1. Thus,
σrev is a sorting scenario for A(G2, G1).

Let A21 and B21 denote the two components in A(G2, G1) that correspond to A12 and
B12. We will show that A21 ∼ B21 with respect to σrev. Since A12 ∼ B12 with respect to σ,
there is some i such that operation σi is a cut-join operation which joins an extremity a of
A12 with an extremity b of B12. Moreover, σrev

i cuts the adjacency ab. Since a and b come
from different components, they must have been joined through operation σrev

j for some
j > i to create adjacency ab (which is then cut by σrev

i). Thus, A12 ∼ B12 in A(G2, G1) with
respect to σrev, as required. ◀

▶ Corollary 20. Let B′
12 be a subset of the components of A(G1, G2), and let B′

21 be the corres-
ponding subset of the components of A(G2, G1). Then #ST(B′

12) = #ST(B′
21). Consequently,

#STM (C, m) = #STW (C, m), and #STMW (C, m, w) = #STMW (C, w, m).
Proof. Given a subset B′

12 of components of A(G1, G2), let B′
21 be the set of corresponding

components in A(G2, G1). Now, let Σ12 be the set of scenarios that sort the components of
B′

12 together, and let Σ21 be the set of scenarios that sort the components of B′
21 together.

By definition, |Σ12| = #ST(B′
12) and |Σ21| = #ST(B′

21). Next, let Σrev
12 and Σrev

21 be the sets
of reversals of the scenarios in Σ12 and Σ21 respectively. By Proposition 19, Σrev

12 ⊆ Σ21.
Since reversal is an involution, we also obtain that Σrev

21 ⊆ Σ12. Since |Σ12| = |Σrev
12 | and

|Σ21| = |Σrev
21 |, this implies that |Σ12| ≤ |Σ21| and |Σ21| ≤ |Σ12|. Together, these imply that

|Σ12| = |Σ21|, meaning #ST(B′
12) = #ST(B′

21), as required.
We note that an M -shaped component in A(G1, G2) is a W -shaped component in

A(G2, G1). Thus, we obtain that #STM (C, m) = #STW (C, m) and #STMW (C, m, w) =
#STMW (C, w, m), as desired. ◀

By Corollary 20, #STM (C, m) = #STW (C, m). But, here we present a different expression
for #STM (C, m), which will be useful later when we examine #STMW . To simplify notation,
we introduce a new definition. Denote:

sum(C) :=
∑
c∈C

c.

L. Bailey et al. 3:11

▶ Lemma 21. We have the following expression for #STM :

#STM (C, m) =
m−1∑
η=0

∑
C′⊆C

(
sum(C) + |C| + m − 1

sum(C′) + |C′| + η

)
#STN (C′, η) · #STN (C − C′, m − 1 − η)

+
∑
c∈C

(c · #STMW (C − {c} , m, c)) .

Proof. See the proof of Lemma 3.11 in the full version. ◀

It now remains to define a recurrence relation for #STMW (C, m, w). We begin with the
following lemma.

▶ Lemma 22. We have the following recurrence relations for #STMW :

#STMW (C, m, w) =
{

f(C, m, w) : w = 1,

2 · #STMW (C, m, w − 1) + f(C, m, w) : w > 1.

where

f(C, m, w) =
∑
c∈C

(4c · #STMW (C − {c} , m, c + w))

+
m−1∑
η=0

4 ·
∑
C′⊆C

(
sum(C) + |C| + m + w − 1

sum(C′) + |C′| + η

)
#STN (C′, η) · #STN (C − C′, m + w − η − 1).

Proof. See the proof of Lemma 3.12 in the full version. ◀

A priori, to use Lemma 22, we have to track the case when an M -shaped component
sorting with a W -shaped component results in two N -shaped components. This requires
O(2|C|) steps to compute the double-summation in f(C, m, w) from Lemma 22. The next
proposition allows us to both avoid these steps and simplify our algorithm.

▶ Proposition 23. We have the following recurrence relation for #STMW :

#STMW (C, m, w) =

g(C, m, w) : m = 1, w = 1,

#STMW (C, m − 1, w) + g(C, m, w) : m > 1, w = 1,

#STMW (C, m, w − 1) + g(C, m, w) : m = 1, w > 1,

#STMW (C, m − 1, w) : otherwise
+ #STMW (C, m, w − 1) + g(C, m, w).

where

g(C, m, w) = 2 · #STW (C, m + w) +
∑
c∈C

2c

(
#STMW (C − {c} , m + c, w)

+ #STMW (C − {c} , m, w + c) − #STMW (C − {c} , m + w, c)
)

.

Proof. See the proof of Proposition 3.13 in the full version. ◀

SWAT 2024

3:12 Pairwise Rearrangement is FPT in SCaJ

4 Fixed-Parameter Tractability of Pairwise Rearrangement

In this section, we will use the recurrences we have found to establish our main result.

▶ Theorem 1. In the Single Cut-and-Join model, Pairwise Rearrangement is fixed-
parameter tractable, with respect to the number of nontrivial components in the adjacency
graph.

Proof. Given two genomes with n edges each, the adjacency graph is easily constructed in
polynomial time. Let B be the set of components for this adjacency graph, and let k denote
the number of nontrivial components in B. It suffices to show that the number of scenarios
#MPS(B) can be determined in time O(k · 2k · Bk + k · 2k · n2), where Bk is the kth Bell
number.

Let C, M, W, N be multisets of nonnegative integers, denoting the sizes of the nontrivial
crowns, M -shaped components, W -shaped components, and N -shaped components, respect-
ively, of B. Thus, we assume that every element of C is at least 2, and every element of M
and W is at least 1.

We will proceed in two stages. In the first stage, we will build up a table of values for
#STN (A, η), #STW (A, w), #STC(A), and #STMW (A, m, w) with A any sub-multiset of
C and η ≥ 0, w ≥ 1, and m ≥ 1. Then in the second stage, we will use this final table of
values along with Lemma 11 to compute #MPS(C, M, W, N).

Stage 1. When η ≥ 0 we have by Lemma 13 that #STN (∅, η) = 1. Similarly, for w ≥ 1,
we have that #STW (∅, w) = 2w−1, which is computable in time O(n).

Now fix m ∈ [n], w ∈ [n] with m + w = i, and suppose that for each 1 ≤ m′ ≤ m and
each 1 ≤ w′ ≤ w with m′ + w′ < i, that we have computed #STMW (∅, m′, w′). Using these
values, together with the fact that #STW (∅, w) = 2w−1, we may apply Proposition 23 to
compute #STMW (∅, m, w). There are at most n2 pairs (m′, w′) ∈ [n] × [n], and so this step
takes time O(n2).

Let u be an integer 0 < u ≤ |C| ≤ k. First, let 0 < x ≤ n. Suppose we have a table
of values of #STN (A, η) and #STW (A, w) for all sub-multisets A of C with |A| < u and
η, w ≤ n and also for all sub-multisets A of C with |A| = u and η, w < x. Let C′ be a
sub-multiset of C with |C′| = u. We now proceed to fill in some of our lookup table from the
bottom-up, using the recurrences from the previous section.

We may compute #STN (C′, x) using Proposition 14. There are at most kn cells in our
lookup table, and so this step takes time O(kn).
We may compute #STW (C′, x) using Proposition 15. There are at most kn cells in our
lookup table, and so this step takes time O(kn).
We now turn to computing #STC(C′). To do so, we apply Proposition 16 using the
previously computed values of #STW (A, w) for all A of size less than u and all 1 ≤ w ≤ n.
This step takes time O(k).

Now, let x and y be nonnegative integers with x + y ≤ n. Suppose we have a table of
values of #STMW (A, m, w) for all sub-multisets A of C satisfying one of the following:

|A| < u for any nonnegative integers m and w with m + w ≤ n, or
|A| = u with m + w < x + y.

We now turn to computing #STMW (C′, x, y). To do so, we apply Proposition 23 using the
previously computed values of #STW (A, w) for all 1 ≤ w ≤ n and of #STMW (A, m, w) for
all sub-multisets A of C satisfying one of the conditions above. There are at most kn2 many
such cells in our lookup table, and so filling in these cells takes time O(kn2).

L. Bailey et al. 3:13

To summarize, our first stage involves building up a table of values for #STN (A, η),
#STW (A, w), #STC(A), and #STMW (A, m, w) with A any sub-multiset of C and η, w, and
m having values as above. This first stage is computable in time O(k · 2k · n2) by iterating
through all sub-multisets of C in non-decreasing order of cardinality.

Stage 2. We will use the table of values computed in Stage 1, along with Lemma 11, to
compute #MPS(C, M, W, N) as follows. First, let B′ ⊆ B denote the set of all nontrivial
components in B, and let t denote the number of trivial N -shaped components in B. As per
Lemma 11, we consider each partition π of B, and examine #ST(πi) for each part πi of π.
By Proposition 12, we can determine in time O(k) if #ST(πi) = 0. In such a case, the term
of #MPS(B) corresponding to π contributes 0, and so we may discard π. Call a partition
π permissible if #ST(πi) > 0 for all parts. Recall the parts πi from Proposition 12 for
which #ST(πi) = 0. Note that the only part πi with a combination of trivial and nontrivial
components for which #ST(πi) > 0 is the case in which πi contains precisely nontrivial
crowns and a single trivial N -shaped component. So the permissible partitions of B are
precisely the partitions generated by the following procedure:

Start with a permissible partition π′ of B′.
For at most t parts π′

i of π′ that each consist of only nontrivial crowns, add one of the t

trivial N -shaped components from B to π′
i.

Each of the remaining trivial N -shaped components and each trivial crown from B become
a singleton part.

Let π′ = (π′
1, . . . , π′

p(π′)) be a permissible partition of B′. We say that a permissible
partition π = (π1, . . . , πp(π)) of B extends π′ if there exists an injective function f : [p(π′)] →
[p(π)] such that π′

i ⊆ πf(i) for all i ∈ [p(π′)]. Note that by Proposition 12, π′
i and πf(i)

may only be different if π′
i contains only nontrivial crowns, and πf(i) contains a nontrivial

N -shaped component.
Note that while B′ has at most k components, B may in general not have bounded size.

Fix a permissible partition π′ of B′. Our goal is to compute:

∑
π∈Π(B)

π extends π′

(
d(B)

d(π1), d(π2), . . . , d(πp(π))

) p(π)∏
i=1

#ST(πi).

As above, let π′ be a permissible partition of B′, and let π be an extension of π′. Recall, if πi

consists of only one trivial component, then #ST(πi) = 1. Let πi be a part of π that contains
only nontrivial crowns and a single trivial N -shaped component. Let π′

i be obtained from πi

by removing the trivial N -shaped component. We have by equation (2) that d(π′
i) = d(πi).

Thus, if π extends π′, we have that:(
d(B)

d(π1), d(π2), . . . , d(πp(π))

)
=
(

d(B′)
d(π′

1), d(π′
2), . . . , d

(
π′

p(π′)

)).

Proposition 12 and the above procedure for constructing permissible partitions yields
precisely the following cases:

Case 1: Suppose that π′
i consists of an N -shaped component and zero or more nontrivial

crowns. In this case, we can use a known value of #STN to count the number of ways to
sort this part.
Case 2: Suppose that π′

i consists of a W -shaped component and zero or more nontrivial
crowns. In this case, we can use a known value of #STW to count the number of ways to
sort this part.

SWAT 2024

3:14 Pairwise Rearrangement is FPT in SCaJ

Case 3: Suppose that π′
i consists of an M -shaped component and zero or more nontrivial

crowns. In this case, we can also use a known value of #STM to count the number of
ways to sort this part.
Case 4: Suppose that π′

i consists of an M -shaped component, a W -shaped component,
and zero or more nontrivial crowns. In this case, we can use a known value of #STMW

to count the number of ways to sort this part.
Case 5: If none of Cases 1-4 hold, then we necessarily have that π′

i consists of only
nontrivial crowns. Since the presence of such parts implies that π′ may not necessarily
extend uniquely to a permissible partition of B, we consider all such parts π′

i simultaneously
in order to handle all such permissible extensions of π′. Let π′

i1
, . . . , π′

iℓ
be the parts of

π′ that contain only nontrivial crowns. By Proposition 12, we have that for j ∈ [ℓ], we
can only add at most one trivial N -shaped component to π′

ij
. As the trivial N -shaped

components and the parts of π′ are both distinguishable, there are P (t, v) = t!/(t − v)!
ways to assign v ≤ t trivial N -shaped components to v parts drawn from π′

i1
, . . . , π′

iℓ
. The

remaining trivial N -shaped components each form their own singleton component in the
corresponding partition π of B extending π′. If part π′

ij
(j ∈ [ℓ]) has a trivial N -shaped

component added, we can use a known value of #STN to count the number of ways to
sort this part. If not, we can use a known value of #STC to count the number of ways to
sort this part. The number of ways to sort each part is independent of the number of
ways to assign the trivial N -shaped components. Thus, multiply the value returned from
the lookup table by P (t, v). Finally, using Lemma 11, we multiply together each of the
#STN and #STC values that we accessed from the lookup table. This takes time O(k)
since there are O(k) parts.
We now iterate over all integers 0 ≤ v ≤ min(t, ℓ), where we consider all possible
assignments of v trivial N -shaped components to the parts of π′ (where the assignment
is as described in the preceding paragraph). As each π′

ij
can only receive at most one

trivial N -shaped component, we iterate over all v-subsets of [ℓ] to fully enumerate each
case. As ℓ ≤ k, there are at most 2k total subsets to consider across all values of v, and
so computing the count in this case takes time O(k · 2k).

In the first four cases, we only look at a single part at a time. Since there are O(k) parts,
Lemma 11 gives a complexity of O(k) for each of these cases. In Case 5 we already account
for Lemma 11, so we have a complexity of O(k · 2k). Thus for all cases the runtime is at
most O(k · 2k) using the existing values in the lookup table to compute #ST(πi). As we are
summing over all possible partitions, we are evaluating at most the number of partitions of a
set of cardinality k, which is the kth Bell number Bk. This gives a complexity of O(k · 2k · Bk)
for computing #MPS(C, M, W, N) from the pre-established lookup tables.

So, overall, we have a complexity of O(k · 2k · n2) for our first stage and a complexity
of O(k · 2k · Bk) for our second stage. Thus, #MPS(C, M, W, N) is computable in time
O(k · 2k · Bk + k · 2k · n2), as required. The result now follows. ◀

5 Conclusion

We investigated the computational complexity of the Pairwise Rearrangement problem
in the Single Cut-and-Join model. In particular, while Pairwise Rearrangement was
previously shown to be #P-complete under polynomial-time Turing reductions [1], we proved
it is fixed-parameter tractable when parameterized by the number of components in the
adjacency graph that are not trivial crowns (Theorem 1). In particular, our results show that
the number of nontrivial components serves as a key barrier towards efficiently enumerating
and sampling minimum length sorting scenarios. We conclude with some open questions.

L. Bailey et al. 3:15

▶ Question 24. In the Single Cut-and-Join model, does Pairwise Rearrangement belong
to FPRAS?

▶ Question 25. In the Double Cut-and-Join model, is Pairwise Rearrangement #P-
complete?

The work of Braga and Stoye [3] immediately yields a fixed-parameter tractable algorithm
for Pairwise Rearrangement in the Double Cut-and-Join model. Their algorithm is
considerably simpler than our work in this paper.

The computational complexity of the Pairwise Rearrangement problem in the Reversal
model is a long-standing open question. In particular, it is believed that this problem is
#P-complete. Furthermore, Pairwise Rearrangement has been resistant to efficient
sampling; membership in FPRAS remains open. Thus, perhaps the lens of parameterized
complexity might shed new light on this problem. The following question is natural, though
might be hard.

▶ Question 26. In the Reversal model, is Pairwise Rearrangement fixed-parameter
tractable by the number of components in the adjacency graph?

References
1 Lora Bailey, Heather Smith Blake, Garner Cochran, Nathan Fox, Michael Levet, Reem

Mahmoud, Elizabeth Bailey Matson, Inne Singgih, Grace Stadnyk, Xinyi Wang, and Alexander
Wiedemann. Complexity and enumeration in models of genome rearrangement. In Weili Wu
and Guangmo Tong, editors, Computing and Combinatorics, pages 3–14, Cham, 2024. Springer
Nature Switzerland. doi:10.1007/978-3-031-49190-0_1.

2 Anne Bergeron, Paul Medvedev, and Jens Stoye. Rearrangement models and single-cut
operations. Journal of computational biology : a journal of computational molecular cell
biology, 17:1213–25, September 2010. doi:10.1089/cmb.2010.0091.

3 Marília D. V. Braga and Jens Stoye. Counting all DCJ sorting scenarios. In Francesca D.
Ciccarelli and István Miklós, editors, Comparative Genomics, pages 36–47, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg. doi:10.1007/978-3-642-04744-2_4.

4 Aaron Darling, István Miklós, and Mark Ragan. Dynamics of genome rearrangement in bacterial
populations. PLoS genetics, 4:e1000128, July 2008. doi:10.1371/journal.pgen.1000128.

5 Rick Durrett, Rasmus Nielsen, and Thomas York. Bayesian estimation of genomic distance.
Genetics, 166:621–9, February 2004. doi:10.1534/genetics.166.1.621.

6 Pedro Feijão and Joao Meidanis. SCJ: A breakpoint-like distance that simplifies several
rearrangement problems. IEEE/ACM transactions on computational biology and bioinformatics,
8:1318–29, February 2011. doi:10.1109/TCBB.2011.34.

7 Andrew Holland and Don Cleveland. Chromoanagenesis and cancer: Mechanisms and con-
sequences of localized, complex chromosomal rearrangements. Nature medicine, 18:1630–8,
November 2012. doi:10.1038/nm.2988.

8 Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical Computer Science, 43:169–188, 1986.
doi:10.1016/0304-3975(86)90174-X.

9 Bret Larget, Donald L. Simon, Joseph B. Kadane, and Deborah Sweet. A Bayesian Analysis of
Metazoan Mitochondrial Genome Arrangements. Molecular Biology and Evolution, 22(3):486–
495, November 2004. doi:10.1093/molbev/msi032.

10 Barbara McClintock. Chromosome organization and genic expression. In Cold Spring Harbor
symposia on quantitative biology, volume 16, pages 13–47. Cold Spring Harbor Laboratory
Press, 1951. doi:10.1101/sqb.1951.016.01.004.

11 István Miklós, Sándor Z. Kiss, and Eric Tannier. Counting and sampling SCJ small parsimony
solutions. Theor. Comput. Sci., 552:83–98, 2014. doi:10.1016/j.tcs.2014.07.027.

SWAT 2024

https://doi.org/10.1007/978-3-031-49190-0_1
https://doi.org/10.1089/cmb.2010.0091
https://doi.org/10.1007/978-3-642-04744-2_4
https://doi.org/10.1371/journal.pgen.1000128
https://doi.org/10.1534/genetics.166.1.621
https://doi.org/10.1109/TCBB.2011.34
https://doi.org/10.1038/nm.2988
https://doi.org/10.1016/0304-3975(86)90174-X
https://doi.org/10.1093/molbev/msi032
https://doi.org/10.1101/sqb.1951.016.01.004
https://doi.org/10.1016/j.tcs.2014.07.027

3:16 Pairwise Rearrangement is FPT in SCaJ

12 István Miklós and Heather Smith. Sampling and counting genome rearrangement scenarios.
BMC Bioinformatics, 16:S6, October 2015. doi:10.1186/1471-2105-16-S14-S6.

13 István Miklós and Eric Tannier. Bayesian sampling of genomic rearrangement scenarios
via double cut and join. Bioinformatics, 26(24):3012–3019, October 2010. doi:10.1093/
bioinformatics/btq574.

14 István Miklós and Eric Tannier. Approximating the number of double cut-and-join scenarios.
Theoretical Computer Science, 439:30–40, 2012. doi:10.1016/j.tcs.2012.03.006.

15 J. D. Palmer and L. A. Herbon. Plant mitochondrial dna evolves rapidly in structure,
but slowly in sequence. Journal of Molecular Evolution, 28:87–97, December 1988. doi:
10.1007/BF02143500.

16 A. H. Sturtevant. The linear arrangement of six sex-linked factors in drosophila, as shown
by their mode of association. Journal of Experimental Zoology, 14(1):43–59, 1913. doi:
10.1002/jez.1400140104.

17 A. H. Sturtevant. Genetic factors affecting the strength of linkage in drosophila. Proceedings
of the National Academy of Sciences of the United States of America, 3(9):555–558, 1917. URL:
http://www.jstor.org/stable/83776.

18 A. H. Sturtevant. Known and probably inverted sections of the autosomes of Drosophila
melanogaster. Carnegie Institution of Washington Publisher, 421:1–27, 1931.

19 A H Sturtevant and E Novitski. The Homologies of the Chromosome Elements in the genus
Drosophila. Genetics, 26(5):517–541, September 1941. doi:10.1093/genetics/26.5.517.

20 Sophia Yancopoulos, Oliver Attie, and Richard Friedberg. Efficient sorting of genomic
permutations by translocation, inversion and block interchange. Bioinformatics (Oxford,
England), 21:3340–6, September 2005. doi:10.1093/bioinformatics/bti535.

https://doi.org/10.1186/1471-2105-16-S14-S6
https://doi.org/10.1093/bioinformatics/btq574
https://doi.org/10.1093/bioinformatics/btq574
https://doi.org/10.1016/j.tcs.2012.03.006
https://doi.org/10.1007/BF02143500
https://doi.org/10.1007/BF02143500
https://doi.org/10.1002/jez.1400140104
https://doi.org/10.1002/jez.1400140104
http://www.jstor.org/stable/83776
https://doi.org/10.1093/genetics/26.5.517
https://doi.org/10.1093/bioinformatics/bti535

Succinct Data Structure for Chordal Graphs with
Bounded Vertex Leafage
Girish Balakrishnan #

Indian Institute of Technology Madras, Chennai, India

Sankardeep Chakraborty #

University of Tokyo, Japan

N. S. Narayanaswamy #

Indian Institute of Technology Madras, Chennai, India

Kunihiko Sadakane #

University of Tokyo, Japan

Abstract
Chordal graphs is a well-studied large graph class that is also a strict super-class of path graphs.
Munro and Wu (ISAAC 2018) have given an (n2/4+o(n2))−bit succinct representation for n−vertex
unlabeled chordal graphs. A chordal graph G = (V, E) is the intersection graph of sub-trees of a
tree T . Based on this characterization, the two parameters of chordal graphs which we consider
in this work are leafage, introduced by Lin, McKee and West (Discussiones Mathematicae Graph
Theory 1998) and vertex leafage, introduced by Chaplick and Stacho (Discret. Appl. Math. 2014).
Leafage is the minimum number of leaves in any possible tree T characterizing G. Let L(u) denote
the number of leaves of the sub-tree in T corresponding to u ∈ V and k = max

u∈V
L(u). The smallest k

for which there exists a tree T for G is called its vertex leafage.
In this work, we improve the worst-case information theoretic lower bound of Munro and Wu

(ISAAC 2018) for n−vertex unlabeled chordal graphs when vertex leafage is bounded and leafage
is unbounded. The class of unlabeled k−vertex leafage chordal graphs that consists of all chordal
graphs with vertex leafage at most k and unbounded leafage, denoted Gk, is introduced for the first
time. For k > 0 in o(nc), c > 0, we obtain a lower bound of ((k −1)n log n−kn log k −O(log n))−bits
on the size of any data structure that encodes a graph in Gk. Further, for every k−vertex leafage
chordal graph G and k > 1 in o(nc), c > 0, we present a ((k − 1)n log n + o(kn log n))−bit succinct
data structure, constructed using the succinct data structure for path graphs with (k − 1)n vertices.
Our data structure supports adjacency query in O(k log n) time and using additional 2n log n bits,
an O(k2dv log n + log2 n) time neighbourhood query where dv is degree of v ∈ V .

2012 ACM Subject Classification Information systems → Data structures

Keywords and phrases succinct data structure, chordal graphs, leafage, vertex leafage, path graphs

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.4

Related Version Full Version: https://arxiv.org/abs/2402.03748

Funding Sankardeep Chakraborty: supported by MEXT Quantum Leap Flagship Program (MEXT
Q-LEAP) Grant Number JPMXS0120319794.

1 Introduction

A data structure for a graph class G of graphs with n−vertices is succinct if it takes
(log |G| + o(log |G|))−bits of space; here |G| denotes the number of n−vertex graphs in G.
A succinct representation for graph G = (V, E) in G is expected to support the following
queries for each pair of vertices u, v ∈ V :

© Girish Balakrishnan, Sankardeep Chakraborty, N. S. Narayanaswamy, and Kunihiko Sadakane;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 4; pp. 4:1–4:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:girishb@cse.iitm.ac.in
mailto:sankardeep.chakraborty@gmail.com
mailto:swamy@cse.iitm.ac.in
mailto:sada@mist.i.u-tokyo.ac.jp
https://doi.org/10.4230/LIPIcs.SWAT.2024.4
https://arxiv.org/abs/2402.03748
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Succinct Data Structure for Chordal Graphs with Bounded Vertex Leafage

adjacency(u, v): returns “YES” if and only if vertices u and v are adjacent in G.
neighborhood(u): returns all the vertices in V that are adjacent to vertex u.
degree(u): returns the number of vertices adjacent to vertex u.

The earliest work on space-efficient data structures for graph classes was by Itai and Rodeh [16]
for vertex labeled planar graphs and by Jacobson [17] for class of static unlabeled trees and
planar graphs. In recent years, succinct data structures for intersection graphs is getting lot
of attention. A few of them are, Acan et al. [2] for interval graphs, Acan et al. [1] for families
of intersection graphs on circle, Munro and Wu [22] for chordal graphs and Balakrishnan et
al. [4] for path graphs. There are also other results on representation of chordal graphs, for
instance, the space-efficient representation for chordal graphs by Markenzon et al. [19]. This
shows that representation of chordal graphs are of interest to the research community.

A recent paper by Chakraborty and Jo [6] improve the information theoretic lower
bound for interval graphs as given by Acan et al. [2] by bounding maximum degree. For
bounded maximum degree ∆ in O(nϵ) where 1 < ϵ < 1, they give a lower bound of
(1

6 n log ∆−O(n))−bits and a (n log ∆ + O(n))−bit space-efficient data structure. They also
give a ((χ− 1)n + o(χn))−bit space-efficient data structure for interval graphs with bounded
chromatic number χ for χ = o(log n). In Balakrishnan et al. [3], such a parameterization
has been applied to a larger graph class, namely, the class of graphs with d−dimensional
t−representation where parameters d and t are bounded. A ((2td−1)n log n+o(tdn log n))−bit
succinct data structure for graphs with d−dimensional t−representation is presented in [3].
Special cases of this graph class are graphs with bounded boxicity with t = 1 and bounded
interval number with d = 1. Chordal graphs is also a large graph class that is a generalization
of interval graphs. A graph is a chordal graph if it contains only cycles of length at most
three. Lin et al. [18] introduced the parameter leafage and Chaplick and Stacho [8] the
parameter vertex leafage for chordal graphs. In this work, we define the k−vertex leafage
chordal graphs that contains chordal graphs with bounded vertex leafage and unbounded
leafage. When vertex leafage and leafage are equal to two we get interval graphs and when
vertex leafage is two and leafage is unbounded we get path graphs. We present a data
structure for k−vertex leafage chordal graphs using succinct data structure for path graphs
and prove that it is succinct.
Convention. Throughout the rest of this paper, set of vertices and edges of a graph G will be
denoted by V (G) and E(G), respectively.

Our Results. We present the following two theorems. The first theorem proves a lower
bound on the class of k−vertex leafage graphs, denoted Gk.

▶ Theorem 1. For k > 0 in o(nc), c > 0, log |Gk| ≥ (k − 1)n log n− kn log k −O(log n).

The next theorem proves the existence of a matching data structure that supports adjacency
query efficiently. For neighbour query we use additional 2n log n bits.

▶ Theorem 2. For k > 1 and in o(nc), c > 0, a graph G ∈ Gk has a (k − 1)n log n +
o(kn log n)-bit succinct data structure that supports adjacency query in O(k log n) time and
using additional 2n log n bits the neighbourhood query for vertex v in O(k2dv log n + log2 n)
time where dv is the degree of v ∈ V (G).

Our Main Ideas. The main objectives of this work are two fold.
1. Prove a worst-case information theoretic lower bound on the cardinality of chordal graphs

with bounded vertex leafage by using a simple and constructive counting technique
motivated by the method of partial coloring as used by Acan et al. [1].

G. Balakrishnan, S. Chakraborty, N. S. Narayanaswamy, and K. Sadakane 4:3

2. Present a data structure for chordal graphs with bounded vertex leafage that uses the
succinct data structure for path graphs given in Balakrishnan et al. [4] as a black box.
Also, using the lower bound show that this data structure is succinct. In order to design
the data structure, we use the characterisation of chordal graphs as intersection graph of
sub-trees of a tree. The sub-trees of this tree are carefully decomposed into paths and
the resulting paths along with the tree are stored using the succinct data structure for
path graphs.

Organisation of the Paper. Section 2 gives details of the compact data structures we have
used in the construction of the succinct data structure of k−vertex leafage chordal graphs
along with the relevant characterisations of chordal and path graphs. It also formalizes and
explains the method of partial coloring, first used in Acan et al. [1] to obtain the lower bound
for Gk. Section 3 defines the k−vertex leafage chordal graphs and also gives a lower bound
on the cardinality of the class. The succinct data structure design is given in Section 4 and
it contains in Section 4.1, the method to convert a k−vertex leafage chordal graph with n

vertices to a path graph with (k − 1)n vertices. Section 5 concludes by giving motivation to
extend this work by generalizing the parameters vertex leafage and leafage to general graphs.

2 Preliminaries

From Gavril [12] we have, the following characterisation of chordal graphs; see Golumbic [14]
for more details on chordal graphs or otherwise called triangulated graphs.

▶ Theorem 3. The graph G is a chordal graph if and only if there exists a clique tree T ,
such that for every v ∈ V (G), the set of maximal cliques containing v form a sub-tree of T

such that two vertices are adjacent if the corresponding sub-trees intersect.

Also, from Gavril [13] we have the following characterisation of path graphs; see Monma and
Wu [20] for more details on path graphs.

▶ Theorem 4. The graph G is a path graph if and only if there exists a clique tree T , such
that for every v ∈ V (G), the set of maximal cliques containing v is a path in T such that two
vertices are adjacent if the corresponding paths intersect.

Succinct Data Structure for Ordinal Trees. Tree T is called an ordinal tree if for z > 0
and any u ∈ V (T) with children {u1, . . . , uz}, for 1 ≤ i < j ≤ z, ui is to the left of uj [24].
By considering ordinal trees as balanced parenthesis Navarro and Sadakane [24] has given a
2n + o(n) bit succinct data structure.

▶ Lemma 5. For any ordinal tree T with n nodes, there exists a 2n + o(n) bit Balanced
Parentheses (BP) based data structure that supports the following functions among others in
constant time :
1. lca(i, j), returns the lowest common ancestor of two nodes i, j in T , and
2. child(i, v), returns the q−th child of v in T .

Rank-Select Data Structure. Bit-vectors are extensively used in the succinct representation
given in Section 4. The following data structure due to Golynski et al. [15] and the functions
supported by it are useful.

SWAT 2024

4:4 Succinct Data Structure for Chordal Graphs with Bounded Vertex Leafage

▶ Lemma 6. Let B be an n−bit vector and b ∈ {0, 1}. There exists an n + o(n) bit data
structure that supports the following functions in constant time:
1. rank(B, b, i): Returns the number of b’s up to and including position i in the bit vector

B from the left.
2. select(B, b, i): Returns the position of the i-th b in the bit vector B from left. For i /∈ [n]

it returns 0.

Non-Decreasing Integer Sequence Data Structure. Given a set of positive integers in the
non-decreasing order we can store them efficiently using the differential encoding scheme
for increasing numbers; see Section 2.8 of [23]. Let S be the data structure that supports
differential encoding for increasing numbers then the function accessNS(S, i) returns the
i−th number in the sequence.

▶ Lemma 7. Let S be a sequence of n non-decreasing positive integers a1, . . . , an, 1 ≤ ai ≤ n.
There exists a 2n + o(n) bit data structure that supports accessNS(S, i) in constant time.

Proof. We will prove the lemma by giving a construction of such a data structure. a1 will
be represented by a sequence of a1 1’s followed by a 0. Subsequently, ai’s are represented
by storing ai − ai−1 many 1’s followed by a 0. It will take at most 2n bits since there are
n 0’s and at most n 1’s. Let this bit string be stored using the data structure of Lemma 6
and be denoted as B. B takes 2n + o(n) bits. accessNS(S, i) can be implemented using
rank(B, 1, select(B, 0, i)). ◀

Succinct Data Structure for Path Graphs. From [4] we have the following succinct data
structure for path graphs that supports adjacency and neighbourhood queries with slight
modifications in input. In the following lemma the endpoints of paths are input to the queries
whereas in [4] the path indices are given as input.

▶ Lemma 8. A path graph G has an n log n + o(n log n)-bit succinct representation. For a
u ∈ V (G), let Pu = (su, tu) be the path corresponding u in clique tree T of G. The succinct
representation constructed from the clique tree T representation supports for u ∈ V (G) the
following queries:
1. adjacencyPG(su, tu, sv, tv): Returns true if Pu = (su, tu) intersects Pv = (sv, tv) in

O(log n) time else false,
2. pathep(u): Returns the endpoints of path Pu, corresponding to u, in T in O(log n) time,

and
3. neighbourhoodPG(su, tu): Returns the list of paths intersecting Pu = (su, tu) in

O(du log n) time where du is the degree of vertex u.
4. getHPStartNode(v): Returns the start node of heavy path π that contains v ∈ V (T) in

constant time. If v is not the first child, that is, it is adjacent to its parent by a light edge,
then v itself is returned.

Permutations. The following data structure by Munro et al. [21], gives a succinct repres-
entation for storing permutation of [n].

▶ Lemma 9 ([21]). Given a permutation of [n] there exists an (n log n + o(n log n))-bit data
structure that supports the following queries.

π(i): Returns the i−th value in the permutation in O(1) time.
π−1(j): Returns the position of the j−th value in the permutation in O(f(n)) time for
any increasing function f(n) = o(log n).

G. Balakrishnan, S. Chakraborty, N. S. Narayanaswamy, and K. Sadakane 4:5

Method of Partial Coloring. Let G be a graph class. A partial coloring of G ∈ G is the
triple ⟨G, U, g⟩ where,

U ⊆ V (G) such that for s > 0, |U | = s, and
g : U → {1, . . . , s} is a bijection.

Every vertex u ∈ U is said to have color g(u) and vertices in V (G)\U are said to be uncolored.
Two partially colored graphs ⟨H1, U1, g1⟩ and ⟨H2, U2, g2⟩ are said to be different when either:
1. E(H1) ̸= E(H2), or
2. E(H1) = E(H2) = E(H) for some H ∈ G and

a. U1 ̸= U2 and there does not exist a bijection f : V (H1)→ V (H2) such that for every
u ∈ V (H1)\U1 there exists a f(u) ∈ V (H2)\U2 with same set of colored neighbours, or

b. for U1 = U2 = U there exists u ∈ V (H)\U such that its colored neighbourhood in
⟨H1, U1, g1⟩ and ⟨H2, U2, g2⟩ are different.

Else, they are same. The method of counting by partial coloring as given in Theorem 1 of
Acan et al. [1] can be defined using the following proposition.

▶ Proposition 10. Let G′ be the class of partially colored graphs obtained from class of
graphs G by selecting m vertices out of n and coloring them using m distinct colors. Then,
|G′| ≤

(
n
m

)
m!|G|. If there exists a graph class Gc ⊂ G′ then |G′| ≥ |Gc| and |G| ≥ |Gc|

(n
m)m!

.

▶ Remark. While computing |G′|, indistinguishable partially colored graphs can also be coun-
ted since we only require an upper bound, however, this is not the case while computing |Gc|.

3 Class of k−Vertex Leafage Chordal Graphs and its Lower Bound

In this section, we define the class of k−vertex leafage chordal graphs, denoted Gk, followed
by the lower bound for log |Gk|. According to Theorem 3, a graph G is a chordal graph
if there exists a tree T such that corresponding to every vertex v ∈ V (G) there exists a
sub-tree Tv of T and {u, v} ∈ E(G) if and only if V (Tu)∩V (Tv) ̸= ϕ where Tu is the sub-tree
corresponding to u. We call T the tree model of G. For every chordal graph there exists a
tree T called the clique tree such that V (T) is the set of maximal cliques of G. The leafage
of a chordal graph G, denoted l(G), is the minimum number of leaves of a tree T out of all
possible trees characterising G. Leafage was studied by Lin et al. in [18]. Later, Chaplick
and Stacho in [8] studied vertex leafage, denoted vl(G). Let L(u) denote the number of leaves
of the sub-tree in T corresponding to u ∈ V and k = max

u∈V
L(u). The smallest k for which

there exists a tree T for G is called its vertex leafage.

Class of k-Vertex Leafage Chordal Graphs. The class of chordal graphs can be considered
as the generalisation of path graphs using vertex leafage as the parameter. Theorem 4
implies that path graphs are chordal graphs with vertex leafage equal to two and unbounded
leafage. Generalizing this, Gk is the set of all chordal graphs with vertex leafage at most k

and unbounded leafage. Succinct data structure for path graphs is given by Balakrishnan
et al. in [4]. In this paper, we present a succinct data structure for chordal graphs with
vertex leafage at most k for k ∈ o(nc), c > 0 using succinct data structure for path graphs as
black-box.

Lower Bound. Counting chordal graphs involves heavy mathematical machinery as can be
seen from Wormald [10]. Munro and Wu [22] uses the result from [10] to obtain lower bound
for the cardinality of unlabeled chordal graphs. Here we give a much simpler technique for

SWAT 2024

4:6 Succinct Data Structure for Chordal Graphs with Bounded Vertex Leafage

counting unlabeled chordal graphs with bounded vertex leafage. In order to derive the lower
bound for log |Gk| by implementing Proposition 10, we define two new graph classes, G′

k and
Gc

k, where G′
k corresponds to G′ and Gc

k to Gc of Proposition 10.

Graph Class G′
k. We consider the class of all partially colored k−vertex leafage chordal

graphs, denoted G′
k, that has for fixed 1 ≤ m ≤ n, m out of n vertices colored using colors

{1, . . . , m}. Graphs in G′
k are obtained from graphs in Gk as follows. The input to the

procedure is G ∈ Gk and a set {v1, . . . , vm} of m vertices of G. For each G ∈ Gk, we get a set
of

(
n
m

)
m! graphs of G′

k where each graph G′ is obtained by coloring the selected m vertices
of G by a permutation of {1, . . . , m}. A partially colored graph in G′

k is denoted ⟨H, U, g⟩
where U ⊂ V (H), |U | = m, and g : U → {1, . . . , m}.

▶ Lemma 11. For each k > 1, log |G′
k| ≤ log |Gk|+n log n−(n−m) log(n−m)−2n+O(log n).

Graph Class Gc
k. As per Proposition 10, we construct the class Gc

k ⊂ G′
k for which we can

obtain exact count or a lower bound. We give a construction mechanism for graphs in Gc
k

such that all graphs in it have the following properties. For G ∈ Gc
k,

U ⊆ V (G), with |U | = m, is fixed and have a fixed coloring using colors {1, . . . , m},
let T be the tree model corresponding to G then the sub-trees in the tree model corres-
ponding to vertices in U consist of only one node, and
sub-trees of T corresponding to vertices in V (G)\U have at most k leaves with at least

m+1
2(k−1) sub-trees with exactly k leaves.

In other words, for all the partially colored graphs in Gc
k, U and g are fixed. Based on the

tree model, the vertices of a graph H ∈ Gc
k with tree model T are of two types:

1. basis vertices U : all m vertices in U are represented by single-node sub-trees of T , and
2. dependent vertices V (H)\U : rest of the (n−m) vertices are represented by sub-trees

in T with number of leaves at most k with at least m+1
2(k−1) sub-trees with exactly k leaves.

Let the dependent vertices corresponding to these m+1
2(k−1) sub-trees be denoted U ′.

We have the following useful proposition:

▶ Proposition 12. For a rooted tree T , the set V ′ ⊆ V (T) uniquely defines a sub-tree T ′ of
T such that if u, v ∈ V ′ then the path connecting it is in T ′.

The sub-trees corresponding to the basis and dependent vertices are called basis sub-trees
and dependent sub-trees, respectively. Let F = m+1

2(k−1) . The input to the procedure that
constructs H are:
1. n, m, k, and
2. J = {J1, . . . , Jn−m−F } where for 1 ≤ i ≤ n−m− F, 1 ≤ t ≤ k , Ji = {ai

1, . . . , ai
k} and

1 ≤ ai
t ≤ m.

The construction mechanism that constructs H is as follows.
1. Consider a rooted complete binary tree T with m > 0 nodes and let them be colored

from 1 to m.
2. Construction of basis sub-trees. For 1 ≤ j ≤ m, let each node bj ∈ V (T) be a single

node sub-tree, Tj . These sub-trees are the basis sub-trees. The basis sub-trees correspond
to the m basis vertices of H , denoted by U . Let the basis vertices be colored by the color
assigned to the nodes to which they are assigned.

3. Construction of dependent sub-trees. First we define the fixed sub-trees with k

leaves. Since T is a complete binary tree it has m+1
2 leaves. Let the set of leaves of T be

denoted by L. For 1 ≤ t ≤ F , partition L into blocks L =
⋃
t

Lt such that |Lt| = k − 1

G. Balakrishnan, S. Chakraborty, N. S. Narayanaswamy, and K. Sadakane 4:7

and for 1 ≤ z < z′ ≤ t, there does not exist a node in Lz with color greater the smallest
color of nodes in Lz′ . For every ut ∈ U ′, construct a sub-tree Tut

in T by connecting
paths from the k− 1 leaves in Lt to the root of T . This ensures that Tut

has k leaves. So,
|U ′| = F . For 1 ≤ i ≤ n−m−F , construct sub-tree Ti from Ji = {ai

1, . . . , ai
k}, where for

1 ≤ t ≤ k, ai
t ∈ V (T), such that Ji is the set of k nodes of Ti; as per Proposition 12, Ji

uniquely defines a sub-tree. These sub-trees are called dependent sub-trees and correspond
to the dependent vertices in V (H)\U . The sub-trees corresponding to nodes of U ′ ensure
that the chordal graph is connected and there are at least F sub-trees with k leaves there
by making H a k−vertex leafage chordal graph. Also, apart from U and g, U ′ is also
fixed for any partially colored k−vertex leafage chordal graph in Gc

k.

Convention. A node aj ∈ V (T) will also be used to denote the sub-tree Tj corresponding to
the basis vertex of H.

Figure 1 The complete rooted binary tree T with m nodes constructed to produce a graph in
Gc

k. T ′ is one of the sub-trees of T with exactly k leaves corresponding to a dependent vertex in
U ′. T ′′ is the sub-tree corresponding to a dependent vertex in V (H)\(U ∪ U ′) constructed from
{v1, . . . , vt, . . . , vk} which are the k selected nodes of T .

Thus, H is defined by J = {J1, . . . , Jn−m−F } where each Ji defines a sub-tree Ti. For an
example construction refer Figure 1. From the construction above we have the following
lemma.

▶ Lemma 13. Gc
k ⊆ G′

k.

Computing |Gc
k|. In order to compute |Gc

k| and use Proposition 10, we first note the following
consequence of Lemma 13.

▶ Proposition 14. log |G′
k| ≥ log |Gc

k|.

Let K denote the set of all possible J ’s. We have the following useful proposition and lemma.

▶ Proposition 15. For 1 ≤ i, i′ ≤ n−m− F, 1 ≤ j ≤ m, if Ji ̸= Ji′ then wlog there exists
aj ∈ U such that aj ∈ Ji and aj /∈ Ji′ .

▶ Lemma 16. Let J ,J ′ ∈ K where J = {J1, . . . , Jn−m−F } and J ′ = {J ′
1, . . . , J ′

n−m−F }
such that for 1 ≤ s ≤ n−m−F, Js ̸= J ′

s. Also, let H1 and H2 be the graphs generated from J
and J ′, respectively, and u be the vertex corresponding to s. Then, NH1(u)∩U ̸= NH2(u)∩U

where NH1(u) and NH2(u) are the neighbours of u in H1 and H2, respectively.

SWAT 2024

4:8 Succinct Data Structure for Chordal Graphs with Bounded Vertex Leafage

The following is the central lemma used to obtain the lower bound. For 1 ≤ s ≤ n−m− F ,
let J (H) denote the J ∈ K that produces the graph H ∈ Gc

k.

▶ Lemma 17. Let ⟨H1, U, g⟩, ⟨H2, U, g⟩ be constructed from J ,J ′ ∈ K. Then ⟨H1, U, g⟩ and
⟨H2, U, g⟩ are same if and only if J = J ′.

In order to obtain |Gc
t,d| we prove the following lemma first.

▶ Lemma 18. |Gc
k| = |K|.

The following is an important lemma.

▶ Lemma 19. log |Gc
k| ≥ kn log n− kn log k.

The following theorem gives the lower bound.

▶ Theorem 1. For k > 0 in o(nc), c > 0, log |Gk| ≥ (k − 1)n log n− kn log k −O(log n).

We have the following proposition.

▶ Proposition 20. For k > 0 in o(nc), c > 0 and sufficiently large n, log |Gk| ≥ (k−1)n log n.

4 Succinct Data Structure

The high-level procedure used to obtain the succinct data structure for k−vertex leafage
chordal graph G given as (T, {T1, . . . , Tn}) is as follows:
1. From the tree T , obtain path graph H with (k−1)n vertices by decomposing each sub-tree

Ti, 1 ≤ i ≤ n, into at most (k−1) paths such that each path created corresponds to a vertex
of H . The input (T, {T1, . . . , Tn}) is decomposed into paths and we get (T, {P1, . . . ,Pn})
where Pi = P ′

i ∪P ′′
i , 1 ≤ i ≤ n, where P ′

i = {P i
1, . . . , P i

k/2} and P ′′
i = {P i

k/2+1, . . . , P i
k−1}

such that if we have T and P ′
i we can compute P ′′

i .
2. Out of the (k − 1)n paths, we store kn/2 paths of H and tree T using the data structure

for path graphs given in [4]. The rest of the (k/2− 1)n paths are computed from the tree
T and the stored kn/2 paths of H. In other words, for each Ti,P ′

i is stored and P ′′
i is

computed from P ′
i and T .

The succinct representation for G consists of the following contents:
1. (T,P ′

1 ∪P ′
2 ∪ . . .P ′

n) is stored using the method for storing path graphs given in [4]. This
data structure stores the tree T using the data structure of Lemma 5.

2. for 1 ≤ j ≤ k/2, the mapping from indices of P i
j ∈ P ′

i to the indices of paths in the data
structure of [4] that stores (T,P ′

1 ∪ P ′
2 ∪ . . . ∪ P ′

n) as mentioned in the above step.

The following lemma is important before getting into the details of the data structure.

▶ Lemma 21. Consider clique tree T of k−vertex leafage chordal graph G such that k is
odd. Then there exists a tree model, denoted T ′, for G with at most 3n nodes such that for
1 ≤ i ≤ n, T ′

i is the sub-tree in T ′ corresponding to vi ∈ V (G) and number of leaves of Ti is
even.

In this paper, we only consider even k ≥ 2 as any Ti with odd number of leaves can be
converted to even number of leaves as per Lemma 21. Note that the total increase in number
of nodes of T is only constant times n. We first present the method to transform a k−vertex
leafage chordal graph G to path graph H with (k− 1)n vertices followed by the construction
of the data structure.

G. Balakrishnan, S. Chakraborty, N. S. Narayanaswamy, and K. Sadakane 4:9

4.1 Transforming (T, {T1, . . . , Tn}) to (T, P ′
1 ∪ . . . ∪ P ′

n)
The transformation from (T, {T1, . . . , Tn}) to (T,P ′

1 ∪ . . . ∪ P ′
n) happens in two steps as

below:
a. pre-process the tree T into an ordinal tree, and
b. decompose each Ti, 1 ≤ i ≤ n, into P ′

i ∪ P ′′
i .

Pre-processing is done using the method as explained in Section 3 of [4]. We describe it here
for ease of reading.

Pre-processing the Tree. Fix a root node for T and perform heavy path decomposition
on it. For v ∈ V (T) order its children (w1, . . . , wc) such that {v, w1} is a heavy edge. Let
the children adjacent to v by light edges (w2, . . . , wc), be ordered arbitrarily. This ordering
of children of a node of the tree makes it an ordinal tree. Label the nodes of this ordinal
tree based on the pre-order traversal; see Section 12.1 of [9] for more details of the pre-order
traversal of trees. Labels assigned to nodes in this manner are called the pre-order labels of
the nodes. Throughout the rest of our paper, this ordinal rooted tree labeled with pre-order
will be referred to as the tree model; see Section 3 of [4] for more details. After pre-processing,
T is an ordinal tree on which heavy-path decomposition is performed such that all heavy
edges are left aligned and nodes are numbered based on the order in which they are visited in
the pre-order traversal of T . Since G is k−vertex leafage chordal graph, the number of leaves
of Ti is at most k. We obtain the tree representation of the path graph H ∈ Gk(2, (k − 1)n),
denoted (T,P ′

1 ∪ P ′′
1 ∪ . . . ∪ P ′

n ∪ P ′′
n), by carefully selecting the k − 1 paths from sub-tree

Ti, 1 ≤ i ≤ n. The function getPaths that does this is explained next.

Function getPaths. Given the sub-tree Ti of T with number of leaves at most k, the
function returns the set of paths P ′

i such that:
1. |P ′

i| ≤ k/2,
2. P ′

i along with T can uniquely determine P ′′
i , and

3. Ti = P ′
i ∪ P ′′

i .
The function can be implemented as follows. Let the leaves of Ti labeled based on the order
in which nodes are visited in the pre-order traversal of the tree, be {l1, . . . , lki

}, ki ≤ k. For
1 ≤ j ≤ ki/2, pair the smallest leaf lj with the largest leaf lki−j+1 to get path Pj . Let the
set of paths obtained from Ti be denoted by P ′

i.

Ordering Paths in P ′
i. Let P ′

i = {P i
1, . . . , P i

ki
}, 1 ≤ ki ≤ k/2. For 1 ≤ j < j′ ≤ ki/2,

P i
j = (aj , bj) and P i

j′ = (aj′ , bj′), P i
j ≺P P i

j′ if aj ≤ aj′ ≤ bj′ ≤ bj . ≺P is a total order on
Pi, since for any two paths P i

j , P i
j′ ∈ Pi, either aj ≤ aj′ ≤ bj′ ≤ bj or aj′ ≤ aj ≤ bj ≤ bj′ .

Relation Between P i
j , P i

j+1 ∈ P ′
i. For 1 ≤ j ≤ k/2− 1, the paths connecting P i

j and P i
j+1

are the paths in P ′′
i . They are computed using the function connector. Let P i

j = (aj , bj)
and P i

j+1 = (aj+1, bj+1). We define connector based on the following two conditions:
1. P i

j and P i
j+1 are not intersecting: Since P i

j ≺P P i
j+1 and P i

j+1 is contained inside a sub-
tree rooted at lca(aj , bj), connector(i, j, j + 1) = (lca(aj , bj), lca(aj+1, bj+1)) connects
P i

j and P i
j+1.

2. P i
j and P i

j+1 are intersecting: connector(i, j, j + 1) = NULL in this case.

We have the following useful lemmas.

▶ Lemma 22. For 1 ≤ i ≤ n, the following holds:

SWAT 2024

4:10 Succinct Data Structure for Chordal Graphs with Bounded Vertex Leafage

1. |P ′
i| ≤ k/2 and |P ′′

i | ≤ k/2− 1,
2. Ti = P ′

i ∪ P ′′
i where P ′′

i = connector(i, 1, 2) ∪ connector(i, 2, 3) ∪ . . .∪
connector(i, ki/2− 1, ki/2), and

3. T =
n⋃

i=1
Fi where Fi = P ′

i ∪ P ′′
i .

▶ Lemma 23. For 1 ≤ j ≤ ki/2, let P i
j ∈ P ′

i such that P i
j = (ai

j , bi
j), e = lca(ai

j , bi
j) and

Q1 = (e, bi
j). Also, let connector(i, j, j + 1) ̸= NULL. Then,

1. (e, c) ∈ E(Q) is a light edge, and
2. (e, c′) ∈ E(connector(i, j, j + 1)) is a light edge.
Finally, we have the following proposition and lemma regarding adjacency and neighbourhood
of v ∈ V (G).

▶ Proposition 24. {u, v} ∈ E(G) if and only if there exists P ∈ P ′
u ∪P ′′

u , Q ∈ P ′
v ∪P ′′

v , such
that P ∩Q ̸= ϕ.

For 1 ≤ j ≤ kv, 1 ≤ j′ ≤ kv−1, let β(P v
j) and β(connector(v, j′, j′ + 1)) represent the paths

in P ′
i ∪ P ′′

i ∪ . . . ∪ P ′
n ∪ P ′′

n intersecting P v
j and connector(v, j′, j′ + 1), respectively.

▶ Lemma 25. For 1 ≤ i ≤ n, let Pi = P ′
i ∪ P ′′

i . For P ∈ Pi the following holds:
1. |β(P)| ≤ (k − 1)di, and
2.

∑
P ∈Pi

|β(P)| ≤ (k − 1)2di where di is degree of vi ∈ V (G).

4.2 Construction

Index of Paths in G and H. For P i
1, . . . , P i

ki
∈ P ′

i, we index paths of G and H in the
following ways:
1. in G paths are ordered {P 1

1 , . . . , P 1
k1

, . . . , P n
1 , . . . , P n

kn
} where P i

1, 1 ≤ i ≤ n is in the
increasing order of the starting nodes of P i

1 and for 1 ≤ j ≤ ki, P i
j are ordered based on

≺P , and
2. in H paths are ordered based on their starting nodes; this is as per the storage scheme

followed in [4] for path graphs.

We will order the vertices of G based on the order of the starting nodes of the first paths
P i

1 ∈ Pi of each Ti. The data structure for k−vertex leafage chordal graphs consists of
the following components. We distinguish the case when k is odd or even only when the
difference alters the higher order term in the space complexity, else we assume k is even. We
will show later that k being odd or even does not impact the space complexity of our data
structure.

Path Graph H. The path graph H that we store is (T,
n⋃

i=1
P ′

i) where |
⋃
i

P ′
i| ≤ nk/2

if k is even and |
⋃
i

P ′
i| ≤

(
k−1

2 + 1
2
)
n if k is odd. For 1 ≤ i ≤ n, we do not store

connector(i, 1, 2), connector(i, 2, 3), . . . , connector(i, ki − 1, ki) but compute it when re-
quired. In other words, Ti can be computed from T and P ′

i. Thus, path graph H can be stored
using nk

2 log n+o(nk log n) bits as per Lemma 8 if k is even and
(

k−1
2 + 1

2
)
n log n+o(nk log n)

bits if k is odd. The data structures used in the succinct representation of path graphs as
given in Lemma 8 does not require T to be a clique tree of H as long as the number of nodes
in T is constant times |V (H)|, so (T,

n⋃
i=1
Pi) is a valid input that represents H.

G. Balakrishnan, S. Chakraborty, N. S. Narayanaswamy, and K. Sadakane 4:11

Array K. K is a one dimensional array of length n. For 1 ≤ i ≤ n, K[i] stores |P ′
i|, that is,

the number of paths that the sub-tree Ti gets decomposed into. K takes at most n log k bits
of space. The following function is supported.

getSize(i) : Given 1 ≤ i ≤ n, the function returns K[i] else 0.

Bit-vector F . F is a bit vector of length at most kn/2. Let the index of the first path of
each vertex in the order (P 1

1 , . . . , P 1
k1

, . . . , P n
1 , . . . , P n

kn
) be {i1, . . . , in} where P i

j ∈ P ′
i, 1 ≤

i ≤ n, 1 ≤ j ≤ ki. Since the vertices are numbered based on the start node of their first
paths, {i1, . . . , in} is an increasing sequence of numbers with maximum value of kn/2 and
can be stored using the differential encoding scheme of Lemma 7. This data structure is
also denoted by F and takes at most kn + o(kn) bits of space. The following function is
supported.

getIndex(i) : Given 1 ≤ i ≤ n, the function returns accessNS(i, F) else 0. accessNS(i, F)
returns the value at the i−th position in the sequence {i1, . . . , in}.

Bit-vector D. Consider the order of paths O = (P 1
1 , . . . , P 1

k1
, . . . , P n

1 , . . . , P n
kn

). For 1 ≤
j ≤ kn/2, D[j] = i if O[j] is a path corresponding to ui ∈ V (G). Since D is an increasing
sequence it can be stored using the data structure of Lemma 7 taking O(kn) bits. D contains
at most n 1’s and kn/2 0’s.

Permutation π. π store the mapping of indices of paths in H to paths in G by storing the
indices of paths (P 1

2 , . . . , P 1
k1

, . . . , P n
2 , . . . , P n

kn
) in G in that order. π is stored using the data

structure of Lemma 9 and takes
(

k
2 − 1

)
n log n + o(kn log n) bits of space if k is even and(

k−1
2 −

1
2
)

n log n + o(kn log n) bits if k is odd.

Function alpha. The function alpha takes 1 ≤ i ≤ n, as input and returns the indices of
paths in P ′

i corresponding to ui ∈ V (G) in the tree representation of H. Function returns
{π(p), . . . , π(p + s)} where p← getIndex(i)− i + 1 and s← getSize(i). getIndex(i)− i + 1
is the index of P i

2 in (P 1
2 , . . . , P 1

k1
, . . . , P n

2 , . . . , P n
kn

).

▶ Lemma 26. Given the index 1 ≤ i ≤ n, of ui ∈ V (G), alpha(i) returns the indices in H

of paths in P ′
i corresponding to ui in O(ki) time.

Bit-vector C. C is an array of n bit-vectors each of length (k/2− 1). For 1 ≤ i ≤ n, 1 ≤
j ≤ k/2 − 1, C[i][j] = 1 if connector(i, j, j + 1) ̸= NULL else C[i][j] = 0. C takes a total
space of n(k/2− 1) bits. The following function is supported.

isConnector(i, j) : Given 1 ≤ i ≤ n, 1 ≤ j ≤ k/2 − 1, the function returns true if
C[i][j] = 1 else false.

Function getCPath. For 1 ≤ i ≤ n, 1 ≤ j ≤ ki/2 − 1 and P i
j = (aj , bj), P i

j+1 =
(aj′ , bj′), the function takes paths P i

j and P i
j+1 as input and returns connector(i, j, j + 1) if

isConnector(i, j)) is true else NULL. Note that H stored as per Lemma 8 contains the tree
T and this allows us to perform the lca operation.

▶ Lemma 27. For 1 ≤ i ≤ n, 1 ≤ j ≤ ki/2− 1, given paths P i
j , P i

j+1 as input, the function
getCPath(P i

j , P i
j+1) returns connector(i, j, j + 1) in constant time.

▶ Lemma 28. For k > 1 and in o(nc), c > 0, there exists a (k − 1)n log n + o(kn log n)-bit
succinct data structure for the class of k−vertex leafage chordal graphs.

SWAT 2024

4:12 Succinct Data Structure for Chordal Graphs with Bounded Vertex Leafage

Figure 2 (a) An example 4-vertex leafage chordal graph G, (b) tree representation of G after
pre-processing, (c) the index of the paths generated from the sub-trees along with their start node
(second row), end node (third row), and index (forth row), (d) the components of the succinct data
structure for G.

4.3 Adjacency and Neighbourhood Queries

The following lemma is useful.

▶ Lemma 29. Let Ti and Ti′ intersect and P i
1 = (ai

1, bi
1), P i′

1 = (ai′

1 , bi′

1). Wlog,
1. if ai

1 ≤ ai′

1 ≤ bi′

1 ≤ bi
1, then

a. there exists P i
j , 1 ≤ j ≤ ki/2 such that P i

j ∩ P i′

1 ̸= ϕ, or
b. there exists connector(i, j, j + 1) ∩ P i′

j ̸= ϕ, 1 ≤ j ≤ ki/2− 1.
2. Else, ai

1 ≤ ai′

1 ≤ bi
1 ≤ bi′

1 or ai′

1 ≤ ai
1 ≤ bi′

1 ≤ bi
1.

Adjacency Query. Given indices of two vertices ui, uj ∈ V (G) and the succinct rep-
resentation for the k−vertex leafage chordal graphs, the adjacency query returns true if
{ui, uj} ∈ E(G) else false. The characterisation of {ui, uj} ∈ E(G) in terms of path inter-
sections in (T,P1 ∪ . . . ∪ Pn) where Pi = P ′

i ∪ P ′′
i , 1 ≤ i ≤ n, is given by Proposition 24.

Algorithm 1 gives an implementation of the adjacency query.

▶ Lemma 30. For k ∈ o(nc), c > 0, the class of k−vertex leafage chordal graphs have
a (k − 1)n log n + o(kn log n) bit succinct data structure that supports adjacency query in
O(k log n) time.

Neighbourhood Query. Given v ∈ V (G) and the succinct representation of k−vertex leafage
chordal graph G, the neighbourhood query returns the neighbours of v. We use the following
additional data structure.

G. Balakrishnan, S. Chakraborty, N. S. Narayanaswamy, and K. Sadakane 4:13

Algorithm 1 Given indices i, j as input, the function returns true if {ui, uj} ∈ E(G) else false.

1 Function adjacency(i, j):
2 P ′

i ← alpha(i),P ′
j ← alpha(j), s← NULL

3 Let P i
1 = (ai

1, bi
1) and P j

1 = (aj
1, bj

1) obtained using pathep(getIndex(i)) and
pathep(getIndex(j)), respectively.

4 Check if P i
1 and P j

1 intersect as follows:
5 if adjacencyPG(H, P i

1, P j
1) is true then

6 return true
7 Check if endpoints of first path of one falls within the range of the end points of

the first path of the other as follows:
8 if ai

1 ≤ aj
1 ≤ bj

1 ≤ bi
1 then

9 s← i

10

11 if aj
1 ≤ ai

1 ≤ bi
1 ≤ bj

1 then
12 s← j

13

14 if s ̸= NULL then
15 if s = i then
16 foreach 1 ≤ t ≤ getSize(i)− 1 do
17 if adjacencyPG(H, pathep(P ′

i[t]), pathep(P ′
j [1])) is true then

18 return true

19 foreach 2 ≤ t ≤ getSize(i)− 1 do
20 if t = 2 and

adjacencyPG(H, getCPath(getIndex(i),P ′
i[t]), pathep(P ′

j [1])) is
true then

21 return true
22 else
23 if adjacencyPG(H, getCPath(P ′

i[t− 1],P ′
i[t]), pathep(P ′

j [1])) is
true then

24 return true

25 if s = j then
26 Perform the same steps as done in Line 15 for the case s = i with i and j

interchanged.

27 return false

Array Y . Y is a one dimensional array of length at most n that stores an array at each of
its locations. For 1 ≤ i ≤ n, Y [i] stores the array of records where each record is of the form
(r, s) such that 1 ≤ r ≤ n is the index of the sub-tree that has node ui ∈ V (T) as the lca of
endpoints of P r

1 and for 1 ≤ s ≤ n, node us as the lca of endpoints of P r
kr

. The records at
Y [i] are stored in the increasing order of s. The total space taken by Y is 2n log n bits as
each tree takes 2 log n bits and there are n trees. The following function is supported.

SWAT 2024

4:14 Succinct Data Structure for Chordal Graphs with Bounded Vertex Leafage

getNhb(l, l′, a): Given 1 ≤ l, l′ ≤ n, the function returns the list of trees with index
1 ≤ j ≤ n, such that lca of endpoints of P j

1 is equal to l and lca of endpoints of P j
kj

greater than or equal to l′ and less than or equal to a in O(log n + d) time where d is the
number of trees returned. The function can be implemented as follows:

1. Performing binary search on the array A of records at Y [l] to first obtain the range of
s values greater than or equal to l′. Let this range be [p1, p2].

2. Performing second binary search on A[p1, p2] to obtain the range of s values that are
less than or equal to a in A[p1, p2]. Let this range be [p′

1, p′
2].

3. Return the indices of trees, that is, the r values stored in records A[p′
1, p′

2].
The binary search takes O(log n) time and the tree indices are returned in d time where
d = p′

2 − p′
1 + 1. Thus, getNhb takes a total time of O(log n + d).

Algorithm 2 gives an implementation of the neighbourhood query.

▶ Lemma 31. For k ∈ o(nc), c > 0, the class of k−vertex leafage chordal graphs have a
(k − 1)n log n + o(kn log n) bit succinct data structure that supports neighbourhood query for
vertex vi in O(k2di log n + log2 n) time using additional 2n log n bits where di is the degree
of vi.

Thus, we have the following theorem.

▶ Theorem 2. For k > 1 and in o(nc), c > 0, a graph G ∈ Gk has a (k − 1)n log n +
o(kn log n)-bit succinct data structure that supports adjacency query in O(k log n) time and
using additional 2n log n bits the neighbourhood query for vertex v in O(k2dv log n + log2 n)
time where dv is the degree of v ∈ V (G).

Proof. From Lemma 28, we know that for k ∈ o(n/ log n), the (k−1)n log n + o(kn log n)-bit
data structure is succinct. From Lemma 30, we know that the data structure supports
adjacency query in time O(k log n) and from Lemma 31, we know that the neighbourhood
query is supported in time O(k2di log n + log2 n) using additional 2n log n bits. ◀

5 Conclusion

The parameters, leafage and vertex leafage, are defined for chordal graphs which is a special
case of intersection graphs. In comparison, boxicity and interval number allow us to model
general graphs as intersection graphs. However, they do not give a tree model like in the
case of chordal graphs. We ask the following question: “Can leafage and vertex leafage be
generalized for any graph?” The answer is positive if we consider the nice tree-decomposition.
For any graph, the nice tree-decomposition allows us to establish a correspondence between
vertices of the graph and sub-trees of the tree obtained. As one can see clearly, the parameters
leafage and vertex leafage become applicable to general graphs now. For chordal graphs we
know that the clique tree has nodes that correspond to the maximal cliques of the graph.
However, we lose such nice properties in the case of nice tree-decomposition. Despite these
limitations we think it is worthwhile to generalize these parameters and design a succinct
data structure for the more general class thus formed. It is also interesting to note that a
unit increase in the leafage parameter increases the number of graphs in the class by n log n

as compared to 2n log n in the case of boxicity or interval number. From Balakrishnan
et al. [3] we know that for the succinct data structure designed for graphs with bounded
boxicity d > 0 using the succinct data structure for interval graphs an efficient but easy
implementation for neighbourhood query is not possible. For bounded leafage parameter
where the intersection model is a tree, it will be interesting to see if there exists a simple and
efficient implementation of the neighbourhood query. Another challenging direction is to
consider whether space-efficient graph algorithms can be designed for these specialized graph
classes [5, 7, 11].

G. Balakrishnan, S. Chakraborty, N. S. Narayanaswamy, and K. Sadakane 4:15

Algorithm 2 Given index i as input, the function returns the set of vertices adjacent to
ui ∈ V (G).

1 Function neighbourhood(i):
2 P ′

i ← alpha(i),P ← ϕ

3 Add pathep(getIndex(i)) to P
4 foreach j ∈ P ′

i do
5 Add pathep(j) to P
6 Add getCPath(getIndex(i),P ′

i[1]) to P if it is not NULL
7 foreach 1 ≤ j ≤ getSize(i)− 1 do
8 Add getCPath(P ′

i[j],P ′
i[j + 1]) to P if it is not NULL

9 N ← ϕ

10 Let t be a bit-vector of length n initialised to 0
11 foreach (a, b) ∈ P do
12 N ′ ← neighbourhoodPG(a, b)
13 foreach j′ ∈ N ′ do
14 p← π−1(j′)
15 if t[p] ̸= 1 then
16 Add D[p] to N

17 t[p]← 1

18 P i
1 ← pathep(getIndex(i))

19 P i
2 ← pathep(Pi[1])

20 Let P i
1 = (a1, b1), P i

2 = (a2, b2), l← lca(a1, b1), l′ ← l

21 if lmost_child(parent(l)) = l then
22 v ← parent(getHPStartNode(l))
23 else
24 v ← parent(l)
25 while v ̸= NULL do
26 Add getNhb(v, l′, b1) to N

27 l← v

28 if child(1, parent(l)) = l then
29 v ← parent(getHPStartNode(l))
30 else
31 v ← parent(l)

References
1 H. Acan, S. Chakraborty, S. Jo, K. Nakashima, K. Sadakane, and S.R. Satti. Succinct

navigational oracles for families of intersection graphs on a circle. Theor. Comput. Sci.,
928(C):151–166, September 2022. doi:10.1016/j.tcs.2022.06.022.

2 H. Acan, S. Chakraborty, S. Jo, and S. R. Satti. Succinct encodings for families of interval
graphs. Algorithmica, 83(3):776–794, 2021.

3 G. Balakrishnan, S. Chakraborty, S. Jo, N. S. Narayanaswamy, and K. Sadakane. Succinct
data structure for graphs with d-dimensional t-representation, 2023. arXiv:2311.02427.

4 G. Balakrishnan, S. Chakraborty, N.S. Narayanaswamy, and K. Sadakane. Succinct data
structure for path graphs. Information and Computation, 296:105124, 2024. doi:10.1016/j.
ic.2023.105124.

SWAT 2024

https://doi.org/10.1016/j.tcs.2022.06.022
https://arxiv.org/abs/2311.02427
https://doi.org/10.1016/j.ic.2023.105124
https://doi.org/10.1016/j.ic.2023.105124

4:16 Succinct Data Structure for Chordal Graphs with Bounded Vertex Leafage

5 N. Banerjee, S. Chakraborty, V. Raman, and S. R. Satti. Space efficient linear time algorithms
for BFS, DFS and applications. Theory Comput. Syst., 62(8):1736–1762, 2018. doi:10.1007/
S00224-017-9841-2.

6 S. Chakraborty and S. Jo. Compact representation of interval graphs and circular-arc graphs
of bounded degree and chromatic number. Theor. Comput. Sci., 941:156–166, 2023.

7 S. Chakraborty, S. Jo, and S. R. Satti. Improved space-efficient linear time algorithms for
some classical graph problems. CoRR, abs/1712.03349, 2017. arXiv:1712.03349.

8 S. Chaplick and J. Stacho. The vertex leafage of chordal graphs. Discrete Applied Mathematics,
168:14–25, 2014. Fifth Workshop on Graph Classes, Optimization, and Width Parameters,
Daejeon, Korea, October 2011. doi:10.1016/j.dam.2012.12.006.

9 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Third
Edition. The MIT Press, 3rd edition, 2009.

10 N. C.Wormald. Counting labelled chordal graphs. Graph. Comb., 1(1):193–200, December
1985. doi:10.1007/BF02582944.

11 A. Elmasry, T. Hagerup, and F. Kammer. Space-efficient basic graph algorithms. In Ernst W.
Mayr and Nicolas Ollinger, editors, 32nd STACS, volume 30 of LIPIcs, pages 288–301. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPICS.STACS.2015.288.

12 F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs, 1973.
13 F. Gavril. A recognition algorithm for the intersection graphs of paths in trees, 1978.
14 M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. North-Holland Publishing

Co., NLD, 2004.
15 A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations on large alphabets: A tool

for text indexing. In SODA, SODA ’06, pages 368–373, USA, 2006. Society for Industrial and
Applied Mathematics.

16 A. Itai and M. Rodeh. Representation of graphs. Acta Inf., 17(2):215–219, June 1982.
doi:10.1007/BF00288971.

17 G. J. Jacobson. Space-efficient static trees and graphs. 30th Annual Symposium on Foundations
of Computer Science, pages 549–554, 1989.

18 I.J. Lin, T.A. McKee, and D.B. West. The leafage of a chordal graph. Discussiones Mathem-
aticae Graph Theory, 18(1):23–48, 1998. URL: http://eudml.org/doc/270535.

19 L. Markenzon, C F. E. M. Waga, P. R. C Pereira, C. V. P. Friedmann, and A. R. G. Lozano.
An efficient representation of chordal graphs. Operations Research Letters, 41(4):331–335,
2013. doi:10.1016/j.orl.2013.03.008.

20 C. L. Monma and V. K.-W. Wei. Intersection graphs of paths in a tree. J. Comb. Theory,
Ser. B, 41(2):141–181, 1986.

21 J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Succinct representations of permutations
and functions. Theor. Comput. Sci., 438:74–88, 2012.

22 J. I. Munro and K. Wu. Succinct data structures for chordal graphs. In ISAAC, volume 123
of Leibniz International Proceedings in Informatics (LIPIcs), pages 67:1–67:12, 2018.

23 G. Navarro. Compact Data Structures - A Practical Approach. Cambridge University Press,
2016.

24 G. Navarro and K. Sadakane. Fully functional static and dynamic succinct trees. ACM Trans.
Algorithms, 10(3), May 2014. doi:10.1145/2601073.

https://doi.org/10.1007/S00224-017-9841-2
https://doi.org/10.1007/S00224-017-9841-2
https://arxiv.org/abs/1712.03349
https://doi.org/10.1016/j.dam.2012.12.006
https://doi.org/10.1007/BF02582944
https://doi.org/10.4230/LIPICS.STACS.2015.288
https://doi.org/10.1007/BF00288971
http://eudml.org/doc/270535
https://doi.org/10.1016/j.orl.2013.03.008
https://doi.org/10.1145/2601073

Recognition and Proper Coloring of Unit Segment
Intersection Graphs
Robert D. Barish1 #

Division of Medical Data Informatics, Human Genome Center,
Institute of Medical Science, University of Tokyo, Japan

Tetsuo Shibuya #

Division of Medical Data Informatics, Human Genome Center,
Institute of Medical Science, University of Tokyo, Japan

Abstract
In this work, we concern ourselves with the fine-grained complexity of recognition and proper coloring
problems on highly restricted classes of geometric intersection graphs of “thin” objects (i.e., objects
with unbounded aspect ratios). As a point of motivation, we remark that there has been significant
interest in finding algorithmic lower bounds for classic decision and optimization problems on these
types of graphs, as they appear to escape the net of known planar or geometric separator theorems
for “fat” objects (i.e., objects with bounded aspect ratios). In particular, letting n be the order of a
geometric intersection graph, and assuming a geometric ply bound, per what is known as the “square
root phenomenon”, these separator theorems often imply the existence of O

(
2(√

n)
)

algorithms
for problems ranging from finding proper colorings to finding Hamiltonian cycles. However, in
contrast, it is known for instance that no 2o(n) time algorithm can exist under the Exponential Time
Hypothesis (ETH) for proper 6-coloring intersection graphs of line segments embedded in the plane
(Biró et. al.; J. Comput. Geom. 9(2); pp. 47–80; 2018).

We begin by establishing algorithmic lower bounds for proper k-coloring and recognition problems
of intersection graphs of line segments embedded in the plane under the most stringent constraints
possible that allow either problem to be non-trivial. In particular, we consider the class UNIT-
PURE-k-DIR of unit segment geometric intersection graphs, in which segments are constrained to
lie in at most k directions in the plane, and no two parallel segments are permitted to intersect.

Here, under the ETH, we show for every k ≥ 3 that no 2o
(√

n/k
)

time algorithm can exist for
either recognizing or proper k-coloring UNIT-PURE-k-DIR graphs of order n. In addition, for every
k ≥ 4, we establish the same algorithmic lower bound under the ETH for the problem of proper
(k − 1)-coloring UNIT-PURE-k-DIR graphs when provided a list of segment coordinates specified
using O (n · k) bits witnessing graph class membership. As a consequence of our approach, we are
also able to show that the problem of properly 3-coloring an arbitrary graph on m edges can be
reduced in O

(
m2)

time to the problem of properly (k − 1)-coloring a UNIT-PURE-k-DIR graph.
Finally, we consider a slightly less constrained class of geometric intersection graphs of lines (of
unbounded length) in which line-line intersections must occur on any one of (r = 3) parallel planes
in R3. In this context, for every k ≥ 3, we show that no 2o(n/k) time algorithm can exist for proper
k-coloring these graphs unless the ETH is false.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Mathematics of
computing → Graph coloring

Keywords and phrases graph class recognition, proper coloring, geometric intersection graph, segment
intersection graph, fine-grained complexity, Exponential Time Hypothesis

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.5

Funding Tetsuo Shibuya: This work was supported by JSPS Kakenhi grants {23H03345, 23K18501,
20H05967, 21H05052}.

1 Corresponding author.

© Robert D. Barish and Tetsuo Shibuya;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 5; pp. 5:1–5:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rbarish@ims.u-tokyo.ac.jp
https://orcid.org/0000-0001-5207-0375
mailto:tshibuya@hgc.jp
https://orcid.org/0000-0003-1514-5766
https://doi.org/10.4230/LIPIcs.SWAT.2024.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Recognition and Proper Coloring of Unit Segment Intersection Graphs

1 Introduction

The notion of a geometric intersection graph, where vertices correspond to geometric shapes
embedded in Rn, for some n ∈ N>0, and edges encode their intersections, provides a direct
bridge between topology and intuitive Euclidean geometry. In particular, fundamental graph
and complexity theoretic questions concerning these objects tend to have answers with
distinctly “physical” implications.

Nice examples of this phenomena come from the graph recognition problem of deciding if a
given graph can be realized as a particular type of geometric intersection graph. With regard
to positive results, we can note the proof by Koebe that every planar graph is realizable as an
intersection graph of disks [32], as well as Chalopin & Gonçalves’ proof [12] of Scheinerman’s
conjecture [61] that every planar graph is likewise realizable as an intersection graph of
segments. We can also observe a proof by Pach & Tóth [52] that, of the 2(n

2) graphs on
n labeled vertices, at least 2((3

4)·(n
2)) and at most 2((3

4 +o(1))·(n
2)) can be realized as the

intersection graphs of n Jordan curves in R2 (i.e., “string” graphs [19, 35, 62]). However,
while it is known to be decidable whether a particular graph is a string graph [51, 59, 60],
the problem was also shown to be NP -hard [33] and eventually NP -complete [58]. Similar
hardness results exist for recognizing disk graphs [27], unit disk graphs [9], as well as
angle-constrained segment [34, 37] and unit segment graphs [47].

Going further, we can ask questions that pertain to the nature of the realizations that are
possible for a geometric intersection graph. Here, letting the ply or thickness of a geometric
system correspond to the maximum number of objects intersecting at a common point, a
rather remarkable finding has been that results analogous to the Lipton-Tarjan separator
theorem [41] for planar graphs likewise exist for (typically bounded ply) geometric intersection
graphs of “fat” objects (i.e., objects with bounded aspect ratios) [6, 20, 22, 46, 63], and in a
much more limited sense, for “thin” objects (i.e., objects with unbounded aspect ratios) such
as string graphs [23, 24, 25, 39, 45]. This, in turn, often leads to a “square root phenomena”
for geometric intersection graphs, once again like that observed in planar graphs [43], of
subexponential (e.g., 2O(√

n)) algorithms for problems ranging from independent set to
Hamiltonian cycle where, say, only a 2O(n) algorithm might be known in the general case
(see, e.g., [2, 6, 8, 15, 21, 24, 31, 42, 44, 49, 53]).

In this work, we concern ourselves with further exploring the gap between what is known
concerning geometric separator theorems for intersection graphs of “fat” and “thin” objects.
In particular, we proceed by deriving new algorithmic lower bounds for fundamental graph
class recognition and proper coloring problems on geometric intersection graphs of “thin”
objects under the most stringent possible constraints. We remark that proper coloring
problems are of particular interest in this context, as a proper k-coloring of a given geometric
intersection graph can only exist if the graph has ply-at-most-k.

Towards this objective, we first consider the problems of recognizing and proper k-coloring
geometric intersection graphs in the class UNIT-PURE-k-DIR (generalizing graph classes
discussed in ref. [11, 13, 50]), consisting of all geometric intersection graphs of unit length
straight line segments, lying in at most k directions in the plane, where all parallel segments
are disjoint. Subsequently, to obtain tighter lower bounds for related geometric intersection
graphs of uniform length line segments, we consider the complexity of proper k-coloring
geometric intersection graphs of lines (of unbounded length), in which all line-line intersections
are required to occur on any one of three parallel planes in R3.

As a high level summary of our findings, extending a result of Mustaţă & Pergel [47] that
recognizing UNIT-PURE-2-DIR graphs is NP -complete, and a result of Barish & Shibuya [4]
that finding a proper 3-coloring of a UNIT-PURE-4-DIR is NP -complete, assuming the

R. D. Barish and T. Shibuya 5:3

Exponential Time Hypothesis (ETH) of Impagliazzo & Paturi [29] we show in part that: for
every k ≥ 3, no 2o

(√
n/k

)
time algorithm can exist for either recognizing or proper k-coloring

order n UNIT-PURE-k-DIR graphs (Theorem 1); and for every k ≥ 4, no 2o
(√

n/k
)

time
algorithm can exist for finding a proper (k − 1)-coloring of a UNIT-PURE-k-DIR graph,
even when provided a list of segment coordinates, specified using O (n · k) bits, witnessing
graph class membership (Theorem 2). Here, as a partial consequence of these efforts, we are
also able to extend a result of Barish & Shibuya [4] that the problem of proper 3-coloring
an arbitrary graph on m edges can be reduced in O

(
m2)

time2 to the problem of properly
3-coloring a UNIT-PURE-4-DIR graph. In particular, we show for every k ≥ 4 that the same
proper 3-coloring problem can likewise be reduced to a proper (k − 1)-coloring problem for
UNIT-PURE-k-DIR graphs in O

(
m2 · k

)
time (Corollary 1).

Finally, assuming the ETH, for every k ≥ 3, we show that no 2o(n/k) time algorithm can
exist for proper k-coloring order n geometric intersection graphs of lines in which we require
that line-line intersections must occur on any one of three parallel planes in R3 (Theorem 3).

2 Elaboration concerning motivation

An important point of motivation for the current work comes from a question posed by
Miltzow – in the workshop on Graph Classes, Optimization, and Width Parameters (GROW)
list of open problems [56] – concerning the lower bound complexity under the ETH of proper
k-coloring geometric intersection graphs of unit segments in the plane.

As noted by Miltzow, the difficulty in answering this question has been due, in part, to
the failure to extend geometric separator theorems for bounded ply intersection graphs of
“fat” objects to bounded ply intersection graphs of “thin” objects. Here, this gap becomes
readily apparent when looking at algorithmic lower bounds for proper k-coloring problems.
In particular, specifying k ∈ Θ (nα) for some 0 ≤ α ≤ 1, Biró et. al. [6] was able to show the
existence of a 2O(√

n·k·ln n) algorithm for finding a proper k-coloring of intersection graphs of
disks or other “fat” objects, while also showing that the existence of a 2o

(√
n/k

)
algorithm

would refute the ETH. On the other hand, Biró et. al. [6] was also able to establish that
no 2o(n) algorithm can exist for proper 6-coloring 2-DIR graphs (though not PURE-2-DIR
graphs) assuming the ETH, even if all segments are constrained to lie at angles of 0 and π

2
radians in the plane. This latter result was later strengthened and extended by Bonnet &
Rzążewski [8], who were able to establish a 2o(n) (resp. 2o(n2/3)) lower bound for proper
k-coloring 2-DIR graphs (resp. 3-DIR graphs with unit length segments) for any constant
k ≥ 4, as well as the existence of a subexponential time 2Õ(n2/3) algorithm for finding a
proper (k = 3)-coloring.

To elaborate on our choice to focus on the class UNIT-PURE-k-DIR of geometric
intersection graphs, this first of all represents a limit case for geometric intersection graphs
of “thin” objects embedded in the plane with orientation and length constraints. More
specifically, let “string” [19, 35, 62] be the earlier defined class of geometric intersection
graphs of Jordan curves, let “CONV” [33, 36, 57, 64] be the class of all geometric intersection
graphs of convex shapes, let “SEG” [19, 33, 34, 37, 38] be the class of all geometric intersection
graphs of straight line segments in the plane, let k-DIR [34, 37, 38] be a subclass of “SEG”
where segments must lie in at most k directions, and let PURE-k-DIR [34, 37, 38] be a
subclass of k-DIR where all parallel segments are required to be disjoint. We can now observe

2 This was erroneously reported to be an O (m) time reduction in Barish & Shibuya [4].

SWAT 2024

5:4 Recognition and Proper Coloring of Unit Segment Intersection Graphs

that, for every k ≥ 1, PURE-k-DIR ⊊ k-DIR ⊊ SEG ⊊ CONV ⊊ STRING [19, 37], that
k-DIR ⊊ (k + 1)-DIR [37], and that PURE-k-DIR ⊊ PURE-(k + 1)-DIR [37]. Second of all,
as intersections between parallel segments are prohibited for this graph class, an analysis of
proper k-coloring problems for this graph class requires fundamentally different techniques
that of either Biró et. al. [6] or Bonnet & Rzążewski [8], and we considered this to be an
interesting challenge.

To elaborate on our choice to consider geometric intersection graphs of lines, in which
we require that line-line intersections must occur on any one of three parallel planes in R3,
this class of graphs can be understood as a weak-as-possible generalization of the type
of geometric intersection graphs of unit segments in the plane for which we were able to
obtain results. Here, we hope our ability to rule out the existence of 2o(n/k) time algorithms
for proper k-coloring order n instances of these graphs under the ETH, for all k ≥ 3, can
be extended to establish the same algorithmic lower bound for intersection graphs of unit
segments in the plane for some k ≥ 3.

Finally, we remark that the problem of proper k-coloring UNIT-PURE-k-DIR graphs has
practical application to problems ranging from realistic instances of the frequency assignment
problem [1, 16, 26], to the design of Very Large Scale Integration (VLSI) circuits [17, 48] (e.g.,
where overlapping wires (segments) must be assigned to distinct circuit layers abstracted
as colors). To briefly elaborate on the former case, the frequency assignment problem asks
one to assign a sparse set of frequency bands (colors) to a set of antennas (vertices) in an
interference graph, where we have that two vertices are adjacent if and only if they correspond
to antennas spaced closely enough to interfere when emitting within the same frequency
band (e.g., within ≈ 50 − 100 kHz [16]). Here, in a realistic scenario, any such interference
graph will correspond to a geometric intersection graph between radiation emission patterns
for antennas, which in many cases (e.g., coastal radio stations) are optimized to be narrow
oriented cones approximating bounded length segments.

3 Preliminaries & clarifications

3.1 Graph theoretic terminology

All graphs in this work should be considered to be simple (i.e., loop and multi-edge free),
undirected, and unweighted. Concerning basic graph theoretic terminology, we will generally
follow Diestel [18], or where appropriate, Bondy & Murty [7]. However, for some brief
clarifications, recall that a graph is k-connected if there exist k vertex disjoint simple paths
between all pairs of vertices, and recall that a graph is planar if it admits an embedding in
the plane without edge crossings. In addition, recall that a proper k-coloring for a graph
is an assignment of ≤ k colors to the graph’s vertices under the constraint that no two
adjacent vertices have an identical coloration, and that the chromatic number for a graph is
the minimum value of k for which it admits a proper k-coloring.

Concerning less common terminology, when we identify a vertex va with a vertex vb, we
delete va and vb and create a new vertex vc adjacent to any vertex formerly adjacent to va

or vb. Additionally, when we refer to a vertex v in a drawing or embedding of a graph G

as a metavertex (e.g., corresponding to a clique of some size), it should be understood that
v corresponds to an induced subgraph H of G, where every vertex in G adjacent to v is
adjacent to each vertex of H. Here, we can also identify pairs of metavertices by identifying
each pair of equivalent vertices in an isomorphism between the subgraphs they correspond to.

R. D. Barish and T. Shibuya 5:5

Ou t [] =

(a) (b) (c)

(d) (e)

(f)

(g)

(h)

Figure 1 Illustrations of orthogonal integer lattice embeddings of graphs, where larger (black)
vertices and (highlighted black) edges indicate the vertices and polylines for the embedding, re-
spectively; (a) the complete graph K4; (b) orthogonal integer lattice embedding of K4; (c) the
complete graph K5; (d) orthogonal integer lattice embedding of K5 with a lone polyline crossing
indicated by a (purple) diamond polygon; (e) scheme for the enlargement and modification of an
orthogonal integer lattice embedding to ensure all polylines have horizontal segments; (f) all local
vertex and polyline configurations (up to rotation and reflection) in an orthogonal integer lattice
embedding of a 2-connected graph of maximum vertex degree ≤ 4, where cells around each lattice
vertex are indicated by a (dashed) box; (g) a cell containing a polyline crossing indicated by a
(purple) diamond polygon; (h) a cell marked with a (yellow) concave diamond marker designating it
to be identified with a “color change” gadget.

SWAT 2024

5:6 Recognition and Proper Coloring of Unit Segment Intersection Graphs

3.2 Exponential Time Hypothesis (ETH)
Recalling that k-SAT is the problem of deciding the satisfiability of a Boolean expression in
conjunctive normal form where each clause contains at most k literals, the Exponential Time
Hypothesis (ETH) of Impagliazzo & Paturi [29] can be defined as follows:

▶ Definition 1. Exponential Time Hypothesis (ETH) [29]. Assuming k ≥ 3, letting n and m

be the number of variables and clauses for an instance of k-SAT, and letting sk = inf{δ : k-
SAT can be solved in 2(δ·n) · poly (m) time}, it holds that sk > 0.

3.3 Linear time orthogonal integer lattice embeddings of graphs
Let G be an arbitrary not-necessarily-planar graph of maximum vertex degree ≤ 4, with
vertex set VG and edge set EG. An orthogonal integer lattice embedding (or drawing) Q of G

places each vertex at a distinct integral coordinate, and represents each edge vi ↔ vj ∈ EG

as a polyline consisting of a polygonal chain of axis-parallel unit length horizontal and
vertical segments – corresponding to a simple path in the integer lattice into which G is
embedded – connecting vi and vj in Q. If G is non-planar, then we necessarily must allow
for polyline crossings in the embedding Q. Here, a bend in Q corresponds to an instance
where a horizontal and a vertical segment meet in a polyline (i.e., an instance where two
unit segments meet at an angle of π

2 radians). We remark that it is possible to find an
orthogonal integer lattice embedding for G on a square integer lattice, of total area O

(
|VG|2

)
,

in O (|VG|) time via either the method of Papakostas & Tollis [54] or Biedl & Kant [5].
For illustrative examples, we refer the reader to Fig. 1(a–d), where in Fig. 1(a) (resp.

Fig. 1(c)) we show an instance of the complete graph K4 (resp. K5), and in Fig. 1(b)
(resp. Fig. 1(d)) we show an orthogonal integer lattice embedding of the graph in a 5 × 5
(resp. 8 × 8) integer lattice. For the Fig. 1(d) embedding of the graph K5, we can observe
that one polyline crossing occurs, where we indicate this crossing via a (purple) diamond
polygon. Additionally, in Fig. 1(f) we show all possible local polyline configurations in a
cell, up to rotation and reflection, under the assumption that the embedded graph is at least
2-connected.

4 Recognition and proper coloring of UNIT-PURE-k-DIR graphs

In this section, we establish Theorem 1 through Theorem 3, as well as Corollary 1. Concerning
Theorem 1, we briefly remark that previous reductions for proving the NP -hardness of
recognizing “string” graphs [33], k-DIR and PURE-k-DIR graphs [34, 37], and UNIT-PURE-
2-DIR graphs [47], have generally followed a strategy of giving an O

(
n2)

reduction from a
variant of planar 3-SAT already admitting a subexponential time algorithm. Accordingly, we
required a different approach for establishing our claims.

▶ Theorem 1. Unless the ETH is false, for any k ≥ 3, no 2o
(√

n/k
)

time algorithm can
exist for either recognizing or proper k-coloring order n UNIT-PURE-k-DIR graphs.

Proof. We proceed by giving an O
(
n2 · k

)
reduction from the problem of finding a proper

3-coloring of a 2-connected graph with n vertices and maximum vertex degree ≤ 4. Here,
it is known that no 2o(n) time algorithm can exist for this problem unless the ETH fails
(see, e.g., “Lemma 2.1” of [14]). In particular, let G and H be a pair of graphs with vertex
sets VG and VH , respectively, where n = |VG|, G is an arbitrary 4-regular graph, and H is
a graph constructable from G in O

(
n2 · k

)
time with |VH | = O

(
n2 · k

)
vertices. We will

R. D. Barish and T. Shibuya 5:7

Ou t [] =

(a) (b)

(c) (d)

Y

X X'

Y'

Y

X X'

Y'

X

Y'

Y

X' X

Y'

Y

X'

Figure 2 Illustration and example proper colorings of a novel proper 3-coloring planarization
gadget, and scheme for its adaption as the gadget Υ in the context of an orthogonal integer lattice
embedding; (a) the order 13 and size 24 planarization gadget, where vertices labeled X and X ′

(resp. Y and Y ′) are required to have the same coloration, with an example proper 3-coloring where
vertices labeled X and Y are assigned the same color; (b) an alternative 3-coloration of the gadget,
where the vertices labeled X and Y are assigned distinct colors; (c) orthogonal 25 × 33 integer
lattice embedding of a modification of the gadget shown in (a,b) – denoted Υ – where some vertices
in the planarization gadget from (a,b) are replaced with connected subgraphs, where such subgraphs
are colored in accordance with the proper 3-coloring from the illustration of the gadget in (a), and
where exactly one cell along each polyline between distinct subgraphs is marked for identification
with the “color change” gadget; (d) another coloring of Υ in accordance with the proper 3-coloring
of the planarization gadget from (b).

SWAT 2024

5:8 Recognition and Proper Coloring of Unit Segment Intersection Graphs

show for every k ≥ 3 that G admits a proper 3-coloring if and only if H is proper k-colorable,
or equivalently in this specific context, realizable as a UNIT-PURE-k-DIR graph. From
this we will deduce that a 2o

(√
n/k

)
algorithm for either recognizing or proper k-coloring a

UNIT-PURE-k-DIR graph would refute the ETH.
Provided the instance of the aforementioned graph G, we begin by computing an or-

thogonal integer lattice embedding Q1 for G, of total area O
(
n2)

, in O (n) time via either
the method of Papakostas & Tollis [54] or Biedl & Kant [5] (see, e.g., Section 3.3 for an
elaboration on these embeddings). In this context, we define a cell in an orthogonal integer
lattice embedding Q1 to be a square area of volume 1 centered on each lattice point in Q1. For
instance, the boundaries of this square area for a lattice point at coordinates (x, y) ∈ Z2 would
be given by the coordinates

((
x − 1

2 , y − 1
2
)

,
(
x + 1

2 , y − 1
2
)

,
(
x + 1

2 , y + 1
2
)

,
(
x − 1

2 , y + 1
2
))

.
Letting the Manhattan distance between a pair of cells correspond to the Manhattan distance
between their respective lattice points, we also define the von Neumann neighborhood of a
cell as the set containing both the cell itself as well as its four neighbors at distance 1. For a
cell with a centerpoint at some coordinate (i, j) ∈ Z2, we refer to its distance 1 neighbors at
coordinates (i, j + 1), (i − 1, j), (i + 1, j), and (i, j − 1) as being to the North, West, East,
and South, respectively.

We next construct an orthogonal integer lattice embedding Q3 from Q1 – via an interme-
diate graph Q2 potentially containing polyline crossings – satisfying the dual constraints that:
(constraint 1) each polyline originally in Q1 has at least one horizontal segment marking
the position of a “color change” gadget with a (yellow) concave diamond marker (e.g, as
shown in Fig. 1(h)); and (constraint 2) each polyline crossing is replaced with an orthogonal
integer lattice embedding of a gadget such that Q3 has no polyline crossings, and in addition,
its corresponding graph is proper 3-colorable if and only if the graph corresponding to the
embedding Q1 is proper 3-colorable.

To address (constraint 1), we begin by checking if every polyline contains at least one
horizontal segment, and subsequently marking this horizontal segment if it exists. For any
remaining polylines consisting of only vertical segments, we can perform the operation shown
in Fig. 1(e) to introduce and subsequently mark a horizontal segment. We note that this
may require expanding the embedding Q1 by moving each point at a position (x, y) to a
position (2x, 4y), treating expanded polyline edges as chains of unit length segments. Here,
we call the resulting embedding Q2.

To address (constraint 2), let Ψ be the subset of cells in Q2 corresponding to the type
of polyline crossing indicated by the (purple) diamond polygon in Fig. 1(g). If Ψ = ∅, we
can specify Q3 = Q2. If Ψ ̸= ∅, we proceed by substituting each polyline crossing with an
orthogonal integer lattice embedding of a gadget, denoted Υ, having the same properties as
the novel proper 3-coloring planarization gadget shown in Fig. 2(a,b) (note that Fig. 2(a) and
Fig. 2(b) are identical aside from having distinct vertex colorations), where these properties
are given by the following lemma:

▶ Lemma 1. The proper 3-coloring planarization gadget shown in Fig. 2(a,b) has the
following properties: (1) its chromatic number is 3; (2) any proper 3-coloring will assign
identical colors to the vertices labeled X and X ′ as well as the vertices labeled Y and Y ′.

Proof. Let W be a graph isomorphic to the 13 vertex and 24 edge gadget shown in Fig. 2(a,b).
To establish properties (1) and (2), it suffices to first evaluate the chromatic polynomial
P (W, k) of the Fig. 2(a,b) gadget, check that P (W, 2) = 0, observe that P (W, 3) = 12, and
then inspect each of the 12 possible proper 3-colorings to confirm property (2). Here, noting
that there are at most 313 = 1594323 possible vertex colorings to check, we used brute force

R. D. Barish and T. Shibuya 5:9

methods to enumerate all 12 possible proper 3-colorings. We briefly remark that, while a
more insightful proof is possible, we were unable to find one of a short enough length to
include in the current context. ◀

In particular, we specify Υ as the 25 × 33 cell construction shown in Fig. 2(c,d) (note that
Fig. 2(c) and Fig. 2(d) are identical aside from having distinct vertex colorations). As in the
case of the Fig. 2(a,b) graph, and as we will see in Lemma 2, the vertices labeled X and
X ′ (respectively, Y and Y ′) in the graph corresponding to the Fig. 2(c,d) construction are
likewise forced to be the same in any proper 3-coloring. Here, to replace polyline crossings in
Q2 with Υ, we can expand the embedding Q2 by moving each point at a position (x, y) to a
position (25x, 33y), then replace each 25 × 33 block of cells centered on a polyline crossing
with Υ. Observe that this will serve to ensure that the outgoing polylines to the North, West,
East, and South cells in the von Neumann neighborhood of each cell in Ψ are connected
to the Υ gadget vertices labeled Y ′, X, X ′, and Y , respectively. In this context, we let
Φ correspond to all cells marking the position of a “color change” gadget with a (yellow)
concave diamond marker in Q3, where Φ includes the markers shown in Fig. 2(c,d).

Next, for each cell c /∈ Φ containing an endpoint of a polyline, we replace a
(103

50
)

× 3 dis-
tortion of the cell with an appropriate version of the embedded “color copying” gadget shown
in Fig. 3. We note that (purple) nodes in this gadget represent metavertices corresponding
to cliques of size (k − 3). More specifically, for a given cell c /∈ Φ, letting ζc be an instance of
the Fig. 3 graph, we generate a graph ζ ′

c by: (case N) deleting the vertices {N1, N2} and all
vertices embedded above (i.e., with a larger y coordinate) if and only if c does not have an
outgoing polyline segment to the North in its von Neumann neighborhood; (case W) deleting
the vertices {W1, W2} and all vertices embedded to the left (i.e., with a smaller x coordinate)
if and only if c does not have an outgoing polyline segment to the West in its von Neumann
neighborhood; (case E) deleting the vertices {E1, E2} and all vertices embedded to the right
(i.e., with a larger x coordinate) if and only if c does not have an outgoing polyline segment
to the East in its von Neumann neighborhood; and (case S) deleting the vertices {S1, S2}
and all vertices embedded below (i.e., with a smaller y coordinate) if and only if c does
not have an outgoing polyline segment to the South in its von Neumann neighborhood. To
complete the construction of H , we then embed ζ ′ on the aforementioned

(103
50

)
× 3 distortion

of the cell c /∈ Φ in exactly the manner shown in Fig. 3, embed an instance ηc of the “color
change” gadget shown in Fig. 4 on a

(103
50

)
× 3 distortion of each cell c ∈ Φ – with (purple)

metavertices corresponding to cliques of size (k − 3) as in Fig. 3 – and identify any vertices
or metavertices from the borders of adjacent cells mapped to the same coordinates (see
Section 3.1 for an elaboration on metavertex identification).

We can now observe the following lemma:

▶ Lemma 2. The graph H admits a proper k-coloring if and only if the graph G admits a
proper 3-coloring.

Proof. Assume the definitions previously given in the proof argument for Theorem 1.
First consider the case where G is planar, and no copies of the gadget Υ were embedded

during the process of generating Q3 from Q1. Here, we have that H will be constructed
from the embedding Q3 by: (1) replacing exactly one cell falling along each polyline at
a position where exactly two polyline segment endpoints coincide with the “color change”
gadget; and (2) replacing all remaining cells hosting polyline segments with a “color copying”
gadget η in such a manner that the vertices labeled X1 and metavertices labeled X2 in
Fig. 3 will be present on the North, West, East, and South boundaries of each cell’s von
Neumann neighborhood if and only if the cell has a polyline segment egressing from its North,

SWAT 2024

5:10 Recognition and Proper Coloring of Unit Segment Intersection Graphs

Ou t [] =

q1 q3

q2 q4

W

S

N

E

q1 q3

q2 q4

q1 q3

q2 q4

q1 q3

q2 q4

q1 q3

q2 q4

q1 q3

q2 q4

q1 q3

q2 q4

X1
W1 E1

X1

X1

S1

N1

X1

X2
W2 E2

X2

X2

S2

N2

X2

q1 q3

q2 q4

X1 Y1

X2 Y2

q1 q3

q2 q4

X1

X1

X2

X1

X1

X2

X2

X2

q1 q3

q2 q4

X1

X2

X1

X1

X1

X2

X2

X2

q1 q3

q2 q4

X1 Y1X2
Y2

q1 q3

q2 q4

X1

Y1

X2

Y2

X1 Y1

X2

Y2

q1 q3

q2 q4

q1 q3

q2 q4

Figure 3 Illustration of the “color copying” gadget – and scheme for the gadget’s placement on a
“distorted”

(
103
50

)
× 3 cell (dashed box) – where (purple) vertices (e.g., labeled X2) are metavertices

corresponding to cliques of size (k − 3).

Ou t [] =

q1 q3

q2 q4

W

S

N

E

q1 q3

q2 q4

q1 q3

q2 q4

q1 q3

q2 q4

q1 q3

q2 q4

q1 q3

q2 q4

q1 q3

q2 q4

X1
W1 E1

X1

X1

S1

N1

X1

X2
W2 E2

X2

X2

S2

N2

X2

q1 q3

q2 q4

X1 Y1

X2 Y2

q1 q3

q2 q4

X1

X1

X2

X1

X1

X2

X2

X2

q1 q3

q2 q4

X1

X2

X1

X1

X1

X2

X2

X2

q1 q3

q2 q4

X1 Y1X2
Y2

q1 q3

q2 q4

X1

Y1

X2

Y2

X1 Y1

X2

Y2

q1 q3

q2 q4

q1 q3

q2 q4

Figure 4 Illustration of the “color change” gadget – and scheme for the gadget’s placement on
a “distorted”

(
103
50

)
× 3 cell (dashed box) – where (purple) vertices (e.g., labeled X2 or Y2) are

metavertices corresponding to cliques of size (k − 3).

R. D. Barish and T. Shibuya 5:11

West, East, and South boundaries, respectively. Accordingly, each cell in Q3 corresponding
to a vertex in G of degree d will, in turn, correspond to a specific “color copying” gadget
with d copies of the vertices labeled X1 and X2. Furthermore, all but one of the cells
corresponding to part of a polyline connecting vertices in G will, on some pair of boundaries,
have exactly two copies of vertices labeled X1 and two copies of metavertices labeled X2,
with the remaining cell corresponding to a “color change” gadget.

To now show that H admits a proper k-coloring if and only if the planar instance of
G admits a proper 3-coloring, it suffices to observe for any proper k-coloring of H that:
(requirement 1) the vertices labeled X1 in every “color copying” gadget must have the same
coloration; and (requirement 2) the vertices labeled X1 and Y1 in every “color change” gadget
must have a distinct coloration.

Concerning (requirement 1), consider first the case where k = 3. Here, for every possible
instance of the gadget ζ ′

c, we can check the chromatic polynomial P (ζ ′
c, k) with parameter k,

or enumerate all possible proper 3-colorings via brute force, observe that P (ζ ′
c, 2) = 0 and

P (ζ ′
c, 3) ̸= 0 (e.g., ζc = ζ ′

c =⇒ P (ζ ′
c, 3) = 384), and furthermore check that the constraint

is satisfied in each of these cases. To address cases where k ≥ 4, it suffices to observe that,
for any instance of ζ ′

c (recalling that the metavertices shown in Fig. 3 correspond to cliques
of size (k − 3)), every vertex will necessarily belong to a clique of size k. Accordingly, if
(1) is satisfied in the case where k = 3, it will likewise be satisfied in the case where k = 4
and we are forced to assign the additional color to the single vertex corresponding to each
metavertex, satisfied in the case where k = 5 and we are required to assign the two additional
colors to the two vertices corresponding to each metavertex, and by induction, satisfied for
every k ≥ 3.

Concerning (requirement 2), we proceed in a similar manner. In particular, letting ηn

be an instance of the “color change” gadget in the case where k = 3, we observe that
P (ηn, 2) = 0 and P (ηn, 3) = 144. With exactly the same inductive argument used to address
(requirement 1), we can then show that (requirement 2) will hold for every k ≥ 3.

As we have now seen that (requirement 1) and (requirement 2) will be satisfied for every
k ≥ 3, this yields the lemma in the case where G is planar.

In the case where G is non-planar, it suffices to observe that the Υ construction simply
replaces certain vertices in the Fig. 2(a,b) proper 3-coloring planarization gadget with
connected subgraphs s1, s2, . . ., then places the “color change” gadget on polylines if and only
if they connect distinct subgraphs. Accordingly, following our earlier argument, the “color
change” gadget will conceptually force each of the embedded vertices in the same subgraph
si in Υ to have an identical coloration, and each pair of adjacent subgraphs si and sj in Υ
to have distinct colorations. In observation of Lemma 1, this yields the current lemma in the
case where G is non-planar. ◀

We can also observe that the construction of H from an initial order n graph G takes at
most O

(
n2)

time as a consequence of the orthogonal integer lattice embedding Q1 having at
most O

(
n2)

cells hosting at least one endpoint of a polyline, where the embedding of the
“color copying” and “color change” gadgets on each cell hosting a polyline then increases the
time complexity of the construction to O

(
n2 · k

)
. This together with Lemma 2 implies that,

as a consequence of the fact that no 2o(√
nG) time algorithm can exist for proper 3-coloring

an order nG instance of the graph G under the ETH, we likewise have that no 2o(√
nH ·k) time

algorithm can exist for proper k-coloring an order nH instance of the constructed graph H

unless the ETH is false.
The subsequent step of this proof argument, which is simultaneously the most technically

difficult and easiest to describe, is to show that H can be realized as a UNIT-PURE-k-DIR
graph if and only if H admits a proper k-coloring. Here, we can begin by observing that, due

SWAT 2024

5:12 Recognition and Proper Coloring of Unit Segment Intersection Graphs

to the requirement no parallel segments may intersect, any proper k-coloring for a UNIT-
PURE-k-DIR can be understood as an assignment of embedding angles for the segments of a
geometric system of intersecting unit segments witnessing graph class membership.

Ou t [] =

q1 q3

q2 q4

W

S

N

E

q1 q3

q2 q4

q1 q3

q2 q4

q1 q3

q2 q4

q1 q3

q2 q4

q1 q3

q2 q4

q1 q3

q2 q4

X1
W1 E1

X1

X1

S1

N1

X1

X2
W2 E2

X2

X2

S2

N2

X2

q1 q3

q2 q4

X1 Y1

X2 Y2

q1 q3

q2 q4

X1

X1

X2

X1

X1

X2

X2

X2

q1 q3

q2 q4

X1

X2

X1

X1

X1

X2

X2

X2

q1 q3

q2 q4

X1 Y1X2
Y2

q1 q3

q2 q4

X1

Y1

X2

Y2

X1 Y1

X2

Y2

q1 q3

q2 q4

q1 q3

q2 q4

Figure 5 UNIT-PURE-k-DIR realization (for every k ≥ 3) of the “color copying” gadget – and
scheme for the gadget’s placement on a “distorted”

(
103
50

)
× 3 cell (dashed box) – where (purple)

segments (e.g., labeled X2) correspond to (k − 3) overlapping segments embedded in the plane at
distinct infinitesimal perturbations of ϵ1 < ϵ2 < . . . < ϵ(k−3) from π

2 radians, and where segments
corresponding to vertices labeled X1 in Fig. 3 are embedded in the plane at an angle of − π

4
radians (respectively, π

4 radians in a reflection of the embedding across the y-axis); segment-segment
intersections are denoted with a (hollow) circle; note that no endpoint of a line segment is ever
embedded along another line segment.

R. D. Barish and T. Shibuya 5:13

Ou t [] =

q1 q3

q2 q4

W

S

N

E

q1 q3

q2 q4

q1 q3

q2 q4

q1 q3

q2 q4

q1 q3

q2 q4

q1 q3

q2 q4

q1 q3

q2 q4

X1
W1 E1

X1

X1

S1

N1

X1

X2
W2 E2

X2

X2

S2

N2

X2

q1 q3

q2 q4

X1 Y1

X2 Y2

q1 q3

q2 q4

X1

X1

X2

X1

X1

X2

X2

X2

q1 q3

q2 q4

X1

X2

X1

X1

X1

X2

X2

X2

q1 q3

q2 q4

X1 Y1X2
Y2

q1 q3

q2 q4

X1

Y1

X2

Y2

X1 Y1

X2

Y2

q1 q3

q2 q4

q1 q3

q2 q4

Figure 6 Alternative UNIT-PURE-k-DIR realization (for every k ≥ 3) of the “color copying”
gadget from the Theorem 1 proof argument – and scheme for the gadget’s placement on a “distorted”(

103
50

)
× 3 cell (dashed box) – where (purple) segments (e.g., labeled X2) correspond to (k − 3)

overlapping segments embedded in the plane at distinct infinitesimal perturbations of ϵ1 < ϵ2 < . . . <

ϵ(k−3) from π
2 radians, and segments corresponding to vertices labeled X1 in Fig. 3 are embedded in

the plane at an angle of 0 radians; segment-segment intersections are denoted with a (hollow) circle;
note that no endpoint of a line segment is ever embedded along another line segment.

SWAT 2024

5:14 Recognition and Proper Coloring of Unit Segment Intersection Graphs

Ou t [] =

q1 q3

q2 q4

W

S

N

E

q1 q3

q2 q4

q1 q3

q2 q4

q1 q3

q2 q4

q1 q3

q2 q4

q1 q3

q2 q4

q1 q3

q2 q4

X1
W1 E1

X1

X1

S1

N1

X1

X2
W2 E2

X2

X2

S2

N2

X2

q1 q3

q2 q4

X1 Y1

X2 Y2

q1 q3

q2 q4

X1

X1

X2

X1

X1

X2

X2

X2

q1 q3

q2 q4

X1

X2

X1

X1

X1

X2

X2

X2

q1 q3

q2 q4

X1 Y1X2
Y2

q1 q3

q2 q4

X1

Y1

X2

Y2

X1 Y1

X2

Y2

q1 q3

q2 q4

q1 q3

q2 q4

Figure 7 UNIT-PURE-k-DIR realization (for every k ≥ 3) of the “color change” gadget from
the Theorem 1 proof argument – and scheme for the gadget’s placement on a “distorted”

(
103
50

)
× 3

cell (dashed box) – where (purple) segments (e.g., labeled X2) correspond to (k − 3) overlapping
segments embedded in the plane at distinct infinitesimal perturbations of ϵ1 < ϵ2 < . . . < ϵ(k−3)
from π

2 radians, and where segments corresponding to vertices labeled X1 and Y1 in Fig. 4 are,
respectively, embedded in the plane at angles of − π

4 and 0 radians, π
4 and 0 radians after reflection

across x-axis, 0 and π
4 radians after reflection across y-axis, and 0 and − π

4 radians after reflection
across both the x-axis and y-axis; note that no endpoint of a line segment is ever embedded along
another line segment.

We now observe that the Fig. 3 “color copying” gadget can be realized as a UNIT-PURE-
k-DIR graph with three distinct segment angles for the vertices labeled X1 on each of the
four borders of the “distorted” (i.e., non-square)

(103
50

)
× 3 cell embedding the gadget. In

particular, we refer the reader to the UNIT-PURE-k-DIR realizations of this gadget shown
in Fig. 5 and Fig. 6, where in both cases (purple) segments (e.g., labeled X2) correspond to
(k − 3) overlapping segments embedded in the plane at distinct infinitesimal perturbations
of ϵ1 < ϵ2 < . . . < ϵ(k−3) from π

2 radians. Note that, as no endpoint of a segment is ever
embedded along another line segment, these infinitesimal perturbations can always be chosen
to be small enough to not change the set of segment-segment intersections. For Fig. 5, we
can observe that segments corresponding to vertices labeled X1 in Fig. 3 are embedded in

R. D. Barish and T. Shibuya 5:15

the plane at an angle of − π
4 radians (respectively, π

4 radians in a reflection of the embedding
across the y-axis). For Fig. 6, we can observe that segments corresponding to vertices labeled
X1 in Fig. 3 are embedded in the plane at an angle of 0 radians. This covers each of the
three necessary cases.

Similarly, the Fig. 4 “color change” gadget can be realized as a UNIT-PURE-k-DIR graph
with all possible combinations of three distinct segment angles for the vertices labeled X1 and
Y1 on West and East border, respectively, of the “distorted” (i.e., non-square)

(103
50

)
× 3 cell

embedding the gadget, with the segments labeled X2 and Y2 embedded in the same manner
as the (purple) segments in Fig. 5 and Fig. 6. While we are unable to show all possible
UNIT-PURE-k-DIR realizations of this gadget due to space constraints, we refer the reader
to Fig. 7 for an illustration of the case where segments corresponding to the vertices labeled
X1 and Y1 in Fig. 4 are embedded in the plane at angles of − π

4 and 0 radians, respectively.

Putting everything together yields that, assuming the ETH, no 2o
(√

n/k
)

time algorithm
can exist for recognizing order n UNIT-PURE-k-DIR graphs. It remains to deduce that
this directly implies no 2o

(√
n/k

)
time algorithm can exist for proper k-coloring an order n

UNIT-PURE-k-DIR graph under the ETH. Here, simply observe that if such a 2o
(√

n/k
)

time coloring algorithm A exists, there will likewise exist some upperbound for its run time of
the form 2(√

n·k−ϵ) for some constant ϵ ∈ R>0 and n sufficiently large. Accordingly, we could
simply run A for 2(√

n·k−ϵ) time steps on the graph H, and if no proper k-coloring is found,
determine that no such proper k-coloring exists. However, as H has a proper k-coloring
if and only if it is a UNIT-PURE-k-DIR graph, this implies the existence of a 2o

(√
n/k

)
time algorithm for recognizing H as a UNIT-PURE-k-DIR graph. Therefore, by our earlier
arguments, no such algorithm A can exist under the ETH. ◀

▶ Theorem 2. For any k ≥ 4, provided a UNIT-PURE-k-DIR graph and a list of segment
coordinates specified using O (n · k) bits witnessing graph class membership, no 2o

(√
n/k

)
time algorithm can exist for finding a proper (k − 1)-coloring of the graph unless the ETH is
false.

Proof Sketch. Recall that the Theorem 1 proof argument realized the Fig. 4 “color change”
gadget as a UNIT-PURE-k-DIR graph. Here, we can instead realize the Fig. 4 “color change”
gadget as a UNIT-PURE-(k + 1)-DIR graph in which we allow for one additional segment
embedded in the plane at an angle of π

20 radians. While we omit the details due to space
constraints, briefly, this can be shown to allow for the vertices labeled X1 and Y1 in Fig. 4 to
correspond to unit segments having the same π

4 , − π
4 , or 0 radian angle. Accordingly, there

will no longer be a correspondence between segment angles and color assignments in a proper
(k − 1)-coloring. This then allows one to show that the proper (k − 1)-coloring problem
remains hard even when provided a list of segment coordinates. Finally, as the reduction
given in Theorem 1 can be performed in O

(
n2 · k

)
time, this yields the current theorem. ◀

▶ Corollary 1. For each k ≥ 4, the problem of properly 3-coloring an arbitrary m edge graph
can be reduced in O

(
m2)

time to properly (k − 1)-coloring a UNIT-PURE-k-DIR graph.

Proof. Let Q be an arbitrary graph with vertex set VQ and edge set EQ, where |EQ| = m.
Generate a graph G with 2m edges by replacing every vertex vi ∈ VQ of degree d with a
cycle of length d, doing so in such a manner that exactly one vertex in the cycle is adjacent
to each distinct neighbor of vi ∈ VQ. Assign a unique “cycle label” to the vertices in each
generated cycle. We can now generally proceed along the lines of the Theorem 2 proof
argument to reduce the problem of properly 3-coloring G to properly (k − 1)-coloring a

SWAT 2024

5:16 Recognition and Proper Coloring of Unit Segment Intersection Graphs

UNIT-PURE-k-DIR graph, with the exception that we do not place the “color change” gadget
on polylines corresponding to edges connecting vertices with the same “cycle label” in G. It
now suffices to observe that all vertices with the same “cycle label” will be forced to have an
identical coloration. ◀

▶ Theorem 3. Unless the ETH is false, for any k ≥ 3, no 2o(n/k) time algorithm can exist for
proper k-coloring order n geometric intersection graphs of lines where line-line intersections
are constrained to occur on any one of three parallel planes in R3.

Proof Sketch. For every k ≥ 3, we proceed via reduction from the problem of proper edge
k-coloring a proper 3-colorable simple undirected k-regular graph G. Briefly, by a reduction of
Holyer [28] in the case where k = 3 (where Brooks’ theorem [10] implies proper 3-colorability),
a reduction of Leven & Galil [40] in cases where k ≥ 4, and by invoking the sparsification
lemma of Impagliazzo et. al. [30], it is straightforward to rule out the existence of a 2o(n/k)

algorithm for finding edge proper k-colorings of these graphs under the ETH.
To begin, generate an embedding Q of G on three parallel planes in R3 by embedding

each vertex v at a coordinate {x, y, z} in Q, where z = 1, 2, or 3, if the proper 3-coloring of
G places v in the first, second, or third (arbitrarily ordered) color classes, respectively. Next,
generate a new embedding Q′ from Q by perturbing only the x and y coordinates of vertices
to place them in general position, guaranteeing that no four points are concyclic in R3, and
thus, that no two edges in G will fall along the same hyperplane in the embedding Q′ unless
they intersect at a common vertex point. Here, treating edges in Q′ as line segments with
endpoints at vertices, we can replace each line segment with a line containing the segment
while ensuring that line-line intersections must occur at vertex positions on any one of three
parallel planes in R3. In this context, letting L be the set of all lines generated in this manner
from the edges in the embedding Q′, it will accordingly be the case that the geometric
intersection graph of these lines will correspond to a line graph for G.

Putting everything together, as finding a proper k-coloring of a line graph for G is
equivalent to finding an edge proper k-coloring of G, and as we have shown that no 2o(n/k)

time algorithm can exist for edge proper k-coloring G, this yields the current theorem. ◀

5 Concluding remarks

Should it happen to be the case that no 2o(n/k) algorithm exists under the ETH for recognizing
or proper k-coloring a UNIT-PURE-k-DIR graph for some k ∈ N>2 – which would answer
the open question of Miltzow discussed in Section 2 [56] – it seems unlikely that it will be
possible to prove this via a straightforward modification of our approach in Theorem 1. In
particular, recall that in our proof argument for Theorem 1, we make use of an orthogonal
integer lattice embedding algorithm for a graph of maximum degree ≤ 4, then proceed by
substituting cells in at most a constant factor expansion of this embedding with different
UNIT-PURE-k-DIR subgraphs. Here, while there again exist linear time algorithms for
computing these embeddings [5, 54], for an order n graph there can be O

(
n2)

cells hosting
polylines (or polyline intersections). Furthermore, we remark that finding an embedding of a
degree ≤ 4 order n graph minimizing the total length of all polyline segments is NP -hard
[55] and, unless P = NP , inapproximable within a factor of O

(
n1/2−ϵ

)
[3].

A possible path forward would be to: (1) find a problem on a class of graphs that does
not admit a 2o(n/k) algorithm under the ETH, and (2) show that graphs in this class admit
linear time computable orthogonal integer lattice embeddings where the total length of all
polylines is asymptotically O (n). However, we know of no such problem.

R. D. Barish and T. Shibuya 5:17

References
1 K. I. Aardal, S. P. M. van Hoesel, A. M. C. A. Koster, C. Mannino, and A. Sassano. Models

and solution techniques for frequency assignment problems. Ann. Oper. Res., 153(1):79–129,
2007.

2 J. Alber and J. Fiala. Geometric separation and exact solutions for the parameterized
independent set problem on disk graphs. J. Algorithms, 52(2):134–151, 2004.

3 M. J. Bannister, D. Eppstein, and J. A. Simons. Inapproximability of orthogonal compaction.
J. Graph Algorithms Appl., 16(3):651–673, 2012.

4 R. D. Barish and T. Shibuya. Proper colorability of segment intersection graphs. Proc. 28th
COCOON, pages 573–584, 2022.

5 T. Biedl and G. Kant. A better heuristic for orthogonal graph drawings. Comput. Geom.,
9(3):159–180, 1998.

6 C. Biró, É Bonnet, D. Marx, T. Miltzow, and P. Rzążewski. Fine-grained complexity of
coloring unit disks and balls. J. Comput. Geom., 9(2):47–80, 2018.

7 J. A. Bondy and U. S. R. Murty. Graph theory with applications. Macmillan Press: New York,
NY, 1st edition, 1976.

8 É Bonnet and P. Rzążewski. Optimality program in segment and string graphs. Algorithmica,
81:3047–3073, 2019.

9 H. Breu and D. G. Kirkpatrick. Unit disk graph recognition is NP-hard. Comput. Geom.,
9(1–2):3–24, 1998.

10 R. L. Brooks. On colouring the nodes of a network. Math. Proc. Camb. Philos. Soc., 37(2):194–
197, 1941.

11 S. Cabello and M. Jejčič. Refining the hierarchies of classes of geometric intersection graphs.
Electron. J. Comb., 24(1)(P1.33):1–19, 2017.

12 J. Chalopin and D. Gonçalves. Every planar graph is the intersection graph of segments in
the plane: extended abstract. Proc. 41st STOC, pages 631–638, 2009.

13 S. Chaplick, P. Hell, Y. Otachi, T. Saitoh, and R. Uehara. Intersection dimension of bipartite
graphs. Proc. TAMC, pages 323–340, 2014.

14 M. Cygan, F. V. Fomin, A. Golovnev, A. S. Kulikov, I. Mihajlin, J. Pachocki, and A. Socała.
Tight bounds for graph homomorphism and subgraph isomorphism. Proc. SODA, pages
1643–1649, 2016.

15 M. de Berg, H. L. Bodlaender, S. Kisfaludi-Bak, D. Marx, and T. C. van der Zanden. A
framework for exponential-time-hypothesis–tight algorithms and lower bounds in geometric
intersection graphs. SIAM J. Comput., 49(6):1291–1331, 2020.

16 D. de Werra and Y. Gay. Chromatic scheduling and frequency assignment. Discrete Appl.
Math., 49(1–3):165–174, 1994.

17 J. Deguchi, T. Sugimura, Y. Nakatani, T. Fukushima, and M. Koyanagi. Quantitative
derivation and evaluation of wire length distribution in three-dimensional integrated circuits
using simulated quenching. Jpn. J. Appl. Phys., 45(4B):3260–3265, 2006.

18 R. Diestel. Graph theory. Springer-Verlag: Heidelberg, 5th edition, 2017.
19 G. Ehrlich, S. Even, and R. E. Tarjan. Intersection graphs of curves in the plane. J. Comb.

Theory. Ser. B, 21(1):8–20, 1976.
20 P. Carmi et. al. Balanced line separators of unit disk graphs. Comput. Geom., 86:101575,

2020.
21 F. V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi. Finding, hitting

and packing cycles in subexponential time on unit disk graphs. Discrete Comput. Geom.,
62(4):879–911, 2019.

22 J. Fox and J. Pach. Separator theorems and Turán-type results for planar intersection graphs.
Adv. Math., 219(3):1070–1080, 2008.

23 J. Fox and J. Pach. A separator theorem for string graphs and its applications. Comb. Probab.
Comput., 19(3):371–390, 2010.

SWAT 2024

5:18 Recognition and Proper Coloring of Unit Segment Intersection Graphs

24 J. Fox and J. Pach. Computing the independence number of intersection graphs. Proc. 22nd
SODA, pages 1161–1165, 2011.

25 J. Fox, J. Pach, and C. D. Tóth. A bipartite strengthening of the crossing lemma. J. Comb.
Theory. Ser. B, 100(1):23–35, 2010.

26 W. K. Hale. Frequency assignment: theory and applications. Proc. IEEE, 68(12):1497–1514,
1980.

27 P. Hliněný and J. Kratochvíl. Representing graphs by disks and balls (a survey of recognition-
complexity results). Discrete Math., 229(1–3):101–124, 2001.

28 I. Holyer. The NP-completeness of edge coloring. SIAM J. Comput., 10(4):718–720, 1981.
29 R. Impagliazzo and R. Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367–

375, 2001.
30 R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity?

J. Comput. Syst. Sci., 63(4):512–530, 2001.
31 S. Kisfaludi-Bak and T. C. van der Zanden. On the exact complexity of Hamiltonian cycle

and q-colouring in disk graphs. Proc. 10th CIAC, pages 369–380, 2017.
32 P. Koebe. Kontaktprobleme der konformen abbildung. Berichte Verhande. Sächs. Akad. Wiss.

Leipzig, Math. -Phys. Klasse, 88:141–164, 1936.
33 J. Kratochvíl. String graphs. II. Recognizing string graphs is NP-hard. J. Comb. Theory. Ser.

B, 52(1):67–78, 1991.
34 J. Kratochvíl. A special planar satisfiability problem and a consequence of its NP-completeness.

Discrete Appl. Math., 52(3):233–252, 1994.
35 J. Kratochvíl, M. Goljan, and P. Kučera. String graphs. Rozpr. Česk. Akad. Věd, Řada Mat.

Přír. Věd, 96(3):1–96, 1986.
36 J. Kratochvíl and A. Kuběna. On intersection representations of co-planar graphs. Discrete

Math., 178(1–3):251–255, 1998.
37 J. Kratochvíl and J. Matoušek. Intersection graphs of segments. J. Comb. Theory. Ser. B,

62(2):289–315, 1994.
38 J. Kratochvíl and J. Nešetřil. Independent set and clique problems in intersection-defined

classes of graphs. Comment. Math. Univ. Carolinae, 31(1):85–93, 1990.
39 J. R. Lee. Separators in region intersection graphs. arXiv:1608.01612, pages 1–29, 2016.
40 D. Leven and Z. Galil. NP completeness of finding the chromatic index of regular graphs. J.

Algorithms, 4(1):35–44, 1983.
41 R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J. Appl. Math.,

36(2):177–189, 1979.
42 D. Lokshtanov, F. Panolan, S. Saurabh, J. Xue, and M. Zehavi. Subexponential parameterized

algorithms on disk graphs (extended abstract). Proc. 33rd SODA, pages 2005–2031, 2022.
43 D. Marx. The square root phenomenon in planar graphs. Proc. 40th ICALP, pages 1–28, 2013.
44 D. Marx and M. Pilipczuk. Optimal parameterized algorithms for planar facility location

problems using Voronoi diagrams. ACM Trans. Algorithms, 18(2):1–64, 2022.
45 J. Matoušek. Near-optimal separators in string graphs. Comb. Probab. Comput., 23(1):135–139,

2014.
46 G. L. Miller, S. H. Teng, W. Thurston, and S. A. Vavasis. Separators for sphere-packings and

nearest neighbor graphs. J. ACM, 44(1):1–29, 1997.
47 I. Mustaţă and M. Pergel. Unit grid intersection graphs: recognition and properties.

arXiv:1306.1855, pages 1–19, 2013.
48 A. Nahman, A. Fan, J. Chung, and R. Reif. Wire-length distribution of three-dimensional

integrated circuits. Proc. IITC, pages 233–235, 1999.
49 K. Okrasa and P. Rzążewski. Subexponential algorithms for variants of homomorphism

problem in string graphs. Proc. 45th WG, pages 1–13, 2019.
50 Y. Otachi, Y. Okamoto, and K. Yamazaki. Relationships between the class of unit grid

intersection graphs and other classes of bipartite graphs. Discrete Appl. Math., 155(17):2383–
2390, 2007.

R. D. Barish and T. Shibuya 5:19

51 J. Pach and G. Tóth. Recognizing string graphs is decidable. Discrete Comput. Geom.,
28(4):593–606, 2002.

52 J. Pach and G. Tóth. How many ways can one draw a graph? Combinatorica, 26(5):559–576,
2006.

53 F. Panolan, S. Saurabh, and M. Zehavi. Contraction decomposition in unit disk graphs and
algorithmic applications in parameterized complexity. Proc. 30th SODA, pages 1035–1054,
2019.

54 A. Papakostas and I. G. Tollis. Algorithms for area-efficient orthogonal drawings. Comput.
Geom., 9(1–2):83–110, 1998.

55 M. Patrignani. On the complexity of orthogonal compaction. Comput. Geom., 19(1):47–67,
2001.

56 I. Penev, S. Oum, T. Miltzow, and L. Feuilloley. GROW 2017: open problems. URL: http:
//www.fields.utoronto.ca/sites/default/files/GROW_Open_Problems%202017.pdf.

57 F. S. Roberts. On the boxicity and cubicity of a graph. In: Recent progress in combinatorics
(W. T. Tutte, ed.). Academic Press: New York, NY, 1969.

58 M. Schaefer, E. Sedgwick, and D. Štefankovič. Recognizing string graphs in NP. J. Comput.
Syst. Sci., 67(2):365–380, 2003.

59 M. Schaefer and D. Štefankovič. Decidability of string graphs. Proc. 33rd STOC, pages
241–246, 2001.

60 M. Schaefer and D. Štefankovič. Decidability of string graphs. J. Comput. Syst. Sci., 68(2):319–
334, 2004.

61 E. R. Scheinerman. Intersection classes and multiple intersection parameters of graphs. Ph.D.
thesis, Princeton University, 1984.

62 F. W. Sinden. Topology of thin film RC circuits. Bell Syst. Tech. J., 45(9):1639–1662, 1966.
63 W. D. Smith and N. C. Wormald. Geometric separator theorems and applications. Proc. 39th

FOCS, pages 232–243, 1998.
64 J. E. Steif. The frame dimension and the complete overlap dimension of a graph. J. Graph

Theory, 9(2):285–299, 1985.

SWAT 2024

http://www.fields.utoronto.ca/sites/default/files/GROW_Open_Problems%202017.pdf
http://www.fields.utoronto.ca/sites/default/files/GROW_Open_Problems%202017.pdf

Destroying Densest Subgraphs Is Hard
Cristina Bazgan #

Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243, LAMSADE, Paris, France

André Nichterlein #

Algorithmics and Computational Complexity, Technische Universität Berlin, Germany

Sofia Vazquez Alferez #

Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243, LAMSADE, Paris, France

Abstract
We analyze the computational complexity of the following computational problems called Bounded-
Density Edge Deletion and Bounded-Density Vertex Deletion: Given a graph G, a budget k

and a target density τρ, are there k edges (k vertices) whose removal from G results in a graph
where the densest subgraph has density at most τρ? Here, the density of a graph is the number of
its edges divided by the number of its vertices. We prove that both problems are polynomial-time
solvable on trees and cliques but are NP-complete on planar bipartite graphs and split graphs. From
a parameterized point of view, we show that both problems are fixed-parameter tractable with
respect to the vertex cover number but W[1]-hard with respect to the solution size. Furthermore,
we prove that Bounded-Density Edge Deletion is W[1]-hard with respect to the feedback edge
number, demonstrating that the problem remains hard on very sparse graphs.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Graph modification problems, NP-hardness, fixed-parameter tractability,
W-hardness, special graph classes

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.6

Related Version Full Version: http://arxiv.org/abs/2404.08599

Acknowledgements We thank anonymous reviewers of SWAT 2024 for their detailed comments
improving the presentation.

1 Introduction

Finding a densest subgraph is a central problem with applications ranging from social network
analysis to bioinformatics to finance [21]. There is a rich literature on this topic with the first
polynomial-time algorithms given more than 40 years ago [15, 29]. In this work, we study
the robustness of densest subgraphs under perturbations of the input graph. More precisely,
we study the (parameterized) complexity of the following two computational problems called
Bounded-Density Edge Deletion and Bounded-Density Vertex Deletion: Given
a graph G, a budget k and a target density τρ, the questions are whether there are k edges,
respectively, k vertices, whose removal from G results in a graph where the densest subgraph
has density at most τρ? Here, the density ρ(G) of a graph G is defined as the ratio between
its number m of edges and number n of vertices, that is, ρ(G) = m/n, which is equal to
half the average degree of G. Thus, we contribute to the literature on graph modification
problems with degree constraints [13, 23, 27]. More broadly, our work fits into parameterized
algorithmics on graph modification problems – a line of research with a plethora of results.
See Crespelle et al. [6] for a recent survey focusing on edge modification problems.

Denote with ρ∗(G) the density of a densest subgraph of G. Note that cycles have density
exactly one and forests a density below one. Thus, it is easy to see that a graph G is
a forest if and only if ρ∗(G) < 1. Hence, our problems contain the NP-hard Feedback

© Cristina Bazgan, André Nichterlein, and Sofia Vazquez Alferez;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 6; pp. 6:1–6:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cristina.bazgan@dauphine.fr
https://orcid.org/0000-0002-5460-6222
mailto:andre.nichterlein@tu-berlin.de
https://orcid.org/0000-0001-7451-9401
mailto:sofia.vazquez-alferez@lamsade.dauphine.fr
https://orcid.org/0000-0002-1541-8683
https://doi.org/10.4230/LIPIcs.SWAT.2024.6
http://arxiv.org/abs/2404.08599
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Destroying Densest Subgraphs Is Hard

Table 1 Our results for Bounded-Density Edge Deletion / Vertex Deletion.

Edge Deletion Vertex Deletion

Trees O(n3) (Theorem 7) O(n) (Theorem 16)
Cliques O(n2) (Theorem 9) O(n2) (trivial)
Split NP-complete (Theorem 13) NP-complete (Theorem 20)
Planar Bipartite NP-complete (Theorem 12) NP-complete (Theorem 17)

Solution Size k W[1]-hard (Theorem 15) W[2]-hard (Theorem 23)
Vertex Cover Number FPT (Theorem 14) FPT (Theorem 21)
Feedback Edge Number W[1]-hard (Theorem 15) ?

τρ

0 1/2

Maximum Matching

2/3

Theorem 6 Theorem 6Theorem 13
3/4

Maximum P3-Packing

1 - 1/n

Feedback Edge Set

1 1 + 1/c

Theorem 11

n−1
2

Figure 1 The computational complexity and special cases of Bounded-Density Edge Deletion
for specific values of the target density τρ, see Sections 3.1 and 3.2 for the details. Green (hatched)
boxes indicate polynomial-time solvable cases while red (solid) boxes denote NP-hard cases. The c

in 1 + 1/c can be any constant larger than 24. The complexity for larger values of τρ remains open.

Vertex Set and the polynomial-time solvable Feedback Edge Set1, respectively, as
special cases. For target densities smaller than one not only are cycles to be destroyed, but
also a bound on the size of the remaining connected components is implied. For example,
for τρ = 2/3 (= 1/2 or = 0) each connected component in the resulting graph can have at
most 2 edges (1 edge for τρ = 1/2 or 0 edges for τρ = 0). Consequently, Bounded-Density
Vertex Deletion generalizes Dissociation Set (τρ = 1/2) and Vertex Cover (τρ = 0).
Bounded-Density Edge Deletion generalizes Maximum Cardinality Matching
(τρ = 1/2) and the NP-hard Maximum P3-packing (τρ = 2/3) where the non-deleted edges
form the matching and P3-packing, respectively.

Our contributions. We refer to Table 1 for an overview of our results. Given the above
connections to known computational problems, we start with the seemingly easier of the two
problems: Bounded-Density Edge Deletion. We provide polynomial-time algorithms
for specific target densities below one (see Figure 1) or when the input is a clique or tree
(see Section 3.1). However, beyond these cases, the problem turns out to be surprisingly
hard. There are target densities above or below one for which it is NP-hard, see Figure 1
for an overview. We show that Bounded-Density Edge Deletion remains NP-hard on
claw-free cubic planar, planar bipartite, and split graphs (see Section 3.2). Moreover, we
prove W[1]-hardness with respect to the combined parameter k and feedback edge number.
This implies that the problem remains hard even on very sparse graphs as the feedback
edge number in a connected graph is m − n + 1, despite being polynomial-time solvable on
trees. Note that this also implies W[1]-hardness with respect to prominent parameters like
treewidth. Moreover, our employed reduction shows W[1]-hardness for Th+1-Free Edge

1 Given a graph G and an integer k, Feedback Vertex Set (Feedback Edge Set) asks if there is a
set of k vertices (k edges) whose removal makes G acyclic.

C. Bazgan, A. Nichterlein, and S. Vazquez Alferez 6:3

Deletion2 with respect to the treewidth, thus answering an open question by Enright and
Meeks [10]. On the positive side, using integer linear programming, we classify the problem
as fixed-parameter tractable with respect to the vertex cover number (see Section 3.3).

Turning to Bounded-Density Vertex Deletion, we derive NP-hardness for all τρ ∈
[0, n1−1/c] for any constant c. Note that the density of a graph is between 0 and (n − 1)/2
and the case τρ = (n − 1)/2 is trivial. Moreover, we show NP-hardness on planar bipartite
graphs of maximum degree four, line graphs of planar bipartite graphs, and split graphs (see
Section 4.2) as well as a polynomial-time algorithm for trees (see Section 4.1). Furthermore,
we prove W[2]-hardness with respect to k and fixed-parameter tractability with respect to
the vertex cover number (see Section 4.3). Notably, the latter algorithm is easier than in the
edge deletion setting; in particular it does not rely on integer linear programming.

Due to space restrictions the proofs of some statements (marked by ⋆) are omitted.

Further related work. The density as defined above is related to a variety of useful concepts.
It belongs to a family of functions of the form f(G, a, b, c) = a|E(G)|/(b|V (G)| − c) with
a, b, c ∈ Q. Depending on the values of a, b and c, the function has been used to study a
variety of network properties [17]. For instance ρ(G) = f(G, 1, 1, 0) is used in the study of
random graphs [1], whilst f(G, 1, 1, 1) comes up in the study of vulnerability of networks [7],
and f(G, 1, 3, 6) is used to study rigid frameworks [20]. A more general class of functions can
be studied, where a, b, c are not rational numbers but functions. For instance, Hobbs [16]
studies the vulnerability of a graph G by finding the subgraph H of G that maximizes
|E(H)|/(|V (H)| − ω(H)) with ω(H) being the number of connected components in H. The
interpretation being that attacking such a subgraph would lead to the maximum number of
connected components being created per unit of effort spent on the attack, where the effort
is proportional to the number of edges being targeted by the attacker.

The maximum average degree mad(G) of a graph G is the maximum of the average degrees
of all subgraphs of G. Note that mad(G) = 2ρ∗(G). Recently, Nadara and Smulewicz [25]
showed that for every graph G and positive integer k such that mad(G) > k, there exists a
polynomial-time algorithm to compute a subset of vertices S ⊆ V (G) such that mad(G−S) ≤
mad(G) − k and every subgraph of G[S] has minimum degree at most k − 1. Though no
guarantees are given that S has minimum size for subsets S that achieve mad(G − S) ≤
mad(G) − k.

Modifying a graph to bound its maximum average degree can be of use because of a
variety of results on the colorability of graphs with bounded mad. In general, mad can be
used to give a bound on the chromatic number χ(G) of G, as χ(G) ≤ ⌊mad(G)⌋ + 1 [26]. It
is well-known that for any planar graph G, the maximum average degree is related to the
girth g(G) of G in the following way: (mad(G) − 2)(g(G) − 2) < 4 [25]. Several results are
known for variations of coloring problems and mad [2, 3, 4, 19].

2 Preliminaries

Notation. For n ∈ N we set [n] = {1, 2, . . . , n}. Let G be a simple, undirected, and
unweighted graph. We denote the set of vertices of G by V (G) and the set of edges of G by
E(G). We set nG = |V (G)| and mG = |E(G)|. We denote the degree of a vertex v ∈ V (G)
by degG(v). If the graph is clear from context, then we drop the subscript. The minimum

2 Given a graph and an integer k, the question is whether k edges can be removed so that no connected
component has more than h vertices?

SWAT 2024

6:4 Destroying Densest Subgraphs Is Hard

degree of G is denoted by δ(G), and the maximum degree of G is denoted by ∆(G). We
denote with H ⊆ G that H is a subgraph of G. The density of G is ρ(G) = m/n. We define
the density of the empty graph as zero. We denote by ρ∗(G) the density of the densest
subgraph of G, that is, ρ∗(G) = maxH⊆G ρ(H). For a subset of vertices W ⊆ V (G), we
denote with G[W] the subgraph induced by W . For two subsets of vertices W, U ⊆ V (G) we
set E(W, U) to be the set of edges with one endpoint in W and another in U .

We denote by Pn the path on n vertices, by Kn the complete graph on n vertices (also
called a clique of size n), and by Ka,b the complete bipartite graph with a and b the size of
its two vertex sets. A graph G is r-regular if deg(v) = r for every vertex v ∈ G. A perfect
P3-packing of G is a partition of V (G) into sets V1, V2, . . . , Vn/3 such that for all i ∈ [n/3]
the graph G[Vi] is isomorphic to P3.

A graph G is balanced if ρ(G′) ≤ ρ(G) for every subgraph G′ ⊆ G. Let ρ′(G) = m
n−1

for 1 ≤ n − 1 and define ρ′ to be 0 for the empty graph and one-vertex graph. A graph G

is strongly balanced if ρ′(G′) ≤ ρ′(G) for every subgraph G′ ⊆ G. Ruciński and Vince [31,
page 252] point out that every strongly balanced graph is also balanced, though the converse
is not true.

Problem Definitions. The problem definition for the edge deletion variant is as follows (the
definition for vertex deletion is analogous):

Bounded-Density Edge Deletion
Input: A graph G, an integer k ≥ 0 and a rational number τρ ≥ 0.
Question: Is there a subset F ⊆ E(G) with |F | ≤ k such that ρ∗(G − F) ≤ τρ?

There are two natural optimization problems associated to Bounded-Density Edge
Deletion which we call Min Density Edge Deletion (given k minimize τρ) and Min
Edge Deletion Bounded-Density (given τρ minimize the number of edge deletions k).

We emphasize that all problems for vertex deletion are defined and named analogously.

Useful Observations. We often compare the ratio of vertices to edges in different induced
subgraphs. To this end, the following basic result is useful.

▶ Lemma 1 (⋆). a
b ≤ a+c

b+d ⇐⇒ a
b ≤ c

d and a
b = a+c

b+d ⇐⇒ a
b = c

d .

The following is a collection of easy observations that can be obtained with Lemma 1.

▶ Lemma 2 (⋆). Let G∗ be a densest subgraph of G with ρ(G∗) = ρ∗(G). Then:
1. If G∗ is not connected, then each connected component C of G∗ has density ρ∗(G).
2. If ρ(G∗) = a/b for a, b ∈ N and a < b, then a = b − 1 and G∗ is a tree on b vertices or a

forest where each tree is on b vertices.
3. Any vertex v /∈ V (G∗) has at most ⌊ρ(G∗)⌋ neighbors in V (G∗).
4. The minimum degree in G∗ is at least ⌈ρ(G∗)⌉. This is tight for trees.

Note that Lemma 2 (4.) implies that we can remove vertices with degree less than our
desired target density τρ.

▶ Data Reduction Rule 3. Let v be a vertex with degree deg(v) < τρ. Then delete v.

The following two observations imply that there are only a polynomial number of
“interesting” values for the target density τρ. Thus, if we have an algorithm for the decision
problem, then, using binary search, one can solve the optimization problems with little
overhead in running time.

C. Bazgan, A. Nichterlein, and S. Vazquez Alferez 6:5

▶ Observation 4. The density of a graph G on n vertices can have values between 0 and
(n − 1)/2 in intervals of 1/n: ρ(G) ∈ {0, 1/n, 2/n, . . . ,

(
n
2
)
/n = (n − 1)/2}.

▶ Observation 5 ([15]). The maximum density of a subgraph of G can take only a finite
number of values: ρ∗(G) ∈ {m′/n′ | 0 ≤ m′ ≤ m, 1 ≤ n′ ≤ n}. Moreover, the minimum
distance between two different possible values of ρ∗(G) is at least 1/(n(n − 1)).

3 Bounded-Density Edge Deletion

In this section we provide our results for Bounded-Density Edge Deletion, starting
with the polynomial-time algorithms, continuing with the NP-hard cases, and finishing with
our parameterized results.

3.1 Polynomial-time solvable cases
Specific Density Intervals. We show that if the density τρ falls within one of two inter-
vals, then Min Edge Deletion Bounded-Density boils down to computing maximum
matchings or spanning trees.

▶ Theorem 6. Min Edge Deletion Bounded-Density can be solved in time O(m
√

n)
if 0 ≤ τρ < 2/3 and in time O(n + m) if 1 − 1/n ≤ τρ ≤ 1.

Proof. The proof is by case distinction on τρ.
Note that if τρ < 1/2, then no edge can remain in the graph as a K2 has density 1/2.

Similarly, if 1/2 ≤ τρ < 2/3, then no connected component can have more than one edge:
Otherwise, the component would contain a P3 which has density 2/3. Hence, computing
a maximum cardinality matching in time O(m

√
n) [24] and removing all edges not in the

matching solves the given instance of Min Edge Deletion Bounded-Density.
The second interval is similar. If 1 − 1/n ≤ τρ < 1, then the resulting graph cannot have

any cycle as a cycle has density 1. Moreover, any tree on at most n vertices has density at
most 1 − 1/n. Thus, in this case Min Edge Deletion Bounded-Density is equivalent
to computing a minimum feedback edge set, which can be done in time O(n + m) by e. g.
deleting all edges not in a spanning tree.

Lastly, if τρ = 1, then each connected component can have at most one cycle, that is, the
resulting graph must be a pseudoforest: Consider a connected component C with ℓ vertices
and at least two cycles. Any spanning tree of C contains ℓ − 1 edges and misses at least one
edge per cycle. Hence, C contains at least ℓ + 1 edges and has, thus, density larger than one.
Thus, each connected component in the remaining graph can have at most as many edges as
vertices. Hence, a solution to the Min Edge Deletion Bounded-Density instance is to
do the following for each connected component: delete all edges not in a spanning tree and
reinsert an arbitrary edge. This can be done in O(n + m) time. ◀

Trees. If the input is a tree, then any target threshold τρ ≥ 1 makes the problem trivial.
Hence, the case τρ < 1 is left. Thus, each tree in the remaining graph can have at most h =
⌊1/(1 − τρ)⌋ many vertices: a tree with h′ > h vertices has density (h′ − 1)/h′ = 1 − 1/h′ >

1 − 1/h ≥ 1 − (1 − τρ) = τρ. Hence, the task is to remove as few edges as possible so that
each connected component in the remaining graph is of order at most h. This problem is
known as Th+1-Free Edge Deletion and can be solved in O((wh)2wn) time [10], where w

is the treewidth. As trees have treewidth one and h ≤ n (otherwise the problem is trivial),
we get the following.

SWAT 2024

6:6 Destroying Densest Subgraphs Is Hard

▶ Theorem 7. On the trees, Min Edge Deletion Bounded-Density can be solved in
time O(n3).

Cliques. The problem is not completely trivial on cliques: While a target threshold τρ

indicates an upper bound on the remaining edges (as ρ(G − F) ≤ τρ must hold), the question
is whether for all m and n there is a balanced graph G with m edges and n vertices; recall
that a graph is balanced if the whole graph is a densest subgraph. Ruciński and Vince [31]
showed a slightly stronger statement about strongly balanced graphs. Recall that every
strongly balanced graph is also balanced; refer to Section 2 for formal definitions.

▶ Theorem 8 ([31, Theorem 1]). Let n and m be two integers. If 1 ≤ n − 1 ≤ m ≤
(

n
2
)
, then

there exists a strongly balanced graph with n vertices and m edges.

The proof of Ruciński and Vince [31] is constructive: A strongly balanced graph (that is
also a balanced graph) with m edges and n vertices can be constructed in O(m) time.

▶ Theorem 9. On the complete graph Kn, Min Edge Deletion Bounded-Density and
Min Density Edge Deletion can be solved in time O(n2).

Proof. We provide the proof for Min Edge Deletion Bounded-Density. The proof for
Min Density Edge Deletion is analogous.

Consider an instance (G = Kn, τρ) of Min Edge Deletion Bounded-Density. Let
F ⊆ E(G) be a solution that our algorithm wants to find. Throughout the proof we assume
τρ ≤ (n − 1)/2 and n ≥ 1, as otherwise F = ∅. We consider two cases: τρ < 1 and τρ ≥ 1.

Case 1. (τρ < 1): Let t ≤ n be the largest integer satisfying (t − 1)/t ≤ τρ. By Lemma 2
(2.), the resulting graph Kn − F must be a collection of trees on at most t vertices each.
Thus, partition the vertices in ⌈n/t⌉ parts of size at most t. For each part keep an arbitrary
spanning tree. Then F consists of all non-kept edges, i. e., all edges between the parts and
all edges not in the selected spanning trees. Clearly, this can be done in O(n2) time.

Case 2. (τρ ≥ 1): We will construct a strongly balanced graph G′ on n vertices with
density as close to τρ as possible, as allowed by Observation 4. To this end, let t be the
largest number in {0, 1/n, . . . , (n − 1)/2} so that t ≤ τρ, thus t = ℓ/n for some integer
ℓ ∈ {n, n + 1, . . . ,

(
n
2
)
} (as τρ ≥ 1).

Now we use Theorem 8 to construct a balanced graph G′ with ℓ edges and n vertices,
thus ρ∗(G′) ≤ τρ. We will select F ⊆ E(G) so that G′ = G − F , that is, F contains all edges
not in G′ and |F | =

(
n
2
)

− ℓ. By choice of ℓ we know that (ℓ + 1)/n > τρ. Hence, removing
less than

(
n
2
)

− ℓ edges from G means the whole graph has density more than τρ. As building
the graph G′ takes time O(ℓ) the overall running time is O(n2).

To construct the analogous proof for Min Density Edge Deletion use two cases:
k >

(
n
2
)

− n (equivalent of Case 1 above) and k ≤
(

n
2
)

− n (equivalent of Case 2). ◀

3.2 NP-Hardness for special graph classes
Claw-free cubic planar graphs. For our first hardness proof of Bounded-Density Edge
Deletion we provide a reduction from Perfect P3-packing which was proven NP-complete
even in claw-free cubic planar graphs [33]. Denote with Pk a path on k vertices. A perfect
P3-packing of a given graph G is a partition of G into subgraphs in which each subgraph is
isomorphic to P3. The Perfect P3-packing problem is defined as follows:

Perfect P3-packing
Input: A graph G.
Question: Is there a perfect P3-packing of G?

C. Bazgan, A. Nichterlein, and S. Vazquez Alferez 6:7

▶ Theorem 10. Bounded-Density Edge Deletion is NP-complete for τρ = 2/3 even on
claw-free cubic planar graphs.

Proof. Given an instance G of perfect P3-packing where G is a claw-free cubic planar
graph, let I = (G, k, τρ) be an instance of Bounded-Density Edge Deletion where
k = m − 2n/3 and τρ = 2/3. We claim that G has a perfect P3-packing if and only if there is
a set F ⊆ E(G) with ρ∗(G − F) = 2/3 and |F | = m − 2n/3.

“⇒:” Given a perfect P3-packing of G, we set F to be the set of all edges in G that are
not in the P3-packing. Clearly ρ∗(G − F) = 2/3. Additionally, |F | = m − 2n/3 since there
are n/3 paths in a perfect P3-packing, and each path has two edges.

“⇐:” Consider F ⊆ E(G) of size at most m − 2n/3 such that ρ∗(G − F) ≤ 2/3. Then
|E(G) \ F | ≥ 2n/3. Note that τρ = 2/3 implies, by Lemma 2 (2.), that all connected
components of G − F must be trees of size at most 3. In other words, all connected
components in G − F are singletons, P2’s, or P3’s. Denote by t the number of connected
components that are P3’s in G − F . Then there are 3t vertices and 2t edges of G − F which
belong to a P3. Consequently, there are n−3t vertices and |E(G)\F |−2t ≥ 2(n−3t)/3 edges
of G − F which are either singletons or belong to a P2. This is possible only if n − 3t = 0,
that is G − F is a perfect P3-packing of G. ◀

Planar graphs with ∆ = 3, target density above 1. We next show that Bounded-Density
Edge Deletion remains NP-complete even for τρ > 1. To prove this, we reduce from
Vertex Cover on cubic planar graphs, which is known to be NP-complete [14]. Vertex
Cover is defined as follows:

Vertex Cover
Input: A graph G and a positive integer k.
Question: Is there a vertex cover C ⊆ V (G) of size at most k, that is, for each {u, v} ∈ E

at least one of u or v is in C?

▶ Theorem 11 (⋆). Bounded-Density Edge Deletion is NP-complete for τρ > 1 even
on planar graphs with maximum degree 3.

Bipartite graphs and split graphs. Finally, we show that Bounded-Density Edge
Deletion is NP-hard even on planar bipartite graphs and on split graphs.

▶ Theorem 12 (⋆). Bounded-Density Edge Deletion remains NP-complete on planar
bipartite graphs.

▶ Theorem 13 (⋆). Bounded-Density Edge Deletion is NP-complete on split graphs
with τρ = 3/4.

3.3 Parameterized Complexity Results
FPT wrt. Vertex Cover Number. The vertex cover number of a graph denotes the size of
a smallest vertex cover, i. e., the size of a set of vertices whose removal results in an edge-less
graph. Although this parameter is relatively large, we still need to rely on integer linear
programming in our next algorithm.

▶ Theorem 14. Bounded-Density Edge Deletion can be solved in 2O(ℓ22ℓ) + O(m + n)
time where ℓ is the vertex cover number.

SWAT 2024

6:8 Destroying Densest Subgraphs Is Hard

Proof. Consider an instance (G, k, τρ) of Bounded-Density Edge Deletion.
We provide an algorithm that first computes a minimum vertex cover C ⊆ V (G), |C| = ℓ,

in O(2ℓ + n + m) time [8]. Then it computes edge deletions within G[C] and incident
to S = V (G) \ C with an ILP, i. e., computes F . To this end, we divide the vertices in S

into at most 2ℓ classes I1, . . . , I2ℓ , where two vertices are in the same class if and only if they
have the same neighbors. Hence, we can define for a class Ii the neighborhood N(Ii) = N(v)
for v ∈ Ii. We denote with |Ii| the number of vertices in the class Ii. The usefulness of these
classes hinges on the fact that at least one densest subgraph G′ of G is such that it either
contains all the vertices of a class Ii or none. This is a consequence of Lemma 1: if removing
(adding) a vertex of Ii from a subgraph of G increases its density, then removing (adding)
any other vertices from Ii must do the same, as they are twins and non-adjacent.

We say a class Ij is obtainable from a class Ii if N(Ij) ⊆ N(Ii), that is, by deleting some
edges a vertex from Ii can get into class Ij . Note that Ij is obtainable from Ij . Denote
with ob(Ii) all classes obtainable from Ii, formally, ob(Ii) = {Ij | N(Ij) ⊆ N(Ii)}. Similarly,
we denote with ob−1(Ij) all classes Ii so that Ij is obtainable from Ii, formally, ob−1(Ij) =
{Ii | N(Ij) ⊆ N(Ii)}. If Ij is obtainable from Ii, then we set cost(i → j) = |N(Ii) \ N(Ij)|
to be the number of edges that need to be deleted from a vertex v ∈ Ii to make it a vertex
in Ij .

We now give our ILP. To handle edges with one endpoint in the independent set S we
do the following: For each pair of classes Ii, Ij , we add a variable xi→j whose purpose is
to denote how many vertices from class Ii will end up in class Ij by deleting edges. For
convenience, we further have a variable yj =

∑
Ii∈ob−1(Ij) xi→j denoting the total number of

vertices that end up in a class Ij after deleting edges. To ensure correctness we require that
no vertex from class Ii gets transformed into a vertex from a class not obtainable from Ii

which we represent with the constraint
∑

Ij∈ob(Ii) xi→j = |Ii| for all i ∈ [2ℓ]. Moreover, both
xi→j and yj must be integers for all i, j ∈ [2ℓ].

To handle edges within C we do the following: For each edge e ∈ E(C) we create a binary
variable ze, where ze = 1 if e survives and 0 if it gets deleted. Again for convenience, for
a subset C ′ ⊆ C we denote with mC′ =

∑
e∈E(C′) ze the number of edges within C ′ that

survive. The ILP is as follows:

Minimize
2ℓ∑

j=1

∑
Ii∈ob(Ij)

cost(i → j) · xi→j +
∑

e∈E(C)

(1 − ze) (1)

such that
∑

Ij∈ob(Ii)

xi→j = |Ii| ∀i ∈ [2ℓ] (2)

∑
Ii∈ob−1(Ij)

xi→j = yj ∀j ∈ [2ℓ] (3)

∑
e∈E(C′)

ze = mC′ ∀C ′ ⊆ C (4)

mC′ +
∑
i∈I

yi|N(Ii) ∩ C ′| ≤ τρ(|C ′| +
∑
i∈I

yi) ∀C ′ ⊆ C, ∀I ⊆ [2ℓ] (5)

xi→j , yi ∈ {0, 1, 2, . . .} ∀i, j ∈ [2ℓ] (6)
ze ∈ {0, 1} ∀e ∈ E(C) (7)

To prove correctness it remains to show that the ILP admits a solution such that the
objective value is at most k if and only if there exist an edge deletion set F of size at most k

such that ρ∗(G − F) ≤ τρ.

C. Bazgan, A. Nichterlein, and S. Vazquez Alferez 6:9

Firstly, suppose there exists a feasible solution to the ILP that achieves an objective
value of at most k. Because the vertices in Ii are indistinguishable, the set of variables
{xi→j | j ∈ [2ℓ]} uniquely determines the set of edges incident to Ii that need to go into F

for each class Ii, i ∈ [2ℓ]. The other edges in F can be directly read off the solution
E(C) ∩ F = {ze | ze = 0}. A densest subgraph G′ of G contains some vertices from C

and from S. If G′ does not contain all vertices from some class Ii, then either adding or
removing all vertices from Ii will give a graph G′′ that is as least as dense as G′ (cf. Lemma 1).
Inequality (5) ensures that all such possible subgraphs G′′ have density at most τρ. Therefore,
this constraint guarantees that all subgraphs of G − F have density at most τρ. In the
objective function,

∑
e∈E(C)(1 − ze) counts the number of edges that are deleted from C,

whilst
∑2ℓ

j=1
∑

Ii∈ob(Ij) cost(i → j) · xi→j counts the number of edges that are deleted from
E(C, S). Since the feasible solution achieves an objective value of at most k, we have that
|F | ≤ k. Thus, F as built above is the desired edge deletion set of size at most k.

Secondly, consider an edge subset F ⊆ E(G) of size at most k such that ρ∗(G − F) ≤ τρ.
We can assign values to xi→j by reading the number of edges in F that are incident to each
vertex v in class Ii. The first and second constraint will be satisfied by construction. The
third constraint will be satisfied because ρ∗(G − F) ≤ τρ. And since |F | ≤ k the minimum
of the objective function will have value at most k.

The ILP has at most 22ℓ variables of type xi→j and at most
(

ℓ
2
)

of type ze. The linear
program can be expressed without variables of types yj and mC′ simply by substituting their
expressions into the other constraints. This yields a total of O(22ℓ+1) variables. In addition,
we have O(2ℓ · 22ℓ) constraints. Since an ILP instance I on p variables can be solved in time
O(p2.5p+o(p) · |I|) [22, 18, 12] we obtain a total (FPT) running time of 2O(ℓ22ℓ) + O(m + n)
for our algorithm. We note that one can achieve a running time of ℓO(22ℓ) + O(n + m) by
using a randomized algorithm that solves ILPs on p variables in time log(2p)O(p)[30]. ◀

W[1]-Hardness wrt. feedback edge number and solution size. We next prove that
Bounded-Density Edge Deletion is W[1]-hard with respect to the combined parameter
solution size and feedback edge number. To this end, we use the construction of Enciso et
al. [9], who reduced Multicolored Clique to Equitable Connected Partition. These
problems are defined as follows.

Multicolored Clique
Input: An undirected graph G properly colored with ℓ colors.
Question: Does G contain a clique on ℓ vertices?

Equitable Connected Partition
Input: An undirected graph G and a positive integer c.
Question: Is there a partition of G into c equally sized connected components, that is, a

partition of V (G) into V1, . . . , Vc so that each G[Vi] is connected and ||Vi|−|Vj || ≤
1 for each i, j ∈ [c]?

Note that since G is properly colored any clique in G is multicolored, that is, contains at
most one vertex per color.

As a byproduct, we also obtain W[1]-hardness for Th+1-Free Edge Deletion parame-
terized by the combined parameter feedback edge number and solution size. This confirms a
conjecture by Enright and Meeks [10]: Th+1-Free Edge Deletion is indeed W[1]-hard
with respect to treewidth.

SWAT 2024

6:10 Destroying Densest Subgraphs Is Hard

Connection between problems. Let us briefly discuss the connections between the three
problems to see why the construction of Enciso et al. [9] works for all three: Consider a cycle
on 3n vertices. Requiring c = 3 for Equitable Connected Partition guarantees one
solution (up to symmetry): delete 3 edges so that 3 paths on n vertices remain. Similarly,
requiring k = 3 and h = n for Th+1-Free Edge Deletion guarantees the same solution.
The same applies for Bounded-Density Edge Deletion with τρ = (n − 1)/n and k = 3.

The construction of Enciso et al. [9] will enforce the following: Any connected component
in a solution will be a tree. Hence, we can control its maximum size via the density τρ or
directly via h. Combining the budget k with the size constraint ensures that the minimum
number of vertices per component is equal to the maximum number of vertices per component.
Thus, for the constructed graph all three problems will ask essentially for the same solution.

▶ Theorem 15. Bounded-Density Edge Deletion and Th+1-Free Edge Deletion
are W[1]-hard with respect to the combined parameter solution size and feedback edge number.

Proof. We use the same reduction as Enciso et al. [9]. Let (G, ℓ) be an instance of Multicol-
ored Clique, which is W[1]-hard with respect to ℓ [11]. Assume without loss of generality
that G contains exactly n/ℓ vertices of each color i ∈ [ℓ]. (We can add isolated vertices of
the appropriate color to G to meet this demand.) Denote with λ : E(G) → [m] a bijection
that assigns each edge in G a unique integer from [m]. Further, denote with vi

1, . . . , vi
n/ℓ the

vertices of color i in G.

Construct instances (H, k, τρ) of Bounded-Density Edge Deletion and (H, k, h) of
Th+1-Free Edge Deletion as follows. Let α and β be the smallest integers satisfying β >

2m + 10 and α > β · n/ℓ + 2m + 10. Then set h = α + β · n/ℓ + m + 1 which will be the
maximum number of vertices any subtree in the resulting graph H − F is allowed to have.
To ensure this, set τρ = 1 − 1/h.

The basic building block for H is the so-called anchor. For q ≥ 1, a q-anchor is a
vertex adjacent to q − 1 many vertices of degree one. The idea is that we cannot afford
to cut off single vertices, thus all anchors in the constructed graph stay intact. Hence, a
q-anchor acts as a single vertex with weight q (the vertex contributes q to the size of its
connected component). We use anchors in the choice gadget (see Figure 2 for an illustration):
Let A = {a1, . . . , aq} be a set of integers so that 1 ≤ ai < aj for all 1 ≤ i < j. An A-choice is
a path on p vertices u1, . . . , up where vertex ui, i ∈ [p], is the center of an (ai − ai−1)-anchor
(u1 is the center of an a1-anchor). Note that an A-choice has exactly ap many vertices (ap

is the maximum of A), and that removing the edge {ui, ui+1} splits the A-choice gadget
into two connected components with ai and aq − ai vertices respectively. We say we cut the
A-choice at ai, i ∈ [|A| − 1], to indicate the removal of the edge {ui, ui+1}. To connect two
vertices u and v by an A-choice means to merge the first and last anchor of the A-choice
gadget with u and v, respectively. Merging a vertex v with an q-anchor means to remove
the anchor, add q degree-one vertices adjacent only to v and make v adjacent to all vertices
the center of the anchor was adjacent to. In other words, identify v with the center of the
anchor and add one vertex only adjacent to v (to ensure the overall number of vertices stays
the same). Note that connecting two vertices u and v by an A-choice still leaves |A| − 1
many possible cuts of the A-choice. We only connect center vertices of α-anchors by choice
gadgets, thus enforcing a cut in each choice gadget.

For each of the ℓ colors in G add 2(ℓ − 1) many α-anchors to the initially empty graph H .
Note that α is sufficiently large to ensure that no two anchors can be in the same connected
component, that is, 2α > h. Denote with N i

j , P i
j , j ∈ [ℓ] \ {i}, the center vertices of the

C. Bazgan, A. Nichterlein, and S. Vazquez Alferez 6:11

u v

8 vertices 19 − 8 = 11 vertices

{5, 8, 15, 19}-choice gadget

Connecting u and v with the {5, 8, 15, 19}-choice gadget

Figure 2 Left above: A {5, 8, 15, 19}-choice gadget consisting of four anchors. The two red dashed
boxed indicate a possible split into 8 and 11 vertices. Left below: A more compact representation
(used in further figures) of the same gadget used to connect u and v. The length of the vertical lines
correspond to the number of degree-one neighbors of the corresponding anchor; we omit the line for
the first and last anchor. The diamond shaped vertices indicate α-anchors. Each choice-gadget in
the construction connects two α-anchors as visualized above. Right: A gadget constructed for each
color. It consists of 2(ℓ − 1) many α-anchors (so ℓ = 5 in the example) that are connected in a cycle
via choice-gadgets (in the example there are 4 vertices per color).

anchors for color i ∈ [ℓ]. Set AV = {1} ∪ {pβ | p ∈ [n/ℓ]} containing 1 + n/ℓ elements, thus
accommodating one cut for each vertex of color i. Let j′ be the “successor index” of j,
formally:

j′ =

1, if (j = ℓ ∧ i ̸= 1) ∨ (j + 1 = i = ℓ)
2, if j = ℓ ∧ 1 = i

j + 1, if j + 1 ̸= i ∧ j + 1 ≤ ℓ

j + 2, if j + 1 = i ∧ j + 2 ≤ ℓ

For each j ∈ [ℓ] \ {i}, connect N i
j and P i

j′ by an AV -choice gadget. Set Ai
E = {(p − 1)β +

λ({u, vi
p}) | p ∈ [n/ℓ] ∧ u ∈ V (G) ∧ {u, vi

p} ∈ E(G)} ∪ {βn/ℓ + m + 1} containing one
element for each edge incident to each vertex of color i and a large final element to make
sure each Ai

E-choice has exactly βn/ℓ + m + 1 many vertices. Next, connect P i
j and N i

j by
an Ai

E-choice gadget. For i, j ∈ [ℓ], i ̸= j connect P i
j and N j

i by an [m + 1]-choice gadget
(leaving one m cut possibilities), see Figure 3 for an illustration and some intuition. Finally,
set k = 2(ℓ − 1)ℓ + 2

(
ℓ
2
)

= 3(ℓ − 1)ℓ.
Observe that removing in H the degree-one vertices, we are left with ℓ cycles that are

pairwise connected by two paths. Thus, the feedback edge number of the constructed graph H

is ℓ + 2
(

ℓ
2
)

− (ℓ − 1) = 2
(

ℓ
2
)

+ 1.
We show that any solution for the instance (H, k, τρ) creates connected components of

exactly the same size. Let F be a solution to the constructed Bounded-Density Edge
Deletion instance (H, k, τρ), that is, |F | ≤ k and the densest subgraph in G − F has
density at most τρ. Observe that each “large” α-anchor is in a different connected component
in H − F as 1/(1 − τρ) = h < 2α. Thus, F contains at least one edge of each choice gadget as
each choice gadget connects two α-anchors. Since there are k choice gadgets, it follows that F

contains exactly one edge from each choice gadget. Thus, H − F contains exactly 2(ℓ − 1)ℓ
many connected components. Note that H consists of 2(ℓ−1)ℓ many α-anchors, (ℓ−1) many

SWAT 2024

6:12 Destroying Densest Subgraphs Is Hard

P i
j−1

P j
i−1

N i
j

N j
i

P i
j

P j
i

N i
j+1

N j
i+1

part of gadget for color i

part of gadget for color j

vertex selectionvertex selection edge selection

Figure 3 Illustration of the representation of edges of the original graph in the constructed
graph. The top part (highlighted in gray) indicates part of the gadget (cycle) created for color i;
correspondingly on the bottom for color j. The intuition for the reduction is as follows. Consider
a solution for H, that is, a set of edges F so that ρ∗(H − F) ≤ τρ. Some connected components
in H − F are indicated by dashed lines enclosing parts of the vertices. The size constraint for
each connected component (enforced by the density threshold τρ < 1) ensures that each connected
component of H − F contains at most one α-anchor (indicated by diamond-shaped vertices), at
most n/ℓ many β-anchors (indicated by the longer vertical lines in the choice-gadgets, here n/ℓ = 4),
and an additional m + 1 vertices. In the vertex-selection part (the AV -choice gadgets that only
contains β-anchors) there are n/ℓ many choices to cut; each corresponding to selecting one of the n/ℓ

vertices of the respective color. The bound of at most n/ℓ many β-anchors per connected component
enforces the same choice throughout the color gadget (see right side of Figure 2). The edge selection
follows the same idea as the vertex selection for each color (the number are just smaller): The
[m + 1]-choice gadgets between N i

j and P j
i as well as between P i

j and N j
i imply that 2m + 2 vertices

need to be distributed to the connected components around N i
j , P j

i , P i
j , N j

i . Moreover, the vertex
pairs {N i

j , P i
j } and {N j

i , P j
i } are connected via an Ai

E- resp. Aj
E-choice gadget. Both of these

gadgets contain n/ℓ + m + 1 vertices. Thus, 4m + 4 vertices needs to be distributed to the connected
components around N i

j , P j
i , P i

j , N j
i . By construction, this requires a cut at an anchor representing

the same edge in all four connections. This implies that the selected vertices in the color gadgets are
adjacent in the original graph. As one vertex needs to be selected per color a clique needs to be
selected.

AV -choice and Ai
E-choice gadgets for each i ∈ [ℓ], and 2

(
ℓ
2
)

many [m + 1]-choice gadgets.
Recall that a A-choice contains exactly maxa∈A{a} vertices. Thus, the number of vertices
in H is

2(ℓ−1)ℓ·α+(ℓ−1)ℓ·(2βn/ℓ+m+1)+(ℓ−1)ℓ·(m+1) = 2(ℓ−1)ℓ·(α+βn/ℓ+m+1) = 2(ℓ−1)ℓ·h.

Hence, by pigeon principle, each connected component in H − F contains exactly h vertices.
Thus, F certifies also a solution to the Equitable Connected Partition instance (H, 2(ℓ−
1)ℓ). The correctness of the reduction follows from the arguments of Enciso et al. [9], as they
use the same reduction for Equitable Connected Partition. ◀

We remark that the above theorem also implies W[1]-hardness with respect to the treewidth
for Bounded-Density Edge Deletion and Th+1-Free Edge Deletion as the treewidth
of is upper bounded by twice the feedback edge number. This resolves an open question of
Enright and Meeks [10].

C. Bazgan, A. Nichterlein, and S. Vazquez Alferez 6:13

4 Bounded-Density Vertex Deletion

In this section we show that Bounded-Density Vertex Deletion is NP-complete on
several graph classes. We also prove the W[2]-hardness with respect to the parameter k, the
number of vertices to remove.

4.1 Polynomial-time algorithm for trees
In this part we discuss the case of trees and show that the problem is polynomial-time
solvable. As in the edge deletion variant, we only need to consider the case that τρ < 1 (see
the discussion before Theorem 7). Thus, we need to delete vertices such that each connected
component in the resulting graph has at most h = 1/(1 − τρ) many vertices.

Shen and Smith [32] consider the problem of deleting k vertices to minimize the size of
the largest connected component. They established an algorithm in O(n3 log n) time for
trees. We improve on this as follows.

▶ Theorem 16. Bounded-Density Vertex Deletion can be solved in O(n) time on
trees.

Proof. Let T be the input tree. We propose a simple greedy algorithm that works bottom
up from the leaves. In each vertex we visit we store the size (number of vertices) of the
current subtree. For a vertex v this can be easily computed by summing up the values in
its children and adding one. Whenever a vertex reaches subtree size above h, we delete the
vertex. Naturally, when computing the subtree size, then deleted children will be ignored.
This algorithm runs in O(n) time.

Clearly, the algorithm provides a graph where each connected component contains at
most h vertices. It remains to show that there is no smaller solution. To this end, consider a
subtree Tv rooted at vertex v. If Tv contains more than h vertices, then any solution must
delete at least one vertex in Tv. If Tv has size less than h, then we claim there is an optimal
solution not deleting any vertex in Tv: Assume otherwise and let S ⊆ V (T) be an optimal
solution deleting a vertex u in Tv. Then removing u from S and adding the parent from v

to S results in another solution of the same cost – a contradiction. Hence, our algorithm
produces an optimal solution. ◀

4.2 NP-hardness results
We prove in the following the NP-hardness of Bounded-Density Vertex Deletion by
reduction from Feedback Vertex Set, which remains NP-hard on Hamiltonian planar
4-regular graphs [5]. Given an instance of Feedback Vertex Set, that is a graph G, and
an integer k, the problem consists in deciding the existence of a subset V ′ ⊆ V (G) with
|V ′| ≤ k such that the G − V ′ is cycle-free.

Bounded-Density Vertex Deletion is closely related to Feedback Vertex Set.
Given a graph G and a subset V ′ ⊆ V (G), we have that G − V ′ is cycle-free if and only
if ρ∗(G − V ′) < 1. Thus Bounded-Density Vertex Deletion is NP-complete on all
classes of graphs where Feedback Vertex Set is NP-complete, for example on planar and
maximum degree 4 graphs. We can even prove a stronger result as follows:

Let G be an undirected graph. The bipartite incidence graph of G (also called subdivision
of G) is the bipartite graph H whose vertex set is V (G) ∪ E(G) and there is an edge in H

between v ∈ V (G) and e ∈ E(G) if and only if e is incident to v in G.

SWAT 2024

6:14 Destroying Densest Subgraphs Is Hard

▶ Theorem 17. Bounded-Density Vertex Deletion is NP-complete for τρ < 1 even
for planar bipartite graphs with maximum degree 4.

Proof. We prove the NP-hardness by reduction from Feedback Vertex Set. Considering
a graph G on n vertices and an integer k, instance of Feedback Vertex Set, let H be the
bipartite incidence graph of G. Remark that if G is planar of maximum degree 4 then H

is still planar with maximum degree 4. We show in the following that G contains a subset
V ′ ⊆ V (G) with |V ′| ≤ k such that G − V ′ is cycle-free if and only if H contains a subset
F ⊆ V (G) ∪ E(G) with |F | ≤ k such that the ρ∗(H − F) ≤ 1 − 1/n2.

Note that to any cycle v1, v2, . . . , vi, v1 in G it corresponds a cycle
v1, v1v2, v2, . . . , vi, viv1, v1 in H. Moreover, to any cycle from H where the vertices
alternate between vertices from V (G) and E(G), there corresponds a cycle in G.
Furthermore, a subgraph G[V ′] is cycle-free if and only if ρ(G[V ′]) < 1.

If G contains a subset F ⊆ V with |F | ≤ k such that the G − F is cycle-free, then H − F

contains no cycle and thus ρ∗(H − F) ≤ 1 − 1/n2.
Consider, now, that H contains a subset F ⊆ V (G) ∪ E(G) with |F | ≤ k such that

ρ∗(H − F) ≤ 1 − 1/n2. Any vertex e ∈ F ∩ E(G) from H has two neighbors. We can replace
it by one of its neighbors in F . This exchange makes the degree of e less than or equal to 1
in H − F , and therefore guarantees that e is not in any cycle. Thus, exchanging e in F for
one of its neighbors cannot create any cycles, and moreover |F | ≤ k. At the end of these
exchanges, F contains only vertices from V (G) and moreover H − F contains no cycle. Thus
F is a solution for the instance (G, k) of Feedback Vertex Set. ◀

In the next reduction we use the following problem:

Dissociation Set
Input: A graph G and an integer k

Question: Is there a subset of vertices S ⊆ V (G) of size at least k such that G[S] has
maximum degree at most 1?

Dissociation Set is NP-hard even in line graphs of planar bipartite graphs [28].

▶ Theorem 18. Bounded-Density Vertex Deletion is NP-complete for τρ = 1/2 even
for line graphs of planar bipartite graphs.

Proof. Given an instance (G, k′) of Dissociation Set on planar line graphs of planar
bipartite graphs we construct the instance (G, k = n − k′, τρ = 1/2) of Bounded-Density
Vertex Deletion. We can easily see that G has a solution S of size at least k′ if and only
if ρ∗(G[S]) ≤ 1/2 as G[S] has density at most 1/2 and V (G)\S has size at most k. ◀

The two previous results show hardness for small values of τρ. Next we show that
Bounded-Density Vertex Deletion remains NP-hard for most values of τρ.

▶ Theorem 19 (⋆). Bounded-Density Vertex Deletion is NP-complete for any rational
τρ such that 0 ≤ τρ ≤ n1−1/c, where c is any constant.

The last result in this subsection concerns split graphs. The following hardness result
holds for large (non-constant) values of τρ.

▶ Theorem 20 (⋆). Bounded-Density Vertex Deletion remains NP-hard on split
graphs.

C. Bazgan, A. Nichterlein, and S. Vazquez Alferez 6:15

4.3 Parameterized complexity results
We show that Bounded-Density Vertex Deletion is FPT with respect to vertex cover
number and W[2]-hard with respect to k, the number of vertices to remove.

▶ Theorem 21. Bounded-Density Vertex Deletion can be solved in time 2O(ℓ2)nO(1)

where ℓ is the vertex cover number.

Proof. Let (G, k, τρ) be an instance of Bounded-Density Vertex Deletion where G has
vertex cover number ℓ. One can find a minimum vertex cover of size ℓ in time O(2ℓ + n + m)
[8]. Denote by C the set of vertices that belongs to the minimum vertex cover, and by
S = V (G) − C the set of vertices in the independent set. We divide the vertices in S into at
most 2ℓ classes I1, . . . , I2ℓ , where two vertices v1, v2 ∈ S are in the same class Ii if they have
the same neighbors in C.

Notice that for k ≥ ℓ we always have a yes-instance, as deleting the ℓ vertices in the
vertex cover yields a graph with density 0. Thus, we are interested in the case where we
delete at most ℓ − 1 vertices, that is k ≤ ℓ − 1.

The vertices in each Ii (with i = 1, . . . , 2ℓ) are all indistinguishable from each other, and
we need to delete between 0 and ℓ − 1 vertices S. Thus we need to check at most (ℓ2ℓ)ℓ sets
of vertices from S as candidates for deletion. For vertices in C we check all 2ℓ subsets of
vertices from C as candidates for deletion. In total, we check at most 2ℓ(ℓ2ℓ)ℓ subsets as
candidates for deletion, yielding a running time of 2ℓ2+ℓ log ℓ+ℓnO(1). ◀

▶ Remark 22. Note that if τρ ≥ ℓ, then nothing needs to be deleted: On the one hand, any
vertex from the independent set has degree at most ℓ ≤ τρ. By Lemma 2 (4.) no vertex of
the independent set belongs to a subgraph of density greater than τρ. On the other hand,
the vertex cover has density at most (ℓ − 1)/2 < τρ.

The following hardness result holds for large (non-constant) values of τρ.

▶ Theorem 23 (⋆). Bounded-Density Vertex Deletion is W[2]-hard with respect to
the number k of vertices to remove.

5 Conclusion

Our work provides a first (parameterized) analysis of Bounded-Density Edge Deletion
and Bounded-Density Vertex Deletion. Both problems turn out to be NP-hard even in
restricted cases but polynomial-time solvable on trees and cliques. While the W[1]-hardness
for Bounded-Density Edge Deletion with respect to the feedback edge number rules
out fixed-parameter tractability with respect to many other parameterizations, the respective
reduction relies on a very specific target density. In fact, Figure 1 seems to indicate that
the computational complexity of Bounded-Density Edge Deletion might change when
altering the target density τρ a bit. Does this alternating pattern between tractable and
intractable target density extend beyond target density 2? For example the polynomial-time
solvable f -Factor problem might be helpful in designing polynomial-time algorithms for
Bounded-Density Edge Deletion with τρ ∈ N (any 2τρ-regular subgraph would be a
valid resulting graph G − F). Could such behavior be exploited in approximation algorithms?

We leave also several open questions concerning the parameterized complexity of these
problems. Is Bounded-Density Vertex Deletion fixed-parameter tractable with respect
to the treewidth (plus the solution size)? What is the parameterized complexity with respect
to parameters that are smaller than the vertex cover number, e. g., vertex integrity or twin
cover number?

SWAT 2024

6:16 Destroying Densest Subgraphs Is Hard

References
1 Béla Bollobás. Random Graphs, pages 215–252. Springer New York, New York, NY, 1998.

doi:10.1007/978-1-4612-0619-4_7.
2 Marthe Bonamy, Benjamin Lévêque, and Alexandre Pinlou. Graphs with maximum degree

∆ ≥ 17 and maximum average degree less than 3 are list 2-distance (∆ + 2)-colorable. Discrete
Mathematics, 317:19–32, 2014.

3 Oleg V Borodin, Alexandr Kostochka, and Matthew Yancey. On 1-improper 2-coloring of
sparse graphs. Discrete Mathematics, 313(22):2638–2649, 2013.

4 Oleg V Borodin and Alexandr V Kostochka. Vertex decompositions of sparse graphs into an
independent vertex set and a subgraph of maximum degree at most 1. Siberian mathematical
journal, 52(5):796–801, 2011.

5 Dario Cavallaro and Till Fluschnik. Feedback vertex set on hamiltonian graphs. In 47th
International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2021), volume
12911 of Lecture Notes in Computer Science, pages 207–218. Springer, 2021. doi:10.1007/
978-3-030-86838-3_16.

6 Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, and Petr A. Golovach. A survey
of parameterized algorithms and the complexity of edge modification. Comput. Sci. Rev.,
48:100556, 2023. doi:10.1016/J.COSREV.2023.100556.

7 William H. Cunningham. Optimal attack and reinforcement of a network. J. Assoc. Comput.
Mach., 32(3):549–561, 1985.

8 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

9 Rosa Enciso, Michael R. Fellows, Jiong Guo, Iyad A. Kanj, Frances A. Rosamond, and
Ondrej Suchý. What makes equitable connected partition easy. In In Proceedings of the 4th
International Workshop on Parameterized and Exact Computation (IWPEC 2009), volume
5917 of LNCS, pages 122–133. Springer, 2009.

10 Jessica Enright and Kitty Meeks. Deleting edges to restrict the size of an epidemic: a new
application for treewidth. Algorithmica, 80:1857–1889, 2018.

11 Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On
the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci.,
410(1):53–61, 2009. doi:10.1016/J.TCS.2008.09.065.

12 András Frank and Éva Tardos. An application of simultaneous Diophantine approximation in
combinatorial optimization. Combinatorica, 7(1):49–65, 1987. doi:10.1007/BF02579200.

13 Vincent Froese, André Nichterlein, and Rolf Niedermeier. Win-win kernelization for degree
sequence completion problems. J. Comput. Syst. Sci., 82(6):1100–1111, 2016. doi:10.1016/J.
JCSS.2016.03.009.

14 M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified np-complete problems. In
Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, STOC ’74, pages
47–63, New York, NY, USA, 1974. Association for Computing Machinery.

15 A. V. Goldberg. Finding a maximum density subgraph. Technical report, University of
California at Berkeley, USA, 1984.

16 Arthur M. Hobbs. Network survivability. In Applications of discrete mathematics, pages
332–353. McGraw-Hill, New York, 1991.

17 Lavanya Kannan, Arthur Hobbs, Hong-Jian Lai, and Hongyuan Lai. Transforming a graph
into a 1-balanced graph. Discrete Appl. Math., 157(2):300–308, 2009.

18 Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res.,
12(3):415–440, 1987. doi:10.1287/moor.12.3.415.

19 Michael Kopreski and Gexin Yu. Maximum average degree and relaxed coloring. Discrete
Mathematics, 340(10):2528–2530, 2017.

20 G. Laman. On graphs and rigidity of plane skeletal structures. J. Engrg. Math., 4:331–340,
1970.

https://doi.org/10.1007/978-1-4612-0619-4_7
https://doi.org/10.1007/978-3-030-86838-3_16
https://doi.org/10.1007/978-3-030-86838-3_16
https://doi.org/10.1016/J.COSREV.2023.100556
https://doi.org/10.1016/J.TCS.2008.09.065
https://doi.org/10.1007/BF02579200
https://doi.org/10.1016/J.JCSS.2016.03.009
https://doi.org/10.1016/J.JCSS.2016.03.009
https://doi.org/10.1287/moor.12.3.415

C. Bazgan, A. Nichterlein, and S. Vazquez Alferez 6:17

21 Tommaso Lanciano, Atsushi Miyauchi, Adriano Fazzone, and Francesco Bonchi. A survey
on the densest subgraph problem and its variants. CoRR, abs/2303.14467, 2023. doi:
10.48550/arXiv.2303.14467.

22 H. W. Lenstra. Integer Programming with a Fixed Number of Variables. Mathematics of
Operations Research, 8(4):538–548, 1983. URL: http://www.jstor.org/stable/3689168.

23 Luke Mathieson and Stefan Szeider. Editing graphs to satisfy degree constraints: A parameter-
ized approach. J. Comput. Syst. Sci., 78(1):179–191, 2012. doi:10.1016/J.JCSS.2011.02.001.

24 Silvio Micali and Vijay V. Vazirani. An o(sqrt(|v|)|e|) algoithm for finding maximum matching
in general graphs. In 21st Annual Symposium on Foundations of Computer Science (sfcs 1980),
pages 17–27, 1980. doi:10.1109/SFCS.1980.12.

25 Wojciech Nadara and Marcin Smulewicz. Decreasing the Maximum Average Degree by Deleting
an Independent Set or a d-Degenerate Subgraph. Electron. J. Comb., 29(1), 2022.

26 Jaroslav Nešetřil and Patrice Ossona de Mendez. Prolegomena, pages 21–60. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

27 André Nichterlein. Degree-constrained editing of small-degree graphs. PhD thesis, Berlin
Institute of Technology, 2015. URL: https://opus4.kobv.de/opus4-tuberlin/frontdoor/
index/index/docId/6520.

28 Yury Orlovich, Alexandre Dolgui, Gerd Finke, Valery Gordon, and Frank Werner. The
complexity of dissociation set problems in graphs. Discrete Appl. Math., 159(13):1352–1366,
2011.

29 Jean-Claude Picard and Maurice Queyranne. A network flow solution to some nonlinear 0-1
programming problems, with applications to graph theory. Networks, 12(2):141–159, 1982.
doi:10.1002/NET.3230120206.

30 Victor Reis and Thomas Rothvoss. The subspace flatness conjecture and faster integer
programming. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science
(FOCS), pages 974–988, 2023. doi:10.1109/FOCS57990.2023.00060.

31 Andrzej Ruciński and Andrew Vince. Strongly balanced graphs and random graphs. Journal
of graph theory, 10(2):251–264, 1986.

32 Siqian Shen and J Cole Smith. Polynomial-time algorithms for solving a class of critical node
problems on trees and series-parallel graphs. Networks, 60(2):103–119, 2012.

33 Wenying Xi and Wensong Lin. On maximum p3-packing in claw-free subcubic graphs. J.
Comb. Optim., 41(3):694–709, April 2021.

SWAT 2024

https://doi.org/10.48550/arXiv.2303.14467
https://doi.org/10.48550/arXiv.2303.14467
http://www.jstor.org/stable/3689168
https://doi.org/10.1016/J.JCSS.2011.02.001
https://doi.org/10.1109/SFCS.1980.12
https://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/docId/6520
https://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/docId/6520
https://doi.org/10.1002/NET.3230120206
https://doi.org/10.1109/FOCS57990.2023.00060

The Simultaneous Interval Number
A New Width Parameter that Measures the Similarity to Interval Graphs

Jesse Beisegel #

Institute of Mathematics, Brandenburg University of Technology, Cottbus, Germany

Nina Chiarelli #

FAMNIT and IAM, University of Primorska, Koper, Slovenia

Ekkehard Köhler #

Institute of Mathematics, Brandenburg University of Technology, Cottbus, Germany

Martin Milanič #

FAMNIT and IAM, University of Primorska, Koper, Slovenia

Peter Muršič #

FAMNIT, University of Primorska, Koper, Slovenia

Robert Scheffler #

Institute of Mathematics, Brandenburg University of Technology, Cottbus, Germany

Abstract

We propose a novel way of generalizing the class of interval graphs, via a graph width parameter
called simultaneous interval number. This parameter is related to the simultaneous representation
problem for interval graphs and defined as the smallest number d of labels such that the graph
admits a d-simultaneous interval representation, that is, an assignment of intervals and label sets
to the vertices such that two vertices are adjacent if and only if the corresponding intervals, as
well as their label sets, intersect. We show that this parameter is NP-hard to compute and give
several bounds for the parameter, showing in particular that it is sandwiched between pathwidth
and linear mim-width. For classes of graphs with bounded parameter values, assuming that the
graph is equipped with a simultaneous interval representation with a constant number of labels, we
give FPT algorithms for the clique, independent set, and dominating set problems, and hardness
results for the independent dominating set and coloring problems. The FPT results for independent
set and dominating set are for the simultaneous interval number plus solution size. In contrast, both
problems are known to be W[1]-hard for linear mim-width plus solution size.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Graph algorithms analysis

Keywords and phrases Interval graph, simultaneous representation, width parameter, algorithm,
parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.7

Related Version Full Version: https://arxiv.org/abs/2404.10670 [1]

Funding The authors acknowledge partial support by the Slovenian Research and Innovation Agency
(I0-0035, research programs P1-0285 and P1-0404, and research projects N1-0160, N1-0210, J1-3001,
J1-3002, J1-3003, J1-4008, and J1-4084) and by the research program CogniCom (0013103) at the
University of Primorska.

Acknowledgements The authors would like to thank the reviewers for their helpful remarks; in
particular, for their hints on thinness and boxicity.

© Jesse Beisegel, Nina Chiarelli, Ekkehard Köhler, Martin Milanič, Peter Muršič, and Robert Scheffler;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 7; pp. 7:1–7:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jesse.beisegel@b-tu.de
https://orcid.org/0000-0002-8760-0169
mailto:nina.chiarelli@famnit.upr.si
https://orcid.org/0000-0002-8169-0925
mailto:ekkehard.koehler@b-tu.de
mailto:martin.milanic@upr.si
https://orcid.org/0000-0002-8222-8097
mailto:peter.mursic@famnit.upr.si
https://orcid.org/0000-0002-7350-6809
mailto:robert.scheffler@b-tu.de
https://orcid.org/0000-0001-6007-4202
https://doi.org/10.4230/LIPIcs.SWAT.2024.7
https://arxiv.org/abs/2404.10670
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 The Simultaneous Interval Number

1 Introduction

Interval graphs are among the best-known and most studied graph classes, due to their
intuitive representation with an interval intersection model, their rich structure, and many
algorithmic advantages. Many problems that are NP-hard on general graphs can be solved
in polynomial time on interval graphs. Examples are the coloring problem [35,37,47], the
dominating set problem [12], and the Hamiltonian cycle problem [46]. Furthermore, due to
their definition via interval representations, there are plenty of real-world applications for
interval graphs (see [45] for a nice, short overview of such applications).

There are several different ways to generalize the concept of an interval graph. One of
these concepts are the so-called d-interval graphs where every vertex is represented by a set of
d intervals on the real line and two vertices are adjacent if any pair of their intervals intersect.
A subclass of these graphs are the d-track interval graphs where we have d parallel lines and
every vertex is represented by d intervals, one on each line. It is easy to see that any graph
is a d-track interval graph (and, thus, a d-interval graph) for some d. Therefore, it makes
sense to define the parameters interval number i(G) [34] and track number t(G) [36] as the
minimal numbers d such that G is a d-interval (resp. d-track interval) graph. There is some
work on these graph classes concerning parameterized complexity [24,44]. However, most
of the classical graph problems are NP-hard for graphs with i(G) = 2 or t(G) = 3 [21, 22].
Furthermore, even the independent set problem and the dominating set problem are W[1]-hard
when parameterized by the solution size for graphs with t(G) = 2 [44].

Another way to define a whole family of generalizations of interval graphs comes from the
so-called simultaneous representation problems. In this generalization, we are given d interval
graphs G1, . . . , Gd which may share some vertices and asks for an interval representation
that assigns to every vertex in V (G1) ∪ · · · ∪ V (Gd) exactly one interval such that for every
i ∈ {1, . . . , d} two vertices of Gi are adjacent if and only if their intervals intersect. The
problem of deciding whether a given set of graphs has such a simultaneous representation
was introduced in 2009 by Jampani and Lubiw [41], where they considered chordal graphs,
comparability graphs, and permutation graphs, all classes of graphs that can also be defined
via certain intersection representations. A year later, the same authors considered the
problem of simultaneous interval representations [42]. Since then, there has been several
results on the complexity of this problem for different classes of graphs [4, 7, 58].

An equivalent definition for a simultaneous interval representation can be given as follows:
For some interval model we add additional label sets in the form of subsets of {1, . . . , d}
and two vertices belonging to two intervals are adjacent if these intervals intersect and the
intersection of their label sets is non-empty. This definition leads to an intuitive application
in scheduling, where each of the labels 1, . . . , d represents some machine and an interval
represents a job with its processing window (the interval) and the set of machines needed to
perform the job (the label set). An independent set in such a graph would then represent a
conflict-free schedule of a subset of jobs.

Similar to d-interval graphs and d-track interval graphs, any graph can be defined as a
d-simultaneous interval graph for some d. Thus, we can introduce the simultaneous interval
number si(G) as the smallest number d for which G is a d-simultaneous interval graph. Many
width parameters are unbounded for interval graphs, as these tend to grow with the clique
number (for example treewidth/pathwidth is unbounded for interval graphs). Furthermore,
even width parameters that can be bounded for dense graphs, such as cliquewidth or twin-
width, are unbounded for interval graphs [8, 31]. On the other hand, those parameters that
are bounded for interval graphs, such as linear mim-width or tree-independence number

J. Beisegel, N. Chiarelli, E. Köhler, M. Milanič, P. Muršič, and R. Scheffler 7:3

Table 1 Parameterized complexity summary. Abbreviations mean ind → independent, dom
→ dominating, W[1] → W[1]-hard, W[2] → W[2]-hard, pNPh → para-NP-hard, tree-α → tree-
independence number. Green results are given in this paper. Hardness results for problems with
given solution size k means that the problem is hard when parameterized by p+k. For space reasons,
we omitted the O and O∗ notations in the running time bounds.

problem\parameter p = si(G) p = linear-mim(G) p = tree-α(G) p = t(G)

clique p22p+2p pNPh [60] pNPh [23] pNPh [26]
clique of size k 2kp ? 2kp

[14, 19] pkkk+2 [24]
coloring pNPh pNPh [28] pNPh [28] pNPh [28]
k-coloring kkp nkp [32] kkp

[14, 19] pNPh [22]
ind set np W[1]/n2p [25, 39] np [19, 62] pNPh [22]
ind set of size k 2kp W[1]/n2p [25, 39] ? W[1] [24]
dom set n2p W[1]/n2p [25, 39] pNPh [3,16] pNPh [22]
dom set of size k 2kp W[1]/n2p [25, 39] W[2] [49] W[1] [24]
ind dom set W[1]/n2p W[1]/n2p [25, 39] ? pNPh [22]
ind dom set of size k n2p W[1]/n2p [25, 39] ? W[1] [24]

(see [19,40]), do not properly reflect the structural advantages of interval graphs. Many of
the problems that are easy for interval graphs, such as coloring or independent set, are either
para-NP-hard or W[1]-hard (see Table 1). Furthermore, the maximum clique problem is
para-NP-hard when parameterized by one of those parameters, even though the structure of
the maximal cliques is very restricted for interval graphs.

When parameterized by the simultaneous interval number, however, the maximum clique
problem becomes FPT, as we will show. In addition, some of the problems that are W[1]-hard
when parameterized by linear mim-width plus solution size, such as independent set and
dominating set (see [25,39]), are FPT when parameterized by simultaneous interval number
plus solution size. Therefore, we argue that the simultaneous interval number is a strong
candidate to fill the gap in describing graphs with a structure similar to interval graphs.

Our Contribution. We introduce a new graph width parameter, the simultaneous interval
number, in Section 2. This parameter is compared to most of the other common width
parameters such as treewidth, cliquewidth, or mim-width in Section 3, where we also give
several bounds involving the order and the size of the graph, the edge clique cover number, the
clique number, and other width parameters. In Section 4 we show that the computation of the
simultaneous interval number is NP-hard. Furthermore, we give results on the parameterized
complexity of several graph problems, such as clique (Section 5), coloring (Section 6), and
variants of the independent set and dominating set problems (Section 7). For an overview
of these results see Table 1. Proofs omitted due to lack of space can be found in the full
version [1].

Definitions and Notation. Unless stated otherwise, all the graphs considered are simple,
finite, non-empty and undirected. Given a graph G, we denote by V (G) its vertex set and
by E(G) its edge set. Often we will denote the number of vertices of graph, i.e., |V (G)|, as
n and the number of edges, i.e., |E(G)|, as m. A matching in a graph is a set of pairwise
disjoint edges; a matching is induced if no two vertices belonging to different edges of the
matching are adjacent.

SWAT 2024

7:4 The Simultaneous Interval Number

Next we define the term class of intersection graphs. Such a graph class C can be defined
via a family SC of sets whose elements are also families of sets. For the sake of convenience,
we assume that SC contains a set family that contains a non-empty set. A C-representation
of a graph G is a mapping R : V (G) → F where F ∈ SC such that xy ∈ E(G) if and only if
R(x) ∩ R(y) ̸= ∅. We call F the ground set family of R. By definition, C consists precisely of
graphs G having a C-representation.

The class of chordal graphs is defined via the set SC that contains for every tree the set
of its subtrees. For the class of interval graphs, the set SC contains only the one set family,
namely the set of all open intervals of the real line. For any interval representation R of
graph G, we define ℓ(v) and r(v) to be the left and right endpoints of the interval R(v).

A graph G is a bipartite graph if its vertex set can be partitioned into two independent
sets A and B. Furthermore, a bipartite graph is complete bipartite if every vertex of A is
adjacent to every vertex of B. A graph is a split graph if its vertex set can be partitioned
into a clique and an independent set. A graph is a complete split graph if there exists a
partition in which every vertex of the independent set is adjacent to all the vertices of the
clique. A graph is C4-free if it does not contain an induced cycle of length 4.

2 Simultaneous Representations and Simultaneous Interval Number

In [41,43], Jampani and Lubiw introduce the concept of simultaneous representations as well
as the simultaneous representation problem. This concept was then taken up by Bok and
Jedličková [7] who give the following definition:

▶ Definition 2.1. Let C be a class of intersection graphs. Graphs G1, . . . Gd ∈ C are
simultaneously C-representable if there exist C-representations R1, . . . , Rd of G1, . . . Gd with
a common ground set family F ∈ SC such that

∀i, j ∈ {1, . . . , d}, ∀v ∈ V (Gi) ∩ V (Gj) : Ri(v) = Rj(v).

In particular, we say that G = G1 ∪ . . . ∪ Gd is a d-simultaneous C-graph.

For convenience of notation, we will oftentimes use the following equivalent definition of
a simultaneous representation.

▶ Definition 2.2. Let d ∈ N, let G be a graph, and let L : V (G) → P({1, . . . , d}) be a labeling
of the vertices of G. Furthermore, let G′ ∈ C with V (G) = V (G′) and E(G) ⊆ E(G′) be a
graph with a C-representation R. We say that (R, L) is a d-simultaneous C-representation of
G if it holds that vw ∈ E(G) if and only if R(v) ∩ R(w) ̸= ∅ and L(v) ∩ L(w) ̸= ∅.

Note that this definition allows the empty set as a label set. Obviously, any vertex with an
empty label set is isolated. Therefore, the graphs admitting a 0-simultaneous C-representation
are exactly the edgeless graphs.

▶ Observation 2.3. Let C be a class of intersection graphs. Let the graphs G1, . . . , Gd ∈ C
be simultaneously C-representable with C-representations R1, . . . , Rd with a common ground
set family F . Let G := G1 ∪ · · · ∪ Gd and let R : V (G) → F be defined as R(v) := Ri(v) for
any i with v ∈ V (Gi). Let L be the labeling given by L(v) = {i : v ∈ Gi} for all v ∈ V (G).
Then (R, L) is a d-simultaneous C-representation of G.

J. Beisegel, N. Chiarelli, E. Köhler, M. Milanič, P. Muršič, and R. Scheffler 7:5

Figure 1 Two forbidden induced subgraphs of interval graphs with 2-simultaneous interval
representations. Yellow intervals have label set {1}, blue intervals have label set {2} and black
intervals have label set {1, 2}. Note that the representation of the 4-cycle can be extended to a
2-simultaneous interval representation of cycles of arbitrary length.

This observation implies that every d-simultaneous C-graph has a d-simultaneous
C-representation. However, the converse is not true in general.1 However, if we exclude
empty label sets and unused labels, then there is an analogous result to Observation 2.3.

▶ Observation 2.4. Let (R, L) be a d-simultaneous C-representation of a graph G with
L(v) ̸= ∅ for all v ∈ V (G) and such that for all i ∈ {1, . . . , d} there exists a vertex v with
i ∈ L(v). Let Gi be the subgraph of G induced by the vertex set {v : i ∈ L(v)} and let Ri be
the restriction of R to V (Gi). Then the graphs G1, . . . , Gd are simultaneously C-representable
with C-representations R1, . . . , Rd.

A vertex with an empty label set would have to be considered as a vertex that is in
none of the graphs of a simultaneous representation. However, this technical addition to the
definition is very useful to address the issue of isolated vertices and leads to more compact
statements and simpler proofs. For all of the classes considered here, it is always possible to
represent isolated vertices without the empty label set. For example, for interval graphs we
can always represent such a vertex with an interval that intersects nothing else. However,
in general we cannot assume that this is possible for any class of intersection graphs (see
Footnote 1).

▶ Theorem 2.5. For every class of intersection graphs C, every graph G has an |E(G)|-
simultaneous C-representation.

In particular, this theorem holds for the class of intervals graphs, motivating the following
definition.

▶ Definition 2.6. Let G be a graph. The simultaneous interval number si(G) of G is the
smallest integer d such that there exists a d-simultaneous interval representation of G.

As observed before, the graphs with simultaneous interval number 0 are exactly the
edgeless graphs. Furthermore, the graphs with simultaneous interval number at most 1 are
exactly the interval graphs, and the class of graphs with the simultaneous interval number
equal to 2 contains some asteroidal triples and all cycles (see Figure 1).

In the following, we show some bounds on the simultaneous interval number. The first
result is implied directly by Theorem 2.5.

▶ Corollary 2.7. For any graph G it holds that si(G) ≤ |E(G)|.

Next we show that this bound is tight, up to a constant factor.

1 As an example, we consider the class K of complete graphs which can be represented as intersection
graphs via the set SK = {{1}}. The n-vertex edgeless graph has a 1-simultaneous K-representation
where all vertices are labeled with the empty set. However, it is not a d-simultaneous K-graph for any d.

SWAT 2024

7:6 The Simultaneous Interval Number

pathwidth edge clique cover number

treewidth

simultaneous interval number

path-independence number

tree-independence number

cliquewidth rank-width

twin-widthlinear mim-width

mim-width

o-mim-width

sim-width

track number interval number

thinness

boxicity

Figure 2 Diagram illustrating the relations between different graph width parameters. A directed
edge from parameter P to parameter Q means that a bounded value of P implies a bounded value
for Q. If a directed path from P to Q is missing, then parameter Q is unbounded for the graphs of
bounded P .

▶ Theorem 2.8. Let G be a complete 3-partite graph with parts of equal size. Then,
si(G) = 1

9 |V (G)|2 = 1
3 |E(G)|.

▶ Theorem 2.9. Let G = (V, E) be a bipartite graph with a bipartition V = X∪̇Y . Then
si(G) ≤ min{|X|, |Y |}. This bound is tight for complete bipartite graphs.

The complement of a matching is a graph obtained from a complete graph of even order n

by removing from it n
2 pairwise disjoint edges.

▶ Lemma 2.10. If G is the complement of a matching with n vertices, then si(G) ≥ log2(n−1).

We will see later, in Lemma 5.5, that this bound is tight.

3 Placing si(G) in the Zoo of Graph Width Parameters

In this section we compare the simultaneous interval number to several other graph width
parameters. See Figure 2 for an overview. A verification of the figure can be found in the
full version [1].

3.1 Lower Bounds
It is easy to see that d-simultaneous interval graphs are d-track interval graphs. This implies
the following result.

▶ Theorem 3.1. Every graph satisfies t(G) ≤ si(G).

The concept of thinness was introduced by Mannino et al. [51].

▶ Definition 3.2 (Thinness). The thinness thin(G) of a graph G is the smallest integer k

such that there is a partition {V1, . . . , Vk} of V (G) and a vertex ordering (v1, . . . , vn) of G

fulfilling that for any three vertices va, vb, vc with a < b < c and va, vb ∈ Vi for some i it
holds that vbvc ∈ E(G) if vavc ∈ E(G).

J. Beisegel, N. Chiarelli, E. Köhler, M. Milanič, P. Muršič, and R. Scheffler 7:7

▶ Theorem 3.3. For any graph G it holds that thin(G) ≤ 2si(G).

Complements of matchings with n edges have thinness n [13]. We will later see in
Lemma 5.5 that the simultaneous interval number of such a graph is O(log n). This implies
that the bound given in Theorem 3.3 is asymptotically sharp. Bipartite permutation graphs
and, hence, also complete bipartite graphs have thinness at most 2 [10]. As we have seen in
Theorem 2.9, the simultaneous interval number of complete bipartite graphs is unbounded.
Therefore, this class shows that bounded thinness does not imply bounded simultaneous
interval number.

The concept of a linearized version of mim-width was introduced by Vatshelle [60] as
mim-width using a caterpillar decomposition. This concept has since been called linear
mim-width (for example by Golovach et al. [30]).

▶ Definition 3.4 (Linear mim-width). Given a graph G and a vertex ordering σ =
(v1, . . . , vn) of G, we define the quantity linear-mim(G, σ, i) for 1 ≤ i ≤ n to be the max-
imum size of an induced matching in the bipartite graph that contains all the edges of
G between the two sets {v1, . . . , vi} and {vi+1, . . . , vn}. We define linear-mim(G, σ) :=
maxi∈{1,...,n} linear-mim(G, σ, i). The linear mim-width of G, denoted linear-mim(G), is de-
fined as the minimum value linear-mim(G, σ) among all vertex orderings σ of G.

It was shown by Bonomo and de Estrada [9] that for any graph G it holds that
linear-mim(G) ≤ thin(G). Combining this with Theorem 3.3 we see that bounded simultane-
ous interval number also implies bounded linear mim-width. Moreover, using a more direct
argumentation, the lower bound on the simultaneous interval number given by the logarithm
of the linear mim-width can be improved to a linear lower bound.

▶ Theorem 3.5. For any graph G it holds that linear-mim(G) ≤ si(G).

A tree decomposition of a graph G is a pair (T, {Xt}t∈V (T)) consisting of a tree T and
a mapping asigning to each node t ∈ V (T) a set Xt ⊆ V (G) (called a bag) such that
the following conditions are satisfied: (i) the union of all the bags equals V (G), (ii) for
every edge uv ∈ E(G) there exists a bag Xt such that u, v ∈ Xt, and (iii) for every vertex
v ∈ V (G) the bags containing v form a subtree of T . A path decomposition of G is a tree
decomposition of G such that T is a path. For simplicity, we will denote a path decomposition
simply by the corresponding sequence P = (X1, . . . , Xk) of bags. Note also that in this
case, condition (iii) simplifies to: for every vertex v ∈ V (G) the bags containing v form a
consecutive subsequence of P. The width of a tree decomposition is the maximal size of its
bags minus 1. The treewidth of a graph G, denoted by tw(G), is the minimum width of a
tree decomposition of G. The pathwidth, denoted by pw(G), is defined analogously, with
respect to path decompositions. Yolov [62] and independently Dallard et al. [19] introduced
the parameter called tree-independence number (or α-treewidth). The independence number
of a tree decomposition (T, {Xt}t∈V (T)) of a graph G is defined as the maximum cardinality
of an independent set I in G such that there exists a bag Xt with I ⊆ Xt, or, equivalently,
the maximum, over all bags Xt, of the independence number of the subgraph of G induced
by the bag Xt. The tree-independence number of a graph G, denoted by tree-α(G), is
defined as the minimum independence number of a tree decomposition of G. We define
the path-independence number, denoted by path-α(G), analogously, with respect to path
decompositions.

We now prove a characterization of the path-independence number, which relies on the
concept of the intersection of two graphs G1 = (V1, E1) and G2 = (V2, E2), denoted by
G1 ∩ G2 and defined as the graph (V1 ∩ V2, E1 ∩ E2). In the proof we will use the following
two known facts about path decompositions and interval graphs (see [6, 27]):

SWAT 2024

7:8 The Simultaneous Interval Number

i

j
aij bij ∅ bij ∅ aij

aij ∅ aij bij ∅ bij aij

Figure 3 Illustration of the proof of Theorem 3.9. The thick intervals mark the active intervals.
A black edge between two intervals means that the corresponding vertices are adjacent in G. The
symbol ∅ means that the corresponding vertex has neither label aij nor the label bij . However, the
vertex will have other labels.

Let G be a graph, let P be a path decomposition of G, and let S ⊆ V (G) be a set of
vertices of G such that for every two vertices u, v ∈ S there exists a bag Xi of P such
that u, v ∈ Xi. Then there exists a bag Xj of P such that S ⊆ Xj .
A graph G is an interval graph if and only if it admits a path decomposition in which
each bag is a clique in G.

▶ Theorem 3.6. Let G be a graph. Then, the path-independence number of G equals the
minimum integer k ≥ 0 such that G is the intersection of an interval graph and a graph with
independence number at most k.

With a similar approach as that used to prove Theorem 3.6, it can be proved that the
tree-independence number of a graph G equals the minimum integer k ≥ 0 such that G is
the intersection of a chordal graph and a graph with independence number at most k.

Theorem 3.6 has the following consequence.

▶ Corollary 3.7. Every graph G satisfies path-α(G) ≤ si(G).

Note that complements of matchings have independence number 2 and, thus, also path-
independence number at most 2. Due to Lemma 2.10, they form a class of graphs with
bounded path independence number but unbounded simultaneous interval number.

In the spirit of Dallard et al. [18], we can also show that graphs with bounded simultaneous
interval number are (pw, ω)-bounded (and consequently (tw, ω)-bounded; note that Chaplick
et al. [14] refer to the same property as the clique-treewidth property). A graph class G is
said to be (pw, ω)-bounded (resp., (tw, ω)-bounded) if there is a function f such that for all
graphs G ∈ G and all induced subgraphs G′ of G, it holds that pw(G′) ≤ f(ω(G′)) (resp.,
tw(G′) ≤ f(ω(G′))), where ω(G′) is the clique number of G′.

▶ Theorem 3.8. Every graph G satisfies pw(G) ≤ si(G)ω(G) − 1.

3.2 Upper Bounds
We begin our discussion on upper bounds by proving that bounded pathwidth implies
bounded simultaneous interval number.

▶ Theorem 3.9. Every graph G satisfies si(G) ≤ pw(G)2 + pw(G).

Proof. Let k := pw(G) + 1. Consider a path decomposition P of G with maximal bag
size k. It is easy to see that we can transform P in such a way that every bag has size k.
Furthermore, we can ensure that two consecutive bags differ only in two vertices, i.e., both
vertices are part of exactly one of the two bags and all the other vertices are part of both
bags or of none of them. This can be done by adding a sequence of new bags between two old

J. Beisegel, N. Chiarelli, E. Köhler, M. Milanič, P. Muršič, and R. Scheffler 7:9

ones in which the vertices are removed and introduced one by one. Let P ′ = (X1, . . . , Xp) be
the resulting path decomposition of G. Now there exists a mapping f : V (G) → {1, . . . , k}
such that every bag of P ′ contains a vertex v with f(v) = i for all i ∈ {1, . . . , k}. For every
vertex of G, we define the interval R(v) as (a − ε, b + ε) where 0 < ε < 1

2 , a is the smallest
index such that Xa contains v and b is the largest index such that Xb contains v. It follows
that the intervals of two vertices have a non-empty intersection if and only if these vertices
are part of a common bag. Therefore, intervals of vertices with the same f -value have an
empty intersection.

It remains to show that we can label the vertices with at most k · (k − 1) labels in such a
way that the defined intervals form a simultaneous interval representation of G. For every
set {i, j} ⊆ {1, . . . , k} with i ̸= j, we introduce labels aij and bij . Note that aij = aji and
bij = bji. In the following we describe a procedure how to label the vertices of G (see Figure 3
for an illustration). During that labeling procedure, we will always have one active vertex v̂

and one active label cij ∈ {aij , bij}. To define the first active vertex let x be the vertex with
f(x) = i whose interval ends first and let y be the vertex with f(y) = j whose interval ends
first. Without loss of generality, we may assume that r(x) < r(y). We define the first active
vertex v̂ to be y. The first active label cij is aij . The active vertex v̂ gets the label cij . For
all vertices z with f(z) ∈ {i, j} \ f(v̂) and ℓ(v̂) < r(z) < r(v̂), we add cij to L(z) if and only
if v̂z ∈ E(G). Now consider the vertex w with f(w) ∈ {i, j} \ f(v̂) and ℓ(w) < r(v̂) < r(w).
Vertex w becomes the new active interval. If v̂w ∈ E(G), then the active label stays the
same, otherwise the new active label becomes the other one. In any case w gets the new
active label. Note that L(v̂) ∩ L(w) ̸= ∅ if and only if v̂w ∈ E(G). We repeat this procedure
until the end of the interval representation. Furthermore, we repeat the whole procedure for
all sets {i, j} ⊆ {1, . . . , k}. In the end, we obtain a d-simultaneous interval representation
(R, L) of G where d = 2

(
k
2
)

= k(k − 1) = pw(G)2 + pw(G). ◀

Observe at this point that bounded simultaneous interval number does not imply bounded
pathwidth as is proven by the class of interval graphs.

An edge clique cover of a graph G is a set K of cliques of G such that every edge of G is
contained in some clique of K. We denote by ecc(G) the edge clique cover number of G, that
is, the minimum size of an edge clique cover of G.

▶ Lemma 3.10. Let C be a class of intersection graphs. Let G be a graph, let d ≥ 0
be an integer, and let R be a C-representation of some graph F ∈ C. Then, there exists
a d-simultaneous C-representation (R, L) of G if and only if there exists a graph H with
ecc(H) ≤ d and G is the intersection of F and H.

Lemma 3.10 implies the following.

▶ Corollary 3.11. Let C be a class of intersection graphs, let G be a graph, and let d ≥ 0 be an
integer. Then, G has an d-simultaneous C-representation if and only if G is the intersection
of a graph in C and a graph with edge clique cover number at most d.

Lemma 3.10 also implies the following strengthening of Theorem 2.5.

▶ Theorem 3.12. For every class of intersection graphs C, every graph G has an
ecc(G)-simultaneous C-representation.

▶ Corollary 3.13. Every graph G satisfies si(G) ≤ ecc(G).

Interval graphs, and in particular paths, have unbounded edge clique cover number. Thus,
bounded simultaneous interval number does not imply bounded edge clique cover number.

SWAT 2024

7:10 The Simultaneous Interval Number

The bound given by Corollary 3.13 is tight. Let us denote by Kp
n the complete multipartite

graph on p partite sets of the same size n and by λ(n) the largest size of a family of mutually
orthogonal Latin squares of order n. It is known that λ(n) ≤ n − 1 and that equality holds if
and only if there exists a projective plane of order n. Thus λ(q) = q − 1 if q is a prime power,
but in general the exact computation of the value of λ(n) is difficult. Park, Kim, and Sano
showed in [55] that for any two integers p and n such that 3 ≤ p ≤ λ(n) + 2, the edge clique
cover number of Kp

n equals n2. Taking p = 3, we thus obtain, by combining Theorem 2.8
and Corollary 3.13, that for the complete 3-partite graph G with parts of equal size, we have
si(G) = ecc(G) = |V (G)|2

9 .

4 Complexity of Computing the Simultaneous Interval Number

Using the characterization from Definition 2.2, we can state three natural recognition problems
for d-simultaneous C-representations.

▶ Problem 1 (Simultaneous C-Representation Problem).
Input: A graph G and a labeling L : V (G) → P({1, . . . , d}) of G.
Question: Does there exist a d-simultaneous C-representation (R, L) of G?

By Observations 2.3 and 2.4, Problem 1 is a generalization of the simultaneous represen-
tation problems by Jampani and Lubiw [41].

In the second problem we are given the graph and some representation and want to find
a suitable labeling.

▶ Problem 2 (Simultaneous Labeling Problem Given a C-Representation).
Input: A graph G and a C-representation R of a graph F with V (G) = V (F) and E(G) ⊆

E(F).
Question: What is the smallest number d ∈ N such that there exists a d-simultaneous

C-representation (R, L) of G?

In the third version, we are given just a graph and wish to compute the smallest number
of labels needed for the graph to have a d-simultaneous C-representation.

▶ Problem 3 (Generalized Simultaneous C-Representation Problem).
Input: A graph G.
Question: What is the smallest number d ∈ N such that there exists a d-simultaneous

C-representation of G?

Recall the definition of a class of intersection graphs given on p. 4.

▶ Theorem 4.1. The Simultaneous Labeling Problem Given a C-Representation is NP-hard
for any class of intersection graphs C, even if all sets in the given C-representation pairwise
intersect.

▶ Theorem 4.2. The Generalized Simultaneous C-Representation Problem is NP-hard for
every class of intersection graphs that is a subclass of the class of C4-free graphs and contains
the class of complete split graphs.

▶ Corollary 4.3. Let C be the class of interval graphs or the class of chordal graphs. Then,
the Generalized Simultaneous C-Representation Problem is NP-hard.

▶ Corollary 4.4. It is NP-hard to compute the simultaneous interval number of a graph G.

J. Beisegel, N. Chiarelli, E. Köhler, M. Milanič, P. Muršič, and R. Scheffler 7:11

5 Cliques

In this section, we focus on the Maximum Clique problem: Given a graph G = (V, E),
compute a largest clique in G. The problem can be naturally generalized to the weighted
case, where the input graph is equipped with a vertex weight function w : V → Q+ and
the task is to find a clique C in G maximizing its weight, w(C), defined as the sum of the
weights of the vertices in C.

▶ Theorem 5.1. A graph G has at most 22si(G) · n many maximal cliques.

Proof. Let d = si(G) and fix a d-simultaneous interval representation (R, L) of G. Let C

be a maximal clique of G. There exists a point p on the real line that is contained in any
interval of the vertices contained in C. Furthermore, for every subset S ⊆ {1, . . . , d}, if there
is any vertex u ∈ C such that L(u) = S, then the clique C contains all the vertices v whose
label set is exactly S and whose interval R(v) contains p. There are at most n points on the
real line such that the sets of intervals containing these points are pairwise incomparable with
respect to inclusion. These are always points before the endpoint of some interval. For each
of those points we have to decide for every subset of {1, . . . , d} if vertices having this subset
as label set are contained in the maximal cliques. There are 2d many subsets. Therefore,
there are 22d different decisions and, thus, there are at most 22d

n many maximal cliques. ◀

▶ Theorem 5.2. Given a graph G with n vertices and a d-simultaneous interval representation
of G, the maximal cliques of G can be enumerated in time O(d · 22d+2d · n log n).

This result implies directly that we can compute a maximum-weight clique of a graph G

within the same time bound.

▶ Corollary 5.3. Given a vertex-weighted graph G with n vertices and a d-simultaneous
interval representation of G, we can find a maximum weight clique of G in time O(d · 22d+2d ·
n log n).

Tsukiyama et al. [59] gave an algorithm that generates all maximal cliques in time O(n3µ)
where µ is the number of maximal cliques. Using this algorithm, we can drop the requirement
in Theorem 5.2 and Corollary 5.3 that the input graph is given together with a d-simultaneous
interval representation.

▶ Theorem 5.4. Given a vertex-weighted graph G with n vertices, we can find a list of all
maximal cliques and a maximum weight clique of G in time O(22si(G) · n3).

Let us remark that a faster dependency on n (although still slower than quadratic in n)
could be obtained by using some of the more recent maximal clique enumeration algorithms
(see, e.g., [15]).

Note that the unweighted maximum clique problem is already NP-hard for 2-unit interval
graphs and 3-track interval graphs [26] while it is polynomial-time solvable for 2-track interval
graphs. However, there is an FPT algorithm for the clique problem on d-interval graphs
when parameterized by d plus solution size [24].

Next we prove that the bound given in Theorem 5.1 is tight. To this end, we consider
complements of matchings. As we have seen in Lemma 2.10, the simultaneous interval number
of those graphs is at least log2(n − 1) where n is the number of vertices. Here, we show that
this bound is tight. Let Mm be the complement of a matching with m edges. Gregory and
Pullman [33] showed that limm→∞

ecc(Mm)
log2(m) = 1. As we have seen in Corollary 3.13, it holds

that si(G) ≤ ecc(G). This implies the following result.

SWAT 2024

7:12 The Simultaneous Interval Number

▶ Lemma 5.5. For any ε > 0, there exists some n′ ∈ N such that for all even n ≥ n′,
the following holds: If G is the complement of a matching with n vertices, then si(G) ≤
(1 + ε) log2 n.

Using this result, we are able to prove that the bound given in Theorem 5.1 is tight.

▶ Theorem 5.6. For any ε with 0 < ε < 1 and any k ∈ N, there is an infinite family F of
graphs such that any graph G ∈ F with n vertices has at least 22(1−ε)si(G) · nk many maximal
cliques.

This result shows that the bound on the running time of our approach for the Maximum
Clique problem cannot be significantly improved. Furthermore, the following result shows
that the Maximum Clique problem cannot be solved with a single-exponential FPT algorithm
parameterized by the simultaneous interval number.

▶ Theorem 5.7. Unless P = NP, for any fixed k ∈ N there is no algorithm that solves the
Maximum Clique problem on complements of cubic graphs with n vertices in time 2O(si)nk.

Note that the above result does not rule out the possibility that it may be possible to solve
the Maximum Clique problem in time 2O(d)nk when a d-simultaneous interval representation
of the graph is given.

As graphs with bounded simultaneous interval number are (pw, ω)-bounded (Theorem 3.8),
we can use the results from Chaplick et al. [14, Theorem 11] to show that the clique problem
admits an FPT algorithm when parameterized by the simultaneous interval number plus
solution size.

▶ Theorem 5.8. Given an n-vertex graph G and an integer k, it can be determined in time
2O(si(G)k)n whether G contains a clique of size k.

6 Coloring

Circular-arc graphs have linear mim-width at most 2 [2, Lemma 4], path-independence
number at most 2 [53, proof of Theorem 4.5] and track number at most 2. Since the
Coloring problem is NP-hard on circular-arc graphs [28], the same holds for graphs whose
linear mim-width, path-independence number, and track number are at most 2. This result
does not transfer directly to the simultaneous interval number, as the simultaneous interval
number of complements of matchings and, thus, of circular-arc graphs is unbounded, due
to Lemma 2.10. Nevertheless, we can adapt a proof for the NP-hardness of the Coloring
problem on circular-arc graphs given by Marx [52] to the case of graphs of simultaneous
interval number 2. This proof uses the following definitions and results.

▶ Problem 4 (Disjoint Paths).
Input: Directed graphs G and H on the same vertex set.
Question: Are there paths Pe in G for each e ∈ E(H) such that these paths are edge disjoint

and path Pe together with edge e forms a directed cycle?

Given a directed graph G = (V, E), the in-degree (resp. out-degree) of a vertex v ∈ V

in G is the number of directed edges (x, y) ∈ E such that v = y (resp. v = x), and the
degree dG(v) of v in G is the number of directed edges (x, y) ∈ E such that v ∈ {x, y}. A
directed graph G = (V, E) is Eulerian if for each vertex v ∈ V , the in-degree of v equals its
out-degree.

J. Beisegel, N. Chiarelli, E. Köhler, M. Milanič, P. Muršič, and R. Scheffler 7:13

▶ Theorem 6.1 (Vygen [61]). The Disjoint Paths problem remains NP-complete even if G is
acyclic and G + H is Eulerian.

▶ Lemma 6.2 (Marx [52]). If G + H is Eulerian and G is acyclic, then every solution of the
Disjoint Path problem given G and H uses every edge of G.

▶ Lemma 6.3. The Disjoint Paths problem remains NP-complete even if G is acyclic, G + H

is Eulerian, and every vertex in H has degree at most one.

▶ Theorem 6.4. The Coloring problem is NP-complete on graphs G with si(G) ≤ 2 even if a
2-simultaneous interval representation of G is given.

Proof. We adapt a proof given by Marx [52] to establish NP-completeness of the Coloring
problem on circular-arc graphs. Let (G, H) be an instance of the Disjoint Paths problem
such that G is acyclic, G + H is Eulerian, and dH(v) ≤ 1 for all v ∈ V (G). Let k = |E(H)|.

Let v1, . . . , vn be a topological sort of G. For every edge (vi, vj) ∈ E(G) we construct an
interval (i, j) with label set {1}. Note that i < j, due to the property of the topological sort.
For every edge (vi, vj) ∈ E(H) we may assume that i > j since otherwise there is no path
from vj to vi in G. We add the intervals (0, j) and (i, n + 1) with label set {1, 2} and the
interval (j, i) with label set {2}. We call the resulting 2-simultaneous interval graph G′.

We claim that (G, H) is a yes instance of the disjoint path problem if and only if G′

can be colored with k colors. First assume that (G, H) is a yes instance. Fix a solution,
that is, paths Pe in G for each e ∈ E(H) such that these paths are edge-disjoint and path
Pe together with edge e forms a directed cycle. By Lemma 6.2, the solution covers all
the edges with k directed cycles. Let C be the ℓ-th cycle in the solution. For every edge
(vi, vj) ∈ E(C) ∩ E(G) we color the corresponding interval (i, j) that has label {1} with color
ℓ. For the edge (vi, vj) ∈ E(C) ∩ E(H) we color with color ℓ the intervals (0, j) and (i, n + 1)
that have label set {1, 2} as well as the interval (j, i) that has label set {2}. This leads to a
proper coloring of G′ since the only intervals with the same color that intersect each other
do not share a label and, thus, their corresponding vertices are not adjacent.

Now assume the graph G′ can be properly colored with k colors. As all the k intervals
with label set {1, 2} that start in 0 pairwise intersect, they have different colors. Now consider
the subgraph of G induced by the intervals containing label 2. Since every vertex in H has
degree at most one, whenever an interval ends before point n + 1, there is no other interval
that ends at this point. Furthermore, there is exactly one interval that starts at this point.
This implies that every point p in the interval (0, n + 1) in which no interval ends belongs to
exactly k intervals. Consequently, any two intervals such that the second one starts where
the first one ends must have the same color. This implies, in particular, that the two intervals
with label set {1, 2} representing the same edge of H have the same color.

Now consider all the intervals that contain the label 1. There are k of those intervals
that start in point 0. If exactly j of those intervals end in point i, then there are exactly j

intervals that start in i, due to the Eulerian property of G + H . Thus, any non-integer point
in (0, n + 1) is contained in exactly k intervals. This also implies that for any of those points
there is an interval with color d ∈ {1, . . . , k}. Therefore, the intervals with color d represent
a directed cycle in G + H containing exactly one edge of H .Thus, (G, H) is a yes instance of
the disjoint path problem. ◀

As any class of graphs with bounded simultaneous interval number are (pw, ω)-bounded
(Theorem 3.8), we can use the results from Chaplick et al. [14, Theorem 12] to show that
the List k-Coloring problem admits an FPT algorithm when parameterized by k plus the
simultaneous interval number.

▶ Theorem 6.5. Given a graph G, we can solve the List k-Coloring problem on G in time
kO(si(G)k)n.

SWAT 2024

7:14 The Simultaneous Interval Number

7 Domination and Independent Sets

The Dominating Set problem and the Independent Set problem can be solved in polynomial
time on interval graphs [29, 57]. However, when we parameterize these problems by the
solution size and linear mim-width they are W[1]-hard [39]. If we parameterize the Dominating
Set problem by tree-α and the solution size then it is W[2]-hard [49]. In contrast, when the
problems are parameterized by simultaneous interval number and the solution size, then
bounded-search-tree methods lead to FPT-algorithms.

▶ Theorem 7.1. Given a graph G with n vertices and a d-simultaneous interval representation
of G, we can decide whether G has a dominating set of size at most k or an independent set
of size k in time O(2kd · n).

Using a technique due to Fomin et al. [25], in [39] Jaffke et al. showed that a whole range
of domination-type problems (including dominating and independent set) are W[1]-hard
when parameterized by mim-width and solution size. While that approach cannot be easily
adapted for the simultaneous interval number, it is possible to show that at least one of these
problems is W[1]-hard when parameterized just by si.

▶ Problem 5. Independent Dominating Set Problem (IDSP)
Instance: A graph G and an integer k.
Question: Does there exist a set X of at most k vertices of G such that G[X] is edgeless and

NG[X] = V (G)?

The results in [25] use a reduction from the Multicolored Clique problem (MCP), a
technique popularized by Fellows et al. [24]. We will use a reduction from the Multicolored
Independent Set problem.

▶ Problem 6. Multicolored Independent Set Problem (MISP)
Instance: A graph G with a proper coloring of k colors.
Question: Is there an independent set I in G such that I contains exactly one vertex of each

color?

The MCP (and thus the MISP) was shown to be W[1]-hard when parameterized by
solution size by Pietrzak [56] and by Fellows et al. [24]. In fact, in [17,50] the authors show
the following result under the assumption of the Exponential Time Hypothesis (ETH) which
asserts that solving n-variable 3-SAT requires time 2Ω(n) (see [38]).

▶ Theorem 7.2 (Cygan et al. [17], Lokshtanov et al. [50]). Assuming the Exponential Time
Hypothesis, there is no f(k)no(k) time algorithm for the MCP (MISP) for any computable
function f .

For an instance G of the MCP we can assume that all color classes are of the same size q,
since adding isolated vertices does not affect the existence or nonexistence of a multicolored
clique. A similar assumption can be made for the MISP. For each color class i ∈ {1, . . . , k},
we denote the vertices in the class by vi1, . . . , viq.

We will show that the IDSP is W[1]-hard when parameterized by the simultaneous interval
number. To this end we will construct a reduction from the MISP in the following way. Let
G together with a vertex partition V (G) = V1∪̇ . . . ∪̇Vk be an instance of the MISP, where
Vi = {vi1, . . . , viq} for all i ∈ {1, . . . , k}.

J. Beisegel, N. Chiarelli, E. Köhler, M. Milanič, P. Muršič, and R. Scheffler 7:15

.
.
.

.
.
.

. . .
.
.
.

.
.
.

. . .

.
.
.

.
.
.

. . .

ζ ψ ζ

ψ
ζ

ζ
ζ
ζ

ζ

ζ, ψ

ζ, ψ

ζ, ψ

ζ, ψ

ζ
ζ
ζ

ζ
ζ
ζ

ζ
ζ

ζ

ψ
ψ

ψ
ψ
ψ

. ..

...

V1

V2

Vk

Figure 4 The yellow intervals represent the edges of G, the black intervals are the intervals of the
W i

j . The blue intervals are in Si. Each of the rows marked Vi represent that vertex set of G. For
visual reasons the intervals belonging to the Vi have not been shifted by ϵ as in the definition. For
the same reason, we define ζ := k + 1 and ψ := k + 2. The labels of the edge intervals are denoted
completely above these. Each of the other intervals also contains the label i if it is associated with
Vi. The intervals on the right have not been labeled.

Let E(G) = {e1, . . . , em}. We will now define a (k + 2)-simultaneous interval graph G′

together with its (k + 2)-simultaneous interval representation. For each vertex vij ∈ V (G) we
will define a collection of m + 1 (open) intervals (see Figure 4)

W i
j :=

{(
γ − 1 + (j − 1)1

q
+ iϵ, γ + (j − 1)1

q
+ iϵ

)
: γ ∈ {1, . . . , m + 1}

}
,

where ϵ ≪ 1
kq , i.e., all k shifts in sum are much smaller than one interval of a W i

j .
We will denote the γ-th interval of vij as Iij(γ). These intervals will be referred to as the

vertex intervals. Note that none of these intervals have common left endpoints or common
right endpoints. Furthermore, for each of the Vi we add an additional collection of 2mq + 2
intervals

Si :=
{(

q − 1
q

+ γ
1
q

+ iϵ, 1 + γ
1
q

+ iϵ

)
: γ ∈ {0, . . . , 2mq + 1}

}
,

where again ϵ ≪ 1
qk .

Finally, we add further intervals for each edge in G. Let eγ = viavjb be an edge with
via ∈ Vi, vjb ∈ Vj . W.l.o.g. we may assume that a ≤ b and if a = b, then i < j. We add an
interval of the form I(eγ) = (r(Iia(γ)), ℓ(Ijb (γ + 1))). These intervals will be referred to as
the edge intervals. As none of the intervals of different vertices have common endpoints, we
can be sure that each of these edge intervals has strictly positive length. In the following, we
will frequently identify the intervals and vertices of G′ in order to simplify the notation.

In the next step, we assign a label set to each of the intervals in order to construct a
simultaneous interval graph. To each interval in Si we assign the label set {i} and to each
I(eγ) we assign the label set {k + 1} if γ is odd and {k + 2} if γ is even.

Before we label the vertex intervals, we need the following observation which follows
easily from the definitions above.

SWAT 2024

7:16 The Simultaneous Interval Number

▶ Observation 7.3. Any interval Iij(γ) intersects at most two edge intervals and these
intervals have distinct labels.

Any interval of a W i
j is given at least the label i. Let Iij(γ) be one of the intervals

representing the vertices of G. If Iij(γ) does not intersect any edge interval such that one of
the endpoints of that edge is contained in Vi, then L(Iij(γ)) = {i}. If Iij(γ) intersects some
edge interval such that one of that edges endpoints is contained in Vi but is not identical
to vij , then we add the label of that edge to L(Iij(γ)). If Iij(γ) intersects some edge interval
such that one of that edges’ endpoints is identical to vij , then L(Iij(γ)) does not contain the
label of that edge. Note that these last two rules cannot lead to a contradiction, due to
Observation 7.3. Therefore, any interval Iij(γ) has label set either {i}, {i, k + 1}, {i, k + 2}
or {i, k + 1, k + 2}.

▶ Lemma 7.4. Any minimum independent dominating set of G′ must contain all the vertices
corresponding to the intervals in the set W 1

j1
∪ . . . ∪ W k

jk
for some set of indices {j1, . . . , jk}.

▶ Lemma 7.5. The vertices belonging to W := W 1
j1

∪ . . . ∪ W k
jk

form an independent
dominating set of G′ if and only if C := {v1

j1
, . . . , vkjk

} is a multicolored independent set of G.

Combining Lemmas 7.4 and 7.5 with the fact that MISP is W[1]-hard when parameterized
by the solution size and Theorem 7.2 we get the following result.

▶ Theorem 7.6. The IDSP is W[1]-hard when parameterized by the simultaneous interval
number even if a si(G)-simultaneous interval representation is given. Furthermore, assuming
the ETH, there is no f(si)no(si)-time algorithm for the ISDP for any computable function f .

Note that this reduction cannot be easily adapted to show that independent dominating
set is W[1]-hard when parameterized by the simultaneous interval number and the solution
size k, as the minimum size of an independent dominating set in G′ is of the order Ω(km).

8 Conclusion

While we have presented some algorithmic properties for graphs of bounded simultaneous
interval number, many open problems still remain. First and foremost is the computation
of si. Unsurprisingly, the computation of si is NP-hard, however, we are not aware of any
results regarding the decision problem whether si is at most some fixed value d. It still
remains to be seen whether there exists a computable function f and an FPT or an XP
algorithm that for a given graph G and integer d, either correctly determines that si(G) > d

or computes an f(d)-simultaneous interval representation of G. Such FPT algorithms are
known for treewidth [5, 48] and cliquewidth [54], and XP algorithms are known for the
tree-independence number [20,62].

Furthermore, the complexity status of many important problems is still open when
parameterized by si, for example that of independent set and dominating set (see Table 1).
Regarding the obtained FPT results, it remains to be shown whether the running times are
best possible. Especially in the case of the clique problem, there is still a large discrepancy
between the achieved running time and the lower bound.

The simultaneous representation problem has also been considered for chordal graphs [41].
This imposes the question whether similar results can be made for a simultaneous chordal
number. In fact, some of the results given here for the simultaneous interval number can be
directly translated for the simultaneous chordal number as well. However, as the Dominating
Set problem is W[2]-hard for chordal graphs, the FPT algorithm for that problem given in
Theorem 7.1 does not carry over.

J. Beisegel, N. Chiarelli, E. Köhler, M. Milanič, P. Muršič, and R. Scheffler 7:17

References
1 Jesse Beisegel, Nina Chiarelli, Ekkehard Köhler, Martin Milanič, Peter Muršič, and Robert

Scheffler. The simultaneous interval number: A new width parameter that measures the
similarity to interval graphs, 2024. arXiv:2404.10670.

2 Rémy Belmonte and Martin Vatshelle. Graph classes with structured neighborhoods and
algorithmic applications. Theoretical Computer Science, 511:54–65, 2013. doi:10.1016/j.tcs.
2013.01.011.

3 Alan A. Bertossi. Dominating sets for split and bipartite graphs. Information Processing
Letters, 19(1):37–40, 1984. doi:10.1016/0020-0190(84)90126-1.

4 Thomas Bläsius and Ignaz Rutter. Simultaneous PQ-ordering with applications to constrained
embedding problems. ACM Transactions on Algorithms, 12(2):46, 2016. Id/No 16. doi:
10.1145/2738054.

5 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing, 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

6 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209(1–2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

7 Jan Bok and Nikola Jedličková. A note on simultaneous representation problem for interval
and circular-arc graphs, 2018. arXiv:1811.04062.

8 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width.
I: Tractable FO model checking. Journal of the ACM, 69(1):3:1–3:46, 2022. doi:10.1145/
3486655.

9 Flavia Bonomo and Diego de Estrada. On the thinness and proper thinness of a graph. Discrete
Applied Mathematics, 261:78–92, 2019. doi:10.1016/j.dam.2018.03.072.

10 Flavia Bonomo-Braberman and Gastón Abel Brito. Intersection models and forbidden pattern
characterizations for 2-thin and proper 2-thin graphs. Discrete Applied Mathematics, 339:53–77,
2023. doi:10.1016/j.dam.2023.06.013.

11 Flavia Bonomo-Braberman, Carolina L. Gonzalez, Fabiano S. Oliveira, Moysés S. Sampaio
Jr., and Jayme L. Szwarcfiter. Thinness of product graphs. Discrete Applied Mathematics,
312:52–71, 2022. doi:10.1016/j.dam.2021.04.003.

12 Kellogg S. Booth and J. Howard Johnson. Dominating sets in chordal graphs. SIAM Journal
on Computing, 11:191–199, 1982. doi:10.1137/0211015.

13 Sunil Chandran, Carlo Mannino, and Gianpaolo Oriolo. The indepedent set problem and the
thinness of a graph. Unpublished manuscript cited in [11], 2007.

14 Steven Chaplick, Martin Töpfer, Jan Voborník, and Peter Zeman. On H-topological intersection
graphs. Algorithmica, 83(11):3281–3318, 2021. doi:10.1007/s00453-021-00846-3.

15 Carlo Comin and Romeo Rizzi. An improved upper bound on maximal clique listing via
rectangular fast matrix multiplication. Algorithmica, 80(12):3525–3562, 2018. doi:10.1007/
s00453-017-0402-5.

16 Derek G. Corneil and Yehoshua Perl. Clustering and domination in perfect graphs. Discrete
Applied Mathematics, 9(1):27–39, 1984. doi:10.1016/0166-218X(84)90088-X.

17 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Cham: Springer,
2015. doi:10.1007/978-3-319-21275-3.

18 Clément Dallard, Martin Milanič, and Kenny Štorgel. Treewidth versus clique number. I: Graph
classes with a forbidden structure. SIAM Journal on Discrete Mathematics, 35(4):2618–2646,
2021. doi:10.1137/20M1352119.

19 Clément Dallard, Martin Milanič, and Kenny Štorgel. Treewidth versus clique number. II:
Tree-independence number. Journal of Combinatorial Theory. Series B, 164:404–442, 2024.
doi:10.1016/j.jctb.2023.10.006.

20 Clément Dallard, Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Martin Milanič.
Computing tree decompositions with small independence number. In Karl Bringmann, Martin
Grohe, Gabriele Puppis, and Ola Svensson, editors, 51th International Colloquium on Automata,
Languages, and Programming, ICALP 2024, July 8-12, 2024, Tallinn, Estonia, volume 297 of
LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. To appear.

SWAT 2024

https://arxiv.org/abs/2404.10670
https://doi.org/10.1016/j.tcs.2013.01.011
https://doi.org/10.1016/j.tcs.2013.01.011
https://doi.org/10.1016/0020-0190(84)90126-1
https://doi.org/10.1145/2738054
https://doi.org/10.1145/2738054
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1016/S0304-3975(97)00228-4
https://arxiv.org/abs/1811.04062
https://doi.org/10.1145/3486655
https://doi.org/10.1145/3486655
https://doi.org/10.1016/j.dam.2018.03.072
https://doi.org/10.1016/j.dam.2023.06.013
https://doi.org/10.1016/j.dam.2021.04.003
https://doi.org/10.1137/0211015
https://doi.org/10.1007/s00453-021-00846-3
https://doi.org/10.1007/s00453-017-0402-5
https://doi.org/10.1007/s00453-017-0402-5
https://doi.org/10.1016/0166-218X(84)90088-X
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/20M1352119
https://doi.org/10.1016/j.jctb.2023.10.006

7:18 The Simultaneous Interval Number

21 H. N. de Ridder et al. Entry “2-interval” in Information System on Graph Classes and their
Inclusions (ISGCI). URL: https://graphclasses.org/classes/gc_40.html.

22 H. N. de Ridder et al. Entry “3-track” in Information System on Graph Classes and their
Inclusions (ISGCI). URL: https://graphclasses.org/classes/gc_1080.html.

23 H. N. de Ridder et al. Entry “3K1-free” in Information System on Graph Classes and their
Inclusions (ISGCI). URL: https://graphclasses.org/classes/AUTO_399.html.

24 Michael R. Fellows, Danny Hermelin, Frances Rosamond, and Stéphane Vialette. On the
parameterized complexity of multiple-interval graph problems. Theoretical Computer Science,
410(1):53–61, 2009. doi:10.1016/j.tcs.2008.09.065.

25 Fedor V. Fomin, Petr A. Golovach, and Jean-Florent Raymond. On the tractability of
optimization problems on H-graphs. Algorithmica, 82(9):2432–2473, 2020. doi:10.1007/
s00453-020-00692-9.

26 Mathew C. Francis, Daniel Gonçalves, and Pascal Ochem. The maximum clique problem in
multiple interval graphs. Algorithmica, 71:812–836, 2015. doi:10.1007/s00453-013-9828-6.

27 Delbert R. Fulkerson and Oliver A. Gross. Incidence matrices and interval graphs. Pacific
Journal of Mathematics, 15:835–855, 1965. doi:10.2140/pjm.1965.15.835.

28 Michael R. Garey, David S. Johnson, Gerald L. Miller, and Christos H. Papadimitriou. The
complexity of coloring circular arcs and chords. SIAM Journal on Algebraic Discrete Methods,
1(2):216–227, 1980. doi:10.1137/0601025.

29 Fănică Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by
cliques, and maximum independent set of a chordal graph. SIAM Journal on Computing,
1(2):180–187, 1972. doi:10.1137/0201013.

30 Petr A. Golovach, Pinar Heggernes, Mamadou Moustapha Kanté, Dieter Kratsch, Sigve H.
Sæther, and Yngve Villanger. Output-polynomial enumeration on graphs of bounded (local)
linear MIM-width. Algorithmica, 80(2):714–741, 2018. doi:10.1007/s00453-017-0289-1.

31 Martin Charles Golumbic and Udi Rotics. On the clique-width of some perfect graph classes.
International Journal of Foundations of Computer Science, 11(3):423–443, 2000. doi:10.1142/
S0129054100000260.

32 Carolina Lucía Gonzalez and Felix Mann. On d-stable locally checkable problems parameterized
by mim-width. Discrete Applied Mathematics, 347:1–22, 2024. doi:10.1016/j.dam.2023.12.
015.

33 David A. Gregory and Norman J. Pullman. On a clique covering problem of Orlin. Discrete
Mathematics, 41(1):97–99, 1982. doi:10.1016/0012-365X(82)90085-1.

34 Jerrold R. Griggs and Douglas B. West. Extremal values of the interval number of a graph.
SIAM Journal on Algebraic Discrete Methods, 1(1):1–7, 1980. doi:10.1137/0601001.

35 Udaiprakash I. Gupta, Der-Tsai Lee, and Joseph Y.-T. Leung. An optimal solution for the
channel-assignment problem. IEEE Transactions on Computers, C-28(11):807–810, 1979.
doi:10.1109/TC.1979.1675260.

36 András Gyárfás and Douglas B. West. Multitrack interval graphs. In Proceedings of the
Twenty-sixth Southeastern International Conference on Combinatorics, Graph Theory and
Computing (Boca Raton, FL, 1995), volume 109 of Congressus Numerantium, pages 109–116,
1995.

37 Akihiro Hashimoto and James Stevens. Wire routing by optimizing channel assignment
within large apertures. In Proceedings of the 8th Design Automation Workshop, DAC ’71,
pages 155–169, New York, NY, USA, 1971. Association for Computing Machinery. doi:
10.1145/800158.805069.

38 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. Special issue on the Fourteenth Annual
IEEE Conference on Computational Complexity (Atlanta, GA, 1999). doi:10.1006/jcss.
2000.1727.

https://graphclasses.org/classes/gc_40.html
https://graphclasses.org/classes/gc_1080.html
https://graphclasses.org/classes/AUTO_399.html
https://doi.org/10.1016/j.tcs.2008.09.065
https://doi.org/10.1007/s00453-020-00692-9
https://doi.org/10.1007/s00453-020-00692-9
https://doi.org/10.1007/s00453-013-9828-6
https://doi.org/10.2140/pjm.1965.15.835
https://doi.org/10.1137/0601025
https://doi.org/10.1137/0201013
https://doi.org/10.1007/s00453-017-0289-1
https://doi.org/10.1142/S0129054100000260
https://doi.org/10.1142/S0129054100000260
https://doi.org/10.1016/j.dam.2023.12.015
https://doi.org/10.1016/j.dam.2023.12.015
https://doi.org/10.1016/0012-365X(82)90085-1
https://doi.org/10.1137/0601001
https://doi.org/10.1109/TC.1979.1675260
https://doi.org/10.1145/800158.805069
https://doi.org/10.1145/800158.805069
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2000.1727

J. Beisegel, N. Chiarelli, E. Köhler, M. Milanič, P. Muršič, and R. Scheffler 7:19

39 Lars Jaffke, O-joung Kwon, Torstein J. F. Strømme, and Jan Arne Telle. Mim-width. III.
Graph powers and generalized distance domination problems. Theoretical Computer Science,
796:216–236, 2019. doi:10.1016/j.tcs.2019.09.012.

40 Lars Jaffke, O-joung Kwon, and Jan Arne Telle. Mim-width. I. Induced path problems.
Discrete Applied Mathematics, 278:153–168, 2020. doi:10.1016/j.dam.2019.06.026.

41 Krishnam Raju Jampani and Anna Lubiw. The simultaneous representation problem for
chordal, comparability and permutation graphs. In Frank K. H. A. Dehne andMarina
L. Gavrilova, Jörg-Rüdiger Sack, and Csaba D. Tóth, editors, Algorithms and Data Structures,
11th International Symposium, WADS 2009, Banff, Canada, August 21-23, 2009. Proceed-
ings, volume 5664 of Lecture Notes in Computer Science, pages 387–398. Springer, 2009.
doi:10.1007/978-3-642-03367-4_34.

42 Krishnam Raju Jampani and Anna Lubiw. Simultaneous interval graphs. In Otfried Cheong,
Kyung-Yong Chwa, and Kunsoo Park, editors, Algorithms and Computation - 21st International
Symposium, ISAAC 2010, Jeju Island, Korea, December 15-17, 2010, Proceedings, Part I,
volume 6506 of Lecture Notes in Computer Science, pages 206–217. Springer, 2010. doi:
10.1007/978-3-642-17517-6_20.

43 Krishnam Raju Jampani and Anna Lubiw. The simultaneous representation problem for
chordal, comparability and permutation graphs. Journal of Graph Algorithms and Applications,
16(2):283–315, 2012. doi:10.7155/jgaa.00259.

44 Minghui Jiang. On the parameterized complexity of some optimization problems related
to multiple-interval graphs. Theoretical Computer Science, 411(49):4253–4262, 2010. doi:
10.1016/j.tcs.2010.09.001.

45 Minghui Jiang. Recognizing d-interval graphs and d-track interval graphs. Algorithmica,
66(3):541–563, 2013. doi:10.1007/s00453-012-9651-5.

46 J. Mark Keil. Finding Hamiltonian circuits in interval graphs. Information Processing Letters,
20:201–206, 1985. doi:10.1016/0020-0190(85)90050-X.

47 Brian W. Kernighan, Daniel G. Schweikert, and G. Persky. An optimum channel-routing
algorithm for polycell layouts of integrated circuits. In J. Michael Galey, Herbert M. Wall,
Robert B. Hitchcock Sr., Ben E. Britt, Richard E. Merwin, Donald J. Humcke, and David B.
Smithhisler, editors, Proceedings of the 10th Design Automation Workshop, DAC ’73, Portland,
Oregon, USA, June 25-27, 1973, pages 50–59. ACM, 1973. doi:10.1145/62882.62886.

48 Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In 2021
IEEE 62nd Annual Symposium on Foundations of Computer Science—FOCS 2021, pages 184–
192. IEEE Computer Soc., Los Alamitos, CA, 2022. doi:10.1109/FOCS52979.2021.00026.

49 Chunmei Liu and Yinglei Song. Parameterized complexity and inapproximability of dominating
set problem in chordal and near chordal graphs. Journal of combinatorial optimization,
22(4):684–698, 2011. doi:10.1007/s10878-010-9317-7.

50 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the exponential
time hypothesis. Bulletin of EATCS, 105:41–71, 2011. URL: http://eatcs.org/beatcs/
index.php/beatcs/article/view/92.

51 Carlo Mannino, Gianpaolo Oriolo, Federico Ricci, and Sunil Chandran. The stable set
problem and the thinness of a graph. Operations Research Letters, 35(1):1–9, 2007. doi:
10.1016/j.orl.2006.01.009.

52 Dániel Marx. A short proof of the NP-completeness of circular arc coloring. Unpublished
manuscript, 2003. URL: https://www.cs.bme.hu/~dmarx/papers/circularNP.pdf.

53 Martin Milanič and Paweł Rzążewski. Tree decompositions with bounded independence
number: beyond independent sets, 2022. arXiv:2209.12315.

54 Sang-il Oum and Paul Seymour. Approximating clique-width and branch-width. Journal of
Combinatorial Theory. Series B, 96(4):514–528, 2006. doi:10.1016/j.jctb.2005.10.006.

55 Boram Park, Suh-Ryung Kim, and Yoshio Sano. The competition numbers of complete
multipartite graphs and mutually orthogonal Latin squares. Discrete Mathematics, 309(23-
24):6464–6469, 2009. doi:10.1016/j.disc.2009.06.016.

SWAT 2024

https://doi.org/10.1016/j.tcs.2019.09.012
https://doi.org/10.1016/j.dam.2019.06.026
https://doi.org/10.1007/978-3-642-03367-4_34
https://doi.org/10.1007/978-3-642-17517-6_20
https://doi.org/10.1007/978-3-642-17517-6_20
https://doi.org/10.7155/jgaa.00259
https://doi.org/10.1016/j.tcs.2010.09.001
https://doi.org/10.1016/j.tcs.2010.09.001
https://doi.org/10.1007/s00453-012-9651-5
https://doi.org/10.1016/0020-0190(85)90050-X
https://doi.org/10.1145/62882.62886
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1007/s10878-010-9317-7
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
https://doi.org/10.1016/j.orl.2006.01.009
https://doi.org/10.1016/j.orl.2006.01.009
https://www.cs.bme.hu/~dmarx/papers/circularNP.pdf
https://arxiv.org/abs/2209.12315
https://doi.org/10.1016/j.jctb.2005.10.006
https://doi.org/10.1016/j.disc.2009.06.016

7:20 The Simultaneous Interval Number

56 Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest common
supersequence and longest common subsequence problems. Journal of Computer and System
Sciences, 67(4):757–771, 2003. doi:10.1016/S0022-0000(03)00078-3.

57 Ganesan Ramalingam and C. Pandu Rangan. A unified approach to domination problems
on interval graphs. Information Processing Letters, 27(5):271–274, 1988. doi:10.1016/
0020-0190(88)90091-9.

58 Ignaz Rutter, Darren Strash, Peter Stumpf, and Michael Vollmer. Simultaneous representation
of proper and unit interval graphs. In Michael A. Bender, Ola Svensson, and Grzegorz Herman,
editors, 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019,
Munich/Garching, Germany, volume 144 of LIPIcs, pages 80:1–80:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.ESA.2019.80.

59 Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. A new algorithm for
generating all the maximal independent sets. SIAM Journal on Computing, 6(3):505–517,
1977. doi:10.1137/0206036.

60 Martin Vatshelle. New Width Parameters of Graphs. PhD thesis, University of Bergen, 2012.
URL: https://hdl.handle.net/1956/6166.

61 Jens Vygen. NP-completeness of some edge-disjoint paths problems. Discrete Applied Mathe-
matics, 61(1):83–90, 1995. doi:10.1016/0166-218X(93)E0177-Z.

62 Nikola Yolov. Minor-matching hypertree width. In Artur Czumaj, editor, Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018,
New Orleans, LA, USA, January 7-10, 2018, pages 219–233. SIAM, 2018. doi:10.1137/1.
9781611975031.16.

https://doi.org/10.1016/S0022-0000(03)00078-3
https://doi.org/10.1016/0020-0190(88)90091-9
https://doi.org/10.1016/0020-0190(88)90091-9
https://doi.org/10.4230/LIPICS.ESA.2019.80
https://doi.org/10.1137/0206036
https://hdl.handle.net/1956/6166
https://doi.org/10.1016/0166-218X(93)E0177-Z
https://doi.org/10.1137/1.9781611975031.16
https://doi.org/10.1137/1.9781611975031.16

Correlation Clustering with Vertex Splitting
Matthias Bentert #

University of Bergen, Norway

Alex Crane #

University of Utah, Salt Lake City, UT, USA

Pål Grønås Drange #

University of Bergen, Norway

Felix Reidl #

Birkbeck, University of London, UK

Blair D. Sullivan #

University of Utah, Salt Lake City, UT, USA

Abstract
We explore Cluster Editing and its generalization Correlation Clustering with a new operation
called permissive vertex splitting which addresses finding overlapping clusters in the face of uncertain
information. We determine that both problems are NP-hard, yet they exhibit significant differences
in terms of parameterized complexity and approximability. For Cluster Editing with Permissive
Vertex Splitting, we show a polynomial kernel when parameterized by the solution size and
develop a polynomial-time 7-approximation. In the case of Correlation Clustering, we establish
para-NP-hardness when parameterized by the solution size and demonstrate that computing an n1−ε-
approximation is NP-hard for any constant ε > 0. Additionally, we extend an established link
between Correlation Clustering and Multicut to the setting with permissive vertex splits.

2012 ACM Subject Classification Theory of computation → Facility location and clustering; Theory
of computation → Parameterized complexity and exact algorithms; Mathematics of computing →
Approximation algorithms; Theory of computation → Problems, reductions and completeness

Keywords and phrases graph modification, cluster editing, overlapping clustering, approximation,
parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.8

Related Version Full Version: https://arxiv.org/abs/2402.10335

Funding Alex Crane, Felix Reidl, and Blair D. Sullivan: Gordon & Betty Moore Foundation’s Data
Driven Discovery Initiative under award GBMF4560 to Blair D. Sullivan.
Matthias Bentert: European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. 819416).

1 Introduction

Discovering clusters, or communities, is a core task in understanding the vast amounts of
relational data available. One limitation of many traditional clustering algorithms is the
necessity of specifying a desired number of clusters as part of the input. The problem
known as Cluster Editing avoids this by instead aiming to minimize the number of edge
insertions and removals necessary to transform the input into a cluster graph (a disjoint
union of cliques). This problem has been heavily studied in the graph-algorithms community,
and was first proved to be fixed-parameter tractable with respect to the number of edge
modifications (k) by Cai in 1996 [12]. The running time has significantly improved since,
with the best known algorithm running in O(1.62k(n + m)) time [11]. The problem also
admits a polynomial kernel with 2k vertices [16].

© Matthias Bentert, Alex Crane, Pål Grønås Drange, Felix Reidl, and Blair D. Sullivan;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 8; pp. 8:1–8:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matthias.bentert@uib.no
mailto:alex.crane@utah.edu
https://orcid.org/0009-0004-5466-3181
mailto:Pal.Drange@uib.no
https://orcid.org/0000-0001-7228-6640
mailto:f.reidl@bbk.ac.uk
https://orcid.org/0000-0002-2354-3003
mailto:sullivan@cs.utah.edu
https://orcid.org/0000-0001-7720-6208
https://doi.org/10.4230/LIPIcs.SWAT.2024.8
https://arxiv.org/abs/2402.10335
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Correlation Clustering with Vertex Splitting

Formally in Cluster Editing, we consider a complete graph where each edge is labeled
as positive (which we imagine as colored blue) or negative (colored red) and we ask for the
minimum number of edges whose color must be changed so that there is a partition of the
vertex set where all edges within each part are blue, and all edges between parts are red.
This convention of an edge-labeled complete graph will be useful in our setting and easily
maps onto the more common formalism for Cluster Editing with an incomplete, uncolored
graph as input (imagine the graph edges as blue and its non-edges as red). We also note
that other conventions for labelling positive/negative edges exist in the literature, e.g. using
labels like ⟨+⟩ and ⟨−⟩.

In practice, the positive or negative association between objects is usually computed using
a similarity metric which we can think of as an oracle function which, given two objects,
computes a score that expresses the (dis)similarity of the inputs. For large-scale data, the
assumption of complete information is then unrealistic for two reasons: First, the quadratic
complexity of computing all pairwise associations is prohibitively expensive. Second, the
similarity oracle may be unable to provide a clear answer for certain pairs – suggesting that
objects can either be grouped together or kept separate, depending on other parts of the
data or even external domain context.

Consequently, we should also consider cases in which the input is an incomplete graph
with positive and negative labels on the existing edges and no information about pairs not
joined by an edge. This scenario has previously been investigated by Demaine et al. [20]
by allowing “0-weight edges” (zero-edges) in their cluster-editing framework1. For clarity,
we will refer to the problem where zero-edges (non-edges) are allowed as Correlation
Clustering and to the problem where the input graph is complete – i.e. every vertex pair
is connected either by a blue or a red edge – as Cluster Editing.

The approximability of both Cluster Editing and Correlation Clustering are
well-studied. First considered by Bansal, Blum, and Chawla [8], under the name correlation
clustering2, Cluster Editing admits a 1.73-approximation [17] when minimizing the number
of disagreements (red edges within and blue edges between clusters). Other variants of
Cluster Editing which maximize the number of agreements or the correlation (agreements
minus disagreements) admit a PTAS (polynomial-time approximation scheme) and a Ω(log n)-
approximation, respectively [8, 14]. In the more general setting of minimizing disagreements
for Correlation Clustering (i.e., when zero-edges are present but never constitute a
disagreement), an O(log n)-approximation is known [20]. This result arises from the strong
relation between Correlation Clustering and Multicut3. The connection was first
observed with Multiway Cut by Bansal, Blum, and Chawla [8], before an approximation-
preserving reduction from Multicut to Correlation Clustering was given independently
by both Charikar, Guruswami, and Wirth [13] and Demaine et al. [20]. The connection to
Multicut also implies that no constant-factor approximation is possible for Correlation
Clustering, unless the Unique Games Conjecture is false [15].

These algorithmic advances provide a positive outlook on applying these clustering
variants in practice, however, we need to also investigate whether the proposed clustering
model could be improved. In particular, we need to question the underlying assumption
that real-world data segregates into neat, disjoint clusters. The following domain examples
illustrate why this assumption is probably too optimistic:

1 In the version discussed by Demaine et al. [20], real weights are assigned to edges, reflecting the certainty
level of the oracle in determining the similarity between objects. We only consider weights in {−1, 0, 1},
a common restriction in the literature.

2 There is significant inconsistency in the literature regarding the nomenclature of these problems; as
stated, we reserve the name Correlation Clustering for the problem where the input is incomplete.

3 Given a set of pairs of terminals, (s1, t1), (s2, t2), . . . , (sp, tp), find a set of at most k edges such that
after removing these edges, every pair (si, ti) is disconnected

M. Bentert, A. Crane, P. G. Drange, F. Reidl, and B. D. Sullivan 8:3

v1 v2

y

w

v

y

w

v1 v2

y

w

v1 v2

y

w

Blue edge
Red edge

Figure 1 A vertex v in an (incomplete) correlation graph (top). The bottom row gives toy
examples of exclusive (left), inclusive (center), and permissive (right) vertex splits of v into v1 and v2.
For clarity, some red edges incident to v1 and v2 are omitted from each figure on the bottom row.

Document classification: Individual documents often span multiple topics and should
therefore belong to multiple topic-clusters;
Sentiment analysis: A single piece of text can express very different emotions (e.g. sadness
mixed with humor);
Community detection: Individuals typically participate in multiple communities, such as
family, professional, and hobbyist groups.
Language processing: Homonyms like “bat” should belong both to an “animal” cluster as
well as a “sports-equipment” cluster.

Hence, the emphasis in clustering has recently shifted towards algorithms for overlapping
clustering [3, 4, 5, 6, 7, 9, 10, 18, 19, 22, 23, 24, 25, 26, 27, 28]. These models move away
from the requirement that data must be partitioned into disjoint subsets by considering a
variety of definitions for clusters which may intersect. One natural approach is to edit to a
more general target graph class (instead of a cluster graph, consider minimizing the number
of edge modifications required to achieve some more complex structure that exhibits strong
community structure but allows overlap), but it is difficult to define generalizations that
align with many applications.

Motivated by this, Abu-Khzam et al. [3] proposed an alternative model for overlapping
clustering based on the concept of splitting a vertex into two new vertices, representing an
object having two distinct roles within a dataset. This approach led to the problem Cluster
Editing with Vertex Splitting, where edges can be added or deleted, and vertices can
be split. Here, splitting a vertex v means replacing it with two copies, v1 and v2, ensuring
the union of their (blue) neighbor sets equals the original vertex’s (blue) neighbor set. In
fact, Abu-Khzam et al. [3] propose two different vertex splitting operations: one (exclusive
splitting) where v1 and v2 are required to have disjoint (blue) neighborhoods, and another
(inclusive splitting) where they are allowed to share (blue) neighbors. See Figure 1 for an
example. Abu-Khzam et al. [1] show that Cluster Editing with Vertex Splitting is
NP-hard and has a 6k-vertex kernel, where k is the number of edits (edge modifications/vertex
splits) allowed. The approximability of this problem remains unknown.

A significant limitation of both existing notions of vertex splitting is that they require
red edges to be preserved by both copies of a split vertex. For example, consider a red
edge uv in data arising from word classification, where u and v correspond to “bat” and “cat”,
respectively. It could be that the edge was produced by our oracle as a result of “bat” being
interpreted as a piece of sports equipment, not an animal. However, when “bat” is split

SWAT 2024

8:4 Correlation Clustering with Vertex Splitting

so that each meaning has its own vertex, we wish to retain the red edge only on one of
the copies of v (the one not corresponding to the small flying mammal, as this does have
similarities with a cat). Motivated by this, we introduce a new operation called permissive
vertex splitting which allows replacing a vertex v with two copies v1 and v2 with the restriction
that if uv is a blue edge (or red edge, respectively), then at least one of uv1 and uv2 is
a blue edge (red edge, respectively). Beyond that, we are free to choose what to do with
the newly-created neighborhoods. We call the new problem variant, where edges can be
added or deleted and vertices can be permissively split, Correlation Clustering with
Permissive Vertex Splitting (CCPVS). We show that sequences of permissive vertex
splits solving this problem correspond directly to a natural notion of overlapping clustering
(see Definition 4), adding to the motivation for this definition of splitting.

Extending the prior work relating Correlation Clustering to Multicut, we show
that CCPVS can be reduced to the new problem Multicut with Vertex Splitting
(MCVS) and vice versa, meaning that the computational complexities of these problems
are essentially the same. We then show that MCVS, and hence also CCPVS, are para-NP-
hard (with respect to solution size), and NP-hard to approximate within an n1−ϵ factor for
any ϵ > 0. Because of the inherent hardness of CCPVS, we then turn our attention to the
setting where there are no zero-edges, i.e., to Cluster Editing with Permissive Vertex
Splitting (CEPVS). We show that this problem remains NP-hard, but on the positive
side admits a polynomial kernel (and thus is fixed-parameter tractable). Finally, we give a
polynomial-time algorithm which provides a 7-approximation for CEPVS.

2 Preliminaries

We refer the reader to the textbook by Diestel [21] for standard graph-theoretic definitions
and notation. A star is a tree with exactly one internal vertex. In particular, a star has at
least two leaves. A red clique is a clique in which all edges are red. A blue clique is defined
similarly. For a positive integer n, we denote by [n] = {1, 2, . . . n} the set of all positive
integers up to n. An incomplete correlation graph is a simple, unweighted, and undirected
graph G = (V, B, R) with two disjoint edge relations B (blue) and R (red). If such a graph
is complete, i.e., B ∪ R =

(
V
2
)
, then we call it a correlation graph. For a vertex v ∈ V

we write NR(v) to denote the set of neighbors adjacent to v via red edges (red neighbors)
and NB(v) for those adjacent via blue edges (blue neighbors). A cluster graph is a correlation
graph in which the blue edges form vertex-disjoint cliques (and thus all edges between the
cliques are red). We can now formally define our vertex-splitting operation.

▶ Definition 1. A permissive vertex split of a vertex v in an (incomplete) correlation graph G

is the replacement of v in G with two new vertices v1 and v2 such that
NR(v) ⊆ NR(v1) ∪ NR(v2), and
NB(v) ⊆ NB(v1) ∪ NB(v2),

In other words, we create a new graph where every red (blue) neighbor of v is a red (blue)
neighbor of at least one of v1 or v2. All other “edges” incident to v1 and v2 can be chosen
arbitrarily. In particular, in incomplete correlation graphs, we can assume that all these
other edges are neutral (i.e., the “edges” do not exist), while in correlation graphs, it is
usually simpler to make these edges either red or blue to keep the graph complete. Notably,
the edge v1v2 can always be assumed to be a red edge as splitting a vertex into two vertices
that end up in the same (blue) connected component is never advantageous. For the
remainder of this text, unless otherwise specified all vertex splits are permissive. Given a
sequence σ = (σ1, σ2, . . . , σk) of k vertex splits performed on an (incomplete) correlation

M. Bentert, A. Crane, P. G. Drange, F. Reidl, and B. D. Sullivan 8:5

graph, we denote the resulting (incomplete) correlation graph by G|σ. Each vertex u in G|σ
corresponds to exactly one vertex v in G. We say that v is u’s ancestor, and that u is a
descendant of v. If u = v, then u and v are unsplit vertices. Otherwise we say that v is a
split vertex and that u is the descendant of a split vertex.

▶ Definition 2. An erroneous cycle is a simple cycle that contains exactly one red edge. An
(incomplete) correlation graph G contains an erroneous cycle if it contains a subgraph that is
an erroneous cycle. A bad triangle is an erroneous cycle of length 3.

Erroneous cycles are the canonical obstruction in Correlation Clustering [13, 20], and
bad triangles are the canonical obstruction in Cluster Editing. Usually, these problems
are formulated as edge editing problems, i.e., delete a minimum number of edges (blue or
red) such that the resulting graph has no erroneous cycles/bad triangles. Previous work on
Cluster Editing with (inclusive or exclusive) vertex splitting has allowed both edge edits
and vertex splits as editing operations [3, 2, 1, 5]. However, we note that permissive vertex
splitting is flexible enough to capture all editing operations. First, note that in the setting
with blue and red edges, each edge-editing operation can be seen as changing the color of an
edge. Now, consider any solution σ in which the color of an edge uv is changed. Then, we
construct a new sequence of the same length where this edge edit is replaced by a vertex
split. We choose one endpoint (without loss of generality v) and split it into v1 and v2. The
neighborhood of v1 is exactly the neighborhood of the initial vertex v except that the edge
towards u has the other color. If the edge uv was initially red, then the vertex v2 has all
vertices in the graph as red neighbors. If the edge uv was blue, then we add blue edges
between v2 and all vertices that end up in the same (blue) connected component as (one
descendant of) u in G|σ. The result of the edge edit is now modeled exactly by v1 and the
operation is safe because v2 cannot participate in any erroneous cycle as it is a twin of (one
descendant of) u. Moving forward, we assume that all editing operations are vertex splits,
and we say that a sequence σ of vertex splits clusters an (incomplete) correlation graph G if
G|σ has no erroneous cycles. We now state the problems that we study:

Input: An (incomplete) correlation graph G and a non-negative integer k.
Problem: Does there exist a sequence σ of at most k vertex splits which clusters G?

Correlation Clustering with Permissive Vertex Splitting (CCPVS)

Cluster Editing with Permissive Vertex Splitting (CEPVS) is the same problem
restricted to correlation graphs. We conclude this section with our main structural insight,
which is that clustering an (incomplete) correlation graph G via a sequence of vertex splits is
equivalent to performing a very natural notion of overlapping clustering on the vertices of G.

▶ Definition 3. A covering of an (incomplete) correlation graph G = (V, E) is a set
family F ⊆ 2V such that

⋃
F = V . The cost of the covering F is

costG(F) =
∑
v∈V

(#F(v) − 1),

where #F(v) := |{X | v ∈ X ∈ F}| counts the number of sets in F which contain v.

SWAT 2024

8:6 Correlation Clustering with Vertex Splitting

▶ Definition 4. An overlapping clustering of an (incomplete) correlation graph G is a
covering F with the following two properties:

for every blue edge uv ∈ B, there exists at least one cluster X ∈ F with {u, v} ⊆ X, and
for every red edge uv ∈ R, there exists two distinct clusters X, Y ∈ F with u ∈ X

and v ∈ Y .
For a specific edge uv, we say that a clustering covers the edge if it is blue and the first
condition holds and we say that it resolves the edge if it is red and the second condition holds.

▶ Lemma 5. An (incomplete) correlation graph G can be clustered with k vertex splits if
and only if G has an overlapping clustering of cost k.

Proof. For the first direction, let σ be a sequence of k vertex splits clustering G = (V, B, R),
i.e., σ produces a graph G|σ = (V|σ, E|σ) with no erroneous cycles. We will construct
an overlapping clustering F of cost at most k. We note that it is easy to extend any
such overlapping clustering to one of cost exactly k. We begin by choosing an arbitrary
vertex v ∈ V|σ. We denote by v∗ the ancestor of v in V . Let Cv ⊆ V|σ be the vertices of the
connected component of v in the subgraph of G|σ induced by all blue edges, and Cv∗ be the
set of corresponding ancestor vertices in V . We add Cv∗ to F and remove Cv from G|σ. We
repeat this process exhaustively. The resulting F is a covering of G, as each vertex in V

has at least one descendant in V|σ. Moreover, our construction guarantees that each vertex
in V|σ is considered exactly once. Consequently, for each vertex v ∈ V we have that #F(v)
is no greater than the number of descendants of v in V|σ. Thus, F has cost at most k. Each
blue edge is covered by construction.

For the final step, we show how to augment F such that all red edges are resolved while
maintaining that costG(F) ≤ k. We begin by identifying some red edge uv which is not
resolved by F . This implies that each of u and v are contained in exactly one cluster X ∈ F .
The red edge uv implies that there is some red edge u1v1 in G|σ, where u1 is a descendant
of u and v1 is a descendant of v. Moreover, the construction of F guarantees that there
is some blue path between v1 and a descendant of u, but this latter descendant cannot
be u1 or else we have identified an erroneous cycle in G|σ. Thus, u has multiple descendants
in G|σ and is therefore a split vertex. Since u is a split vertex but is only contained in one
cluster X in F , we can add the cluster {u} to F , thereby resolving uv, while maintaining
that costG(F) ≤ k. We repeat this process until all red edges are resolved.

For the other direction, let F be an overlapping clustering of G with cost k. For
each vertex v that is contained in more than one cluster set in F , we split v a total
of #F(v) − 1 times. We assign each descendant to one set X ∈ F with v ∈ X and we create
blue edges towards all other vertices that are contained in X (or to the specific descendant of
a vertex in X that was also assigned to X). All other edges incident to the descendant of v

are red. We first show that this construction indeed corresponds to a series of vertex splits.
For each blue edge uv, we have that there is some cluster set X ∈ F with u, v ∈ X. Hence,
if u and/or v are split, then the blue edge uv corresponds to the blue edge between the two
copies of u and v that are assigned to X. For each red edge uv, we have that there are some
cluster sets X ̸= Y ∈ F with u ∈ X and v ∈ Y . Hence, if u and/or v are split, then the red
edge uv corresponds to the red edge between (the descendant of) u assigned to X and (the
descendant of) v that is assigned to Y . Moreover, we did exactly cost(F) splits.

It remains to show that the sequence of splits results in a graph that contains no erroneous
cycles. Suppose that an erroneous cycle (u = v0, v1, . . . , vp = w, u) with red edge uw remains.
Note that each vertex is assigned to exactly one cluster set in F as each unsplit vertex is
contained in exactly one set in F and each descendant of a split vertex is assigned to a

M. Bentert, A. Crane, P. G. Drange, F. Reidl, and B. D. Sullivan 8:7

cluster set by construction. We will show that there is no blue edge between vertices that are
assigned to different clusters and no red edge between vertices that are assigned to the same
cluster set. This finishes the proof as u and w are then assigned to different cluster sets as
they share a red edge, but wi and wi−1 are assigned the same cluster set for each i ∈ [p],
a contradiction. First, assume that there is a blue edge xy where x and y are assigned to
different cluster sets. If x and y are both unsplit vertices, then the blue edge between them is
not covered by F , a contradiction. Hence, at least one of the two vertices is the descendant of
a split vertex and by construction, all edges to vertices that are assigned to different cluster
sets are red. Now assume that there is a red edge xy where x and y are assigned to the same
cluster set X ∈ F . Again, if x and y are both unsplit vertices, then they are only contained
in X in F and hence the red edge between them is not resolved by F , a contradiction. So
at least one of the two vertices is the descendant of a split vertex and by construction, all
edges to vertices that are assigned to X are blue, a final contradiction. This concludes the
proof. ◀

3 Incomplete Information

We first consider the more general problem, Correlation Clustering with Permissive
Vertex Splitting, which allows for incomplete information. Without vertex splits, it has
long been known that Correlation Clustering is in fact equivalent to Multicut [20],
which is the problem of deleting a minimum number of edges from a graph G = (V, E)
such that every terminal pair of distinct vertices in a set S ⊆

(
V
2
)

is separated in the
resulting graph. We define Multicut with Vertex Splitting (MCVS) and show that it
is equivalent to CCPVS. We believe that this result is of independent interest, but it will
also prove immediately useful as it facilitates the main results of this section. Specifically,
CCPVS and MCVS are both para-NP-hard when parameterized by the number of vertex
splits, and for any ε > 0 it is NP-hard to approximate either problem within a n1−ε factor.

First we must define our new Multicut variant. In this context we use standard graph
terminology, i.e., we discuss simple, unweighted, and undirected graphs with a single edge
relation E. Note that this is equivalent to a correlation graph where edges in E are blue
and all other vertex pairs are red, so permissive vertex splits are still well-defined. However,
in the Multicut context we can safely assume that all vertex splits are exclusive, i.e.,
whenever splitting a vertex v into descendants v1 and v2 we have that N(v1) ∪ N(v2) = N(v)
and N(v1) ∩ N(v2) = ∅. The reason is that in Multicut it is never advantageous to assign
more edges than required. Note that in the classic version of Multicut, it does not make
sense to have an edge between two vertices of a terminal pair. We decided to keep this
restriction as it streamlines some of the following arguments. A related technical detail to
discuss is what happens to a terminal pair when one of its two vertices is split. We work
with the variant where the terminal pair is simply removed in this case. Note that this
is equivalent to the variant where we can choose either of the descendants to replace the
original vertex in the terminal pair, since, as previously mentioned, we may always assume
that any two descendants of the same vertex end up in different connected components.

Input: A graph G = (V, E), an integer k, and a set S ⊆
(

V
2

)
of terminal pairs

with S ∩ E = ∅.
Problem: Does there exist a sequence σ of at most k (exclusive) vertex splits such that

each pair in S is separated in G|σ?

Multicut with Vertex Splitting (MCVS)

SWAT 2024

8:8 Correlation Clustering with Vertex Splitting

We now show that CCPVS and MCVS are equivalent problems. Let (G = (V, B, R), k) be
an instance of CCPVS. We construct an equivalent instance (H = (V ′, E′), S, k) of MCVS
as follows. For each vertex v ∈ V we create a vertex v′ in V ′. Additionally, for each blue
edge uw ∈ B we add the edge u′w′ to E′. Finally, for each red edge uw ∈ R we add the
terminal pair (u′, w′) to S. This completes the construction of H.

▶ Theorem 6. For any integer k ≥ 0, (G, k) is a yes-instance of Correlation Clustering
with Permissive Vertex Splitting if and only if (H, S, k) is a yes-instance of Multicut
with Vertex Splitting.

Proof. For the first direction, let σ = (σ1, σ2, . . .) be a sequence of vertex splits clustering G.
We will construct a sequence σ′ of the same length which separates each pair in S by
considering each σi in order. If σi splits vertex v ∈ V into v1 and v2 then σ′

i splits v′ into v′
1

and v′
2. By construction, each neighbor u′ of v′ corresponds to a blue neighbor u of v. If u is

a blue neighbor of v1, then we create the edge v′
1u′. Otherwise, we create the edge v′

2u′. This
completes the construction of σ′. Now, we assume toward a contradiction that some terminal
pair (v′, u′) is connected in H|σ′ . Then there is some path (v′ = w′

0, w1, . . . , w′
p = u′) in H|σ′ .

Note that our construction ensures that this path contains at least two edges, and that there
is a corresponding blue path (v = w0, w1, . . . , wp = u) in G|σ. Moreover, because (v′, u′)
is a terminal pair in H|σ′ , vu is a red edge in G|σ. Thus, we have identified an erroneous
cycle (v = w0, w1, . . . , wp = u, v) in G|σ, contradicting that σ clusters G.

For the other direction, let σ′ = (σ′
1, σ′

2, . . .) be a sequence of vertex splits such that no
terminal pair is connected in H|σ′ . As before, we will construct a solution σ of the same
length by considering each σ′

i in order. If σ′
i splits v′ into v′

1 and v′
2, then we split the

corresponding vertex v into v1 and v2 as follows. If v′ is a terminal with partner u′, then
our construction guarantees that vu is a red edge in G. We create the red edge v1u if v′

1
(or one of its descendants) is in a different component from u (or one of its descendants)
in H|σ′ . Otherwise, we create the red edge v2u. We mark the relevant pair of descendants
so that, when performing subsequent splits, the red edge is always assigned such that its
endpoints in Gσ correspond to vertices in different connected components of H|σ′ . Next,
for each u′ ∈ N(v′), we create the blue edge v1u if σ′

i assigns u′ to N(v′
1). Otherwise,

we create the blue edge v2u. We now assume toward a contradiction that there is an
erroneous cycle (v = w0, w1, . . . , wp = u, v) in G|σ, with vu being the red edge. The blue
path (v = w0, w1, . . . , wp = u) guarantees that there is a path (v′ = w′

0, w′
1, . . . , w′

p = u′)
from v′ to u′ in H|σ′ , and this together with the red edge vu implies that (v′, u′) is a terminal
pair. This contradicts that no terminal pair is connected in H|σ′ . ◀

To reduce MCVS to CCPVS, we simply reverse the previous reduction of CCPVS
to MCVS. Formally, let (G = (V, E), S, k) be an instance of MCVS. We create an in-
stance (H = (V ′, B, R), k) of CCPVS as follows. For each vertex v ∈ V we add vertex v′

to V ′, for each edge uw ∈ E we add the blue edge u′w′ to B, and finally for each terminal
pair (u, v) ∈ S, we add the red edge u′v′ to R. Note that B and R are disjoint, as by
definition no terminal pair in S is also an edge in E.

▶ Theorem 7. For any integer k ≥ 0, (G, S, k) is a yes-instance of Multicut with
Vertex Splitting if and only if (H, k) is a yes-instance of Correlation Clustering
with Permissive Vertex Splitting.

Proof. Note that applying the reduction behind Theorem 6 to H results in the in-
stance (G, S, k). Thus, Theorem 6 already shows that the two instances are equivalent. ◀

M. Bentert, A. Crane, P. G. Drange, F. Reidl, and B. D. Sullivan 8:9

Theorems 6 and 7, together with the observation that both reductions exactly preserve the
number of vertices, allow us to state the following strong notion of equivalence between
CCPVS and MCVS.

▶ Corollary 8. For any function f , CCPVS admits a kernel of size f(k) if and only
if MCVS does. Furthermore, the minimization variant of CCPVS admits a polynomial-time
f(n)-approximation algorithm if and only if the minimization variant of MCVS does.

Now that we have established the equivalence of MCVS and CCPVS, we are ready to show
the hardness of both problems.

▶ Theorem 9. MCVS is NP-hard even if k = 2 Additionally, for any ε > 0 it is NP-hard to
approximate MCVS to within a factor of n1−ε.

Proof. Let G = (V, E) be the input graph for k-Colorability with k ≥ 3. We will construct
an equivalent input instance (H, S, k −1) for MCVS. We construct the graph H and terminal
set S from G as follows. We add V to H and for each edge uv ∈ E, we add (u, v) to S. We
then add a new vertex a to H, and create edges from a to all other vertices. This completes
the construction.

We first argue that we may assume that any solution of (H, S, k − 1) only splits a. To see
this, let σ be a sequence of vertex splits of length at most k − 1 such that all terminal pairs
are disconnected in H|σ. Suppose that some vertex v ̸= a is split. Before this split, v only has
one neighbor a∗, which is either equal to a or a descendant of a. We simply replace the split
of v with a split of a∗ into a∗

1 and a∗
2 such that N(a∗

1) = {v} and N(a∗
2) = N(a∗) \ {v}. In

the resulting graph, v is disconnected from all other vertices in V , and so it is disconnected
from all of its terminal partners. We proceed with the assumption that in any solution a is
the only split vertex.

Assume that (H, S, k − 1) is a yes-instance. We show that then G is k-colorable. By the
above, H|σ contains k descendants a1, . . . , ak of a and these vertices naturally partition the
set V into k sets Ci = N(ai) for i ∈ [k]. No terminal-pair can appear with both endpoints in
one of these sets so the same holds for E ⊆ S. Hence, C1, . . . , Ck is a valid k-coloring of G.

In the other direction, assume that G has a k-coloring with the color partition C1, . . . , Ck.
Then we can split a ∈ H a total of k−1 times into descendants a1, . . . , ak such that N(ai) = Ci.
Since {a1, . . . , ak} is independent it is easy to verify that these k − 1 splits separate every
terminal pair in S.

We conclude that MCVS is already NP-hard with parameter k = 2 as the above provides
a reduction from 3-Colorability. The approximation hardness follows directly from the
facts that, given any constant ε > 0, computing an n1−ε-approximation for Chromatic
Number is NP-hard [29], and that our constructed instance of MCVS has only n + 1
vertices. ◀

Taken together with Corollary 8, Theorem 9 gives us the same result for CCPVS.

▶ Corollary 10. CCPVS is NP-hard even if k = 2 Additionally, for any ε > 0 it is NP-hard
to approximate CCPVS to within a factor of n1−ε.

4 Complete Information

We now restrict our study to correlation graphs, i.e., we study Cluster Editing with
Permissive Vertex Splitting. Our main results are NP-hardness (Section 4.1), a polyno-
mial kernel (Section 4.2), and a polynomial-time 7-approximation (Section 4.3). We begin by
introducing a new structure and subsequent lemmas which will be helpful in attaining the
latter two results.

SWAT 2024

8:10 Correlation Clustering with Vertex Splitting

▶ Definition 11. A bad star S in a correlation graph G is a set {v0, v1, . . . , v|S|−1} of vertices
where all edges in {{v0, vi} | i ∈ [|S|−1]} are blue and all edges in {{vi, vj} | i ̸= j ∈ [|S|−1]}
are red. The vertex v0 is called the center and all other vertices are called leaves. The weight
of a bad star weight(S) is the number of leaves in the star minus one. A bad star forest is a
collection T of vertex-disjoint bad stars. We write weight(T) :=

∑
S∈T weight(S) to denote

the sum of weights of its members. A correlation graph G contains a bad star forest if it
contains a subgraph which is a bad star forest.

The first lemma states a useful lower bound in terms of bad stars.

▶ Lemma 12. If G contains a bad star forest of weight k then we need at least k vertex splits
to cluster G.

Proof. We begin by showing that if G = (V, B, R) contains a (not necessarily induced)
subgraph H = (VH , BH , RH) and at least k vertex splits are needed to separate each pair
in S, then at least k vertex splits are needed to cluster G. Suppose otherwise. Then,
using Lemma 5, there is some overlapping clustering F of G with cost less than k. We
will construct an overlapping clustering FH of H with cost less than k. We begin by
setting FH = {X ∩ VH | X ∈ F}. It is clear that this is a covering of H, that every blue
edge is covered, and that #FH(v) ≤ #F(v) for every vertex v ∈ VH . We now ensure that
each red edge is resolved. Let uv be a red edge which is not resolved, so each of u and v

belong to only a single cluster X ∈ FH . In this case we claim that F contains two distinct
clusters Y ̸= Z such that Y ∩ VH = Z ∩ VH = X. Otherwise, either F does not resolve uv or
one of u or v is contained in multiple clusters of FH , both contradictions. Thus, we can safely
add the cluster {u} (chosen without loss of generality) to FH , thereby resolving uv while
maintaining that #FH(u) ≤ #F(u). We repeat this process iteratively until all red edges
are resolved. In doing so, we produce an overlapping clustering FH of H with costH(FH) ≤
costG(F) < k, a contradiction.

It remains to show that a bad star forest of weight k requires at least k vertex splits to
cluster. We begin by showing that a bad star S of weight k requires at least k vertex splits.
Let x be the center vertex of S and let F be an overlapping clustering of S. Let the clusters
in F which contain x be C1, C2, . . . , Cp. Moreover for each 1 ≤ i ≤ p, let Ĉi = Ci \ {x}. Note
that we may assume each Ĉi is nonempty, as the cluster {x} covers no blue edges and resolves
no red edges in S, and can therefore be safely removed from F . Observe also that each leaf v

of S must be contained in some set Ĉi since the edge xv is blue. Now suppose that some
leaf v is contained in two sets Ĉi ≠ Ĉj . We remove v from the cluster Cj (chosen arbitrarily)
and add the cluster {v} to F . The blue edge xv is still covered by Ci, the cluster {v} ensures
that all red edges incident to v are still resolved, and we have not increased the cost of the
clustering. Thus, we may safely assume that the sets Ĉ1, Ĉ2, . . . Ĉp are a partition of the
leaves of S. Consider one such set Ĉi. These leaves induce a red clique and none of these
red edges is resolved by Ci, so we have that at least |Ĉi| − 1 of these leaves are contained in
multiple clusters in F . Since we also know that #F(x) = p, we conclude

costS(F) ≥ (|Ĉ1| − 1) + (|Ĉ2| − 1) + . . . + (|Ĉp| − 1) + #F(x) − 1

= |Ĉ1| + |Ĉ2| + · · · + |Ĉp| − p + p − 1 = |S \ {x}| − 1 = weight(S) = k

Finally, let T be a bad star forest made up of t bad stars S1, S2, . . . , St. Let k be the weight
of T and suppose toward a contradiction that T admits an overlapping clustering F of cost
less than k. Then, we repeat the technique from earlier in this proof to construct overlapping
clusterings FS1 , FS2 , . . . FSt

of the bad stars. Because the bad stars are vertex-disjoint, we

M. Bentert, A. Crane, P. G. Drange, F. Reidl, and B. D. Sullivan 8:11

have that costS1(FS1) + costS2(FS2) + . . . + costSt
(FSt

) ≤ costT (F) < k. This implies that
there is some Si such that costSi

(FSi
) is less than the weight of Si, but we have already

proven that this is impossible. ◀

The second lemma states that every optimal solution contains a cluster that contains all
vertices of a sufficiently large blue clique.

▶ Lemma 13. If a correlation graph G contains a blue clique C of size at least k + 1, then
any overlapping clustering F of cost at most k contains a set X ∈ F with C ⊆ X.

Proof. Let C be a blue clique in G of size at least k + 1 and let F be any overlapping
clustering of cost at most k. Assume towards a contradiction that F does not contain a set X

with C ⊆ X. Since F has cost at most k, there exists a vertex v ∈ C that is contained in
exactly one set Y ∈ F . Moreover, since Y does not contain all vertices of C by assumption,
there exists a vertex u ∈ C \ Y . Since C is a blue clique, the edge uv is blue and is covered
by some set Z ∈ F . Observe that Y ̸= Z as u ∈ Z and u /∈ Y . Since Z covers the edge uv,
it holds that v ∈ Z, a contradiction to the assumption that v is only contained in Y . ◀

4.1 NP-hardness

We now show that Cluster Editing with Permissive Vertex Splitting is NP-hard.

▶ Proposition 14. Deciding whether a given correlation graph admits an overlapping clus-
tering of cost at most k is NP-hard.

Proof. We reduce from Vertex Cover. Let (G = (V, E), k′) be an instance of Vertex
Cover. We construct a correlation graph H as follows. Let U be a set of k′ + 1 vertices
(not contained in V). The vertex set of H is U ∪ V . For each edge e = uv ∈ E, we add a
red edge uv to H. All other edges (including all edges incident to a vertex in U) are blue.
Finally, we set k = k′.

We next show that the reduction is correct. First assume that there is an overlapping
clustering F of H of cost at most k. By Lemma 13, for each vertex v ∈ V , there exists
a set Xv ∈ F with U ∪ {v} ⊆ Xv. Note that U ⊂ Xu ∩ Xv for any pair u, v ∈ V and
therefore Xu = Xv as otherwise the cost of F is at least |U | > k. Hence, there exists a
set X ∈ F with U ∪V ⊆ X. Since all blue edges are covered by X, we next focus on resolving
all red edges. Note that since X contains all vertices in H and the cost of F is at most k, all
remaining sets in F ′ = F \ X contain at most k vertices combined. If for some red edge uv

none of the two vertices u or v is contained in a set in F ′, then this red edge is not resolved
by F . Thus for each red edge, at least one of the two endpoints is contained in a set in F ′.
Note that this immediately implies that G contains a vertex cover of size at most k (all
vertices that are contained in a set in F ′).

For the other direction, assume that G contains a vertex cover S of size at most k. We
construct an overlapping clustering F of H of cost at most k as follows. The family F
contains one set X = U ∪ V and for each vertex v ∈ S, it contains a set Xv = {v}. Note
that the cost of F is at most k and all blue edges in H are covered by X. Moreover, each
red edge uw in H is resolved as by construction it holds that F contains the set Xu = {u}
or Xw = {w}. Without loss of generality, let F contain Xu. Then, the red edge uw is
resolved as w is contained in X and u is contained in Xu ̸= X. This concludes the proof. ◀

SWAT 2024

8:12 Correlation Clustering with Vertex Splitting

4.2 Polynomial Kernel
We next show that Cluster Editing with Permissive Vertex Splitting parameterized
by k admits a polynomial kernel. Note that this is in stark contrast to the para-NP-hardness
of Correlation Clustering with Permissive Vertex Splitting parameterized by k.

▶ Theorem 15. Cluster Editing with Permissive Vertex Splitting parameterized
by the number of vertex splits admits a kernel with O(k3) vertices.

Proof. Let (G = (V, B, R), k) be the input instance of CEPVS. We begin by computing an
inclusion-maximal bad star forest T in G. If weight(T) ≥ k, then we conclude, according to
Lemma 12, that (G, k) is a no-instance and output an appropriate trivial kernel.

Otherwise let S be the vertices of T and note that |S| ≤ 3 weight(T) ≤ 3k. Since T is
inclusion-maximal, we know that G \ S cannot contain any bad stars and in particular no
bad triangles. We conclude that G \ S is therefore a cluster graph. Let C1, C2, . . . , Cp be
these clusters. We next exhaustively apply the following simple reduction rule.

▶ Reduction rule 1. If G contains a blue clique C such that all edges with one endpoint
in C are red, then remove C from G.

Next, we bound the number p of cliques in G \ S as follows. Assume that G \ S contains
at least 4k + 1 cliques. Note that by application of Reduction Rule 1, all clusters in G \ S

have at least one blue edge towards S. Pick for each clique C in G \ S one such blue edge
towards S and let vC be the endpoint in C of this edge. Note that these chosen edges form a
collection of vertex-disjoint stars with all centers in S (but not necessarily all vertices in S

being centers). Moreover, since the vertices vC and vC′ belong to different cliques for each
pair C ̸= C ′ of cliques in G \ S, the edge between the two is red. Hence, all stars with at
least two leaves in V \ S are bad stars. Let S′ ⊆ S be the set of vertices in S that are not
the center of such bad stars, that is, vertices in S for which we chose at most one incident
blue edge as a representative for a clique. Let S∗ = S \ S′. Since we chose at most one blue
edge svC for each vertex s ∈ S′, the number of chosen blue edges included in bad stars is at
least

(4k + 1) − |S′| ≥ (4k + 1) − |S| + |S∗| ≥ (4k + 1) − 3k + |S∗| = k + 1 + |S∗|.

Hence, the weight of the constructed collection of bad stars is at least k +1 and by Lemma 12,
we conclude that (G, k) is a no-instance. Thus, if G \ S contains at least 4k + 1 cliques after
applying Reduction Rule 1 exhaustively, we can return a trivial no-instance. Otherwise, the
number p of cliques is bounded by 4k.

We are now left with the task of bounding the size of each individual cluster Ci to
arrive at a polynomial kernel. To that end, we apply the following marking and deletion
procedure to each cluster: For a fixed cluster Ci, begin with an initially empty set Mi.
For each vertex v ∈ S, arbitrarily mark k + 1 red and k + 1 blue neighbors of v in Ci by
adding them to Mi (or all red/blue neighbors if there are at most k). Note that we mark at
most |Mi| ≤ |S|(2k + 2) ≤ 6k2 + 6k vertices this way.

▶ Reduction rule 2. For any cluster Ci, delete all (unmarked) vertices in Ci \ Mi from G.

Let Ĝ be the graph obtained after applying the reduction rule to some cluster Ci. We now
need to show that this reduction rule is safe and sound. Let Ri := Ci \ Mi be the vertices
removed by the reduction rule.

M. Bentert, A. Crane, P. G. Drange, F. Reidl, and B. D. Sullivan 8:13

First note that if F is an overlapping clustering of G, then F \ Ri (interpreted as
a multiset4, that is, the same cluster might appear multiple times in it) is trivially an
overlapping clustering of Ĝ and costĜ(F \ Ri) ≤ costG(F). Thus, the reduction rule is safe.

To prove soundness, let F̂ be an overlapping clustering of Ĝ with costĜ(F̂) ≤ k. Let u ∈ Ri

be one of the removed vertices. We argue that we can include u in the clustering without
increasing the cost. Note that since we removed a vertex, the size of Ci was initially at
least 2k + 2 and hence, by Lemma 13, we have that F̂ contains a set Ĉ with Ci ⊆ Ĉ. We
add u to this cluster and now argue that u does not have to be included in any further
clusters if (G, k) is a yes-instance. To that end, we show that every edge incident to u is
already covered/resolved by this new clustering.

Let uv be any blue edge incident to u. Note that if v ∈ Ci then uv is covered by Ĉ, so
we may assume that v ∈ S. Then v has at least k + 2 blue neighbors in Ci as otherwise we
would have marked u. Let N be a set of k + 1 neighbors of v in Ci that were marked. By
Lemma 13, there exists a cluster set X ∈ F̂ with N ∪ {v} ⊆ X. Hence, X = Ĉ as otherwise
the cost of F̂ would be at least k + 1 as each vertex in N would appear in at least two sets.
Thus, uv is covered by Ĉ ∪ {u} in the constructed overlapping clustering.

Now let uv be any red edge incident to u. Again, we claim that because u was unmarked,
v must have at least k + 2 red neighbors in Ci. Either v ∈ S, in which case the argument
is the same as before, or v ∈ V \ (S ∪ Ci). In this case, all of Ci is contained in v’s red
neighborhood, and we have already observed that Ci has at least 2k + 2 vertices. Let N

be a set of k + 1 red neighbors of v in Ci that were marked. Note that v is contained in
a set X ̸= Ĉ ∈ F̂ as otherwise each vertex in N would be contained in at least two sets
and cost(F̂) ≥ k + 1. Hence, uv is resolved as u ∈ Ĉ ∪ {u} and v ∈ X.

We conclude that the resulting clustering covers all blue edges incident to u and resolves
all red edges incident to u at the same cost as the clustering F̂ . By repeating the procedure
for the remaining vertices of Ri we conclude that there exists a clustering F which clusters G

and costG(F) = costĜ(F̂). Repeating this argument for every cluster demonstrates that
Rule 2 is indeed sound.

Finally, note that after application of Rule 1 and Rule 2 to a yes-instance, we have p ≤ 4k

clusters of size at most |S|2(k + 1) ≤ 6k2 + 6k each and therefore the total number of vertices
in the end is at most |S| + 4k(6k2 + 6k) = 24k3 + 24k2 + 3k ∈ O(k3). This concludes the
proof. ◀

4.3 Constant-Factor Approximation
We conclude this section with a constant-factor approximation for Cluster Editing
with Permissive Vertex Splitting. Again, this is in stark contrast to Correlation
Clustering with Permissive Vertex Splitting.

▶ Theorem 16. Cluster Editing with Permissive Vertex Splitting admits a 7-
approximation in polynomial time.

Proof. Let G = (V, E) be a correlation graph. We again begin by computing an inclusion-
maximal bad star forest T in G. By Lemma 12, the weight of T is at most opt (the minimum
cost of an overlapping clustering of G). Since the number of vertices in a bad star is at most
thrice its weight (a bad triangle has weight one and contains three vertices), the set S of

4 Technically an overlapping clustering cannot be a multiset. We refer the reader to the proof of Lemma 12,
in which we formally show how to adapt this construction into an overlapping clustering with cost
bounded by costG(F).

SWAT 2024

8:14 Correlation Clustering with Vertex Splitting

vertices in T is at most 3 opt. Since T is inclusion-maximal, the graph induced by V \ S does
not contain any bad star, that is, the blue edges form a cluster graph. Let C be the set of
(blue) cliques in this graph. If |C| ≤ 1, then we find a simple 3-approximation by putting
each vertex v ∈ S into its own cluster set Xv and adding one cluster set XS = V . Note that
the cost of this overlapping clustering is |S| ≤ 3 opt. Hence, we assume for the remainder of
the proof that |C| ≥ 2.

Next, we restrict our search to a solution that contains one cluster set XS with S ⊆ XS

and for each vertex v ∈ S one cluster set Xv = {v}. Note that we can add these sets to any
solution (if they are not already present within the solution) to get a new solution whose cost
is at most 2|S| ≤ 6 opt larger than the original. We call overlapping clusterings that satisfy
the above simple solutions and we denote the minimum cost of a simple solution by opt′.

We next show that there is always a simple solution of cost opt′ that contains for each
clique C ∈ C a cluster set XC with C ⊆ XC . Start with any simple solution F of cost opt′

and any clique C ∈ C and assume that F does not contain a cluster set containing C. We
prove that in this case each vertex in C is contained in at least two cluster sets in F . Assume
towards a contradiction that some vertex v ∈ C is contained in exactly one cluster set Y

(note that by definition of overlapping clusterings, each vertex is contained in at least one
cluster set). Since we assumed that no cluster set completely contains C, there exists a
vertex u ∈ C \ Y . However, since u and v are contained in the same clique C, the edge
between them is blue and has to be covered by some cluster set Z ∈ F (and hence Z has
to contain both u and v). Note that Z ̸= Y since u ∈ Z but u /∈ Y . This contradicts the
assumption that v is only contained in cluster set Y .

We construct a new simple solution F ′ of cost opt′ by removing all vertices in C from all
cluster sets in F and adding them all to XS . In addition, we add one new cluster set XC = C.
Note that the cost of F ′ is at most the cost of F as we removed each vertex in C from
at least two cluster sets and added them to exactly two cluster sets. Moreover, the new
solution is indeed an overlapping clustering as all blue edges incident to a vertex in C are
covered by XS as all blue neighbors are either in S or in C. Since no red neighbors of any
vertex in C are contained in C, the new cluster set XC ensures that all red edges incident to
vertices in C are resolved. Repeating the above for all cliques in C yields a simple solution of
cost opt′ that contains for each clique C ∈ C a cluster set XC with C ⊆ XC .

The next step is to show that there is always an optimal simple solution (a simple
solution of cost opt′) in which XC ̸= XC′ for any pair C ̸= C ′ ∈ C. Start with any optimal
simple solution F that contains a cluster set XC ⊇ C for each clique C ∈ C and assume
that XC1 = XC2 for some cliques C1 ̸= C2. Observe that all vertices from at least one of
the two cliques are contained in at least two cluster sets each as if there are vertices u ∈ C1
and v ∈ C2 that are only contained in XC1 = XC2 , then the red edge between them is not
resolved by F . Without loss of generality, let all vertices of C1 be contained in at least two
cluster sets each. Then, we construct a new simple solution F ′ of cost opt′ by removing all
vertices in C1 from all cluster sets in F and adding them all to XS and adding one new
cluster set XC1 = C1. The proof that this is correct is exactly the same as before. The cost
of F ′ is at most the cost of F as we removed each vertex in C1 from at least two cluster
sets and added them to exactly two cluster sets. Moreover, the new solution is indeed an
overlapping clustering as all blue edges incident to a vertex in C1 are covered by XS and
the new cluster set XC1 ensures that all red edges incident to vertices in C are resolved.
Repeating the above for all cliques in C yields an optimal simple solution that contains for
each clique C ∈ C a cluster set XC ⊇ C such that XC ̸= XC′ for all C ̸= C ′ ∈ C.

M. Bentert, A. Crane, P. G. Drange, F. Reidl, and B. D. Sullivan 8:15

Next, we guess which clique C∗ ∈ C satisfies XC∗ = XS in an optimal simple solution
satisfying all of the above.5 By that, we mean that we try all possibilities of the following
and return the best solution found. For each clique C ∈ C \ {C∗}, we compute a minimum
vertex cover KC of the blue edges between C and S in O(n3) time using Kőnig’s theorem
(note that the considered graph is bipartite by construction). We add each vertex in KC ∩ S

to XC and each vertex in KC ∩ C to XS .
We claim that

∑
C∈C\{C∗} |KC | ≤ opt′ −|S|. By the above arguments, we can start with

an overlapping clustering F consisting of one cluster set XS = S ∪C∗, one cluster set XC = C

for each C ∈ C \ {C∗}, and one cluster set Xv = {v} for each v ∈ S. Note that all red edges
are resolved and all blue edges except for those between S and V \ (S ∪ C∗) are covered.
To cover a blue edge uv with u ∈ S and v ∈ C for some C ∈ C \ {C∗}, there are three
possibilities: We can add u to XC , we can add v to XS , or there exists a different cluster
set Y ∈ F with {u, v} ⊆ Y . Note that in the third case, we can remove v from Y and add
it to XS and still get an optimal simple solution. Moreover, the optimal way to cover all
blue edges between S and V \ (S ∪ C∗) using the first two possibilities corresponds exactly
to

∑
C∈C\{C∗} |KC |. Since now all red edges are resolved and all blue edges are covered and

the cost of the constructed overlapping clustering is

|S| +
∑

C∈C\{C∗}

|KC | ≤ opt′ ≤ 7 opt,

we successfully computed a factor-7 approximation in polynomial time. ◀

We leave it as an open problem to improve the approximation factor. We conjecture that a
refined concept of a simple solution might yield an approximation factor of 4.

5 Conclusion

We have introduced permissive vertex splitting, which generalizes the earlier exclusive and
inclusive vertex splitting notions by allowing symmetry with respect to “positive” and
“negative” pairwise similarity data. Our type of vertex splitting turns out to be quite
satisfying, as it corresponds to a natural definition of overlapping clustering. Unfortunately,
the general case of Correlation Clustering with Permissive Vertex Splitting is
rather intractable, as it is para-NP-hard and admits no n1−ε approximation in polynomial
time for any ε > 0 (unless P = NP). On the positive side, when restricted to datasets with
complete data we obtain a kernel with O(k3) vertices and a polynomial time 7-approximation.
Interesting questions remain, for example whether one can reduce our approximation factor
to 4 (or even lower), whether a kernel with only linearly many vertices exists (as is the case
when only inclusive splits and edge-edits are allowed [1]), or whether refined lower bounds
in terms of running time or approximation factor can be found. Future work might also
consider the parameterized complexity of Correlation Clustering with Permissive
Vertex Splitting and Cluster Editing with Permissive Vertex Splitting with
respect to structural parameters of the input, or with restrictions on the number of clusters
which contain any given node.

Finally, we would like to amplify the call of Abu-Khzam et al. [1] to extend the study of
vertex splitting (exclusive, inclusive, or permissive) to other classes of target graphs, many of
which (e.g., bicluster graphs, s-cliques, s-clubs, s-plexes, k-cores, and γ-quasi-cliques) have
been proposed as alternatives to cliques in clustering applications.

5 We can assume that one such clique always exists, but even if this was not the case, the following proof
still works if the guess {C∗} = ∅ yields an optimal simple solution.

SWAT 2024

8:16 Correlation Clustering with Vertex Splitting

References
1 Faisal N. Abu-Khzam, Emmanuel Arrighi, Matthias Bentert, Pål Grønås Drange, Judith Egan,

Serge Gaspers, Alexis Shaw, Peter Shaw, Blair D. Sullivan, and Petra Wolf. Cluster editing
with vertex splitting. arXiv preprint, 2023. arXiv:1901.00156.

2 Faisal N. Abu-Khzam, Joseph R. Barr, Amin Fakhereldine, and Peter Shaw. A greedy heuristic
for cluster editing with vertex splitting. In Proceedings of the 4th International Conference on
Artificial Intelligence for Industries (AI4I), pages 38–41. IEEE, 2021.

3 Faisal N. Abu-Khzam, Judith Egan, Serge Gaspers, Alexis Shaw, and Peter Shaw. Cluster edit-
ing with vertex splitting. In Proceedings of the 5th International Symposium on Combinatorial
Optimization (ISCO), pages 1–13. Springer, 2018.

4 Sanjeev Arora, Rong Ge, Sushant Sachdeva, and Grant Schoenebeck. Finding overlapping
communities in social networks: Toward a rigorous approach. In Proceedings of the 13th ACM
Conference on Electronic Commerce (EC), pages 37–54. Association for Computing Machinery,
2012.

5 Emmanuel Arrighi, Matthias Bentert, Pål Grønås Drange, Blair D. Sullivan, and Petra
Wolf. Cluster editing with overlapping communities. In Proceedings of the 18th International
Symposium on Parameterized and Exact Computation (IPEC), pages 2:1–2:12. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2023.

6 Gard Askeland. Overlapping community detection using cluster editing with vertex splitting.
Master’s thesis, University of Bergen, Bergen, Norway, 2022.

7 Sanghamitra Bandyopadhyay, Garisha Chowdhary, and Debarka Sengupta. FOCS: Fast
overlapped community search. IEEE Transactions on Knowledge and Data Engineering,
27(11):2974–2985, 2015.

8 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning,
56(1-3):89–113, 2004.

9 Jeffrey Baumes, Mark Goldberg, and Malik Magdon-Ismail. Efficient identification of overlap-
ping communities. In Proceedings of the 2005 IEEE International Conference on Intelligednce
and Security Informatics (ISI), pages 27–36. Springer, 2005.

10 Francesco Bonchi, Aristides Gionis, and Antti Ukkonen. Overlapping correlation clustering.
Knowledge and Information Systems, 35(1):1–32, 2013.

11 Sebastian Böcker. A golden ratio parameterized algorithm for cluster editing. Journal of
Discrete Algorithms, 16:79–89, 2012.

12 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171–176, 1996.

13 Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. Journal of Computer and System Sciences, 71(3):360–383, 2005.

14 Moses Charikar and Anthony Wirth. Maximizing quadratic programs: Extending
Grothendieck’s inequality. In Proceedings of the 45th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 54–60. IEEE, 2004.

15 Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivakumar. On the
hardness of approximating multicut and sparsest-cut. Computational Complexity, 15(2):94–114,
2006.

16 Jianer Chen and Jie Meng. A 2k kernel for the cluster editing problem. Journal of Computer
and System Sciences, 78(1):211–220, 2012.

17 Vincent Cohen-Addad, Euiwoong Lee, Shi Li, and Alantha Newman. Handling correlated
rounding error via preclustering: A 1.73-approximation for correlation clustering. In 2023
IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 1082–1104.
IEEE, 2023.

18 Alex Crane, Brian Lavallee, Blair D. Sullivan, and Nate Veldt. Overlapping and robust edge-
colored clustering in hypergraphs. In Proceedings of the 17th ACM International Conference
on Web Search and Data Mining, pages 143–151, 2024.

https://arxiv.org/abs/1901.00156

M. Bentert, A. Crane, P. G. Drange, F. Reidl, and B. D. Sullivan 8:17

19 George B. Davis and Kathleen M. Carley. Clearing the FOG: Fuzzy, overlapping groups for
social networks. Social Networks, 30(3):201–212, 2008.

20 Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correlation clustering
in general weighted graphs. Theoretical Computer Science, 361(2-3):172–187, 2006.

21 Reinhard Diestel. Graph Theory. Springer, 2012.
22 Nan Du, Bai Wang, Bin Wu, and Yi Wang. Overlapping community detection in bipartite

networks. In Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology (WI-IAT), pages 176–179, 2008.

23 Esther Galbrun, Aristides Gionis, and Nikolaj Tatti. Overlapping community detection in
labeled graphs. Data Mining and Knowledge Discovery, 28(5-6):1586–1610, 2014.

24 Reynaldo Gil-García and Aurora Pons-Porrata. Dynamic hierarchical algorithms for document
clustering. Pattern Recognition Letters, 31(6):469–477, 2010.

25 Mark Goldberg, Stephen Kelley, Malik Magdon-Ismail, Konstantin Mertsalov, and Al Wal-
lace. Finding overlapping communities in social networks. In Proceedings of the 2nd IEEE
International Conference on Social Computing (SC), pages 104–113, 2010.

26 Steve Gregory. An algorithm to find overlapping community structure in networks. In
Proceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery
in Databases (PKDD), pages 91–102. Springer, 2007.

27 Qinna Wang and Eric Fleury. Uncovering overlapping community structure. In Proceedings
of the 2nd International Workshop on Complex Networks (COMPLEX NETWORKS), pages
176–186. Springer, 2010.

28 Xufei Wang, Lei Tang, Huiji Gao, and Huan Liu. Discovering overlapping groups in social
media. In Proceedings of the 2010 IEEE International Conference on Data Mining (ICDM),
pages 569–578, 2010.

29 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory of Computing, 3(1):103–128, 2007.

SWAT 2024

Daisy Bloom Filters
Ioana O. Bercea #

KTH Royal Institute of Technology, Stockholm, Sweden

Jakob Bæk Tejs Houen #

BARC, University of Copenhagen, Denmark

Rasmus Pagh #

BARC, University of Copenhagen, Denmark

Abstract
A filter is a widely used data structure for storing an approximation of a given set S of elements
from some universe U (a countable set). It represents a superset S′ ⊇ S that is “close to S” in the
sense that for x ̸∈ S, the probability that x ∈ S′ is bounded by some ε > 0. The advantage of using
a Bloom filter, when some false positives are acceptable, is that the space usage becomes smaller
than what is required to store S exactly.

Though filters are well-understood from a worst-case perspective, it is clear that state-of-the-art
constructions may not be close to optimal for particular distributions of data and queries. Suppose,
for instance, that some elements are in S with probability close to 1. Then it would make sense
to always include them in S′, saving space by not having to represent these elements in the filter.
Questions like this have been raised in the context of Weighted Bloom filters (Bruck, Gao and Jiang,
ISIT 2006) and Bloom filter implementations that make use of access to learned components (Vaidya,
Knorr, Mitzenmacher, and Krask, ICLR 2021).

In this paper, we present a lower bound for the expected space that such a filter requires. We
also show that the lower bound is asymptotically tight by exhibiting a filter construction that
executes queries and insertions in worst-case constant time, and has a false positive rate at most ε

with high probability over input sets drawn from a product distribution. We also present a Bloom
filter alternative, which we call the Daisy Bloom filter, that executes operations faster and uses
significantly less space than the standard Bloom filter.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Bloom filters, input distribution, learned data structures

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.9

Related Version Full Version: https://arxiv.org/abs/2205.14894

Funding Supported by grant 16582, Basic Algorithms Research Copenhagen (BARC), from the
VILLUM Foundation.

1 Introduction

This paper shows asymptotically matching upper and lower bounds for the space of an
optimal (Bloom) filter when the input and queries come from specific distributions. For a
set S of keys (the input set), a filter on S with parameter ε ∈ (0, 1) is a data structure that
answers membership queries of the form “is x in S?” with a one-sided error: if x ∈ S, then the
filter always answers YES, otherwise it makes a mistake (i.e., a false positive) with probability
at most ε. The Bloom filter [9] is the most widely known such filter, although more efficient
constructions are known [2, 3, 5, 6, 20, 25,34,41, 42,45]. Filters are also intimately related to
dictionaries (or hash tables), the latter of which always answer membership queries exactly.

When errors can be tolerated, (Bloom) filters are much better than dictionaries at
encoding the input set: they require Θ(n log(1/ε)) bits to represent a set of size n, versus
the ≥ n log(u/n) bits that a dictionary would require (here, u is the size of the universe). As

© Ioana O. Bercea, Jakob Bæk Tejs Houen, and Rasmus Pagh;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 9; pp. 9:1–9:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bercea@kth.se
https://orcid.org/0000-0001-8430-2441
mailto:jakob@tejs.dk
https://orcid.org/0000-0002-8033-2130
mailto:pagh@di.ku.dk
https://orcid.org/0000-0002-1516-9306
https://doi.org/10.4230/LIPIcs.SWAT.2024.9
https://arxiv.org/abs/2205.14894
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Daisy Bloom Filters

such, filters are often used in conjunction with dictionaries to speed up negative queries. In
particular, filters are often stored in a fast but small memory and are used to “filter out” a
majority of negative queries to a dictionary (which might reside in big but slow memory).
Because of this, they have proved to be extremely popular in practice and research on them
continues to this day, both in the direction of practical implementations [19,24,44] and on
the theoretical front [4, 5, 34]. For instance, recent advances in filter design have included
making them dynamic, resizeable and lowering the overall space that they require.

The filter encoding. In this paper, we ask ourselves what should optimal filters look like
when they encode sets that come from a specific distribution. While this question has been
resolved for exact encodings (i.e., entropy), no similar concepts are known for filter encodings.
Indeed, considering input distributions raises several technical questions. For instance, it is
not even clear how to define the concept of approximate membership with respect to a set
drawn from a distribution. Should we assume that the input set is given to us in full before
we build our filter and allocate memory? Moreover, we would like to obtain designs that are
never worse than filters with no knowledge of the input distribution, both in space allocated
and time required to perform every operation. Should we then require that the false positive
guarantee hold for every possible input set or just on average over the input distribution?

We also study optimality when additionally, we have access to a distribution over queries.
This is especially important for applications in which the performance of the filter is measured
over a sequence of queries, rather than for each query separately [11,26]. At the extreme end
of this one can consider adversarial settings, in which an adversary forces the filter to incur
many false positives (which can cause a delay in the system by forcing the filter to repeatedly
access the slow dictionary). In these settings, defining what it means for the filter to behave
efficiently can be a challenge and several definitions have been considered [2, 38–40]. For us,
the challenge is to use the query distribution to obtain gains, while making sure that the
filter does not on average exhibit more false positives than usual. This is natural when each
false positive has the same cost, independent of the query element.

To this end, we consider a natural generative model of input sets and queries. Specifically,
we let P and Q denote two distributions over the universe U of keys and let px (and qx,
respectively) denote the probability that a specific key x ∈ U is sampled from P (and Q,
respectively). The input set S is generated by n independent draws (with replacement) from
P and we let Pn denote this product distribution.1

We then define approximate membership for a fixed set S to mean that the average
false positive probability over Q is at most ε. Specifically, let F denote the filter and let
F(S, x) ∈ {YES, NO} denote the answer that F returns when queried on an element x ∈ U ,
after having been given S ⊆ U as input. Then we propose the following definition:

▶ Definition 1. For any ε with 0 < ε < 1, we say that F is a (Q, ε)-filter for S if it satisfies
the following conditions:
1. No false negatives: For all x ∈ S, we have that Pr [F(S, x) = YES] = 1.
2. Bounded false positive rate:∑

x∈U\S

qx · Pr [F(S, x) = YES] ≤ ε

1 We do not consider multiplicities although our design can be made to handle them by using techniques
from counting filters [6, 10,41,43].

I. O. Bercea, J. B. T. Houen, and R. Pagh 9:3

We note a detail in the above definition that has important technical consequences and
that is, the false positive rate is not computed with respect to the input distribution (i.e.,
the probability of a false positive only depends on the internal randomness of the filter and
not the random process of drawing the input set). As a consequence, we can argue about
filter designs that work over all input sets except some that occur very rarely under Pn.
This is stronger than saying that F works only on average over Pn. Moreover, we also want
designs that do not require knowing the specific realization of the input set in advance. Our
dependency on Pn shows up in the space requirements of the filter.

Access to P and Q. For simplicity, we consider filter designs that have oracle access to
P and Q: upon seeing a key x, we also get px and qx. We assume that this is done in
constant time and do not account for the size of the oracle when we bound the size of the
filter. Critics of this model have argued that assuming oracle access to a distribution over
the universe is too strong of an assumption. Indeed, this is a valid concern, since we are
talking about a data structure that is meant to save space over a dictionary. We try to
alleviate this concern in several ways. On one hand, our construction can tolerate mistakes.
In particular, our designs are robust even if we have a constant factor approximation for px

and qx, in the sense in which the space increases only by O(n) bits and the time to perform
each operation by an added constant. The assumption of access to such approximate oracles
is standard [13, 23] and can be based on samples of historical information, on frequency
estimators such as Count-Min [17] or Count-Sketch [16], or on machine learning models (see
for instance, the neural-net based frequency predictor of Hsu et al. [32]). This view is indeed
part of an emerging body of work on algorithms with predictions, to which the data structure
perspective is just beginning to contribute [14,18,27–30,36,37,48].

On the other hand, empirical studies have shown that significant gains are possible even
when using off-the-shelf, “simplistic” learned components such as random forest classifiers.
In particular, the Partitioned Learned Bloom Filter [48] and the Adaptive Learned Bloom
Filter [18] consider settings in which the size of the learned component is comparable to the
size of the filter itself (rather than proportional to the size of the universe), and compare the
traditional Bloom filter design [9] with a learned design whose space includes the random
forest classifier. In one experiment with a universe of ≈ 138, 000 keys and a classifier of
136Kb, [18] show that, within the range 150-300Kb, there is a 98% decrease in false positive
rate compared to the original Bloom filter. This continues to hold for larger universe (≈
450, 000 keys) with total allocated space between 200Kb and 1000Kb. A discussion of how our
current (theoretical) design compares to the ones in [18] and [48] can be found in Section 1.2.

Finally, strictly speaking, our designs do not necessarily rely on knowing px and qx for
every element inserted or queried. As we will see in the next section, our designs depend
rather on knowing which subset of the universe a key x belongs to. This corresponds to
a partitioning of the universe that mainly depends on the ratio qx/px, rather than the
individual values of px and qx (with the exception of values of px and qx that are very small,
e.g., smaller than 1/n). This can conceivably lead to even smaller oracles that just output
the partition to which an element belongs. We also do not need to query the entire universe
in order to set the internal parameters of the filter, in contrast to [18,48].

Weighted Bloom filters. The design that we propose starts by gathering information about
the input and query distributions, using polylog(n) samples.2 This information is used to
estimate the internal parameters of the filter which are then used to allocate space for the
filter and implement the query and insert operations. Thus, the most important aspect of
our design is in setting the aforementioned internal parameters.

2 Elements that are inserted in the set during that time can be stored in a small dictionary that only
requires polylog(n) bits, see Section 4.3.

SWAT 2024

9:4 Daisy Bloom Filters

As a baseline for comparison, we can consider the classic Bloom filter design which
allocates an array of ≈ 1.44 · n log(1/ε) bits and hashes every key to log(1/ε) locations in the
array. Upon insertion, the corresponding bits are set to 1 and a query returns a YES if and
only if all locations are set to 1. The more locations we hash into, the lower the probability
that we make a mistake. Thus, a natural approach for our problem would be to vary the
number of hashed locations of x based on px and qx. Indeed, this is the question investigated
by Bruck, Gao and Jiang [12] in their Weighted Bloom filter design. More precisely, let kx

denote the number of locations that key x is hashed to. Then [12] investigates the optimal
choice of the parameters kx that limits the false positive rate in expectation over both the
input and the query distribution. Their approach follows the original Bloom filter analysis
and casts the problem as an unconstrained optimization problem in which kx is allowed to
be any real number (including negative). For more details, we refer the reader to Section 1.2
This formulation and the fact that their false positive rate is taken as an average over Pn

leads to situations in which kx can be made arbitrarily large and, with high probability, the
filter is filled with 1s and has a high false positive probability (for instance, when a key is
queried very rarely). To avoid such situations, as we shall see next, optimal choices for kx

exhibit some rather counter-intuitive trade-offs between px and qx.

1.1 Our Contributions
We start by discussing near-optimal choices for kx for a Weighted Bloom filter that is a
(Q, ε)-filter for sets drawn from Pn. While this filter is not the most efficient of the filters we
construct, reasoning through it helps us present our parametrizations and addresses the fact
that Bloom filters remain well-liked in practice [35]. Specifically, we define kx as follows:3

kx ≜

0 if or px > 1/n or qx ≤ εpx ,

log(1/ε · qx/px) if εpx < qx ≤ min{px, ε/n} ,

log(1/ε) if qx > px and px ≤ ε/n ,

log(1/(npx)) if qx > ε/n and ε/n < px ≤ 1/n .

The first case covers the situation in which x is very likely to be included in the set or
is queried very rarely (relative to px). Intuitively, it makes sense in these cases to always
say YES when queried. Thus, we set kx = 0 and store no information about these keys.
Conversely, the third case considers the case in which x is queried so often (relative to px)
that we need to explicitly keep the false positive probability below ε, which is achieved by
setting kx = log(1/ε). This is the largest number of hash functions we employ for any key, so
in this sense, we are never worse than the classical Bloom filter. The second case interpolates
smoothly between the first and third cases for elements that are rarely (but not very rarely)
queried (compared to how likely they are to be inserted). Finally, the fourth case interpolates
between the first and third case for elements that are not too rarely queried, in which case the
precise query probability does not matter. See Figure 1 for a visualization of these regimes.

To further make sense of these regimes, we consider the case of uniform queries, i.e.,
qx = 1/u, and assume that ε > n/u, a standard assumption in filter design (otherwise,
the filter would essentially have to answer correctly on all queries and the lower bound of
n log2(1/ε)−O(1) would not hold [15,20]). Then in the two extremes, we would set kx = 0 for
elements with px ≥ 1/(uε) (first case) and kx = log(1/ε) when px ≤ 1/u (third case). Keys

3 Throughout the paper, we employ log x to denote log2 x and ln x to denote loge x.

I. O. Bercea, J. B. T. Houen, and R. Pagh 9:5

F/n

F/n 1/n 1

1

qx

px

log
(
1
F

)
log

(
1

npx

)
0

log
(

qx
Fpx

)

U3 U4 U1

U2
U0 0

Figure 1 A schematic visualization of the different regimes for kx.

with px between the two cases would exhibit the smooth interpolation kx = log(1/(uε) ·1/px),
corresponding to the intuition that the more likely an element is to be inserted, the less
information we should store about it (i.e., smaller kx).

The lower bound. Given the above parameters, we then define the quantity

LB(Pn, Q, ε) ≜
∑
x∈U

pxkx

and show that, perhaps surprisingly, it gives a lower bound for the expected space that any
(Q, ε)-filter requires when the input set is drawn from Pn:

▶ Theorem 2 (Lower bound - simplified). Let A be an algorithm and assume that for any
input set S ⊆ U with |S| ≤ n, A(S) is a (Q, ε)-filter for S. Then the expected size of A(S)
must satisfy

EPn,A [|A(S)|] ≥ LB(Pn, Q, ε) − 1 − 6n ,

where S is sampled with respect to Pn and the queries are sampled with respect to Q.

Previous approaches for filter lower bounds show that there exists a set S ⊆ U of size n

for which the filter needs to use n log2(1/ε) − O(1) bits [15, 20]. This type of lower bound is
still true in our model but it does not necessarily say anything meaningful, since the bad
set S could be sampled in Pn with a negligible probability. Indeed, if we were to ignore the
input distribution, then we would not be able to beat the worst input distribution and, in
particular, we would need to use at least supP LB(Pn, Q, ε) = LB(Qn, Q, ε) = n log(1/ε) bits
in expectation, where Qn denotes a distribution over n independent draws from Q.

In our model, it is therefore more natural to lower bound the expected size of the filter
over the randomness of the input set. Finally, we remark that the full lower bound we prove is
slightly stronger in that it holds for all but an unlikely collection of possible input sets, i.e. we
only require that A(S) is a (Q, ε)-filter for S ∈ T where T ⊆ P(U) and PrPn [S ̸∈ T] ≤ 1

log u

(see Theorem 6).

SWAT 2024

9:6 Daisy Bloom Filters

The space-efficient filter. We also show a filter design that asymptotically matches our
space lower bound and executes operations in constant time in the worst case:

▶ Theorem 3 (Space-efficient filter – simplified). Given 0 < ε < 1, there is a (Q, ε)-filter with
the following guarantees:

it is a (Q, ε)-filter with high probability over sets drawn from Pn, if
∑

x∈U pxqx ≤ ε/n,
queries and insertions take constant time in the worst case,
the space it requires is (1 + on(1)) · LB(Pn, Q, ε) + O(n) bits.

The construction uses the kx values from above in conjunction with the fingerprinting
technique of Carter et al. [15] to obtain results that are comparable to state-of-the-art
(classic) filter implementations that execute all operations (queries and insertions) in worst
case constant time, and are space efficient, in the sense in which they require (1 + on(1)) ·
n log(1/ε) + O(n) bits [1, 4–6]. The condition that

∑
x∈U pxqx ≤ ε/n can be seen as a

generalization of the standard filter assumption that ε ≥ n/u.

The Daisy Bloom filter. For completeness, we also present our variant of the Weighted
Bloom filter, which we call the Daisy Bloom filter :4

▶ Theorem 4 (Daisy Bloom filter – simplified). Given 0 < ε < 1, the Daisy Bloom filter has
the following guarantees:

it is a (Q, ε)-filter with high probability over sets drawn from Pn, if
∑

x∈U pxqx ≤ ε/n,
queries and insertions take at most ⌈log2(1/ε)⌉ time in the worst case,
the space it requires is log(e) · LB(Pn, Q, ε) + O(n) bits.

In contrast to the weighted Bloom filters of Bruck et al. [12], the Daisy Bloom filter
executes operations in time that is at most ⌈log2(1/ε)⌉ in the worst case (versus arbitrarily
large) and achieves a false positive rate of at most ε with high probability over the input
set (and not just on average). We also depart in our analysis from their unconstrained
optimization approach (to setting kx) and instead use Bernstein’s inequality to argue that,
if the length of the array is set to log(e) · LB(Pn, Q, ε) + O(n) bits, then whp, at most half of
the entries in the array will be set to 1 (see Section 5 for more details).

1.2 Related Work
Filters have been studied extensively in the literature [2, 5, 6, 15, 20, 34, 41, 42, 45], with
Bloom filters perhaps the most widely employed variants in practice [35]. Learning-based
approaches to classic algorithm design have recently attracted a great deal of attention, see
e.g. [21, 31–33, 46]. For a comprehensive survey on learned data structures, we refer the
reader to Ferragina and Vinciguerra [29].

Weighted Bloom Filters

Given information about the probability of inserting and querying each element, Bruck, Gao
and Jiang [12] set out to find an optimal choice of the parameters kx that limit the false
positive rate (in expectation over both the input and the query distribution). The approach

4 The daisy is one of our favorite flowers, especially when in full bloom, and is also a subsequence of
“dynamic strechy” which describes the key properties of our data structure. It is also the nickname
of the Danish queen, whose residence is not far from the place where this work was conceived. Daisy
Bloom filters are not related to any celebrities.

I. O. Bercea, J. B. T. Houen, and R. Pagh 9:7

is to solve an unconstrained optimization problem where the variables kx can be any real
number. In a post-processing step each kx is rounded to the nearest non-negative integer.
Unfortunately, this process does not lead to an optimal choice of parameters, and in fact,
does not guarantee a non-trivial false positive rate. The issue is that the solution to the
unconstrained problem may have many negative values of kx, so even though the weighted
sum

∑
x pxkx is bounded, the post-processed sum

∑
x px max(kx, 0) can be arbitrarily large.

In particular, this is the case if at least one element is queried very rarely. This means that
the weighted Bloom filter may consist only of 1s with high probability, resulting in a false
positive probability of 1.

The above issue was noted by Wang, Ji, Dang, Zheng and Zhao [49] who attempt to
correct the values for kx, but their analysis still suffers from the same, more fundamental,
problem: the existence of a very rare query element drives the false positive rate to 1. Wang
et al. [49] also show an information-theoretical “approximate lower bound” on the number
of bits needed for a weighted Bloom filter with given distributions P and Q. The sense in
which the lower bound is approximate is not made precise, and the lower bound is certainly
not tight (for example, it can be negative).

Partitioned Learned Bloom Filters

There are several learned Bloom filter designs that assume that the filter has access to a
learned model of the input set [18,33,37,48]. The model is given a fixed input set S and a
representative sample of elements in U \ S (the query distribution is not specified). Given a
query element x, the model returns a score s(x) ∈ [0, 1], which can be intuitively thought
of as the model’s belief that x ∈ S. Based on this score, Vaidya, Knorr, Mitzenmacher and
Kraska [48] choose a fixed number of k thresholds, partition the elements according to these
thresholds, and build separate Bloom filters for each set of the partition. For fixed threshold
values, they then formulate the optimization problem of setting the false positive rates fi

such that the total space of the data structure is minimized and the overall false positive
rate is at most a given F .

As noted by Ferragina and Vinciguerra [29], a significant drawback in these constructions
is that the guarantees they provide depend significantly on the query set given as input to
the machine learning component and in particular, the set being representative for the whole
query distribution. We avoid this issue by making the dependencies on qx explicit and by
bounding the average false positive probability even when just one element is queried. In
addition, our data structure does not need to know the set S in advance (and hence, training
can be done just once, in a pre-processing phase), employs only one data structure, and our
guarantees are robust to approximate values for px and qx.

1.3 Paper Organization
After some preliminaries, Section 3 shows our lower bound on the space usage. In Section 4,
we discuss a space-efficient filter with constant time worst-case operations. Finally, Section 5
presents the analysis of the Daisy Bloom filter.

2 Preliminaries

For clarity, throughout the paper, we will distinguish between probabilities over the random-
ness of the input set, denoted by PrPn [·], and probabilities over the internal randomness of
the filter, denoted by PrA [·]. Joint probabilities are denoted by PrPn,A [·]. For the analysis,
it will also make sense to partition the universe U into the following 5 parts:

SWAT 2024

9:8 Daisy Bloom Filters

U0 ≜ {x ∈ U | qx ≤ εpx} ,

U1 ≜ {x ∈ U | qx > εpx and px > 1/n} ,

U2 ≜ {x ∈ U | εpx < qx ≤ min{px, ε/n}} ,

U3 ≜ {x ∈ U | qx > px and ε/n ≥ px} ,

U4 ≜ {x ∈ U | qx > ε/n and ε/n < px ≤ 1/n} .

The high probability guarantees we obtain increase with LB(Pn, Q, ε). Therefore, such
bounds are meaningful for distributions in which the optimal size LB(Pn, Q, ε) of a filter is
not too small. Similarly, we can assume that the size of the universe is polynomial in n, and
so log(1/ε) = O(log n) in the standard case in which ε > n/ |U|. Therefore, while in general
LB(Pn, Q, ε) can be much smaller than n log2(1/ε), we do require some mild dependency on
n for the high probability bounds to be meaningful. Finally, we recall the following classic
result in data compression:

▶ Theorem 5 (Kraft’s inequality [47]). For any instantaneous code (prefix code) over an
alphabet of size D, the codeword lengths ℓ1, ℓ2, . . . , ℓm must satisfy the inequality∑

i

D−ℓi ≤ 1 .

Conversely, given a set of codeword lengths that satisfy this inequality, there exists an
instantaneous code with these word lengths.

3 The Lower Bound

The goal of this section is to prove the lower bound from Theorem 2. As discussed, we prove
a slightly stronger statement where we allow our algorithm to not produce a (Q, ε)-filter for
some input sets as long as the probability of sampling them is low. Formally, we show that:

▶ Theorem 6. Let T ⊆ P(U) be given such that PrPn
[S ̸∈ T] ≤ 1

log u . If A is an algorithm
such that for all S ∈ T , A(S) is a (Q, ε)-filter for S. Then the expected size of A(S) must
satisfy

EPn,A [|A(S)|] ≥ LB(Pn, Q, ε) − 1 − 6n ,

where S is sampled with respect to Pn.

Proof. Each instance I of the data structure corresponds to a subset UI ⊂ U on which the
data structure answers YES. We denote the number of bits needed by such an instance by
|I|. For any set S ∈ T , we have that I = A(S) satisfies that S ⊆ UI and

EA

 ∑
x∈UI\S

qx

 ≤ ε .

The goal is to prove that

EPn,A [|A(S)|] ≥ n ·

(∑
x∈U2

px log
(

1
ε

· qx

px

)
+
∑

x∈U3

px log 1
ε

+
∑

x∈U4

px log 1
npx

)
− 1 − 6n .

I. O. Bercea, J. B. T. Houen, and R. Pagh 9:9

We will lower bound EPn,A [|A(S)|] by using it to encode an ordered sequence of n

elements drawn according to Pn. Specifically, for any ordered sequence of n elements Ŝ ∈ Un,
we let S ⊆ U be the set of distinct elements and let I = A(S) as above. We first note that
to encode Ŝ ∼ Pn, in expectation, we need at least the entropy number of bits, i.e.,

n
∑
x∈U

px log 1
px

. (1)

Now our encoding using I will depend on whether S ∈ T or not. First, we will use 1 bit
to describe whether S ∈ T or not. For (xi)i∈[n] ∈ Ŝ, we will denote bi to be the number
bits to encode xi. If S ̸∈ T then for all i ∈ [n] we encode xi using bi = ⌈log(1/pxi

)⌉ bits. If
S ∈ T then for all i ∈ [n] we encode xi depending on which subset if U it belongs to:
1. If xi ∈ U0 ∪ U1, we encode xi using bi = ⌈log(4/pxi

)⌉ bits.

2. If xi ∈ U2, we encode xi using bi =
⌈

log
(

4
∑

y∈UI ∩U2
qy

qxi

)⌉
bits.

3. If xi ∈ U3, we encode xi using bi =
⌈

log
(

4
∑

y∈UI ∩U3
py

pxi

)⌉
bits.

4. If xi ∈ U4, we encode xi using bi = ⌈log (4 |UI ∩ U4|)⌉ bits.
It is clear from the construction that we satisfy the requirement for Theorem 5 thus there
exists such an encoding. Now we will bound the expectation of the size of this encoding:

EPn,A

|A(S)| + 1 +
∑
i∈[n]

bi

 = EPn,A [|A(S)|] + 1 + EPn,A

∑
i∈[n]

bi

 .

We will write EPn,A

[∑
i∈[n] bi

]
= EPn,A

[
[S ∈ T]

∑
i∈[n] bi

]
+EPn,A

[
[S ̸∈ T]

∑
i∈[n] bi

]
, and

bound each term separately.
We start by bounding EPn,A

[
[S ̸∈ T]

∑
i∈[n] bi

]
.

EPn,A

[S ̸∈ T]
∑
i∈[n]

bi

 = EPn

[S ̸∈ T]
∑
i∈[n]

⌈log(1/pxi)⌉

≤ PrPn

[S ̸∈ T] n + EPn

[S ̸∈ T] log

∏
i∈[n]

1/pxi

= PrPn

[S ̸∈ T] n +
∑

ŝ∈Un

[ŝ ∈ T] PrPn

[
Ŝ = ŝ

]
log 1

PrPn

[
Ŝ = ŝ

]
Now using Jensen’s inequality we get that∑

ŝ∈Un

[ŝ ∈ T] PrPn

[
Ŝ = ŝ

]
log 1

PrPn

[
Ŝ = ŝ

] ≤ PrPn [S ̸∈ T] log
(

1
PrPn [S ̸∈T]un

)
.

Putting this together with the fact that PrPn
[S ̸∈ T] ≤ 1

log u , we get that,

EPn,A

[S ̸∈ T]
∑
i∈[n]

bi

 ≤ 2n .

SWAT 2024

9:10 Daisy Bloom Filters

Now we bound EPn,A

[
[S ∈ T]

∑
i∈[n] bi

]
=
∑

i∈[n] EPn,A [[S ∈ T] bi]. We will bound
EPn,A [[S ∈ T] bi] depending on which subset of U that xi belongs to.

If xi ∈ U0 ∪ U1, then we have that EPn,A [[S ∈ T] bi] ≤ ⌈log(4/pxi
)⌉ ≤ 3 + log(1/pxi

).
If xi ∈ U2, define Z2 = UI ∩ U2. Then

EPn,A [[S ∈ T] bi] ≤ 3 + EPn,A

[
[S ∈ T] log

(∑
y∈Z2

qy

qxi

)]
.

We know that
∑

y∈S∩U2
qy ≤ ε since qy ≤ ε/n for all y ∈ U2 and |S| ≤ n. We also know that

EA

[∑
x∈Z2\S qx

]
≤ ε for S ∈ T . Now using Jensen’s inequality we get that

EPn,A

[
[S ∈ T] log

(∑
y∈Z2

qy

qxi

)]
= EPn

[
[S ∈ T]EA

[
log
(∑

y∈Z2
qy

qxi

)]]

≤ EPn

[S ∈ T] log

EA

[∑
y∈Z2

qy

]
qxi

≤ EPn

[
[S ∈ T] log

(
2ε
qxi

)]
≤ 1 + EPn

[
log
(

ε
qxi

)]
.

If xi ∈ U3, define Z3 = UI ∩ U3. Then

EPn,A [[S ∈ T] bi] ≤ 3 + EPn,A

[
[S ∈ T] log

(∑
y∈Z3

py

pxi

)]
.

We know that
∑

y∈S∩U3
py ≤ ε since py ≤ ε/n for all y ∈ U3 and |S| ≤ n. We also know that

EA

[∑
x∈Z3\S px

]
≤ EA

[∑
x∈Z3\S qx

]
≤ ε for S ∈ T . Using Jensen’s inequality we get that,

EPn,A

[
[S ∈ T] log

(∑
y∈Z3

py

pxi

)]
= EPn

[
[S ∈ T]EA

[
log
(∑

y∈Z3
py

pxi

)]]

≤ EPn

[S ∈ T] log

EA

[∑
y∈Z3

py

]
pxi

≤ EPn

[
[S ∈ T] log

(
2ε

pxi

)]
≤ 1 + EPn

[
log
(

ε
pxi

)]
.

If xi ∈ U4, define Z4 = UI ∩ U4. Then EPn,A [[S ∈ T] bi] ≤ 3 + EPn,A [[S ∈ T] log (|Z4|))].
We know that |Z4| = |Z4 ∩ S| + |Z4 \ S| ≤ n + n

ε

∑
x∈Z4\S qx since qy > ε/n for all y ∈ U4

and |S| ≤ n. Using Jensen’s inequality we get that, for Z ′
4 = Z4 \ S:

EPn,A

[S ∈ T] log

n + n

ε

∑
x∈Z′

4

qx

 = EPn

[S ∈ T]EA

log

n + n

ε

∑
x∈Z′

4

qx

≤ EPn

[S ∈ T] log

EA

n + n

ε

∑
x∈Z′

4

qx

≤ EPn

[[S ∈ T] log (2n)] ≤ 1 + log(n) .

Combining it all we get an encoding that in expectation uses at most

EPn,A [|A(S)|] + 1 + 6n+∑
x∈(U0∪U1)

px log(1/px) +
∑

x∈U2

px log(ε/qx) +
∑

x∈U3

px log(ε/px) +
∑

x∈U4

px log n .

I. O. Bercea, J. B. T. Houen, and R. Pagh 9:11

bits to encode Ŝ. Comparing this with Equation (1) we get that,

EPn,A [|A(S)|] ≥ n ·

(∑
x∈U2

px log
(

1
ε

· qx

px

)
+
∑

x∈U3

px log 1
ε

+
∑

x∈U4

px
1

npx

)
− 1 − 6n .

This proves the claim. ◀

4 Space-Efficient Filter

In this section, we show how one can use the kx values proposed to design a space-efficient
Q-filter with worst-case constant time operations. Formally, we show that:

▶ Theorem 7. Assume that Pn and Q satisfy n
∑

x∈U pxqx ≤ ε. Then there exists a filter
with the following guarantees:

there exists T ⊆ P(U) where a set S ∈ T with high probability over the randomness of
Pn, such that the filter is a (Q, ε)-filter for any S ∈ T ,
the filter uses (1 + on(1)) · LB(Pn, Q, ε) + O(n) bits,
the filter executes queries and insertions in worst case constant time and,
the filter does not fail with high probability over its internal randomness.

4.1 Construction
For j ∈ {1, . . . , ⌈log(1/ε)⌉}, we let U (j) ≜ {x ∈ U | ⌈kx⌉ = j} denote the set of elements that
hash to j locations in the Daisy Bloom filter and Pj ≜

∑
x∈U(j) px denote the probability

that we select an element from U (j) in one sample from P. Then nj ≜ n · Pj denotes the
average number of elements from U (j) that we expect to see in the input set. We distinguish
between the sets

{
U (j)} depending on their corresponding nj . Specifically, we say that U (j)

is a rare class if nj < n/ logc n, for some constant c > 2, and otherwise we say that U (j) is a
frequent class. We further define Ur ⊆ U to be the set of all elements that are in a rare class,
i.e., U (j) ⊆ U if and only if U (j) is a rare class.

Now let F(ε, n) be a (standard) filter implementation for at most n elements with false
positive probability at most ε. We focus on implementations that execute all operations
(queries and insertions) in worst-case constant time, and are space efficient: they require
(1 + on(1)) · n log(1/ε) + O(n) bits [1, 4–6]. We employ ⌈log(1/ε)⌉ + 1 instantiations of F ,
which we denote by F1, . . . , F⌈log(1/ε)⌉ and Fr. They are parametrized as follows: for j ∈
{1, . . . , ⌈log(1/ε)⌉}, we further define Nj ≜ (1+1/ log n) ·nj and instantiate Fj = F(2−j , Nj).
We instantiate Fr as Fr = F(F, Nr), where Nr ≜ Θ(n/ logc−1 n).

Operations. We distinguish between elements that are in a frequent class and elements that
are in a rare class. If an element is in a frequent class U (j), then operations are forwarded to
the corresponding filter Fj . Otherwise, the operation is forwarded to Fr. Since all the filters
we employ perform operations in constant time in the worst case, the same holds for our
construction5.

5 We note here that it is possible to combine the filters F1, . . . , F⌈log(1/ε)⌉ into one single data structure.
One could use, for example, the balls-into-bins implementation in [5], where elements are randomly
assigned to one of n/Θ(log n/(log(1/ε))) buckets and the buckets explicitly store random strings of
length log(1/ε) associated with the elements that hash into them. Combining F1, . . . , F⌈log(1/ε)⌉ would
then entail “superimposing” their buckets.

SWAT 2024

9:12 Daisy Bloom Filters

Space. We now bound the total number of bits that F1, . . . , F⌈log(1/ε)⌉ and Fr require:

▶ Lemma 8. The above filter requires (1 + on(1)) · LB(Pn, Q, ε) + O(n) bits.

Proof. Recall that F1, . . . , F⌈log(1/ε)⌉ and Fr are instantiations of a filter F which requires
(1+f(n)) ·n log(1/ε)+O(n) bits for a set of n elements and false positive probability ε, where
the function f(n) satisfies f(n) = on(1) [1,4–6]. For simplicity, we choose the implementation
in [5], where f(n) = Θ(log log n/

√
log n). Consequently, for j ∈ {1, . . . , ⌈log(1/ε)⌉}, the

space of Fj is:

(1 + f(Nj)) · Nj log(1/2−j) + O(Nj) = (1 + f(Nj)) · Nj · j + O(Nj)

bits. Since Fj is instantiated only for frequent classes, it follows that n ≥ Nj ≥ n/ logc n and
hence, f(Nj) = Θ(f(n)) for all j with U (j) a frequent class. Furthermore, by definition, we
have that j ≤ kx +1 for all x ∈ U (j) and Nj = (1+1/ log n) ·nj = (1+1/ log n) ·n

∑
x∈U(j) px.

Therefore, the space that Fj requires can be upper bounded by

(1 + Θ(f(n))) · n
∑

x∈U(j)

pxkx + O(Nj) .

Since
∑

j Nj = (1 + 1/ log n) · n we get that, in the worst case in which all the classes are
frequent, the filters F1, . . . , F⌈log(1/ε)⌉ require

(1 + on(1)) · n
∑
x∈U

pxkx + O(n) = (1 + on(1)) · LB(Pn, Q, ε) + O(n)

bits. The space of the final filter Fr is upper bounded by Θ(n/ logc−1 n) · log(1/ε) =
Θ(n/ logc−2 n) = o(n) bits for any constant c > 2. The claim follows. ◀

4.2 Analysis
In this section, we show that the filter described above does not fail whp and that it achieves
a false positive probability of at most 3ε with respect to Q. In our construction, there are
two sources of failure: when the number of elements which we insert into each filter exceeds
the maximum capacity of the filter, and when the filters themselves fail as a consequence
of their internal randomness. In the latter case, we note that the failure probability of
F(ε, n) is guaranteed to be at most 1/ poly(n), where the degree of the polynomial is a
constant of our choosing [1, 4–6]. Since all of the instantiations we employ have maximum
capacities which are Ω(n/ polylog(n)), we conclude that each of these separate instantiations
also fails with probability at most 1/ poly(n), and therefore, by a union bound over the
⌈log(1/ε)⌉ + 1 = O(log n) instantiations, we get that some filter fails with probability at
most 1/ poly(n). We now show that the maximum capacities we set for each filter suffice.

▶ Lemma 9. Whp, at most Nr = Θ(n/ logc−1 n) elements from Ur are sampled in the input
set.

Proof. Let U (j) be a rare class and let Xj denote the number of elements from U (j) that we
sample in the input set. By definition, the expected number of elements we see from U (j)

satisfies EP [Xj] = nj < n/ logc n, for some constant c > 2. By Chernoff bound, we therefore
get that:

Pr [Xj > 6n/ logc n] ≤ 2−6n/ logc n .

There are at most ⌈log(1/ε)⌉ = O(log n) possible rare classes, and so, by the union bound, the
number of elements from Ur that we sample in the input set is at most Nr = Θ(n/ logc−1 n)
whp. ◀

I. O. Bercea, J. B. T. Houen, and R. Pagh 9:13

We now focus on sampling elements from a frequent class:

▶ Lemma 10. Let U (j) be a frequent class. Then, whp, at most Nj elements from U (j) are
sampled in the input set.

Proof. Let Xj denote the number of elements from U (j) that we sample in the input set and
note that EP [Xj] = nj ≥ n/ logc n. By Chernoff:

Pr [Xj > Nj] = Pr [Xj > (1 + 1/ log n) · nj] ≤ exp(−Θ(n/ logc−2 n)) ≤ 1/ poly n .

This concludes our proof. ◀

Finally, we bound the false positive rate of the filter:

▶ Lemma 11. Assume that Pn and Q satisfy n
∑

x∈U pxqx ≤ ε and that the input set S does
not make F1, . . . , F⌈log(1/ε)⌉ and Fr fail. Then the filter described is a (Q, 3ε)-filter on S.

Proof. Fix an input set S and denote by A′(S, x) the output of the filter when queried for an
element x. We are interested in bounding Pr [A′(S, x) = YES] for an element x /∈ S. If x ∈ Ur,
then we forward the query operation to Fr, which guarantees that Pr [A′(S, x) = YES] ≤ ε.
Therefore:∑

x∈Ur

qx · Pr [A′(S, x) = YES] ≤
∑

x∈Ur

qx · ε ,

Otherwise, if x /∈ Ur, the query is forwarded to Fj , where j = ⌈kx⌉. In this case,
Pr [A′(S, x) = YES] ≤ 2−j ≤ 2−kx and we get that∑

x∈U0∪U2\Ur

qx · Pr [A′(S, x) = YES] ≤
∑

x∈U0\Ur

qx +
∑

x∈U2\Ur

pxε ≤
∑

x∈U0∪U2\Ur

px · ε ,

and similarly,∑
x∈U1∪U4\Ur

qx · Pr [A′(S, x) = YES] ≤
∑

x∈U1\Ur

qx +
∑

x∈U4\Ur

npxqx ≤
∑

x∈U1∪U4\Ur

npxqx .

Finally, we have that∑
x∈U3\Ur

qx · Pr [A′(S, x) = YES] ≤
∑

x∈U3\Ur

qx · ε .

Adding all of these quantities, we obtain the claim. ◀

4.3 Remarks
The filter construction assumes that we know, in advance, whether a class U (j) is frequent
and, if so, what is the value of its corresponding Pj =

∑
x∈U(j) px. This is because we employ

fixed capacity filters which require us to provide an upper bound on the cardinality of the
input set S ∩ U (j) at all points in time. We note that this assumption can be alleviated in
two ways: on one hand, one can employ filters that do not require us to know the size of the
input set in advance [8,42]. This would incur an additional Θ(n log log n) bits in the space
consumption of our filter (operations would remain constant time worst case).

On the other hand, one can estimate Pj for all frequent classes U (j) if we are allowed
to take polylog(n) samples from P before constructing the filter. Specifically, fix j ∈
{1, . . . , ⌈log(1/ε)⌉} and take ℓ = O(log2c n) samples from P . Define Zj to be the number of

SWAT 2024

9:14 Daisy Bloom Filters

sampled elements that are in U (j). Then, if U (j) is indeed frequent, by the standard Chernoff
bound we get that, whp, Zj > logc n elements and Zj/ℓ is an unbiased estimator for Pj with
the guarantee that Pj = (1 ± O(1/ log(c−1)/2 n)) · Zj/ℓ whp. Note that we can tolerate such
an estimate since we set the maximum capacity of each filter to be Nj = (1+1/ log n) ·nPj . A
similar argument can be used for estimating the lower bound LB(Pn, Q, ε) = n ·

∑
x∈U px · kx

whp. Specifically, by the definition of Pj , we have that

∑
x∈U

px · ⌈kx⌉ =
⌈log(1/ε)⌉∑

j=1
j · Pj .

If U (j) is a frequent class, then by the above argument we have an estimate of its Pj .
Otherwise, we know that Pj < 1/ logc n and, since j ≤ ⌈log(1/ε)⌉ = O(log n), get that∑

j s.t. U(j)∈Ur

j · Pj ≤
∑

j s.t. U(j)∈Ur

⌈log(1/ε)⌉ · 1/ logc n ≤ 1/ logc−2 n ,

which contributes a o(n) term to the lower bound.

5 The Daisy Bloom Filter Analysis

In this section, we analyse the behaviour of the Daisy Bloom filter with the values kx

denoting the number of hash functions that we use to hash x into the array. Let Xi denote
the number of hash functions that are employed when we sample in the ith round, i.e.,
Xi = kx with probability px. Then X =

∑
i Xi denotes the number of locations that are

set in the Bloom filter (where the same location might be set multiple times). Moreover,
EPn

[X] = n ·
∑

x∈U pxkx = LB(Pn, Q, ε), since the {Xi}i are identically distributed. We
then set the length m of the Daisy Bloom filter array to

m ≜ EPn
[X] / ln 2 .

The remainder of this section is dedicated to proving the following statement:

▶ Theorem 12. Assume that Pn and Q satisfy n
∑

x∈U pxqx ≤ ε. Then there exists T ⊆ P(U)
such that S ∈ T with high probability over the randomness of Pn, and for all S ∈ T the Daisy
Bloom Filter is a (Q, ε)-filter for S. The Daisy Bloom filter uses log(e) · LB(Pn, Q, ε) + O(n)
bits and executes all operations in at most ⌈log(1/ε)⌉ time in the worst case.

The sets in T are the sets for which X ≈ EPn [X] = LB(Pn, Q, ε). The reason we constrain
ourselves to these sets, is that if X ≫ LB(Pn, Q, ε) then most bits will be set to 1 which will
make the false positive rate large. We will bound the probability that X ≫ LB(Pn, Q, ε) by
using Bernstein’s inequality and here, the following observation becomes crucial:

▶ Observation 13. For every x ∈ U , kx ≤ log(1/ε).

Proof. For x ∈ U0 ∪ U1, we have that kx = 0 which is clearly less than log(1/ε). For x ∈ U3
we have that kx = log(1/ε) and again the statement holds trivially. For x ∈ U2, we have that
qx ≤ px and so kx = log(1/ε · qx/px) ≤ log(1/ε). For x ∈ U4, we have that px > F/n and so
kx = log(1/(npx)) < log(1/ε). ◀

We are now ready to prove that the random variable X is concentrated around its
expectation.

I. O. Bercea, J. B. T. Houen, and R. Pagh 9:15

▶ Lemma 14. For any δ > 0,

PrPn
[X > (1 + τ) · EPn

[X]] ≤ exp
(

− τ2 ln 2
2(1 + τ/3) · m

log(1/ε)

)
Proof. The random variables {Xi}i are independent and Xi ≤ b ≜ log(1/ε) for all i

by Observation 13. We apply Bernstein’s inequality [22]:

PrPn
[X − EPn

[X] > t] ≤ exp
(

− t2/2
nVarPn

[X1] + bt/3

)
.

Note that VarPn
[Xi] ≤ EPn

[
X2

i

]
≤ b · EPn

[Xi]. Setting t = τ · EPn
[X] = τn · EPn

[X1], we
get that

PrPn
[X > (1 + τ)EPn

[X]] ≤ exp
(

−τ2

2 · n2(EPn [X1])2

nb · EPn
[X1] + τ/3 · nb · EPn

[X1]

)
= exp

(
− τ2

2(1 + τ/3) · nEPn [X1]
b

)
.

The claim follows by noticing that nEPn
[X1] = m ln 2. ◀

We can now prove that as long as X ≤ (1 + 1/(2 log(1/ε))) · EPn [X], the Daisy Bloom
filter is a (Q, 6ε)-filter for S. We consider the fraction ρ of entries in the array that are set
to 0 after we have inserted the elements of the set. We then show that ρ is close to 1/2 with
high probability over the input set and the randomness of the hash functions. Conditioned
on this, we then have that the probability that we make a mistake for x is at most 2−kx+1.
The false positive rate is then derived similarly to that of Lemma 11.

▶ Lemma 15. Assume that Pn and Q satisfy n
∑

x∈U pxqx ≤ ε, and that X ≤ (1 +
1/(2 log(1/ε)))EPn

[X]. Then, whp, the Daisy Bloom filter is a (Q, 6ε)-filter on S.

Proof. Let ρ ∈ [0, 1] denote the fraction of entries in the Daisy Bloom filter that are set to 0
after we have inserted the elements of the set. Recall that the random variable X denotes
the total number of entries that are set in the Bloom filter, including multiplicities. In the
worst case, all the entries to the filter are distinct, and we have X independent chances to
set a specific bit to 1. Therefore

Eh [ρ|X] ≥
(

1 − 1
m

)X

≈ e−X/m = 2−X/EPn [X] .

Moreover, by applying a Chernoff bound for negatively associated random variables, we
have that for any 0 < γ < 1,

PrA

[
ρ ≤ (1 − γ) ·

(
1 − 1

m

)X
∣∣∣∣∣X
]

≤ exp
(

−m

(
1 − 1

m

)X

· γ2/2
)

(2)

We now let Bδ denote the event that
(
1 − 1

m

)X
> (1 − δ) · 1

2 and Bγ the event that
ρ > (1 − γ)

(
1 − 1

m

)X . We then choose 0 < δ < 1 and 0 < γ < 1 such that Bδ and Bδ′ imply
that

ρ ≥ 1 − 21/ log(1/ε) · 1
2 .

SWAT 2024

9:16 Daisy Bloom Filters

Moreover, for our choices of δ and γ, we have that both Bδ and Bγ |Bδ occur with high
probability.6 We refer the reader to the full version [7] for δ and γ. Conditioned on Bδ and
Bγ , we get that, for an x /∈ S, since kx ≤ log(1/ε),

PrA [A(S, x) = YES|Bδ ∧ Bγ] = (1 − ρ)kx ≤ 2kx/b · 2−kx ≤ 2 · 2−kx

We bound the false positive rate on each partition. For x ∈ U0, i.e., with qx ≤ Fpx and
kx = 0, we can upper bound the false positive rate as such∑

x∈U0

qx · Pr [A(S, x) = YES|Bδ ∧ Bγ] ≤
∑

x∈U0

qx ≤
∑

x∈U0

px · ε .

For x ∈ U1 with px > 1/n and kx = 0, we have the following∑
x∈U1

qx · Pr [A(S, x) = YES|Bδ ∧ Bγ] ≤
∑

x∈U1

qx < n
∑

x∈U1

pxqx .

For x ∈ U2 with kx = log(1/ε · qx/px), we have the following∑
x∈U2

qx · Pr [A(S, x) = YES|Bδ ∧ Bγ] ≤
∑

x∈U2

qx · 2 · 2−kx =
∑

x∈U2

qx · 2 · px/qx · ε

=
∑

x∈U2

px · 2ε .

For x ∈ U3 with kx = log(1/ε),∑
x∈U3

qx · Pr [A(S, x) = YES|Bδ ∧ Bγ] ≤
∑

x∈U3

qx · 2ε ≤ 2ε .

For x ∈ U4 with kx = log(1/(npx)),∑
x∈U4

qx · Pr [A(S, x) = YES|Bδ ∧ Bγ] ≤
∑

x∈U4

qx · 2npx = 2n
∑

x∈U4

pxqx .

For the overall false positive rate, note that the total false positive rate in U0 and U2 is
at most 2ε. Similarly for the false positive rate in U3. For the remaining partitions U1 and
U4, we have that it is at most

2n
∑

x∈U1∪U4

pxqx .

From our assumption, this later term is at most 2ε as well. ◀

Combining the above with Lemma 14 we get that with probability 1 − exp
(

− m
Θ(log3(1/ε))

)
over the randomness of the input set, the Daisy Bloom filter is a (Q, 6ε)-filter for S. This is
exactly the statement of Theorem 12.

6 We implicitly assume here that 21/ log(1/ε)· ≤ 2, i.e., ε ≤ 1/2. Notice that this does not affect the overall
result, since the false positive rate we obtain is 5 · ε.

I. O. Bercea, J. B. T. Houen, and R. Pagh 9:17

References
1 Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard cuckoo hashing: Constant worst-

case operations with a succinct representation. In 2010 IEEE 51st Annual Symposium on
Foundations of Computer Science, pages 787–796. IEEE, 2010. See also arXiv:0912.5424v3.

2 Michael A. Bender, Martin Farach-Colton, Mayank Goswami, Rob Johnson, Samuel McCauley,
and Shikha Singh. Bloom filters, adaptivity, and the dictionary problem. In 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9,
2018, pages 182–193, 2018. doi:10.1109/FOCS.2018.00026.

3 Michael A Bender, Martin Farach-Colton, Rob Johnson, Bradley C Kuszmaul, Dzejla Med-
jedovic, Pablo Montes, Pradeep Shetty, Richard P Spillane, and Erez Zadok. Don’t thrash:
How to cache your hash on flash. In 3rd Workshop on Hot Topics in Storage and File Systems
(HotStorage 11), 2011.

4 Michael A. Bender, Martin Farach-Colton, John Kuszmaul, William Kuszmaul, and Mingmou
Liu. On the optimal time/space tradeoff for hash tables. In Stefano Leonardi and Anupam
Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing,
Rome, Italy, June 20–24, 2022, pages 1284–1297. ACM, 2022. doi:10.1145/3519935.3519969.

5 Ioana O. Bercea and Guy Even. A dynamic space-efficient filter with constant time operations.
In Susanne Albers, editor, 17th Scandinavian Symposium and Workshops on Algorithm Theory,
SWAT 2020, June 22-24, 2020, Tórshavn, Faroe Islands, volume 162 of LIPIcs, pages 11:1–
11:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.SWAT.
2020.11.

6 Ioana O. Bercea and Guy Even. Dynamic dictionaries for multisets and counting filters with
constant time operations. In Anna Lubiw and Mohammad R. Salavatipour, editors, Algorithms
and Data Structures – 17th International Symposium, WADS 2021, Virtual Event, August
9-11, 2021, Proceedings, volume 12808 of Lecture Notes in Computer Science, pages 144–157.
Springer, 2021. doi:10.1007/978-3-030-83508-8_11.

7 Ioana O. Bercea, Jakob Bæk Tejs Houen, and Rasmus Pagh. Daisy bloom filters. CoRR,
abs/2205.14894, 2022. doi:10.48550/arXiv.2205.14894.

8 Ioana Oriana Bercea and Guy Even. An extendable data structure for incremental stable
perfect hashing. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual
ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20–24, 2022, pages
1298–1310. ACM, 2022. doi:10.1145/3519935.3520070.

9 Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM,
13(7):422–426, 1970. doi:10.1145/362686.362692.

10 Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh, and George Varghese.
An improved construction for counting bloom filters. In Algorithms–ESA 2006: 14th Annual
European Symposium, Zurich, Switzerland, September 11-13, 2006. Proceedings 14, pages
684–695. Springer, 2006.

11 Andrei Z. Broder and Michael Mitzenmacher. Survey: Network applications of bloom filters:
A survey. Internet Math., 1(4):485–509, 2003. doi:10.1080/15427951.2004.10129096.

12 Jehoshua Bruck, Jie Gao, and Anxiao Jiang. Weighted bloom filter. In International Sym-
posium on Information Theory (ISIT), pages 2304–2308. IEEE, 2006. doi:10.1109/ISIT.
2006.261978.

13 Clément Canonne and Ronitt Rubinfeld. Testing probability distributions underlying aggreg-
ated data. In International Colloquium on Automata, Languages, and Programming, pages
283–295. Springer, 2014.

14 Xinyuan Cao, Jingbang Chen, Li Chen, Chris Lambert, Richard Peng, and Daniel Sleator.
Learning-augmented b-trees, 2023. arXiv:2211.09251.

15 Larry Carter, Robert W. Floyd, John Gill, George Markowsky, and Mark N. Wegman. Exact
and approximate membership testers. In Richard J. Lipton, Walter A. Burkhard, Walter J.
Savitch, Emily P. Friedman, and Alfred V. Aho, editors, Proceedings of the 10th Annual ACM
Symposium on Theory of Computing, May 1-3, 1978, San Diego, California, USA, pages 59–65.
ACM, 1978.

SWAT 2024

https://arxiv.org/abs/0912.5424v3
https://doi.org/10.1109/FOCS.2018.00026
https://doi.org/10.1145/3519935.3519969
https://doi.org/10.4230/LIPIcs.SWAT.2020.11
https://doi.org/10.4230/LIPIcs.SWAT.2020.11
https://doi.org/10.1007/978-3-030-83508-8_11
https://doi.org/10.48550/arXiv.2205.14894
https://doi.org/10.1145/3519935.3520070
https://doi.org/10.1145/362686.362692
https://doi.org/10.1080/15427951.2004.10129096
https://doi.org/10.1109/ISIT.2006.261978
https://doi.org/10.1109/ISIT.2006.261978
https://arxiv.org/abs/2211.09251

9:18 Daisy Bloom Filters

16 Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. In International Colloquium on Automata, Languages, and Programming, pages
693–703. Springer, 2002.

17 Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

18 Zhenwei Dai and Anshumali Shrivastava. Adaptive learned bloom filter (ada-bf): Efficient
utilization of the classifier with application to real-time information filtering on the web. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020.

19 Niv Dayan, Ioana O. Bercea, Pedro Reviriego, and Rasmus Pagh. Infinifilter: Expanding
filters to infinity and beyond. Proc. ACM Manag. Data, 1(2):140:1–140:27, 2023. doi:
10.1145/3589285.

20 Martin Dietzfelbinger and Rasmus Pagh. Succinct data structures for retrieval and approximate
membership. In International Colloquium on Automata, Languages, and Programming, pages
385–396. Springer, 2008.

21 Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Learning space partitions for
nearest neighbor search. In International Conference on Learning Representations (ICLR),
2020.

22 Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, USA, 2012.

23 Talya Eden, Piotr Indyk, Shyam Narayanan, Ronitt Rubinfeld, Sandeep Silwal, and Tal
Wagner. Learning-based support estimation in sublinear time. In International Conference on
Learning Representations, 2020.

24 Tomer Even, Guy Even, and Adam Morrison. Prefix filter: Practically and theoretically better
than bloom. Proc. VLDB Endow., 15(7):1311–1323, 2022. doi:10.14778/3523210.3523211.

25 Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher. Cuckoo filter:
Practically better than bloom. In Proceedings of the 10th ACM International on Conference
on emerging Networking Experiments and Technologies, pages 75–88, 2014.

26 Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. Summary cache: a scalable wide-area
web cache sharing protocol. IEEE/ACM transactions on networking, 8(3):281–293, 2000.

27 Paolo Ferragina, Hans-Peter Lehmann, Peter Sanders, and Giorgio Vinciguerra. Learned
monotone minimal perfect hashing. In Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi,
and Grzegorz Herman, editors, 31st Annual European Symposium on Algorithms, ESA 2023,
September 4-6, 2023, Amsterdam, The Netherlands, volume 274 of LIPIcs, pages 46:1–46:17.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.ESA.2023.46.

28 Paolo Ferragina, Fabrizio Lillo, and Giorgio Vinciguerra. Why are learned indexes so effective?
In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research. PMLR, 2020.

29 Paolo Ferragina and Giorgio Vinciguerra. Learned data structures. In Luca Oneto, Nicolò
Navarin, Alessandro Sperduti, and Davide Anguita, editors, Recent Trends in Learning From
Data – Tutorials from the INNS Big Data and Deep Learning Conference (INNSBDDL
2019), volume 896 of Studies in Computational Intelligence, pages 5–41. Springer, 2019.
doi:10.1007/978-3-030-43883-8_2.

30 Paolo Ferragina and Giorgio Vinciguerra. The pgm-index: a fully-dynamic compressed learned
index with provable worst-case bounds. Proceedings of the VLDB Endowment, 13(8):1162–1175,
2020.

31 Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim Kraska.
Fiting-tree: A data-aware index structure. In Proceedings International Conference on
Management of Data (SIGMOD), pages 1189–1206, 2019.

https://doi.org/10.1145/3589285
https://doi.org/10.1145/3589285
https://doi.org/10.14778/3523210.3523211
https://doi.org/10.4230/LIPICS.ESA.2023.46
https://doi.org/10.1007/978-3-030-43883-8_2

I. O. Bercea, J. B. T. Houen, and R. Pagh 9:19

32 Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
algorithms. In International Conference on Learning Representations, 2019.

33 Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned
index structures. In Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein, editors,
Proceedings of the 2018 International Conference on Management of Data (SIGMOD), pages
489–504. ACM, 2018.

34 Mingmou Liu, Yitong Yin, and Huacheng Yu. Succinct filters for sets of unknown sizes. arXiv
preprint, 2020. arXiv:2004.12465.

35 Lailong Luo, Deke Guo, Richard T. B. Ma, Ori Rottenstreich, and Xueshan Luo. Optimiz-
ing bloom filter: Challenges, solutions, and comparisons. IEEE Commun. Surv. Tutorials,
21(2):1912–1949, 2019. doi:10.1109/COMST.2018.2889329.

36 Samuel McCauley, Benjamin Moseley, Aidin Niaparast, and Shikha Singh. Online list labeling
with predictions, 2023. arXiv:2305.10536.

37 Michael Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching. In
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

38 Michael Mitzenmacher, Salvatore Pontarelli, and Pedro Reviriego. Adaptive cuckoo filters.
In 2018 Proceedings of the Twentieth Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 36–47. SIAM, 2018.

39 Moni Naor and Noa Oved. Bet-or-pass: Adversarially robust bloom filters. In Theory of
Cryptography Conference, pages 777–808. Springer, 2022.

40 Moni Naor and Eylon Yogev. Bloom filters in adversarial environments. In Annual Cryptology
Conference, pages 565–584. Springer, 2015.

41 Anna Pagh, Rasmus Pagh, and S. Srinivasa Rao. An optimal Bloom filter replacement. In
SODA, pages 823–829. SIAM, 2005.

42 Rasmus Pagh, Gil Segev, and Udi Wieder. How to approximate a set without knowing its
size in advance. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science,
pages 80–89. IEEE, 2013.

43 Prashant Pandey, Michael A Bender, Rob Johnson, and Rob Patro. A general-purpose counting
filter: Making every bit count. In Proceedings of the 2017 ACM international conference on
Management of Data, pages 775–787, 2017.

44 Prashant Pandey, Alex Conway, Joe Durie, Michael A. Bender, Martin Farach-Colton, and
Rob Johnson. Vector quotient filters: Overcoming the time/space trade-off in filter design. In
SIGMOD ’21: International Conference on Management of Data, Virtual Event, China, June
20-25, 2021, pages 1386–1399. ACM, 2021. doi:10.1145/3448016.3452841.

45 Ely Porat. An optimal Bloom filter replacement based on matrix solving. In International
Computer Science Symposium in Russia, pages 263–273. Springer, 2009.

46 Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml
predictions. Advances in Neural Information Processing Systems (NeurIPS), 31, 2018.

47 MTCAJ Thomas and A Thomas Joy. Elements of information theory. Wiley-Interscience,
2006.

48 Kapil Vaidya, Eric Knorr, Michael Mitzenmacher, and Tim Kraska. Partitioned learned bloom
filters. In 9th International Conference on Learning Representations (ICLR). OpenReview.net,
2021.

49 Xiujun Wang, Yusheng Ji, Zhe Dang, Xiao Zheng, and Baohua Zhao. Improved weighted bloom
filter and space lower bound analysis of algorithms for approximated membership querying.
In Database Systems for Advanced Applications (DASFAA), volume 9050 of Lecture Notes in
Computer Science, pages 346–362. Springer, 2015. doi:10.1007/978-3-319-18123-3_21.

SWAT 2024

https://arxiv.org/abs/2004.12465
https://doi.org/10.1109/COMST.2018.2889329
https://arxiv.org/abs/2305.10536
https://doi.org/10.1145/3448016.3452841
https://doi.org/10.1007/978-3-319-18123-3_21

Online Bin Covering with Frequency Predictions
Magnus Berg #

University of Southern Denmark, Odense, Denmark

Shahin Kamali #

York University, Toronto, Canada

Abstract
We study the bin covering problem where a multiset of items from a fixed set S ⊆ (0, 1] must be
split into disjoint subsets while maximizing the number of subsets whose contents sum to at least 1.
We focus on the online discrete variant, where S is finite, and items arrive sequentially. In the purely
online setting, we show that the competitive ratios of best deterministic (and randomized) algorithms
converge to 1

2 for large S, similar to the continuous setting. Therefore, we consider the problem under
the prediction setting, where algorithms may access a vector of frequencies predicting the frequency
of items of each size in the instance. In this setting, we introduce a family of online algorithms that
perform near-optimally when the predictions are correct. Further, we introduce a second family
of more robust algorithms that presents a tradeoff between the performance guarantees when the
predictions are perfect and when predictions are adversarial. Finally, we consider a stochastic setting
where items are drawn independently from any fixed but unknown distribution of S. Using results
from the PAC-learnability of probabilities in discrete distributions, we introduce a purely online
algorithm whose average-case performance is near-optimal with high probability for all finite sets S

and all distributions of S.

2012 ACM Subject Classification Theory of computation → Packing and covering problems; Theory
of computation → Online learning algorithms; Theory of computation → Online algorithms

Keywords and phrases Bin Covering, Online Algorithms with Predictions, PAC Learning, Learning-
Augmented Algorithms

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.10

Related Version Full Version: https://doi.org/10.48550/arXiv.2401.14881

Funding Magnus Berg: Supported in part by the Independent Research Fund Denmark, Natural
Sciences, grant DFF-0135-00018B and in part by the Innovation Fund Denmark, grant 9142-00001B,
Digital Research Centre Denmark, project P40: Online Algorithms with Predictions.
Shahin Kamali: Supported in part by Natural Sciences and Engineering Research Council of Canada
(NSERC) [funding reference number DGECR-2018-00059].

1 Introduction

Bin Covering is a classical NP-complete [5] optimization problem where the input is a
multiset of items, each with a size between 0 and 1. The objective is to split the items into
disjoint subsets, called bins, while maximizing the number of bins whose contents sum to at
least 1 [22]. The problem is often considered a dual to the bin packing problem, which asks
for minimizing the number of bins, subject to each bin having a sum of at most 1.

In the online setting [18, 14, 5], items arrive one by one, and whenever an item arrives,
an algorithm has to irrevocably place the item in an existing bin or open a new bin to place
the item in. The existing results mostly consider a continuous setting in which items take
any real value from (0, 1], and it is well known that a simple greedy strategy, Dual-Next-Fit
(dnf), achieves an optimal competitive ratio of 1

2 [5].
In this paper, we consider a discrete variant of Online Bin Covering, where item sizes

belong to a finite, known set S ⊆ (0, 1]. We abbreviate this problem by DBCS . The special
case when S = { i

k | i = 1, . . . , k} has been studied in the previous work. For example, Csirik,
© Magnus Berg and Shahin Kamali;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 10; pp. 10:1–10:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:magbp@imada.sdu.dk
https://orcid.org/0000-0001-8637-7113
mailto:kamalis@yorku.ca
https://orcid.org/0000-0003-1404-2212
https://doi.org/10.4230/LIPIcs.SWAT.2024.10
https://doi.org/10.48550/arXiv.2401.14881
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Online Bin Covering with Frequency Predictions

Johnson, and Kenyon [15] developed online algorithms with good average-case performance
based on the Sum of Squares algorithm for Online Discrete Bin Packing [17, 16]. In this
paper, we study a more general setting where S may be any finite subset of (0, 1].

For measuring and comparing the quality of online algorithms for the DBCS problem, we
rely on the classical competitive analysis framework [9, 23], where one measures the quality
of an online algorithm by comparing the performance of the algorithm to the performance of
an optimal offline algorithm optimizing for the best worst-case guarantee.

1.1 Previous Work

The possibilities for creating algorithms for Online Bin Covering are well-studied. In the
continuous setting, where items can take any size in (0, 1], Assmann et al. [5] proved that
dnf is 1

2 -competitive, and Csirik and Totik [18] presented an impossibility result showing
that this is best possible. Later, Epstein [20] proved that the same impossibility result holds
for randomized algorithms as well. Online Bin Covering has been studied under the advice
setting [10, 12], where algorithms can access an advice tape that has encoded information
about the input sequence. The aim is to determine how much additional information,
measured by the number of bits needed to encode the information, is necessary and sufficient
to achieve a certain competitive ratio and how well algorithms can perform when they are
given a certain amount of information. For example, it is known that Θ(log log n) bits of
advice are necessary and sufficient to achieve algorithms with a competitive ratio strictly
better than 1

2 [10], and that O(b + log(n)) bits is sufficient to create an asymptotically
2
3 -competitive algorithm [12], where b is the number of bits needed to encode a rational value.

In recent years, developments in machine learning have inspired questions about how
online algorithms may benefit from machine-learned advice [24, 25], commonly referred to as
predictions. Unlike the advice model, the predictions may be erroneous or even adversarial.
Online algorithms with predictions is a rapidly growing field (see, e.g., [1]) that aims at
deriving online algorithms that provide a tradeoff between consistency and robustness. The
consistency of an online algorithm refers to its competitive ratio when predictions are error-
free; ideally, the consistency of an algorithm is 1 or close to 1. On the other hand, robustness
refers to the competitive ratio assuming adversarial predictions; ideally, the robustness of
an algorithm is close to the competitive ratio of the best purely online algorithm (with no
prediction). These ideal cases, however, are not always realizable simultaneously, and one
often settle for a consistency/robustness trade-off [25, 2, 27, 11, 3], giving explicit bounds on
an algorithm’s consistency as a function of its robustness, and vice versa.

To the authors’ knowledge, no previous work on Bin Covering with predictions exists. The
related Bin Packing problem, however, is previously studied under the prediction setting [4, 2].

1.2 Contribution

Our contributions for DBCS can be summarized as follows. Throughout, we let k = |S|.
In the continuous setting, where items take any real value in (0, 1], no improvements in
the competitive ratio can be achieved via predictions that are of size independent of input
length, even if the predictions are error-free. This follows from a result of [10] that states
any algorithm with an advice of size o(log log n) is no better than 1

2 -competitive. Due to
this negative result, we relax the problem and assume items come from a fixed, finite set.
This relaxed setting is also studied for the related bin packing problem [4].

M. Berg and S. Kamali 10:3

Purely online setting. We establish the following result on purely online algorithms for
DBCFk

, where Fk = { i
k | i = 1, 2, . . . , k}, based on ideas from [18] and [20] (all missing

proofs can be found in the full paper [8]).

▶ Theorem 1. Let Alg be any deterministic or randomized online algorithm for DBCFk
,

with k ⩾ 5. Then, Alg’s competitive ratio is at most 1
2 + 1

Hk−1
, where Hk−1 =

∑k−1
i=1

1
i .

A consequence of Theorem 1 is the well-known fact [18, 20] that the competitive ratio of
any deterministic or randomized algorithm for Online Bin Covering is at most 1

2 . This shows
that Online Bin Covering is still a hard problem, even after discretization.

Prediction setting. We study DBCS , where predictions concerning the frequency of item
sizes are available. We start with an impossibility result that establishes a consistency/robust-
ness tradeoff for this prediction scheme (Theorem 2). We then present an online algorithm,
named Group Covering, which is near-optimal when the predictions are error-free, for all finite
sets S ⊆ (0, 1] (Theorem 5). Further, we create a family of hybrid algorithms that accepts a
parameter λ, quantifying one’s trust in the predictions. We establish a consistency/robustness
tradeoff that bounds the consistency and robustness of these hybrid algorithms as a function
of λ (Theorems 9 and 10).

Stochastic setting. Motivated by the work of Csirik, Johnson, and Kenyon [15], we study
the purely online problem under a stochastic setting, where item sizes follow an unknown
distribution. Unlike [15], which assumes items are of sizes i

k , for i = 1, 2, . . . , k, we do not
make any assumption about input set S. We use a PAC-learning bound [13, 26] to create a
family of online algorithms without predictions, whose expected performance ratio [15] is
near-optimal with high probability, for any finite set S, and any unknown distribution D of
S (Theorem 12).

2 Preliminaries

2.1 Online Discrete Bin Covering
Fix a finite set S = {s1, s2, . . . , sk} ⊆ (0, 1]. An instance for S-Discrete Bin Covering is a
sequence σ = ⟨a1, a2, . . . , an⟩ of items, where ai ∈ S, for i ∈ [n]. The task of an algorithm
Alg is to place the items in σ into bins B1, B2, . . . , Bt, maximizing the number of bins, B,
for which

∑
a∈B a ⩾ 1. For any bin, B, we call lev(B) =

∑
a′∈B a′ the level of B. We assume

that algorithms are aware of S. In the online setting, the items are presented one-by-one to
Alg, and upon receiving an item a, Alg has to place a in a bin. This decision is irrevocable.
We abbreviate Online S-Discrete Bin Covering by DBCS . Throughout, we assume that
k ⩾ 2, and we set Fk =

{
i
k | for i = 1, 2, . . . , k

}
, and abbreviate DBCFk

by DBCk.

2.2 Performance Measures
Given an online maximization problem, Π, an online algorithm, Alg, for Π, and an instance,
σ, of Π, we let Alg[σ] be Alg’s solution on instance σ and Alg(σ) be the profit of Alg[σ].
If Alg is deterministic, then the competitive ratio of Alg is

crAlg = sup{c ∈ (0, 1] | ∃b > 0: ∀σ : Alg(σ) ⩾ c ·Opt(σ)− b},

where Opt is an offline optimal algorithm for Π. Further, Alg is c-competitive if c ⩽ crAlg.

SWAT 2024

10:4 Online Bin Covering with Frequency Predictions

For a fixed finite set S = {s1, s2, . . . , sk} ⊆ (0, 1], and a fixed (unknown) distribution D

of S, the asymptotic expected ratio [19, 15] of an online algorithm, Alg, is

er∞
Alg(D) = lim inf

n→∞
ED

[
Alg(σn(D))
Opt(σn(D))

]
, (1)

where σn(D) is a sequence of n independent identically distributed random variables, σn(D) =
⟨X1, X2, . . . , Xn⟩1, where Xi ∼ D, for all i = 1, 2, . . . , n.

When an algorithm, Alg, has access to predictions, the consistency of Alg, and the
robustness of Alg, is Alg’s competitive ratio when the predictions are error-free and
adversarial, respectively. Throughout, we let [n] = {1, 2, . . . , n}.

3 Predictions Setting

In this section, we assume that algorithms are given a frequency prediction, which, for a fixed
instance σ, and each item si ∈ S, predicts what fraction of items in σ are of size si.

Formally, given a finite set S = {s1, s2, . . . , sk} ⊆ (0, 1], and an instance, σ, of DBCS , we
let nσ

i be the number of items of size si in σ, nσ be the number of items in σ, and fσ
i = nσ

i

nσ .
We call fσ

i the frequency of items of size si in σ, and set fσ = (fσ
1 , fσ

2 , . . . , fσ
k). When there

can be no confusion, we abbreviate nσ
i , nσ, fσ

i , and fσ, by ni, n, fi, and f , respectively.
Throughout, we abbreviate Online S-Discrete Bin Covering with Frequency Predictions

by DBCF
S . An instance for DBCF

S is a tuple (σ, f̂) consisting of a sequence of items, σ, and
a vector of predicted frequencies f̂ =

(
f̂1, f̂2, . . . , f̂k

)
.

It is well-known that probabilities in discrete distributions are PAC-learnable, as shown
in [13]. That is, there exists a polynomial-time algorithm that learns the probabilities in
discrete distributions to arbitrary precision with a confidence that is arbitrarily close to 1,
given sufficiently many random samples (see [26] for a formal definition of PAC-learnability).
This makes frequency predictions easily attainable when historical data is available.

3.1 A Consistency-Robustness Trade-Off for DBCF
k

In the following, by a wasteful algorithm, we mean an algorithm that sometimes places an
item, a, in a bin, B, for which lev(B) ⩾ 1 before a was placed in B. Any wasteful algorithm
can be trivially converted to an equally good (possibly better) algorithm that avoids placing
items into already-covered bins. Therefore, in what follows, we assume that all algorithms,
including Opt, are non-wasteful.

▶ Theorem 2. Any (1−α)-consistent deterministic algorithm for DBCF
k is at most 2α-robust.

Proof. Let Alg be any deterministic online algorithm for DBCF
k . Consider the instance

(σn
1 , f̂), with f̂ = (f̂1, f̂2, . . . , f̂k), where

σn
1 =

〈〈
k − 1

k

〉n

,

〈
1
k

〉n〉
and f̂i =

{
1
2 , if si ∈

{ 1
k , k−1

k

}
0, otherwise.

Clearly, f̂ is a perfect prediction for σn
1 , and Opt(σn

1) = n. Hence, by the consistency of
Alg, there exists a constant b, such that

Alg(σn
1 , f̂) ⩾ (1− α) ·Opt(σn

1)− b = (1− α) · n− b. (2)

1 The particular choice of notation for Xi’s is due to the items being random variables.

M. Berg and S. Kamali 10:5

Let Bi, for i = 1, 2, be the collection of bins that Alg places i items of size k−1
k in. Then,

Alg(σn
1 , f̂) ⩽ |B1|+ |B2|+ n−|B1|

k . Since Alg is non-wasteful, n = |B1|+ 2 · |B2|, and so, by
Equation (2), we have that (1− α) · (|B1|+ 2 · |B2|)− b ⩽ |B1|+ (k+2)·|B2|

k , which implies

n ·
(
1− 2 · α− 2

k

)
− 2 · b

1− 2
k

⩽ |B1| . (3)

Hence, since Alg is (1 − α)-consistent, it has created at least n·(1−2·α− 2
k)−2·b

1− 2
k

bins that
contain exactly one item of size k−1

k after processing the first n items.
Next, consider the instance (σn

2 , f̂), with imperfect predictions, where σn
2 =

〈
k−1

k

〉n
.

Since the first n requests of σn
1 and σn

2 are identical, Alg cannot distinguish the instances
(σn

1 , f̂) and (σn
2 , f̂) until it has seen the first n items. Hence, since Alg is deterministic, it

distributes the first n items identically on the two instances. Given that n = |B1|+ 2 · |B2|,
Equation (3) implies that

Alg(σn
2 , f̂) ⩽ |B2| =

n− |B1|
2 ⩽

1
2 ·
(

n−
n
(
1− 2 · α− 2

k

)
− 2 · b

1− 2
k

)
= 2 · n · α + 2 · b

2− 4
k

.

Since Opt(σn
2) = n

2 , then, for all n ∈ Z+, Alg(σn
2 ,f̂)

Opt(σn
2) ⩽

2·n·α+2·b

2− 4
k

n
2

= 4·n·α+4·b
n·(2− 4

k) ⩽ 2 · α− 2·b
n , and

thus Alg is at most 2 · α-robust. ◀

Note that the impossibility result of Theorem 2 holds even for the special case of S = Fk.
In fact, since we only use items from { 1

k , k−1
k } in input sequences of the proof, Theorem 2

can be stated for all finite sets S ⊆ (0, 1], for which { 1
k , k−1

k } ⊆ S.

3.2 A Near-Optimally Consistent Algorithm for DBCF
S

In this section, inspired by the Profile Packing algorithm from [4], we present a family of
algorithms named Group Covering, parameterized by a parameter, ε, that receives frequency
predictions, and outputs a (1−ε)-approximation of the optimal solution, assuming predictions
are error-free. In other words, the algorithm achieves a consistency that is arbitrarily close to
optimal. For a fixed ε > 0, we let GCε be the Group Covering algorithm with parameter ε.

The Strategy of Group Covering

Fix a finite set S = {s1, s2, . . . , sk} ⊆ (0, 1]. A non-wasteful bin type is an ordered l-tuple
(a1, a2, . . . , al) of items, with l ⩾ 1 and ai ∈ S, for all i ∈ [l], such that a1 was placed in the
bin first, then a2, and so on, and such that

∑l−1
i=1 ai < 1. Observe that this definition implies

an ordering of the items in bin types, which is essential for our purpose. For example, the
bin type (1/2, 1/2, ε) is wasteful, as the bin is already covered after placing the second item
of size 1/2, but the bin type (1/2, ε, 1/2) is non-wasteful, as removing the top item will make
the bin no longer covered. Note that non-covered bins are also constitute a non-wasteful bin
type. We let TS denote the collection of all possible non-wasteful bin types given S, and set
τS = |TS | and tmax = maxt∈TS

{|t|}. For example, if S =
{ 1

k , k−1
k

}
then,

TS =

1

k
,

1
k

, . . . ,
1
k︸ ︷︷ ︸

i times

 | i ∈ [k]

 ∪

1

k
,

1
k

, . . . ,
1
k︸ ︷︷ ︸

i times

,
k − 1

k

 | i ∈ [k − 1]

 ∪
{(

k − 1
k

)
,

(
k − 1

k
,

1
k

)
,

(
k − 1

k
,

k − 1
k

)}
,

τS = 2k + 2, and tmax = k.

SWAT 2024

10:6 Online Bin Covering with Frequency Predictions

Given an instance of DBCF
S , (σ, f̂), GCε works as follows. In its initialization phase

(before any item is placed), it creates an optimal solution to the following multiset, σsub,
created based on S = {s1, s2, . . . , sk} ⊆ (0, 1] (which it knows) and the frequency prediction:

σsub = ⟨⌊f̂1 ·mk,ε⌋, ⌊f̂2 ·mk,ε⌋, . . . , ⌊f̂k ·mk,ε⌋⟩,

where mk,ε = mε + k, and mε = ⌈3 · τS · tmax · ε−1⌉. In this optimal solution, we maintain a
placeholder of size a for any item a ∈ σsub. A placeholder of size a is a virtual item of size a,
which reserves space for an item of size a. We let Pf̂ ,ε be the copy of Opt[σsub] containing
placeholders. To finish the initialization, GCε opens the first group, G1

f̂ ,ε
; a copy of Pf̂ ,ε.

When an item, a, arrives, GCε searches for a placeholder of size a in the open groups,
searching in G1

f̂ ,ε
first, then G2

f̂ ,ε
second, and so on. If such a placeholder exists, GCε replaces

the placeholder with a. If no such placeholder exists, GCε checks whether Pf̂ ,ε contains such
a placeholder, by checking whether a ∈ σsub. If so, then GCε opens a new group, G i

f̂ ,ε
, i.e. a

new copy of Pf̂ ,ε, and it replaces a newly created placeholder with a. Otherwise, GCε places
a in an extra-bin using dnf. Extra bins are reserved for items that GCε did not expect to
receive any of (items whose predicted frequency is 0 and thus are not in σsub). Pseudocode
for GCε are given in Algorithm 1.

Analysis of GCε

We say that a group, G i
f̂ ,ε

, is completed if all its placeholders have been replaced by items,
and let gε be the number of groups that GCε completes. Recall that, by construction, GCε

first completes G1
f̂ ,ε

, then G2
f̂ ,ε

, and so on.

▶ Lemma 3. Fix any finite set S = {s1, s2, . . . , sk} ⊆ (0, 1], any ε ∈ (0, 1), and any instance
(σ, f̂) for DBCF

S , with f̂ = f . Then,
⌊

n
mk,ε

⌋
⩽ gε ⩽

⌊
n

mε

⌋
.

Throughout, we let p(N) be the profit of a solution N for an input σ. Observe that
p
(

G1
f̂ ,ε

)
= p

(
G i

f̂ ,ε

)
, for all i ∈ [gε], i.e. all completed groups have the same profit.

▶ Lemma 4. Fix any set S = {s1, s2, . . . , sk} ⊆ (0, 1], any ε ∈ (0, 1), and any instance,
(σ, f̂), for DBCF

S , with f̂ = f and nσ > m2
k,ε + mk,ε. Then, gε ·p

(
G1

f̂ ,ε

)
⩾ (1− ε) ·Opt(σ).

Proof. We show this by creating a solution, N , based on Opt[σ], such that
(i) p(N) ⩾

(
1− ε

3
)
·Opt(σ), and

(ii) gε · p
(

G1
f̂ ,ε

)
⩾
(
1− 2·ε

3
)
· p(N).

Since ε ∈ (0, 1), it suffices to prove (i) and (ii), because (i) and (ii) imply that

gε · p
(

G1
f̂ ,ε

)
⩾

(
1− 2 · ε

3

)
·
(

1− ε

3

)
·Opt(σ) ⩾ (1− ε) ·Opt(σ).

Construction of N . Initially, let N be a copy of Opt[σ]. Since Opt is non-wasteful, all
bins in Opt[σ] are filled according to non-wasteful bin types. For each non-wasteful bin type
t ∈ TS , remove between 0 and gε − 1 bins of type t from N , such that the number of bins of
type t becomes divisible by gε.

Proof of (i). Since Opt(σ) ⩾ nσ

tmax
, Lemma 3 implies that

p(N) ⩾ Opt(σ)− (gε − 1) · τS ⩾ Opt(σ)− nσ

mε
· τS

⩾ Opt(σ)−Opt(σ) · τS · tmax

mε
⩾
(

1− ε

3

)
·Opt(σ).

M. Berg and S. Kamali 10:7

Algorithm 1 GCε.

1: Input: a DBCF
S -instance. (σ, f̂)

2: j, l← 1
3: Compute τS , tmax, and k = |S|
4: mε ← ⌈3 · τS · tmax · ε−1⌉
5: mk,ε ← mε + k

6: σsub ← ⟨⌊f̂1 ·mk,ε⌋, ⌊f̂2 ·mk,ε⌋, . . . , ⌊f̂k ·mk,ε⌋⟩
7: Pf̂ ,ε ← ∅
8: for all B ∈ Opt[σsub] do
9: B′ ← ∅ ▷ Create a new empty bin

10: for all a ∈ B do
11: B′ ← B′ ∪ {pa} ▷ Add a placeholder of size a to B′

12: Pf̂ ,ε ← Pf̂ ,ε ∪B′ ▷ Add a copy of B containing placeholders to Pf̂ ,ε

13: G1
f̂ ,ε
← Pf̂ ,ε ▷ Open the first group

14: while receiving items, a, do
15: not_placed← true ▷ Marks whether a still has to be placed
16: for i = 1, 2, . . . , l do ▷ Go through open groups chronologically
17: if not_placed then ▷ To avoid trying to place a multiple times
18: if ∃B ∈ G i

f̂ ,ε
: pa ∈ B then ▷ Search for pa in G i

f̂ ,ε

19: B ← B \ {pa} ∪ {a} ▷ Swap out placeholder, pa, for a

20: not_placed← false ▷ a has been placed in a bin
21: if not_placed then ▷ Checking whether a has been placed
22: if ⌊f̂a ·mk,ε⌋ ̸= 0 then ▷ Checking whether a ∈ σsub
23: l← l + 1
24: G l

f̂ ,ε
← Opt[σsub] ▷ Open a new group

25: Determine B ∈ G l
f̂ ,ε

such that pa ∈ B, and B ← B \ {pa} ∪ {a}
26: else ▷ a ̸∈ σsub
27: BE

j ← BE
j ∪ {a} ▷ Place a in a extra bin using dnf

28: if lev(BE
j) ⩾ 1 then

29: j ← j + 1
30: BE

j ← ∅

Proof of (ii). Since the number of occurrences of each bin type in N is divisible by gε, we
may consider N as gε identical copies of a smaller covering N . Since we do not add any
items when creating N , and thus N , we have nN

i ⩽
⌊

nσ
i

gε

⌋
, for all i ∈ [k], where nN

i denotes
the number of items of size i in N . Then, for all i ∈ [k], we can write

nN
i ⩽

⌊
nσ

i

gε

⌋
⩽

 nσ
i⌊

nσ

mk,ε

⌋
 ⩽

⌊
nσ

i
nσ

mk,ε
− 1

⌋
=
⌊

nσ
i

nσ−mk,ε

mk,ε

⌋
=
⌊

nσ
i ·

mk,ε

nσ −mk,ε

⌋
.

Given that mk,ε

nσ−mk,ε
= mk,ε

nσ + m2
k,ε

nσ·(nσ−mk,ε) , and that nσ > m2
k,ε + mk,ε, we may conclude

nN
i ⩽

⌊
nσ

i ·mk,ε

nσ
+

m2
k,ε

nσ −mk,ε

⌋
⩽

⌊
nσ

i ·mk,ε

nσ

⌋
+ 1 = ⌊fi ·mk,ε⌋+ 1.

Hence, N contains at most one more item of size si than Gj

f̂ ,ε
, for all i ∈ [k], and all

j ∈ [gε]. Then, for all j ∈ [gε], the following holds:

SWAT 2024

10:8 Online Bin Covering with Frequency Predictions

p
(

Gj

f̂ ,ε

)
⩾ p

(
N
)
− k. (4)

Next, we devise a lower bound for p
(
N
)
. Since Opt(σ) ⩾ nσ

tmax
,

p
(
N
)

= p(N)
gε

⩾

(
1− ε

3
)
·Opt(σ)
gε

⩾

(
1− ε

3
)
· nσ

tmax · gε
⩾

(
1− ε

3
)
· nσ

tmax · nσ

mε

=
(
1− ε

3
)
·mε

tmax
⩾

(
1− ε

3
)
· 3·τS ·tmax

ε

tmax
⩾

(
1− ε

3
)
· 3 · τS

ε
⩾

(
1− ε

3
)
· k

ε
3

.

Hence, k ⩽
ε
3 ·p(N)

1− ε
3

, and so, by Equation (4), p
(

Gj

f̂ ,ε

)
⩾ p

(
N
)
−

ε
3 ·p(N)

1− ε
3

⩾
(
1− 2·ε

3
)
·p
(
N
)
.

Since p(N) = gε · p
(
N
)

and p
(

Gj

f̂ ,ε

)
= p

(
G1

f̂ ,ε

)
, for all j ∈ [gε], we conclude

gε · p
(

G1
f̂ ,ε

)
⩾ gε ·

(
1− 2·ε

3
)
· p
(
N
)

=
(
1− 2·ε

3
)
· p(N), which establishes (ii). ◀

Given Lemma 4, it is straightforward to deduce the following theorem, which is the main
result of this section.

▶ Theorem 5. For any set S = {s1, s2, . . . , sk} ⊆ (0, 1], and any ε ∈ (0, 1), there exists
a constant, b, such that for all instances (σ, f̂), with f = f̂ , it holds that GCε(σ, f̂) ⩾
(1− ε) ·Opt(σ)− b. That is, GCε is a (1− ε)-consistent algorithm for DBCF

S .

While the above theorem shows that GCε is almost optimally consistent, the same cannot
be said about its robustness. Consider the instance (σn, f̂) where σn =

〈 1
k

〉n and f̂ predicts
that half of the items are of size 1

k , and half of the items are of size k−1
k , a wrong prediction

for σn. Based on the predictions f̂ , GCε creates
⌊mk,ε

2
⌋

bins that contain placeholders for
one item of size 1

k , and one item of size k−1
k . Since no item of size k−1

k appears in the input,
GCε never covers a bin, and since Opt(σn) =

⌊
n
k

⌋
, GCε is not robust. In the next section,

we introduce a strategy for improving the robustness of GCε.

3.3 Robustifying GCε

For each purely online algorithm, Alg (e.g. dnf), we create a family of hybrid algorithms
that combines GCε with Alg to improve the robustness of GCε. Formally, for any algorithm,
Alg, we create the family {Hybλ,ε

Alg}λ,ε, of hybrid algorithms, parametrized by ε ∈ (0, 1)
and a trust level, λ ∈ Q+. Throughout, we assume that λ is given as a fraction, λ = κ

ℓ , for
some κ ∈ N and ℓ ∈ Z+. For any item a ∈ S, Hybλ,ε

Alg maintains a counter for the number of
items of size a in the input observed so far. Upon receiving an item a, Hybλ,ε

Alg counts the
number of occurrences of a, denoted ca, and if ca (mod ℓ) ⩽ ℓ− κ− 1, it uses Alg to place
a in a bin that only Alg places items into, and otherwise, it uses GCε to place a in a bin
that only GCε places items into. The pseudo-code for Hybλ,ε

Alg is given in Algorithm 2.
For the analysis of Hybλ,ε

Alg, we associate, to any instance σ of DBCS , a (ℓ + 1)-tuple,
(σ1, σ2, . . . , σℓ, σe) called the ℓ-splitting of σ, which is created as follows. Process the items
one-by-one, in the order they appear in σ; when processing an item a, place it in σi+1
if ca (mod ℓ) ≡ i, where ca is the number of items of size a previously recorded. After
processing all items in σ, we compute the number of items of size si, for any si ∈ S, in each
σj , for all i ∈ [k] and all j ∈ [ℓ]. If there are equally many items of size si in all σj , we are
done. If, on the other hand, there exists some i ∈ [k] and some j ∈ [ℓ] such that σ1, σ2, . . . , σj

contains one more item of size si than σj+1, σj+2, . . . , σℓ, then we remove one item of size
si from all of σ1, σ2, . . . , σj , and place it in σe instead. The pseudo-code for this process is
given in the full paper [8].

M. Berg and S. Kamali 10:9

Algorithm 2 Hybλ,ε
Alg.

1: Input: An instance for DBCF
S , (σ, f̂)

2: Determine κ, ℓ ∈ Z+ such that λ = κ
ℓ

3: Run Lines 2-13 of GCε (see Algorithm 1), given the prediction f̂

4: Run initialization part of Alg, if such exists
5: for all i ∈ [k] do
6: csi

← 0
7: while receiving items, a, do
8: j ← ca (mod ℓ) ▷ a ∈ σj+1
9: if j ⩽ ℓ− κ− 1 then

10: Ask Alg to place a

11: else ▷ ℓ− κ ⩽ j ⩽ ℓ− 1
12: Ask GCε to place a ▷ See Lines 14-30 in Algorithm 1
13: ca ← ca + 1

By construction, the ℓ-splitting of σ decomposes σ into ℓ smaller instances, σi for i ∈ [ℓ],
that all contain the same multiset of items, but possibly in different orders, and an excess
instance σe, which contain the remaining items from σ. By construction, nσe ⩽ (ℓ− 1) · k.

Bounding the Performance of the Optimal Packing

In what follows, we present an upper bound for the number of bins covered by Opt.
Throughout, given ℓ instances, σ1, σ2, . . . , σℓ, we set

⋃ℓ
i=1 σi = ⟨σ1, σ2, . . . , σℓ⟩.

▶ Observation 6. Let σ1, σ2, . . . , σℓ be any instances for DBCS, then
∑ℓ

i=1 Opt(σi) ⩽

Opt
(⋃ℓ

i=1 σi

)
.

▶ Lemma 7. Let S = {s1, s2, . . . , sk} ⊆ (0, 1] be any finite set, let σ by any instance of
DBCS, and let (σ1, σ2, . . . , σℓ, σe) be the ℓ-splitting of σ. Then, Opt(σ) ⩽

∑ℓ
i=1 Opt(σi) +

(ℓ− 1) · (k + τS).

Proof. We split this proof into two parts, by showing that
(i) Opt

(⋃ℓ
i=1 σi

)
⩽
∑ℓ

i=1 Opt(σi) + (ℓ− 1) · τS , and

(ii) Opt(σ) ⩽ Opt
(⋃ℓ

i=1 σi

)
+ (ℓ− 1) · k.

Proof of (i). We use a similar strategy as in the proof of Theorem 5. To this end, let N be
the solution obtained by removing at most ℓ − 1 bins of each non-wasteful bin type from
a copy of Opt

[⋃ℓ
i=1 σi

]
(recall that Opt is non-wasteful) such that the number of each

bin type in N is divisible by ℓ. Then, p(N) ⩾ Opt
(⋃ℓ

i=1 σi

)
− (ℓ − 1) · τS . Therefore, it

suffices to compare the profit of
⋃ℓ

i=1 Opt[σi] to p(N). Since σ1, σ2, . . . , σℓ all contain the
same multiset of items (but possibly in a different order), it holds that Opt(σi) = Opt(σj),
for all i, j ∈ [ℓ]. Further, by construction, N is the union of ℓ identical smaller coverings, N ,
for which nN

i ⩽ nσi
i , for all i ∈ [k]. Therefore, Opt(σi) ⩾ p

(
N
)
, for all i ∈ [k], and we can

write
∑ℓ

i=1 Opt(σi) = ℓ ·Opt(σ1) ⩾ ℓ · p
(
N
)

= p(N), which completes the proof of (i).

Proof of (ii). Since nσe ⩽ (ℓ− 1) · k, we can write Opt
(⋃ℓ

i=1 σi

)
⩾ Opt(σ)− (ℓ− 1) · k.

Adding (ℓ− 1) · k to both sides establishes (ii) and thus completes the proof. ◀

SWAT 2024

10:10 Online Bin Covering with Frequency Predictions

A Bound on the Performance of GCε

We compare the number of bins covered by GCε on a subset of the instances in the ℓ-splitting
of an instance, σ, to that of Opt on σ. To this end, observe that if σ is a DBCS-instance,
where S = {s1, s2, . . . , sk} ⊆ (0, 1], and (σ1, σ2, . . . , σℓ, σe) is the ℓ-splitting of σ, then
nσi

j =
⌊

nσ
j

ℓ

⌋
, for all j ∈ [k] and all i ∈ [ℓ].

▶ Lemma 8. Fix any set S = {s1, s2, . . . , sk} ⊆ (0, 1], any ε ∈ (0, 1), and any instance
(σ, f̂) of DBCS, for which f = f̂ , and let (σ1, σ2, . . . , σℓ, σe) be the ℓ-splitting of σ, for
some ℓ ∈ Z+. Then, for any j ∈ Z+, with j ⩽ ℓ, there exists a constant b such that
GCε

((⋃ℓ
i=ℓ−j+1 σi

)
, f̂
)
⩾ j·(1−ε)·Opt(σ)

ℓ − b.

Proof. Let σ̃j =
⋃ℓ

i=ℓ−j+1 σi, and set b = m2
k,ε + mk,ε + k · ℓ. If nσ ⩽ b, the right-hand side

is non-positive, and the left-hand side is non-negative, and the lemma’s statement follows.
Hence, assume that nσ > b. Let C = GCε[σ, f̂], and let gε be the number of groups, G i

f̂ ,ε
,

that GCε completes on instance (σ, f̂). By Lemma 4, we have gε ·p
(

G1
f̂ ,ε

)
⩾ (1−ε) ·Opt(σ).

Since G i
f̂ ,ε

is only dependent on ε, S, and f̂ , GCε creates the same groups, G i
f̂ ,ε

, on instance
(σ, f̂) as on instance (σ̃j , f̂). In the following, we prove a lower bound for the number of
groups that GCε completes on instance (σ̃j , f̂), as a function of gε.

Since C completely covers gε copies of G i
f̂ ,ε

, then nσ
i ⩾ gε · ⌊fσ

i · mk,ε⌋ for all i ∈ [k].

Moreover, given that each σi contains exactly
⌊

nσ
i

ℓ

⌋
items of size si, we have

n
σ̃j

i ⩾ j ·
⌊

nσ
i

ℓ

⌋
⩾

j · nσ
i

ℓ
− j ⩾

j · gε

ℓ
· ⌊fσ

i ·mk,ε⌋ − j ⩾

⌊
j · gε

ℓ

⌋
· ⌊fσ

i ·mk,ε⌋ − j.

This implies that, GCε fills in all placeholders for items of size si in
⌊

j·gε

ℓ

⌋
groups, except at

most j, on instance (σ̃j , f̂), for all i ∈ [k]. Hence,

GCε(σ̃j , f̂) ⩾
⌊

j · gε

ℓ

⌋
· p
(

G i
f̂ ,ε

)
− k · j ⩾

(
j · gε

ℓ
− 1
)
· p
(

G i
f̂ ,ε

)
− k · j.

Since p
(

G i
f̂ ,ε

)
⩽ mk,ε, we conclude the following, which completes the proof:

GCε(σ̃j , f̂) ⩾ j · gε

ℓ
· p
(

G i
f̂ ,ε

)
− k · j −mk,ε ⩾

j · (1− ε) ·Opt(σ)
ℓ

− b. ◀

A Trust-Parametrized Family of Hybrid Algorithms

In what follows, we wrap up the analysis of Hybλ,ε
Alg by stating and proving the main results

of this section. By construction, Hybλ,ε
Alg (see Algorithm 2) distributes the items that arrive

between GCε and Alg in a way determined by λ. Whenever λ becomes close to 1, Hybλ,ε
Alg

assigns a larger fraction of items to GCε, and when λ gets close to 0, Hybλ,ε
Alg assigns more

items to Alg. In particular, Hyb1,ε
Alg = GCε, and Hyb0,ε

Alg = Alg. Clearly, Hybλ,ε
Alg cannot

create a perfect ℓ-splitting online, since it cannot correctly identify the items that are placed
in σe. It can, however, get sufficiently close.

▶ Theorem 9. For any finite set S = {s1, s2, . . . , sk} ⊆ (0, 1], any purely online DBCF
S -

algorithm, Alg, any c ⩽ crAlg, any ε ∈ (0, 1), and any λ ∈ Q+, there exists a constant
b ∈ Z+, such that for all instances (σ, f̂), the following holds, assuming f = f̂ :

Hybλ,ε
Alg(σ, f̂) ⩾ (λ · (1− ε) + (1− λ) · c) ·Opt(σ)− b.

M. Berg and S. Kamali 10:11

Proof. Let bAlg be the additive constant of Alg, bGCε = m2
k,ε + mk,ε + k · ℓ. Then, we set

b = bAlg + bGCε
+ (ℓ − 1) · (k + τS). If nσ ⩽ b, the result follows trivially. Hence, assume

that nσ > b.
Let (σ1, σ2, . . . , σℓ, σe) be the ℓ-splitting of σ, and let σAlg

e and σGCε
e be the collection of

instances from σe that Alg and GCε receive, respectively. Then, by definition of Hybλ,ε
Alg,

Hybλ,ε
Alg[σ, f̂] = Alg

[(
ℓ−κ⋃
i=1

σi

)
∪ σAlg

e

]
∪GCε

[(
ℓ⋃

i=ℓ−κ+1
σi

)
∪ σGCε

e , f̂

]

⩾ Alg
(

ℓ−κ⋃
i=1

σi

)
+ GCε

((
ℓ⋃

i=ℓ−κ+1
σi

)
, f̂

)
.

Set b′ = bAlg + bGCε
. Then, by c-competitiveness of Alg and Lemma 8, we can write

Hybλ,ε
Alg(σ, f̂) ⩾ c ·Opt

(
ℓ−κ⋃
i=1

σi

)
+ λ · (1− ε) ·Opt(σ)− b′.

Since Opt(σi) = Opt(σj) for all i, j ∈ [ℓ] then, by Observation 6, we have
∑ℓ−κ

i=1 Opt(σi) ⩽
Opt

(⋃ℓ−κ
i=1 σi

)
. Therefore, from the above inequality, we can conclude

Hybλ,ε
Alg(σ, f̂) ⩾ c ·

(
ℓ−κ∑
i=1

Opt(σi)
)

+ λ · (1− ε) ·Opt(σ)− b′

= (1− λ) · c ·
(

ℓ∑
i=1

Opt(σi)
)

+ λ · (1− ε) ·Opt(σ)− b′.

Combining Lemma 7 and the above bound for Hybλ,ε
Alg(σ, f̂), we can conclude the following,

which completes the proof:

Hybλ,ε
Alg(σ, f̂) ⩾ (1− λ) · c · (Opt(σ)− (ℓ− 1) · (k + τS)) + λ · (1− ε) ·Opt(σ)− b′

⩾ ((1− λ) · c + λ · (1− ε)) ·Opt(σ)− b. ◀

The above theorem gives an explicit formula for the consistency of Hybλ,ε
Alg as a function

of the trust-level, λ, ε ∈ (0, 1), and the performance guarantee of Alg. A similar proof can
be used to establish a guarantee on the robustness of Hybλ,ε

Alg.

▶ Theorem 10. For any finite set S = {s1, s2, . . . , sk} ⊆ (0, 1], any purely online algorithm,
Alg, for DBCS, any c ⩽ crAlg, and any ε, there exists a constant b ∈ Z+, such that for
all instances (σ, f̂), Hybλ,ε

Alg(σ, f̂) ⩾ (1− λ) · c ·Opt(σ)− b.

4 Stochastic Setting

In this section, we consider a setting for DBCS where item sizes are generated independently
at random from an unknown distribution. This setting has already been studied for the
more restricted DBCk problem, where Csirik, Johnson and Kenyon used variants of the Bin
Packing algorithm “Sum-of-Squares”, first introduced in [17, 16], to develop algorithms for
DBCk. Rather than designing algorithms that perform well in the worst case, they aimed
to design algorithms that perform well on average. Specifically, they develop an algorithm,
called SS∗, with er∞

SS∗(D) = 1 (see Equation (1) for the definition of er∞
SS∗(D)), for all

discrete distributions D of Fk, with rational probabilities.

SWAT 2024

10:12 Online Bin Covering with Frequency Predictions

In this section, we use a PAC-learning bound for learning frequencies in discrete distri-
butions to derive a family of algorithms called purely online group covering ({POGCδ

ε}ε,δ).
These algorithms are parametrized by two real numbers ε, δ ∈ (0, 1), satisfying that, for
all finite sets S = {s1, s2, . . . , sk} ⊆ (0, 1], there exists a constant b ∈ R+, such that for
all (unknown) distributions D = {p1, p2, . . . , pk} of S, allowing irrational probabilities, the
following holds:

P
(

POGCδ
ε(σn(D)) ⩾ (1− ε) ·Opt(σn(D))− b

)
⩾ 1− δ, (5)

where σn(D) is defined in the preliminaries. Observe that this guarantee is true, even for
adversarial S and D. Clearly, Equation (5) implies that

P (er∞
POGCδ

ε
(D) ⩾ 1− ε) ⩾ 1− δ. (6)

The guarantee from Equation (5) is, however, stronger than Equation (6), in that
the additive term in Equation (5) is constant, whereas the additive term for POGCδ

ε in
Equation (6) may be a function of n. As pointed out in [6], having only constant loss before
giving a multiplicative performance guarantee is a desirable property.

We formalize the strategy of POGCδ
ε in Algorithm 3. In words; the algorithm works

by defining a “sample size”, Φ, as a function of k, ε and δ. Intuitively, observing Φ items
from the input prefix is sufficient to make predictions about the frequency of items with
respect to D that are ε-accurate with confidence 1− δ. We formalize this in Proposition 11.
In the process of learning D, POGCδ

ε places the first Φ items using dnf while observing the
item frequencies. After placing the first Φ item, POGCδ

ε uses the observed frequencies to
make an estimate - prediction - about the item frequencies and applies GC ε

2
to place the

remaining items.

Algorithm 3 POGCδ
ε.

1: Input: A DBCS-instance, σ

2: ss← 0 ▷ Sample size
3: Compute τS , tmax, and k = |S|
4: m ε

2
← ⌈6 · τS · tmax · ε−1⌉

5: mk, ε
2
← m ε

2
+ k

6: Φ← max
{

16 · k · (mk, ε
2

+ 1)2, 32 · (mk, ε
2

+ 1)2 · ln
(

2
1−

√
1−δ

)}
7: for all i ∈ [k] do
8: csi

← 0 ▷ Number of items of size si

9: while receiving items, a, and ss < Φ do
10: ca ← ca + 1
11: Place a in a dnf-marked bin using dnf
12: ss← ss + 1
13: for i = 1, 2, . . . , k do
14: f̂Φ

i = csi

Φ

15: f̂Φ =
(

f̂Φ
1 , f̂Φ

2 , . . . , f̂Φ
k

)
16: Run Lines 2-13 of GC ε

2
(see Algorithm 1), given the prediction f̂Φ

17: while receiving items, a, do
18: Place a using GC ε

2
▷ See Lines 14-30 in Algorithm 1

Before formalizing and proving the claim from Equation (5), we review a PAC-learning
bound for learning frequencies in discrete distributions [13].

M. Berg and S. Kamali 10:13

Sampling Complexity of Learning Frequencies

We refer to [13] for a proof of the following well-known fact that establishes an upper bound
for the sampling complexity of PAC-learning frequencies:

▶ Proposition 11 ([13]). For any finite set S = {s1, s2, . . . , sk} ⊆ (0, 1], there exists an
algorithm, A, and a map ΦA : R+ × (0, 1)→ Z+, such that for any γ ∈ R+, any δ ∈ (0, 1),
any (unknown) discrete distribution D = {p1, p2, . . . , pk} of S, and any n ⩾ ΦA(γ, δ), letting
{Xi}n

i=1 be a sequence of independent identically distributed random variables, with Xi ∼ D,

P
(
L1(A(X1, X2, . . . , Xn), D) ⩽ γ

)
⩾ 1− δ,

where L1 is the usual L1-distance. For learning frequencies in discrete distributions, A is the
algorithm which outputs the predicted distribution:

A(X1, X2, . . . , Xn) =

p̂i

∣∣∣∣ i ∈ [k] and p̂i = 1
n
·

n∑
j=1

1{si}(Xj)

 ,

and, for any γ ∈ R+ and δ ∈ (0, 1), the map ΦA is given by

ΦA(γ, δ) = max
{

4 · k
γ2 ,

8
γ2 · ln

(
2
δ

)}
.

4.1 Analysis of POGCδ
ε

We formalize and prove the claim from Equation (5):

▶ Theorem 12. For all finite sets S = {s1, s2, . . . , sk} ⊂ (0, 1], and all ε, δ ∈ (0, 1), there
exists a constant b ∈ Z+, such that for all discrete distributions D = {p1, p2, . . . , pk} of S,
and all n ∈ Z+, the following holds:

P
(

POGCδ
ε(σn(D)) ⩾ (1− ε) ·Opt(σn(D))− b

)
⩾ 1− δ,

where σn(D) = ⟨X1, X2, . . . , Xn⟩, and {Xi}n
i=1 is a sequence of independent identically

distributed random variables with Xi ∼ D, for all i ∈ [n].

Proof. Set Φ = max
{

16 · k · (mk, ε
2

+ 1)2, 32 · (mk, ε
2

+ 1)2 · ln
(

2
1−

√
1−δ

)}
, and b = max{2 ·

Φ, m2
k, ε

2
+ mk, ε

2
+ Φ}, and observe that b is independent of the input length n. By similar

arguments as in the proof of Lemma 8, we assume that n ⩾ b. For ease of notation, we set
ε̃ = ε

2 .
Throughout this proof, we split σn(D) into two subsequences, σa and σs. Formally, we

set σa = ⟨X1, X2, . . . , XΦ⟩, and σs = ⟨XΦ+1, XΦ+2, . . . , Xn⟩. By construction, POGCδ
ε uses

dnf on the first Φ items while counting the number of items of each size. After observing the
first Φ items, it creates the predicted distribution f̂Φ = A(X1, X2, . . . , XΦ), by Lines 13-15
in Algorithm 3. By construction of Φ and Proposition 11, we can write

P

(
L1(f̂Φ, D) ⩽ 1

2 · (mk,ε̃ + 1)

)
⩾
√

1− δ.

Therefore, by construction of f̂Φ and the definition of L1, the following holds:

P

(
k∑

i=1

∣∣∣f̂Φ
i − pi

∣∣∣ ⩽ 1
2 · (mk,ε̃ + 1)

)
⩾
√

1− δ.

SWAT 2024

10:14 Online Bin Covering with Frequency Predictions

Denote by fσs the true frequencies of σs = ⟨XΦ+1, XΦ+2, . . . , Xn⟩. Since n ⩾ 2 ·Φ, we know
that |σs| ⩾ Φ, and so, by similar arguments as above,

P

(
k∑

i=1
|fσs

i − pi| ⩽
1

2 · (mk,ε̃ + 1)

)
⩾
√

1− δ.

Let Ef̂Φ be the event
∑k

i=1

∣∣∣f̂Φ
i − pi

∣∣∣ ⩽ 1
2·(mk,ε̃+1) , and Efσs be the event

∑k
i=1 |f

σs
i − pi| ⩽

1
2·(mk,ε̃+1) . Since Ef̂Φ and Efσs are independent, we have P

(
Ef̂Φ and Efσs

)
⩾ 1 − δ

Therefore, with probability at least 1− δ, we have

L1(f̂Φ, fσs) =
k∑

i=1

∣∣∣f̂Φ
i − fσs

i

∣∣∣ ⩽ k∑
i=1

∣∣∣f̂Φ
i − pi

∣∣∣+
k∑

i=1
|fσs

i − pi| <
1

mk,ε̃
. (7)

This means that the predictions POGCδ
ε creates are very close to the true frequencies of the

remainder of the instance, σs, with high probability.
Next, by construction of POGCδ

ε, we deduce that POGCδ
ε(σn(D)) ⩾ GCε̃(σs, f̂Φ).

Then, as long as we can verify that the inequality

GCε̃(σs, f̂Φ) ⩾ (1− ε) ·Opt(σs), (8)

holds whenever L1(f̂Φ, fσs) < 1
mk,ε̃

, we deduce that

POGCδ
ε(σn(D)) ⩾ GCε̃(σs, f̂Φ)

⩾ (1− ε) ·Opt(σs)
⩾ (1− ε) ·Opt(σn(D))− 2 · Φ.

Since P (L1(f̂Φ, fσs) < 1
mk,ε̃

) ⩾ 1− δ, by Equality 7, we can write

P
(

POGCδ
ε(σn(D)) ⩾ (1− ε) ·Opt(σn(D))− 2 · Φ

)
⩾ 1− δ,

which completes the proof.
It remains to prove that Equation (8) holds whenever L1(f̂Φ, fσs) < 1

mk,ε̃
. To this

end, assume that L1(f̂Φ, fσs) < 1
mk,ε̃

. Let gε̃ be the number of groups that GCε̃ would
complete on instance (σs, fσs), that is, with perfect predictions. Moreover, let Pσs,ε̃ =
Opt[⟨⌊fσs

1 ·mk,ε̃⌋, . . . , ⌊fσs

k ·mk,ε̃⌋⟩], and PΦ,ε̃ = Opt[⟨⌊f̂Φ
1 ·mk,ε̃⌋, . . . , ⌊f̂Φ

k ·mk,ε̃⌋⟩], where
items have been replaced with placeholders.

First, we compare the number of items of size si in Pσs,ε̃ compared to PΦ,ε̃. To this end,
for all i ∈ [k], set µi =

∣∣∣⌊f̂Φ
i ·mk,ε̃⌋ − ⌊fσs

i ·mk,ε̃⌋
∣∣∣. Then,

µi ⩽
∣∣∣f̂Φ

i ·mk,ε̃ − fσs
i ·mk,ε̃

∣∣∣+ 1 =
∣∣∣f̂Φ

i − fσs
i

∣∣∣ ·mk,ε̃ + 1.

Since L1(f̂Φ, fσs) < 1
mk,ε̃

, we get that
∑k

i=1

∣∣∣f̂Φ
i − fσs

i

∣∣∣ < 1
mk,ε̃

, which implies that∣∣∣f̂Φ
i − fσs

i

∣∣∣ < 1
mk,ε̃

, for all i ∈ [k]. Therefore, we have µi < 2 for all i ∈ [k], and since
µi ∈ N, we get that µi ∈ {0, 1}, for all i ∈ [k].

Next, we lower bound GCε̃(σs, f̂Φ), as a function of p(PΦ,ε̃) and gε̃. Since GCε̃ would
complete gε̃ groups on instance (σs, fσs), then, for all i ∈ [k], σs contains at least gε̃ · ⌊fσs

i ·
mk,ε̃⌋ items of size si. Since µi ∈ {0, 1} for all i ∈ [k], then, on instance (σs, f̂Φ), GCε̃ fills
all placeholders of size si in gε̃ groups, except at most gε̃. Hence,

GCε̃(σs, f̂Φ) ⩾ gε̃ · p(PΦ,ε̃)− gε̃ · k.

M. Berg and S. Kamali 10:15

For the rest of this proof, we use an argument as in the proof of Theorem 5. To this end, let
N be the covering obtained by creating a copy of Opt[σs], from which we have removed a
number of bins of type t ∈ TS , such that the number of bins of type t is divisible by gε̃, for
all t ∈ TS . By similar arguments as in Lemma 4, we get that p(N) ⩾ (1− ε̃

3) ·Opt(σs).
Next, observe that N is comprised of gε̃ identical coverings N . Since n ⩾ b, we can write

|σs| ⩾ m2
k,ε̃ + mk,ε̃. Hence, by a similar argument as in the proof of Lemma 4, we have

nN
i ⩽ n

Pσs,ε̃

i + 1 ⩽ n
PΦ,ε̃

i + 2, for all i ∈ [k], and thus p(PΦ,ε̃) ⩾ p
(
N
)
− 2 · k. Moreover, as in

Lemma 4, it holds that k ⩽
ε̃
3 ·p(N)

1− ε̃
3

, and we can write

p(PΦ,ε̃) ⩾ p
(
N
)
− 2 ·

ε̃
3 · p

(
N
)

1− ε̃
3

⩾ (1− ε̃) · p
(
N
)

.

Conclusively, from the above-established inequalities, we can conclude the following, which
completes the proof:

GCε̃(σs, f̂Φ) ⩾ gε̃ · (p(PΦ,ε̃)− k) ⩾ gε̃ ·

(
(1− ε̃) · p

(
N
)
−

ε̃
3 · p

(
N
)

1− ε̃
3

)

⩾ gε̃ ·
(

1− 5
3 · ε̃

)
· p
(
N
)
⩾

(
1− 5

3 · ε̃
)
·
(

1− ε̃

3

)
·Opt(σs)

= (1− 2 · ε̃) ·Opt(σs) = (1− ε) ·Opt(σs). ◀

5 Concluding Remarks

We studied the power of frequency predictions in improving the performance of online
algorithms for the discrete bin cover problem. In particular, we showed that when input
is adversarially generated, frequency predictions (from historical data) can help design
algorithms with adjustable trade-offs between consistency and robustness. Specifically, one
can achieve near-optimal solutions, assuming predictions are error-free. On the other hand,
when input is generated stochastically, we showed that frequencies could be learned from an
input prefix of constant length to achieve solutions that are arbitrarily close to optimal with
arbitrarily high confidence. An interesting variant of the problem concerns inputs generated
adversarially but permuted randomly. This setting is in line with recent work on the analysis
of algorithms with random order input (see, e.g., [21, 7]). We expect that our algorithm for
the stochastic setting can still be applied to this setting to achieve close to optimal solutions
with high confidence, although a different analysis is needed.

References
1 Algorithms with predictions. URL: https://algorithms-with-predictions.github.io/.

Accessed: 2024-01-26.
2 Spyros Angelopoulos, Christoph Dürr, Shendan Jin, Shahin Kamali, and Marc P. Renault.

Online computation with untrusted advice. In 11th Innovations in Theoretical Computer
Science Conference (ITCS), pages 52:1–52:15. Dagstuhl - Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.ITCS.2020.52.

3 Spyros Angelopoulos and Shahin Kamali. Contract scheduling with predictions. J. Artif.
Intell. Res., 77:395–426, 2023.

4 Spyros Angelopoulos, Shahin Kamali, and Kimia Shadkami. Online bin packing with predic-
tions. Journal of Artificial Intelligence Research, 78:1111–1141, 2023. doi:10.1613/jair.1.
14820.

SWAT 2024

https://algorithms-with-predictions.github.io/
https://doi.org/10.4230/LIPIcs.ITCS.2020.52
https://doi.org/10.1613/jair.1.14820
https://doi.org/10.1613/jair.1.14820

10:16 Online Bin Covering with Frequency Predictions

5 Susan F. Assmann, David S. Johnson, Daniel J. Kleitman, and Josepth Y.-T. Leung. On a
dual version of the one-dimensional packing problem. Journal of Algorithms, 5:502–525, 1984.
doi:10.1016/0196-6774(84)90004-X.

6 Siddhartha Banerjee and Daniel Freund. Uniform loss algorithms for online stochastic decision-
making with applications to bin packing. In Abstracts of the 2020 SIGMETRICS, pages 1–2.
ACM, 2020. doi:10.1145/3393691.3394224.

7 Magnus Berg, Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen. Online minimum spanning
trees with weight predictions. In Algorithms and Data Structures (WADS), pages 136–148.
Springer, Cham, 2023. doi:10.1007/978-3-031-38906-1_10.

8 Magnus Berg and Shahin Kamali. Online bin covering with frequency predictions, 2024.
arXiv:2401.14881.

9 Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, New York, NY, USA, 1998.

10 Joan Boyar, Lene M. Favrholdt, Shahin Kamali, and Kim S. Larsen. Online bin covering with
advice. Algorithmica, 83:795–821, 2021. doi:10.1007/s00453-020-00728-0.

11 Joan Boyar, Lene M. Favrholdt, Shahin Kamali, and Kim S. Larsen. Online interval scheduling
with predictions. In 18th International Symposium on Algorithms and Data Structures (WADS),
volume 14079, pages 193–207, 2023.

12 Andrej Brodnik, Bengt J. Nilsson, and Gordana Vujovic. Online bin covering with exact
parameter advice. arXiv:2309.13647, 2023. doi:10.48550/arXiv.2309.13647.

13 Clément L. Canonne. A short note on learning discrete distributions. arXiv:2002.11457, 2020.
doi:10.48550/arXiv.2002.11457.

14 János Csirik, J. B. G. Frenk, Martine Labbé, and Shuzhong Zhang. Two simple algorithms for
bin covering. Acta Cybernetica, 14:13–25, 1999.

15 János Csirik, David S. Johnson, and Claire Kenyon. Better approximation algorithms for
bin covering. In 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
557–566. SIAM, 2001.

16 János Csirik, David S. Johnson, Claire Kenyon, James B. Orlin, Peter W. Shor, and Richard R.
Weber. On the sum-of-squares algorithm for bin packing. Journal of the ACM, 53:1–65, 2006.
doi:10.1145/1120582.1120583.

17 János Csirik, David S. Johnson, Claire Kenyon, Peter W. Shor, and Richard R. Weber. A self
organizing bin packing heuristic. In Algorithms Engeneering and Experimentation (ALENEX),
pages 250–269. Springer, 1999. doi:10.1007/3-540-48518-X_15.

18 János Csirik and Vilmos Totik. Online algorithms for a dual version of bin packing. Discrete
Applied Mathematics, 21:163–167, 1988. doi:10.1016/0166-218X(88)90052-2.

19 János Csirik and Gerhard H. Woeginger. On-line packing and covering problems. In Online
Algorithms, pages 147–177. Springer, Berlin, Heidelberg, 2005. doi:10.1007/BFb0029568.

20 Leah Epstein. Online variable sized covering. Information and Computation, 171:294–305,
2001. doi:10.1006/inco.2001.3087.

21 Anupam Gupta, Gregory Kehne, and Roie Levin. Random order online set cover is as
easy as offline. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1253–1264. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00122.

22 Klaus Jensen and Roberto Solis-Oba. An asymptotic fully polynomial time approximation
scheme for bin covering. Theoretical Computer Science, 306:543–551, 2003. doi:10.1016/
S0304-3975(03)00363-3.

23 Dennis Komm. An Introduction to Online Computation: Determinism, Randomization, Advice.
Springer Cham, Switzerland, 2016. doi:10.1007/978-3-319-42749-2.

24 Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
Journal of the ACM, 68:1–25, 2021. doi:10.1145/3447579.

https://doi.org/10.1016/0196-6774(84)90004-X
https://doi.org/10.1145/3393691.3394224
https://doi.org/10.1007/978-3-031-38906-1_10
https://doi.org/10.1007/s00453-020-00728-0
https://doi.org/10.48550/arXiv.2309.13647
https://doi.org/10.48550/arXiv.2002.11457
https://doi.org/10.1145/1120582.1120583
https://doi.org/10.1007/3-540-48518-X_15
https://doi.org/10.1016/0166-218X(88)90052-2
https://doi.org/10.1007/BFb0029568
https://doi.org/10.1006/inco.2001.3087
https://doi.org/10.1109/FOCS52979.2021.00122
https://doi.org/10.1109/FOCS52979.2021.00122
https://doi.org/10.1016/S0304-3975(03)00363-3
https://doi.org/10.1016/S0304-3975(03)00363-3
https://doi.org/10.1007/978-3-319-42749-2
https://doi.org/10.1145/3447579

M. Berg and S. Kamali 10:17

25 Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml
predictions. In 32nd Conference on Neural Information Processing Systems (NeurIPS), pages
9684–9693. Curran Associates, Inc., 2018.

26 Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning Theory: From
Theory to Algorithms. Cambridge University Press, Cambridge, England, 2014. doi:10.1017/
CBO9781107298019.

27 Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs for learning-
augmented online algorithms. In 34th Conference on Neural Information Processing Systems
(NeurIPS), pages 8042–8053. Curran Associates, Inc., 2020.

SWAT 2024

https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1017/CBO9781107298019

Subexponential Algorithms in Geometric Graphs
via the Subquadratic Grid Minor Property: The
Role of Local Radius
Gaétan Berthe
LIRMM, Université de Montpellier, CNRS, Montpellier, France

Marin Bougeret
LIRMM, Université de Montpellier, CNRS, Montpellier, France

Daniel Gonçalves
LIRMM, Université de Montpellier, CNRS, Montpellier, France

Jean-Florent Raymond
Univ Lyon, EnsL, CNRS, LIP, F-69342, Lyon Cedex 07, France

Abstract
We investigate the existence in geometric graph classes of subexponential parameterized algorithms
for cycle-hitting problems like Triangle Hitting (TH), Feedback Vertex Set (FVS) or Odd
Cycle Transversal (OCT). These problems respectively ask for the existence in a graph G of a
set X of at most k vertices such that G − X is triangle-free, acyclic, or bipartite. It is know that
subexponential FPT algorithms of the form 2o(k)nO(1) exist in planar and even H-minor free graphs
from bidimensionality theory [Demaine et al. 2005], and there is a recent line of work lifting these
results to geometric graph classes consisting of intersection of similarly sized “fat” objects ([Fomin
et al. 2012], [Grigoriev et al. 2014], or disk graphs [Lokshtanov et al. 2022], [An et al. 2023]).

In this paper we first identify sufficient conditions, for any graph class C included in string
graphs, to admit subexponential FPT algorithms for any problem in P, a family of bidimensional
problems where one has to find a set of size at most k hitting a fixed family of graphs, containing
in particular FVS. Informally, these conditions boil down to the fact that for any G ∈ C, the local
radius of G (a new parameter introduced in [Lokshtanov et al. 2023]) is polynomial in the clique
number of G and in the maximum matching in the neighborhood of a vertex. To demonstrate the
applicability of this generic result, we bound the local radius for two special classes: intersection
graphs of axis-parallel squares and of contact graphs of segments in the plane. This implies that any
problem Π ∈ P (in particular, FVS) can be solved in:

2O(k3/4 log k)nO(1)-time in contact segment graphs,
2O(k9/10 log k)nO(1) in intersection graphs of axis-parallel squares

On the positive side, we also provide positive results for TH by solving it in:
2O(k3/4 log k)nO(1)-time in contact segment graphs,
2O(

√
dt2(log t)k2/3 log k)nO(1)-time in Kt,t-free d-DIR graphs (intersection of segments with d slopes)

On the negative side, assuming the ETH we rule out the existence of algorithms solving:
TH and OCT in time 2o(n) in 2-DIR graphs and more generally in time 2o(

√
∆n) in 2-DIR graphs

with maximum degree ∆, and
TH, FVS, and OCT in time 2o(

√
n) in K2,2-free contact-2-DIR graphs of maximum degree 6.

Observe that together, these results show that the absence of large Kt,t is a necessary and sufficient
condition for the existence of subexponential FPT algorithms for TH in 2-DIR.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Fixed parameter tractability; Theory of computation → Computational geometry

Keywords and phrases geometric intersection graphs, subexponential FPT algorithms, cycle-hitting
problems, bidimensionality

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.11

Related Version Full Version: https://arxiv.org/abs/2306.17710

Funding Jean-Florent Raymond: Supported by the project GRALMECO (ANR-21-CE48-0004).

© Gaétan Berthe, Marin Bougeret, Daniel Gonçalves, and Jean-Florent Raymond;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 11; pp. 11:1–11:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0017-6922
https://orcid.org/0000-0002-9910-4656
https://orcid.org/0000-0003-3228-9622
https://orcid.org/0000-0003-4646-7602
https://doi.org/10.4230/LIPIcs.SWAT.2024.11
https://arxiv.org/abs/2306.17710
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Subexponential Algorithms in Geometric Graphs via SQGM

1 Introduction

In this paper we consider fundamental NP-hard cycle-hitting problems like Triangle
Hitting (TH), Feedback Vertex Set (FVS), and Odd Cycle Transversal (OCT)
where, given a graph G and an integer k, the goal is to decide whether G has a set of at most
k vertices hitting all its triangles (resp. cycles for FVS, and odd cycles for OCT). We consider
these problems from the perspective of parameterized complexity, where the objective is to
answer in time f(k)nO(1) for some computable function f , and with n denoting the order
of G. It is known (see for instance [12]) that these three problems can be solved on general
graphs in time cO(k)nO(1) (for some constant c) and that, under the Exponential Time
Hypothesis (ETH), the contribution of k cannot be improved to a subexponential function
(i.e., there are no algorithms with running times of the form co(k)nO(1) for these problems).
However, it was discovered that some problems admit subexponential time algorithms in
certain classes of graphs, and there is now a well established set of techniques to design such
algorithms. Let us now review these techniques and explain why they do not apply on the
problems we consider here.

Subexponential FPT algorithms in sparse graphs. Let us start with the bidimensionality
theory, which gives an explanation on the so-called square root phenomenon arising for planar
and H-minor free graphs [14] for bidimensional1 problems, where a lot of graph problems
admit ETH-tight 2O(

√
k)nO(1) algorithms. What we call a graph parameter here is a function

p mapping any (simple) graph to a natural number and that is invariant under isomorphism.
The classical win-win strategy to decide if p(G) ≤ k for a minor-bidimensional2 parameter
(like p = fvs, the size of a minimum feedback vertex set of G) is to first reduce to the case
where ⊞(G) = O(

√
k) (where ⊞(G) denotes the maximum k such that the (k, k)-grid is

contained as a minor in G), and then use an inequality of the form tw(G) ≤ f(⊞(G)) to
bound the treewidth obtained through the following property.

▶ Definition 1 ([4]). Given c < 2, a graph class G has the subquadratic grid minor property
for c (SQGM for short), denoted G ∈ SQGM(c), if tw(G) = O(⊞(G)c) for all G ∈ G. We
write G ∈ SQGM if there exists c < 2 such that G ∈ SQGM(c).

While in general every graph G satisfies the inequality tw(G) ≤ ⊞(G)c for some c < 10 [11],
the SQGM property additionally require that c < 2. Thus, for any G ∈ SQGM(c) and G ∈ G
such that ⊞(G) = O(

√
k), we get tw(G) ≤ ⊞(G)c = O

(
kc/2)

= o(k). For instance planar
graphs and more generally H-minor free graph [15] are known to have a treewidth linearly
bounded from above by the size of their largest grid minor. In other words, these classes
belong to SQGM(1). The conclusion is that the SQGM property allows subexponential
parameterized algorithms for minor-bidimensional problems (if the considered problem has a
2O(tw(G))nO(1)-time algorithm) on sparse graph classes. Notice that these techniques have
been extended to contraction-bidimensional problems [4].

Extension to geometric graphs. Consider now a geometric graph class G, meaning that any
G ∈ G represents the interactions of some specified geometric objects. We consider here (Unit)
Disk Graphs which correspond to intersection of (unit) disks in the plane, d-DIR graphs
(where the vertices correspond to segments with d possible slopes in R2), and contact-segment

1 Informally: yes-instances are minor-closed and a solution on the (r, r)-grid has size Ω(r2).
2 See definition in [20].

G. Berthe, M. Bougeret, D. Gonçalves, and J.-F. Raymond 11:3

graphs (where each vertex corresponds to a segment in R2, and any intersection point between
two segments must be an endpoint of one of them). We refer to Subsection 2.2 for formal
definitions. Classes of geometric graphs represented in the plane form an appealing source
of candidates to obtain subexponential parameterized algorithms as there is an underlying
planarity in the representation. However these graphs are no longer sparse as they may
contain large cliques, and thus cannot have the SQGM property. Indeed, if G is a clique
of size a, then tw(G) = a − 1 but ⊞(G) ≤

√
|G| =

√
a. To overcome this, let us introduce

the following notion where the bound on treewidth is allowed to depend on an additional
parameter besides ⊞(G).

▶ Definition 2. Given a graph parameter p and a real c < 2, a graph class G has the almost
subquadratic grid minor property (ASQGM for short) for p and c if there exists a function
f such that tw(G) = O(f(p(G))⊞(G)c). The class G has ASQGM(p) if there exists c < 2
such that G has the ASQGM property for p and c. The notation is naturally extended to
more than one parameter.

This notion was used implicitly in earlier work (e.g., [20]) but we chose to define it
explicitly in order to highlight the contribution f of the parameter p to the treewidth, which
is particularly relevant when it can be shown to be small (typically, polynomial). Let us now
explain how ASQGM can be used to obtain subexponential parameterized algorithms on
geometric graphs.

It was shown in [19] that FVS can be solved in time 2O(k3/4 log k)nO(1) in map graphs, a
superclass of planar graphs where arbitrary large cliques may exist, as follows. Let ω(G)
denote the order of the largest clique in a graph G. The first ingredient is to prove that
map graphs have ASQGM(ω), and more precisely that tw(G) = O(ω(G)⊞(G)). Then,
if ω(G) ≥ kϵ for some ϵ, the presence of such large clique allows to have subexponential
branchings (as a solution of FVS must take almost all vertices of a clique). When ω(G) < kϵ,
then the ASQGM property gives that tw(G) ≤ kϵ ⊞(G) ≤ k

1
2 +ϵ (as before we can immediately

answer no if ⊞(G) > O(
√

k)). By appropriately choosing ϵ the authors of [19] obtain the
mentioned running time. The same approach also applies to unit disk graphs and has since
been improved to 2

√
k log knO(1) in [17] using a different technique, and finally improved to

an optimal 2
√

k(n + m) in [2] for similarly sized fat objets (which typically includes unit
squares, but not disks, squares, nor segments).

There is also a line of work aiming at establishing ASQGM property for different classes
of graphs and parameters, with for example [20] proving that (1) string graphs have ASQGM
when the parameter p is the number of times a string is intersected (assuming at most two
strings intersect at the same point), and that (2) intersection graphs of “fat” and convex
objects have ASQGM when the parameter p(G) is the minimal order of a graph H not
subgraph of G (generalizing the degree when H is a star).

When ASQGM(ω) does not hold. A natural next step for FVS and TH is to consider
classes that are not ASQGM(ω). Observe (see Figure 1) that neither disk graphs, nor
contact-2-DIR graphs are in ASQGM(ω), and thus constitute natural candidates.

New ideas allowed the authors of [23] to obtain subexponential parameterized algorithms
on disk graphs, in particular for TH and FVS. The first idea is a preliminary branching
step (working on general graphs) which given an input (G, k) first reduces to the case where
we are given a set M of size O(k1+ϵ) such that G − M is a forest and, for any v ∈ M ,
N(v) \ M is an independent set (corresponding to Corollary 7, but where we consider a
generic problem instead of FVS). The second idea is related to neighborhood complexity. If
for a graph class G there is a constant c such that for every G ∈ G and every X ⊆ V (G),

SWAT 2024

11:4 Subexponential Algorithms in Geometric Graphs via SQGM

Figure 1 Left: a representation of a disk graph. Right: a contact 2-DIR graph and the
corresponding graph. In these graphs (where the left one is from [19]), ω(G) is constant, tw(G) ≥ t

(where t = 3 here) as it contains Kt,t as a minor, and ⊞(G) = O(
√

t) as they have a feedback vertex
set of size at most t.

|{N(v) ∩ X : v ∈ V (G)}| ≤ c|X|, then we say that G has linear neighborhood complexity with
ratio c. The following theorem was originally formulated using ply (the maximum number of
disks containing a fixed point) instead of clique number, but it is known [7] that these two
values are linearly related in disk graphs.

▶ Theorem 3 (Theorem 1.1 in [23]). Disk graphs with bounded clique number have linear
neighborhood complexity.

For TH, these two ideas are sufficient to obtain a subexponential parameterized algorithm.
For FVS, [23] provides the following corollary.

▶ Corollary 4 (Corollary 1.1 in [23] restricted to FVS). Let G be a disk graph with a (non-
necessarily minimal) feedback vertex set M ⊆ V (G) such that for all v ∈ M , N(v) \ M is
an independent set, and such that for all v ∈ V (G) \ M , N(v) \ M is non-empty. Then, the
treewidth of G is O(

√
|M |ω(G)2.5).

As they use this corollary after a branching process reducing the clique number to kϵ and
as their (approximated) feedback vertex set M has size |M | = k1+ϵ′ , they obtain a sublinear
treewidth and thus a subexponential parameterized algorithm for FVS (and several variants
of FVS) running in time 2O(k13/14 log k)nO(1). Recently this running time has been improved
to 2O(k7/8 log k)nO(1) when the representation is given and 2O(k9/10 log k)nO(1) otherwise [1].
We point out that it is likely that the algorithms of [23] and [1] solving FVS in disk graphs
with the respective running times 2O(k13/14 log k)nO(1) and 2O(k9/10 log k)nO(1), can be adapted3

to the setting of square graphs, the later matching our bound.

Subexponential FPT algorithms via kernels. Another approach to obtain 2o(k)nO(1) al-
gorithms is to obtain small kernels (meaning computing in polynomial time an equivalent
instance (G′, k′) with |G′| typically in O(k)), and then use a 2o(n) time algorithm. For FVS
such a 2o(n)-time algorithm is known in string graphs from [9] or [25], and was recently
generalized to induced-minor-free graph classes [22]. However, as far as we are aware, the
existence of a subquadratic kernel in this graph class is currently open.

1.1 Our contribution
Our objective is to study the existence of subexponential parameterized algorithms for hitting
problems like FVS and TH in different types of intersection graphs. Our algorithmic results
are summarized in Table 1.

3 Regarding the algorithm of [1], it would be true if their lemma to bound the number of what they call
“deep vertices” can be extended to square graphs.

G. Berthe, M. Bougeret, D. Gonçalves, and J.-F. Raymond 11:5

Table 1 Summary of our results. All algorithms are robust, i.e., they do not need a representation.

Upper bounds
Restriction of class Problem Time complexity Section

none square graphs
Π ∈ P

2O(k9/10 log k)nO(1) Section 3

contact segment graphs
2O(k7/8 log k)nO(1)

Full version
TH

2O(k3/4 log k)nO(1)

Kt,t-free
d-DIR graphs 2O(k2/3(log k)

√
dt2 log t)nO(1)

string graphs 2Ot(k2/3 log k)nO(1)

Lower bounds (under ETH)
Restriction of class Problem Lower bound Section

none
2-DIR

TH, OCT
2o(n) Section 4

Maximum degree ∆, for ∆ ≥ 6 2o(√
∆n)

Full version
K2,2-free contact, max degree 6 TH, FVS, OCT 2o(√

n)

Positive results via ASQGM. In Section 3 we explain how the local radius (hereafter
denoted lr), introduced recently in [24] in the context of approximation, can be used to get
subexponential FPT algorithms for any problem in P, a family of bidimensional problems
where one has to find a set of size at most k hitting a fixed family of graphs. This class
contains in particular FVS, and Pseudo Forest Del (resp. Pt-Hitting) where given a
graph G, the goal is to remove a set S of at most k vertices of G such that each connected
component of G − S contains at most one cycle (resp. does not contain a path on t vertices
as a subgraph). We point out that these three problems are also in the list of problems
mentioned in [24] that admit EPTAS in disk graphs. We first provide sufficient conditions
for graph class to admit subexponential FPT algorithms for any problem in P, after the
preprocessing step of Corollary 7 (introduced for disk graphs in [23]) has been performed.
These conditions mainly boil down to having ASQGM(ω, µN⋆), where µN⋆ is, informally, the
maximum size of matching in the neighborhood of a vertex. Then, we use the framework
of [4] to show that string graphs have ASQGM(ω, lr). Thus, the message of Section 3 is
that in order to obtain a subexponential FPT algorithm for a problem Π ∈ P in a given
subclass of string graphs, the only challenge is to bound lr by a polynomial of ω and µN⋆.
Finally, we provide such bounds for square graphs (intersection of axis-parallel squares) and
contact-segment graphs.

We point out that in our companion paper [5] we prove that FVS admits an algorithm
running in time 2O(k10/11 log k)nO(1) for pseudo-disk graphs. As square and segment graphs
are in particular pseudo-disk graphs, this generalizes the graph class where subexponential
parameterized algorithms exist, but to the price of a worst running time. Moreover, our
result in [5] is obtained via kernelization techniques which require a representation of the
input graph (i.e., this algorithm is not robust), and the reduction rules behind the kernel are
tailored for FVS and not applicable for any problem Π ∈ P .

Negative results. An interesting difference between disk graphs and d-DIR graphs is that
Theorem 3 (about the linear neighborhood complexity) no longer holds for d-DIR graphs,
because of the presence of large bicliques. Thus, it seems that Kt,t is an important subgraph
differentiating the two settings and this fact is confirmed by the two following results. First
we show (see sketch in Section 4 and full proof in the full version of the paper) in that

SWAT 2024

11:6 Subexponential Algorithms in Geometric Graphs via SQGM

assuming the ETH, there is no algorithm solving TH and OCT in time 2o(n) on n-vertex
2-DIR graphs and more generally in time 2o(

√
∆n) in 2-DIR graphs with maximum degree ∆.

We note that the result for OCT was already proved in [26] as a consequence of algorithmic
lower bounds for homomorphisms problems in string graphs. In our second negative result,
we prove that assuming the ETH, the problems TH, OCT, and FVS cannot be solved in time
2o(√

n) on n-vertex K2,2-free contact-2-DIR graphs. Notice that that our 2o(√
n) lower-bounds

match those known for the same problems in planar graphs [10].

Positive results for TH. In the full version of the paper we observe that, for any hered-
itary graph class with sublinear separators, the preliminary branching step in Corollary 7
of [23] directly leads to a subexponential parameterized algorithm for TH. This implies the
2ctk2/3 log knO(1) algorithm for Kt,t-free string graphs. Recall that according to our negative
result in the full version of the paper, the Kt,t-free assumption is necessary. To improve the
constant ct in special cases, we provide in the full version of the paper bounds on the neigh-
borhood complexity of two subclasses that may be of independent interest: Kt,t-free d-DIR
graphs have linear neighborhood complexity with ratio O(dt3 log t), and contact-segment
graphs have linear neighborhood complexity. These bounds lead to improved running times
for TH in the corresponding graph classes (see Table 1).

Due to space constraints, the proofs of the statements marked with the Q symbol have
been deferred to the full version [6].

2 Preliminaries

2.1 Basics
In this paper logarithms are binary and all graphs are simple, loopless and undirected. Unless
otherwise specified we use standard graph theory terminology, as in [16] for instance. Given
a graph G, we denote by ω(G) the maximum order of a clique in G. We denote by dG(v) the
degree of v ∈ V (G), or simply d(v) when G is clear from the context. The distance between
two vertices of a graph is the minimum length (in number of edges) of a path linking them,
and the diameter of a graph is the maximum distance between two of its vertices. The radius
of a graph is the smallest integer r ≥ 0 such that there exists a vertex v such that every
vertex in the graph is at a distance at most r from v. A t-bundle [24] is a matching of size t

plus a vertex connected to the 2t vertices of the matching. We say that B is a t-bundle of a
graph G if G[B] is a t-bundle plus possibly some extra edges. A set S ⊆ V (G) is a t-bundle
hitting set of G if S ∩ B ̸= ∅ for any t-bundle B of G. We denote by ⊞(G) the maximum k

such that the (k, k)-grid is contained as a minor in G. We denote by tw(G) the treewidth of
G, and µ(G) the size of a maximum matching of G.

In Section 3 we provide subexponential parameterized algorithms for a class of problems
P that we will now define. We restrict our attention to hitting problems, where for a fixed
graph family F , the input is a graph G and an integer k, and the goal is to decide if there
exists S ⊆ V (G) with |S| ≤ k such that G − S ∈ F . A general setting where our results hold
is described by the class P defined below and inspired by the problems tackled in [24] .

▶ Definition 5. We denote by P the class of all hitting problems Π such that:
1. Π is bidimensional ;
2. there is an integer cΠ > 0 such that for any solution S in a graph G, and any cΠ-bundle

B of G, S ∩ B ̸= ∅; and
3. Π can be solved on a graph G in time tw(G)O(tw(G)).

G. Berthe, M. Bougeret, D. Gonçalves, and J.-F. Raymond 11:7

▷ Claim 6. FVS, Pseudo Forest Del and Pt-Hitting for t ≤ 5 belong to P.

Proof. It is well known that these three problems are bidimensional. For the second condition,
one can check that cΠ is equal to 1 for FVS (as a 1-bundle is a triangle) and equal to
2 for Pseudo Forest Del and Pt-Hitting when t ≤ 5. For the last condition, as
FVS corresponds to hit all K3 as minor and Pseudo Forest Del correspond to hit all
{H0, H1, H2} as a minor (with Hi is formed by two triangles sharing i vertices), these two
problems can be solved in tw(G)O(tw(G)) by [3]. For Pt-Hitting the result holds by [13].

◁

2.2 Graph classes
A summary of graph classes considered in this article is presented in Figure 2.

String

d-DIR

Pseudo-disk

Square

Contact-segment

Segment

Kt,t-free d-DIR 2-DIR

Contact string

Disk

Figure 2 Left: inclusion between graph classes. Right: from left to right, four representations of
contact string graphs, then a representation of 3-DIR contact-segment graph, and finally on the right
an example of an intersection between segments not allowed in a representation of a contact-segment
graph.

In this article, we are mainly concerned with geometric graphs described by the intersection
or contact of objects in the Euclidean plane. The most general class we consider are string
graphs, which are intersection graphs of strings (a.k.a. Jordan arcs). Intersection graphs
of segments in R2 are called segment graphs. If a segment graph can be represented with
at most d different slopes, we call it a d-DIR graph.4 These classes of intersection graphs
admit contact subclasses, where the representations should not contain crossings. That is,
two strings either intersect tangentially, or they intersect at an endpoint of one of them. In a
segment contact representation, any point belonging to two segments must be an endpoint
of at least one of these segments. If a point belongs to several strings or segments, the above
property must hold for any pair of them. This defines contact string graphs, contact-segment
graphs and contact d-DIR graphs.

2.3 Preliminary branching steps
Our algorithms make use of the following preprocessing branching which was formulated
in [23] for FVS for disk graphs. Here we restate it for any problem in P and for any graph
class where the maximum clique can be approximated in polynomial time. A proof of this
statement (included in the full version of the paper for completeness) can be obtained by
closely following that in [23].

▶ Corollary 7 (Q). Let Π ∈ P. Let G be a hereditary graph class where the maximum
clique can be α-approximated for some constant factor α ≥ 1 in polynomial time. There
exists a 2O(k

p log k)nO(1)-time algorithm that, given an instance (G, k) of Π and an integer
p ∈ [6αcΠ, k], where G ∈ G, returns a collection C of size 2O(k

p log k) of tuples (G′, M, k′)
such that:

4 In general two d-DIR graphs may require different sets of slopes in their representation but in the case
d = 2 it is known that the segments can be assumed to be axis-parallel, which we will do.

SWAT 2024

11:8 Subexponential Algorithms in Geometric Graphs via SQGM

1. For any (G′, M, k′) ∈ C, (G′, k′) is an instance of Π where G′ is an induced subgraph of
G, ω(G′) ≤ p, and k′ ≤ k;

2. M is a cΠ-bundle hitting set of G′ with |M | = O(pk), and for any v ∈ M , µ(G′[N(v) \
M]) < cΠ; and

3. (G, k) is a yes-instance of Π if and only if there exists (G′, M, k′) ∈ C such that (G′, k′)
is a yes-instance of Π.

3 Positive results via ASQGM

3.1 From ASQGM(ω, µN⋆) to subexponential algorithms
In this section we provide subexponential paramterized algorithms for problems of P in any
class that has the ASQGM(ω, µN⋆) property.

▶ Definition 8. Given a graph G, a subneighborhood function of G is any function N⋆ :
V (G) → 2V (G) such that for any v ∈ V (G), N⋆(v) ⊆ N(v). Moreover, if for any u ∈ V (G),
|{v ∈ V (G), u ∈ N⋆(v)}| ≤ c for some c ∈ N then we say that N⋆ has c-bounded occurrences.

Given a subneighborhood function N⋆, we define µN⋆(v) as the maximum number of edges
of a matching in G[N⋆(v)]. We denote by µN⋆(G) the maximum of µN⋆ over V (G).
For example in square graphs, we will fix a representation S, and define N⋆(v) as the set of
neighbors of v whose square is smaller than the one of v.

The main theorem from this subsection is the following. Recall that P encompasses
fundamental algorithmic problems such as FVS, Pseudo Forest Del and Pt-Hitting for
t ≤ 5 (Claim 6).

▶ Theorem 9. Let Π be a problem of P and C be a hereditary graph class such that:
maximum clique can be O(1)-approximated in polynomial time in C;
for any G ∈ C, there exists a subneighborhood function N⋆ that has O(ω(G)c1)-bounded
occurrences for some c1 ∈ N; and
C has the ASQGM(ω, µN⋆) property, i.e., there exists a multivariate polynomial P such
that for all G ∈ C, we have tw(G) = O(P (ω(G), µN⋆(G)) · ⊞(G)).

Then, Π admits a parameterized subexponential algorithm on C. More precisely, for ϵ > 0
such that P (kϵ, k(c1+2)ϵ) = O(k 1

2 −ϵ), Π admits a parameterized subexponential algorithm on
C running in time 2O(k1−ϵ log(k)). This algorithm does not need a representation except if one
is required for finding the O(1)-approximation of a maximum clique.

▶ Lemma 10. Let Π be a problem of P. Consider a graph G and N⋆ a c-bounded occurrences
subneighborhood function of G. Let M ⊆ V (G) be a cΠ-bundle hitting set of G such that
for any vertex v ∈ M , µ(G[N(v)] − M) < cΠ. Then for every positive integer τ ≥ cΠ, there
exists a set B ⊆ V (G) of size |B| = c|M |

τ−cΠ+1 such that µN⋆(G − B) ≤ τ .

Proof. Let τ a positive integer with τ ≥ cΠ, and let us define B = {v ∈ V (G) : µN⋆(v) ≥ τ}
the set of vertices with “big” µN⋆ in G. Let us first prove that for any v ∈ B, | N⋆(v) ∩ M | ≥
µN⋆(v) − cΠ + 1. Let E′ ⊆ E(G) be a maximum matching in G[N⋆(v)] with |E′| = µN⋆(v).
Observe that we cannot have cΠ edges e ∈ E′ such that V (e) ∩ M = ∅ as if v /∈ M , then
vertices of E′ together with v would form a cΠ-bundle not hit by M , a contradiction, and if
v ∈ M , this would contradict the hypothesis µ(G[N(v)] − M) < cΠ. Thus, there is at least
|E′| − cΠ + 1 edges of E′ intersecting M , leading to the desired inequality. Thus, we get

|B|τ ≤
∑
v∈B

µN⋆

(v) ≤
∑
v∈B

(| N⋆(v) ∩ M | + cΠ − 1).

G. Berthe, M. Bougeret, D. Gonçalves, and J.-F. Raymond 11:9

Moreover, as for any v ∈ V (G) there are at most c vertices u such that v ∈ N⋆(u), we
get

∑
v∈B | N⋆(v) ∩ M | ≤ c|M | by the pigeonhole principle (if the inequality was false, then

there would exists v ∈ M with |{u : v ∈ N⋆(u)}| > c). This leads to |B| = c|M |
τ−cΠ+1 . ◀

We are now ready to describe the general algorithm to solve Π.

Proof of Theorem 9. Given an instance (G, k) of Π, we first use Corollary 7 with p = kϵ

to obtain in time 2O(k1−ϵ log(k)) the set of 2O(k1−ϵ log(k)) triples (G2, M, k2) with k2 ≤ k,
|M | = O(k1+ϵ), and ω(G2) ≤ kϵ.

In order to solve Π on (G, k), it is now enough to solve it on these instances (G2, k2).
Observe that applying the Lemma 10 to such (G2, k2, M) triple with τ ≥ cΠ gives a set
B of size at most c|M |

τ−cΠ+1 = O(ω(G2)c1 k1+ϵ

τ−cΠ+1) = O(k1+ϵ+ϵc1

τ−cΠ+1) such that G3 = G2 \ B verifies
µN⋆(G3) ≤ τ .

By assumption on the ASQGM property we then have tw(G3) = O(P (kϵ, τ)⊞(G)).
Moreover tw(G2) ≤ tw(G3) + |B| = O(P (kϵ, τ)⊞(G)) + O

(
k1+ϵ+ϵc1

τ−cΠ+1

)
as removing a vertex

decreases the treewidth by at most 1. We set τ = k(c1+2)ϵ. By assumption we have
P (kϵ, k(c1+2)ϵ) = O(k 1

2 −ϵ). As Π is bidimensionnal, there exists c1 such that if ⊞(G) > c1
√

k,
then (G, k) is a no-instance.

Thus, as tw(G2) = O
(

k
1
2 −ϵ ⊞(G)

)
+ O

(
k1+ϵ+ϵc1

τ

)
= O

(
k

1
2 −ϵ ⊞(G)

)
+ O(k1−ϵ), observe

that if ⊞(G) ≤ c1
√

k, then there exists a constant c such that tw(G2) ≤ ck1−ϵ. Thus, we use
the treewidth approximation of [21] on G2 with ℓ = ck1−ϵ to obtain in 2O(ℓ)nO(1) either a
2ℓ + 1 treewidth decomposition, or conclude that tw(G2) > ℓ. In the later case, this implies
that ⊞(G) > c1

√
k, and thus we can conclude that (G, k) is a no instance. Otherwise, by

definition of problems in P we can solve Π in time twO(tw(G2))), which gives the claimed
overall time complexity of 2O(k1−ϵ log(k)) × tw(G2)O(tw(G2)) = 2O(k1−ϵ log(k)). ◀

3.2 From ASQGM(ω, lr) to ASQGM(ω, µN⋆)
To be able to use Theorem 9, we need to deal with graph classes that have the ASQGM(ω, µN⋆)
property. This section provides a general framework for obtaining this property via local
radius. The local radius was originally introduced by Lokshtanov et al. [24] for disks graphs
in the context of approximation algorithms. Here we first extend this definition to string
graphs. To that end, we will see string graphs as graphs admitting a thick representation. In
such a representation every vertex v of the considered graph G corresponds to a subset Dv of
the plane that is homeomorphic to a disk, two intersecting such regions have an intersection
with non-empty interior, and the number of maximal connected regions R2 \

⋃
v∈V (G) ∂Dv is

finite.
To turn a string representation into a thick one, it simply suffices to thicken each string by

a small enough amount so that no new intersections occur. On the other hand, note that any
thick representation can be turned into a string representation by replacing each connected
subset of the plane Du by a string that almost completely fills its interior. Note that a thick
representation is not necessarily a pseudo-disk representation as here, the intersection of two
regions, Du ∩ Dv, may not be connected, or it may also be that Du \ Dv is not connected.
Thick representations allow us to extend the definition of local radius to all string graphs.
The next definition is illustrated Figure 4.

▶ Definition 11. Let G be a string graph and S be a thick representation of it. Let X be the
set of all maximal connected region R of R2 \

⋃
D∈S ∂D, contained in at least one object of

S. We define the arrangement graph of S, denoted AS , by:

SWAT 2024

11:10 Subexponential Algorithms in Geometric Graphs via SQGM

adding one vertex of each region of X
adding an edge between two vertices if the boundaries of their regions share a common
arc.

Moreover, for each v ∈ G, we denote RS(v) ⊆ X the set of regions included in Dv (recall
that Dv is the region associated to v), and VS(v) ⊆ V (AS) the set of vertices associated to
the regions of RS(v) (implying |VS(v)| = |RS(v)|). Finally, we denote AS(v) = AS [VS(v)].

▶ Definition 12 (from [24], extended here to string graphs). Let G be a string graph.
Given a thick representation S of G,

for any v ∈ V (G), we define lrS(v) as the radius of the graph AS(v)
we define lrS(G) = minv∈V (G) lrS(v)

the local radius lr(G) of G is the minimum over all thick representation S of G of lrS(G).

In order to show ASQGM we use the framework of Baste and Thilikos [4] (originally
designed for the classic SQGM property), that we recall now.

▶ Definition 13 (Contractions [4]). Given a non-negative integer c, two graphs H and G,
and a surjection σ : V (G) → V (H) we write H ≤c

σ G if
for every x ∈ V (H), the graph G[σ−1(x)] has diameter at most c and
for every x, y ∈ V (H), xy ∈ E(H) ⇐⇒ G[σ−1(x) ∪ σ−1(y)] is connected.

We say that H is a c-diameter contraction of G if there is a surjection σ such that H ≤c
σ G

and we write this H ≤c G. Moreover, if σ is such that for every x ∈ V (H), |σ−1(x)| ≤ c′,
then we say that H is a c′-size contraction of G, and we write H ≤(c′) G. If there exists an
integer c such that H ≤c G, then we say that H is a contraction of G.

▶ Definition 14 ((c1, c2)-extension [4]). Given a class of graph G and two non-negative
integers c1 and c2, we define the (c1, c2)-extension of G, denoted by G(c1,c2), as the class
containing every graph H such that there exist a graph G ∈ G and a graph J that satisfy
G ≤(c1) J and H ≤c2 J (see Figure 3).

JG ∈ G H ∈ G(c1,c2)c1-size contraction c2-diameter contraction

Figure 3 A graphical representation of the definition of G(c1,c2).

▶ Lemma 15 (implicit in the proof of [4, Theorem 15]). For every integers c1, c2 and G ∈
P(c1,c2), with P the class of planar graphs, we have tw(G) = O(c1c2 ⊞(G)).

The main result of this section is the following.

▶ Theorem 16. String graphs have the ASQGM(ω, lr) property, more precisely for a string
graph G we have tw(G) = O(ω(G) lr(G)⊞(G)).

Proof. Let G be a string graph, and S a thick representation such that lrS(G) = lr(G). Let
us define a graph J as follows, Figure 4 is a representation of the construction. For any
maximal connected region R of R2 \

⋃
D∈S ∂D, we add to J a clique KR of size ply(R). Then,

for any pair of regions {R1, R2} that share a common arc, we add all edges between KR1

and KR2 . For any v ∈ V (G), we associate a set X(v) ⊆ V (J) such that for any R ∈ RS(v),
|X(v) ∩ KR| = 1, and such that X(v) ∩ X(u) = ∅ for any u ̸= v. Notice that the condition
X(v) ∩ X(u) = ∅ is possible as |KR| = ply(R), and thus any vertex v can take its “private”
vertex in X(v) ∩ R for any R ∈ RS(v).

G. Berthe, M. Bougeret, D. Gonçalves, and J.-F. Raymond 11:11

Figure 4 Left: thick representation of a string graph G. Right: Illustrates both AS and the
graph J used in the proof of Theorem 16. To visualise AS , consider that each black dotted ellipse is
a single vertex (we have |V (AS)| = 23). Moreover, if v is the vertex represented in red, we have
|VS(v)| = 6 and lrS(v) = 2. To visualise J : for each maximal connected region R of R2 \

⋃
D∈S ∂D,

the clique KR with more than one vertex is represented by a black dotted ellipse around the clique.
For readability only one edge is represented between two cliques instead of the complete bipartite
graph.

Let us prove that G is a lr(G)-diameter contraction of J by defining a surjection σ :
V (J) → V (G) as follows. For any v ∈ V (G), we define σ−1(v) = X(v) (informally we
contract all vertices in X(v)). As for any v ∈ V (G), J [X(v)] is isomorphic to AS(v), we
immediately have diam(J [σ−1(v)]) = lr(G). Moreover, it is straightforward to check that for
every x, y ∈ V (G), xy ∈ E(G) ⇐⇒ J [σ−1(x) ∪ σ−1(y)] is connected. Now, observe that
AS (which is planar) is a ply(S)-size contraction of J using σ′ : V (J) → V (AS) such that
for any v ∈ V (AS), v corresponding to a region R of the plane delimited by the boundaries
of the objects of S, σ

′−1(v) = KR. As ply(S) ≤ ω(G), we get the desired result. ◀

The following corollary is immediate from Theorem 9 and Theorem 16.

▶ Corollary 17. Given an hereditary graph class C which is a subclass of string graphs such
that

maximum clique can be O(1)-approximated in polynomial time,
for any G ∈ C, there exists a subneighborhood function N⋆ that has O(ω(G)c1)-bounded
occurrences for some c1 ∈ N, and
there exists a multivariate polynomial such that for any G ∈ C, lr(G) = P (ω(G), µN⋆(G))

Then, any problem Π ∈ P admits a parameterized subexponential algorithm on C. More pre-
cisely, let P ′(ω(G), µN⋆(G)) = ω(G)P (ω(G), µN⋆(G)). For any ϵ > 0 such that P ′(kϵ, k(c1+2)ϵ)
= O(k 1

2 −ϵ), FVS can be solved in time O∗(kO(k1−ϵ)). This algorithm does not need a rep-
resentation except if one is required for finding the O(1)-approximation of a maximum
clique.

3.3 Upper bounding the local radius for square graphs
Again we provided in the previous section a generic result (Corollary 17) but so far it might
not be clear to the reader which graph classes may satisfy its requirements. To demonstrate
the applicability of this result, we show here that square graphs do. This requires to define
an appropriate N⋆ and prove that lr(G) = ω(G)O(1) · µN⋆(G)O(1). A second application is for
contact-segment graphs, but due to space constraints we had to move the proof to the full
version [6].

SWAT 2024

11:12 Subexponential Algorithms in Geometric Graphs via SQGM

We say that a graph G is a square graph if it is the intersection graph of some collection
of (closed) axis-parallel squares in the plane. In the following by square we always mean
closed and axis-parallel square. By slightly altering the sizes and positions of the squares in
a collection we can obtain a collection where exactly the same pairs of squares intersect and,
in addition, all the side lengths of the squares are different from each other and no two sides
squares are aligned. Furthermore this can easily be performed in polynomial time. From
now on we will assume that all the representations we consider satisfy this property.

The first requirement of Corollary 17 is provided by following lemma from [8], which
describes an EPTAS for the clique problem in the more general case of the intersection graph
of a fixed convex geometric shape with a central symmetry, while allowing rescaling.

▶ Theorem 18 ([8]). There is a polynomial-time 2-approximation of maximum clique in
intersection graphs of squares, even when no representation is provided.

▶ Definition 19. Given a square representation S = {Dv}v∈V (G) of a graph G, we denote
ℓS(Dv) the length of a side of the square Dv, N−

S (v) (resp. N+
S (v)) the set of vertices u such

that u ∈ NG(v) and ℓS(Du) < ℓS(Dv) (resp. >). When S is clear from the context, we will
instead write ℓ, N− and N+.

As the lengths of all sides differ, {N+(v), N−(v)} is a partition of N(v) for every vertex v.

▶ Lemma 20. Given a square representation S of a graph G, N− is a O(ω(G))-occurrences
bounded subneighborhood function.

Proof. N− is clearly a subneighborhood function. For v ∈ V (G), observe that a square
larger than Dv has to contain one of the four corners of Dv if the two squares intersect. But a
corner of Dv cannot be contained in more than ω(G) squares. Hence there are at most 4ω(G)
vertices u ∈ V (G) such that v ∈ N−(u), and so N− is 4ω(G)-occurrences bounded. ◀

We will prove that choosing N∗ = N− allows us to bound the local radius.

▶ Definition 21. Given a square graph G with representation S, for any v ∈ G, we define H(v)
as a minimum vertex cover of G[N−(v)], I(v) = N−(v) \ H(v), and X(v) = H(v) ∪ N+(v).

▷ Claim 22. For every vertex v of a square graph G with representation S, the following
properties hold:
1. I(v) is an independent set of G;
2. |H(v)| ≤ 2 µN⋆(G);
3. |N+(v)| = O(ω(G)) (as in the proof of Lemma 20);
4. |X(v)| = O(µN⋆(G) + ω(G)); and
5. {X(v), I(v)} is a partition of N(v).

▶ Definition 23. For a curve C : [0, 1] → R2 such that for t ∈ [0, 1], C(t) = (x(t), y(t)), we
say that C is monotonic if the functions x and y are monotonic. For k ≥ 2 we say that C is
k-monotonic if it is the composition5 of k monotonic curves.

Recall in the next Lemma that DI(v) denotes the union of all squares in I(v).

5 A curve C(t) = (x(t), y(t)) is the composition of k curves (Ci(t) = (xi(t), yi(t)))i∈{1,...,k} if (x(0), y(0)) =
(x1(0), y1(0)), (x(1), y(1)) = (xk(1), yk(1)), (xi(1), yi(1)) = (xi+1(0), yi+1(0)) for every i ∈ {1, . . . , k−1}
and the set of points {(x(t), y(t)}, t ∈ [0, 1]} is the union of the {(xi(t), yi(t)}, t ∈ [0, 1]} for i ∈ {1, . . . , k}.

G. Berthe, M. Bougeret, D. Gonçalves, and J.-F. Raymond 11:13

a

b

c0 = a′

d

db

da

a

b

c0

C∗

b

C∗

a

c

p

c cb

ca

a

b

Figure 5 Illustrations of the construction used in the proof of the Lemma 24. Squares of I(v)
are represented in green. Top left: construction used for the Claim 25. Top right: construction
used for the Claim 26. Bottom left: construction used for Claim 27. Observe that in this situation
ca and cb are next to opposite sides of the square containing c0, that C∗

a can be extended in an
counterclockwise direction, and C∗

b in a clockwise direction, which ensure the existence of a common
point c of their monotonic extensions. Bottom right: an example of a 4-monotonic curve between a

and b obtained by the construction of Lemma 24. Observe that only two squares of I(v) are crossed.

▶ Lemma 24. Let G be a square graph and S a representation. Let v ∈ V (G) and a, b two
points contained in Dv. There exists a 4-monotonic curve C contained in Dv joining the
point a to the point b, and crossing at most twice a boundary of the squares of I(v).

Proof. In what follows, what we call a diagonal line (resp. half line) any line (resp. half
line) having an angle +45◦ or −45◦ with the horizontal axis, and a diagonal of a point p in
the plan a diagonal half line whose endpoint is p.

The first step for the creation of the curve is to reduce to the case where the point a

and b are outside DI(v). If this is not the case, for example if a in contained in a square
s = Du with u ∈ I(v), we create a rectilinear curve from a toward the outside of s, in a
direction such that the intersection of the curve with the boundary of s is still in Dv (see the
construction in Figure 5 for an example of such reduction). As such curve is monotonic and
crosses the boundary of a square of I(v) exactly once, after the reduction we are in the case
where we want to construct a 2-monotonic curve between two points of Dv \ DI(v) such that
no square of I(v) is crossed. In what follow we suppose we have reduced to this case and we
still denote a and b the two points of Dv \ DI(v) we want to join by a curve.

▷ Claim 25. Given two points c, p ∈ Dv \ DI(v) on the same diagonal line, there is a
monotonic curve included in Dv \ DI(v) between c and p.

Proof. The construction is represented in Figure 5. The curve is created by starting from the
point c, then by following the diagonal line toward p. When encountering a square s = Du of
a vertex u ∈ I(v), it is always possible of getting around s in order to join back the diagonal
on the other side, and doing so in a direction such that the curve is still monotonic and
contained in Dv. ◁

▷ Claim 26. There are diagonals da of a and db of b intersecting on a point c0 ∈ Dv.

SWAT 2024

11:14 Subexponential Algorithms in Geometric Graphs via SQGM

Proof. Consider the line d parallel to the top left to bottom right diagonal of Dv (see Figure 5),
at equal distances of the points a and b. By symmetry of the square and of the variables a

and b, we can suppose that d goes from top left to bottom right, is above the diagonal of Dv,
and that a is above d. The symmetric a′ of the point a relatively to d is inside Dv and is
contained in a diagonal of both a and b. ◁

Now, if c0 ∈ Dv \ DI(v), composing the two curves toward c0 given by the previous claim
gives the wanted result.

It remains to deal with the case where c0 lies in some square s = Du for u ∈ I(v). Let
ca be a point of da between a and the square s, at an infinitely small distance outside of s.
Claim 25 gives a monotonic curve C∗

a from a to ca. In the same way we define cb and C∗
b .

▷ Claim 27. There exists a point c ∈ Dv \ DI(v) such that C∗
a and C∗

b can be extended to c

while still being monotonic and contained in Dv \ DI(v).

Proof. We can assume that da and db are perpendicular as otherwise the points a and b are
on the same diagonal and so Claim 25 gives the wanted result by taking c = b. Observe that
if ca and cb are arbitrarily close to the same side of s, then prolonging C∗

a toward cb would
keep the curve monotonic, as C∗

a was already going toward db as da and db intersect in s. So
taking c = cb would give the wanted result.

Otherwise if ca and cb are at arbitrarily small distance from two different sides, observe
that the curve C∗

a can be extended running alongside the boundary of s until crossing 2
corners. The same is true for C∗

b so the only situation where those extensions do not cross
each other would be if ca and cb are next to opposite side of s, and that the orientations of
da and db force the extensions of Ca∗ and C∗

b to go in the same direction around s. However,
this is impossible: as da and db cross each other inside of s, one extension will go clockwise
around s and the other counterclockwise (see Figure 5). This ensures that C∗

a and C∗
b can be

extended around s while still being monotonic in order for them to join on a point c while
staying outside of DI(v). ◁

Composing the two curves obtained by the above claim gives a path as wanted. ◀

We are now ready to prove the main combinatorial statement of this section.

▶ Lemma 28. Let G be a square graph. There exists a subneighborhood function N⋆ which
is ω(G)-occurrences bounded and such that lr(G) = O(µN⋆(G) + ω(G)).

Proof. Let S be a square representation of G, and let N⋆ as defined in Definition 19, which
is ω(G)-occurrences bounded according to Lemma 20. Let us now prove that lrS(G) =
O(|X(v)|). This will imply the required result as lr(G) ≤ lrS(G) and |X(v)| = O(µN⋆(G) +
ω(G)) by Claim 22. To that end, let us bound the diameter of AS [VS(v)]. Let u, v be two
vertices of AS [VS(v)], and let us bound the distance between these two vertices. Remember
that any vertex in AS [VS(v)] corresponds to an inclusion-wise maximal rectangular region
of the plane included in Dv, and delimited by edges of squares of S. Let a and b be points
in the regions of u and v respectively. Notice that to any curve inside Dv we can associate
a path in AS [VS(v)] by considering the sequence of regions visited by C, and associate to
each of the region its corresponding vertex in AS [VS(v)] (see Figure 6). Thus, we will upper
bound the distance from u to v in AS [VS(v)] by constructing a curve C from a to b, and by
counting the length of the sequence of regions visited by C.

We use for C the 4-monotonic curve between a and b defined in Lemma 24. Observe
the following property π0: any monotonic curve inside Dv crosses at most 4|X(v)| sides of
squares in X(v). Indeed, as each square in X(v) has at most 4 sides intersecting Dv, and any

G. Berthe, M. Bougeret, D. Gonçalves, and J.-F. Raymond 11:15

Figure 6 Examples of paths in the configuration graph, with Dv represented with a dashed red
square, I(v) by green squares and the sides of the squares of X(v) in black. Here we can see two
curves between the two purple regions, C1 (that goes up and then down) and C2, and the path
in AS(v) associated to each curve as in the proof of Lemma 28, where the regions traversed by
the paths are alternatively colored blue and yellow. Notice that C1 is 2-monotone, whereas C2 is
c-monotone, where c could be made arbitrary large by creating more and smaller squares in I(v).
As c is large, there is a side of a square in X(v) crossed many times (eight) by C2, and thus we do
not use curve like C2 in the proof.

side, as a vertical or horizontal segment intersecting in Dv, can be crossed at most one time
by a monotonic curve. Observe also that, each time C leaves its current region, C must cross
a side of a square in N(v). However, the total number of crossings between C and a side of a
square in N(v) is at most 16|X(v)| + 4, as each of the four monotonic part of C crosses at
most 4|X(v)| sides of squares in X(v) (by π0), and C crosses at most 4 sides of squares in
I(v) (the worst case being when a ̸= a′, and Ca→a′ crosses the corner of the square in I(v)
containing a, and same for b, b′). Thus, the curve C goes from a region to the next one at
most 16|X(v)| + 4 times, implying that the diameter of AS [VS(v)], and so the local radius
lrS(G), are in O(|X(v)|). ◀

As announced in the introduction of the section, we are now able to apply Corollary 17.

▶ Theorem 29. Any problem Π ∈ P can be solved in time 2O(k9/10 log(k))nO(1) in square
graphs, even when no representation is given.

Proof. Let Π ∈ P. According to Theorem 18, Lemma 28, we can apply Corollary 17 with
c1 = 1, and P (x, y) = x + y. This implies that for any ϵ such that kϵ(kϵ + k3ϵ) = O(k 1

2 −ϵ),
Π can be solved in O∗(kO(k1−ϵ)) in square graphs. Taking ϵ = 1

10 leads to the claimed
complexity. ◀

4 ETH based hardness results

Let us here sketch the lower bounds. Full proofs are provided in the full version.

SWAT 2024

11:16 Subexponential Algorithms in Geometric Graphs via SQGM

Figure 7 The construction for the formula (x2 ∨ x4 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x4). The
zero-length segments at each corner of the k-polygons are not represented, while that added for the
clause with two variables is depicted with a black dot.

▶ Theorem 30. Under the ETH, TH and OCT cannot be solved in time 2o(n) on n-vertex
2-DIR graphs.

Sketch of Proof. Let φ be a 3-SAT instance with n variables x1, . . . , xn and m clauses
C1, . . . , Cm. In these clauses, we do not have 3 literals all positive or all negative. We can
ensure this by adding only few variables and few clauses.

Let us now construct a 2-DIR graph G from the formula φ. In this graph, each variable
xi is represented by a polygon with ki vertical segments, ki horizontal segments, and with
also 2ki trivial segments (i.e. points) that are placed in each corner of the polygon, where ki

is some number linear in the number of clauses containing xi. See Figure 7 for an illustrative
example. There, one can see that these polygons form concentric rectangles, from which
small parts escape from above. These escaping parts allow interactions with other polygons,
corresponding to variables from a same clause.

The idea of the reduction is that, φ is satisfiable if and only if G has a TH (resp. OCT)
of size K =

∑
1≤i≤n ki. Furthermore, such hitting set will be of the following form. For the

polygon corresponding to xi, the hitting set will be either formed by the ki vertical segments,
or by the ki horizontal segments. This is ensured by the triangles induced at each corner
of the polygon. Furthermore, the choice of vertical or horizontal segments, depends on the
interactions among polygons, and will correspond to a valuation of the variable xi. ◀

In the full version [6] we also provide a refined bound of Theorem 30 depending on the
maximum degree, and another negative result in K2,2-free contact 2-DIR graphs.

5 Discussion

In this paper we gave subexponential FPT algorithms for cycle-hitting problems in intersection
graphs. A general goal is to characterize the geometric graph classes that admit subexponential
FPT algorithms for the problems we considered. In particular, an interesting open problem
is whether FVS admits a subexponential parameterized algorithm in 2-DIR graphs.

References

1 Shinwoo An, Kyungjin Cho, and Eunjin Oh. Faster algorithms for cycle hitting problems
on disk graphs. In Algorithms and Data Structures: 18th International Symposium, WADS
2023, Montreal, QC, Canada, July 31 – August 2, 2023, Proceedings, pages 29–42, Berlin,
Heidelberg, 2023. Springer-Verlag. doi:10.1007/978-3-031-38906-1_3.

https://doi.org/10.1007/978-3-031-38906-1_3

G. Berthe, M. Bougeret, D. Gonçalves, and J.-F. Raymond 11:17

2 Shinwoo An and Eunjin Oh. Feedback vertex set on geometric intersection graphs. In 32nd
International Symposium on Algorithms and Computation (ISAAC 2021). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2021.

3 Julien Baste, Ignasi Sau, and Dimitrios M Thilikos. Hitting minors on bounded treewidth
graphs. iv. an optimal algorithm. arXiv preprint, 2019. arXiv:1907.04442.

4 Julien Baste and Dimitrios M Thilikos. Contraction bidimensionality of geometric intersection
graphs. Algorithmica, 84(2):510–531, 2022.

5 Gaétan Berthe, Marin Bougeret, Daniel Gonçalves, and Jean-Florent Raymond. Feedback
vertex set for pseudo-disk graphs in subexponential fpt-time, 2024. To appear on Arxiv.

6 Gaétan Berthe, Marin Bougeret, Daniel Gonçalves, and Jean-Florent Raymond. Subexponential
parameterized algorithms in square graphs and intersection graphs of thin objects, 2024.
arXiv:2306.17710.

7 Marthe Bonamy, Edouard Bonnet, Nicolas Bousquet, Pierre Charbit, and Stéphan Thomassé.
Eptas for max clique on disks and unit balls. In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), pages 568–579. IEEE, 2018.

8 Édouard Bonnet, Nicolas Grelier, and Tillmann Miltzow. Maximum clique in disk-like
intersection graphs. In Nitin Saxena and Sunil Simon, editors, 40th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2020,
December 14-18, 2020, BITS Pilani, K K Birla Goa Campus, Goa, India (Virtual Conference),
volume 182 of LIPIcs, pages 17:1–17:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPICS.FSTTCS.2020.17.

9 Édouard Bonnet and Paweł Rzążewski. Optimality program in segment and string graphs.
Algorithmica, 81:3047–3073, 2019.

10 Liming Cai and David Juedes. On the existence of subexponential parameterized algorithms.
Journal of Computer and System Sciences, 67(4):789–807, 2003.

11 Julia Chuzhoy and Zihan Tan. Towards tight (er) bounds for the excluded grid theorem.
Journal of Combinatorial Theory, Series B, 146:219–265, 2021.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer Publishing
Company, Incorporated, 1st edition, 2015.

13 Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michał Pilipczuk. Hitting forbidden
subgraphs in graphs of bounded treewidth. Information and Computation, 256:62–82, 2017.
doi:10.1016/j.ic.2017.04.009.

14 Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs.
Journal of the ACM (JACM), 52(6):866–893, 2005.

15 Erik D Demaine and MohammadTaghi Hajiaghayi. Linearity of grid minors in treewidth with
applications through bidimensionality. Combinatorica, 28(1):19–36, 2008.

16 Reinhard Diestel. Graph theory 3rd ed. Graduate texts in mathematics, 173(33):12, 2005.
17 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.

Finding, hitting and packing cycles in subexponential time on unit disk graphs. Discrete &
Computational Geometry, 62:879–911, 2019.

18 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality and geometric
graphs. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’12, pages 1563–1575, USA, 2012. Society for Industrial and Applied
Mathematics.

19 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Excluded grid minors and efficient
polynomial-time approximation schemes. Journal of the ACM (JACM), 65(2):1–44, 2018.

20 Alexander Grigoriev, Athanassios Koutsonas, and Dimitrios M Thilikos. Bidimensionality of
geometric intersection graphs. In SOFSEM 2014: Theory and Practice of Computer Science:
40th International Conference on Current Trends in Theory and Practice of Computer Science,
Novỳ Smokovec, Slovakia, January 26-29, 2014, Proceedings 40, pages 293–305. Springer, 2014.

SWAT 2024

https://arxiv.org/abs/1907.04442
https://arxiv.org/abs/2306.17710
https://doi.org/10.4230/LIPICS.FSTTCS.2020.17
https://doi.org/10.1016/j.ic.2017.04.009

11:18 Subexponential Algorithms in Geometric Graphs via SQGM

21 Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages
184–192. IEEE, 2022.

22 Tuukka Korhonen and Daniel Lokshtanov. Induced-minor-free graphs: Separator theorem,
subexponential algorithms, and improved hardness of recognition. In Proceedings of the 2022
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2024.

23 Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi. Subexponen-
tial parameterized algorithms on disk graphs (extended abstract). In Proceedings of the 2022
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2005–2031. SIAM,
2022.

24 Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi. A framework
for approximation schemes on disk graphs. In Nikhil Bansal and Viswanath Nagarajan, editors,
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence,
Italy, January 22-25, 2023, pages 2228–2241. SIAM, 2023. doi:10.1137/1.9781611977554.
CH84.

25 Jana Novotná, Karolina Okrasa, Michał Pilipczuk, Paweł Rzążewski, Erik Jan van Leeuwen,
and Bartosz Walczak. Subexponential-time algorithms for finding large induced sparse
subgraphs. Algorithmica, 83:2634–2650, 2021.

26 Karolina Okrasa and Paweł Rzążewski. Subexponential algorithms for variants of the homo-
morphism problem in string graphs. Journal of Computer and System Sciences, 109:126–144,
2020.

https://doi.org/10.1137/1.9781611977554.CH84
https://doi.org/10.1137/1.9781611977554.CH84

Arboricity-Dependent Algorithms for Edge Coloring
Sayan Bhattacharya #

University of Warwick, UK

Martín Costa #

University of Warwick, UK

Nadav Panski #

Tel Aviv University, Israel

Shay Solomon #

Tel Aviv University, Israel

Abstract
The problem of edge coloring has been extensively studied over the years. Recently, this problem has
received significant attention in the dynamic setting, where we are given a dynamic graph evolving
via a sequence of edge insertions and deletions and our objective is to maintain an edge coloring of
the graph.

Currently, it is not known whether it is possible to maintain a (∆ + O(∆1−µ))-edge coloring in
Õ(1) update time, for any constant µ > 0, where ∆ is the maximum degree of the graph.1 In this
paper, we show how to efficiently maintain a (∆ + O(α))-edge coloring in Õ(1) amortized update
time, where α is the arboricty of the graph. Thus, we answer this question in the affirmative for
graphs of sufficiently small arboricity.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases Dynamic Algorithms, Graph Algorithms, Edge Coloring, Arboricity

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.12

Related Version Full Version: https://arxiv.org/abs/2311.08367

Funding Shay Solomon is funded by the European Union (ERC, DynOpt, 101043159). Views and
opinions expressed are however those of the author(s) only and do not necessarily reflect those of the
European Union or the European Research Council. Neither the European Union nor the granting
authority can be held responsible for them. Shay Solomon and Nadav Panski are supported by the
Israel Science Foundation (ISF) grant No.1991/1. Shay Solomon is also supported by a grant from
the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel, and the United
States National Science Foundation (NSF).

1 Introduction

Consider any graph G = (V, E), with n = |V | nodes and m = |E| edges, and any integer
λ ≥ 1. A (proper) λ-(edge) coloring χ : E → [λ] of G assigns a color χ(e) ∈ [λ] to each edge
e ∈ E, in such a way that no two adjacent edges receive the same color. Our goal is to get a
proper λ-coloring of G, for as small a value of λ as possible. It is easy to verify that any such
coloring requires at least ∆ colors, where ∆ is the maximum degree of G. On the other hand,
a textbook theorem by Vizing [13] guarantees the existence of a proper (∆ + 1)-coloring in
any input graph.

This work focuses on the edge coloring problem in the dynamic setting, where an extensive
body of work has been devoted to this problem. Before describing our contributions, we first
summarize the relevant state-of-the-art in the dynamic setting.

1 We use Õ(·) to hide polylogarthmic factors.

© Sayan Bhattacharya, Martín Costa, Nadav Panski, and Shay Solomon;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 12; pp. 12:1–12:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.bhattacharya@warwick.ac.uk
mailto:martin.costa@warwick.ac.uk
mailto:nadavpanski@mail.tau.ac.il
mailto:shayso@tauex.tau.ac.il
https://doi.org/10.4230/LIPIcs.SWAT.2024.12
https://arxiv.org/abs/2311.08367
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Arboricity-Dependent Algorithms for Edge Coloring

Dynamic Edge Coloring. In the dynamic setting, the input graph G undergoes a sequence
of updates (edge insertions/deletions), and throughout this sequence the concerned algorithm
has to maintain a proper coloring of G. We wish to design a dynamic algorithm whose update
time (time taken to process an update) is as small as possible. The edge coloring problem
has received significant attention within the dynamic algorithms community in recent years.
It is known how to maintain a (2∆− 1)-coloring in O(log ∆) update time [2, 3], and Duan
et al. [11] showed how to maintain a (1 + ϵ)∆-coloring in O(log8 n/ϵ4) update time when
∆ = Ω(log2 n/ϵ2). Subsequently, Christiansen [10] presented a dynamic algorithm for (1+ϵ)∆-
coloring with O(log9 n log6 ∆/ϵ6) update time, without any restriction on ∆. More recently,
Bhattachrya et al. [5] showed how to maintain a (1 + ϵ)∆-coloring in O(log4(1/ϵ)/ϵ9) update
time when ∆ ≥ (log n/ϵ)Θ((1/ϵ) log(1/ϵ)). At present, no dynamic edge coloring algorithm
is known with a sublinear in ∆ additive approximation and with Õ(1) update time. We
summarize the following basic question that arises.

Is there a dynamic algorithm for maintaining a (∆ + O(∆1−µ))-edge coloring with Õ(1)
update time, for any constant µ > 0?

1.1 Our Contribution
We address the above question for the family of bounded arboricity graphs. Formally, a graph
G = (V, E) has arboricity (at most) α iff:⌈

|E(G[S])|
(|S| − 1)

⌉
≤ α for every subset S ⊆ V of size |S| ≥ 2,

where G[S] denotes the subgraph of G induced by S and E(G[S]) denotes the edge-set of
G[S]. It is easily verified that the arboricity of any graph is upper bounded by its maximum
degree. There are many instances of graphs, however, with very high maximum degree but
low arboricity.2 Intuitively, a graph with low arboricity is sparse everywhere. Every graph
excluding a fixed minor has O(1) arboricity, thus the family of constant arboricity graphs
contains bounded treewidth and bounded genus graphs, and specifically, planar graphs. More
generally, graphs of bounded (not necessarily constant) arboricity are of importance, as they
arise in real-world networks and models, such as the world wide web graph, social networks
and various random distribution models.

We now summarize our main result.

▶ Theorem 1. There is a deterministic dynamic algorithm for maintaining a (∆ + (4 + ϵ)α)-
edge coloring of an input dynamic graph with maximum degree ∆ and arboricity α, with
O(log6 n/ϵ6) amortized update time and O(log4 n/ϵ5) amortized recourse.3

Thus, Theorem 1 addresses the above question in the affirmative, for all dynamic graphs
with arboricity at most O(∆1−µ), for any constant µ > 0.

An important feature of our dynamic algorithm is that it is adaptive to changes in the
values of ∆ and α over time: At each time-step t, we (explicitly) maintain a proper edge
coloring of the input graph G using the colors {1, . . . , ∆t + (4 + ϵ)αt}, where ∆t and αt are
respectively the maximum degree and arboricity of G at time t.

2 Think of a star graph on n nodes. It has ∆ = n − 1 but α = 1.
3 A dynamic algorithm has an amortized update time (respectively, amortized recourse) of O(λ), if, starting

with an empty graph, the total runtime (resp., number of output changes) to handle any sequence of T
updates is O(T · λ).

S. Bhattacharya, M. Costa, N. Panski, and S. Solomon 12:3

Before giving our full dynamic algorithm, we give a simpler “warmup” dynamic algorithm,
where we assume access to values α and ∆ such that αt ≤ α and ∆t ≤ ∆ at each time-step
t. In this setting, we can maintain a (∆ + (4 + ϵ)α)-edge coloring with O(log2 n log ∆/ϵ2)
amortized update time and O(log n/ϵ) worst-case recourse. As an immediate corollary of our
“warmup” dynamic algorithm, we also get the following structural result, which should be
contrasted with the lower bound of [7] for extending partial colorings, which shows that there
exist n-node graphs of maximum degree ∆ and (∆ + c)-edge colorings on those graphs (for
any c ∈ [1, ∆/3]), such that extending these colorings to color some uncolored edge requires
changing the colors of Ω(∆ log(cn/∆)/c) many edges.

▶ Corollary 2. Let G = (V, E) be a graph with maximum degree ∆ and arboricity α, and let
χ be a (∆ + (2 + ϵ)α)-edge coloring of G. Then, given any uncolored edge e ∈ E, we can
extend the coloring χ so that e is now colored by only changing the colors of O(log n/ϵ) many
edges.

Independent Work. In independent and concurrent work, Christiansen, Rotenberg and
Vlieghe also obtain a deterministic dynamic algorithm that maintains a (∆ + O(α))-edge
coloring in Õ(1) amortized update time [9].

1.2 Our Techniques
At a high level, our algorithm can be interpreted as a dynamization of a simple static
algorithm that computes a (∆+O(α))-edge coloring of a graph G, which can be implemented
to run in near-linear time in the static sequential model of computation.4 This algorithm
is similar to the classic greedy algorithm for (2∆ − 1)-edge coloring, which simply scans
through all edges of the graph in an arbitrary order and, while scanning any edge e, assigns
e an arbitrary color in [2∆ − 1] that has not been already assigned to one of its adjacent
edges. Since e has at most 2∆− 2 adjacent edges, such a color must always exist. This static
algorithm does something quite similar – the difference is that it computes a “good” ordering
of the edges in G instead of using an arbitrary ordering, which allows it to use fewer colors.
More specifically, it repeatedly identifies a vertex of minimum degree in G, colors an edge
incident on in, and removes that edge from the graph. For the sake of completeness, we
include this algorithm and its analysis in Appendix A of the full version of our paper. We
remark that a variant of this algorithm appears in [1], which considers the distributed model
of computation.

To highlight the main conceptual insight underlying our approach, we describe the simpler
case where ∆ and α are fixed values (known to the algorithm in advance) that respectively
give upper bounds on the maximum degree and arboricity of the input graph at all times.
We sketch below how to maintain a (∆ + O(α))-coloring in Õ(1) update time in this setting.
Note that this directly implies a near-linear time static algorithm for (∆ + O(α))-coloring.5
We later outline (Section 1.2.1) how we extend our dynamic algorithm to handle the scenario
where ∆ and α change over time.

Our starting point is a well-known “peeling process”, which leads to a standard decom-
position of an input graph G = (V, E) with arboricity at most α [8]. The key observation is
that any induced subgraph of G has average degree at most 2α.6 Fix any constant γ > 1.

4 Recently, [4] and [12] considered edge coloring on low arboricity graphs in the static setting, but for the
problems of ∆ + 1 and ∆ coloring respectively.

5 Indeed, we can compute ∆ and a good approximation of α in linear time, and then simply insert the
edges in the input graph into the dynamic algorithm one after another.

6 Indeed, for any subset S ⊆ V , the average degree of G[S] is given by: 2 · |E(G[S])|/|S| ≤ 2α.

SWAT 2024

12:4 Arboricity-Dependent Algorithms for Edge Coloring

This motivates the following procedure, which runs for L = Θγ(log n) rounds.

Initially, during round 1, we set Z1 := V . Subsequently, during each round i ∈ {2, . . . , L},
we find the set of nodes S ⊆ Zi−1 that have degree > 2γα in G[Zi−1], and set Zi := S.

Consider any given round i ∈ [L] during the above procedure. Since the subgraph G[Zi−1]
has average degree at most 2α, it follows that at most a 1/γ fraction of the nodes in G[Zi−1]
have degree more than 2γα. In other words, we get |Zi+1| ≤ |Zi|/γ, and hence after L

iterations we would have ZL = ∅. Bhattacharya et al. [6] showed how to maintain this
decomposition dynamically with Õ(1) amortized update time, provided that γ > 2.

Now, our dynamic (∆ + O(α))-coloring algorithm works as follows. Suppose that we are
currently maintaining a valid coloring, along with the above decomposition. Upon receiving
an update (edge insertion/deletion), we first run the dynamic algorithm of [6], which adjusts
the decomposition Z1 ⊇ · · · ⊇ ZL, in amortized Õ(1) time. If the update consisted of an
edge deletion, then we do not need to do anything else beyond this point, since the existing
coloring continues to remain valid. We next consider the more interesting case, where the
update consisted of the insertion of an edge (say) (u, v).

Let i ∈ [L] be the largest index such that (u, v) ∈ E(G[Zi]). Then there must exist
some endpoint x ∈ {u, v} that belongs to Zi \ Zi+1. W.l.o.g., let u be that endpoint. Since
u ∈ Zi \ Zi+1, it follows that the node u has degree at most 2γα in G[Zi]. Also, the node
v trivially has degree at most ∆ in G. Let E(u,v) ⊆ E denote the set of edges e′ ∈ E that
belong to one of the following two categories: (I) e′ is incident on u and lies in G[Zi], (II) e′

is incident on v. We conclude that |E(u,v)| ≤ ∆ + 2γα. Thus, if we have a palette of at least
∆ + 2γα + 1 = ∆ + Θ(α) colors, then there must exist a free color in that palette which is
not assigned to any edge in E(u,v). Let c be that free color. Using standard binary search
data structures, such a color c can be identified in Õ(1) time [3]. We assign the color c to
the edge (u, v). This can potentially create a conflict with some other adjacent edge e′′ ∈ E

(which might already have been assigned the color c).
However, it is easy to see that such an edge e′′ must be incident on u, i.e., e′′ = (u, y)

for some y ∈ V , and there must exist some index iy < i such that y ∈ Ziy \ Ziy+1. We
then uncolor the edge e′′, set i ← iy, and recolor e′′ recursively using the same procedure
described above. Since after each recursive call, the value of the index i decreases by at least
one, this can go on at most L times. This leads to an overall update time of L · Õ(1) = Õ(1).
See Section 3 for details.

1.2.1 Handling the scenario where ∆ and α change over time
We now outline how we deal with changing values of ∆ and α. Let αt and ∆t respectively
denote the arboricity and maximum degree of the input graph G at the current time-step t.
We need to overcome two technical challenges.

(i) The “warmup” algorithm described above works correctly only if it uses a parameter
α ≃ αt to construct the decomposition of G. Informally, if α is too small w.r.t. αt, then the
number of iterations L required to construct the decomposition will become huge (possibly
infinite, if we aim at achieving ZL = ∅), and this in turn would blow up the update time of
the algorithm. In contrast, if α is too large compared to αt, then the algorithm would be
using too many colors in its palette.

S. Bhattacharya, M. Costa, N. Panski, and S. Solomon 12:5

(ii) After the deletion of an edge e, the arboricity α and the maximum degree ∆ of G might
decrease. If either parameter drops by a significant amount (across some batch of updates),
then we might have to recolor a significant number of edges to ensure that we are still only
using ∆ + O(α) many colors, potentially leading to a prohibitively large update time.

To deal with challenge (i), we generalize the notion of graph decomposition to that of a
decomposition system. At a high level, a decomposition system is just a collection of graph
decompositions, where the relevant parameter across the decompositions is discretized into
powers of (1 + ϵ). This ensures that no matter what the value of α is at the present moment,
there is always some decomposition in our system that we can use to extend the coloring.
Finally, to deal with challenge (ii), we ensure that the color of each edge satisfies certain
local constraints, similar to the constraints used to give efficient dynamic algorithms in
[3, 10]. After the deletion of an edge, we can just uncolor the edges that violate those local
constraints, and then recolor them using the decomposition system. However, since the
constraints on an edge e depend not just on the degrees of its endpoints but also on the
decomposition system, we have to take extra care to ensure that these decompositions don’t
change too much between updates. See Section 4 for details.

1.3 Roadmap

The rest of the paper is organized as follows. Section 2 introduces the relevant preliminary
concepts and notations. This is followed by Section 3, which contains our warmup dynamic
algorithm for fixed α. In Section 4, we present our dynamic algorithm in its full generality.
Appendix B in the full version of our paper gives the full details of the relevant data structures
used by our algorithms.

2 Preliminaries

In this section, we define the notations used throughout our paper and describe the notion
of graph decompositions, which are at the core of our algorithms. We then provide a simple
extension of these graph decompositions, which we use as a central component in our final
dynamic algorithm.

2.1 The Dynamic Setting

In the dynamic setting, we have a graph G = (V, E) that undergoes updates via a sequence
of intermixed edge insertions and deletions. Our task is to design an algorithm to explicitly
maintain an edge coloring χ of G as the graph is updated. We assume that the graph G is
initially empty, i.e. that the graph G is initialized with E = ∅. The update time of such
an algorithm is the time it takes to handle an update, and its recourse is the number of
edges that change colors while handling an update. More precisely, we say that an algorithm
has a worst-case update time of λ if it takes at most λ time to handle an update, and an
amortized update time of λ if it takes at most T · λ time to handle any arbitrary sequence
of T updates (starting from the empty graph). Similarly, we say that an algorithm has a
worst-case recourse of λ if it changes the colors of at most λ edges while handling an update,
and an amortized recourse of λ if it changes the colors of at most T · λ edges while handling
any arbitrary sequence of T updates (starting from the empty graph).

SWAT 2024

12:6 Arboricity-Dependent Algorithms for Edge Coloring

2.2 Notation
Let G = (V, E) be an undirected, unweighted n-node graph. Given an edge set S ⊆ E,
we denote by G[S] the graph (V, S), and given a node set A ⊆ V , we denote by G[A] the
subgraph induced by A, namely (A, {(u, v) ∈ E |u, v ∈ A}). Given a node u ∈ V and a
subgraph H of G, we denote by NH(u) the set of edges in H that are incident on u, and by
degH(u) the degree of u in H. For an edge (u, v), we define NH(u, v) to be NH(u) ∪NH(v).
When we are considering the entire graph G, we will often omit the subscripts in NG(·) and
degG(·) and just write N(·) and deg(·).

2.3 Graph Decompositions
A central ingredient in our dynamic algorithm is the notion of (β, d, L)-decomposition, defined
by Bhattacharya et al. [6].

▶ Definition 3. Given a graph G = (V, E), β ≥ 1, d ≥ 0, and a positive integer L, a (β, d, L)-
decomposition of G is a sequence (Z1, . . . , ZL) of node sets, such that ZL ⊆ · · · ⊆ Z1 = V

and

Zi+1 ⊇ {u ∈ Zi | degG[Zi](u) > βd} and Zi+1 ∩ {u ∈ Zi | degG[Zi](u) < d} = ∅

hold for all i ∈ [L− 1].

Given a (β, d, L)-decomposition (Z1, . . . , ZL) of G = (V, E), we abbreviate G[Zi] as Gi

for all i, and for all u ∈ V , we abbreviate degGi
(u) as degi(u) and NGi(u) as Ni(u). We

define Vi := Zi \ Zi+1 for all i ∈ [L − 1], and VL := ZL. We say that Vi is the ith level of
the decomposition, and define the level ℓ(u) of any node u ∈ Vi as ℓ(u) := i. We define
deg+(u) := degℓ(u)(u) and N+(u) := Nℓ(u)(u) for u ∈ V . Given an edge e = (u, v), we define
the level ℓ(e) of e as ℓ(e) := min{ℓ(u), ℓ(v)}. Note also that for all u ∈ V \VL, deg+(u) ≤ βd.
However, given some u ∈ VL, deg+(u) may be much larger than βd, which motivates the
following useful fact concerning such decompositions.

▶ Lemma 4 ([6]). Let G = (V, E) be an arbitrary graph with arboricity α, let β, ϵ, d be any
parameters such that β ≥ 1, 0 < ϵ < 1, d ≥ 2(1 + ϵ)α, and let L = 2 + ⌈log(1+ϵ) n⌉. Then for
any (β, d, L)-decomposition (Z1, ..., ZL) of G, it holds that ZL = ∅.

Proof. Let (Z1, ..., ZL) be a (β, d, L)-decomposition of G satisfying the conditions of the
lemma. Let i be an arbitrary index in [L− 1]. Since the arboricity of Gi is at most α, the
average degree in Gi is at most 2α. On the other hand, by definition, the degree of any node
in Zi+1 in the graph Gi is at least d ≥ 2(1 + ϵ)α. It follows that

2(1 + ϵ)α|Zi+1| ≤
∑

u∈Zi+1

degi(u) ≤
∑

u∈Zi

degi(u) ≤ 2α|Zi|,

and hence |Zi+1| ≤ |Zi|/(1 + ϵ). Inductively, we obtain |ZL| ≤ (1 + ϵ)1−L|Z1| ≤ 1/(1 + ϵ) < 1,
yielding ZL = ∅. ◀

Orienting the Edges. For our purposes, it will be useful to think of a decomposition of G

as inducing an orientation of the edges. In particular, given an edge e = (u, v), we orient
the edge from the endpoint of lower level towards the endpoint of higher level. If the two
endpoints have the same level, we orient the edge arbitrarily. We write u ≺ v to denote that
the edge e is oriented from u to v. Note that deg+(u) is an upper bound on the out-degree
of u with respect to this orientation of the edges.

S. Bhattacharya, M. Costa, N. Panski, and S. Solomon 12:7

Dynamic Decompositions. Bhattacharya et al. give a deterministic fully dynamic data
structure that can be used to explicitly maintain a (β, d, L)-decomposition of a graph
G = (V, E) under edge updates with small amortized update time. This algorithm also has
small amortized recourse, where the recourse of an update is defined as the number of edges
that change level following the update. The following theorem, from Section 4.1 of [6], will
be used as a black box in our dynamic algorithm.

▶ Proposition 5 ([6]). For any constant β ≥ 2 + 3ϵ, there is a deterministic fully-dynamic
algorithm that maintains a (β, d, L)-decomposition of a graph G = (V, E) with amortized
update time and amortized recourse both bounded by O(L/ϵ).

It is straightforward to modify this dynamic algorithm to explicitly maintain the orientation
of the edges that we described above without changing its asymptotic behavior. Furthermore,
we can assume that the orientation of an edge changes only when it changes level.

2.4 Graph Decomposition Systems
In order for our dynamic algorithm to be able to deal with dynamically changing arboricity α,
we will need to give a slight generalization of Definition 3, which we refer to as a decomposition
system. Intuitively, this will enable us to maintain multiple decompositions, one for each
“guess” of the arboricity, allowing us to use whichever decomposition is most appropriate to
modify the edge coloring while handling an update.

▶ Definition 6. Given a graph G = (V, E), β ≥ 1, a sequence (dj)j∈[K] such that dj ≥ 0, and
a positive integer L, a (β, (dj)j∈[K], L)-decomposition system of G is a sequence (Zi,j)i∈[L],j∈[k]
of node sets, where for each j ∈ [K], (Zi,j)i∈[L] is a (β, dj , L)-decomposition of G.

Given a (β, (dj)j∈[K], L)-decomposition system of G = (V, E), we denote the graph G[Zi,j]
by Gi,j , degGi,j

(u) by degi,j(u), and NGi,j
(u) by Ni,j(u) for u ∈ V . We say that (Zi,j)i

is the jth layer of the decomposition system. We denote by ℓj(u) the level of node u in
the decomposition (Zi,j)i and define deg+

j (u) := degℓj(u),j(u) and N+
j (u) := Nℓj(u),j(u) for

u ∈ V .
Given a node u, we define the layer of u as L(u) = min{j ∈ [K] | ℓj(u) < L}. Given

an edge e = (u, v), we define the layer of e as L(e) = min{L(u),L(v)}. We denote the
orientation of the edges induced by the decomposition (Zi,j)i by ≺j .

We can use the data structure from Proposition 5 to dynamically maintain a decomposition
system, giving us the following proposition. In this context, we define the recourse of an
update to be the number of edges that change levels in some layer.

▶ Proposition 7. For any constant β ≥ 2 + 3ϵ, there is a deterministic fully dynamic
algorithm that maintains a (β, (dj)j∈[K], L)-decomposition system of a graph G = (V, E) with
amortized update time and amortized recourse O(KL/ϵ).

As before, we assume that the orientation of an edge e with respect to ≺j changes only when
ℓj(e) changes.

3 A Warmup Dynamic Algorithm (for Fixed α)

We now turn our attention towards designing an algorithm that can dynamically maintain a
(∆+O(α))-edge coloring of the graph G as it changes over time. A starting point for creating
such an algorithm is the static algorithm that we outline in Section 1.2. Unfortunately, the

SWAT 2024

12:8 Arboricity-Dependent Algorithms for Edge Coloring

highly sequential nature of this algorithm makes it very challenging to dynamize directly,
as it is not clear how to efficiently maintain the output in the dynamic setting. In order
to overcome this obstacle, we use the notion of graph decompositions (see Section 2.3).
Informally, these graph decompositions can be interpreted as an “approximate” version of
the sequence in which the static algorithm colors the edges in the graph – where instead of
peeling off a node with smallest degree one at a time, we peel off large batches of nodes with
sufficiently small degrees simultaneously. This leads to a “more robust” structure that can
be maintained dynamically in an efficient manner.

Let G = (V, E) be a dynamic graph that undergoes updates via edge insertions and
deletions. In this section, we work in a simpler setting where we assume that we are given
an α and are guaranteed that the maximum arboricity of the graph G remains at most
α throughout the entire sequence of updates. We then give a deterministic fully dynamic
algorithm that maintains a (∆ + O(α))-edge coloring of G, where ∆ is an upper bound on
the maximum degree of G at any point throughout the entire sequence of updates.7 Without
dealing with implementation details, we show that it achieves Õ(1) worst-case recourse per
update. In Section 4, we extend our result to the setting where ∆ and α are not bounded
and show how to maintain a (∆ + O(α))-edge coloring of G where α and ∆ are the current
arboricity and maximum degree of G respectively and change over time.

3.1 Algorithm Description
For the rest of this section, fix some constants ϵ, β, and L such that: 0 < ϵ < 1, β = 2 + 3ϵ,
L = 2 + ⌈log1+ϵ n⌉. At a high level, our algorithm works by dynamically maintaining a
(β, 2(1 + ϵ)α, L)-decomposition (Zi)L

i=1 of the graph G by using Proposition 5. During an
update, our algorithm first updates the decomposition (Zi)i, and then uses this decomposition
to find a path of length at most L such that, by only changing the colors assigned to the edges
in this path, it can update the coloring to be valid for the updated graph. Since L = Õ(1),
this immediately implies the worst-case recourse bound. Algorithm 1 gives the procedure
that we call to initialize our data structure, creating a decomposition of the empty graph,
and Algorithms 2 and 3 give the procedures called when handling insertions and deletions
respectively.

Algorithm 1 Initialize(G, α).

Input: An empty graph G = (V,∅) and a parameter α

1 Create a (β, 2(1 + ϵ)α, L)-decomposition (Zi)i∈[L] of G

Algorithm 2 Insert(e).

Input: An edge e to be inserted into G

1 Insert the edge e into G

2 χ(e)←⊥
3 Update the (β, 2(1 + ϵ)α, L)-decomposition (Zi)i of G

4 ExtendColoring(e, (Zi)i)

7 Note that the algorithm needs prior knowledge of α, but not ∆.

S. Bhattacharya, M. Costa, N. Panski, and S. Solomon 12:9

Algorithm 3 Delete(e).

Input: An edge e to be deleted from G

1 Delete the edge e from G

2 χ(e)←⊥
3 Update the (β, 2(1 + ϵ)α, L)-decomposition (Zi)i of G

Algorithm 4 ExtendColoring(e, (Zi)i).

Input: An uncolored edge e and a (β, 2(1 + ϵ)α, L)-decomposition (Zi)i of G

1 S ← {e}
2 while S ̸= ∅ do
3 Let f = (u, v) be any edge in S where u ≺ v

4 C+
u ← χ(N+(u))

5 Cv ← χ(N(v))
6 Set c to any element in [|C+

u |+ |Cv|+ 1] \ (C+
u ∪ Cv)

7 if c ∈ χ(N(u)) then
8 Let f ′ be the edge in N(u) with χ(f ′) = c

9 χ(f ′)←⊥ and S ← S ∪ {f ′}
10 χ(f)← c and S ← S \ {f}

The following theorem, which we prove next, summarizes the behavior of our warmup dynamic
algorithm.

▶ Theorem 8. The warmup dynamic algorithm is deterministic and, given a sequence of
updates for a dynamic graph G and a value α such that the arboricity of G never exceeds α,
maintains a (∆ + (4 + ϵ)α)-edge coloring, where ∆ is the maximum degree of G throughout
the entire sequence of updates. The algorithm has O(log n/ϵ) worst-case recourse per update
and O(log2 n log ∆/ϵ2) amortized update time.

3.2 Analysis of the Warmup Algorithm
We now show that the warmup algorithm maintains a (∆ + 2β(1 + ϵ)α)-edge coloring and
has a worst-case recourse of at most L = O(log n/ϵ) per update.8

▶ Lemma 9. Let G = (V, E) be a graph with maximum degree at most ∆ and arboricity
at most α. Let e be an edge in G, (Zi)i a (β, 2(1 + ϵ)α, L)-decomposition of G and χ a
(∆ + 2β(1 + ϵ)α)-edge coloring of G− e. Then running ExtendColoring(e, (Zi)i):
1. changes the colors of at most L edges in G, and
2. turns χ into a (∆ + 2β(1 + ϵ)α)-edge coloring of G.

Proof. We first prove (1). Let ei denote the edge that is uncolored at the start of the ith

iteration of the while loop as we run the procedure. Let ℓ(ei) denote the minimum of the
level of both of its endpoints. Clearly ℓ(ei) ≤ L since this is the highest level and ℓ(ei) ≥ 1
for all i since this is the lowest level. Suppose the while loop iterates at least i times for
some integer i ≥ 2. Let ei−1 = (u, v) where u ≺ v, and hence ℓ(u) ≤ ℓ(v) (see Section 2.3).
Since ei ∈ N(u) during iteration i− 1 but χ(ei) /∈ χ(N+(u)), we have that ei /∈ N+(u), and
hence the endpoint of ei that is not u appears in a level strictly below the level of u, so

8 Note that 2β(1 + ϵ)α = (4 + O(ϵ))α.

SWAT 2024

12:10 Arboricity-Dependent Algorithms for Edge Coloring

ℓ(ei) < ℓ(ei−1). It follows that 1 ≤ ℓ(ei) ≤ L + 1− i, so the while loop iterates at most L

times. For (2), note that if we let ei = (u, v) where u ≺ v, then |C+
u | = deg+(u) − 1 and

|Cv| = deg(v)− 1, so

|C+
u |+ |Cv|+ 1 ≤ deg+(u) + deg(v)− 1 ≤ ∆ + 2β(1 + ϵ)α,

and so the procedure never assigns any ei a color larger than ∆ + 2β(1 + ϵ)α. Since we know
from (1) that the procedure terminates after at most L iterations, after which every edge
in the graph is colored, and χ was a (∆ + 2β(1 + ϵ)α)-edge coloring of the graph G − e1
at the start of the procedure, it follows by induction that after the procedure terminates χ

assigns each edge in G a color from [∆ + 2β(1 + ϵ)α]. Furthermore, our algorithm can only
terminate if this assignment forms a valid edge coloring. Hence, χ is a (∆ + 2β(1 + ϵ)α)-edge
coloring of G. ◀

▶ Lemma 10. The warmup algorithm maintains a (∆ + 2β(1 + ϵ)α)-edge coloring of the
graph.

Proof. We prove this by induction. Since G is initially empty, the empty map is trivially a
coloring of G. Let λ = ∆ + 2β(1 + ϵ)α. Suppose χ is a λ-edge coloring of G after the ith

update. If the i + 1th update is a deletion, χ is still a λ-edge coloring of the updated graph
and we are done. If the i + 1th update is an insertion, then we run Algorithm 4 in order to
update χ. By part (2) of Lemma 9, it follows that χ is a λ-edge coloring of the updated
graph once the procedure terminates. ◀

▶ Lemma 11. The warmup algorithm changes the colors of at most L edges while handling
an update.

Proof. While handling the deletion of an edge e, our algorithm uncolors the edge e and does
not change the color of any other edge. While handling the insertion of an edge e, our algorithm
only changes the colors of edges while handling the call to ExtendColoring(e, (Zi)i). By
part (1) of Lemma 9, this changes the colors of at most L edges. ◀

In the full version of our paper, we prove the following lemma.

▶ Lemma 12. The warmup algorithm has an amortized update time of O(log2 n log ∆/ϵ2).

We also note that Corollary 2 follows immediately from Lemma 9. In particular, if we set
β = 1, by Lemma 4, the proof Lemma 9 still holds. Hence, we can use ExtendColoring
along with any (1, 2(1+ϵ)α, L)-decomposition of G in order to extend any (∆+2(1+ϵ)α)-edge
coloring χ with an uncolored edge e so that the edge e is now colored by only changing the
colors of O(log n/ϵ) many edges.

4 The Dynamic Algorithm

We now describe our full dynamic algorithm and show that it maintains a (∆ + O(α))-edge
coloring of the graph. We then use Proposition 7 to show that we can get Õ(1) amortized
recourse. In Appendix B of the full version of our paper, we describe the relevant data
structures and use them to implement our algorithm to get Õ(1) amortized update time.

4.1 Algorithm Description
In order to describe our algorithm, we fix some constant ϵ such that 0 < ϵ < 1 and set
β = 2 + 3ϵ, L = 2 + ⌈log1+ϵ n⌉. Let α̃j := (1 + ϵ)j−1 and note that, for any n-node graph G

with arboricity α, α̃1 = 1 ≤ α ≤ n < α̃L.

S. Bhattacharya, M. Costa, N. Panski, and S. Solomon 12:11

Informal Description. Our algorithm works by maintaining the invariant that each edge
e = (u, v) receives a color in the set [deg(v) + O(α̃L(e))], where u ≺L(e) v. Since deg(v) ≤ ∆
and α̃L(e) = O(α) (see Lemma 15), it follows that the algorithm uses at most ∆ + O(α)
many colors. When an edge is inserted or deleted, this may cause some Õ(1) many edges
to violate the invariant. We begin by first identifying all such edges and uncoloring them.
We then update the decomposition system maintained by our algorithm, which may again
cause some Õ(1) many edges (on average) to violate the invariant. We again identify and
uncolor all such edges. We now want to color each of the uncolored edges, while ensuring
that we satisfy this invariant at all times. We do this by using the decomposition system
maintained by our algorithm: we take an uncolored edge f = (u, v) such that u ≺L(f) v and
assign it a color c that is not assigned to any of the edges in N+

L(f)(u) or N(v). If there
is an edge f ′ adjacent to f that is also colored with c, we uncolor this edge. We repeat
this process iteratively until all edges are colored. We can show that: (1) there are at most
deg(v) + O(α̃L(f)) many edges in N+

L(f)(u) ∪N(v), and hence we can find such a c in the
palette [deg(v) + O(α̃L(f))], and (2) if there is such an edge f ′ adjacent to f that is also
colored with c, then either ℓL(f ′)(f ′) < ℓL(f)(f) or L(f ′) < L(f), allowing us to carry out a
potential function argument that shows that the process terminates with all edges colored
after Õ(1) iterations on average, giving us an amortized recourse bound.

Formal Description. The following pseudo-code gives a precise formulation of our algorithm.
Algorithm 5 Initialize(G).

Input: An empty graph G = (V,∅)
1 Create a (β, (2(1 + ϵ)α̃j)j∈[L], L)-decomposition system (Zi,j)i,j∈[L] of G

Algorithm 6 Insert(e).

Input: An edge e to be inserted into G

1 Insert the edge e into G

2 S ← UpdateDecompositions(e)
3 χ(f)←⊥ for all f ∈ S

4 ExtendColoring(S)

Algorithm 7 Delete(e).

Input: An edge e to be deleted from G

1 Delete the edge e from G

2 S ← ∅
3 for v ∈ e do
4 S ← S ∪ {f = (u, v) ∈ N(v) |u ≺L(f) v and χ(f) > deg(v) + 2β(1 + ϵ)α̃L(f)}
5 S ← S ∪UpdateDecompositions(e)
6 χ(f)←⊥ for all f ∈ S

7 ExtendColoring(S)

Algorithm 8 UpdateDecompositions(e).

Input: The edge e that has been inserted/deleted from G

1 Update the decomposition system (Zi,j)i,j

2 Let S′ ⊆ E be the set of all edges whose level changes in some layer
3 return S′

SWAT 2024

12:12 Arboricity-Dependent Algorithms for Edge Coloring

Algorithm 9 ExtendColoring(S).

Input: A set S of uncolored edges
1 while S ̸= ∅ do
2 Let f = (u, v) be any edge in S where u ≺L(f) v

3 C+
u ← χ(N+

L(f)(u))
4 Cv ← χ(N(v))
5 Let c be any element in [|C+

u |+ |Cv|+ 1] \ (C+
u ∪ Cv)

6 if c ∈ χ(N(u)) then
7 Let f ′ be the edge in N(u) with χ(f ′) = c

8 χ(f ′)←⊥ and S ← S ∪ {f ′}
9 χ(f)← c and S ← S \ {f}

The following theorem, which we prove next, summarizes the behavior of our full dynamic
algorithm.

▶ Theorem 13. The dynamic algorithm is deterministic and, given a sequence of updates
for a dynamic graph G, maintains a (∆ + (4 + ϵ)α)-edge coloring, where ∆ and α are the
dynamically changing maximum degree and arboricity of G, respectively. The algorithm has
O(log4 n/ϵ5) amortized recourse per update and O(log5 n log ∆/ϵ6) amortized update time.9

We split the proof of Theorem 13 into two parts. In Section 4.2, we show that our dynamic
algorithm maintains a (∆ + 2β(1 + ϵ)2α)-edge coloring and has an amortized recourse of
O(log4 n/ϵ5).10 In Appendix B of the full version of our paper, we describe the data structures
used by our algorithm, before showing how to use them in order to get O(log5 n log ∆/ϵ6)
amortized update time.

4.2 Analysis of the Dynamic Algorithm
For the rest of Section 4.2, fix a dynamic graph G = (V, E), and a (β, (2(1 + ϵ)α̃j)j , L)-
decomposition system Z = (Zi,j)i,j of G. Recall that ϵ is a fixed constant with 0 < ϵ < 1,
and that β = 2 + 3ϵ, L = 2 + ⌈log1+ϵ n⌉.

We begin with the following simple observations.

▶ Lemma 14. For all nodes u ∈ V , we have that L(u) ≤ j⋆, where j⋆ ∈ [L] is the unique
value such that α ≤ α̃j⋆ < (1 + ϵ)α.

Proof. By Lemma 4, we know that ZL,j⋆ = ∅. Hence, L(u) ≤ j⋆ for every node u ∈ V . ◀

▶ Corollary 15. For all edges e ∈ E, we have that α̃L(e) < (1 + ϵ)α.

We now define the notation of a good edge coloring. In such an edge coloring, the colors
satisfy certain locality constraints, which makes it easier to maintain dynamically.

▶ Definition 16. Given an edge coloring χ of the graph G, we say that χ is a good
edge coloring of G with respect to the decomposition system Z if and only if for every edge
e = (u, v) ∈ E such that χ(e) ̸=⊥ and u ≺L(e) v, we have that χ(e) ≤ deg(v)+2β(1+ ϵ)α̃L(e).

9 Whenever the term ∆ appears in an amortized bound, this should be interpreted as being an upper
bound on the maximum degree across the whole sequence of updates. In the introduction, we replaced
the log ∆ term with log n for simplicity.

10 Note that 2β(1 + ϵ)2α = (4 + O(ϵ))α.

S. Bhattacharya, M. Costa, N. Panski, and S. Solomon 12:13

The following lemma shows that our algorithm can be used to maintain a good edge coloring.

▶ Lemma 17. Let χ be a good edge coloring of the graph G w.r.t. Z and let S ⊆ E be the
set of edges that are left uncolored by χ. Then running ExtendColoring(S):
1. changes the colors of at most L2|S| edges in G, and
2. turns χ into a good edge coloring with no uncolored edges.

Proof. We begin by proving (1). Given some edge f , define the potential of f by

Ψ(f) = L(L(f)− 1) + ℓL(f)(f).

Given the set of edges S, define the potential of S as Ψ(S) =
∑

f∈S Ψ(f). By Lemma 14, we
have that, for any edge f , 1 ≤ Ψ(f) = L(L(f)− 1) + ℓL(f)(f) ≤ L(L− 1) + L = L2. Hence,
|S| ≤ Ψ(S) ≤ L2|S|. During each iteration of the while loop in Algorithm 9, exactly one
edge receives a new color (and at most one edge becomes uncolored). We now show that
during each iteration of the loop, Ψ(S) drops by at least one, implying that we have at most
L2|S| iterations in total, changing the colors of at most L2|S| many edges. Let f be the edge
in S that we are coloring during some iteration of the loop and let c be the color that it
receives. During the iteration, we remove f from S; furthermore, if there exists some edge
f ′ colored with c that shares an endpoint with f , we uncolor f ′ and place it in S. If there
is no such edge f ′, then Ψ(S) drops by at least 1 since we remove f from S and Ψ(f) ≥ 1.
Suppose that there is such an edge f ′. We now argue that Ψ(f ′) < Ψ(f). We first note that
one of the endpoints of f ′ is not contained in Zi,j where i = ℓL(f)(u) and j = L(f). This
implies that ℓL(f)(f ′) < ℓL(f)(f), so L(f ′) ≤ L(f). Hence, if L(f) = L(f ′), it follows that
Ψ(f ′) < Ψ(f). Otherwise, L(f ′) < L(f), and we have that

Ψ(f)−Ψ(f ′) = L(L(f)− L(f ′)) + ℓL(f)(f)− ℓL(f ′)(f ′) ≥ L + (1− L) ≥ 1.

In either case, Ψ(S) drops by at least 1. We now prove (2). Let f = (u, v) be the edge in S

that we are coloring during some iteration of the while loop such that u ≺L(f) v. We need to
show that the color c picked by the algorithm satisfies c ≤ deg(v) + 2β(1 + ϵ)α̃L(f). It will
then follow by induction that the coloring produced by calling ExtendColoring(S) is good
given that we start with a good coloring. We first note that |Cv| ≤ deg(v)− 1. Now note
that |C+

u | ≤ deg+
L(f)(u) − 1. Since deg+

L(f)(u) ≤ 2β(1 + ϵ)α̃L(f), we get the desired bound
on c. Finally, note that at the start of each iteration, the uncolored edges correspond to
exactly the edges in S. Since the algorithm terminates if and only if S = ∅ and we know that
the algorithm terminates after at most L2|S| many iterations, it follows that the resulting
coloring has no uncolored edges. ◀

▶ Lemma 18. The dynamic algorithm maintains a (∆ + 2β(1 + ϵ)2α)-edge coloring of the
graph.

Proof. By showing that our algorithm maintains a good edge coloring, it follows by Corollary
15 that, for any edge e ∈ E, we have χ(e) ≤ ∆ + 2β(1 + ϵ)α̃L(e) ≤ ∆ + 2(1 + ϵ)2α. We do
this by showing that, after an update, the algorithm uncolors all of the edges f = (u, v) in
the graph that don’t satisfy the condition χ(f) ≤ deg(v) + 2β(1 + ϵ)α̃L(f) for u ≺L(f) v in
the updated decomposition system, places them in a set S, and calls Algorithm 9 on the set
S. By Lemma 17, it then follows that the algorithm maintains a good coloring of the entire
graph.

We refer to an edge e = (u, v) as bad if it does not satisfy the condition required by a
good coloring, i.e. if χ(e) ̸=⊥ and χ(e) > deg(v) + 2β(1 + ϵ)α̃L(f) where u ≺L(f) v. Suppose
we have a good edge coloring of the entire graph and insert an edge e into the graph. Since

SWAT 2024

12:14 Arboricity-Dependent Algorithms for Edge Coloring

this cannot decrease the degrees of any nodes or change the levels of any edges (since we
have not yet updated the decomposition system) this cannot cause any edges to become bad.
On the other hand, if we delete an edge e = (u, v), some of the edges incident to u and v

might become bad since deg(u) and deg(v) decrease by 1. Any such edges that become bad
must be contained within the set Γu ∪ Γv where

Γw = {f = (w′, w) ∈ N(w) |w′ ≺L(f) w and χ(f) > deg(w) + 2β(1 + ϵ)α̃L(f)}

where the degrees are w.r.t. the state of the graph G after the deletion of e. If we uncolor
all of the edges in Γu ∪ Γv, we restore χ to being a good edge coloring. After updating the
decomposition system, the levels of some edges might change in some layers. Any edge that
does not change levels in any layer will not become bad, since L(f) (and hence α̃L(f)) and
its orientation in ≺L(f) do not change. However, an edge f that changes levels in some
layer might become bad if L(f) decreases (causing the value of α̃L(f) to decrease) or if
its orientation with respect to ≺L(f) changes. Hence, we uncolor all such edges.11 This
guarantees that there are no bad edges when we call ExtendColoring. Since we give
ExtendColoring all of the edges that are uncolored, it follows that we maintain a good
edge coloring of the entire graph. ◀

▶ Lemma 19. The dynamic algorithm has O(log4 n/ϵ5) amortized recourse per update.

Proof. Suppose that our algorithm handles a sequence of T updates (edge insertions or
deletions) starting from an empty graph. Let S(t) denote the set of edges uncolored by
our algorithm during the tth update before calling ExtendColoring on the set S(t). By
Lemma 17, we know that at most L2|S(t)| = O(|S(t)| log2 n/ϵ2) many edges will change
color during this update. By showing that (1/T) ·

∑
t∈[T] |S(t)| is O(log2 n/ϵ3), our claimed

amortized recourse bound follows. Now fix some t ∈ [T] and let e = (u, v) be the edge being
either inserted or deleted during this update. The edges uncolored by the algorithm while
handling this update are either contained in the set Γu ∪ Γv (if the update is a deletion) or
change levels in some layer after we update the decomposition system. There can only be
at most 2L many edges of the former type. This is because, given some j ∈ [L], there is at
most one edge f ∈ Γw with L(f) = j such that χ(f) > deg(w) + 2β(1 + ϵ)α̃L(f). Otherwise,
since all the edges incident on w have distinct colors, there exists such an edge f such that
χ(f) > deg(w) + 2β(1 + ϵ)α̃L(f) + 1, which contradicts the fact that χ was a good coloring
of the graph before the deletion of e. It follows that |Γw ∩ L−1(j)| ≤ 1, so

|Γw| =
∑

j∈[L]

|Γw ∩ L−1(j)| ≤ L

and hence |Γu ∪ Γv| ≤ 2L. To bound the number of edges that changed levels in at least
one of the decompositions in the decomposition system, recall (see Proposition 7) that the
amortized recourse of the algorithm that maintains the decomposition system is O(L2/ϵ). It
follows that the amortized number of such edges is O(L2/ϵ). We have that

1
T
·

∑
t∈[T]

|S(t)| = O

(
L2

ϵ

)
+ 2L = O

(
log2 n

ϵ3

)
. ◀

11 Note that these are precisely the edges that contribute towards the recourse of the dynamic decomposition
system.

S. Bhattacharya, M. Costa, N. Panski, and S. Solomon 12:15

References
1 Leonid Barenboim, Michael Elkin, and Tzalik Maimon. Deterministic distributed (∆ + o(∆))-

edge-coloring, and vertex-coloring of graphs with bounded diversity. In Proceedings of the
ACM Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC,
USA, July 25-27, 2017, pages 175–184. ACM, 2017.

2 Leonid Barenboim and Tzalik Maimon. Fully-dynamic graph algorithms with sublinear time
inspired by distributed computing. In International Conference on Computational Science,
ICCS 2017, 12-14 June 2017, Zurich, Switzerland, volume 108 of Procedia Computer Science,
pages 89–98. Elsevier, 2017.

3 Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai.
Dynamic algorithms for graph coloring. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January
7-10, 2018, pages 1–20. SIAM, 2018.

4 Sayan Bhattacharya, Martín Costa, Nadav Panski, and Shay Solomon. Density-sensitive
algorithms for (∆ + 1)-edge coloring. CoRR, abs/2307.02415, 2023. arXiv:2307.02415.

5 Sayan Bhattacharya, Martín Costa, Nadav Panski, and Shay Solomon. Nibbling at long
cycles: Dynamic (and static) edge coloring in optimal time. In Proceedings of the 2024 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3393–3440. SIAM, 2024.

6 Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos E. Tsouraka-
kis. Space- and time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic
streams. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 173–182. ACM, 2015.

7 Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. The complexity of
distributed edge coloring with small palettes. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January
7-10, 2018, pages 2633–2652. SIAM, 2018.

8 Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM J.
Comput., 14(1):210–223, 1985.

9 Aleksander B. J. Christiansen, Eva Rotenberg, and Juliette Vlieghe. Sparsity-parameterised
dynamic edge colouring. CoRR, abs/2311.10616, 2023. arXiv:2311.10616.

10 Aleksander Bjørn Grodt Christiansen. The power of multi-step vizing chains. In Proceedings of
the 55th Annual ACM Symposium on Theory of Computing (STOC), pages 1013–1026, 2023.

11 Ran Duan, Haoqing He, and Tianyi Zhang. Dynamic edge coloring with improved approxima-
tion. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1937–1945. SIAM, 2019.

12 Łukasz Kowalik. Edge-coloring sparse graphs with ∆ colors in quasilinear time. arXiv preprint,
2024. arXiv:2401.13839.

13 V. G. Vizing. On an estimate of the chromatic class of a p-graph. Discret Analiz, 3:25–30,
1964.

SWAT 2024

https://arxiv.org/abs/2307.02415
https://arxiv.org/abs/2311.10616
https://arxiv.org/abs/2401.13839

On the Independence Number of 1-Planar Graphs
Therese Biedl #

David R. Cheriton School of Computer Science, University of Waterloo, Canada

Prosenjit Bose #

School of Computer Science, Carleton University, Ottawa, Canada

Babak Miraftab #

School of Computer Science, Carleton University, Ottawa, Canada

Abstract
An independent set in a graph is a set of vertices where no two vertices are adjacent to each other.
A maximum independent set is the largest possible independent set that can be formed within a
given graph G. The cardinality of this set is referred to as the independence number of G. This
paper investigates the independence number of 1-planar graphs, a subclass of graphs defined by
drawings in the Euclidean plane where each edge can have at most one crossing point. Borodin
establishes a tight upper bound of six for the chromatic number of every 1-planar graph G, leading
to a corresponding lower bound of n/6 for the independence number, where n is the number of
vertices of G. In contrast, the upper bound for the independence number in 1-planar graphs is less
studied. This paper addresses this gap by presenting upper bounds based on the minimum degree δ.
A comprehensive table summarizes these upper bounds for various δ values, providing insights into
achievable independence numbers under different conditions.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases 1-planar graph, independent set, minimum degree

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.13

Funding Therese Biedl: Supported by NSERC; FRN RGPIN-2020-03958.
Prosenjit Bose: Supported by NSERC.
Babak Miraftab: Supported by NSERC.

1 Introduction

An independent set in a graph contains vertices that are not adjacent to each other. A
maximum independent set is an independent set of largest possible size for a given graph, and
the number of vertices in this set is known as the independence number of G and denoted by
α(G). The size α(G) serves as a crucial parameter in graph theory and holds significance
in algorithmic contexts. For instance, Kirkpatrick [24] and Dobkin and Kirkpatrick [19]
employed the repeated removal of independent sets from triangulations to devise data
structures for efficient planar point location and distance computation between convex
polytopes, respectively. Biedl and Wilkinson [6] explored the size of independent sets in
bounded degree triangulations. In addition, Bose, Dujmović and Wood [11] obtained graphs
of bounded degree with large independent sets.

The celebrated 4-color theorem [3, 29] immediately implies that every planar graph
contains an independent set of size at least n/4, where n is the number of vertices in the
graph. Interestingly, this bound represents the maximum attainable, as there exist planar
graphs without larger independent sets; for instance, consider disjoint copies of complete
graphs with 4 vertices. Some weaker lower bounds are also established [1, 17] that circumvent
the complexity of the 4-color theorem (as suggested by Erdős [5]) via charging and discharging
arguments. Also, Caro and Roditty in [13] gives the following upper bound.

▶ Theorem 1 ([13]). Let G be a planar graph with minimum degree δ. Then α(G) ≤ 2n−4
δ .

© Therese Biedl, Prosenjit Bose, and Babak Miraftab;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 13; pp. 13:1–13:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:biedl@uwaterloo.ca
mailto:jit@scs.carleton.ca
mailto:babakmiraftab@cunet.carleton.ca
https://doi.org/10.4230/LIPIcs.SWAT.2024.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 On the Independence Number of 1-Planar Graphs

In addition, they construct an infinite family of planar graphs with α(G) = 2n−4
δ , where

δ takes values of 3, 4, and 5. From an algorithmic standpoint, determining the maximum
independent set in planar graphs is NP-hard, even when restricted to planar graphs of
maximum degree 3 [21, 28] or planar triangle-free graphs [26]. Consequently, efforts have
shifted towards approximating large independent sets through methods like approximation
algorithms [2, 4, 12, 15, 20, 26], parallel algorithms [16, 18, 22], or within certain minor-free
planar graphs [20, 25, 27].

There are various generalizations of planar graphs, for example a 1-planar graph is a
graph that can be drawn in the Euclidean plane with at most one crossing per edge. In this
paper, we study the independence number of 1-planar graphs. Borodin [10] establishes that
every 1-planar graph G has a 6-coloring, therefore α(G) ≥ n/6. This is tight, for example a
graph consisting of disjoint copies of K6 is 1-planar and has chromatic number 6. Unlike
planar graphs, there were no prior results on the upper bound for the independence number
of 1-planar graphs under degree conditions.

Our Results. This paper aims to explore the upper bounds on the independence number
of 1-planar graphs. We provide such upper bounds, relative to the minimum degree δ.
Furthermore, we construct 1-planar graphs that (for most values of δ) match the bound, i.e.,
they have this minimum degree and have an independent set of that size. Our results are
summarized in Table 1.

Table 1 Bounds on the independence number of 1-planar graphs of minimum degree δ and
optimal 1-planar graphs. The upper bound means that no graph can have a bigger independent set,
while the lower bound means that some 1-planar graph has an independent set of this size. Note
that the bounds match (up to small additive constants) except for δ = 7.

δ = 3 δ = 4 δ = 5 δ = 6 δ = 7 Optimal 1-planar

Upper bound 6
7 (n − 2) 2

3 (n − 2) 4
7 (n − 2) 1

2 (n − 3) 8
20 (n − 2) 1

3 (n − 2)

Lower bound 6
7 (n − 2) 2

3 (n − 2) 4
7 (n − 2) 1

2 (n − 4) 8
21 (n − 13.5) 1

3 (n − 2)

We also study optimal 1-planar graphs, which are 1-planar graphs with the maximum
possible number of edges, and for these, we give an upper bound 1

3 (n−2) on the independence
number. In addition, we show that this upper bound is tight by providing a family of optimal
1-planar graphs that achieve this bound.

Our paper is organized as follows. After giving preliminaries, we first construct in Section 3
a number of 1-planar graphs as a warm-up to introduce this graph class. Specifically, we
provide infinite families of 1-planar graphs with large independent sets for minimum degree
δ = 3, 4, 5, 6, 7. In Section 4, we then present upper bounds for the independence number
of 1-planar graphs with minimum degrees δ = 3, 4, 5, 6, 7. Here for δ = 3, 4, 5 the upper
bounds are proven with some techniques that were used to bound the size of matchings in
such graphs [7]. For δ = 6, 7 we prove the upper bounds by expanding and generalizing some
known results. Section 5 focuses on the independence number of optimal 1-planar graphs,
before we conclude in Section 6 with some further thoughts.

2 Preliminaries

Let G = (V, E) be a graph on n vertices. We assume familiarity with basic terms in graph
theory, such as connectivity. We refer the reader to Bondy and Murty [9] for graph theoretic
notations. Throughout the paper our input is always a connected graph G = (V, E) on n

vertices, and n ≥ 3. We also use the letter T to denote an independent set, i.e., a set of
vertices without edges between them. The notation T refers to the set of vertices V \ T .

T. Biedl, P. Bose, and B. Miraftab 13:3

A drawing Γ of a graph G assigns vertices to points in R2 and edges to curves in R2 in
such a way that edge-curves join the corresponding endpoints. In this paper we only consider
good drawings, see [30], where the following holds:
1. no vertex-points coincide and no edge-curve intersects a vertex-point except at its two

ends;
2. if two edge-curves intersect at a point p that is not a common endpoint, then they properly

cross at p;
3. if three or more edge-curves intersect at a point p, then p is a common endpoint of the

curves;
4. if the curves of two edges e, e′ intersect twice at points p ̸= p′, then e, e′ are parallel edges

and p, p′ are their endpoints; and
5. if the curve of an edge e self-intersects at point p, then e is a loop and p is its endpoint.
A drawing is called k-planar if each edge is involved in at most k crossings; a 0-planar
drawing is simply called planar. In this paper, all drawings are 1-planar. A graph is called
planar/1-planar if it has a planar/1-planar drawing, respectively.

For a given drawing Γ, the cells are the connected regions of R2 \ Γ; if Γ is planar then
these are also called faces. The unbounded cell is also called the outer face (even for drawings
that are not planar).

3 1-planar graphs with large independent sets

In this section, we construct several families of 1-planar graphs, each corresponding to
a specified minimum degree denoted by δ. These graphs are designed to possess a large
independent set. We first provide a general overview of how to construct them, and in each
subsection, we elaborate with full details.

3.1 1-planar graphs with large independent sets for δ = 3, 4, 5, 6

All but one of our constructions use a scheme that we call a standard construction which
we explain here in general terms (see Figure 1). Fix three integer parameters s, k, τ , where
s ≥ 1 is arbitrary (it serves to make the graph as big as we wish), while k and τ will depend
on the minimum degree δ.

The standard construction (illustrated in Figure 1) starts with s nested k-cycles, i.e.,
cycles of length k that are drawn (in the 1-planar drawing that we construct) such that each
next cycle is inside the previous one. We will show our drawings on the standing flat cylinder,
i.e., a rectangle where the left and right side have been identified; the nested cycles then
become horizontal lines.

The s nested cycles define s+1 faces; of these, s−1 faces (the middle faces) are bounded
by two disjoint k-cycles while two faces (the end faces) are bounded by one k-cycle. Consider
one middle face, say it is bounded by k-cycles P and P ′. We place τ vertices t1, . . . , tτ inside
this middle face; these vertices (over all middle faces together, plus possibly a few more at
the end-faces) become our independent set T . These vertices are drawn in white in Figure 1.
We make each ti adjacent to ⌈δ/2⌉ vertices on one of P, P ′ and ⌊δ/2⌋ vertices on the other.
With this, the vertices in T have degree δ. The main bottleneck for τ and k is that we must
be able to place these vertices so that the drawing is 1-planar and simple. Another bottleneck
is that all vertices in T := V \ T must have degree at least δ. Both claims will be mostly
proved by illustrations outlining the 1-planar embeddings.

SWAT 2024

13:4 On the Independence Number of 1-Planar Graphs

P

P ′

bδ2c dδ2e

repeat
τ times

bδ2cdδ2e

length k

re
p
ea
t
s−

1
ti
m
es

Nested cycles End faces

(a)

End faces

(b)

Figure 1 The standard construction and the view when the graph is drawn in the plane.

The construction inside the end-faces depends very much on δ; sometimes we add nothing
at all, sometimes we add edges, sometimes we add more vertices (in T or in T or both). The
bottleneck is again that the vertices on the first/last nested cycle must have degree δ or
more. In total the number of vertices is n = s · k + (s−1)τ (plus whatever we added at the
end-faces). The size of the independent set is |T | = (s−1)τ (plus whatever we added at the
end-faces).

Now we give the specific constructions. (We should mention that for δ = 3, 4 these are
the same as the ones given in [7] to obtain 1-planar graphs for which the maximum matching
is small, though described in a different way.)

(a) (b)

Figure 2 The graphs for δ = 3 and δ = 4 (for s = 3). Vertices in T are white, vertices in T are
black.

▶ Lemma 2. For any integer N and δ ∈ {3, 4, 5, 6}, there exists a simple 1-planar graph
with minimum degree δ and n ≥ N vertices with an independent set that has the size listed
in Table 1 under “Lower bound”.

T. Biedl, P. Bose, and B. Miraftab 13:5

Proof. We follow the standard construction, choosing s big enough so that the resulting
graph has at least N vertices. We choose k and τ as follows:

For δ = 3, we use k = 3 (so nested triangles) and τ = 18. Into each end-face we add three
more vertices of T that we make adjacent to all three vertices of the nested triangle that
bounds the face. See Figure 2(a) to verify that this can be done such that the drawing is
1-planar and the minimum degree is 3. With this we have n = 3s+18(s−1)+6 = 21s−12
and |T | = 18(s − 1) + 6 = 18s − 12 = 6

7 (21s − 14) = 6
7 (n − 2).

For δ = 4, we use k = 4 (so nested quadrangles) and τ = 8. Into each end-face we add two
more vertices of T that we make adjacent to all four vertices of the nested quadrangle that
bounds the face. See Figure 2(b) to verify that this can be done such that the drawing is
1-planar and the minimum degree is 4. With this we have n = 4s + 8(s−1) + 4 = 12s − 4
and |T | = 8(s − 1) + 4 = 8s − 4 = 2

3 (12s − 6) = 2
3 (n − 2).

For δ = 5, we use k = 12 and τ = 16. Into each end-face we add four more vertices
of T connected as a path, and then 12 more vertices of T that we each make adjacent
to two vertices of the path and three vertices of the 12-gon that bounds the face. See
Figure 3, and verify that this can be done such that the drawing is 1-planar and the
minimum degree is 5. With this we have n = 12s + 16(s−1) + 32 = 28s + 16 and
|T | = 16(s − 1) + 24 = 16s + 8 = 4

7 (28s + 14) = 4
7 (n − 2).

Figure 3 The graph for δ = 5 (for s = 3).

For δ = 6, we use k = 4 (so nested quadrangles) and τ = 4. Into each end-face we
add a pair of crossing edges between the four vertices of the nested quadrangle that
bounds the face. See Figure 4 to verify that this can be done such that the drawing is
1-planar and the minimum degree is 6. With this we have n = 4s + 4(s−1) = 8s − 4 and
|T | = 4(s − 1) = 4s − 4 = 1

2 (8s − 8) = 1
2 (n − 4). ◀

3.2 1-planar graphs with large independent sets for δ = 7
In this subsection, we show how to construct a 1-planar graph with minimum degree 7 and a
large independent set. This does not use the construction from the previous section since it
seems impossible to use equal-length nested cycles. Instead, we prove first a construction
with desirable properties by induction, and then combine two such constructions into a graph
with minimum degree 7.

SWAT 2024

13:6 On the Independence Number of 1-Planar Graphs

Figure 4 The graph for δ = 6 (for s = 4). We also show a graph where all but 6 vertices have
degree 6 that has an independent set of size (n − 3)/2.

▷ Claim 3. For all k ≥ 0, there exists a 1-planar graph Gk with 27 · 2k − 9 vertices and an
independent set T with 9 · 2k − 6 vertices such that (in some 1-planar drawing)

there are exactly 9 · 2k vertices on the outer-face, they form a cycle and each of them has
degree at least 4,
all other vertices have degree at least 7,
no vertex of T is on the outer-face.

Proof. For the base case (k = 0), we need a graph with 18 vertices of which three form an
independent set; see Figure 5(a) to verify all conditions.

Now assume that we have graph Gk with 9 · 2k vertices on the outer-face Fk. Insert 9 · 2k

new vertices in Fk (let Tk+1 be the set of added vertices) and make each of them adjacent to
three vertices of Fk; Figure 5(b) shows that this can be done while retaining 1-planarity and
keeping Tk+1 on the outer-face. With this, all vertices in Fk receive three more neighbours
and hence now have degree 7 or more. Insert 18 · 2k new vertices into the outer-face of the
resulting graph, and connect them in a cycle that will form the outer-face Fk+1 of the new
graph Gk+1. Make each vertex of Tk+1 adjacent to four vertices of Fk+1; the figure shows
that can be done while remaining 1-planar. Also, with this all vertices on Fk+1 receive two
neighbours in Tk+1; this plus the cycle among them ensures that they have degree 4 while
everyone else has degree at least 7. As desired Tk+1 forms an independent set and has no
edges to vertices of the independent set Tk of Gk since those are not on Fk by inductive
hypothesis.

It remains to verify the claim on the size. Independent set Tk ∪ Tk+1 has size 9 · 2k − 6 +
9 · 2k = 9 · 2k+1 − 6. The outer-face Fk+1 of Gk+1 has 18 · 2k = 9 · 2k+1 vertices, and finally
|V (Gk+1)| = |V (Gk)| + |Tk+1| + |Fk+1| = 27 · 2k − 9 + 9 · 2k + 18 · 2k = 27 · 2k+1 − 9. ◁

▶ Lemma 4. For any integer N , there exists a simple 1-planar graph with minimum degree
7 and n ≥ N vertices with an independent set of size 8

21 (n − 13.5).

Proof. Let k = ⌈log2((N+18)/63)⌉ and start with two copies of Gk, placed such that the
two outer-faces Fk, F ′

k of the two copies together bound one face. Into this face, insert 9 · 2k

vertices that we call Uk+1, grouped into 3 · 2k paths of three vertices each. Each vertex of
Uk+1 is adjacent to three vertices each of Fk and F ′

k; Figure 6 shows that this can be done
while remaining 1-planar.

T. Biedl, P. Bose, and B. Miraftab 13:7

F0

(a)

rest
of Gk

Fk Fk+1Tk+1

(b)

Figure 5 The base case and the induction step for building the graph Gk. For ease of reading we
now show the construction on the rolling cylinder, rather than the standing one.

Since each vertex of Uk+1 also has at least one neighbour in Uk+1, and each vertex of
Fk and F ′

k receives three more neighbours, the resulting graph G has minimum degree 7.
Define T to consist of the two independent sets of the two copies of Gk as well as the 6 · 2k

end-vertices of the paths in Uk+1; this is an independent set. See Figure 5.
It remains to analyze the size of G and T . Since G contains two copies of Gk, plus Uk+1,

it has

n = 2 · 27 · 2k − 2 · 9 + 9 · 2k = 63 · 2k − 18 ≥ N

vertices. Likewise T contains two copies of the independent set of Gk, plus the ends of the
3 · 2k paths, hence

|T | = 2 · 9 · 2k − 2 · 6 + 6 · 2k = 24 · 2k − 12.

Since 8
21 (63 · 2k − 18 − 13.5) = 24 · 2k − 144

21 − 108
21 = 24 · 2k − 12, the bound holds. ◀

With this we have proved all lower-bound entries in Table 1.

4 Upper bounds on the independence number

All our approaches to prove the upper bounds rely on bounding the maximum size of a
bipartite 1-planar graph where one side of the bipartition is the bounded degree independent
set. A previously known result here gives tight upper bounds for 1-planar graphs with
minimum degree 3,4 and 5. For δ = 6, by counting differently, we improve the bound. For
δ = 7 we improve the existing result by using a charging/discharging argument.

4.1 Upper bounds on the independence number for δ = 3, 4, 5
To obtain our upper bounds in this section, we use the following lemma from [7] on independent
sets in 1-planar graphs.

SWAT 2024

13:8 On the Independence Number of 1-Planar Graphs

Fk F �
k

rest
of Gk

rest
of G�

k

Uk+1

Figure 6 Combining two copies of Gk.

▶ Lemma 5 ([7]). Let G be a simple 1-planar graph. Let T be a non-empty independent set
in G where deg(t) ≥ 3 for all t ∈ T . Let Td be the vertices in T that have degree d. Then

2|T3| +
∑
d≥4

(3d − 6)|Td| ≤ 12|T | − 24. (1)

The notation of “minimum degree” is normally only defined for an entire graph, but we now
use it also for a subset T of vertices, so T has minimum degree δ if all vertices in T have
degree at least δ (but vertices in T may have smaller degrees).
Given the upper bound established in Lemma 5, we are able to use a counting argument to
obtain the following upper bounds.

▶ Corollary 6. Let G be a simple 1-planar graph and T be an independent set with minimum
degree δ = 3. Then |T | ≤ 6

7 (n − 2).

Proof. We have 2|T | = 2
∑

d≥3 |Td| ≤ 2|T3| +
∑

d≥4(3d − 6)|Td| ≤ 12(n − |T |) − 24 and
therefore 14|T | ≤ 12n − 24. ◀

▶ Corollary 7. Let G be a simple 1-planar graph and T be an independent set with minimum
degree δ = 4. Then |T | ≤ 2

3 (n − 2).

Proof. Since T3 is empty, we have 6|T | =
∑

d≥4 6|Td| ≤ 2|T3| +
∑

d≥4(3d − 6)|Td| ≤ 12(n −
|T |) − 24 and therefore 18|T | ≤ 12n − 24. ◀

▶ Corollary 8. Let G be a simple 1-planar graph and T be an independent set with minimum
degree δ = 5. Then |T | ≤ 4

7 (n − 2).

Proof. Since T3 and T4 are empty, we have 9|T | =
∑

d≥5 9|Td| ≤ 2|T3| +
∑

d≥4(3d − 6)|Td| ≤
12(n − |T |) − 24 and therefore 21|T | ≤ 12n − 24. ◀

4.2 Upper bounds on the independence number for δ = 6
Note that if we apply the above Lemma for δ = 6, we get a bound of 12|T | =

∑
d≥6 12|Td| ≤

2|T3| +
∑

d≥4(3d − 6)|Td| ≤ 12(n − |T |) − 24 and therefore 24|T | ≤ 12n − 24 which means
1
2 (n − 2). However, we are able to get a slightly better bound by using an alternative
argument.

T. Biedl, P. Bose, and B. Miraftab 13:9

▶ Lemma 9. Let G be a simple 1-planar graph. Then for any independent set T with
minimum degree δ we have |T | ≤ 3n−8−χ

δ where χ = 1 if n is odd and χ = 0 otherwise.

Proof. Consider the 1-planar bipartite subgraph G− of G that consists of the edges between
T and T . This graph has n vertices and has (by a result by Karpov [23]) at most 3n − 8 − χ

edges. Every vertex of T has no neighbour in T , so all its incident edges are in G−. Therefore
δ|T | ≤ E(G−) ≤ 3n − 8 − χ which implies the result. ◀

▶ Corollary 10. Let G be a simple 1-planar graph and T be an independent set with minimum
degree δ = 6. Then |T | ≤ 1

2 (n − 3).

Proof. If n is odd then |T | ≤ 1
6 (3n − 9) = 1

2 (n − 3). If n is even then by integrality
|T | ≤ ⌊ 1

6 (3n − 8)⌋ = ⌊ n
2 − 4

3 ⌋ = n
2 − 2 = 1

2 (n − 4). ◀

4.3 Upper bounds on the independence number for δ = 7
We notice that by using the counting argument as above, the upper bounds that can be
obtained for δ = 7 are

3n−8
7 , 4n−8

9

which are quite weak. We are able to obtain a better upper bound by revisiting the
charging/discharging argument that was used in the proof of Lemma 5 (this was hinted at
in [7], and many parts of the proof below are directly taken from there). We furthermore
generalize the statement to graphs with parallel edges (in [7] simplicity of the graph was used
only for δ = 3). Specifically we assume that the graph has no loops and a bigon-free 1-planar
drawing Γ, i.e., there is no cell whose boundary consists of two parallel uncrossed edges.

▶ Lemma 11. Let G be a 1-planar graph with an independent set T that has minimum degree
δ ≥ 4. Graph G may have parallel edges, but assume that it has no loops and a bigon-free
1-planar drawing Γ. Then

|T | ≤ 4
δ + ⌈ δ

3 ⌉
(n − 2).

Proof. We use a charging scheme, where we assign some charges (units of weight) to edges
in G (as well as to some edges that we add to G), redistribute these charges to the vertices
in T , and then count the number of charges in two ways to obtain the bound.

As a first step, delete all edges within T so that G becomes bipartite. Also add any edge
to Γ that connects T to T and that can be added without a crossing. We are allowed to
add parallel edges, as long as they do not form a bigon. Both operations can only increase
degrees of vertices in T , so it suffices to prove the bound in the resulting drawing Γ′.

As shown in [7], for any vertex t ∈ T there cannot be three consecutive crossed edges in
the circular ordering of edges at t. For if there were three such edges (say (t, s1), (t, s2), (t, s3))
then the edge that crosses (t, s2) has one endpoint in T ; we could have added an uncrossed
edge from this endpoint to t, and since it would be before or after (t, s2) in the circular
ordering at t it would not have formed a bigon. This contradicts maximality.

We assign charges as follows: Let E− be the uncrossed edges of Γ; each of those receives
2 charges. Let E× be the crossed edges of Γ; each of those receives 1 charges. We know
(see [7]) that 1

2 |E×| + |E−| ≤ 2n − 4 (this holds even with parallel edges if the drawing is
bigon-free and has no loops). Hence

#charges = 2|E−| + 1|E×| ≤ 4n − 8. (2)

SWAT 2024

13:10 On the Independence Number of 1-Planar Graphs

For t ∈ T , let c(t) be the total charges of incident edges of t and write d for the degree
of t. We know that there are at least ⌈ d

3 ⌉ uncrossed edges at t since there are no three
consecutive crossed edges. Thus t obtains 2⌈ d

3 ⌉ charges from three uncrossed edges, and at
least d − ⌈ d

3 ⌉ further charges from the remaining edges. Hence c(t) ≥ d + ⌈ d
3 ⌉ ≥ δ + ⌈ δ

3 ⌉ and

#charges =
∑
t∈T

c(t) ≥ |T |(δ + ⌈ δ
3 ⌉). (3)

Combining this with (2) gives |T |(δ + ⌈ δ
3 ⌉) ≤ 4n − 8 as desired. ◀

▶ Corollary 12. Let G be a simple 1-planar graph and T be an independent set with minimum
degree δ = 7. Then |T | ≤ 2

5 (n − 2).

Proof. The proof follows from Lemma 11 by setting δ = 7 ◀

With this we have proved all upper-bound entries in Table 1.

5 Optimal 1-planar graphs

Caro and Roditty in [13] showed that if G is a planar graph with order n ≥ 4 and minimum
degree δ, the equality α(G) = 2n−4

δ holds if and only if G can be formed from a planar graph
H, all of whose faces are bounded by δ-cycles, by adding a vertex of degree δ inside each
region. In particular, for planar graph the upper bound on the independence number is tight
for maximal planar graph, i.e., planar graphs that have the maximum possible number 3n − 6
of edges.

In the same spirit, one should ask what the independence number can be for 1-planar
graphs that have the maximum possible number of edges. It is known that every 1-planar
graph has at most 4n − 8 edges, and a simple 1-planar graph G is called optimal if it has
exactly 4n − 8 edges. An optimal 1-planar graph can equivalently be defined as the graphs
obtained by taking a planar quadrangulated graph Q (i.e., all faces are bounded by 4-cycles)
and inserting a pair of crossing edges into each face. Numerous results are known for such
graphs, see [8]. In particular, a simple optimal 1-planar graph has exactly n − 2 pairs of
crossing edges, all vertex-degrees are even, and the minimum degree is 6.

▶ Lemma 13. Let G be a simple optimal 1-planar graph. Then for any independent set T

we have |T | ≤ 1
3 (n − 2).

Proof. Fix an arbitrary vertex t ∈ T , say it has degree d ≥ 6. In the 1-planar drawing of G,
the cyclic order of edges around t alternates between uncrossed and crossed edges. Therefore
half of the incident edges of t are crossed, and we assign all these crossings to t. This does
not double-count crossings, because (in an optimal 1-planar graph) the four endpoints of a
crossing induce K4 and so at most one of them can belong to T . We assigned at least three
crossings to every vertex in T , and there are exactly has n−2 crossings, so |T | ≤ 1

3 (n−2). ◀

▶ Lemma 14. For any integer N , there exists a simple optimal 1-planar graph with n ≥ N

vertices and an independent set of size 1
3 (n − 2).

Proof. Let H be a 2s-prism, i.e., it consists of two cycles of length 2s with corresponding
vertices of the cycles connected by an edge. Here s ≥ max{4, N−2

6 }. Graph H has 4s vertices
and is bipartite; we let T be one of its colors classes and note that |T | = 2s. See also Figure 7.

Now obtain graph G by adding the dual graph H∗ to H and connecting every dual vertex
vF of H∗ to all vertices of the face F of H that vF represents. It is well-known that this gives
an optimal 1-planar graph, and since H has 2s + 2 faces, we have n = |V (G)| = 6s + 2 ≥ N .
No two vertices of T were connected, so T is an independent set of G of size 2s = 1

3 (n−2). ◀

T. Biedl, P. Bose, and B. Miraftab 13:11

Figure 7 Graph H (bold) for s = 2 and the resulting optimal 1-planar graph that has an
independent set (white) of size n−2

3 .

Combining the two results we obtain:

▶ Theorem 15. The independence number of optimal 1-planar graphs is exactly n−2
3 for the

only feasible minimum degree δ = 6.

6 Further thoughts

In this paper, we studied upper bounds on the independence number of 1-planar graphs of
minimum degree δ (for δ = 3, 4, 5, 6, 7). This considered all interesting cases, because for
δ = 2 the complete bipartite graph K2,n−2 is 1-planar (in fact, planar), so the independence
number can be arbitrarily close to n, and there are no simple 1-planar graphs with minimum
degree δ = 8. We also provided 1-planar graphs for these minimum degrees that have large
independent sets.

For δ = 3, 4, 5, our lower and upper bound match exactly (see also Table 1). For δ = 6,
our bounds are within a very small constant of each other. We do leave a larger gap between
upper and lower bounds for δ = 7.

One reason for this gap is that the arguments used for upper bounds (Lemmas 5, 9,
and 11) are ignoring some information: they do not use that the entire graph has minimum
degree δ, but they only use that the independent set T has minimum degree δ. While this
(surprisingly) does not seem to make a difference for δ = 3, 4, 5, it makes a tiny (additive)
difference for δ = 6 and a noticeable (multiplicative) difference for δ = 7. For δ = 6, we can
construct a graph with an independent set T of the (maximum possible size) (n − 3)/2 if we
allow just six vertices in T to have smaller degree; see also Figure 4. It is also not hard to
construct a 1-planar graph with an independent set T of size 2

5 n − O(1) that has minimum
degree 7 (but some vertices of T have smaller degree); roughly speaking take two graphs Gk

(from Lemma 4) and identify the vertices of the two copies of Fk (we leave the calculations
to the reader). So Lemma 11 as written is tight, but can we prove a smaller upper bound in
the scenario where vertices of T also must have minimum degree δ?

Last but not least, it would be interesting to explore algorithmic questions around finding
independent sets of a certain size. For example, it is easy to find an independent set of size
n
8 in any 1-planar graph (because they are 7-degenerate and so can be 8-coloured in linear
time). With more effort, we can even 7-color the graph in linear time, so find an independent
set of size at least n

7 [14]. But can we find, say, an independent set of size n
3 − O(1) in an

optimal 1-planar graph efficiently?

SWAT 2024

13:12 On the Independence Number of 1-Planar Graphs

References
1 Michael O. Albertson. A lower bound for the independence number of a planar graph. Journal

of Combinatorial Theory, Series B, 20(1):84–93, 1976.
2 Vladimir E. Alekseev, Vadim V. Lozin, Dmitriy S. Malyshev, and Martin Milanic. The

maximum independent set problem in planar graphs. In Proc. MFCS, volume 5162 of Lecture
Notes in Computer Science, pages 96–107. Springer, 2008.

3 Kenneth Appel and Wolfgang Haken. Every Planar Map is Four Colorable. American
Mathematical Society, Providence, RI, 1989.

4 Brenda S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J.
ACM, 41(1):153–180, 1994.

5 Claude Berge. Graphes et hypergraphes. Dunod, Paris, 1970.
6 T. Biedl and D. Wilkinson. Bounded-degree independent sets in planar graphs. Theory

Comput. Syst., 38(3):253–278, 2005.
7 T. Biedl and J. Wittnebel. Matchings in 1-planar graphs with large minimum degree. J. Graph

Theory, 99(2):217–320, 2022. doi:10.1002/jgt.22736.
8 R. Bodendiek, H. Schumacher, and K. Wagner. Über 1-optimale graphen. Mathematische

Nachrichten, 117(1):323–339, 1984. doi:10.1002/mana.3211170125.
9 J. Adrian Bondy and Uppaluri S. R. Murty. Graph Theory. Graduate Texts in Mathematics.

Springer, 2008.
10 O. V. Borodin. Solution of the Ringel problem on vertex-face coloring of planar graphs and

coloring of 1-planar graphs. Metody Diskret. Analiz., 41:12–26, 108, 1984.
11 Prosenjit Bose, Vida Dujmović, and David R. Wood. Induced subgraphs of bounded degree and

bounded treewidth. In Graph-theoretic concepts in computer science, volume 3787 of Lecture
Notes in Comput. Sci., pages 175–186. Springer, Berlin, 2005. doi:10.1007/11604686_16.

12 James E. Burns. The maximum independent set problem for cubic planar graphs. Networks,
19(3):373–378, 1989.

13 Y. Caro and Y. Roditty. On the vertex-independence number and star decomposition of
graphs. Ars Combin., 20:167–180, 1985.

14 Zhi-Zhong Chen and Mitsuharu Kouno. A linear-time algorithm for 7-coloring 1-plane graphs.
Algorithmica, 43(3):147–177, 2005. doi:10.1007/S00453-004-1134-X.

15 Norishige Chiba, Takao Nishizeki, and Nobuji Saito. An algorithm for finding a large
independent set in planar graphs. Networks, 13(2):247–252, 1983.

16 Marek Chrobak and Joseph Naor. An efficient parallel algorithm for computing a large
independent set in planar graph. Algorithmica, 6(6):801–815, 1991.

17 Daniel W. Cranston and Landon Rabern. Planar graphs have independence ratio at least
3/13. Electron. J. Comb., 23(3):3, 2016.

18 Norm Dadoun and David G. Kirkpatrick. Parallel algorithms for fractional and maximal
independent sets in planar graphs. Discret. Appl. Math., 27(1-2):69–83, 1990.

19 David P. Dobkin and David G. Kirkpatrick. A linear algorithm for determining the separation
of convex polyhedra. J. Algorithms, 6(3):381–392, 1985.

20 Zdenek Dvorák and Matthias Mnich. Large independent sets in triangle-free planar graphs.
SIAM J. Discret. Math., 31(2):1355–1373, 2017.

21 M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified NP-complete graph
problems. Theor. Comput. Sci., 1(3):237–267, 1976.

22 Xin He. A nearly optimal parallel algorithm for constructing maximal independent set in
planar graphs. Theor. Comput. Sci., 61:33–47, 1988.

23 D.V. Karpov. An upper bound on the number of edges in an almost planar bipartite graph.
Journal of Mathematical Sciences, 196:737–746, 2014. doi:10.1007/s10958-014-1690-9.

24 David G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput., 12(1):28–35,
1983.

25 Vadim V. Lozin and Martin Milanic. On the maximum independent set problem in subclasses
of planar graphs. J. Graph Algorithms Appl., 14(2):269–286, 2010.

https://doi.org/10.1002/jgt.22736
https://doi.org/10.1002/mana.3211170125
https://doi.org/10.1007/11604686_16
https://doi.org/10.1007/S00453-004-1134-X
https://doi.org/10.1007/s10958-014-1690-9

T. Biedl, P. Bose, and B. Miraftab 13:13

26 C. E. Veni Madhavan. Approximation algorithm for maximum independent set in planar
traingle-free [sic!] graphs. In Proc. FSTTCS, volume 181 of Lecture Notes in Computer Science,
pages 381–392. Springer, 1984.

27 Avner Magen and Mohammad Moharrami. Robust algorithms for on minor-free graphs based
on the Sherali-Adams hierarchy. In Proc. APPROX, volume 5687 of Lecture Notes in Computer
Science, pages 258–271. Springer, 2009.

28 Bojan Mohar. Face covers and the genus problem for apex graphs. J. Comb. Theory, Ser. B,
82(1):102–117, 2001.

29 Neil Robertson, Daniel P. Sanders, Paul D. Seymour, and Robin Thomas. The four-colour
theorem. J. Comb. Theory, Ser. B, 70(1):2–44, 1997.

30 Marcus Schaefer. The graph crossing number and its variants: a survey. Electron. J. Combin.,
DS21:90, 2013.

SWAT 2024

Size-Constrained Weighted Ancestors with
Applications
Philip Bille #

Technical University of Denmark, Lyngby, Denmark

Yakov Nekrich #

Michigan Technological University, Houghton, MI, US

Solon P. Pissis #

CWI, Amsterdam, The Netherlands
Vrije Universiteit, Amsterdam, The Netherlands

Abstract
The weighted ancestor problem on a rooted node-weighted tree T is a generalization of the classic
predecessor problem: construct a data structure for a set of integers that supports fast predecessor
queries. Both problems are known to require Ω(log log n) time for queries provided O(n poly log n)
space is available, where n is the input size. The weighted ancestor problem has attracted a lot of
attention by the combinatorial pattern matching community due to its direct application to suffix
trees. In this formulation of the problem, the nodes are weighted by string depth. This research has
culminated in a data structure for weighted ancestors in suffix trees with O(1) query time and an
O(n)-time construction algorithm [Belazzougui et al., CPM 2021].

In this paper, we consider a different version of the weighted ancestor problem, where the nodes
are weighted by any function weight that maps each node of T to a positive integer, such that
weight(u) ≤ size(u) for any node u and weight(u1) ≤ weight(u2) if node u1 is a descendant of node
u2, where size(u) is the number of nodes in the subtree rooted at u. In the size-constrained weighted
ancestor (SWA) problem, for any node u of T and any integer k, we are asked to return the lowest
ancestor w of u with weight at least k. We show that for any rooted tree with n nodes, we can locate
node w in O(1) time after O(n)-time preprocessing. In particular, this implies a data structure for
the SWA problem in suffix trees with O(1) query time and O(n)-time preprocessing, when the nodes
are weighted by weight. We also show several string-processing applications of this result.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases weighted ancestors, string indexing, data structures

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.14

Related Version Full Version: https://doi.org/10.48550/arXiv.2311.15777

Funding Philip Bille: Supported by the Independent Research Fund Denmark (DFF-9131-00069B).
Yakov Nekrich: Supported by the National Science Foundation under NSF grant 2203278.
Solon P. Pissis: Supported by the PANGAIA (No 872539) and ALPACA (No 956229) projects.

1 Introduction

In the classic predecessor problem [27, 16, 29, 24, 23], we are given a set S of keys from a
universe U with a total order. The goal is to preprocess set S into a compact data structure
supporting the following on-line queries: for any element q ∈ U , return the maximum p ∈ S

such that p ≤ q; p is called the predecessor of q.
The weighted ancestor problem, introduced by Farach and Muthukrishnan in [15], is

a natural generalization of the predecessor problem on rooted node-weighted trees. In
particular, given a rooted tree T , whose nodes are weighted by positive integers and such that
these weights decrease when ascending from any node to the root, the goal is to preprocess

© Philip Bille, Yakov Nekrich, and Solon P. Pissis;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 14; pp. 14:1–14:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:phbi@dtu.dk
https://orcid.org/0000-0002-1120-5154
mailto:yakov@mtu.edu
https://orcid.org/0000-0003-3771-5088
mailto:solon.pissis@cwi.nl
https://orcid.org/0000-0002-1445-1932
https://doi.org/10.4230/LIPIcs.SWAT.2024.14
https://doi.org/10.48550/arXiv.2311.15777
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Size-Constrained Weighted Ancestors with Applications

$

GAA
$

$

GA$

GA

CAGAGA$

$

GA$

1

2

4

6

7

3

5u

1

3
2w

0

(a) The internal nodes are weighted by string
depth (in red). Asking a weighted ancestor query
for i = 2 (node u) and k = 2 will take us to
node w. Indeed, (w, k) is the locus of substring
AG in the suffix tree of X.

$

GAA
$

$

GA$

GA

CAGAGA$

$

GA$

1

2

4

6

7

3

5u

3

2
2

w

7

(b) The internal nodes are weighted by frequency
(in red). Asking a weighted ancestor query for
i = 2, j = 7 (node u) and k = 3 will take us
to node w. Indeed, A is the longest prefix of
AGAGA$ that occurs at least 3 times in X.

Figure 1 Weighted ancestor queries on the suffix tree of string X = CAGAGA$. The leaf nodes in
both trees are labeled by the starting position of the suffix of X they represent.

tree T into a compact data structure supporting the following on-line queries: for any given
node u and any integer k > 0, return the farthest ancestor of u whose weight is at least k.
Both the predecessor and the weighted ancestor problems require Ω(log log n) time for queries
provided O(n poly log n) space is available, where n is the input size of the problem [17].

The weighted ancestor problem has attracted a lot of attention in the combinatorial
pattern matching community [15, 4, 22, 21, 17, 8, 6] due to its direct application to suffix
trees [28]. The suffix tree of a string X is the compacted trie of the set of suffixes of X; see
Figure 1a. In this formulation of the problem, a node u is weighted by string depth: the
length of the string spelled from the root of the suffix tree to u; and a weighted ancestor
query for two integers i and k > 0 returns the locus of substring X[i . . i + k − 1] in the suffix
tree of X. We refer the reader to [17] for several applications. This research has culminated
in a data structure for weighted ancestors in suffix trees, given by Belazzougui, Kosolobov,
Puglisi, and Raman [8], supporting O(1)-time queries after an O(n)-time preprocessing.

However there are other tree weighting schemes that are of interest to string processing.
For example, each suffix tree node can be weighted by the number of its leaf descendants; see
Figure 1b. Thus the weight of a node u is equal to the frequency of the substring represented
by the root-to-u path. If we use this weighting function, then the following basic string
problem can be translated into a weighted ancestor query: Given a substring I = X[i . . j] of
string X and an integer k > 0, find the longest prefix of I that occurs at least k times in X.

Unfortunately, the existing data structures for the weighted ancestor problem on suffix
trees [17, 8] depend strongly on the fact that the suffix tree nodes are weighted by string
depth. They thus cannot be applied to solve the aforementioned basic string problem.

Motivated by this fact, we introduce a different version of the weighted ancestor problem
on general rooted trees. Let T be a rooted tree on a set V of n nodes. By size(u), we denote
the number of nodes in the subtree rooted at a node u ∈ V . Let weight : V → N denote any
function that maps each node of T to a positive integer, such that weight(u) ≤ size(u) for
any node u ∈ V and weight(u1) ≤ weight(u2) if node u1 ∈ V is a descendant of node u2 ∈ V .
The latter is also known as the max-heap property: the weight of each node is less than or
equal to the weight of its parent, with the maximum-weight element at the root. We will

P. Bille, Y. Nekrich, and S. P. Pissis 14:3

say that a function weight : V → N satisfying both properties is a size-constrained max-heap
weight function. For any node u ∈ V and any integer k > 0, a size-constrained weighted
ancestor query, denoted by SWA(u, k) = w, asks for the lowest ancestor w ∈ V of u with
weight at least k. The size-constrained weighted ancestor (SWA) problem, formalized next,
is to preprocess T into a compact data structure supporting fast SWA queries:

Size-Constrained Weighted Ancestor (SWA)
Preprocess: A rooted tree T on a set V of n nodes weighted by a size-constrained
max-heap function weight : V → N.
Query: Given a node u ∈ V and an integer k > 0, return the lowest ancestor w of u

with weight(w) ≥ k.

We assume throughout the standard word RAM model of computation with word size
Θ(log n); basic arithmetic and bit-wise operations on O(log n)-bit integers take O(1) time.
Note that, since function weight must satisfy the max-heap property, one can employ the
existing data structures for the weighted ancestor problem on general rooted trees [15, 4], to
answer SWA queries in O(log log n) time after O(n)-time preprocessing (see also [25]). Our
main result in this paper can be formalized as follows (see Section 3 and Section 4).

▶ Theorem 1. For any rooted tree with n nodes weighted by a size-constrained max-heap
function weight, there exists an O(n)-space data structure answering SWA queries in O(1)
time. The preprocessing algorithm runs in O(n) time and O(n) space.

As a preliminary step, we design an O(n log n)-space solution using an involved combina-
tion of rank-select data structures [7], fusion trees [16], and heavy-path decompositions [26].
We then design a novel application of ART decomposition [2] to arrive to Theorem 1.

Applications. Notably, Theorem 1 presents a data structure for the SWA problem in
suffix trees with O(1) query time and O(n)-time preprocessing, when the nodes are weighted
by a size-constrained max-heap weight function weight. We show several string-processing
applications of this result since weight(u) can be defined as the number of leaf nodes in the
subtree rooted at u. Let us first provide some intuition on the applicability of Theorem 1.

Consider a relatively long query submitted to a search-engine text database. If the
database returns no (or not sufficiently many) results, one usually tries to repeatedly truncate
some prefix and/or some suffix of the original query until they obtain sufficiently many
results. Our Theorem 1 can be applied to solve this problem directly in optimal time.

In particular, Theorem 1 yields optimal data structures, with respect to preprocessing
and query times, for the following basic string-processing problems (see Section 5):
1. Preprocess a string X into a linear-space data structure supporting the following on-line

queries: for any i, j, f return the longest prefix of X[i . . j] occurring at least f times in X.
2. Preprocess a dictionary D of documents into a linear-space data structure supporting the

following on-line queries: for any string P and any integer f , return a longest substring
of P occurring in at least f documents of D.

3. Preprocess a string X into a linear-space data structure supporting the following on-line
queries: for any string P and any integer f , return a longest substring of P occurring at
least f times in X.

Theorem 1 also directly improves on the data structure presented by Pissis et al. [25] for
computing the frequency-constrained substring complexity of a given string (see Section 5).

SWAT 2024

14:4 Size-Constrained Weighted Ancestors with Applications

2 Preliminaries

For any bit string B of length m and any α ∈ {0, 1}, the classic rank and select queries are
defined as follows:

rankα: for any given i ∈ [1, m], it returns the number of ones (or zeros) in B[1 . . i]; more
formally, rankα(B, i) = |{j ∈ [1, i] : B[j] = α}|.
selectα: for any given rank i, it returns the leftmost position where the bit vector contains a
one (or zero) with rank i; more formally, selectα(B, i) = min{j ∈ [1, m] : rankα(B, j) = i}.

The following result is known.

▶ Lemma 2 (Rank and Select [7]). Let B be a bit string of length m ≤ n stored in O(1 +
m/ log n) words. We can preprocess B in O(1 + m/ log n) time into a data structure of
m + o(m) bits supporting rank and select queries in O(1) time.

Bit strings can also be used as a representation of monotonic integer sequences supporting
predecessor queries; see [5], for example. Assume we have a set S of m keys from a universe
U with a total order. In the predecessor problem, we are given a query element q ∈ U , and we
are to find the maximum p ∈ S such that p ≤ q; we denote this query by predecessor(q) = p.
The following result is known for a special case of the predecessor problem.

▶ Lemma 3 (Fusion Tree [16]). We can preprocess a set of m = logO(1) n integers in O(m)
time and space to support predecessor queries in O(1) time.

3 Constant-time Queries using O(n log n) Space

We first show how to solve the SWA problem in O(1) time using O(n log n) space. This
solution forms the basis for our linear-time and linear-space solution in Section 4.

3.1 Heavy-path Decomposition
Let T be a rooted tree with n nodes. We compute the heavy-path decomposition of T in
O(n) time [26]. Recall that, for any node u in T , we define size(u) to be number of nodes in
the subtree of T rooted at u. We call an edge (u, v) of T heavy if size(v) is maximal among
every edge originating from u (breaking ties arbitrarily). All other edges are called light. We
call a node that is reached from its parent through a heavy edge heavy; otherwise, the node
is called light. The heavy path of T is the path that starts at the root of T and at each node
on the path descends to the heavy child as defined above. The heavy-path decomposition
of T is then defined recursively: it is a union of the heavy path of T and the heavy-path
decompositions of the off-path subtrees of the heavy path. A well-known property of this
decomposition is that every root-to-node path in T passes through at most log n light edges.
In particular, the following lemma is implied.

▶ Lemma 4 (Heavy-path Decomposition [26]). Let T be a rooted tree with n nodes. Any
root-to-leaf path in T consists of at most log n + O(1) heavy paths.

3.2 Data Structure
We construct a heavy-path decomposition of T . Consider a heavy path H = v1 . . . vℓ. We
construct a bit string B(H) that represents the differences between node weights using unary
coding. Suppose that nodes v1 . . . vℓ of H are listed in decreasing order of their depth and
let δ(vi) = weight(vi) − weight(vi−1), for all i > 1. We define B(H) as follows:

B(H) = enc(weight(v1)) · enc(δ(v2)) . . . · . . . enc(δ(vi)) · . . . · enc(δ(vℓ)),

P. Bille, Y. Nekrich, and S. P. Pissis 14:5

16

5

5

63

9 1

1 2

1

12

1

1

11

u2

u5

u1

u3

u4

u6

Figure 2 A rooted tree T with n = 16 nodes. Each node u of T is weighted by weight(u) = size(u).
For example, weight(u5) = size(u5) = 9, because there are 9 nodes in the subtree rooted at u5, and
SWA(u2, 7) = u5 because the lowest ancestor of u2 with weight at least 7 is node u5. A heavy-path
decomposition of T is also depicted: the heavy edges are the red edges. For example, the heavy
path of the whole T is u1u2 . . . u6.

where enc(i) denotes the unary code of i; i.e., enc(i) consists of i 1’s followed by a single 0.
The important property of our encoding is that the total number of 0-bits in B(H) is ℓ and
the total number of 1-bits is weight(vℓ).

▶ Example 5. Let H = u1u2 . . . u6 be the heavy path of T from Figure 2. We have
ℓ = 6 and weight(u1) = 1, weight(u2) = 2, weight(u3) = 5, weight(u4) = 6, weight(u5) =
9, weight(u6) = 16. We have B(H) = 1010111010111011111110. For instance, the second
1 denotes δ(u2) = weight(u2) − weight(u1) = 1. The leftmost occurrence of 111 denotes
δ(u3) = weight(u3) − weight(u2) = 3 1’s.

For any heavy path H, we can construct B(H) in O(ℓ) time using standard word RAM
bit manipulations to construct the unary codes and concatenate the underlying bit strings.
By Lemma 4, every leaf node of T has O(log n) ancestors vt, such that vt is the topmost node
of some heavy path H. Since any node in T is counted in the weight of O(log n) topmost
nodes, the total weight of all topmost nodes, summed over all heavy paths H, is O(n log n).
Thus, the total length of all bit strings B(H) is O(n log n) and we can construct them all in
O(n) time since the total length of the heavy paths is O(n). We store each such bit string
according to Lemma 2 to support O(1)-time rank and select queries using O(n) preprocessing
time and words of space. Furthermore, for each leaf node v in T we store the weights of
the top nodes of each heavy path on the path from the root to v. By Lemma 4, there are
O(log n) such top nodes for each leaf. For every leaf node we store the weights of its top
node ancestors in a fusion tree data structure according to Lemma 3. The total space used
by all such fusion trees is O(n log n) words and the preprocessing time is O(n log n). Finally,
we construct a lowest common ancestor (LCA) data structure over T . Such a data structure
answers LCA queries in O(1) time after O(n)-time and O(n)-space preprocessing [9].

SWAT 2024

14:6 Size-Constrained Weighted Ancestors with Applications

w2

w1

u

u`

u′

(a) Case 1: Only w1 is an ancestor of u. The
heavy path Hw is shown in red. The (f + 1)th
node w2 on Hw is below w1. The node w1 is
the (f + g)th node on Hw for some g > 1, and
so w1 is the answer.

w2

w1

u

u`

u′

(b) Case 2: Both w1 and w2 are ancestors of
u. The heavy path Hw is shown in red. The
(f + 1)th node w2 on Hw is above w1, and so
w2 is the answer.

Figure 3 The two cases of the querying algorithm.

3.3 Queries
Suppose we are given a node u and an integer k as an SWA(u, k) query. We are looking for
the lowest ancestor w of u with weight at least k. If the weight of u is at least k, we return
u. Otherwise we proceed as follows. First, we locate the heavy path Hw that contains node
w: we find an arbitrary leaf descendant uℓ of u; then, using the fusion tree of uℓ, we find the
lowest ancestor u′ of uℓ with weight at least k, such that u′ is a top node. Hw is the heavy
path, such that u′ is its top node. When we find Hw, we answer a query f = rank0(B(Hw), j)
for j = select1(B(Hw), k) using Lemma 2 in O(1) time. Let w1 denote the lowest ancestor of
u on the heavy path Hw (see Figure 3). If u is on Hw (Figure 3b), then w1 is simply the
parent of u. Otherwise (Figure 3a), w1 can be found as the lowest common ancestor of the
lowest node on Hw and node u. In the latter case, w1 can be found using an LCA query that
takes O(1) time. Let w2 denote the (f + 1)th node on Hw. The node w is the highest node
among w1 and w2. The query time is O(1) by Lemma 3 for finding Hw and by Lemma 2 for
finding f . Example 6 shows how we use B(Hw) to find f and thus the (f + 1)th node.

▶ Example 6. Let B(H) = 1010111010111011111110 from Example 5, u2 from Figure 2,
and k = 7. Then j = select1(B(H), 7) = 11 and f = rank0(B(H), 11) = 4. The output node
is u5, the (f + 1)th node on H. Indeed, weight(u5) = 9 ≥ k = 7 and weight(u4) = 6 < k = 7.

In summary, we have shown the following result, which we will improve in the next
section.

▶ Lemma 7. For any rooted tree with n nodes weighted by a size-constrained max-heap
function weight, there exists an O(n log n)-space data structure answering SWA queries in
O(1) time. The preprocessing algorithm runs in O(n log n) time and O(n log n) space.

4 Constant-time Queries using O(n) Space

We now improve the above solution to the SWA problem (Lemma 7) to linear-time and
linear-space preprocessing. We will reuse the previous section’s linear-time heavy-path
decomposition and the corresponding bit string encoding. The key challenge is identifying
the top nodes of heavy paths in O(1) time using linear space.

P. Bille, Y. Nekrich, and S. P. Pissis 14:7

4.1 ART Decomposition
The ART decomposition, proposed by Alstrup, Husfeldt, and Rauhe [2], partitions a rooted
tree into a top tree and several bottom trees with respect to an input parameter χ. Each
node v of minimal depth, with no more than χ leaf nodes below it, is the root of a bottom
tree consisting of v and all its descendants. The top tree consists of all nodes that are not in
any bottom tree. The ART decomposition satisfies the following important property:

▶ Lemma 8 (ART Decomposition [2]). Let T be a rooted tree with ℓ leaf nodes. Further let χ

be a positive integer. The ART decomposition of T with parameter χ produces a top tree with
at most O(ℓ/χ) leaves. Such a decomposition of T can be computed in linear time.

4.2 Data Structure
Recall that T consists of n nodes. As discussed in Section 3.2, we compute the heavy-path
decomposition of T , construct bit strings for each heavy path, and preprocess the bit strings
to support rank and select queries in O(1) time. This takes O(n) preprocessing time and
space, allowing us to answer queries on a heavy path in O(1) time. Thus what remains is a
linear-space and O(1)-time solution to locate the top nodes of heavy paths.

16

5

5

63

9 1

1 2

1

12

1

1

11

p1

p2
p3

p4

p5

p6

p7

p8

(a) The tree T from Figure 2. We write the
heavy path id pi at the end of the ith heavy
path.

p1 p2

p3 p4

p5

p6 p7 p8

(b) The contracted tree CT .

Figure 4 The contraction process of the tree T from Figure 2.

First, we construct the contracted tree CT of T obtained by contracting all edges of heavy
paths in T . In particular, this leaves all the light edges from T in CT and removes all the
heavy edges from T (see Figure 4). We then apply the ART decomposition on CT (see
Figure 5a) with parameter χ2, where χ = ϵ log n

log log n and ϵ is a positive constant. We apply
the ART decomposition again with parameter χ (see Figure 5b) on each resulting bottom
tree. The resulting partition of CT contains three levels of trees that we call the top tree, the
middle trees, and the bottom trees. Since the heavy-path decomposition of T can be computed
in O(n) time, contracting T takes O(n) time by processing the heavy-path decomposition of
T . By Lemma 8, the ART decompositions of T cost O(n) total time.

Let us first consider the top tree. As in Section 3.2, we store a fusion tree for each leaf
node in the top tree. By Lemma 8, the top tree has O(|CT |

χ2) leaves and hence, by Lemmas 3
and 4, this uses O(|CT |

χ2 · log n) = O(n(log log n)2

log n) = o(n) space and preprocessing time.

SWAT 2024

14:8 Size-Constrained Weighted Ancestors with Applications

|CT |/χ2

χ2 χ2 χ2

(a) First application of ART decomposition on
CT .

|CT |/χ2

χ χ χ χ χ χ χ χ χ χ

χ χ χ

(b) Application of ART decomposition on the
bottom trees of the tree in Figure 5a.

Figure 5 Application of ART decompositions on CT .

For the middle or bottom trees, we tabulate the answers to all possible queries in a global
table. The index in the table is given by a tree encoding and the node u along with integer k

for the SWA query. The corresponding value in the table is the output node of the SWA(u, k)
query. We encode the input to a query as follows. We represent each middle and bottom tree
compactly as a bit string encoding the tree structure and the weights of all nodes. Since each
internal node in CT is branching, the number of nodes in a middle or bottom tree is bounded
by O(χ). Thus, we can encode the tree structure using O(χ) bits. The weight of a node in a
middle or bottom tree is bounded by O(χ2) or O(χ), respectively, and can thus be encoded
in O(log χ) bits. Hence, we can encode the tree structure and all weights using O(χ log χ)
bits. We encode the query node u using O(log χ) bits. Since the maximum weight is O(χ2)
we can also encode the query integer k using O(log χ) bits. Hence, the full encoding uses
O(χ log χ) + O(log χ) + O(log χ) = O(χ log χ) bits. To encode the output node stored in the
global table we use O(log χ) bits. Thus, the table uses 2O(χ log χ) log χ = 2O(ϵ log n) = o(n)
bits for a sufficiently small constant ϵ > 0. The table can be constructed in o(n) time.

4.3 Queries

Suppose we are given a node u and an integer k as an SWA(u, k) query. Let ut denote the
top node on the heavy path of u in T and let uH denote the corresponding node in the
contracted tree CT . We find the lowest ancestor wH of uH with weight at least k in CT . If
uH is in the top tree we find wH as described in Section 3.2. If uH is in a middle or bottom
tree, we use the global table to find wH . If the result is not in the middle or bottom tree (the
weight of the top node in such a tree is smaller than k), we move up a level and query the
middle or top tree, respectively. Each of these at most three queries takes O(1) time. Thus
wH is found in O(1) time. Suppose that wH corresponds to a node w′ in the initial tree and
let H ′ denote the heavy path such that w′ is its top node. As explained in Section 3.2, we
can find the lowest ancestor of u with weight at least k on H ′ in O(1) time using rank and
select queries on B(H ′). In total the SWA(u, k) query takes O(1) time.

In summary, we have obtained the following result.

▶ Theorem 1. For any rooted tree with n nodes weighted by a size-constrained max-heap
function weight, there exists an O(n)-space data structure answering SWA queries in O(1)
time. The preprocessing algorithm runs in O(n) time and O(n) space.

P. Bille, Y. Nekrich, and S. P. Pissis 14:9

5 String-processing Applications

In this section, we show several applications of Theorem 1 on suffix trees. Recall that the
number of leaf nodes in the subtree rooted at node u in a suffix tree is the number of
occurrences (i.e., the frequency) of the substring represented by the root-to-u path.

5.1 Internal Longest Frequent Prefix
Internal pattern matching is an active topic [20, 3, 12, 11, 13, 1, 5] in the combinatorial
pattern matching community. We introduce the following basic string problem. The internal
longest frequent prefix problem asks to preprocess a string X of length n over an integer
alphabet Σ = [1, nO(1)] into a compact data structure supporting the following on-line queries:

ILFPX(i, j, f): return the longest prefix of X[i . . j] occurring at least f times in X.

Our solution to this problem will form the basic tool for solving the problems in Sections 5.2
and 5.3. We first construct the suffix tree T of X in O(n) time [14], and preprocess it in O(n)
time for classic weighted ancestor queries [8] as well as for SWA queries using Theorem 1.
For SWA queries, as weight(u), we use the number of leaf nodes in the subtree rooted at node
u in T . Such an assignment satisfies the requested properties of weight(·) and can be done in
linear time using a standard DFS traversal on T . Any ILFPX(i, j, f) query can be answered
by first finding the locus (u, j − i + 1) of X[i . . j] in T in O(1) time using a classic weighted
ancestor query on T , and, then, answering SWA(u, f) in T in O(1) time using Theorem 1.
We obtain the following result.

▶ Theorem 9. For any string X of length n over alphabet Σ = [1, nO(1)], there exists an
O(n)-space data structure that answers ILFPX queries in O(1) time. The preprocessing
algorithm runs in O(n) time and O(n) space.

5.2 Longest Frequent Substring
The longest frequent substring problem is the following: preprocess a dictionary D of d strings
(documents) of total length n over an integer alphabet Σ = [1, nO(1)] into a compact data
structure supporting the following on-line queries:

LFSD(P, f): return a longest substring of P that occurs in at least f documents of D.

This longest substring of P represents a most relevant part of the query with respect to
D. The length of LFSD(P, f) can also be used as a measure of similarity between P and the
strings in D, for some f chosen appropriately based on the underlying application.

We start by constructing the generalized suffix tree T of D in O(n) time [14] and preprocess
it in O(n) time for SWA queries using Theorem 1. For SWA queries, weight(u) is equal to
the number of dictionary strings having at least one leaf node in the subtree rooted at node
u in T . This assignment satisfies the requested properties of weight(·) and can be done in
linear time [19]. Let us denote by (vi, ℓi) the locus in T of the longest prefix of P [i . . |P |]
that occurs in any string in D. In fact, we can compute (vi, ℓi), for all i ∈ [1, |P |], in O(|P |)
time using the matching statistics algorithm of P over T [10, 18]. For each locus (vi, ℓi), we
trigger a SWA(vi, f) query using Theorem 1 (this is essentially an instance of the internal
longest frequent prefix problem). In total this takes O(|P |) time. We obtain the following
result.

▶ Theorem 10. For any dictionary D of total length n over alphabet Σ = [1, nO(1)], there
exists an O(n)-space data structure that answers LFSD(P, f) queries in O(|P |) time. The
preprocessing algorithm runs in O(n) time and O(n) space.

SWAT 2024

14:10 Size-Constrained Weighted Ancestors with Applications

An analogous result can be achieved for the following version of the longest frequent
substring problem: preprocess a string X of length n over an integer alphabet Σ = [1, nO(1)]
into a compact data structure supporting the following on-line queries:

LFSX(P, f): return a longest substring of P that occurs at least f times in X.
In particular, instead of a generalized suffix tree, we now construct the suffix tree T of X

and follow the same querying algorithm as above. For SWA queries, weight(u) is equal to
the number of leaf nodes in the subtree rooted at node u in T . Such an assignment satisfies
the requested properties of weight(·) and can be done in linear time using a standard DFS
traversal on T . We obtain the following result.
▶ Theorem 11. For any string X of length n over alphabet Σ = [1, nO(1)], there exists an
O(n)-space data structure that answers LFSX(P, f) queries in O(|P |) time. The preprocessing
algorithm runs in O(n) time and O(n) space.

5.3 Frequency-constrained Substring Complexity
For a string X, a dictionary D of d strings (documents) and a partition of [d] in τ intervals
I = I1, . . . , Iτ , the function fX,D,I(i, j) maps i, j to the number of distinct substrings of
length i of X occurring in at least αj and at most βj documents in D, where Ij = [αj , βj].
Function f is known as the frequency-constrained substring complexity of X [25].
▶ Example 12. Let D = {a,ananan,baba,ban,banna,nana}. For X = banana and I1 =
[1, 2], I2 = [3, 4], I3 = [5, 6], we have fX,D,I(2, 2) = 3: ba occurs in 3 ∈ I2 documents; an
occurs in 4 ∈ I2 documents; and na occurs in 3 ∈ I2 documents.

The function fX,D,I is very informative about X; it provides fine-grained information
about the contents (the substrings) of X. It can thus facilitate the tuning of string-processing
algorithms by setting bounds on the length or on frequency of substrings; see [25].

Let S be a 2D array such that S[i, j] = fX,D,I(i, j). Pissis et al. [25] showed that after
an O(n)-time preprocessing of a dictionary D of d strings of total length n over an integer
alphabet Σ = [1, nO(1)], for any X and any partition I of [d] in τ intervals given on-line, S

can be computed in near-optimal O(|X|τ log log d) time.
The solution in [25] can be summarized as follows. In the preprocessing step, we construct

the generalized suffix tree T of D. In querying, the first step is to construct the suffix tree
of X and compute the document frequency of its nodes in O(|X|) time. In the second
step, we enhance the suffix tree of X with O(|X|τ) nodes with document frequencies by
answering SWA queries on T in O(log log d) time per query [4]. The whole step thus takes
O(|X|τ log log d) time. In the third step, we infer a collection of length intervals, one per
node of the enhanced suffix tree and sort them in O(|X|τ) time using radix sort. In the last
step, we sweep through the intervals from left to right to compute array S in O(|X|τ) total
time. This concludes the summary of the solution in [25]. We amend the solution as follows.

We plug in Theorem 1 for preprocessing T and for the second step (SWA queries). For
SWA queries, as weight(u), we use the number of dictionary strings having at least one
leaf node in the subtree rooted at node u in T . Such an assignment satisfies the requested
properties of weight(·) and can be done in linear time [19]. We obtain the following result.
▶ Theorem 13. For any dictionary D of d strings of total length n over alphabet Σ = [1, nO(1)],
there exists an O(n)-space data structure that answers S = fX,D,I queries in O(|X|τ) time.
The preprocessing algorithm runs in O(n) time and O(n) space.

Since S is of size |X| · τ (it consists of |X| · τ integers), the complexity bounds are optimal
with respect to the preprocessing and query times.

P. Bille, Y. Nekrich, and S. P. Pissis 14:11

References
1 Paniz Abedin, Arnab Ganguly, Solon P. Pissis, and Sharma V. Thankachan. Efficient data

structures for range shortest unique substring queries. Algorithms, 13(11):276, 2020. doi:
10.3390/A13110276.

2 Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor problems. In 39th
Annual Symposium on Foundations of Computer Science, FOCS ’98, November 8-11, 1998,
Palo Alto, California, USA, pages 534–544. IEEE Computer Society, 1998. doi:10.1109/
SFCS.1998.743504.

3 Amihood Amir, Panagiotis Charalampopoulos, Solon P. Pissis, and Jakub Radoszewski.
Dynamic and internal longest common substring. Algorithmica, 82(12):3707–3743, 2020.
doi:10.1007/S00453-020-00744-0.

4 Amihood Amir, Gad M. Landau, Moshe Lewenstein, and Dina Sokol. Dynamic text and static
pattern matching. ACM Trans. Algorithms, 3(2):19, 2007. doi:10.1145/1240233.1240242.

5 Golnaz Badkobeh, Panagiotis Charalampopoulos, Dmitry Kosolobov, and Solon P. Pissis.
Internal shortest absent word queries in constant time and linear space. Theor. Comput. Sci.,
922:271–282, 2022. doi:10.1016/J.TCS.2022.04.029.

6 Golnaz Badkobeh, Panagiotis Charalampopoulos, and Solon P. Pissis. Internal shortest absent
word queries. In Pawel Gawrychowski and Tatiana Starikovskaya, editors, 32nd Annual
Symposium on Combinatorial Pattern Matching, CPM 2021, July 5-7, 2021, Wrocław, Poland,
volume 191 of LIPIcs, pages 6:1–6:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPICS.CPM.2021.6.

7 Tim Baumann and Torben Hagerup. Rank-select indices without tears. In Zachary Friggstad,
Jörg-Rüdiger Sack, and Mohammad R. Salavatipour, editors, Algorithms and Data Structures
- 16th International Symposium, WADS 2019, Edmonton, AB, Canada, August 5-7, 2019,
Proceedings, volume 11646 of Lecture Notes in Computer Science, pages 85–98. Springer, 2019.
doi:10.1007/978-3-030-24766-9_7.

8 Djamal Belazzougui, Dmitry Kosolobov, Simon J. Puglisi, and Rajeev Raman. Weighted
ancestors in suffix trees revisited. In Pawel Gawrychowski and Tatiana Starikovskaya, editors,
32nd Annual Symposium on Combinatorial Pattern Matching, CPM 2021, July 5-7, 2021,
Wrocław, Poland, volume 191 of LIPIcs, pages 8:1–8:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.CPM.2021.8.

9 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Gaston H.
Gonnet, Daniel Panario, and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics,
4th Latin American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings,
volume 1776 of Lecture Notes in Computer Science, pages 88–94. Springer, 2000. doi:
10.1007/10719839_9.

10 William I. Chang and Eugene L. Lawler. Sublinear approximate string matching and biological
applications. Algorithmica, 12(4/5):327–344, 1994. doi:10.1007/BF01185431.

11 Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski,
Wojciech Rytter, Juliusz Straszynski, Tomasz Walen, and Wiktor Zuba. Counting distinct
patterns in internal dictionary matching. In Inge Li Gørtz and Oren Weimann, editors,
31st Annual Symposium on Combinatorial Pattern Matching, CPM 2020, June 17-19, 2020,
Copenhagen, Denmark, volume 161 of LIPIcs, pages 8:1–8:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020. doi:10.4230/LIPICS.CPM.2020.8.

12 Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski,
Wojciech Rytter, and Tomasz Walen. Internal dictionary matching. Algorithmica, 83(7):2142–
2169, 2021. doi:10.1007/S00453-021-00821-Y.

13 Maxime Crochemore, Costas S. Iliopoulos, Jakub Radoszewski, Wojciech Rytter, Juliusz
Straszynski, Tomasz Walen, and Wiktor Zuba. Internal quasiperiod queries. In Christina
Boucher and Sharma V. Thankachan, editors, String Processing and Information Retrieval
– 27th International Symposium, SPIRE 2020, Orlando, FL, USA, October 13-15, 2020,
Proceedings, volume 12303 of Lecture Notes in Computer Science, pages 60–75. Springer, 2020.
doi:10.1007/978-3-030-59212-7_5.

SWAT 2024

https://doi.org/10.3390/A13110276
https://doi.org/10.3390/A13110276
https://doi.org/10.1109/SFCS.1998.743504
https://doi.org/10.1109/SFCS.1998.743504
https://doi.org/10.1007/S00453-020-00744-0
https://doi.org/10.1145/1240233.1240242
https://doi.org/10.1016/J.TCS.2022.04.029
https://doi.org/10.4230/LIPICS.CPM.2021.6
https://doi.org/10.1007/978-3-030-24766-9_7
https://doi.org/10.4230/LIPIcs.CPM.2021.8
https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/BF01185431
https://doi.org/10.4230/LIPICS.CPM.2020.8
https://doi.org/10.1007/S00453-021-00821-Y
https://doi.org/10.1007/978-3-030-59212-7_5

14:12 Size-Constrained Weighted Ancestors with Applications

14 Martin Farach. Optimal suffix tree construction with large alphabets. In 38th Annual
Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA,
October 19-22, 1997, pages 137–143. IEEE Computer Society, 1997. doi:10.1109/SFCS.1997.
646102.

15 Martin Farach and S. Muthukrishnan. Perfect hashing for strings: Formalization and algorithms.
In Daniel S. Hirschberg and Eugene W. Myers, editors, Combinatorial Pattern Matching, 7th
Annual Symposium, CPM 96, Laguna Beach, California, USA, June 10-12, 1996, Proceedings,
volume 1075 of Lecture Notes in Computer Science, pages 130–140. Springer, 1996. doi:
10.1007/3-540-61258-0_11.

16 Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci., 47(3):424–436, 1993. doi:10.1016/0022-0000(93)90040-4.

17 Pawel Gawrychowski, Moshe Lewenstein, and Patrick K. Nicholson. Weighted ancestors in
suffix trees. In Andreas S. Schulz and Dorothea Wagner, editors, Algorithms - ESA 2014
- 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings,
volume 8737 of Lecture Notes in Computer Science, pages 455–466. Springer, 2014. doi:
10.1007/978-3-662-44777-2_38.

18 Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-
tional Biology. Cambridge University Press, 1997. doi:10.1017/cbo9780511574931.

19 Lucas Chi Kwong Hui. Color set size problem with application to string matching. In Alberto
Apostolico, Maxime Crochemore, Zvi Galil, and Udi Manber, editors, Combinatorial Pattern
Matching, Third Annual Symposium, CPM 92, Tucson, Arizona, USA, April 29 - May 1, 1992,
Proceedings, volume 644 of Lecture Notes in Computer Science, pages 230–243. Springer, 1992.
doi:10.1007/3-540-56024-6_19.

20 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Internal
pattern matching queries in a text and applications. In Piotr Indyk, editor, Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego,
CA, USA, January 4-6, 2015, pages 532–551. SIAM, 2015. doi:10.1137/1.9781611973730.36.

21 Tsvi Kopelowitz, Gregory Kucherov, Yakov Nekrich, and Tatiana Starikovskaya. Cross-
document pattern matching. J. Discrete Algorithms, 24:40–47, 2014. doi:10.1016/J.JDA.
2013.05.002.

22 Tsvi Kopelowitz and Moshe Lewenstein. Dynamic weighted ancestors. In Nikhil Bansal, Kirk
Pruhs, and Clifford Stein, editors, Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages
565–574. SIAM, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283444.

23 Gonzalo Navarro and Javiel Rojas-Ledesma. Predecessor search. ACM Comput. Surv.,
53(5):105:1–105:35, 2021. doi:10.1145/3409371.

24 Mihai Pătraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In Jon M.
Kleinberg, editor, Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
Seattle, WA, USA, May 21-23, 2006, pages 232–240. ACM, 2006. doi:10.1145/1132516.
1132551.

25 Solon P. Pissis, Michael Shekelyan, Chang Liu, and Grigorios Loukides. Frequency-constrained
substring complexity. In Franco Maria Nardini, Nadia Pisanti, and Rossano Venturini, editors,
String Processing and Information Retrieval - 30th International Symposium, SPIRE 2023,
Pisa, Italy, September 26-28, 2023, Proceedings, volume 14240 of Lecture Notes in Computer
Science, pages 345–352. Springer, 2023. doi:10.1007/978-3-031-43980-3_28.

26 Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J.
Comput. Syst. Sci., 26(3):362–391, 1983. doi:10.1016/0022-0000(83)90006-5.

27 Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and linear
space. Inf. Process. Lett., 6(3):80–82, 1977. doi:10.1016/0020-0190(77)90031-X.

28 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching and
Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11. IEEE Computer
Society, 1973. doi:10.1109/SWAT.1973.13.

29 Dan E. Willard. Log-logarithmic worst-case range queries are possible in space θ(n). Inf.
Process. Lett., 17(2):81–84, 1983. doi:10.1016/0020-0190(83)90075-3.

https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1007/3-540-61258-0_11
https://doi.org/10.1007/3-540-61258-0_11
https://doi.org/10.1016/0022-0000(93)90040-4
https://doi.org/10.1007/978-3-662-44777-2_38
https://doi.org/10.1007/978-3-662-44777-2_38
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1007/3-540-56024-6_19
https://doi.org/10.1137/1.9781611973730.36
https://doi.org/10.1016/J.JDA.2013.05.002
https://doi.org/10.1016/J.JDA.2013.05.002
http://dl.acm.org/citation.cfm?id=1283383.1283444
https://doi.org/10.1145/3409371
https://doi.org/10.1145/1132516.1132551
https://doi.org/10.1145/1132516.1132551
https://doi.org/10.1007/978-3-031-43980-3_28
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1016/0020-0190(77)90031-X
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1016/0020-0190(83)90075-3

Range Reporting for Time Series via Rectangle
Stabbing
Lotte Blank #

University of Bonn, Germany

Anne Driemel #

University of Bonn, Germany

Abstract
We study the Fréchet queries problem. It is a data structure problem for range reporting, where
we are given a set S of n polygonal curves and a distance threshold ρ. The data structure should
support queries with a polygonal curve q for the elements of S, for which the continuous Fréchet
distance to q is at most ρ. Afshani and Driemel in 2018 studied this problem for two-dimensional
polygonal curves of constant complexity and gave upper and lower bounds on the space-query time
tradeoff. We study the case that the ambient space of the curves is one-dimensional and show an
intimate connection to the well-studied rectangle stabbing problem. Here, we are given a set of
hyperrectangles as input and a query with a point q should return all input rectangles that contain
this point. Using known data structures for rectangle stabbing or orthogonal range searching this
directly leads to a data structure with size in O(n logt−1 n) and query time in O(logt−1 n + k), where
k denotes the output size and t can be chosen as the maximum number of vertices of either (a) the
stored curves or (b) the query curves. Note that we omit factors depending on the complexity of
the curves that do not depend on n. The resulting bounds improve upon the bounds by Afshani
and Driemel in both the storage and query time. In addition, we show that known lower bounds
for rectangle stabbing and orthogonal range reporting with dimension parameter d = ⌊t/2⌋ can be
applied to our problem via reduction.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Data Structures, Fréchet distance, Rectangle Stabbing, Orthogonal Range
Searching

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.15

Related Version Full Version: https://arxiv.org/abs/2401.03762

Funding This work was funded by 390685813 (Germany’s Excellence Strategy – EXC-2047/1:
Hausdorff Center for Mathematics); 416767905; and the Deutsche Forschungsgemeinschaft (DFG,
German ResearchFoundation) – 459420781 (FOR AlgoForGe).

1 Introduction

The Fréchet distance is a popular measure of similarity of two curves q and s with broad
application in many areas, including geographical information science [15, 17, 18], compu-
tational biology [14, 19], image processing [3, 16], and quantum chemistry [20]. We focus
on a data structuring problem for range reporting which we refer to as the Fréchet queries
problem. Here, in the preprocessing phase, we are given a set S of n polygonal curves and
the distance threshold ρ. The task is to store this set in a data structure that can answer
the following type of queries efficiently: For a polygonal curve q, output all curves in S

that have distance at most ρ to q. Afshani and Driemel [2] studied this problem in 2018
for two-dimensional curves providing non-trivial upper bounds for the exact case. Recently,
Cheng and Huang [8] have generalized their approach for higher dimensions. Other works on
variants of this problem have focused on the approximate setting [5, 9, 10, 11, 13].

© Lotte Blank and Anne Driemel;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 15; pp. 15:1–15:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lblank@uni-bonn.de
https://orcid.org/0000-0002-6410-8323
mailto:driemel@cs.uni-bonn.de
https://orcid.org/0000-0002-1943-2589
https://doi.org/10.4230/LIPIcs.SWAT.2024.15
https://arxiv.org/abs/2401.03762
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Range Reporting for Time Series via Rectangle Stabbing

We focus on the exact setting and – following previous work [5, 10] – we restrict the
ambient space of the curves to be 1-dimensional, that is, they are time series. Time series
appear in massive amounts in many different applications where they are used to track, e.g.,
the change over time in stock market value, vitality parameters of patients, atmospheric
conditions, such as temperature, the Earth’s population, and the hourly requests of a webpage.

In the following, we refer to the number of vertices of a polygonal curve as the complexity
of the curve and usually assume that this complexity is constant. We will see that this
complexity roughly corresponds to the dimension of the problem when viewed as a rectangle
stabbing or orthogonal range reporting problem.

Previous work: Exact setting. Afshani and Driemel [2] proposed a data structure based on
multi-level partition trees for two-dimensional curves using semi-algebraic range searching.
An essential ingredient to their work is the use of a finite number of predicates that retain
sufficient information on the curves to solve the Fréchet queries problem within the partition
tree framework. The resulting data structure for polygonal curves in the plane has size
in O

(
n(log log n)O(ts

2)
)

and uses query time in O
(√

n · logO(ts
2) n + k

)
, where ts denotes

the complexity of the input curves and k the output size. The same technique can be
applied to solve the problem for 1-dimensional curves using orthogonal range searching.
In this case, their bounds reduce to size in O

(
n (log n/log log n)O(ts

2)
)

and query time

in O
(

log n (log n/log log n)O(ts
2) + k

)
. For all time series s of complexity ts, an O(ts

2)-
dimensional point p(s) is stored. The dimension of p(s) is quadratic in ts, because for every
pair of vertices of s values depending on both vertices are stored. These are used to evaluate
the predicates mentioned above. We substantially simplify these predicates and show that
this leads to improved bounds in the 1-dimensional case.

Cheng and Huang [8] used the same predicates as Afshani and Driemel to build a data
structure for d-dimensional polygonal curves. They constructed a set of polynomials such
that their signs encode the truth values of those predicates. This leads to a data structure
of size in O(tqtsn)O(d4tq

2 log(dtq)) and query time in O((dtq)O(1) log(tqtsn) + k), where tq

denotes the complexity of the query time series.
Afshani and Driemel [2] also proved lower bounds in the pointer machine model. Using a

volume argument, they show a lower bound stating that every data structure with query
time in Q(n) + O(k), where k is the output size, has to use roughly space in Ω((n/Q(n))2)
in the worst case even if the query curves are just line segments or points for the discrete
Fréchet distance.

Previous work: Approximate setting. Bringmann, Driemel, Nusser, and Psarros [5] studied
the setting of 1-dimensional curves. Their work focuses on the c-approximate version of the
near-neighbor (c-ANN) problem under the Fréchet distance. In this problem, only one of the
curves in the query range needs to be reported and only if the query range is not empty. The
approximation is defined with respect to the query radius. Using a bucketing method, they
construct a set of curves S′ depending on the input curves S, which are stored in a dictionary.
They show that, given a query curve q, there must exist a curve in S′ very close to q if there
exists some curve in S within distance ρ of q. In this way, they constructed a (1 + ε)-ANN
data structure of size in n · O(ts/(tqε))tq and query time in O(1)tq . The query time reduces
to O(tq) with the same space bound for the (2 + ε)-ANN data structure. Furthermore, a
(2 + ε)-ANN data structure with linear size O(tsn) and query time in O(1/ε)tq+2 is obtained.
Their lower bounds show tightness of these bounds in several parameters, assuming the

L. Blank and A. Driemel 15:3

complexity of the curves depends on n (i.e., it is not a constant). To this end, they consider
the total time necessary to build the data structure and to answer n queries. They show that,
assuming the Orthogonal Vectors Hypothesis, a running time of n · (ts/tq)Θ(tq) is necessary
for any data structure that achieves an approximation factor α ∈ [1, 2).

The conditional lower bounds of Bringmann et al. [5] also apply to the exact setting,
however, they assume the parameters ts and tq to be non-constant. In light of this, we focus
on the setting where ts and tq are constants independent of n.

Our results. Section 2 contains a formal definition of the data structure problem studied in
this paper: the Fréchet queries problem. Section 3 contains the definition and known results
for rectangle stabbing, as well as its dual problem, orthogonal range reporting. Our analysis
shows an intimate connection to these classical problems studied in computational geometry
as we use them for deriving both upper and lower bounds for the Fréchet queries problem.
We start in Section 4 with a reduction showing that both rectangle stabbing and orthogonal
range reporting in d dimensions can be solved using a data structure for the Fréchet queries
problem using curves of complexity t = 2d.

In Section 5, we review the known predicates of Afshani and Driemel [2] which are used
to test the Fréchet distance within the partition tree framework. Section 6 contains our
main lemmas for simplifying these predicates and introduces the new concept of forward and
backward numbers. Here, we take advantage of the fact that the direction of each edge of a
time series can only be orientated forward or backward with respect to the x-axis.

The resulting data structures are presented in Section 7. We present two variants. Let ts

be the complexity of the input and tq of the query and assume ts and tq are constant. The
first data structure has size in O(n logtq−2 n) and uses query time in O(logtq−1 n + k) and is
independent of ts, except for a constant factor of the form

(
ts

tq

)tq

. The second data structure
has size in O(n(log n/ log log n)ts−1) and query time in O(log n(log n/ log log n)ts−3 + k) and
is independent of tq, except for a constant factor of the form

(
tq

ts

)ts

. In both variants, k

denotes the size of the output (without duplicates).
Together with known lower bounds for rectangle stabbing and orthogonal range reporting,

our analysis in Section 4 implies that every data structure that solves the Fréchet queries
problem and uses nh space has to use query time in Ω(log n(log n/ log h)⌊t/2⌋−2 + k), where
t = min{tq, ts}. If the data structure uses query time in O(logc n + k), where c is a constant,
it must use space in Ω(n(log n/ log log n)⌊t/2⌋−1).

2 Problem Definition

For any two points p, q ∈ Rd, pq is the directed line segment from p to q. The linear
interpolation of each pair of consecutive vertices of a sequence of vertices s1, . . . , sts

∈ Rd

is called a polygonal curve and its complexity is the number of its vertices. This curve is
also denoted as ⟨s1, . . . , sts⟩. We can represent polygonal curves as functions s : [1, ts] → Rd,
where s(i + α) = (1 − α)si + αsi+1 for i ∈ {1, . . . , ts} and α ∈ [0, 1]. The (continuous)
Fréchet distance between polygonal curves q : [1, tq] → Rd and s : [1, ts] → Rd is defined as

dF(q, s) = inf
hq∈Fq,hs∈Fs

max
p∈[0,1]

∥q(hq(p)) − s(hs(p))∥2,

where Fq is the set of all continuous, non-decreasing functions hq : [0, 1] → [1, tq] with
hq(0) = 1 and hq(1) = tq, respectively Fs for s.

SWAT 2024

15:4 Range Reporting for Time Series via Rectangle Stabbing

q3

q2
q 3
=
q 2
−2
ρ

q3=s1−ρ
q 3
=
s 2

+
ρ

q2=s2 + ρ
q 2
=
s 1
−
ρ

q2
q3

q1

q4

s1 s2
0

Figure 1 The second and third vertices of the time series q such that dF (q, s) ≤ ρ of Example 2.
Additionally, it must hold that q1 ∈ [s1 − ρ, s1 + ρ] and q4 ∈ [s2 − ρ, s2 + ρ]. On the right is an
example for such a time series q with respect to s and the corresponding point (p2, p3) is marked. In
this paper, the vertices of the time series are drawn as vertical segments for clarity.

▶ Problem 1 (Fréchet queries). Given a set S of n time series all of complexity at most ts,
the complexity tq of the query time series and a distance parameter ρ ∈ R≥0. Find a data
structure that stores this set S and can answer the following type of queries. For any query
time series q of complexity tq, return all elements of S that have continuous Fréchet distance
at most ρ to q.

▶ Example 2. We give a simple example demonstrating why our results are surprising. At
first sight, it seems intriguing to believe that the set of queries corresponding to an input
curve can be viewed as a finite union of axis-aligned hyperrectangles in the dimension of the
(fixed) query curve complexity tq. However, a simple example shows that this is not always
the case. Let s = ⟨s1, s2⟩ be a time series of complexity 2, where s1 ≤ s2. In Section 6, we
show the following statement. For every time series q = ⟨q1, q2, q3, q4⟩ of complexity 4, it
holds that dF (q, s) ≤ ρ if and only if

q1 ∈ [s1 − ρ, s1 + ρ],
q2, q3 ∈ [s1 − ρ, s2 + ρ],
q4 ∈ [s2 − ρ, s2 + ρ], and
q3 ≥ q2 − 2ρ.

The (non-orthogonal) condition q3 ≥ q2 − 2ρ stems from the monotonicity requirement in the
definition of the Fréchet distance. The query space can be re-parameterized by introducing
new variables to overcome this and to obtain a finite union of axis-aligned hyperrectangles,
as this is implicitly done by Afshani and Driemel [2]. For this specific example, we can
introduce an additional variable h with h = q2 − q3 and h ∈ [s1 − s2 − 2ρ, 2ρ]. Achieving
this with only a few additional variables (without blowing up the dimension quadratically as
in the work of Afshani and Driemel) is the main challenge of our work. The key ingredient
to our analysis is a simplification of the predicates – which goes along with a reduction of
their overall number.

3 Data Structure Techniques

In this paper, we will show an intimate connection of the Fréchet queries problem in one
dimension to rectangle stabbing and orthogonal range searching. We first describe these data
structure problems independently and state the known results we will use in our analysis.

L. Blank and A. Driemel 15:5

Rectangle Stabbing. For rectangle stabbing the task is as follows. Preprocess a set S of n

axis-aligned d-dimensional rectangles in Rd into a data structure so that all rectangles in S

containing a query point q can be reported efficiently, ensuring that each such rectangle is
reported exactly once.

Chazelle [6] developed a data structure for this problem with constant dimension d that
has size in O

(
n logd−2 n

)
and query time in O(logd−1 n + k), where k is the size of the

output. Afshani, Arge and Larsen [1] proved the following lower bound for the rectangle
stabbing problem. Any data structure that operates on a pointer machine and uses nh space
must use query time in Ω

(
log n(log n/ log h)d−2 + k

)
, where k is the output size. To prove a

lower bound for the Fréchet queries problem, we need a bounded version of rectangle stabbing.
Here, all rectangles in S are contained in [0, 1]d. The constructive proof for the lower bound
uses only instances, where the input rectangles are all contained in a d-dimensional cube
with side length m < n. By scaling this instance, we obtain that the lower bound holds also
for bounded rectangle stabbing.

Orthogonal Range Searching. Orthogonal range searching is defined as follows. Preprocess
a set S of n points in Rd into a data structure so that for a d-dimensional axis-aligned query
rectangle R all points contained in S can be reported efficiently, ensuring that each such
point is reported exactly once.

Afshani, Arge and Larsen [1] constructed a data structure for constant dimension d > 3
using space in O

(
n(log n/ log log n)d−1)

and query time in O
(
log n(log n/ log log n)d−3 + k

)
,

where k is the size of the output. Later, we reduce the orthogonal range searching problem to
the Fréchet queries problem and then use the following lower bound by Chazelle [7]. Consider
a data structure of orthogonal range searching on n points in Rd that operates on a pointer
machine, and let c be an arbitrary constant. If the data structure provides a query time in
O((log n)c + k), where k is the output size, then its size must be in Ω(n(log n/ log log n)d−1).

4 Lower Bounds

We transform the bounded rectangle stabbing problem to the Fréchet queries problem such
that we can use a known lower bound for the bounded rectangle stabbing problem to obtain
a lower bound for the Fréchet queries problem. An illustration of the reduction can be found
in Example 3.

Given a set S of n axis-aligned rectangles contained in [0, 1]d as an instance of the
d-dimensional bounded rectangle stabbing problem. We define a set S′ containing n time
series of complexity 2d. For a rectangle R = [l1, r1] × [l2, r2] × · · · × [ld, rd] in S, we store the
time series s(R) = ⟨s1, . . . , s2d⟩, where

s2i−1 = (ri + 1) + 6i and s2i = (li − 1) + 6i.

The set S′ is stored in a data structure for the Fréchet queries problem. We define a query
time series q = ⟨q1, . . . , q2d⟩ for a query point p = (p1, . . . , pd) ∈ [0, 1]d, where

q2i−1 = (pi + 2) + 6i and q2i = (pi − 2) + 6i.

To find all time series s(R) in S′ within Fréchet distance at most 1 to q, we use the stored
data structure. All rectangles R, where dF(q, s(R)) ≤ 1, will be returned. Theorem 4 implies
that this reduction is correct by showing that p ∈ R ⇔ dF(q, s(R)) ≤ 1.

SWAT 2024

15:6 Range Reporting for Time Series via Rectangle Stabbing

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

q

s(R)

s(R̂)

Figure 2 The time series q, s(R) and s(R̂) as in Example 3.

s(R)1 s(R)6

q1

q6

. . .

.

.

.

q1

q6

.

.

.

s(R̂)1 s(R̂)6
. . .

Figure 3 The free space diagrams F1(q, s(R)) and F1(q, s(R̂)) defined in Example 3. A sequence
of cells C that is feasible in F1(q, s(R)) is drawn in grey.

▶ Example 3. The input set S of a rectangle stabbing instance contains the rectangles
R = [0.2, 0.6] × [0.4, 1] × [0.4, 0.6] and R̂ = [0, 0.4] × [0.2, 0.6] × [0.8, 1] and the query point is
p = (0.3, 0.8, 0.5). It is evident that p ∈ R and p /∈ R̂. Through our reduction, the two stored
time series are s(R) = ⟨7.6, 5.2, 14, 11.4, 19.6, 17.4⟩ and s(R̂) = ⟨7.4, 5, 13.6, 11.2, 20, 17.8⟩ and
the query time series for p is q = ⟨8.3, 4.3, 14.8, 10.8, 20.5, 16.5⟩, as illustrated in Figure 2.
The left side of Figure 3 depicts the free space diagram of the time series q and s(R) with
respect to ρ = 1 (i.e., F1(q, s(R))). Notably, the points (i, i) lie in the free space for all i,
resulting in dF(q, s(R)) ≤ 1. Conversely, the right side of Figure 3 corresponds to the free
space diagram of the time series q and s(R̂) with respect to ρ = 1 (i.e., F1(q, s(R̂))). It does
not contain a feasible path and |q3 − s(R̂)3| > 1 and |q6 − s(R̂)6| > 1.

▶ Theorem 4. The d-dimensional bounded rectangle stabbing problem can be solved with a
data structure for the Fréchet queries problem, where the stored time series as well as the
query time series have complexity 2d. The instance for the Fréchet queries problem can be
computed in linear time.

Proof. We use the reduction as described above. Hence, it remains to prove that p ∈ R ⇔
dF(q, s(R)) ≤ 1. For all i, it follows by li, ri, pi ∈ [0, 1] that

|q2i−1 − s2i−1| ≤ 1 ⇔ |((pi + 2) + 6i) − ((ri + 1) + 6i)| ≤ 1 ⇔ pi ≤ ri and
|q2i − s2i| ≤ 1 ⇔ |((pi − 2) + 6i) − ((li − 1) + 6i)| ≤ 1 ⇔ pi ≥ li.

L. Blank and A. Driemel 15:7

If p ∈ R, then it holds that |q2i−1 − s2i−1| ≤ 1 and |q2i − s2i| ≤ 1 for all i, since li ≤ pi ≤ ri.
Therefore, C = ((1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 4), . . . , (2d − 1, 2d), (2d, 2d)) is a feasible
sequence of cells in F1(q, s(R)) because all cells are convex and boundary points of a cell
belong to all neighboring cells. So, dF(q, s(R)) ≤ 1.

If dF(q, s) ≤ 1, then by the definition of the Fréchet distance, for all points q2i−1 and
q2i, there exist points x2i−1 and x2i such that |q2i−1 − x2i−1| ≤ 1, |q2i − x2i| ≤ 1, and x2i−1
lies not after x2i on the time series s(R). By construction, it holds s2k − 1 < s2k−1 − 1 <

q2i < q2i−1 < s2l + 1 < s2l−1 + 1 for all k < i < l. It holds that |sk − ql| > 1 for k ̸= l by
definition. Therefore, x2i−1, x2i must lie on one of the following edges s2i−2s2i−1, s2i−1s2i,
or s2is2i+1. By construction, it holds that q2i−1 ∈ [6i + 2, 6i + 3] and |x2i−1 − q2i−1| ≤ 1.
Hence, x2i−1 ∈ [6i + 1, 6i + 4]. Further, q2i ∈ [6i − 2, 6i − 1] and |x2i − q2i| ≤ 1. Hence,
x2i ∈ [6i − 3, 6i]. Assume that x2i−1 ∈ s2is2i+1. Then since x2i lies after x2i−1 on s(R)
it follows that x2i ∈ s2is2i+1 and in particular 6i + 1 ≤ x2i−1 ≤ x2i. This leads to a
contradiction to x2i ≤ 6i. In the same way, it follows that x2i /∈ s2i−2s2i−1. So, x2i−1 lies
on s2i−2s2i−1 or s2i−1s2i and x2i lies on s2i−1s2i or s2is2i+1. It holds that x2i−1 ≤ s2i−1
and x2i ≥ s2i, because s2i−2 ≤ s2i ≤ s2i−1 ≤ s2i+1. It follows by x2i−1 ≤ s2i−1 ≤ q2i−1 and
|x2i−1 − q2i−1| ≤ 1 that |q2i−1 − s2i−1| = q2i−1 − s2i−1 ≤ q2i−1 − x2i−1 = |q2i−1 − x2i−1| ≤ 1.

By the same argument, it follows that |s2i − q2i| ≤ 1 because q2i ≤ s2i ≤ x2i. Therefore,
li ≤ pi ≤ ri for all i, i.e., p ∈ R, which concludes the proof. ◀

The result in Theorem 4 together with the lower bound for bounded rectangle stabbing
queries by Afshani, Arge and Larsern [1] yields the following lower bound for the Fréchet
queries problem.

▶ Corollary 5. Every data structure that solves the Fréchet queries problem that operates on a
pointer machine, and uses nh space must use query time in Ω(log n(log n/ log h)⌊t/2⌋−2 + k),
where k is the size of the output (without duplicates) and t = min{tq, ts}.

Given an instance of d-dimensional orthogonal range searching, we can construct the
stored (resp. query) time series in the way as the query (resp. stored) time series were
constructed in Theorem 4 after scaling the instance such that all points are in [0, 1]d. Using
this construction, it holds by the same arguments as in the proof of Theorem 4 that p ∈ R if
and only if dF (q, s(p)) ≤ 1. Therefore, we get the following corollary.

▶ Corollary 6. The d-dimensional orthogonal range searching can be solved with a data
structure for the Fréchet queries problem, where the stored time series as well as the query
time series have complexity 2d. The instance for the Fréchet queries problem can be computed
in linear time.

Chazelles [7] lower bound for orthogonal range searching provides to the following:

▶ Corollary 7. Every data structure that solves the Fréchet queries problem and uses query
time in O(logc n + k), where c is a constant, must use size in Ω(n(log n/ log log n)⌊t/2⌋−1),
where k is the size of the output (without duplicates) and t = min{tq, ts}.

5 Predicates for Evaluating the Fréchet distance

In this section, we review the predicates used by Afshani and Driemel [2] and how they
enable the evaluation of the Fréchet distance in a data structure context.

For this, we first recall the definition of the free space diagram from Alt and Godau [4].
For polygonal curves q : [1, tq] → Rd and s : [1, ts] → Rd the free space diagram Fρ(q, s) is a
subset of [1, tq] × [1, ts], such that for all points (x, y) ∈ Fρ(q, s) the distance between q(x)
and s(y) is at most ρ. Refer to Figure 4 for an example. Formally,

Fρ(q, s) := {(x, y) ∈ [1, tq] × [1, ts] | ∥q(x) − s(y)∥2 ≤ ρ}.

SWAT 2024

15:8 Range Reporting for Time Series via Rectangle Stabbing

q1

q2

q3
q4

q5 p2

p3 p5

p4

p6

p1

s1 s2 s3 s4 s5 s6

q1 q2
q3

q4q5

s1 s2
s3

s4
s5 s6

Figure 4 The free space diagram Fρ(q, s) of two time series with a feasible path trough a feasible
sequence of cells C = ((1, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (4, 4), (4, 5)), which is drawn in grey.
Predicates (P1), (P2), (P3(1, 2)), (P4(3, 4)), (P5(1, 2, 3)) and (P6(3, 4, 4)) are true, because the points
pi are contained in the free space.

▶ Lemma 8 (Alt and Godau [4]). The Fréchet distance between polygonal curves s and q is at
most ρ if and only if there exists a path in Fρ(q, s) from (1, 1) to (tq, ts) which is monotone
in both coordinates. For such a path, we say it is feasible.

We can decompose the rectangle [1, tq] × [1, ts] into (tq − 1) · (ts − 1) cells such that the cell
Cij = [i, i + 1] × [j, j + 1] corresponds to the part in the free space diagram defined by the
edges qiqi+1 and sjsj+1. By definition of the free space diagram, it follows that Cij ∩ Fρ(q, s)
lies between two parallel lines. Therefore, we focus on the boundary of the cells Cij .

Our query algorithm will iterate over all possibilities of sequences of cells that a feasible
path could traverse in the free space diagram. Therefore, we call a sequence of cells
C = ((i1, j1), . . . , (it, jt)) valid, if i1 = 1, j1 = 1, it = tq − 1, jt = ts − 1, and for all m < t

either im+1 = im and jm+1 = jm + 1, or im+1 = im + 1 and jm+1 = jm. The tuple (i, j)
represents the cell Cij . Further, a valid sequence of cells is called feasible in Fρ(q, s), if there
exists a feasible path in Fρ(q, s) that traverses exactly the cells in C. Refer to Figure 4 for
an example.

The following predicates due to Afshani and Driemel [2] can be used to decide whether a
valid sequence of cells is feasible in Fρ(q, s). Figure 4 visualizes the predicates.

(P1) (Endpoint (start)) This predicate is true iff |s1 − q1| ≤ ρ.
(P2) (Endpoint (end)) This predicate is true iff |sts − qtq | ≤ ρ.
(P3(i, j)) (Vertex of s – edge of q) This predicate is true iff ∃ p3 ∈ qiqi+1 s.t. |p3 − sj | ≤ ρ.
(P4(i, j)) (Vertex of q – edge of s) This predicate is true iff ∃ p4 ∈ sjsj+1 s.t. |p4 − qi| ≤ ρ.
(P5(i, j, k)) (Monotone in q) This predicate is true iff ∃ p3, p5 ∈ qiqi+1 s.t. p3 lies not

after p5 on the time series q and |p3 − sj | ≤ ρ and |p5 − sk| ≤ ρ.
(P6(i, l, j)) (Monotone in s) This predicate is true iff ∃ p4, p6 ∈ sjsj+1 s.t. p4 lies not

after p6 on the time series s and |p4 − qi| ≤ ρ and |p6 − ql| ≤ ρ.

The following lemma verifies that the predicates can be used to test if the Fréchet distance
between two curves is at most a given value.

▶ Lemma 9 (Afshani and Driemel [2]). Let C = ((i1, j1), (i2, j2), . . . , (it, jt)) be a valid
sequence of cells. Then C is feasible in Fρ(q, s) if and only if the following predicates defined
by q, s and ρ are true:

L. Blank and A. Driemel 15:9

sj
sk

qi+1
qi

sk-ρ sj+ρ sk-ρ sj+ρ

qi
qi+1

sj

sk

sj
sk

qi
qi+1sj+ρ sk-ρ

p̃1 p̃1 p̃1p̃2 p̃2 p̃2

Figure 5 The left and the middle show Case (i) of Lemma 11. Here, [sj −ρ, sj +ρ]∩ [sk −ρ, sk +ρ]
is marked in red. The right visualizes Case (ii) of Lemma 11 and Case (iii) is Case (ii) mirrored.

(i) (P1) and (P2),
(ii) (P3(i, j)) if (i, j − 1), (i, j) ∈ C,
(iii) (P4(i, j)) if (i − 1, j), (i, j) ∈ C,
(iv) (P5(i, j, k)) if (i, j − 1), (i, k) ∈ C, and
(v) (P6(i, l, j)) if (i − 1, j), (l, j) ∈ C.

We say that those predicates are induced by C.

Afshani and Driemel [2] showed that, for a given query, a fixed assignment of truth values
to the set of all predicates defines a semi-algebraic set. This set contains all curves for
which the predicates yield the given truth assignment. A query to the data structure then
corresponds to a finite union of semi-algebraic range queries for which the truth assignments
yield a valid sequence of cells.

In our paper, we modify this approach. Instead of fixing the truth assignment to all
predicates, we only fix a combinatorial path in the free space diagram (that is a valid sequence
of cells) and we consider the predicates that are induced by it. This results in potential
duplicates in the query output as an input curve may have different combinatorial paths
in the free space diagram with the query. However, the overall number of elements in the
output only changes by a constant factor as long as the complexity of the input and query is
constant.

6 Simplification of the Predicates

Given a sequence of cells C, we want to find intervals I1, . . . , Itq
defined by a stored time

series s such that C is feasible in Fρ(q, s) if and only if qi ∈ Ii for all i, where q = ⟨q1, . . . , qtq ⟩
is a time series with some additional properties. The intervals will be defined using the
predicates. Lemma 9 shows which predicates need to be true such that C is feasible in
Fρ(q, s). For the endpoint and vertex-edge predicates ((P1), (P2), (P3) and (P4)), the needed
intervals follow easily:

▶ Observation 10. Let q = ⟨q1, . . . , qtq
⟩ and s = ⟨s1, . . . , sts

⟩ be two time series. Then the
following holds for the predicates in the free space diagram Fρ(q, s):

(i) (P1) is true ⇔ q1 ∈ [s1 − ρ, s1 + ρ],
(ii) (P2) is true ⇔ qtq

∈ [sts
− ρ, sts

+ ρ],
(iii) (P3(i, j)) is true ⇔ if qi ≤ qi+1 : qi ≤ sj + ρ and qi+1 ≥ sj − ρ and

if qi ≥ qi+1 : qi ≥ sj − ρ and qi+1 ≤ sj + ρ,
(iv) (P4(i, j)) is true ⇔ qi ∈ [min{sj − ρ, sj+1 − ρ}, max{sj + ρ, sj+1 + ρ}].

The next lemma defines the intervals needed such that the monotone in q predicate
(P5(i, j, k)) is true and is visualized in Figure 5.

▶ Lemma 11. Let q = ⟨q1, . . . , qtq
⟩ and s = ⟨s1, . . . , sts

⟩ be two time series, then the
monotone in q predicate (P5(i, j, k)) is true if and only if the vertex of s - edge of q predicates
(P3(i, j)) and (P3(i, k)) are true and one of the following holds

SWAT 2024

15:10 Range Reporting for Time Series via Rectangle Stabbing

q1q2 q3q4 q5q6 q7q8 q9

q2-ρ q5+ρ

q5+ρq9-ρ

Figure 6 Illustration of the values f2(s) = 5 and b5(s) = 9 for a time series s.

(i) |sj − sk| ≤ 2ρ, or
(ii) |sj − sk| > 2ρ and sj ≤ sk and qi ≤ sj + ρ and qi+1 ≥ sk − ρ, or
(iii) |sj − sk| > 2ρ and sj > sk and qi ≥ sj − ρ and qi+1 ≤ sk + ρ.

Proof. Assume (P5(i, j, k)) to be true. Then there exist points p1, p2 ∈ qiqi+1 such that p1
lies not after p2 on the time series q and p1 ∈ [sj − ρ, sj + ρ], p2 ∈ [sk − ρ, sk + ρ]. Hence,
(P3(i, j)) and (P3(i, k)) are true. In addition, if |sj − sk| > 2ρ and sj ≤ sk, it holds that
qi ≤ p1 ≤ sj + ρ < sk − ρ ≤ p2 ≤ qi+1. Further, if |sj − sk| > 2ρ and sj > sk, it holds that
qi+1 ≤ p2 ≤ sk + ρ < sj − ρ ≤ p1 ≤ qi.

It remains to prove the other direction. Let (P3(i, j)) and (P3(i, k)) be true. Then, there
exist p̃1 ∈ qiqi+1 and p̃2 ∈ qiqi+1 such that |p̃1 − sj | ≤ ρ and |p̃2 − sk| ≤ ρ.
Case (i): Let |sj −sk| ≤ 2ρ. We can set p1 = p2 = p̃1 if p̃1 ∈ [sj − ρ, sj + ρ] ∩ [sk − ρ, sk + ρ].
The same holds if p̃2 ∈ [sj − ρ, sj + ρ] ∩ [sk − ρ, sk + ρ]. Otherwise, ∅ ≠ [sj − ρ, sj + ρ] ∩ [sk −
ρ, sk + ρ] ⊆ p̃1p̃2 ⊆ qiqi+1 and we can set p1 = p2 as any point in this intersection. In each
of those cases, (P5(i, j, k)) is true.
Case (ii): Let |sj − sk| > 2ρ, sj ≤ sk, qi ≤ sj + ρ and qi+1 ≥ sk − ρ. Then it holds that
p̃1 < p̃2 and qi < qi+1 because sj + ρ < sk − ρ. Therefore, p̃1 lies before p̃2 on qiqi+1 and
we can simply set p1 = p̃1 and p2 = p̃2. Those points have the required properties in the
definition of (P5(i, j, k)). Symmetrically, in Case (iii) it holds that (P5(i, j, k)) is true. ◀

To determine the truth value of the monotone in s predicates (P6), we define the forward
and backward numbers fi(q) and bi(q). Refer to Figure 6 as an example.

▶ Definition 12 (forward and backward numbers). For a time series q = ⟨q1, . . . , qtq
⟩ and

i ∈ {1, . . . , tq}, we denote by the forward number fi(q) the highest number such that
⟨qi −ρ, qfi(q) +ρ⟩ is oriented forward and its Fréchet distance to the time series ⟨qi, . . . , qfi(q)⟩
is at most ρ, i.e.,

fi(q) := max{k ∈ {i, . . . , tq} | dF(⟨qi, . . . , qk⟩, ⟨qi − ρ, qk + ρ⟩) ≤ ρ and qi − ρ ≤ qk + ρ}

and by the backward number bi(q) the highest number such that ⟨qi + ρ, qbi(q) − ρ⟩ is oriented
backward and its Fréchet distance to the time series ⟨qi, . . . , qbi(q)⟩ is at most ρ, i.e.,

bi(q) := max{k ∈ {i, . . . , tq} | dF(⟨qi, . . . , qk⟩, ⟨qi + ρ, qk − ρ⟩) ≤ ρ and qi + ρ ≥ qk − ρ}.

▶ Observation 13. For all i ≤ x ≤ fi(q), it holds that dF(⟨qi, . . . , qx⟩, ⟨qi − ρ, qx + ρ⟩) ≤ ρ

and qi − ρ ≤ qx + ρ. Respectively, for bi(q).

Proof. By the definition of the Fréchet distance and fi(q), there exist points qi − ρ ≤ pi ≤
pi+1 ≤ . . . ≤ px ≤ qx + ρ such that |pj − qj | ≤ ρ for all j. Further, since the free space in
every cell is convex, the statement follows. ◀

L. Blank and A. Driemel 15:11

The next lemma shows how the forward and backward numbers can be used to determine
values of the monotone in s predicates (P6). To decide whether a valid sequence of cells is
feasible or not in Fρ(q, s), we need predicate (P6(i, l, j)) to be true only if we also need all
predicates (P6(x, y, j)) to be true with i ≤ x < y ≤ l by Lemma 9.

▶ Lemma 14. Let q = ⟨q1, . . . , qtq
⟩ and s = ⟨s1, . . . , sts

⟩ be two time series, i, l ∈ {1, . . . , tq}
with i < l and j ∈ {1, . . . , ts − 1}. If sj ≤ sj+1, then

(P6(x, y, j)) is true ∀i ≤ x < y ≤ l ⇔ fi(q) ≥ l and (P4(x, j)) is true for all i ≤ x ≤ l

and if sj ≥ sj+1, then

(P6(x, y, j)) is true ∀i ≤ x < y ≤ l ⇔ bi(q) ≥ l and (P4(x, j)) is true for all i ≤ x ≤ l.

Proof. We discuss the case that sj ≤ sj+1. The other case can be proven in the same way.
Let (P6(x, y, j)) be true for all i ≤ x < y ≤ l. Note that by definition of (P6), it holds

that the predicates (P4(x, j)) are true for all i ≤ x ≤ l. It remains to prove fi(q) ≥ l. Let
i ≤ x < y ≤ l. Since (P6(i, x, j)) is true there exist p4, p6 ∈ sjsj+1 such that p4 ≤ p6 and
pi ≤ p4 + ρ and qx ≥ p6 − ρ. Therefore, it follows that qi − qx ≤ p4 + ρ− (p6 − ρ) ≤ 2ρ. In the
same way, we get that qx − ql ≤ 2ρ. In particular, this implies that ⟨qi −ρ, ql +ρ⟩ is a forward
edge. Assume for the sake of a contradiction that dF(⟨qi, . . . , ql⟩, ⟨qi − ρ, ql + ρ⟩) > ρ. Then,
there must exist two vertices qx, qy such that there are no two points p1, p2 ∈ [qi − ρ, ql + ρ]
such that p1 ≤ p2, |p1 − qx| ≤ ρ and |p2 − qy| ≤ ρ. Further, since (P6(x, y, j)) is true we
know that there exist p4 ≤ p6 on sjsj+1 such that |p4 − qx| ≤ ρ and |p6 − qy| ≤ ρ. Now
set p̃1 = max{min{ql + ρ, p4}, qi − ρ} and p̃2 = max{min{ql + ρ, p6}, qi − ρ}. It holds that
p̃1, p̃2 ∈ [qi − ρ, ql + ρ] and p̃1 ≤ p̃2. Further, since (qi − ρ) − qx ≤ ρ and qx − (ql + ρ) ≤ ρ it
holds that |p̃1 − qx| ≤ ρ. Similarly, |p̃2 − qy| ≤ ρ. This contradicts the assumption. Hence,
dF(⟨qi, . . . , ql⟩, ⟨qi − ρ, ql + ρ⟩) ≤ ρ and ⟨qi − ρ, ql + ρ⟩ is a forward edge. So, fi(q) ≥ l.

To prove the other direction, assume fi(q) ≥ l and (P4(x, j)) is true for all i ≤ x ≤ l.
Therefore, by Observation 13, it holds that dF(⟨qi, . . . , ql⟩, ⟨qi − ρ, ql + ρ⟩) ≤ ρ and qi − ρ ≤
ql + ρ. Let i ≤ x < y ≤ l. Then, there exists points px < py on the edge qi − ρ, ql + ρ

such that |px − qx| ≤ ρ, |py − qy| ≤ ρ. Further, there exists points p1, p2 ∈ [sj , sj+1]
such that |p1 − qx| ≤ ρ, |p2 − qy| ≤ ρ by the properties of predicate (P4). We define
p4 = min{max{sj , px}, sj+1} and p6 = min{max{sj , py}, sj+1}. It follows that p4 ≤ p6 and
p4, p6 ∈ sjsj+1. Furthermore, if p4 = sj , then px ≤ sj ≤ p1, resulting in |sj − qx| ≤ ρ. If
p4 = sj+1 then p1 ≤ sj+1 ≤ px and |sj+1 − qx| ≤ ρ. Therefore, |p4 − qx| ≤ ρ. Similarly, it
follows that |p6 − qy| ≤ ρ. The points p4, p6 fulfill the conditions of the definition of the
monotone in s predicate (P6(x, y, j)), i.e., (P6(x, y, j) is true. ◀

Observation 10 and Lemma 11 and 14 show how we can determine whether a valid
sequence of cells is feasible in Fρ(q, s) using intervals defined by s and ρ for the vertices of q

and the forward and backward numbers fi(q) and bi(q).

7 Data Structure

In this section, we present two data structures solving the Fréchet queries problem. We start
with some assumptions, that can be made for the time series. Let s = ⟨s1, . . . , st⟩ be a time
series. Then, we assume that either s2j−1 ≤ s2j ≥ s2j+1 for all j = 2, . . . , ⌊t/2⌋ (M-shaped),
or s2j−1 ≥ s2j ≤ s2j+1 for all j = 2, . . . , ⌊t/2⌋ (W-shaped), because if s2j−1 ≤ s2j ≤ s2j+1 or
s2j−1 ≥ s2j ≥ s2j+1, s has the same shape as ⟨s1, . . . , s2j−1, s2j+1, . . . , st⟩. Moreover, we
can assume that the complexity of all time series in S is exactly ts by simply adding dummy
vertices in the end otherwise, since the value of two consecutive vertices can also be equal.
In Figure 6, the time series q is W-shaped.

SWAT 2024

15:12 Range Reporting for Time Series via Rectangle Stabbing

The query algorithm iterates over all valid sequences of cells C. By Lemma 9, C is feasible
in the free space diagram Fρ(q, s) if and only if the predicates induced by C are true. The
truth assignment of all needed predicates (P1), (P2), (P3), (P4) and (P5) can be determined
using intervals defined by s and ρ. Furthermore, C can only be feasible in Fρ(q, s) if for all
(i − 1, j), (l, j) ∈ C with i ≤ l, the monotone in s predicate (P6(i, l, j)) is true. By Lemma 9,
we can use the forward number fi(q) in the case that sj ≤ sj+1 (i.e., j is odd if s is M-shaped)
to determine whether (P6(i, l, j)) is true. We define the forward number fi(C) as the highest
such number l that is needed for C to be feasible in Fρ(q, s). Respectively, if sj ≥ sj+1 (i.e., j

is even if s is M-shaped) for bi(q) and we define the backward number bi(C). Formally, we get

fi(C) =
{

l ≥ i, if ∃ (i − 1, j), (l, j) ∈ C s.t. j is odd and (l + 1, j) /∈ C,

i, otherwise

and

bi(C) =
{

l ≥ i, if ∃ (i − 1, j), (l, j) ∈ C s.t. j is even and (l + 1, j) /∈ C,

i, otherwise.

As C is valid there exists a unique j such that (i − 1, j), (i, j), . . . , (l, j) ∈ C. Hence, the
numbers fi(C) and bi(C) are well-defined. Note that we do not need f1(C), b1(C), ftq

(C) and
btq

(C) because we never consider (P6(1, l, j)) and (P6(tq, l, j).

The Data structure. Let SM be the set of stored time series that are M-shaped and SW

the set of those that are W-shaped. We will describe how SM is stored. The time series in
SW are stored in the same way after they were mirrored at the origin. Consequently, for
those the query algorithm mirrors the query time series q at the origin and is then the same
as for the time series in SM .

For all valid sequences of cells C, we build two associated rectangle stabbing data structures
storing the time series in SM as tq-dimensional axis-aligned rectangles. One for the case
that the query time series q is M-shaped and the other one for the case that q is W-shaped.
Knowing the shape of q, Observation 10 and Lemma 11 define for every s ∈ SM an interval
for every vertex qi of the query time series in which it must lie such that C can be feasible
in Fρ(q, s). For a time series s, we store the Cartesian product of those tq intervals in the
associated rectangle stabbing data structure. Note that even if the complexity of the stored
time series is greater than tq, we store only a tq-dimensional rectangle for it.

The Query Algorithm. Let q be a query time series of complexity tq. The query algorithm
starts with computing the numbers f1(q), . . . , ftq

(q), b1(q), . . . , btq
(q). For all valid sequences

of cells C, we check whether fi(C) ≤ fi(q) and bi(C) ≤ bi(q) for all i. If so, we do a query
search in the rectangle stabbing data structure depending on C and the shape of q with the
point (q1, q2, . . . , qtq

) and output all time series associated with a rectangle containing this
point.

▶ Theorem 15. The Fréchet queries problem for constant tq ≥ 2 and ts can be solved with a
data structure of size SR(n, tq) using QR(n, tq) + O(k) query time, where k is the size of the
output (without duplicates) and SR(n, tq) denotes the size and QR(n, tq) the query time of a
rectangle stabbing data structure that stores n rectangles of dimension tq. In particular, there
exists a data structure of size in O(n logtq−2 n) and query time in O(logtq−1 n + k) using the
rectangle stabbing data structure by Afshani, Arge and Larsen [1].

L. Blank and A. Driemel 15:13

Proof. For SM , two rectangle stabbing data structures are stored for every valid sequence
of cells C. In each, there are stored at most n axis-aligned rectangles of dimension tq. In a
valid sequence of cells, every step is either (i, j), (i, j + 1) (right) or (i, j), (i + 1, j) (upwards)
and the first cell is (1, 1) and the last is (tq − 1, ts − 1). Therefore, a valid sequence of cells
consists of tq + ts − 4 steps and tq − 2 upwards steps. Hence, the number of valid sequence of
cells is

(
tq+ts−4

tq−2
)
. Since tq and ts are considered constant, this is a constant, which completes

the proof of the claimed size of the data structure.1
Computing the numbers f1(q), . . . , ftq (q), b1(q), . . . , btq (q) can be done in O(tq

3 log tq)
time by simply computing all distances dF (⟨qi, . . . , qk⟩, ⟨qi − ρ, qk + ρ⟩) and dF (⟨qi, . . . , qk⟩,
⟨qi + ρ, qk − ρ⟩). Each computation takes time in O(tq log tq) by Alt and Godau [4]. The
query time follows by the fact that for all valid sequences of cells C we perform at most one
query search in an associated rectangle stabbing data structure.

By Observation 10, Lemma 9, 11, and 14, a sequence of cells C is feasible in Fρ(q, s) for
an M-shaped time series s ∈ S if and only if all vertices of q lie in the intervals defined by the
induced predicates of C depending on s and Observation 10 and Lemma 11, and fi(q) ≥ fi(C)
and bi(q) ≥ bi(C) for all i ∈ {2, . . . , tq − 1}. Therefore, the correctness follows by the fact
that we iterated over all valid sequences of cells and by Lemma 8. ◀

The output in Theorem 15 may contain a constant fraction of duplicates. As such it
cannot be easily used for range counting. To remove duplicates, one can use standard
techniques, such as hashing.

Using an orthogonal range searching data structure it is possible to store the time series
as ts-dimensional points and the query time series defines then ts-dimensional axis-aligned
rectangles.

▶ Corollary 16. The Fréchet queries problem for constant tq and ts > 2 can be solved with
a data structure of size S(n, ts) using Q(n, ts) + O(k) query time, where k is the size of
the output (without duplicates) and S(n, ts) denotes the size and Q(n, ts) the query time
of an orthogonal range searching data structure that stores n points in dimension ts. In
particular, there exists a data structure of size in O

(
n(log n/ log log n)ts−1)

and query time
in O(log n(log n/ log log n)ts−3 + k).

Proof. We use a similar idea as in the proof of Theorem 15 with the difference that the time
series in S are stored as ts-dimensional points and the query time series defines ts-dimensional
axis-aligned rectangles. We build two data structures one for M-shaped query time series
and one for W-shaped time series. We describe only the one for the M-shaped case here.
The other one is build symmetrically. Note that in the following we exchange the role of
q and s and consider Fρ(s, q) instead of Fρ(q, s). For every valid sequence of cells C in
Fρ(s, q), we build an orthogonal range searching data structures storing the time series s

where fj(s) ≥ fj(C) and bj(s) ≥ bj(C) for all j. The query algorithm computes for all
valid sequences of cells C a rectangle R(C) such that C is feasible in Fρ(s, q) if and only if
(s1, . . . , sts

) ∈ R(C) and s is stored in the data structure defined by C. The rectangle can be
computed with Observation 10 and Lemma 11. The correctness follows by Observation 10
and Lemma 9, 11 and 14. The bounds for the size and query time follow in the same way as
in Theorem 15 and by using the orthogonal range searching data structure by Afshani, Arge
and Larsen [1]. ◀

1 In more detail, if ts ≥ tq it holds that
(

tq+ts−4
tq−2

)
≤

(2ts

tq

)
≤

(
2ets

tq

)tq

by Stirling’s approximation of the
factorial function.

SWAT 2024

15:14 Range Reporting for Time Series via Rectangle Stabbing

8 Conclusions

We believe that with some modifications it is possible to solve the Fréchet queries problem also
for the case where the complexity of the query time series is not given at preprocessing time
within the same bounds. Further, we believe that using the orthogonal intersection searching
data structure by Edelsbrunner and Maurer [12], it is possible to build a data structure of
size in O(n logtq n) and query time in O(logtq−1 n) for the Fréchet queries problem where
the distance threshold is not given at preprocessing time.

References
1 P. Afshani, L. Arge, and K.G. Larsen. Higher-dimensional orthogonal range reporting and

rectangle stabbing in the pointer machine model. In Proceedings of the 2012 Symposuim on
Computational Geometry, pages 323–338, 2012. doi:10.1145/2261250.2261299.

2 P. Afshani and A. Driemel. On the complexity of range searching among curves. In Proceedings
of the 2018 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 898–917,
2018. doi:10.1137/1.9781611975031.58.

3 H. Alt. The computational geometry of comparing shapes. In Efficient Algorithms: Essays
Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday, pages 235–248. Springer
Berlin Heidelberg, 2009. doi:10.1007/978-3-642-03456-5_16.

4 H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves.
International Journal of Computational Geometry and Applications, 5(01& 02):75–91, 1995.
doi:10.1142/S0218195995000064.

5 K. Bringmann, A. Driemel, A. Nusser, and I. Psarros. Tight bounds for approximate near
neighbor searching for time series under the Fréchet distance. In Proceedings of the 2022
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 517–550, 2022. doi:
10.1137/1.9781611977073.25.

6 B. Chazelle. Filtering search: a new approach to query-answering. SIAM Journal on Computing,
15(03):703–724, 1986. doi:10.1137/0215051.

7 B. Chazelle. Lower bounds for orthogonal range searching: I. the reporting case. Journal of
the ACM, 37(02):200–212, 1990. doi:10.1145/77600.77614.

8 Siu-Wing Cheng and Haoqiang Huang. Solving Fréchet distance problems by algebraic
geometric methods. ArXiv, abs/2308.14569, 2023. doi:10.48550/arXiv.2308.14569.

9 Mark de Berg, Atlas F. Cook, and Joachim Gudmundsson. Fast Fréchet queries. Computational
Geometry, 46(6):747–755, 2013. doi:10.1016/j.comgeo.2012.11.006.

10 A. Driemel and I. Psarros. ANN for time series under the Fréchet distance. In Algorithms
and Data Structures, pages 315–328, 2021. doi:10.1007/978-3-030-83508-8_23.

11 A. Driemel and F. Silvestri. Locality-sensitive hashing of curves. In 33rd International
Symposium on Computational Geometry, volume 77, pages 37:1–37:16, 2017. doi:10.4230/
LIPIcs.SoCG.2017.37.

12 H. Edelsbrunner and H.A. Maurer. On the intersection of orthogonal objects. Information
Processing Letters, 13(04):177–181, 1981. doi:10.1016/0020-0190(81)90053-3.

13 A. Filtser, O. Filtser, and M.J. Katz. Approximate nearest neighbor for curves: simple,
efficient, and deterministic. Algorithmica, 2022. doi:10.1007/s00453-022-01080-1.

14 M. Jiang and B. Zhu Y. Xu. Protein structure-structure alignment with discrete Fréchet
distance. Journal of Bioinformatics and Computational Biology, 06(01):51–64, 2008. doi:
10.1142/s0219720008003278.

15 W. Meulemans. Similarity measures and algorithms for cartographic schematization. PhD
thesis, Technische Universiteit Eindhoven, 2014. doi:10.6100/IR777493.

16 E. Sriraghavendra, K. Karthik, and C. Bhattacharyya. Fréchet distance based approach for
searching online handwritten documents. In Ninth International Conference on Document
Analysis and Recognition (ICDAR 2007), volume 1, pages 461–465, 2007. doi:10.1109/ICDAR.
2007.4378752.

https://doi.org/10.1145/2261250.2261299
https://doi.org/10.1137/1.9781611975031.58
https://doi.org/10.1007/978-3-642-03456-5_16
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1137/1.9781611977073.25
https://doi.org/10.1137/1.9781611977073.25
https://doi.org/10.1137/0215051
https://doi.org/10.1145/77600.77614
https://doi.org/10.48550/arXiv.2308.14569
https://doi.org/10.1016/j.comgeo.2012.11.006
https://doi.org/10.1007/978-3-030-83508-8_23
https://doi.org/10.4230/LIPIcs.SoCG.2017.37
https://doi.org/10.4230/LIPIcs.SoCG.2017.37
https://doi.org/10.1016/0020-0190(81)90053-3
https://doi.org/10.1007/s00453-022-01080-1
https://doi.org/10.1142/s0219720008003278
https://doi.org/10.1142/s0219720008003278
https://doi.org/10.6100/IR777493
https://doi.org/10.1109/ICDAR.2007.4378752
https://doi.org/10.1109/ICDAR.2007.4378752

L. Blank and A. Driemel 15:15

17 K. Toohey and M. Duckham. Trajectory similarity measures. SIGSPATIAL Special, 7(1):43–50,
2015. doi:10.1145/2782759.2782767.

18 C. Wenk, R. Salas, and D. Pfoser. Addressing the need for map-matching speed: localizing
global curve-matching algorithms. In 18th International Conference on Scientific and Statistical
Database Management (SSDBM’06), pages 379–388, 2006. doi:10.1109/SSDBM.2006.11.

19 T. Wylie and B. Zhu. Protein chain pair simplification under the discrete Fréchet distance.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10(6):1372–1383,
2013. doi:10.1109/TCBB.2013.17.

20 Y. Zhu, J. Peng, H. Liu, and Z. Lan. Chapter 26 – Analysis of nonadiabatic molecular
dynamics trajectories. In Quantum Chemistry in the Age of Machine Learning, pages 619–651.
Elsevier, 2023. doi:10.1016/B978-0-323-90049-2.00013-5.

SWAT 2024

https://doi.org/10.1145/2782759.2782767
https://doi.org/10.1109/SSDBM.2006.11
https://doi.org/10.1109/TCBB.2013.17
https://doi.org/10.1016/B978-0-323-90049-2.00013-5

On the Online Weighted Non-Crossing Matching
Problem
Joan Boyar #

Department of Mathematics and Computer Science, University of Southern Denmark,
Odense, Denmark

Shahin Kamali #

Department of Electrical Engineering and Computer Science, York University, Toronto, Canada

Kim S. Larsen #

Department of Mathematics and Computer Science, University of Southern Denmark,
Odense, Denmark

Ali Mohammad Lavasani1 #

Department of CSSE, Concordia University, Montreal, Canada

Yaqiao Li #

Department of CSSE, Concordia University, Montreal, Canada

Denis Pankratov #

Department of CSSE, Concordia University, Montreal, Canada

Abstract
We introduce and study the weighted version of an online matching problem in the Euclidean plane
with non-crossing constraints: 2n points with non-negative weights arrive online, and an algorithm
can match an arriving point to one of the unmatched previously arrived points. In the vanilla model,
the decision on how to match (if at all) a newly arriving point is irrevocable. The goal is to maximize
the total weight of matched points under the constraint that straight-line segments corresponding to
the edges of the matching do not intersect. The unweighted version of the problem was introduced
in the offline setting by Atallah in 1985, and this problem became a subject of study in the online
setting with and without advice in several recent papers.

We observe that deterministic online algorithms cannot guarantee a non-trivial competitive ratio
for the weighted problem. We study various regimes of the problem which permit non-trivial online
algorithms. In particular, when weights are restricted to the interval [1, U] we give a deterministic
algorithm achieving competitive ratio Ω

(
2−2

√
log U

)
. We also prove that deterministic online

algorithms cannot achieve competitive ratio better than O
(

2−
√

log U
)

. Interestingly, we establish
that randomization alone suffices to achieve competitive ratio 1/3 even when there are no restrictions
on the weights. Additionally, if one allows an online algorithm to revoke acceptances, then one
can achieve a competitive ratio ≈ 0.2862 deterministically for arbitrary weights. We also establish
a lower bound on the competitive ratio of randomized algorithms in the unweighted setting, and
improve the best-known bound on advice complexity to achieve a perfect matching.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online algorithms, weighted matching problem, Euclidean plane, non-crossing
constraints, competitive analysis, randomized online algorithms, online algorithms with advice, online
algorithms with revoking

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.16

Funding The first and third authors were supported in part by the Independent Research Fund
Denmark, Natural Sciences, grant DFF-0135-00018B. Other authors were supported by NSERC
Canada.

Acknowledgements The authors thank the anonymous referees for their valuable suggestions.

1 Corresponding author

© Joan Boyar, Shahin Kamali, Kim S. Larsen, Ali Mohammad Lavasani, Yaqiao Li,
and Denis Pankratov;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 16; pp. 16:1–16:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joan@imada.sdu.dk
mailto:kamalis@yorku.ca
mailto:kslarsen@imada.sdu.dk
mailto:ali.mohammadlavasani@concordia.ca
mailto:yaqiao.li@concordia.ca
mailto:denis.pankratov@concordia.ca
https://doi.org/10.4230/LIPIcs.SWAT.2024.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 On the Online Weighted Non-Crossing Matching Problem

1 Introduction

We introduce and study the following problem, which we call Online Weighted Non-Crossing
Matching (OWNM). Suppose 2n points p1, . . . , p2n in Euclidean plane arrive online one-
by-one. When pi arrives, its positive weight w(pi) ∈ R>0 is revealed and an algorithm has
an option of matching pi to one of the unmatched previously revealed points, or leave pi

unmatched. In the vanilla online model, the decisions of the algorithm are irrevocable. There
is a non-crossing constraint, which requires that the straight-line segments corresponding to
the edges of the matching do not intersect. Assuming that the points are in general position,
the goal is to design an algorithm that maximizes the weight of matched points.

The interest in geometric settings, particularly the Euclidean plane setting, for the match-
ing problem stems from applications in image processing [14] and circuit board design [20].
In such applications, one is often required to construct a matching between various geometric
shapes, such as rectangles or circles, representing vertices, using straight-line segments or,
more generally, curves. Geometry enters the picture due to constraints on the edges, such as
avoiding intersections among the edges, as well as avoiding edge-vertex intersections. These
constraints can have a significant impact on the offline complexity of the problem, often
resulting in variants of problem that are NP-hard (see the survey by Kano and Urrutia [22]).

The unweighted version of the Non-Crossing Matching problem (i.e., when w(pi) = 1
for all i ∈ {1, . . . , 2n}) has been studied both in the offline setting ([8, 19]) and the online
setting ([11, 31, 21, 25]). We go over the history of the problem in detail in Section 2. For
now, it suffices to observe that an offline algorithm that knows the locations of all the points
in advance can match all the points while satisfying the non-crossing constraint. Thus, the
value of offline OPT is always W :=

∑2n
i=1 w(pi). Performance of an online algorithm is

measured by its competitive ratio, which for our problem corresponds to the fraction of W

that the algorithm can guarantee to achieve in the worst-case.
It is relatively easy to see that when there are no restrictions on the weights of points,

no deterministic online algorithm can guarantee a non-trivial competitive ratio bounded
away from 0 (in particular, this is an immediate corollary of Theorem 1). We study different
regimes under which the problem admits algorithms achieving non-trivial competitive ratios.
Our results can be summarized as follows:

In the Restricted OWNM, we assume that the weights of points are restricted to lie in the
interval [L, U] for some L ≤ U ∈ R>0 that are known to the algorithm at the beginning
of the execution. Note that by scaling, we can assume that L = 1; thus, without loss of
generality, we assume that all the weights are in the interval [1, U] in Restricted OWNM.
We show that the competitive ratio of any deterministic online algorithm is O

(
2−
√

log U
)

(Theorem 1). We also present a deterministic online algorithm, Wait-and-Match (Wam),
which has competitive ratio Ω

(
2−2
√

log U
)

(Theorem 5).
We show, perhaps surprisingly, that randomization alone is enough to guarantee a
constant competitive ratio for arbitrary weights. We present a simple randomized online
algorithm, called Tree-Guided-Matching (Tgm), and prove that it has competitive ratio
1/3 (Theorem 7). We supplement this result by showing that no randomized online
algorithm can achieve a competitive ratio better than 16/17, even for the unweighted
version of the problem (Theorem 6).2

2 Sajadpour [31] gave a proof that no randomized algorithm can achieve a competitive ratio better than
0.9262, which is stronger than our result 16/17 ≈ 0.9411. However, their argument has not been
peer-reviewed at the time of this paper. Moreover, our argument is much simpler and shorter.

J. Boyar, S. Kamali, K. S. Larsen, A. M. Lavasani, Y. Li, and D. Pankratov 16:3

We show that allowing revocable acceptances (see beginning of Section 6 for the definition
of the model) permits one to obtain competitive ratio ≈ 0.2862 by a deterministic algorithm
even when the weights of points are unrestricted (Theorem 10). We supplement this
result by showing that no deterministic algorithm with revoking can achieve competitive
ratio better than 2/3 (Theorem 8).
Lastly, we present a new algorithm, called Split-And-Match (Sam), that uses ⌈log Cn⌉ <

2n bits of advice (see beginning of Section 7 for the definition of the model) to achieve
optimality (Theorem 12), where Cn is the nth Catalan number. This improves upon the
previously known bound of 3n on the advice complexity of the problem [25]. Since Sam
achieves a perfect matching, it does not matter whether the given points are weighted or
not.

2 Related Work

Given 2n points in R2 in general position, the basic non-crossing matching (NM) problem is
to find a non-crossing matching with the largest possible number of edges. Observe that the
minimum-length Euclidean matching is non-crossing, hence a perfect NM always exists. The
NM problem and its variants have been extensively studied in the offline setting. Hershberger
and Suri [19] gave an algorithm that finds a perfect NM in time Θ(n log n). Atallah [8],
and Dumitrescu and Steiger [15] gave efficient algorithms for the bichromatic version of the
problem, where the points are divided into two subsets, and matching edges can only be
formed between the two subsets. Other versions of the problem considered in the research
literature include requiring the NM to be stable [30, 18], requiring two NMs to be compatible
(edges in two NMs are also non-crossing, only sharing endpoints) [2], and requiring compatible
NMs to satisfy certain diversity constraint [24].

Several studies considered optimization problems over all NMs. The objective functions
include maximizing the sum of the Euclidean length of matching edges [5], minimizing the
length of the longest matching edge [1], and other similar combinations of min and max [23].

Another line of research is to relax the non-crossing constraint and allow certain crossings.
An important problem is to understand the size of a crossing family, that is, matching edges
that are pairwise crossing. A recent breakthrough by Pach et al. [26] showed that the
largest crossing family has linear size. Aichholzer et al. [4] studied the counting problem of
k-crossing matchings.

At least two works [10, 32] considered weighted NM on n points, where every point has
weight in {1, 2, . . . , n}. Balogh et al. [10] considered the weight of an edge to be the sum
of the weights of the two endpoints modulo n, and studied the typical size of NM with
distinct edge weights (this is called non-crossing harmonic matching). Sakai and Urrutia [32]
considered the weight of an edge to be the minimum weight of the two endpoints, and they
studied the lower and upper bounds of the maximum weighted NM.

In pure mathematics, NM has been studied as a tool to understand the representation
theory of groups [7, 27]. A tuple of NMs (so-called a necklace) satisfying a specific property
is used to study the topology of harmonic algebraic curves associated with a polynomial over
C [33]. Extremal graph problems where NM of size k plays the role of a forbidden subgraph
are studied in [3, 17].

Besides the application in image processing and circuit design, as mentioned in the Intro-
duction, NM has also found other applications. One major application is in computational
biology. A restricted version of NM (e.g., points all on a circle), and k-non-crossing matching
(no k edges pairwise intersecting, which reduces to the standard NM when k = 2) have
been studied to understand RNA structures [9, 13, 34]. In applications that are related to

SWAT 2024

16:4 On the Online Weighted Non-Crossing Matching Problem

visibility problems (such as in robotics) and geometric shape matching, one replaces all or a
subset of points in question by geometric objects [28, 6]. For example, when the question is
to match objects to objects, then an edge (p, q) between two objects A and B can be formed
by choosing arbitrary points p from A and q from B, conditioned on that the edge (p, q)
does not cross other objects.

The online NM has only been studied very recently. Bose et al. [11] initiated the study of
online (unweighted) NM and showed that the competitive ratio of deterministic algorithms is
2/3, while Kamali et al. [21] gave a randomized algorithm that matches in expectation about
0.6695 fraction of all points. The online bichromatic NM has also been studied in [11, 31].
Finally, the advice complexity was studied in [11, 25]. In particular, Lavasani and Pankratov
[25] resolved the advice complexity of solving online bichromatic NM optimally on a circle
and gave a lower bound of n/3− 1 and an upper bound of 3n on the advice complexity of
online NM on a plane.

3 Preliminaries

The input to the matching problems considered in this work is an online sequence I =
(p1, . . . , p2n) of points in general position, where pi has a positive real-valued weight w(pi) ∈
R>0. We use W to denote the total weight of all the points, i.e., W =

∑2n
i=1 w(pi). For the

Restricted OWNM, the weights are assumed to lie in the interval [1, U] for some known
value of U , which is considered to be a hyper-parameter, and not part of the input. Upon
the arrival of pi, an online algorithm must either leave it unmatched or match it with an
unmatched point pj (j < i), in which case the line segment between pi and pj , denoted by
pipj , must not cross the line segments between previously matched pairs of points. The
objective is to maximize the total weight of matched points. For an online algorithm ALG
(respectively, offline optimal algorithm OPT), we use ALG(I) (respectively, OPT(I)) to
denote the total weight of points matched by the algorithm on input I. By abuse of notation,
the symbol pq is also used to denote the full line passing through the two points p and q,
dividing a convex region into two sub-regions.

We say that a deterministic online algorithm ALG is ρ-competitive if there exists a
constant c such that for every input sequence I we have

ALG(I) ≥ ρ ·OPT(I)− c.

For a randomized ALG the above inequality is replaced by the following

E(ALG(I)) ≥ ρ ·OPT(I)− c.

If c = 0 then we call the competitive ratio ρ strict, and we say that ALG is strictly ρ-
competitive. If c ≠ 0 then, for emphasis, we shall sometimes say that the competitive ratio
is asymptotic. Note that for the Restricted OWNM, we allow c to depend on the hyper-
parameter U when considering asymptotic competitiveness. Thus, an algorithm achieving
asymptotic competitive ratio ρ is allowed to leave a constant number of points unmatched
(regardless of their weights) beyond the (1− ρ)-fraction of W .

4 Deterministic Algorithms for Restricted OWNM

4.1 Point Classification
In both lower and upper-bound arguments, we use a point classification, based on parameters,
k ∈ N and U ∈ R, which we explain here. Let k = ⌈

√
log U⌉, and define values of a0, a1, . . . , ak

so that

a0 = 1, ak = U, r = a1/a0 = a2/a1 = . . . = ak/ak−1,

J. Boyar, S. Kamali, K. S. Larsen, A. M. Lavasani, Y. Li, and D. Pankratov 16:5

which implies that r = U1/k and ai = ri. For a given value w ∈ [1, U], define TwU as the
largest ai such that ai ≤ w. In what follows, a point with weight w is said to have type i

if TwU = ai. Thus, there are k + 1 distinct types, with type k containing only the value U .
The type of a line segment between two matched points x and y is defined by the type of the
end-point with larger weight, that is, xy has type i if one of its endpoints has type i and the
other endpoint has type at most i.

4.2 Negative Result
▶ Theorem 1. For a sufficiently large value of U , the asymptotic competitive ratio of any
deterministic online algorithm for the Restricted OWNM problem is O

(
2−
√

log U
)

.

Proof. Let ALG be any online deterministic algorithm. We use an adversarial argument.
The adversary sends all points on a circle C, so any match the algorithm makes creates a
chord in the circle, dividing a previous region into two. At any point in time, the adversary
sends a point in an active region of C, which is formed by one or two arcs, the segments of
the circle bounded by two consecutive points, in the boundary of C. Initially, the entire circle
forms the active region. The adversary’s strategy is to maintain a mapping from unmatched
points to matched points to ensure the ratio between the total weight of matched points and
unmatched points is O

(
2−
√

log U
)

. Note that this implies the ratio between the total weight

of matched points and all points is also O
(

2−
√

log U
)

.
The adversary starts the input with an arbitrarily large number, m (this is required

to guarantee that our bound is asymptotic). The adversary puts points of weight 1 in
arbitrary positions on the circle until either the algorithm matches m pairs of points or
it reaches m2k points on the circle. In the latter case, the competitive ratio is at most
O(2−k) = O(2−

√
log U).

Therefore, we may assume that ALG eventually matches m pairs of points, creating
non-intersecting chords, and m + 1 regions. Now, make each matched pair responsible for a
distinct region created, though with the first matched pair being responsible for two regions,
initially the first two regions. Suppose a new chord xy divides region R into two. Let
{xR, yR} be the responsible pair for R, R1 be the side of R that has xRyR on its boundary
and R2 be the other side. Leave {xR, yR} responsible for R1 and make {x, y} responsible for
R2. This ensures that each matched pair is responsible for at least one region.

For each region R, the adversary makes R the active region, runs the following procedure
and continues with the next region until it covers all the regions. Let {xR, yR} be the
responsible pair of points for R. Consider the following two cases, depending on the number
of unmatched points in R:

Case 1. If the number of unmatched points in R is ≥ 2k − 1, the adversary does not send
any point in R and continues to the next region. In this case, we map the unmatched points
in R to the matched pair {xR, yR}. Note that 2k − 1 points of weight 1 are mapped to a
segment of total weight 2. The ratio between the weight of matched points to the unmatched
points will be ≤ 2/(2k − 1) ∈ O

(
2−
√

log U
)

.

Case 2. If the number of unmatched points in R is < 2k − 1, the adversary plans to send a
sequence of points, P = (p1, p2, . . . , pk), with weights a1, a2, . . . , ak (respectively), one point
from each weight, in the ascending order of their weights, in the following manner, (see
Fig. 1). The point p1 of weight a1 appears in an arbitrary position in R (on the circle). Upon

SWAT 2024

16:6 On the Online Weighted Non-Crossing Matching Problem

xR1

yR1

p1

p2

p3 R1

R2

Figure 1 An illustration of the adversary’s strategy for k = 3. The two arcs form the active
region. Black points have weight 1. Suppose in the first phase ALG matched xR1 and yR1 , which
became responsible for R1 region. Note that the number of unmatched points (of weight 1) in
R1 is 6, which is less than 2k − 1 = 7. Thus, in the second phase, the adversary plans to send
points p1, p2, p3 of weights a1, a2, a3 in R1. Suppose ALG matches the point of weight a1; then the
adversary sends p2, p3 below the line segment between the matched pair (there are fewer unmatched
points there). Similarly, after the point p2 of weight a2 is matched, the adversary sends p3 to the
side of the resulting segment with no unmatched points. This ensures that some point of weight ai

(here a3) stays unmatched and is mapped to the matched pairs.

the arrival of a point pi with weight ai (i ∈ {1, . . . , k}), either ALG matches it with a point
of weight 1 or leaves it unmatched. In the latter case, the adversary does not send more
points in R and continues with the next region.

In the former case, when ALG matches a point pi of weight ai with a point q of weight
1, make the side of piq that contains at most half of the unmatched points, the active region.
The adversary continues putting the remaining points of P in the active region. Thus the
unmatched points on the opposite side of piq stay unmatched, since piq is between the new
point and those unmatched points.

Therefore, after matching pi and q, the number of unmatched points of weight 1 that can
match with future points in P decreases by a factor of at least 2. Let pj be the first point in
P that the algorithm leaves unmatched. Given that the adversary can send up to k points,
and there are initially less than 2k − 1 unmatched points in R, there exists such pj of weight
aj . At this point, the adversary ends the procedure for R and continues with the next region.

The total weight of points in matched pairs in R before the arrival of pj is:

M = 2︸︷︷︸
for(xR,yR)

+ j − 1︸ ︷︷ ︸
endpoints of weight 1

+ a1 + a2 + . . . + aj−1︸ ︷︷ ︸
endpoints with weight ai

≤ 2aj − 1
r − 1 .

Given that the unmatched point pj is of weight aj , the ratio between the weight of matched
points and unmatched points is at most M/aj ∈ O(1/r) = O

(
2−
√

log U
)

.
Given that each matched pair is responsible for at least one region, the above procedure

creates a mapping of matched points to unmatched points with a weight ratio of O(2−
√

log U)
in all cases, as desired. This finishes the proof. ◀

4.3 Positive Result: The Wait-and-Match Algorithm
We propose an algorithm called “Wait-and-Match” (Wam). Assume the points appear in a
bounding box B. Throughout its execution, Wam maintains a “convex partitioning” of B.
Initially, there is only one region formed by the entire B. As we will describe, the algorithm

J. Boyar, S. Kamali, K. S. Larsen, A. M. Lavasani, Y. Li, and D. Pankratov 16:7

(
−∞, 1

)

(
−∞, 0

)

[
1,
√

U
]

[
3,
√

U
]

[
8, 1

]

[
4,
√

U
]

[
2,
√

U
]

[
6, 1

]

[
7,
√

U
]

[
5,
√

U
]

Figure 2 An illustration of the mapping used to analyze Wam. In this example, we have k = 2 and
8 points with weights in {1,

√
U, U}. Here, [t, w] indicates the tth point in the input sequence having

weight w. Note that points 1 and 3 are mapped to the segment corresponding to the imaginary
points (−∞, 0) and (−∞, 1) of weight U .

matches two points only if they appear in the same convex region. Whenever two points in a
convex region R are matched, the line segment between them is extended until it hits the
boundary of R, which results in partitioning R into two smaller convex regions. We use the
same point classification as defined in Section 4.1.

Suppose a new point p appears, and let R denote the convex region of p. In deciding
which point to match p to (if any), the algorithm considers all unmatched points in R in the
non-increasing order of their weights. Let q be the next point being considered, and let i be
the maximum of the type of p and the type of q. The algorithm matches p with q if there
are at least 2k−i − 1 unmatched points on each side of pq. If all points in R are examined,
and no suitable q exists, p is left unmatched.

Example. Suppose k = 2. Then a0 = 1, a1 =
√

U, and a2 = U . Let p be a point with weight
1. Upon the arrival of a point p, the algorithm matches p with any point q of weight U when
there are at least 22−2 − 1 = 0 points on each side of pq. That is, if there is an unmatched
point of weight U in the region, the algorithm would match p to it unconditionally. Similarly,
if there are no unmatched points of weight U in the region, the algorithm tries to match p

with any point q of weight [a1 =
√

U, a2 = U) provided there is at least 22−1 − 1 = 1 point
on each side of pq. Finally, if previous scenarios do not occur, the algorithm tries to match
p with any point q of weight [a0 = 1, a1 =

√
U) provided there are at least 22−0 − 1 = 3

unmatched points on each side of pq. This will happen if there were at least 7 unmatched
points in the region.

To analyze the algorithm, we match each unmatched point into a matched pair. For
the sake of analysis, we introduce two “imaginary” points (−∞, 0) and (−∞, 1) of weight U

and treat them as if they were matched before the input sequence is revealed. Suppose a
new point, p, arrives in a region R that is not matched. In this case, we map p to the most
recent segment that forms a boundary of the region R. See Figure 2 for an illustration of
this mapping.

▶ Lemma 2. Every point of type i is mapped to a segment of type j ≥ i.

Proof. For the sake of contradiction, suppose a point p with type i arrives in the region R

and gets mapped to pR, qR of type ≤ i− 1.

SWAT 2024

16:8 On the Online Weighted Non-Crossing Matching Problem

Without loss of generality, assume pR arrived after qR. By the definition of the algorithm,
at the time pR appeared, there were at least 2k−i+1−1 unmatched points in R (otherwise, pR

would not have been matched with qR). These unmatched points are still unmatched when p

appeared (otherwise, R should have been partitioned, and p should have been mapped to
some other segment). Thus, when p appeared, the algorithm could match it with the point
that bisects these unmatched points, and there would be at least (2k−i+1 − 2)/2 = 2k−i − 1
points on each side of the resulting line segment. This contradicts the fact that the algorithm
left p unmatched. ◀

▶ Lemma 3. Let s be any line segment between two matched points. For any i, at most
2k−i+2 − 2 unmatched points of type i are mapped to s.

Proof. For the sake of contradiction, assume at least 2k−i+2−1 points of type i are mapped to
s. Then, there must be at least ⌈(2k−i+2−1)/2⌉ = 2k−i+1 points of type i in a convex region R

formed by extending s. At the time the last of these points, say p, arrives, it could be matched
to the point q that bisects the other points; there will be at least (2k−i+1 − 2)/2 = 2k−i − 1
points on each side of pq. Since pq is of type i, the algorithm must have matched p with q,
which contradicts the fact that p and q are unmatched and mapped to s. ◀

▶ Lemma 4. Assuming U is sufficiently large, the total weight of unmatched points mapped
to a segment of type j is at most aj+12k−j+3.

Proof. Note that a point of type i has weight at most ai+1 = ri+1. Hence, by Lemma 2 and
Lemma 3, the total weight of unmatched points mapped to a segment of type j is at most

j∑
i=0

ri+12k−i+2 = 2k+2r

j∑
i=0

(r

2

)i

= 2k+2r
(r/2)j+1 − 1

r/2− 1 ≤ aj+12k−j+3. ◀

Here, we assumed that r ≥ 4, which holds for a sufficiently large U .

▶ Theorem 5. The competitive ratio of the deterministic online algorithm Wam for the
Restricted OWNM problem is Ω

(
2−2
√

log U
)

.

Proof. For every matched pair pq by Wam consider the set of points formed by p, q, and the
unmatched points mapped to them. By Lemma 4, if pq has type j, the ratio of the weight of
the matched pair over all the points in this set is at least aj

2aj+aj+12k−j+3 ≥ 1
r2k+4 .

Since the algorithm Wam guarantees that every unmatched point is mapped to some
matched pair, the competitive ratio of Wam is at least 2−(2k+4), where we used k = ⌈

√
log U⌉

and r = U1/k = 2(log U)/k ≤ 2k. ◀

5 Randomized Algorithms

5.1 Negative Result
To bound the competitive ratio of randomized algorithms, we will use Yao’s minimax principle.
We create a randomized unweighted input similar to what Lavasani and Pankratov [25]
used for the advice model. We prove an upper bound on the competitive ratio of every
deterministic algorithm on this input, and this gives us an upper bound for randomized
algorithms in the adversarial setting. We consider a circle and generate points on the
circumference of this circle. For a point p, let the left and the right arcs of p be the clockwise
and counter-clockwise arcs that are bounded by p.

J. Boyar, S. Kamali, K. S. Larsen, A. M. Lavasani, Y. Li, and D. Pankratov 16:9

Put p1 and p2 on two arbitrary antipodals of the circle, creating two arcs. Make p2 the
current active point. At each step, we choose one of the arcs of the current active point
randomly and then we put the next active point on that arc. To deceive the algorithm,
sometimes we generate a fake point on one of the arcs of the active and then put the next
active point on the other arc.

Consider two sequences L1, . . . , L2n and F1, . . . , F2n of Bernoulli i.i.d. random variables
with parameter 1/2. Iterate the following procedure to make 2n points. Let pi be the current
active point, Li determines the position of pi+1. If Li is 1, put pi+1 in the middle of the left
arc of pi, and if Li is 0, put it in the middle of the right arc of pi.

Given pi is an active point, if Fi+1 is 1, the point pi+1 becomes fake point. Make pi+2
the next active point and put it in the middle of the other arc of pi (e.g. if pi+1 is on the
left arc of pi, put pi+1 on the right arc of pi). If Fi+1 is 0, make pi+1 the new active point.
Continue the procedure with the new active point.

▶ Theorem 6. No randomized online algorithm can achieve a competitive ratio better than
16/17 in expectation.

Proof. We aim to bound the competitive ratio of any deterministic algorithm on the described
input sequence. Fix a deterministic algorithm ALG. Segments of matched points by ALG
divide the circle into convex regions. If an unmatched point is in a region that no new points
arrive in, it cannot be matched anymore and we call it an isolated point. Given that ALG
matches pi upon its arrival, let Xi be the indicator random variable that pi is an active
point, and matching it causes at least one point to become isolated. Let Ai be the indicator
random variable that pi becomes an active point. For i ≥ 3, pi is a fake point if and only if
pi−1 was an active point and Fi is 1. Thus we can write Ai as 1−Ai−1Fi.

Suppose pi is an active point that arrives in a convex region R, that ALG matches
upon its arrival, splitting R into RL and RR, which contain the left and right arcs of pi,
respectively. If RL and RR are both empty, meaning they do not contain any unmatched
point, pi+1 becomes isolated if it is a fake point. If RL and RR are both non-empty and the
point pi+1 becomes an active point, then the unmatched points of the opposite side of pi+1
become isolated. Now suppose RL is empty and RR is not empty and pi+1 arrives on the
left arc of pi. If pi+1 is a fake point, it becomes isolated, and if it is the new active point,
unmatched points in RR become isolated. Similarly, if RR is empty and RL is not empty
and pi+1 arrives in the right arc of pi, the segment pipj creates isolated points. If i = 2n,
there is no pi+1, and matching pi makes points isolated if RL or RR are not empty. Since we
are interested in the asymptotic competitive ratio we can ignore this case. Therefore, given
ALG matches pi we can write Xi as follows.

Xi =

AiFi+1 if RL and RR are empty
AiLi if RL is empty and RR is not
Ai(1− Li) if RR is empty and RL is not
Ai(1− Fi+1) if RL and RR are not empty

Let the random variable M be the size of the matching made by ALG, and for each
1 ≤ i ≤ M , let Ti be the step number in which ALG makes the ith match. Thus, the
algorithm is guaranteed to have at least

∑M
i=1 XTi

unmatched points at the end of the
execution. In order to bound the expectation of M , it may be beneficial to view it in the
context of the following game. Suppose that ALG has a budget of 2n points. The game
proceeds in rounds. In round j the algorithm pays 2 points from the budget to make a guess
(this corresponds to a pair of points getting matched) of a Bernoulli random variable outcome

SWAT 2024

16:10 On the Online Weighted Non-Crossing Matching Problem

(which corresponds to ALG’s match either resulting in an isolated point or not). If the guess
is correct (this corresponds to XTj

= 0, no isolated points are guaranteed to be created),
then the algorithm does not pay any more points for this round. If the guess is incorrect
(this corresponds to XTj = 1), then the algorithm pays one more point from the budget.
ALG tries to maximize the total number of rounds before the budget is exhausted. Thus,
in round j, the algorithm uses XTj + 2 points from the budget. Overall, M is the largest
integer such that

∑M
j=1(XTj + 2) ≤ 2n. If XTj were i.i.d., we could use the renewal theorem

to bound E(M). The issue is that XTj
are not i.i.d., because Xi depends on Ai and Fi+1;

thus there are correlations between Xi and Xi+1. The idea is to lower bound the expression∑M
j=1(XTj

+ 2) by the sum of some i.i.d. random variables Zi, compute the corresponding
value of M ′ for the Zi, and then relate it back to the value of M .

Now we define an auxiliary random variable sequence Y1, . . . , YM as follows:

Yi =

(1− FTi)FTi+1 if RL and RR are empty
(1− FTi

)LTi
if RL is empty and RR is not

(1− FTi
)(1− LTi

) if RR is empty and RL is not
(1− FTi

)(1− FTi+1) if RL and RR are not empty

By replacing Ai with 1−Ai−1Fi, we can see Yi ≤ XTi . Note that Y2, Y4, . . . , Y2⌊ M
2 ⌋ are i.i.d.

Bernoulli random variables with parameter 1/4. Thus for every m ≤ M , we can bound∑m
j=1(XTj + 2) as follows:

m∑
j=1

(XTj + 2) ≥
⌊m/2⌋∑

j=1
(XT2j−1 + XT2j + 4) ≥

⌊m/2⌋∑
j=1

(Y2j−1 + Y2j + 4) ≥
⌊m/2⌋∑

j=1
(Y2j + 4)

Let us define yet another auxiliary random variable sequence Z1, Z2, . . . as follows. For
1 ≤ i ≤ ⌊M

2 ⌋, let Zi = 4 + Y2i and for i > ⌊M
2 ⌋ let Zi = 4 + Y ′

i such that Y ′
i s are i.i.d.

Bernoulli random variables with parameter 1/4. This makes the Zi i.i.d. random variables
that take on values of either 4 or 5 with probability 1/4 and 3/4, respectively.

Let the random variable M ′ be the maximum m such that
∑m

i=1 Zi < 2n. Note that∑⌊M/2⌋
i=1 Zi =

∑⌊M/2⌋
i=1 (YTj + 4) ≤

∑M
i=1(XTj + 2) ≤ 2n. Therefore M ′ ≥ ⌊M/2⌋. Since the

Zi’s are i.i.d. and E(Zi) = 17/4, by the renewal theorem E(M ′) = 8n/17 and therefore E(M)
is at most 16n/17. By Yao’s minimax principle, this shows an upper bound of 16/17 on the
competitive ratio of randomized algorithms in the adversarial model. ◀

5.2 Positive Result: Tree-Guided-Matching Algorithm
We propose a randomized algorithm called “Tree-Guided-Matching” (Tgm) that has the
following uniform guarantee, regardless of the weights of the points: each point appears in a
matching with probability at least 1/3.

The algorithm Tgm uses a binary tree to guide its matching decisions. The binary tree
is created online, with each node of the tree corresponding to an online point. Intuitively,
the binary tree, as it grows, gives an online refining of the partition of the plane into convex
regions, such that for each region there is some online point responsible for it. Initially, set
p1 as the root of the tree and p2 the child of p1. By an abuse of notation, we also use pq to
denote the straight line determined by points p and q. Let R1 and R2 denote the two regions
corresponding to the half-spaces created by p1p2. Let p2 be responsible for both R1 and R2.
In general, when pi arrives into a region R for which pj is responsible (of course, j < i), make
pi a child of pj in the binary tree. The line pipj divides the region R into two sub-regions R′

J. Boyar, S. Kamali, K. S. Larsen, A. M. Lavasani, Y. Li, and D. Pankratov 16:11

and R′′, let pi be responsible for both of them, and at this point the responsibility of pj on
R is lost as region R has been refined to R′ and R′′. Note that this implies every node of
the tree has at most two children. Next, we describe how Tgm chooses to match points. At
the beginning, Tgm matches p2 with p1 with probability 1/3. After that, upon the arrival
of pi, let pj be its parent in the tree. If pj is unmatched and pi is its first child, match pi

to pj with probability 1/2. If pj is unmatched and pi is its second child, match pi to pj

deterministically. Note that Tgm only tries to match an online point with its parent in the
tree.

▶ Theorem 7. Every point, regardless of its weight, is chosen into a matching by the
randomized algorithm Tgm with probability at least 1/3. Hence, Tgm achieves a strict
competitive ratio at least 1/3.

Proof. Note that since Tgm only matches a child to its parent in the binary tree, the
matching is non-crossing. Indeed, by our construction of the tree, every child is a point
inside3 a convex region for which its parent is responsible, and its parent lies on the boundary
of that region. Hence, the line segment formed by them does not cross any existing line
segment.

Next, we show the claimed performance of Tgm. By the definition of Tgm, p1 is matched
(by p2) with probability 1/3. We will show that every pi, i ≥ 2, upon its arrival gets matched
to its parent with probability exactly 1/3, which implies the claim. To see this, proceed
inductively. The base case is true for p2. Let p be the currently arrived point and q be its
parent. We consider two cases.

If p is the first child of q, then by the induction hypothesis q at this moment is unmatched
with probability 2/3, hence according to Tgm, p is matched (to q) with probability
(2/3) · (1/2) = 1/3.
If p is the second child of q, then q at this moment is unmatched with probability
1− 1/3− 1/3 = 1/3. By Tgm, p is matched (to q) with probability (1/3) · 1 = 1/3. ◀

6 Revocable Acceptances

In this section, we consider the revocable setting. When a new point p arrives, an algorithm
has an option of removing one of the existing edges from the matching prior to deciding
on how to match p. The decision to remove an existing edge is irrevocable. The benefit of
making this decision is that the end-points of the removed edge, along with possible points on
the other side of the edge (though our positive result does not use this possibility), become
available candidates to be matched with p, provided the non-crossing constraint is respected.

6.1 Negative Result
Bose et al. [11] showed that a deterministic greedy algorithm without revoking can achieve
2/3 competitive ratio in the unweighted version. In this section, we prove that in the
unweighted version, no deterministic algorithm with revoking can beat the ratio 2/3.

▶ Theorem 8. No deterministic algorithm with revoking can achieve a competitive ratio
better than 2/3 even in the unweighted version.

3 Recall that online points are in general position.

SWAT 2024

16:12 On the Online Weighted Non-Crossing Matching Problem

Proof. Fix a deterministic algorithm ALG, an arbitrary large n, and a circle in the plane.
The adversary adds at least 2n points, all of weight 1, on the circle, one by one, and let ALG
match them into pairs. We maintain the invariants that there is always one active region of
the circle, and that for each matched pair, there is always at least one unmatched point.

Initially, the entire circle is the active region. A phase consists of the adversary presenting
points on the circle, in the active region, until ALG either matches a pair or revokes a
matching, or until 2n points have been given. The adversary stops if there are 2n points and
the last point is unmatched. Otherwise, if a match has just occurred, there are two cases.

In Case 1, the current point, p, is simply matched to a point, q, on the circle. The chord
pq divides the active region into two sub-regions, R1 and R2. If neither region has any points,
add a point, p′, to R1. Without loss of generality, assume that R1 contains at least as many
unmatched points as R2. If p′ is matched, ALG has revoked a matching; and we get the
extra point from Case 2. Otherwise, R2 becomes the active region, some unmatched point in
R1 is associated with the matched pair, and the phase ends.

In Case 2, ALG revokes a matching and either matches the current point, p, or leaves
p unmatched. Removing the one match, removes a chord of the circle, joining two regions
into a new convex region. This region is the active region if p is not matched. In either
case, the number of matched points is not increased. However, the number of unmatched
points is increased by at least 1, since at least one of the points, q, from the revoked match
is now unmatched and p is only matched to one point. If there is a new match for p, the
sub-region created by the match that does not contain q becomes the active region, and q is
the unmatched point associated with the new matched pair. The current phase ends.

Inductively, the invariants hold after each phase, and the unmatched point associated
with each matched pair ensures that no more than 2/3 of the points are matched. Although
the number of points may be odd, this gives an asymptotic lower bound of 2/3 on the
competitive ratio. ◀

Note that ignoring the revoking option, the above proof is a simpler alternative to bound
the competitive ratio of the deterministic algorithm which was given by Bose et al. [11].

6.2 Positive Result: Big-Improvement-Match
We present a deterministic algorithm with revoking, called “Big-Improvement-Match” (Bim).
This algorithm has a strict competitive ratio of ≈ 0.2862 even when weights of points are
unrestricted. This shows that while revoking does not improve the competitive ratio in the
unweighted version, it provides us with an algorithm with a constant competitive ratio, which
is unattainable for a deterministic algorithm without revoking.

Bim maintains a partitioning of the Euclidean space into regions. Each region in the
partition is assigned an edge from the current matching to be responsible for that region.
Each edge can be responsible for up to two regions. Bim starts out by matching the first two
points, p1 and p2 regardless of their weights, dividing the plane into two half-planes by p1p2.
Bim then assigns p1p2 to be responsible for the two half-plane regions. Next, consider a new
point pi (for i ≥ 3) that arrives in an existing region R. Suppose that pjpj′ is the responsible
edge for R. If there is at least one unmatched point in R, Bim matches pi with an unmatched
point pk in R with the highest weight. Then pjpj′ is no longer responsible for R, and the
region R is divided into two new regions by pipk. The responsibility for both new regions is
assigned to pipk. If pi is the only point in R, then Bim decides to revoke the matching (pj , pj′)
or not as follows. Without loss of generality, assume w(pj) ≤ w(pj′). If w(pi) < rw(pj′),
then Bim leaves pi unmatched. Otherwise, Bim removes the matching (pj , pj′) and matches

J. Boyar, S. Kamali, K. S. Larsen, A. M. Lavasani, Y. Li, and D. Pankratov 16:13

pi with pj′ . We note that r is a parameter that is going to be chosen later so as to optimize
the competitive ratio. If R is the only region that pjpj′ was responsible for when pi arrived,
then R is divided into two regions by pipj′ , and pipj′ becomes responsible for the two new
regions. (The regions on the other side of pjpj′ from pi keep their boundaries, even though
(pj , pj′) is no longer in the matching.) Otherwise pjpj′ was responsible for R′ in addition to
R when pi arrived. In this case, after removal of the match (pj , pj′), regions R and R′ are
merged to give region R′′ = R ∪ R′, and R′′ is divided by pipj′ into two regions, and Bim
makes pipj′ responsible for both new regions.

▶ Proposition 9. The following observations concerning Bim hold:
1. All responsible edges are defined by two currently matched points.
2. Each edge is responsible for at most two regions.
3. All regions are convex.
4. When a matched edge (pj , pj′) is replaced due to the arrival of a point pi in region R,

then edge (pi, pj′) is contained in R.

Proof. (1) follows since an edge only becomes responsible when its endpoints become matched.
When another edge becomes responsible for a region, the original edge is no longer responsible.
(2) follows since the only two regions an edge is made responsible for are the two regions
created when the endpoints of the edge were matched. When two points in one of the regions
an edge is responsible for are matched, the edge is no longer responsible for that region, but
will still be responsible for one region if it had been responsible for two up until that point.
(3) follows inductively, since separating two convex regions by a line segment creates two
convex regions. In addition, when Bim removes an edge, that edge was the last matching
created in either of the two regions it was responsible for. (4) follows by (3). ◀

▶ Theorem 10. Bim with r ∈ (1,
√

2] has strict competitive ratio at least min
(

r2−1
r3 , 1

1+2r

)
for the OWNM with arbitrary weights.

Proof. We consider for each region an edge is responsible for, the total weight of unmatched
points in that region. These points come in two flavours: those that were matched at some
point during the execution, but due to revoking became unmatched, and those that were
never matched during the entire execution of the algorithm.

Consider any subsequence of all created edges, ⟨e1, . . . , ek⟩, where e1 was created when
a second unmatched point arrived in some region, and the possible remaining edges were
created via revokings, i.e., ei caused ei−1 to be revoked for 2 ≤ i ≤ k, and ek is in Bim’s final
matching. Let ej = (pij

, pij+1) and w(pij
) ≤ w(pij+1), so ej+1 = (pij+1 , pij+2). Thus, for

3 ≤ j ≤ k + 1, pij
arrived after pij−1 . Every pair ever matched by Bim is included in some

such sequence of edges. The points, pi1 , . . . , pik−1 could be unmatched points in a region for
which ek is responsible.

Let α = w(pik
), so for every 2 ≤ j ≤ k, w(pij) is at most αr−(k−j) and w(pi1) ≤ w(pi2) ≤

αr−(k−2). Let β = w(pik+1). The total weight of points in this sequence is

k+1∑
j=1

w(pij
) = w(pi1) +

k∑
j=2

w(pij
) + w(pik+1) ≤ αr−(k−2) + α

(
r

r − 1

)
(1− r−(k−1)) + β

= α

(
r−(k−1) r(r − 2)

r − 1 + r

r − 1

)
+ β.

Now, we consider other points that were never matched, but were at some time in a region
for which one of the ej was responsible. After e1 is created and before e2, a first point q1
could arrive in one of the regions for which e1 is responsible. Note that q1 is not matched

SWAT 2024

16:14 On the Online Weighted Non-Crossing Matching Problem

if w(q1) < rw(pi2). (Note that a second point arriving in that region will then be matched
to q1, dividing the region, and the sub-regions will not be considered part of the region for
which ek eventually becomes responsible.) Now, suppose that another point, q2, arrives
between when ej and ej+1 are created for some 2 ≤ j < k, remaining unmatched in one of
the regions for which ek is responsible. Then, neither q2 nor pij+2 is in the same region as
pij−1 or one of them would have been matched to pij−1 (or pij−1 was already matched and
the region divided). By Proposition 9.2, ei is responsible for at most two regions, so pij+2

arrives in the same region as q2, while unmatched. This is a contradiction, since Bim would
match them. Thus, other than q1, the only never-matched point, q2, in a region for which ek

is responsible, arrives after ek and w(q2) < rw(pik+1).
Then, for k ≥ 2, the total weight of unmatched points for which ek is responsible is at

most
(

r−(k−3) + r−(k−1) r(r−2)
r−1 + r

r−1

)
α + (1 + r)β. If r ≤

√
2, then r−(k−3) + r−(k−1) r(r−2)

r−1
is at most zero and we can bound the total weight when k ≥ 2 by: (r

r−1)α + (1 + r)β. Thus,
the ratio between the weight of matched points in sequence pi1 , pi2 , . . . , pik+1 and the total
weight of all points associated with this sequence for k ≥ 2 is at least α+β

(r
r−1)α+(1+r)β . Since

r
r−1 > 1 + r, for 1 < r ≤

√
2, this ratio is minimized when β is minimized, which happens at

β = rα. Thus, the competitive ratio for k ≥ 2 is at least (1 + r)/(r
r−1 + r(1 + r)) = r2−1

r3 .
Now, consider the case of k = 1, and let α and β have the same meaning as above. Then

the sequence ei1 , ei2 , . . . , eik
consists of a single edge. Thus, the weight of the matched points

is α + β, and there could be two unmatched points q1 and q2 at the end of the execution of
the algorithm charged to this edge. We have w(qi) < rβ, so the ratio between the weight of
matched points and the total weight of all points associated with the sequence in case of
k = 1 is at least α+β

α+(1+2r)β . Observe that this ratio is minimized when β goes to infinity and
becomes 1/(1 + 2r).

Taking the worse ratio between the above two scenarios proves the statement of the
theorem. ◀

▶ Corollary 11. With the choice of parameter for Bim, r∗, defined as the positive solution to
the equation 1

1+2r = r2−1
r3 , approximately 1.2470, we get a competitive ratio of 1

1+2r∗ , at least
0.2862.

Proof. The value r∗ is obtained by setting the two terms in the minimum in Theorem 10
equal to each other and solving for r, giving the lower bound on the competitive ratio.

To show that this result is tight, consider the following input: p1 of weight α arrives
at the north pole of the unit sphere, followed by p2 of weight β ≥ α at the south pole of
the unit sphere, followed by p3 of weight r∗β − ϵ at the west pole of the unit sphere, and
followed by p4 of weight r∗β − ϵ at the east pole of the unit sphere. The algorithm would
end up matching p1 with p2, leaving p3 and p4 unmatched. Thus, in such an instance, the
competitive ratio of the algorithm is (α + β)/(α + β + 2r∗β − 2ϵ). Taking β to ∞ and ϵ to 0
shows that the algorithm does not guarantee a competitive ratio better than 1/(1 + 2r∗) in
the strict sense. ◀

7 Algorithms with Advice

In this section, we consider the OWNM problem in the tape advice setting. In the advice
setting, a trustworthy oracle cooperates with an online algorithm according to a pre-agreed
protocol. The oracle has access to the entire input sequence in advance. The oracle
communicates with an online algorithm by writing bits on the advice tape. When an input
item arrives, an algorithm reads some number of advice bits from the tape, and makes a

J. Boyar, S. Kamali, K. S. Larsen, A. M. Lavasani, Y. Li, and D. Pankratov 16:15

decision for the new item based on the advice it read from the tape so far, and the items
that have arrived so far. The question of interest is to bound the number of bits that need
to be communicated between the oracle and the algorithm on the worst-case input to allow
an online algorithm to solve the problem optimally. For an introduction to online algorithms
with advice, an interested reader is referred to the survey [12] and references therein.

We propose an online algorithm with advice, which we call “Split-And-Match” (Sam),
and show that it achieves optimality. For input sequences of size 2n, Sam uses a family of
Cn advice strings, where Cn is the nth Catalan number. The oracle encodes each advice
string using Elias delta coding scheme [16], which requires ⌈log Cn⌉+ log n + O(log log(Cn))
bits. We ignore the O(log log(Cn)) term for simplicity.

The Sam oracle and algorithm jointly maintain a partitioning of the plane into convex
regions, and a responsibility relation, where a point can be assigned to be responsible for at
most one region, and each region can have at most one point responsible for it. Each region
defined will eventually receive an even number of points in total. No region which has not
yet been divided into sub-regions contains more than one unmatched point. When a new
point p arrives in a region R, if R does not have a responsible point, then p is assigned to
be the responsible point for R, and p is left unmatched at this time. Otherwise, suppose
that q is the responsible point for R at the time p arrived. In this case, the responsibility
of q is removed, and the plane partition is refined by subdividing R into R1 and R2 – the
sub-regions of R formed by pq. If the total number of points (including future points, but
excluding p and q) in Ri is even for each i ∈ {1, 2}, then p and q are matched (we refer to
this event as a “safe match”), and R1 and R2 do not have any responsible points assigned to
them. Otherwise, p and q are not matched, and q is made responsible for R1, and p is made
responsible for R2. Note that when a region has a responsible point, that point is assumed
to lie in the region by convention, though it can lie on the boundary.

To implement the above procedure in the advice model, the Sam oracle creates a binary
string D of length 2n, where the ith bit indicates whether pi arrives in a region which has
some responsible point pj assigned to it, and pi and pj form a safe match. The string D is
encoded on the tape and is passed to Sam. The Sam algorithm reads the encoding of D

from the tape (prior to the arrival of online points), recovers D from the encoding, and then
uses the information in D to run the above procedure creating safe matches.

Observe that we aim to show the bound log Cn + log n ∼ 2n − 1
2 log n on the advice

complexity. The reason for the additive savings of 3
2 log n in the log Cn, as compared to 2n,

is that not all binary strings of length 2n can be generated as a valid D. Thus, the oracle
and the algorithm can agree beforehand on the ordering of the universe of possible strings D,
which we call the advice family. Then the oracle writes on the tape the index of a string in
this ordering that corresponds to D for the given input. The following theorem establishes
the correctness of this algorithm, as well as the claimed bound on the advice complexity.

▶ Theorem 12. Sam achieves a perfect matching with the advice family of size Cn.

Proof. Since the request sequence contains 2n points, an even number of points eventually
arrive. Inductively, a region that is divided always has an even number of points in both
sub-regions, and each of these sub-regions is convex. Thus, any point arriving in a region
can be matched to the point that is already there and responsible for the region. There are
only two kinds of regions that occur during the execution of Sam, as a new point arrives:

type I: this region does not have a responsible point, it is empty at the time of creation,
and there are an even number of points arriving in this region in the future, and
type II: this region has a responsible point, which is the only point in the region at the
time of its creation, and there are an odd number of points arriving in this region in the
future.

SWAT 2024

16:16 On the Online Weighted Non-Crossing Matching Problem

We argue inductively (on the number of future points arriving in a region) that the algorithm
ends up matching all points inside a region, regardless of their type. The base case for a
type I region is trivial: the number of future points is 0, and there is nothing to prove. The
base case for type II region is easy: one point arrives in the region, then according to the
algorithm it will be matched to the responsible point (since R1 and R2 are empty).

For the inductive step, consider a type I region R, and suppose that 2k points will arrive
inside the region. The first point that arrives in the region becomes responsible for this
region, changing its type to II. There are 2k − 1 future points arriving in this region, and
the claim follows by the inductive assumption applied to the type II region. Now, consider
a type II region R, and suppose that 2k − 1 points arrive inside the region. Let q be the
responsible point for R, and let p be the first point arriving inside R. Note that pq partitions
R into R1 and R2. There are two possible cases. Case 1: If R1 and R2 are both of type I,
then p is matched with q and the inductive step is established for R by invoking induction
on R1 and R2. If Case 2: R1 and R2 are both of type II, then inductive step is established
for R by invoking induction on R1 and R2.

Observe that the entire plane is a region of type I at the beginning of the execution of
the algorithm (prior to arrival of any points). Thus, correctness of the algorithm follows by
applying the above claim to this region.

To establish the bound on advice complexity, observe that by the definition of the
algorithm, Sam matches the most recent point whenever D[i] is 1 and does not match
otherwise. Thus, D has an equal number of zeros and ones and no prefix of D has more ones
than zeros. This makes D a Dyck word and it is known that there are Cn Dyck words of size
2n [29]. ◀

8 Conclusion

We introduced the weighted version of the Online Weighted Non-Crossing Matching problem.
We established that no deterministic algorithm can guarantee a constant competitive ratio
for this problem. Then, we explored several ways of overcoming this limitation and presented
new algorithms and bounds for each of the considered regimes. In particular, we presented
the results for deterministic algorithms when weights of the points are restricted to lie
in the range [1, U], randomized algorithms without restrictions on weights, deterministic
algorithms with revoking, and deterministic algorithms with advice. Many open problems
remain. In particular, our bounds are not tight, and closing the gap in any of the settings
would be of interest. It is also interesting to study the online setting of other versions of the
problem that were considered in the offline literature. For example, one could allow an online
algorithm to create some number of crossings up to a given budget, or one could consider the
k-non-crossing constraint as inspired from understanding RNA structures. In this paper, we
considered the vertex-weighted version, but one could also consider an edge-weighted version
of the problem, where edge weights could be either abstract, or related to geometry.

References

1 A Karim Abu-Affash, Paz Carmi, Matthew J Katz, and Yohai Trabelsi. Bottleneck non-crossing
matching in the plane. Computational Geometry, 47(3):447–457, 2014.

2 Oswin Aichholzer, Sergey Bereg, Adrian Dumitrescu, Alfredo García, Clemens Huemer, Ferran
Hurtado, Mikio Kano, Alberto Márquez, David Rappaport, Shakhar Smorodinsky, et al.
Compatible geometric matchings. Computational Geometry, 42(6-7):617–626, 2009.

J. Boyar, S. Kamali, K. S. Larsen, A. M. Lavasani, Y. Li, and D. Pankratov 16:17

3 Oswin Aichholzer, Sergio Cabello, Ruy Fabila-Monroy, David Flores-Penaloza, Thomas Hackl,
Clemens Huemer, Ferran Hurtado, and David R Wood. Edge-removal and non-crossing
configurations in geometric graphs. Discrete Mathematics & Theoretical Computer Science,
12(Graph and Algorithms), 2010.

4 Oswin Aichholzer, Ruy Fabila-Monroy, Philipp Kindermann, Irene Parada, Rosna Paul, Daniel
Perz, Patrick Schnider, and Birgit Vogtenhuber. Perfect matchings with crossings. Algorithmica,
pages 1–20, 2023.

5 Noga Alon, Sridhar Rajagopalan, and Subhash Suri. Long non-crossing configurations in
the plane. In Proceedings of the ninth annual symposium on Computational geometry, pages
257–263, 1993.

6 Greg Aloupis, Esther M Arkin, David Bremner, Erik D Demaine, Sándor P Fekete, Bahram
Kouhestani, and Joseph SB Mitchell. Matching regions in the plane using non-crossing
segments. XVI Spanish Meeting on Computational Geometry, 2015.

7 Drew Armstrong, Christian Stump, and Hugh Thomas. A uniform bijection between nonnesting
and noncrossing partitions. Transactions of the American Mathematical Society, 365(8):4121–
4151, 2013.

8 Mikhail J Atallah. A matching problem in the plane. Journal of Computer and System
Sciences, 31(1):63–70, 1985.

9 Vineet Bafna, S Muthukrishnan, and R Ravi. Computing similarity between rna strings. In
Combinatorial Pattern Matching: 6th Annual Symposium, CPM 95 Espoo, Finland, July 5–7,
1995 Proceedings 6, pages 1–16. Springer, 1995.

10 József Balogh, Boris Pittel, and Gelasio Salazar. Near-perfect non-crossing harmonic matchings
in randomly labeled points on a circle. Discrete Mathematics & Theoretical Computer Science,
Proceedings, 2005.

11 Prosenjit Bose, Paz Carmi, Stephane Durocher, Shahin Kamali, and Arezoo Sajadpour. Non-
crossing matching of online points. In 32 Canadian Conference on Computational Geometry,
2020.

12 Joan Boyar, Lene M. Favrholdt, Christian Kudahl, Kim S. Larsen, and Jesper W. Mikkelsen.
Online algorithms with advice: a survey. ACM Computing Surveys, 50(32):1–34, 2017. Article
No. 19.

13 William YC Chen, Hillary SW Han, and Christian M Reidys. Random k-noncrossing rna
structures. Proceedings of the National Academy of Sciences, 106(52):22061–22066, 2009.

14 Scott Cohen. Finding color and shape patterns in images. PhD dissertation, Stanford University,
1999.

15 Adrian Dumitrescu and William Steiger. On a matching problem in the plane. Discrete
Mathematics, 211(1-3):183–195, 2000.

16 Peter Elias. Universal codeword sets and representations of the integers. IEEE Trans. Inf.
Theory, 21(2):194–203, 1975.

17 András Gyárfás. Ramsey and turán-type problems for non-crossing subgraphs of bipartite
geometric graphs. In Annales Univ. Sci. Budapest, volume 54, pages 47–56, 2011.

18 Koki Hamada, Shuichi Miyazaki, and Kazuya Okamoto. Strongly stable and maximum weakly
stable noncrossing matchings. Algorithmica, 83(9):2678–2696, 2021.

19 John Hershberger and Subhash Suri. Applications of a semi-dynamic convex hull algorithm.
BIT Numerical Mathematics, 32(2):249–267, 1992.

20 John Hershberger and Subhash Suri. Efficient breakout routing in printed circuit boards. In
Workshop on Algorithms and Data Structures, pages 462–471. Springer, 1997.

21 Shahin Kamali, Pooya Nikbakht, and Arezoo Sajadpour. A randomized algorithm for non-
crossing matching of online points. In 34th Canadian Conference on Computational Geometry,
pages 198–204, 2022.

22 Mikio Kano and Jorge Urrutia. Discrete geometry on colored point sets in the plane—a survey.
Graphs and Combinatorics, 37(1):1–53, 2021.

SWAT 2024

16:18 On the Online Weighted Non-Crossing Matching Problem

23 Ioannis Mantas, Marko Savić, and Hendrik Schrezenmaier. New variants of perfect non-crossing
matchings. Discrete Applied Mathematics, 343:1–14, 2024.

24 Neeldhara Misra, Harshil Mittal, and Saraswati Nanoti. Diverse non crossing matchings. In
34th Canadian Conference on Computational Geometry, pages 249–256, 2022.

25 Ali Mohammad Lavasani and Denis Pankratov. Advice complexity of online non-crossing
matching. Computational Geometry, 110:101943, 2023. doi:10.1016/j.comgeo.2022.101943.

26 János Pach, Natan Rubin, and Gábor Tardos. Planar point sets determine many pairwise
crossing segments. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, pages 1158–1166, 2019.

27 Rebecca Patrias, Oliver Pechenik, and Jessica Striker. A web basis of invariant polynomials
from noncrossing partitions. Advances in Mathematics, 408:108603, 2022.

28 David Rappaport. Tight bounds for visibility matching of f-equal width objects. In Japanese
Conference on Discrete and Computational Geometry, pages 246–250. Springer, 2002.

29 Steven Roman. An Introduction to Catalan Numbers. Compact Textbooks in Mathematics.
Brikhäuser, 2015.

30 Suthee Ruangwises and Toshiya Itoh. Stable noncrossing matchings. In International Workshop
on Combinatorial Algorithms, pages 405–416. Springer, 2019.

31 Arezoo Sajadpour. Non-crossing matching of online points. Master’s thesis, University of
Manitoba, 2021.

32 Toshinori Sakai and Jorge Urrutia. Heavy non-crossing increasing paths and matchings on
point sets. In XIV Spanish Meeting on Computational Geometry, pages 209–212, 2011.

33 David Savitt. Polynomials, meanders, and paths in the lattice of noncrossing partitions.
Transactions of the American Mathematical Society, 361(6):3083–3107, 2009.

34 Alexander A Vladimirov. Non-crossing matchings. Problems of Information Transmission,
49(1):54–57, 2013.

A Omitted Pseudocode

Algorithm 1 Split-And-Match Oracle.

procedure Split-And-Match-Oracle

D ← [0]
make p1 responsible for the plane
for i = 2 to 2n do

let R be the region that pi arrives in
if R has a responsible point pj then

revoke the responsibility of pj

divide R into R1 and R2 by pipj

if RL (and RR) is going to contain an even number of points in total then
D.append(1)

else
make pj and pi responsible for R1 and R2 respectively
D.append(0)

else
make pi responsible for R

D.append(0)
pass D to the algorithm

https://doi.org/10.1016/j.comgeo.2022.101943

J. Boyar, S. Kamali, K. S. Larsen, A. M. Lavasani, Y. Li, and D. Pankratov 16:19

Algorithm 2 Split-And-Match Algorithm.

procedure Split-And-Match(D)
while receive a new point pi do

let R be the region that pi arrives in
if R has a responsible point pj then

revoke the responsibility of pj

divide R into R1 and R2 by pipj

if D[i] == 1 then
match pi with pj

else
make pj and pi responsible for R1 and R2 respectively
leave pi unmatched

else
make pi responsible for R

leave pi unmatched

SWAT 2024

Deterministic Cache-Oblivious Funnelselect
Gerth Stølting Brodal #

Aarhus University, Denmark

Sebastian Wild #

University of Liverpool, UK

Abstract
In the multiple-selection problem one is given an unsorted array S of N elements and an array
of q query ranks r1 < · · · < rq, and the task is to return, in sorted order, the q elements in S of
rank r1, . . . , rq, respectively. The asymptotic deterministic comparison complexity of the problem
was settled by Dobkin and Munro [JACM 1981]. In the I/O model an optimal I/O complexity
was achieved by Hu et al. [SPAA 2014]. Recently [ESA 2023], we presented a cache-oblivious
algorithm with matching I/O complexity, named funnelselect, since it heavily borrows ideas from
the cache-oblivious sorting algorithm funnelsort from the seminal paper by Frigo, Leiserson, Prokop
and Ramachandran [FOCS 1999]. Funnelselect is inherently randomized as it relies on sampling for
cheaply finding many good pivots. In this paper we present deterministic funnelselect, achieving
the same optimal I/O complexity cache-obliviously without randomization. Our new algorithm
essentially replaces a single (in expectation) reversed-funnel computation using random pivots
by a recursive algorithm using multiple reversed-funnel computations. To meet the I/O bound,
this requires a carefully chosen subproblem size based on the entropy of the sequence of query
ranks; deterministic funnelselect thus raises distinct technical challenges not met by randomized
funnelselect. The resulting worst-case I/O bound is O

(∑q+1
i=1

∆i
B

· logM/B
N
∆i

+ N
B

)
, where B is the

external memory block size, M ≥ B1+ε is the internal memory size, for some constant ε > 0, and
∆i = ri − ri−1 (assuming r0 = 0 and rq+1 = N + 1).

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Multiple selection, cache-oblivious algorithm, entropy bounds

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.17

Funding Gerth Stølting Brodal: Independent Research Fund Denmark, grant 9131-00113B.
Sebastian Wild: Engineering and Physical Sciences Research Council grant EP/X039447/1.

1 Introduction

We present the first optimal deterministic cache-oblivious algorithm for the multiple-selection
problem. In the multiple-selection problem one is given an unsorted array S of N elements
and an array R of q query ranks in increasing order r1 < · · · < rq, and the task is to return,
in sorted order, the q elements of S of rank r1, . . . , rq, respectively; (see Figure 1 for an
example).

On top of immediate applications, like finding a set of quantiles in a numerical data set, the
multiple-selection problem is of interest as it gives a natural common generalization of (single)
selection by rank (using a single query rank r1 = r) and fully sorting an array (corresponding

S 67
1

30
2

45
3

33
4

15
5

99
6

26
7

90
8

55
9

9
10

96
11

45
12

95
13

31
14

3
15

r1 r2 r3 r4

3
1

9
2

15
3

26
4

30
5

31
6

33
7

45
8

45
9

55
10

67
11

90
12

95
13

96
14

99
15

r1 r2 r3 r4
imaginary sorted S

Figure 1 Example input with N = 15, q = 4 and R[1..q] = [1, 2, 3, 8]. The expected output 3, 9,
15, 45 is obvious from the sorted array (right). (The sorted array is for illustration only; the goal of
efficient multiple-selection algorithms is to avoid ever fully sorting the input.)

© Gerth Stølting Brodal and Sebastian Wild;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 17; pp. 17:1–17:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gerth@cs.au.dk
https://orcid.org/0000-0001-9054-915X
mailto:wild@liverpool.ac.uk
https://orcid.org/0000-0002-6061-9177
https://doi.org/10.4230/LIPIcs.SWAT.2024.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Deterministic Cache-Oblivious Funnelselect

to selecting every index as a query rank, i.e., q = N and ri = i for i = 1, . . . , N). It thus
allows us to quantitatively study the transition between these two foundational problems,
which are of different complexity and each have their distinct set of algorithms. For example,
the behavior of selection and sorting with respect to external memory is quite different: For
single selection, the textbook median-of-medians algorithm [4] simultaneously works with
optimal cost in internal memory, external memory, and the cache-oblivious model (models
are defined below). For sorting, by contrast, the introduction of each model required a
substantially modified algorithm to achieve optimal costs: Standard binary mergesort is
optimal in internal memory, but requires ≈ M/B-way merging to be optimal in external
memory, where M is the internal memory size and B the external memory block size,
measured in elements [1]; achieving the same cache obliviously, i.e., without knowledge of
B and M , requires the judiciously chosen buffer sizes from the recursive constructions of
funnelsort [12].

Since multiple selection simultaneously generalizes both problems, it is not surprising
that also here subsequent refinements were necessary going from internal to external to
cache-oblivious; the most recent result being our algorithm funnelselect [7]. However, all
algorithms mentioned above for single selection and sorting are deterministic. By constrast,
funnelselect is inherently relying on randomization and known deterministic external-memory
algorithms [2, 15] are crucially relying on the knowledge of M and B. Prior to this work it thus
remained open whether a single deterministic cache-oblivious algorithm exists that smoothly
interpolates between selection and sorting without having to resort to randomization.

In this paper, we answer this question in the affirmative. Our algorithm determini-
stic funnelselect draws on techniques from cache-oblivious sorting (funnelsort) and existing
multiple-selection algorithms, but it follows a rather different approach to our earlier random-
ized algorithm [7] and previous (cache-conscious) external-memory algorithms. A detailed
comparison is given below.

1.1 Model of computation and previous work
Our results are in the cache-oblivious model of Frigo, Leiserson, Prokop and Ramachan-
dran [13], a hierarchical-memory model with an infinite external memory and an internal
memory of capacity M elements, where data is transferred between internal and external
memory in blocks of B consecutive elements. Algorithms are compared by their I/O cost,
i.e., the number of block transfers or I/Os (input/output operations). This is similar to the
external-memory model by Aggarwal and Vitter [1]. Crucially, in the cache-oblivious model,
no variables are allowed to depend on the model parameters M and B and I/Os are assumed
to be performed automatically by an optimal (offline) paging algorithm. The algorithms are
analyzed with respect to the parameters M and B. Cache-oblivious algorithms hence work
for any parameters M and B, and they even adapt to multi-level memory hierarchies (under
certain conditions [13]).

The multiple-selection problem was first formally addressed by Chambers [8], who
considered it a generalization of quickselect [14]. Prodinger [17] proved that Chambers’
algorithm achieves an optimal expected running time up to constant factors: O(B+N), where
B =

∑q+1
i=1 ∆i lg N

∆i
with ∆i = ri− ri−1, for 1 ≤ i ≤ q + 1, assuming r0 = 0 and rq+1 = N + 1,

and lg denoting the binary logarithm. We call B the (query-rank) entropy of the sequence of
query ranks [2]. It should be noted that B + N = O(N(1 + lg q)), but the latter bound does
not take the location of query ranks into account; for example, if q = Θ

(√
n

)
queries are

in a range of size O(N/ lg N), i.e., rq − r1 = O(N/ lg N), then the entropy bound is O(N)
whereas the latter N(1 + lg q) = Θ(N lg N).

G. S. Brodal and S. Wild 17:3

Table 1 Algorithms for selection and multiple selection. CO = cache-oblivious, E = expected,
wc = worst-case bounds. Note that Barbay et al. assume a tall cache M ≥ B1+ε, whereas Hu et al.
do not.

Reference Comparisons I/Os Comments

Single selection
Hoare [14] E 2 ln 2B + 2N + o(N) O(N/B) CO, randomized
Floyd & Rivest [11] E N + min{r, N−r} + o(N) O(N/B) CO, randomized
Blum et al. [4] wc 5.4305N O(N/B) CO, deterministic
Schönhage et al. [18] wc 3N + o(N) ? CO, median, deterministic
Dor & Zwick [10] wc 2.95N + o(N) ? CO, median, deterministic

Multiple selection
Chambers [8, 17] E 2 ln 2B + O(N) O((B + N)/B) CO, randomized
Dobkin & Munro [9] wc 3B + O(N) O((B + N)/B) CO, deterministic
Kaligosi et al. [16] wc B + o(B) + O(N) O((B + N)/B) CO, deterministic
Hu et al. [15] wc O(N lg(q)) O(N/B · logM/B(q/B)) deterministic

wc O(B + N) O(BI/O + N/B) (from closer analysis)
Barbay et al. [2] wc B + o(B) + O(N) O(BI/O + N/B) online, determ., M ≥ B1+ε

Brodal & Wild [7] E O(B + N) O(BI/O + N/B) CO, randomized, M ≥ B1+ε

This paper wc O(B + N) O(BI/O + N/B) CO, deterministic, M ≥ B1+ε

Dobkin and Munro [9] showed that B −O(N) comparisons are necessary to find all ranks
r1, . . . , rq (in the worst case). Deterministic algorithms with that same O(B + N) running
time are also known [9, 16], but as for single selection, the deterministic algorithms were
presented later than the randomized algorithms and require more sophistication. Multiple
selection in external-memory was studied by Hu et al. [15] and Barbay et al. [2]. Their
algorithms have an I/O cost of O

(
BI/O + N

B

)
, where the “I/O entropy” BI/O = B

B lg(M/B) .
An I/O cost of Ω(BI/O) − O

(
N
B

)
is known to be necessary [2, 7]. A more comprehensive

history of the multiple-selection problem appears in [7]; Table 1 gives an overview.
Algorithms designed for a single level memory model (RAM model) can be analyzed

in the cache-oblivious model. Analyzing existing time- and comparison-optimal multiple-
selection algorithms [8, 9, 16, 17] in the cache-oblivious model, shows that they are not
optimal with respect to the number of I/Os performed. The obtained I/O bounds are a
factor lg(M/B) away from being optimal. To get a feeling for the I/O bounds in Table 1,
consider for example the case where B = lg N , M = B2, and there are q = lg N evenly
distributed queries (ri =

⌊
iN

q+1
⌋
). In this case B = Θ(N lg lg N). The cache-oblivious sorting

bound (see Lemma 6) is O
(

N
B logM N

)
= O

(
N
B ·

lg N
lg lg N

)
, O((B + N)/B) = O

(
N
B lg lg N

)
and

O
(
BI/O + N

B

)
= O

(
N
B

)
, where O

(
N
B

)
is the number of I/Os required to scan the input.

1.2 Result
Our main result is the cache-oblivious algorithm deterministic funnelselect achieving the
following efficiency (see Theorem 10 for the full statement and proof).

▶ Theorem 1. There exists a deterministic cache-oblivious algorithm solving the multiple-
selection problem using O(B + N) comparisons and O

(
BI/O + N

B

)
I/Os in the worst case,

assuming a tall cache M ≥ B1+ε.

At the high level, our algorithm uses the standard overall idea of a recursive partitioning
algorithm and pruning recursive calls containing no rank queries, an idea dating back to the
first algorithm by Chambers [8]. In the cache-aware external-memory model, I/O efficient

SWAT 2024

17:4 Deterministic Cache-Oblivious Funnelselect

algorithms are essentially obtained by replacing binary partitioning (as used in [8]) by an
external-memory Θ(M/B)-way partitioning [2, 15]. Unfortunately, in the cache-oblivious
model this is not possible, since the parameters M and B are unknown to the algorithm.
To be I/O efficient in the cache oblivious model, both our previous algorithm randomized
funnelselect [7] and our new algorithm deterministic funnelselect apply a cache-oblivious
multi-way k-partitioner to distribute elements into k buckets given a set of k − 1 pivot
elements, essentially reversing the computation done by the k-merger used by funnelsort [12].
The k-partitioner is a balanced binary tree of k − 1 pipelined binary partitioners.

The key difference between our randomized and deterministic algorithms is that in our
randomized algorithm we use a single NΘ(ε)-way partitioner using randomly selected pivots
and truncate work inside the partitioner for subproblems that (with high probability) will not
contain any rank queries. This is done by estimating the ranks of the pivots through sampling
and pruning subproblems estimated to be sufficiently far from any query ranks. In our
deterministic version, we choose k smaller and deterministically compute pivots, such that all
elements are pushed all the way down through a k-partitioner without truncation (eliminating
the need to know the (approximate) ranks of the pivots before the k-partitioning is finished),
while we choose k such that the buckets with unresolved rank queries (that we have to
recursive on) in total contain at most half of the elements. To compute k, we apply a linear-
time weighted-median finding algorithm on ∆1, . . . , ∆q+1. While randomized funnelselect can
handle buckets with unresolved rank queries directly using sorting, deterministic funnelselect
needs to recursively perform multiple-selection on the buckets to achieve the desired I/O
performance.

2 Preliminaries

Throughout the paper we assume that the input to a multiple-selection algorithm is given
as two arrays S[1..N] and R[1..q], where S is an unsorted array of N elements from a
totally ordered universe, and R is a sorted array r1, . . . , rq of q distinct query ranks, where
1 ≤ r1 < · · · < rq ≤ N . The array S is allowed to contain duplicate elements. Our task is
to produce/report an array of the q order statistics S(r1), . . . , S(rq), where S(r) is the rth
smallest element in S, i.e., the element at index r in an array storing S after sorting it.

Our new deterministic cache-oblivious multiple-selection algorithm makes use of the
following three existing cache-oblivious results for single selection, weighted selection, sorting,
and multi-way partitioning.

▶ Lemma 2 (Blum, Floyd, Pratt, Rivest, Tarjan [4, Theorem 1]). Selecting the k-th smallest
element in an unsorted array of N elements can be done with O(N) comparisons and O

(
1+ N

B

)
I/Os in the cache-oblivious model.

▶ Remark 3 (Median of medians: I/O cost). Although the original paper by Blum et al. [4]
predates the cache-oblivious model [12] by decades, analyzing the algorithm in the cache-
oblivious model with a stack-oriented memory allocator gives a linear I/O cost, since the
algorithm is based on repeatedly scanning geometrically decreasing subproblems.
▶ Remark 4 (Median of medians: duplicates). The original algorithm in [4] assumes that all
elements are distinct. The algorithm can be extended to handle duplicates (by performing a
three-way partition of the elements into those less-than, equal-to, and greater-than a pivot,
respectively), and to return a triple S≤, p, S≥, that is a partition of S, where p is the element
of rank k, S≤ are the elements of rank 1, . . . , k−1 in arbitrary order, and S≥ are the elements
of rank k + 1, . . . , |S| in arbitrary order (where duplicate elements are assigned consecutive
ranks in an arbitrary order).

G. S. Brodal and S. Wild 17:5

In the weighted selection problem we are giving an array of N elements, each with an
associated non-negative weight, and a target weight W . The goal is find the smallest k,
where the sum of the weights of the k smallest elements is at least W , and to return the
k-th smallest element. A linear-time weighted-selection algorithm can be derived from the
unweighted selection algorithm by Blum et al. [4] (Lemma 2) – as hinted by Shamos in [19]
and spelled out in detail by Bleich and Overton [3] – by computing the weighted rank of the
pivot. The weighted selection algorithm follows essentially the same recursion as [4], and it
similarly follows that it is cache oblivious and performs O

(
1 + N

B

)
I/Os.

▶ Lemma 5 (Bleich, Overton [3]). Weighted selection in an unsorted array of N weighted
elements can be done with O(N) comparisons and O

(
1 + N

B

)
I/Os in the cache-oblivious

model.

▶ Lemma 6 (Frigo, Leiserson, Prokop, Ramanchandran [13, Theorem 7], Brodal, Fagerberg [5,
Theorem 2]). Funnelsort sorts an array of N elements using O(N lg N) comparisons and
O

(
N
B (1 + logM N)

)
I/Os in a cache-oblivious model with a tall-cache assumption M ≥ B1+ε,

for constant ε > 0.

▶ Remark 7 (Tall and taller). The original description of funnelsort by Frigo et al. [12] assumed
the tall cache assumption M = Ω(B2), whereas [5] observed that this could be relaxed to
the weaker tall cache assumption M = Ω

(
B1+ε

)
. I/O optimality of funnelsort follows from a

matching external-memory lower bound by Aggarwal and Vitter [1, Theorem 3.1].

The key innovation in our previous randomized algorithm funnelselect [7] is the k-
partitioner (Figure 2), a cache-oblivious and I/O-efficient multi-way partitioning algorithm
to distribute a batch of elements around k − 1 given pivots into k buckets; the precise
characteristics are summarized in the following lemma.

▶ Lemma 8 (Brodal and Wild [7, Lemma 3]). Given an unsorted array of N ≥ kd elements
and k − 1 pivots P1 ≤ · · · ≤ Pk−1, a k-partitioner can partition the elements into k buckets
S1, . . . , Sk, such all elements x in bucket Si satisfy Pi−1 ≤ x ≤ Pi. The algorithm is cache-
oblivious and performs O(N lg k) comparisons and O

(
k + N

B (1 + logM k)
)

I/Os, provided
a tall-cache assumption M ≥ B1+ε and d ≥ max{1 + 2/ε, 2}. The working space for the
k-partitioner (ignoring input and output buffers) is O

(
k(d+1)/2)

. This is also the time required
to construct a k-partitioner (again ignoring input and output buffers).

The k-partitioners are structurally similar to the k-mergers from funnelsort for merging
k runs cache obliviously. In [7] we pipeline the partitioning by essentially reversing the com-
putations done by funnelsort, and replace each binary merging node by a binary partitioning
node.

3 Deterministic multiple-selection

In this section we present our deterministic cache-oblivious multiple-selection algorithm
that performs optimal O(B + N) comparisons and O

(
BI/O + N

B

)
I/Os, under a tall-cache

assumption M ≥ B1+ε. Detailed pseudo-code is given in Algorithm 1 and Algorithm 2, and
the basic idea is illustrated in Figure 3.

Given a tall-cache assumption M ≥ B1+ε, we let d = max{1 + 2/ε, 2}. The algorithm
follows the general idea of making a recursive multi-way partition of the array of elements
and to only recurse on subproblems with unresolved rank queries. For two consecutive query
ranks ri−1 and ri, we say that the ∆i = ri − ri−1 elements of rank ri−1 + 1, . . . , ri are in a

SWAT 2024

17:6 Deterministic Cache-Oblivious Funnelselect

P1 P3 P5 P7 P9 P11 P13 P15

P2 P6 P10 P14

P4 P12

P8

input array

output
buckets

kd/2

kd/4

kd/4

√
k-partitioner

√
k-partitioners

middle buffers

Figure 2 A k-partitioner for k = 16 buckets. Content in the buffers is shaded; buffers are filled
bottom-to-top; when full, they are flushed and then consumed from the bottom. The figure shows
the situation where the input buffer for P6 is being flushed down to its children (by partitioning
elements around pivot P6). The flush at P6 was triggered during flushing P4’s input buffer, which in
turn has been called while flushing P8 (the input).
Buffer sizes for the three internal levels are shown next to the buffers. k-partitioners are defined
recursively from a

√
k-partitioner at the top, a collection of

√
k middle buffers, and

√
k further√

k-partitioners, each partitioning from one middle buffer to
√

k output buffers. (All sizes here
ignore floors and ceilings; for the precise definition valid for all k, see [7].)

gap of size ∆i. We choose a parameter ∆, such that at least half of the elements are in gaps
of size ≤ ∆ and simultaneously at least half (rounded down) of the elements are in gaps of
size ≥ ∆. To compute ∆ (Algorithm 1, line 4), we compute ∆i = ri − ri−1 by a scan over
the query ranks r1, . . . , rq (and r0 = 0 and rq+1 = N + 1), and perform weighted selection
(Lemma 5) among ∆1, . . . , ∆q+1, where ∆i has weight wi = ∆i, and return the smallest ∆
where

∑
∆i≤∆ wi ≥ N/2 + 1.

For the case when ∆ is small compared to N (formally, (2N)d ≥ ∆d+1 or N1+ 1
1+ε ≥ ∆2),

we simply solve the multiple-selection problem by sorting the elements (cache-obliviously
using funnelsort [13]), and report the elements with ranks r1, . . . , rq by a single scan over the
sorted elements. The condition on ∆ implies BI/O = Ω(SortM,B(N)), where SortM,B(N) =
Θ

(
N
B

(
1+logM/B

N
B

))
is the number of I/Os required to sort N elements in external memory [1],

so this is within a constant factor of the I/O lower bound (detailed analysis in Section 4).
Otherwise, we create a k-partition, where k = Θ

(
N
∆

)
as follows (MultiPartition in

Algorithm 2): We repeatedly distribute batches of ∆ elements into a set of buckets separated
by pivot elements. Initially we have one empty bucket and no pivot. Whenever a bucket
reaches size > ∆, the bucket is split into two buckets of size ≤ ∆ separated by a new pivot
using the (cache-oblivious) linear-time median selection algorithm (Lemma 2). To distribute
a batch of elements into the current set of buckets we use a cache-oblivious k-partitioner
(Lemma 8, which depends on the tall-cache assumption parameter d) built using the current
set of pivots. Note that we need to construct a new k-partitioner after each batch of ∆
elements has been distributed, since the number of buckets and pivots can increase. For the

G. S. Brodal and S. Wild 17:7

Algorithm 1 Deterministic cache-oblivious multiple-selection.
1: procedure DeterministicFunnelselect(S[1..N], R[1..q])
2: if q > 0 then
3: ∆i ← R[i]−R[i− 1] for i = 1, . . . , q + 1, assuming R[0] = 0 and R[q + 1] = N + 1
4: ∆← min

{
∆i ∈ {∆1, . . . , ∆q+1}

∣∣ ∑
j∈{1,...,q+1}:∆j≤∆i

∆j ≥ N/2 + 1
}

5: if (2N)d ≥ ∆d+1 or N1+ 1
1+ε ≥ ∆2 then ▷ BI/O = Ω(SortM,B(N))

6: S ← Funnelsort(S)
7: Report S[R[1]], . . . , S[R[q]]
8: else
9: (P1, . . . , Pk−1), (S1, . . . , Sk) ← MultiPartition(S, ∆)

10: r̄0 ← 0
11: for i← 1, . . . , k do
12: r̄i ← r̄i−1 + |Si|+ 1 ▷ r̄i is rank of Pi

13: Ri ← {r | r ∈ R ∧ r̄i−1 < r < r̄i} ▷ Rank queries to bucket Si

14: if |Ri| > 0 then
15: rmax

i ← max(Ri)
16: S̄i, pmax, S≥ ← Select(Si, rmax

i − r̄i−1)
17: if |Ri| > 1 then
18: rmin

i ← min(Ri)
19: S≤, pmin, S̄i ← Select(S̄i, rmin

i − r̄i−1)
20: Report pmin
21: if |Ri| > 2 then
22: R̄i ← {r − rmin

i | r ∈ Ri \ {rmin
i , rmax

i }}
23: DeterministicFunnelselect(S̄i, R̄i)
24: Report pmax

25: if r̄i ∈ R then
26: Report Pi

Algorithm 2 Given an array S with N elements and a bucket capacity ∆, where (2N)
d

d+1 ≤ ∆ ≤ N ,
partition S into k buckets S1, . . . , Sk separated by k − 1 pivots P1, . . . , Pk−1, where

⌊
∆
2

⌋
≤ |Si| ≤ ∆.

1: procedure MultiPartition(S[1..N], ∆)
2: Requires (2N)

d
d+1 ≤ ∆ ≤ N

3: k ← 1, S1 ← {} ▷ Initially only one empty bucket and no pivots
4: for i← 1 to N step ∆ do
5: S̄ ← S[i.. min(i + ∆− 1, N)] ▷ Next batch to distribute to buckets
6: Distribute S̄ to buckets S1, . . . Sk using pivots P1, . . . , Pk−1 with a k-partitioner
7: while there exists a bucket Sj with |Sj | > ∆ do ▷ Split bucket Sj

8: S≤, p, S≥ ← Select(Sj , ⌈|Sj |/2⌉)
9: Rename Sj+1, . . . , Sk to Sj+2, . . . , Sk+1 and Pj , . . . , Pk−1 to Pj+1, . . . , Pk

10: Sj ← S≤, Pj ← p, Sj+1 ← S≥
11: k ← k + 1
12: return (P1, . . . , Pk−1), (S1, . . . , Sk)

SWAT 2024

17:8 Deterministic Cache-Oblivious Funnelselect

P1 P2 P3S1 S2 S3 S4

r0 r1 r2 r3 r4 r5 r6 r7 r8 rq+1

rmin
2 rmax

2 rmin
4 rmax

4

∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8 ∆9

Figure 3 Deterministic multiple selection. The partition of an array S into buckets S1, . . . , S4

separated by pivots P1, . . . , P3, and query ranks r1, . . . , r8. In the example the maximum allowed
bucket size is ∆ = ∆1, since ∆1 + ∆2 + ∆3 + ∆4 + ∆6 + ∆7 + ∆8 + ∆9 ≥ |S|/2 + 1 and
∆2 + ∆3 + ∆4 + ∆6 + ∆7 + ∆8 + ∆9 < |S|/2 + 1. Black squares are pivots and the shaded regions in
buckets are the subproblems to recurse on.

computation to be I/O efficient, we allocate in memory space for a
⌊ 2N

∆
⌋
-partitioner followed

by space for
⌊ 2N

∆
⌋

buckets of capacity 2∆ (in the proof of Lemma 9 we argue that the number
of buckets created is at most 2N

∆ and each bucket will never exceed 2∆ elements). The space
for the partitioner is reused for each new batch, and whenever a bucket is split into two
new buckets, one bucket remains in the old bucket’s allocated space and the other bucket is
placed in next available slot for a bucket. This ensures all buckets are stored consecutively
in memory, albeit in arbitrary order.

After having constructed the buckets we compute the ranks of the pivots from the bucket
sizes, and consider the buckets with at least one unresolved rank query. If the rank of a
pivot coincides with a query rank, we report this pivot just after having considered the
preceding bucket. Before recursing on the elements in a bucket, we first find the minimum and
maximum query ranks rmin and rmax in the bucket by a scan over the bucket’s query ranks,
and find and report the corresponding elements in the bucket using linear-time selection
(Lemma 2). Finally, we only recurse on the elements between ranks rmin and rmax, provided
there are any unresolved rank queries to the bucket. This ensures that when recursing on a
subproblem of size N̄ , all elements in the subproblem are in gaps of size < N̄ in the original
input. By reporting the elements at the appropriate times during the recursion, elements
will be reported in increasing order.

The partitioning of an array S into buckets is illustrated in Figure 3. The crucial property
is that for a gap ∆i ≥ ∆, the two query ranks ri−1 and ri defining the gap cannot be in the
same bucket, implying that no element in this gap will be part of a recursive subproblem
(see, e.g., gaps ∆1 and ∆5 in Figure 3).

Pseudocode for our algorithm is shown in Algorithm 1 and Algorithm 2. We assume
Select(S, k) is the deterministic linear-time selection algorithm from Lemma 2, and that it
returns a triple S≤, p, S≥, that is a partition of S, where p is the element of rank k, S≤ are
the elements of rank 1, . . . , k−1 in arbitrary order, and S≥ the elements of rank k +1, . . . , |S|
in arbitrary order.

4 Analysis

We first analyze the number of comparisons and I/Os performed by MultiPartition in
Algorithm 2, that deterministically performs a k-way partition of N elements into k = O

(
N
∆

)
buckets separated by k − 1 pivots, where each bucket has size at most ∆. The following
lemma summarizes the precise properties of MultiPartition.

▶ Lemma 9. For N ≥ ∆ and ∆d+1 ≥ (2N)d, MultiPartition creates k ≤ 2N
∆ buckets

and k − 1 pivots, each bucket has size at most ∆, and performs O(N lg k) comparisons and
O

(
k2 + N

B (1 + logM k)
)

I/Os.

G. S. Brodal and S. Wild 17:9

Proof. We first bound the sizes of the buckets created by MultiPartition. The algorithm
repeatedly distributes batches of at most ∆ elements to buckets and splits all overflowing
buckets of size > ∆ before considering the next batch. It is an invariant that before
distributing a batch, all buckets have size at most ∆. Furthermore, as soon as the first
bucket is split, all buckets have size at least

⌊ ∆
2

⌋
, since whenever an overflowing bucket of

size s > ∆ is split the new buckets have initial sizes
⌊

s−1
2

⌋
and

⌈
s−1

2
⌉
. Here “−1” is due to

one element becomes a pivot. The smallest bucket size is achieved when s = ∆ + 1, where
the smallest bucket size is

⌊ ∆+1−1
2

⌋
=

⌊ ∆
2

⌋
. Note that the buckets after the split have size

at most ∆, since all buckets had at most ∆ elements before the distribution of a batch of
at most ∆ elements to the buckets, i.e., s ≤ 2∆. To bound the total number of buckets k

created, observe that if ∆ = N then no bucket will be split and k = 1. Otherwise, ∆ < N

and at least two buckets are created, and k
⌊ ∆

2
⌋

+ k − 1 ≤ N , since all buckets have size at
least

⌊ ∆
2

⌋
and there are k − 1 pivots. We have N ≥ k

(∆
2 −

1
2
)

+ k − 1 = k∆
2 + k

2 − 1 ≥ k∆
2 ,

since k ≥ 2, i.e., the total number of buckets created k ≤ 2N
∆ .

To analyze the number of comparisons and I/Os performed, we need to consider the
⌈

N
∆

⌉
distribution steps and at most 2N

∆ −1 bucket splittings. Since each bucket splitting involves at
most 2∆ elements, each bucket splitting can be performed cache-obliviously by a linear-time
selection algorithm (Lemma 2) using O(∆) comparisons and O

(
1 + ∆

B

)
I/Os, assuming each

bucket is stored in a buffer of 2∆ consecutive memory cells. In total the k−1 = Θ
(

N
∆

)
bucket

splittings require O(N) comparisons and O
(
k + N

B

)
I/Os. A k-partitioner for partitioning ∆

elements uses O(∆ lg k) comparisons and O
(
k + ∆

B (1 + logM k)
)

I/Os (Lemma 8), assuming k

is sufficiently small according to the tall-cache assumption (see below). This includes the
cost of constructing the k-partitioner. The total cost for all

⌈
N
∆

⌉
distribution steps becomes

O(N lg k) comparisons and O
(
k N

∆ + N
B (1 + logM k)

)
= O

(
k2 + N

B (1 + logM k)
)

I/Os.
By Lemma 8, the tall-cache assumption M ≥ B1+ε implies that for a k-partitioner

and an input of size ∆, it is required that ∆ ≥ kd for the I/O bounds to hold (recall
d = max{1 + 2/ε, 2}). The input assumption ∆ ≥

(2N
∆

)d together with k ≤ 2N
∆ ensure

that ∆ ≥ kd. ◀

We now prove our main result that DeterministicFunnelselect in Algorithm 1 is an
optimal deterministic cache-oblivious multiple-selection algorithm. Crucial to the analysis
is to show that the choice of ∆ balances early pruning of buckets without queries with
simultaneously achieving efficient I/O bounds.

▶ Theorem 10. DeterministicFunnelselect performs O(B + N) comparisons and
O

(
BI/O + N

B

)
I/Os cache-obliviously in a cache model with tall assumption M ≥ B1+ε, for

some constant ε > 0.

Proof. We first consider the consequences of the choice of ∆. By the choice of ∆, we have∑
∆i<∆ ∆i < N/2 + 1. Since each bucket Si has size at most ∆, and we only recurse on

subsets that are (the union of) gaps where the two bounding rank queries of the gaps are
both in the same bucket, we only recurse on gaps with ∆i < ∆ elements (see Figure 3).
A recursive subproblem between query ranks rs and rt, where 1 ≤ s < t ≤ q, contains
rt − rs − 1 =

(∑t
i=s+1 ∆i

)
− 1 elements. It follows that

(A) all recursive subproblems in total contain at most
∑

∆i<∆ ∆i − 1 < N/2 elements and
each subproblem has size ≤ ∆− 2.

(B)
∑

∆i≤∆ ∆i ≥ N/2 + 1, i.e., at least N/2 elements are in gaps of size at most ∆.

SWAT 2024

17:10 Deterministic Cache-Oblivious Funnelselect

To analyze the number of comparisons performed, we use a potential argument where
one unit of potential can pay for O(1) comparisons, and all comparisons performed can be
charged to the released potential. We define the potential of an element x in a gap of size ∆i

to be 1 + lg N
∆i

, where N is the size of the current recursive subproblem x resides in. The
total initial potential is at most N +

∑q+1
i=1 ∆i lg N

∆i
= O(B + N).

We first consider the number of comparisons for the non-sorting case (Algorithm 1,
lines 9–26). If an element x in a gap of size ∆i ≤ ∆ participates in a recursive call of
size < ∆, the potential released for x is at least

(
1 + lg N

∆i

)
−

(
1 + lg ∆

∆i

)
= lg N

∆ . If an
element x in a gap of size ∆i ≤ ∆ does not participate in a recursive call, the potential
released for x is 1 + lg N

∆i
≥ 1 + lg N

∆ . Finally, elements in gaps of size > ∆ will not
participate in recursive calls, and will each release at least potential 1. It follows that the
released potential is at least N

2 + N
2 lg N

∆ , since at least N/2 elements are in gaps of size ≤ ∆
(property (B), contributing the second summand) and at most N/2 elements are in gaps
of size < ∆ and participate in recursive calls (property (A)), i.e., at least N/2 elements
are in gaps of size ≥ ∆ (contributing the first summand). By Lemma 9, MultiPartition
requires O(N lg k) comparisons. Since k = O(N/∆) (Lemma 9), these comparisons can be
covered by the released potential. The additional comparisons required for computing ∆
with a linear-time weighted section algorithm (Lemma 5) and performing Select (Lemma 2)
at most twice on each bucket require in total at most O(N) comparisons, and can also
be charged to the released potential. It follows that for the non-sorting case the released
potential can cover for all comparisons performed.

In the sorting case, a single call to Funnelsort is performed causing O(N lg N) compar-
isons (Lemma 6). No further recursive calls are made and the potential of all elements is
released. At least N + N

2 lg N
∆ potential is released, since at least N/2 elements are in gaps

of size ≤ ∆ (property (B)). In the sorting case, either (2N)d ≥ ∆d+1 or N1+ 1
1+ε ≥ ∆2. If

(2N)d ≥ ∆d+1, we have ∆ ≤ (2N)
d

d+1 and N
∆ ≥ N/(2N)

d
d+1 ≥ 1

2 N
1

d+1 . It follows that the
released potential is at least N + N

2 lg
(1

2 N
1

d+1
)
≥ 1

2(d+1) N lg N , covering the cost for the com-

parisons. Otherwise, N1+ 1
1+ε ≥ ∆2, i.e., ∆ ≤ N

1
2

(
1+ 1

1+ε

)
and we have N

∆ ≥ N/N
1
2

(
1+ 1

1+ε

)
=

N
ε

2(1+ε) and the potential released is at least N + N
2 lg N

∆ ≥ N + ε
4(1+ε) N lg N and can cover

the cost for the comparisons. Note that the comparison bound depends on the tall-cache
parameters ε and d.

To analyze the I/O cost we assign an I/O potential to an element x in gap of size ∆i

of 1
B

(
1 + logM

N
∆i

)
, where N is the size of the current subproblem x resides in. Similar

to the comparison potential, it follows that the non-sorting case releases I/O potential
1
2
(

N
B + N

B logM
N
∆

)
. The number of I/Os required is O

(
1+ q

B

)
= O

(
1+ N

B

)
I/Os for scanning R

and computing ∆ using weighted selection (Lemma 5), O
(
k + N

B

)
I/Os for selecting the

minimum and maximum rank elements in each bucket (Lemma 2), and O
(
k2 + N

B (1+logM k)
)

I/Os for the k-partitioning (Lemma 8), i.e., in total O
(
k2 + N

B (1 + logM k)
)

I/Os. It follows
that the I/O cost can be charged to the released potential, provided k2 = O

(
N
B

)
. To address

this, we need to consider two cases depending on the size N of a subproblem. If the problem
completely fits in internal memory together with all the geometric decreasing recursive
subproblems, assuming a stack-oriented memory allocation, then considering this problem
will in total cost O

(
1 + N

B

)
I/Os, including all recursive subproblems. That means, there

exists a constant c > 0 such that for N ≤ cM , the I/O cost for handling such problems
can be charged to the parent subproblem creating the subproblem. It follows that we only
need to consider the I/O cost for subproblems of size N ≥ cM . Since M ≥ B1+ε, we have
N ≥ cM ≥ cB1+ε, i.e., B ≤

(
N
c

) 1
1+ε . Since k = O

(
N
∆

)
, to prove k2 = O

(
N
B

)
it is sufficient

G. S. Brodal and S. Wild 17:11

to prove
(

N
∆

)2 = O
(

N
(N/c)1/(1+ε)

)
. This holds, e.g., when N1+ 1

1+ε ≤ ∆2, which is always
fulfilled in the non-sorting case. For the sorting case, we have similarly to the comparison
potential that Ω

(
N
B logM N

)
I/O potential is released, which can cover the I/O cost for

cache-oblivious sorting (Lemma 6). ◀

5 Conclusion

With deterministic funnelselect, we close the gap left in previous work and obtain an
I/O-optimal cache-oblivious multiple-selection algorithm that does not need to resort to
randomization to achieve its performance. This settles the complexity of the multiple-
selection problem in the cache-oblivious model (including the fine-grained analysis based on
the query-rank entropy B).

There are open questions left in other variants of the problem. Like randomized funnel-
select [7], deterministic funnelselect cannot deal with queries arriving in an online fashion,
one after the other. This problem has been addressed in the external-memory model [2], but
no cache-oblivious I/O-optimal solution is known.

Concerning the transition from single selection by rank to sorting, which multiple selection
allows us to study, some questions remain unanswered. For example, in the cache-oblivious
model, it is known that sorting with optimal I/O-complexity is only possible under a tall-
cache assumption [6] (such as the one made in this work); for single selection, however, such
a restriction is not necessary. It would be interesting to study the transition between the
problems and find out, how “sorting-like” a multiple-selection instance has to be to likewise
require a tall cache for I/O-optimal cache-oblivious algorithms.

Another direction for future work are parallel algorithms for multiple selection that are
also cache-oblivious and I/O efficient.

References

1 Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and related
problems. Commun. ACM, 31(9):1116–1127, 1988. doi:10.1145/48529.48535.

2 Jérémy Barbay, Ankur Gupta, Srinivasa Rao Satti, and Jon Sorenson. Near-optimal online
multiselection in internal and external memory. Journal of Discrete Algorithms, 36:3–17,
January 2016. doi:10.1016/j.jda.2015.11.001.

3 Chaya Bleich and Michael L. Overton. A linear-time algorithm for the weighted median
problem. Technical Report 75, New Yourk University, Department of Computer Science, April
1983. URL: https://archive.org/details/lineartimealgori00blei/.

4 Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre
Tarjan. Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–461, 1973. doi:10.1016/
S0022-0000(73)80033-9.

5 Gerth Stølting Brodal and Rolf Fagerberg. Cache oblivious distribution sweeping. In Peter Wid-
mayer, Francisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy, Stephan J. Eiden-
benz, and Ricardo Conejo, editors, Automata, Languages and Programming, 29th International
Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings, volume 2380 of Lecture
Notes in Computer Science, pages 426–438. Springer, 2002. doi:10.1007/3-540-45465-9_37.

6 Gerth Stølting Brodal and Rolf Fagerberg. On the limits of cache-obliviousness. In Lawrence L.
Larmore and Michel X. Goemans, editors, Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, June 9-11, 2003, San Diego, CA, USA, pages 307–315. ACM, 2003.
doi:10.1145/780542.780589.

SWAT 2024

https://doi.org/10.1145/48529.48535
https://doi.org/10.1016/j.jda.2015.11.001
https://archive.org/details/lineartimealgori00blei/
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1007/3-540-45465-9_37
https://doi.org/10.1145/780542.780589

17:12 Deterministic Cache-Oblivious Funnelselect

7 Gerth Stølting Brodal and Sebastian Wild. Funnelselect: Cache-oblivious multiple selection.
In Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman, editors, 31st
Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam,
The Netherlands, volume 274 of LIPIcs, pages 25:1–25:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/LIPICS.ESA.2023.25.

8 J. M. Chambers. Partial sorting [M1] (algorithm 410). Commun. ACM, 14(5):357–358, 1971.
doi:10.1145/362588.362602.

9 David P. Dobkin and J. Ian Munro. Optimal time minimal space selection algorithms. J.
ACM, 28(3):454–461, 1981. doi:10.1145/322261.322264.

10 Dorit Dor and Uri Zwick. Selecting the median. SIAM Journal on Computing, 28(5):1722–1758,
1999. doi:10.1137/s0097539795288611.

11 Robert W. Floyd and Ronald L. Rivest. Expected time bounds for selection. Communications
of the ACM, 18(3):165–172, March 1975. doi:10.1145/360680.360691.

12 Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. In 40th Annual Symposium on Foundations of Computer Science, FOCS
’99, 17-18 October, 1999, New York, NY, USA, pages 285–298. IEEE Computer Society, 1999.
doi:10.1109/SFFCS.1999.814600.

13 Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. ACM Trans. Algorithms, 8(1):4:1–4:22, 2012. doi:10.1145/2071379.
2071383.

14 C. A. R. Hoare. Algorithm 65: find. Commun. ACM, 4(7):321–322, 1961. doi:10.1145/
366622.366647.

15 Xiaocheng Hu, Yufei Tao, Yi Yang, and Shuigeng Zhou. Finding approximate partitions and
splitters in external memory. In Proceedings of the 26th ACM symposium on Parallelism in
algorithms and architectures. ACM, June 2014. doi:10.1145/2612669.2612691.

16 Kanela Kaligosi, Kurt Mehlhorn, J. Ian Munro, and Peter Sanders. Towards optimal multiple
selection. In Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi, and
Moti Yung, editors, Automata, Languages and Programming, 32nd International Colloquium,
ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, volume 3580 of Lecture Notes
in Computer Science, pages 103–114. Springer, 2005. doi:10.1007/11523468_9.

17 Helmut Prodinger. Multiple Quickselect – Hoare’s Find algorithm for several elements.
Information Processing Letters, 56(3):123–129, November 1995. doi:10.1016/0020-0190(95)
00150-b.

18 Arnold Schönhage, Mike Paterson, and Nicholas Pippenger. Finding the median. J. Comput.
Syst. Sci., 13(2):184–199, 1976. doi:10.1016/S0022-0000(76)80029-3.

19 Michael Ian Shamos. Geometry and statistics: Problems at the interface. In Joseph Frederick
Traub, editor, Algorithms and Complexity: New Directions and Recent Results, pages 251–
280. Academic Press, 1976. URL: http://euro.ecom.cmu.edu/people/faculty/mshamos/
1976Stat.pdf.

https://doi.org/10.4230/LIPICS.ESA.2023.25
https://doi.org/10.1145/362588.362602
https://doi.org/10.1145/322261.322264
https://doi.org/10.1137/s0097539795288611
https://doi.org/10.1145/360680.360691
https://doi.org/10.1109/SFFCS.1999.814600
https://doi.org/10.1145/2071379.2071383
https://doi.org/10.1145/2071379.2071383
https://doi.org/10.1145/366622.366647
https://doi.org/10.1145/366622.366647
https://doi.org/10.1145/2612669.2612691
https://doi.org/10.1007/11523468_9
https://doi.org/10.1016/0020-0190(95)00150-b
https://doi.org/10.1016/0020-0190(95)00150-b
https://doi.org/10.1016/S0022-0000(76)80029-3
http://euro.ecom.cmu.edu/people/faculty/mshamos/1976Stat.pdf
http://euro.ecom.cmu.edu/people/faculty/mshamos/1976Stat.pdf

Dynamic L-Budget Clustering of Curves
Kevin Buchin #

Faculty of Computer Science, TU Dortmund University, Germany

Maike Buchin #

Faculty of Computer Science, Ruhr University Bochum, Germany

Joachim Gudmundsson #

Faculty of Engineering, The University of Sydney, Australia

Lukas Plätz #

Faculty of Computer Science, Ruhr University Bochum, Germany

Lea Thiel #

Faculty of Computer Science, Ruhr University Bochum, Germany

Sampson Wong #

Department of Computer Science, University of Copenhagen, Denmark

Abstract
A key goal of clustering is data reduction. In center-based clustering of complex objects therefore not
only the number of clusters but also the complexity of the centers plays a crucial role. We propose L-
Budget Clustering as unifying perspective on this task, optimizing the clustering under the constraint
that the summed complexity of all centers is at most L. We present algorithms for clustering planar
curves under the Fréchet distance, but note that our algorithms more generally apply to objects
in metric spaces if a notion of simplification of objects is applicable. A scenario in which data
reduction is of particular importance is when the space is limited. Our main result is an efficient
(8 + ε)-approximation algorithm with a (1 + ε)-resource augmentation that maintains an L-budget
clustering under insertion of curves using only O(Lε−1) space and O∗(L3 log L + L2 log(r∗/r0)) time
where O∗ hides factors of ε−1.

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases clustering, streaming algorithm, polygonal curves, Fréchet distance, storage
efficiency, simplification, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.18

Supplementary Material Software: https://github.com/NathenMat/SWAT24 [7]
archived at swh:1:dir:c28806ab33cb4a564e1d492efd322b1dc32f7245

Funding Lukas Plätz : The work was supported by the PhD School “SecHuman – Security for
Humans in Cyberspace” by the federal state of NRW.

1 Introduction

Clustering is a key technique for reducing dataset size in big data and serves as a fundamental
analysis task. The goal is to keep data characteristics as close as possible to the original
while limiting the size and complexity. In particular, when dealing with very large data,
such as live traffic data, this needs to be compressed regularly. This necessarily leads to an
approximation of the dataset, and thus we always pay an approximation factor in each later
analysis. This tradeoff between space-efficient data storage and accuracy poses a challenge
for long-term analysis. To address this, we introduce a clustering strategy that approximately
bounds the clustering error within our storage constraints.

If the objects to be clustered are simply points, k-center clustering directly provides a
compact representation, since it is sufficient to store k points as cluster centers Gonzalez [13]
and Hochbaum and Shmoys [15] give 2-approximation algorithms for k-center clustering,

© Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Lukas Plätz, Lea Thiel, and Sampson Wong;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 18; pp. 18:1–18:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kevin.buchin@tu-dortmund.de
mailto:maike.buchin@rub.de
mailto:joachim.gudmundsson@sydney.edu.au
mailto:lukas.plaetz@rub.de
mailto:lea.thiel@rub.de
mailto:sawo@di.ku.dk
https://doi.org/10.4230/LIPIcs.SWAT.2024.18
https://github.com/NathenMat/SWAT24
https://archive.softwareheritage.org/swh:1:dir:c28806ab33cb4a564e1d492efd322b1dc32f7245;origin=https://github.com/NathenMat/SWAT24;visit=swh:1:snp:a052784ff6c68e081ad8aefeaedc032aef15e906;anchor=swh:1:rev:1d5a24b78bbc02b2b3c1e30bce4378db47c66101
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Dynamic L-Budget Clustering of Curves

which is optimal assuming P ̸= NP . These algorithms, though, require access to all points
at once. Charikar et al. [12] present a dynamic k-center clustering algorithm for point sets,
where points can be added to the clustering. Their doubling algorithm allows them to process
the points one at a time, which gives an 8-approximation and can run using O(k) space. This
result was improved by McCutchen and Khuller [18] to a (2 + ε)-approximation. A technique
they use to achieve this is to run multiple instances with different radii to remove a factor
from the approximation. This increases the runtime and memory usage by O(ε−1 log ε−1).

These techniques can only approximate storage requirements when all objects possess
identical, small complexity. This assumption, however, may oversimplify the reality and
prove too substantial for various types of data, such as libraries of images, movement-tracking
trajectories, and networks. Even for seemingly simple objects like real numbers, their digital
representation requires simplification, such as floating-point precision. Moreover, by adopting
a simplified approach to clustering, they inadvertently constrain their options. Typically,
this results in a binary decision: deleting or keeping the object as it is. In contrast, when we
consider complex objects, they often bring a notion of simplifications.

In this work, we focus on polygonal curves as these occur naturally in many settings,
and the literature provides a solid foundation of clustering, simplification, and similarity
computation. They also show all the interesting features of complex objects. Nevertheless,
our present techniques apply to a wider field of objects. The specific setting only influences
the runtime analysis, and our clustering results hold in a more general setting. When we
cluster curves, given some accuracy, we see that some may share a complicated center path,
and others are similar in their position and have only a simple center path.

One option to deal with this setting is the (k, l)-clustering problem. It gives a clustering
of complex objects by simplifying them to a uniform size of l. This saves the upper bound
on the storage occupied by the clustering. Curves can be found in many applications and
have different similarity metrics. We are interested in the Fréchet distance, which respects
the traversal of a curve (cf. Hausdorff) but not its sampling (cf. dynamic-time-warping).
For curves utilizing the Fréchet distance as the similarity metric, the centers are selected
from the entire domain of Fréchet curves1. We choose the center curves freely i.e. under the
unrestricted simplification setting. The selection process aims to minimize the maximum
cluster radius. Buchin et al. [8] proposed a 3-approximation for this setting. Also for the
setting of (k, l)-median clustering of curves, where not the maximum radius but the summed
radii are considered, approximation algorithms have been developed [6, 10].

However, (k, l)-clustering may yield an imbalanced solution to the original problem,
where some centers are inherently more complex than others. Additionally, determining the
appropriate number of clusters in advance poses a challenge, often addressed by computing
clustering for various values of k. Restricting the number of clusters can limit the full
benefit of simplifications or the identification of cluster centers that genuinely represent the
underlying data. Pre-determination of a suitable l may also be challenging and may depend
on other considerations, such as the readability of centers.

We introduce L-budget clustering as a solution in this setting. The L-budget clustering
problem is a center clustering problem with a complexity associated with each center. In a
solution to it, the sum over the complexity of the centers is at most L and minimizes the
maximum radius of the clusters. See Figure 1 for a small example.

1 To establish the Fréchet Distance as a metric, we consider the equivalence classes of curves sharing the
same trace, using the quotient space.

K. Buchin, M. Buchin, J. Gudmundsson, L. Plätz, L. Thiel, and S. Wong 18:3

Figure 1 Small example of an L-budget clustering consisting of three clusters for L = 8.

Hence, we do not assume to know any meta parameters, nor do our guarantees rely
on them, such as the number of clusters in our dataset or the objects’ uniform complexity.
Instead, we restrict ourselves to claims in the resource we are willing to spend: memory
space. The strict size constraint allows us to optimize the representativeness using the given
space. We assume that each input curve has complexity L. This can be achieved if necessary
with a streaming simplification algorithm as described in Remark 9. To continuously build
and analyze the data, we present a 1-pass streaming (8 + ε)-approximation algorithm for
L-budget clustering of curves with computing space in the output size and a (1 + ε)-resource
augmentation. That means it only needs to see the data once and does not require extra
computation space, allowing us to handle large datasets. The approximation factor can be
decreased to (2 + ε) but with an increase of O(ε−1) in runtime and space requirements.

Overview. In Section 2, we summarize the simplification problems for curves and the current
techniques to solve them. Here, we present an algorithm for a (1 + ε)-approximation to find
the minimum complex simplification with linear space. In Section 3, we present the static
L-budget clustering problem and continue in Section 4 with the dynamic (k, l)-clustering. In
Section 5, we then handle the dynamic L-budget clustering. We end with a short experimental
evaluation in Section 6.

2 Simplification

Simplifying a curve is a natural and well-studied problem. It asks to reduce the complexity
of a curve while keeping it as similar as possible to the original curve. For the similarity,
different distance measures can be used. We will use the popular Fréchet distance dF [4].
We denote the complexity of a curve z with cplx(z), which counts the number of points.

Simplifying a curve is then a bi-criterion optimization problem of the size and distance
of the simplified curve (to the original curve). So, the literature discusses two subproblems.
With min−#, we denote the simplification problem where we start with an upper bound
on the Fréchet distance and minimize the complexity l of the simplification. The other
variant is min−d2, where we start with an upper bound ℓ on the complexity and want to
minimize the Fréchet distance dF . We are interested in the global unrestricted setting, the
least-restricted simplification setting, to guarantee the best possible clustering. This allows
us to get the least possible error given the size of the simplification, which in turn allows a
better representation of the curves with the same budget. Global means that the Fréchet
distance between the simplification and the curve is minimized [20]. This is in contrast to
the local setting where the curve is partitioned. Then, the Fréchet distance is calculated

2 We changed min−ε to min−d because it conflicts with the ε from full approximation schemas.

SWAT 2024

18:4 Dynamic L-Budget Clustering of Curves

between the parts and its simplification, and the maximum over this is minimized [14]. In
particular in earlier research on simplification, only curves with vertices of the original were
considered as simplification [16]. This is the vertex-restricted case. Later, this was loosened
to the unrestricted setting where the vertices can be from the whole metric space [14, 3]. See
van de Kerkhof et al. [20] for a more detailed introduction.

We summarize relevant results on simplification in Table 1 and convert them to unrestricted
global simplifications with Agarwal et al. [3]. This table contains offline and online algorithms
which have different analysis settings. Offline algorithms are commonly analyzed with worst-
case analysis and online algorithms with competitive ratios. However, simplification is a
particularly hard setting and sometimes requires resource augmentation3 [1, 20]. To unify
the notation, we call the competitive ratio of the online algorithm just an approximation
ratio but compare it to an offline algorithm that optimizes each instance individually.

Table 1 Results on Curve Simplification. In the min−d setting, first is the approximation ratio
and then resource augmentation. In the min−# setting, it is reversed. The O∗ hides terms in ε.

Authors and Paper Setting (dF , cplx) Runtime Space
Guibas et al. [14] min−#, global, R2 (1, 1) O(m2 log2 m) O(m)
Agarwal et al. [3] min−#, global (1, 8) O(m log m) O(l)
van de Kerkhof et
al. [20]

min−#, global (1 + ε, 2) O∗(m2 log m log log m) O∗(m)

Abam et al. [1] min−d, global (16
√

2 + ε, 2) O∗(ℓ) O∗(ℓ2)
Buchin et al. [8] min−d, global (4, 1) O(m2ℓ log m) O(m)
this paper Thm. 3 min−d, global, R2 (1 + ε, 1) O∗((log m + ℓ)m2 log m) O(m)

One can change the simplification criterion of an algorithm by applying a binary search,
as described by Chan and Chin [11].

For our clustering algorithms in Section 3, we need to find solutions to the min−# problem.
We will call the algorithm that does that S#. Guibas et al. [14] gave in theorem 14 with
definition 4 an algorithm to solve this for planar curves in O(m2 log2 m) time.

We are interested in the min−d-simplification problem in the next sections, which we
describe as finding a curve’s best ℓ-simplification. This will be used in the later clustering
algorithms. To prevent approximation factors in the space as much as possible, as this may
be a hard constraint, we want an algorithm that has an competitive ratio of 1. For this we
use a known algorithm by Imai-Iri, which was previously analysed and used by Buchin et
al. [8]. Here, we briefly show how to get the O(m) space and improve the approximation
factor in Fréchet distance for planar curves using the disk stabber from Guibas et al. [14].

Kreveld et al. [21] gave an exact algorithm for min−#-simplification with dynamic
programming in O(m2) space 4. But this needs too much space for our application.

Our goal is to get a constant factor approximation in O(m) space and improve it with
a binary search to a (1 + ε)-approximation. In the constrained space, we implicitly build
the shortcut graph from Imai and Iri [16] and compute the best simplification given the
length with a dynamic program. So, we compute the distance from the current edge to the
sub-curve with the Fréchet distance algorithm from Alt and Godau [4]. The sub-curve can
have at most length m, and the algorithm of Alt and Godau can run in O(m) space. We
compute the minimum Fréchet distance r necessary to reach a node i with an l-simplification

3 Resource augmentation compares offline against online algorithms with more resources.
4 In the look up table we only consider k − 1 and can delete after a full iteration.

K. Buchin, M. Buchin, J. Gudmundsson, L. Plätz, L. Thiel, and S. Wong 18:5

with the Algorithm 1 (Apx. Simplification). We save these values in a table z[i, l]. The
solution to our problem is the value of z[m, ℓ], where m is the length of the input curve.
To compute a z[i, l], we need to compute the maximum of the previous z[j, l − 1] and the
Fréchet distance between the sub curve c[j, i] and the shortcut c[j, i], which we notate as
dF (c[j, i], c[j, i])). We then can compute the minimum over all j. As we only need the last
iteration over the length of the simplification, we only need space in the size of the number
of points in the curve, which is O(m).

Algorithm 1 Apx. Simplification.

Data: polygonal curve z, complexity of the simplification ℓ ∈ N
Result: subsequence of z of length at most ℓ with minimal Fréchet distance to z

for l← 1 to ℓ do
for i← 0 to m do

z[i, l]← min(max({z[j, l − 1], dF (c[j, i], c[j, i])) | j < i})
delete all z[·, l − 1]

▶ Lemma 1 (By Imai and Iri [16]). Algorithm 1 (Apx. Simplification) gives us an optimal
vertex-restricted local Fréchet simplification.

▶ Remark 2. Algorithm 1 (Apx. Simplification) gives a 4-approximation of the weak
unrestricted simplification [3]. It has an O(m2ℓ log m) runtime [8] and needs O(m) space.

So, we have established an interval of constant size where the optimal value lies. We now
do a binary search and decide with the algorithm from Guibas et at. [14] if an ℓ-simplification
exists.

Algorithm 2 (1+ε)-Apx. Simplification.

Data: polygonal curve z, complexity of the simplification ℓ ∈ N
Result: subsequence of z of length at most ℓ with minimal Fréchet distance to z

s← Apx.Simplification(z, ℓ)
h← dF (s, z)
l← h/4
while h− l > ε do

m← (h + l)/2
if len(S#(z, m)) ≤ ℓ then h← m else l← m

return h

▶ Theorem 3. Algorithm 2 ((1+ε)-Apx. Simplification) computes a (1 + ε)-simplification of
the min−d without resource augmentation. The runtime is in O((log ε−1 log m + ℓ)m2 log m)
and the space is in O(m).

Proof. The initial approximation needs O(m2ℓ log m) runtime. To improve the approximation
factor from 4 to (1+ε), we need log(4ε−1) iterations of binary search. As the decision algorithm,
we take [14] that needs O(m2 log2 m) time. This gives us the O(log ε−1m2 log2 m+m2ℓ log m)
runtime. ◀

▶ Remark 4. We will later want to use the clustering algorithm for point sets from Charikar
et al. [12]. It uses different radii r over its runtime. Storing the simplifications for each r will
not be possible because of the space restriction of O(Lε−1). Thus, we compute a range of
simplifications that use O(Lε−1) space and choose a simplification later when r increases.

SWAT 2024

18:6 Dynamic L-Budget Clustering of Curves

The range of simplification are all simplifications of size (1 + ε)−iL for all i ∈ [−1, log(1+ε) L].
The geometric series bounds the size of the range with O(Lε−1). See Figure 2 for a small
example.

Figure 2 A non-optimal simplification range with factor 2. The colors and line styles indicate
different stages of simplifications from full complexity (black line) down to 1 (purple point).

Algorithm 3 Simplification Range.

Data: polygonal curve z, base b, upper bound ℓ ∈ N
Result: sequence of simplifications s with complexity bi and minimal Fréchet

distance to z

s, l← [], 1
while bℓ > l do

s.append(S#(z, l))
l← bl

return s

▶ Lemma 5. Computing the range of simplifications with Algorithm 3 (Simplification Range)
has O∗(m3 log m) runtime.

Proof. Summing up the runtimes of Algorithm 2 ((1+ε)-Apx. Simplification), we get

O

log(1+ε) m∑
i=0

(
log ε−1m2 log2 m

)
+

log(1+ε) m∑
i=0

(
m2(1 + ε)i log m

) .

The first sum simplifies to O(ε−1 log ε−1m2 log3 m). The second sum is a simple geometric
series. This saves a log m factor and resolves to O(ε−1m3 log m) time. ◀

3 Static L-budget clustering

We consider the setting of clustering curves with a given L space restriction. That is, we want
to find a clustering C of curves c from the domain of Fréchet curves with

∑
c∈C cplx(c) ≤ L

such that the balls Br(c) with center at c and radius r cover the set of input curves Z and r

is minimal. A similar setting is the k-weighted center clustering discussed by Hochbaum and
Shmoys [15].

This also is a bi-criterion problem and leads to the co-problem where we have a maximum
radius r and want to know the clustering with the minimal sum over the complexity of the
centers. The co-problem will be used in the proofs of our clustering algorithm.

K. Buchin, M. Buchin, J. Gudmundsson, L. Plätz, L. Thiel, and S. Wong 18:7

Starting with the static setting of computing a space-efficient clustering, we present an
algorithm for L-budget clustering. We begin with the description of Algorithm 4 (Decide
L-Budget Clustering). Here, we are given a radius r and want to decide if an L-budget
clustering of the curves with 3r exists or if no cover with radius r exists. We now test if
a clustering with radius r fits our storage in the following way. Given our r, we compute
the best curve simplification with the function S# for every curve and store them in a heap.
Then, we draw simplifications of uncovered curves, starting with the curve that has the least
verticies. For our simplification s, we compute the ball B3r(s) and mark all curves as covered.
The newly covered curves form a cluster with s as the center. We repeat the drawing until
all curves are covered or exceed the budget L. If we succeed, we get a 3-approximation;
otherwise, we know that r is smaller than the optimum radius r∗ and retry with a larger r.

Algorithm 4 Decide L-Budget Clustering.

Data: set of curves Z, budget L ∈ N, radius r

Result: decision r∗ ≤ 3r or r∗ > r

C, l← [], 0
heap ← build_heap({(cplx(s), s, z) | z ∈ Z, s = S#(z, r)})
while Z ̸= ∅ do

ℓ, c, z ← heap.pop()
if z /∈ Z then continue
l← l + ℓ

if l > L then return r∗ > r

C ← C ∪ {c}
Z ← Z \B3r(c)

return r∗ ≤ 3r

▶ Theorem 6. Algorithm 4 (Decide L-Budget Clustering) decides r∗ ≤ 3r or r∗ > r for the
L-budget clustering problem.

Proof. If the algorithm returns r∗ ≤ 3r, then it covers the curves, and the complexity of the
centers is lower or equal to the budget. Therefore, 3r ≥ r∗.

If the algorithm returns r∗ > r, we look at the following auxiliary clustering problem. We
start with an r and want the least complex clustering C∗

r . With it, we show that cplx(C∗
r)

is larger than the interim clustering computed by the algorithm. The complexity of the
auxiliary optimal clustering proves that given the budget L, the optimal clustering has a
radius larger than r. The interim clustering with radius r covered a set of curves with balls
of radius 3r and had a complexity l over the budget L. We charge the complexity of the
interim clustering onto the optimal solution C∗

r of the auxiliary clustering problem to show
that there cannot be a solution with the given r. We start with charging the complexity l of
the interim clustering to the centers with their respective complexity. Now, every center c

has a curve z we used to generate it. We call z the witness of c. So, we charge the complexity
of the center to its witness curve. The witness curve z has to be part of a cluster in the
optimal clustering C∗

r . So, we can forward the charge of the witness curve z to the center c∗

of the optimal cluster.
Now, two properties play a key role. First, because we only considered simplification with

an uncovered witness, the distance between witnesses must be at least 2r. Thus, each witness
is in a different optimal cluster, and each optimal center got charged at most once. Secondly,
the optimal center c∗ each got charged their complexity or less, as each of our centers c is

SWAT 2024

18:8 Dynamic L-Budget Clustering of Curves

the minimal complexity curve in the r-ball Br(z) around their witness z, which includes the
optimal centers c∗. So, if we sum up the complexities of the charged optimal centers, we get
that they are greater than the budget L. Hence, r was too small, and we get r∗ > r. ◀

▶ Theorem 7. Algorithm 4 (Decide L-Budget Clustering) with n curves of complexity m

has runtime in O((m log2 m + L)nm) where L is the complexity budget of the clustering.

Proof. First, we compute all simplifications of Z for radius r. This takes O(nm2 log2 m)
with the algorithm of Guibas et al. [14] in R2. Then we build a heap in O(n) If we stop early
because we reached the budget, we get that the summed complexity of the simplifications for
which we computed the covering is O(L). We also get that when we do not stop early and
cover all curves. Therefore deciding which center covers which curve can be done naively in
O(Lnm) time. ◀

With the decider, we can search for the smallest r with r∗ ≤ 3r. Because we have no
good upper bound, we start with an exponential search to find an upper bound. Here, we
start with an initial guess r0 and increase it by factors of 3. When we reach a cover of the
curves, it also gives us a lower bound. With a binary search, we can find our smallest r up
to an error of ε.

▶ Theorem 8. For n curves of complexity m, the initial radius r0, the optimal radius r∗,
and L is the complexity of the clustering we can compute with Algorithm 4 (Decide L-Budget
Clustering) in O((m log2 m + L)nm(log(r∗/r0) + log(ε−1))) time a (3 + ε)-approximation.

Proof. We invoke the decider O(log(r∗/r0) + log(ε−1)) many times. This gives the runtime.
The correctness follows from the decider’s correctness and the binary search’s precision. ◀

We gained two insights from this section, which we will use later in the dynamic setting.
We used a witness z to prove that the center has minimal complexity in a ball of radius r

around it.
The centers have a minimum distance between them to guarantee that no optimal center
gets charged twice.

4 Dynamic (k, ℓ)-clustering

Next, we introduce the dynamic setting, which allows us to incrementally add curves to our
clustering. Formally, in the dynamic setting, we get a sequence of curves. At each step,
we have the previous clustering and a new curve. We want to compute a constant factor
approximation to the optimal solution of the static problem over the subset of processed
curves. In other words, we want an approximation to the static clustering problem but
cannot see all curves simultaneously.

Because every cluster has its complexity budget in the (k, ℓ)-clustering problem, we have
no tradeoff in the complexity between clusters. We assume that all input curves are of
complexity ℓ in the dynamic setting.
▶ Remark 9. This can be achieved with various simplification algorithms. For inputs up
to the size of O(kℓ), we can get an ℓ-simplification using the algorithm of Buchin et al. [8].
They need O(k2ℓ3 log(kℓ)) time and O(kℓ) space and return an 4-approximation in the
Fréchet distance with a no resource augmentation in the complexity. Depending on your
setting, this is a valid simplification algorithm for larger input sizes but will need more
space. In many clustering applications, the number of objects is much larger than their
complexity. Hence, the complexity of an object is typically not larger than the complexity

K. Buchin, M. Buchin, J. Gudmundsson, L. Plätz, L. Thiel, and S. Wong 18:9

of the resulting clustering. However, if we want to process arbitrarily big input, Abam et
al. [1] have a streaming algorithm for l-simplification with a competitive ratio of 2 and an
4
√

2 + ε-approximation in the Fréchet distance in O(ℓ2/
√

ε) space. But, of course, both
simplification algorithms introduce an approximation factor in the complexity and the radius.

Assuming uniform complexity ℓ of the input curves allows us to use the “doubling
algorithm” of Charikar et al. [12] in our setting of curve clustering. It computes a lower
bound r and provides an upper bound αr of the optimal clustering radius r∗. McCutchen
and Khuller [18] extended their algorithm to the “scaling algorithm” by allowing different
approximation factors. They also devised a trick to improve the approximation factor. The
“scaling algorithm” increases r multiplicatively by α only when there are more than k clusters.
When r increases, the algorithm merges all clusters with a distance less than 2αr. Until the
number of clusters is more than k, it tries to insert points into the existing clusters. Inserting
a point into an existing cluster is possible if the distance between the center and the point is
less than η := 2α2/(α− 1)r. So, when we merge clusters, we have to check that we do not
immediately break the radius of the clusters. These constraints give us this inequality to be
satisfied: 2αr + ηr ≤ ηαr. This simplifies to 1 < α. Charikar et al. also showed that the
returned r is always smaller than the optimal radius r∗.

For the merging step, there are two variants. The first variant is to compute the threshold
graph with a heap of all edges (using edge lengths as priority). This is the runtime-efficient
implementation because there can be O(k2) many edges between the clusters. When we
have a new cluster, we compute the distance of the center to all other centers and put an
edge with the length as the priority into the heap. To build the t-threshold graph, we pop
all edges from the heap with a length below or equal to t. The other variant computes the
distance just in time. This only needs O(k) space as each cluster can have that many edges
but also requires re-computation of the distance each time. The algorithm would also work
if we only had the nearest neighbor or range queries. There is some literature on this topic
for the Fréchet distance [2, 5, 19], but we did not consider it because the bottleneck in the
runtime analysis is the simplification.

We combine these properties and define a cluster as valid if and only if its radius is smaller
than ηr. And clustering is valid if and only if all clusters are valid, r ≤ r∗, the centers cover
the pointset, the centers have distance rα, and the clustering has at most k clusters.

We summarize the algorithm in pseudo-code as Algorithm 5 ((k, ℓ)-Scaling). We used the
Python keyword yield. It behaves like a return and gives an output but allows the function
to continue in a subsequent call at the point where it last yielded a result. Combined with
next, this allows a nice notation of iteration over sequences or generators.

We start the runtime analysis with an update step.

▶ Lemma 10. Algorithm 5 ((k, ℓ)-Scaling) computes an update step, excluding the insertions
of the curves, in O(kℓ2 log ℓ + k log k) amortized time.

Proof. The algorithm maintains a heap of the edges in order of their length. The graph can
have almost O(k2) many edges. A new cluster introduces an edge to all the other clusters.
To compute the Fréchet distances, we need O(kℓ2 log ℓ) time. We charge each edge with
(ℓ2 log ℓ + log k) at the insertion into the heap. When the threshold t increases, we need all
edges below t to build the threshold graph. Deletion of i edges from a heap takes O(i log k)
time. However, we paid for the deletion at the insertion to get O(kℓ2 log ℓ+k log k) amortized
time. ◀

We can then bound the runtime of the whole Algorithm 5 ((k, ℓ)-Scaling).

SWAT 2024

18:10 Dynamic L-Budget Clustering of Curves

Algorithm 5 (k, ℓ)-Scaling.

Data: sequence of curves Z, number of clusters k ∈ N, complexity of center ℓ ∈ N,
approximation factor α

Result: sequence of valid clustering C with their respected radius r

/* initialization and small value treatment */
C ← ∅
for i ∈ [k] do

z ← next(Z)
C ← C ∪ {(z, {z})}
yield C, 0

2αr ← minimal distance of any pair in the first k + 1 curves
/* the core of the algorithm */
while z ∈ Z do

z ← next(Z)
if Bηr(z) ∩ C = then C ← C ∪ {z}
/* merge step */
while |C| > k do

r ← αr

merge clusters with the 2αr-threshold graph
yield C, r // generator notation from python

▶ Theorem 11. Algorithm 5 ((k, ℓ)-Scaling) yields an 8-approximation and computes a
clustering of n curves with cluster radius r∗ in O((kℓ2 log ℓ + k log k) log(r∗/r0) + knℓ2)
amortized time.

Proof. The correctness follows from McCutchen and Khuller [18] and the performance ratio
is described by ηr/r∗ ≤ η and η := 2α2/(α− 1). This is at its smallest at α = 2.

We get the number of update steps with log(r∗/r0). This only needs to be multiplied
by the runtime of the update step. After adding the number of decisions of the Fréchet
distance, we need to check if a curve fits into an existing cluster. We get a runtime of
O((kℓ2 log ℓ + k log k) log(r∗/r0) + knl2). ◀

We can improve the approximation factor with the trick from McCutchen and Khuller [18].
It uses multiple instances of the “scaling algorithm” with different start values. This leads to
the approximation factor of (2 + ε) and the runtime and space increases by O(ε−1 log ε−1).

5 Dynamic L-budget clustering

Now, we consider clustering with a fixed budget in the dynamic setting. We assume each
input curve has at most complexity L, i. e. is an L-simplification if necessary. We provide an
η(1 + ε)-approximation of dynamic L-budget clustering when using (1 + ε)L as budget. In
L-budget clustering, we can trade between cluster complexity and the number of clusters.
The novel aspect of our setting is that we have differently complex centers, and the complexity
of a simplification can change. Simplifying gives a new way to lower the complexity of a
cluster by replacing the current center with a simplification of it. We show that there is a
natural moment when we will simplify and when we will merge clusters.

K. Buchin, M. Buchin, J. Gudmundsson, L. Plätz, L. Thiel, and S. Wong 18:11

For the construction, we need a witness of the minimal complexity for each cluster center
and each r. We always have to guarantee a (1+ε)-approximation of the optimal simplification
in the ball Br. However, we cannot compute these simplifications later and must work with
the range of stored simplifications. This means we will have such simplification only up
to a resource augmentation of (1 + ε). We build on the work of Charikar et al. [12] and
McCutchen and Khuller [18], who introduce the approximation factor η. A clustering is valid
if the maximum radius is smaller or equal to η(1 + ε)r∗ and the sum of the complexity of the
centers is smaller or equal to (1 + ε)L. We will show that our incremental algorithm adds a
curve and constructs a new valid clustering given a previously valid clustering.

In Algorithm 6 (Initialization), we get our first curve z and compute all the (1 + ε)-
simplifications with algorithm Sd (see Section 2). Our simplification algorithm gives the best
guarantees, needing a resource augmentation of only (1 + ε) but works only for curves in
2D. We represent a cluster with a set of tuples of the center, the witness’s influence, and the
cluster radius’s upper bound for each simplification. We define dF (c−1, z) :=∞.

Algorithm 6 Initialization.

Data: polygonal curve z, budget L ∈ N
Result: valid clustering C with its respected radius r

/* (center, witness influence, upper bound on cluster radius) */
C ← {((ci, dF (ci−1, z), dF (ci, z)) | ci ∈ SimplificationRange(z, (1 + ε), L)}
r, l← dF (c0, z), L

return C, r

▶ Lemma 12. Algorithm 6 (Initialization) gives a valid clustering, the runtime is in
O(ε−1(log ε−1 log2 L + L)L2 log L) and the space is in O((1 + ε)L).

Proof. We get the complexity of the centers by construction. For the simplification algorithm,
we already showed that this produces a (1 + ε)-simplification to the optimal simplification.
Because the distance between the curve and the simplification monotonically decreases in
the number of nodes, we get that the highest complex simplification has to be as good as the
optimal simplification. Thus, we get that r ≤ r∗(1 + ε). From this, it then follows that the
clustering is valid.

The runtime is dominated by the runtime of Algorithm 3 (Simplification Range). ◀

So, we can assume that we have a valid clustering for the main algorithm and show that
we maintain it when we add a new curve w.

Algorithm 7 L-Budget Main.

Data: sequence of curves Z, budget L ∈ N
Result: sequence of valid clustering C with their respected radius r

z ← next(Z)
C, r ← Initialization(z, L)
yield C, r

for z ∈ Z do
C ← Insertion(z, C, ηr)
C, r ← Make Clustering Valid(C, L, r)
yield C, r

SWAT 2024

18:12 Dynamic L-Budget Clustering of Curves

The structure of our Algorithm 7 (L-Budget Main) is that of the algorithm from Charikar
et al. [12], but we changed the while loop to be controlled by the complexity of the clustering.
The same two cases can happen.

In the first case, we can insert with Algorithm 8 (Insertion) the curve z without creating
a new cluster. Then, l and r do not change.

Algorithm 8 Insertion.

Data: polygonal curve z, clustering C, radius r, budget L ∈ N
Result: updated clustering C containing z

/* inserting curve z if possible */
for C ∈ C do

if z ∈ Bηr(Ccenter) then
C ← (ci, wi, max(ri, dF (ci, z)))
return C

/* z has distance > r to all other cluster centers. */
C ← {(ci, dF (ci, z), dF (ci, z)) | ci ∈ SimplificationRange(z, (1 + ε), L)}
/* reduce the complexity of the centers and guarantee the witness */
C ← ShortenCenterList(C, r)
C ← C ∪ {C}
return C

When we insert z into a cluster, we compute the distance to all simplifications of the
center and update the upper bound on the maximum radius. In the second case, we could
not find a cluster for z, so it has to introduce a new one. For this, we do the same as in the
initialization and remove all the centers with an upper bound lower than r up to the lowest
complex one. This is done with Algorithm 9 (Shorten Center List). There has to be at least
one simplification with the upper bound lower or equal to r because we assume the curve
has complexity at most L and so, the curve itself can be a center. We also computed the
radius r′ of the by factor (1 + ε) more complex simplification. So, we can guarantee that the
simplification is the best for any radius smaller than r′ with the resource augmentation of
(1 + ε).

Algorithm 9 Shorten Center List.

Data: center set C, radius r

Result: reduced center set C with minimal complexity for the given r

idx← max{(ci,wi,ri):=C[i],wh≤r} h

return C[idx :]

▶ Lemma 13. Algorithm 9 (Shorten Center List) reduces the list of centers to the minimal
complexity given r and keeps the cluster valid, runs in place and in O(log log L) time.

Proof. The center list contains the optimal centers for the opening curve z up to a factor
of (1 + ε) in complexity. Before the shortening, the curves in the cluster had at most ηrold

distance from the old center. The old center was in rold of z, and z is in rnew of the new
center. The radius rnew is at least α times the old rold. Therefore, the distance to the new
center is at most (η + α + 1)rold. This, of course, needs to be less than ηαrold, which is true
for all our α > 1. This proves that the new center keeps the cluster valid. The next center
would be farther than r to z, invalidating z as a witness.

K. Buchin, M. Buchin, J. Gudmundsson, L. Plätz, L. Thiel, and S. Wong 18:13

The values of wi have to be monotonically increasing. The list length is O(log L), and
binary search inserts another log. ◀

We use Algorithm 10 (Make Clustering Valid) to deal with too complex clusterings. It
starts with increasing the distance r, which allows us to simplify the cluster centers further.
We finish if the total complexity is at most the budget, and the pairwise center distances are
at least distance 2α. Otherwise, we merge clusters with the 2αr-threshold graph.

Algorithm 10 Make Clustering Valid.

Data: clustering C, budget L ∈ N, radius r

Result: valid clustering C with its respected radius r

while l > (1 + ε)L do
r ← αr

/* simplifying the centers and changing the witness */
for C ∈ C do

Shorten Center List(C, r)
/* reducing the numbers of clusters */
merge clusters with the 2αr-threshold graph
l← cplx(C)

return C, r

▶ Theorem 14. After Algorithm 10 (Make Clustering Valid), we have a valid clustering for
the curves considered, and an outer loop needs O(L2) time.

Proof. The algorithm covers the curves, and the complexity of the centers is, at most, the
budget by construction. The maximum radius is ηr implying r∗ ≤ ηr. We now show that
r ≤ r∗. See Figure 3 for a visualization of the flow of charge and the inter-cluster distance.

Before the last loop in the merge loop, we covered the curves with complexity over the
budget and radius ηrold. We will charge this onto the optimal solution to show that there
cannot be a solution with the given rold. We start with charging the complexity of the
solution to the centers with their respective complexity. Now, every center ci has a witness
wi who is part of its cluster and proves the minimality of the center up to the factor of
(1 + ε). So, we charge the center’s complexity times the factor of (1 + ε) to its witness and
then to the optimal center c∗

i . We cannot charge two curves in the same optimal cluster
as we merge clusters within 2αrold. Hence, each optimal center got charged at most once.
However, the optimal centers each got charged their complexity times the factor of (1 + ε) or
less, as each of our centers is the minimal complexity curve in the range of the witness up to
the factor of (1 + ε). If we now sum up the charges on the optimal centers, we get a lower
bound of (1 + ε) times the complexity of the optimal solution. But our initial complexity is
greater than (1 + ε) times the budget L.

Because of the size constraint, we cannot maintain the threshold graph in memory, so we
need to decide each edge, which takes O(L2) time by deciding the Fréchet distance between
every cluster. ◀

▶ Lemma 15. Algorithm 7 (L-Budget Main) gives a valid solution for each iteration.

Proof. If we insert a curve into a cluster, everything stays the same, inheriting the validity.
If we must introduce a new cluster, the merge loop implies the solution’s validity. ◀

SWAT 2024

18:14 Dynamic L-Budget Clustering of Curves

Figure 3 On top is an illustration of the flow of charge and below inter-cluster distance requirement.

▶ Theorem 16. Algorithm 7 (L-Budget Main) gives an (8 + ε)-approximation ratio with a
(1 + ε)-resource augmentation, needs O∗(L3 log L + L2 log(r∗/r0)) time and O(Lε−1) space
with r0 being the inital and r∗ the optimal radius.

Proof. The performance ratio of the clustering is ηr/r∗ ≤ η with η := 2α2/(α− 1) which is
minimal at α = 2. Multiplying the simplification error gives us (8 + ε).

The worst-case path through the algorithm first tests every existing cluster to see
if the new curve fits. This needs multiple decisions of Fréchet distances, which take
O(L2) time. Introducing a new cluster and computing the range of simplifications takes
O(ε−1(log ε−1 log2 L + L)L2 log L) time. Each outer loop of Algorithm 10 (Make Clustering
Valid) needs O(L2) time. Because we will need at most log(r∗/r0) many of them, we get
O(ε−1(log ε−1 log2 L + L)L2 log L + L2 log(r∗/r0)) time.

The space requirements of computing the simplification is O(L), and the size of the data
structure for the clusters is in O(lε−1). The complexity only increases if a new cluster is
added, but l ∈ O(L) because curves have at most complexity L. ◀

The trick from McCutchen and Khuller [18] can be applied because they rely on α getting
big, which coincides with our restriction to not overcharge the optimal clusters – leading to
a (2 + ε)-approximation but runtime and space increases by O(ε−1).

Reintroducing the simplification and using the algorithm from Abam et al. [1] of the
curve to fit the O(L) space assumption adds the space requirement of O(L2), adds the
(16
√

2 + ε)-approximation factor, and increases the resource augmentation to (2 + ε).

6 Experiments

We conducted experiments to compare the results of L-budget clustering to (k, ℓ)-center
clustering and their respective runtimes. We use Dennis Rohde’s C++ implementation for
Fréchet distance, simplification, and (k, ℓ)-clustering5, in which we added a decider for the
Fréchet distance and used it in the implementation of the simplification of Agarwal et al. [3].
As dataset, we used the trajectories of homing pigeons [17] also used by [9] to demonstrate
(k, ℓ)-center clustering. We computed clusterings for varying budget L and varying number n

of curves from the data set. We compare our results to the best (k, L/k)-clustering found in
a linear search over all k ∈ [L]. Figure 4 displays one result of a (k, ℓ)-center and a L-budget
clustering on this data. The curves contain some outliers and a central cluster detected by

5 https://github.com/derohde/Fred

https://github.com/derohde/Fred

K. Buchin, M. Buchin, J. Gudmundsson, L. Plätz, L. Thiel, and S. Wong 18:15

both clusterings. The central cluster in the middle is quite straight with minor deviations.
The outliers to the north and west make quite a detour and hence need a complex center
to be represented well. Both algorithms found 5 clusters but static L-budget with half
the radius (r = 0.0097). For this inhomogeneity in cluster complexity, L-budget clustering
was designed. The (k, ℓ)-center clustering, in contrast, overfits the middle cluster without
improving the clustering radius, but also has too little complexity to represent the outliers.

Figure 4 Example of a (k, ℓ)-center (left) and L-budget (right) clustering on a n = 25 curves
using a budget of L = 50. Clusters are indicated by color and cluster centers have marked vertices.

Figure 5 shows the resulting runtimes.

Figure 5 Shown are the runtimes of the algorithms in seconds. The runtime of some of the
(k, l)-clustering experiments exceeded our time and did not finish.

The runtimes grow in L and n, seemingly slower than linear in L or n. This could be
because the simplification algorithm finds long shortcuts quickly, and the clustering reduces
most Fréchet distance decisions to clear-cut cases where at least one curve is of low complexity.
For all interesting L and n, we also see that both implementations of L-budget clustering
are much faster than using (k, ℓ)-center clustering. This is also the case for larger n or L if
we compute only one instance of (k, ℓ) clustering.

To compare the results, we divide the radius found by the L-budget clustering by the
best radius found by the (k, l)-center clustering in Figure 6.

SWAT 2024

18:16 Dynamic L-Budget Clustering of Curves

Figure 6 Shown is the radius size in percent against the best possible (k, ℓ)-center clustering.
Some curves stop early because of the missing reference clustering.

These experiments suggest that L-budget clustering finds clusterings with significantly
smaller clustering radius than a comparable (k, ℓ)-center clustering instance. The faster
runtime enables the clustering of much larger instances.

7 Conclusion

We have addressed center clustering problems of complex objects under space constraints.
We introduced the L-budget clustering problem to handle the issue and presented a 3-
approximation for the static setting. We continued with the dynamic (k, ℓ)-clustering
and then considered the space-restricted streaming setting. For the streaming setting, we
presented an (8 + ε)-approximation algorithm with a (1 + ε) resource augmentation over the
budget L and gave a (2 + ε)-approximation with resource augmentation but with increased
runtime and space requirements. We concluded with proof-of-concept experiments showing
that the clustering is fast in practice and produces good results.

For L-budget clustering the objects to be clustered require a notion of simplification.
While for curves streaming algorithms for simplification are known, it remains open is to
find such an algorithm that works in O(ℓ) space. It would also be interesting to consider
L-budget median clustering, where not the maximum but the summed radii are considered.

References

1 Mohammad Ali Abam, Mark de Berg, Peter Hachenberger, and Alireza Zarei. Streaming
algorithms for line simplification. In Proc. 23rd SoCG, pages 175–183. ACM, 2007. doi:
10.1145/1247069.1247103.

2 Peyman Afshani and Anne Driemel. On the complexity of range searching among curves. In
Proc. 2018 SODA, pages 898–917, 2018. doi:10.1137/1.9781611975031.58.

3 Pankaj K Agarwal, Sariel Har-Peled, Nabil H Mustafa, and Yusu Wang. Near-linear time
approximation algorithms for curve simplification. Algorithmica, 42:203–219, 2005.

4 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. Int. J. Comput. Geom. Appl., 5:75–91, 1995.

https://doi.org/10.1145/1247069.1247103
https://doi.org/10.1145/1247069.1247103
https://doi.org/10.1137/1.9781611975031.58

K. Buchin, M. Buchin, J. Gudmundsson, L. Plätz, L. Thiel, and S. Wong 18:17

5 Julian Baldus and Karl Bringmann. A fast implementation of near neighbors queries for
Fréchet distance (GIS cup). In Proc. 25th ACM SIGSPATIAL, SIGSPATIAL ’17, 2017.
doi:10.1145/3139958.3140062.

6 Milutin Brankovic, Kevin Buchin, Koen Klaren, André Nusser, Aleksandr Popov, and Sampson
Wong. (k, l)-medians clustering of trajectories using continuous dynamic time warping. In
Proc. 28th ACM SIGSPATIAL, SIGSPATIAL ’20, pages 99–110. ACM, 2020. doi:10.1145/
3397536.3422245.

7 Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Lukas Plätz, Lea Thiel,
and Sampson Wong. L-Budget Clustering (SWAT 24). Software, swhId:
swh:1:dir:c28806ab33cb4a564e1d492efd322b1dc32f7245, (visited on 27/05/2024). URL:
https://github.com/NathenMat/SWAT24.

8 Kevin Buchin, Anne Driemel, Joachim Gudmundsson, Michael Horton, Irina Kostitsyna,
Maarten Löffler, and Martijn Struijs. Approximating (k, ℓ)-center clustering for curves. In
Proc. 30th SODA, pages 2922–2938, 2019.

9 Kevin Buchin, Anne Driemel, Natasja van de L’Isle, and André Nusser. klcluster: Center-based
clustering of trajectories. In Proc. 27th ACM SIGSPATIAL, pages 496–499, 2019.

10 Maike Buchin, Anne Driemel, and Dennis Rohde. Approximating (k,l)-median clustering for
polygonal curves. ACM Trans. Algorithms, 19(1), February 2023. doi:10.1145/3559764.

11 Wai-sum Chan and Francis Yuk Lun Chin. Approximation of polygonal curves with minimum
number of line segments or minimum error. Int. J. Comput. Geom. Appl., 6:59–77, 1996.

12 Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental clustering
and dynamic information retrieval. In Proc. 29th STOC, pages 626–635, 1997.

13 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985. doi:10.1016/0304-3975(85)90224-5.

14 Leonidas J Guibas, John E Hershberger, Joseph SB Mitchell, and Jack Scott Snoeyink.
Approximating polygons and subdivisions with minimum-link paths. Int. J. Comput. Geom.
Appl., 3(04):383–415, 1993.

15 Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation algorithms
for bottleneck problems. J. ACM, 33(3):533–550, 1986. doi:10.1145/5925.5933.

16 Hiroshi Imai and Masao Iri. Polygonal approximations of a curve — formulations and
algorithms. In Computational Morphology, volume 6 of Machine Intelligence and Pattern
Recognition, pages 71–86. North-Holland, 1988. doi:10.1016/B978-0-444-70467-2.50011-4.

17 Richard Mann, Robin Freeman, Michael Osborne, Roman Garnett, Chris Armstrong, Jessica
Meade, Dora Biro, Tim Guilford, and Stephen Roberts. Objectively identifying landmark use
and predicting flight trajectories of the homing pigeon using gaussian processes. Journal of
The Royal Society Interface, 8(55):210–219, 2011.

18 Richard Matthew McCutchen and Samir Khuller. Streaming algorithms for k-center clustering
with outliers and with anonymity. In Approximation, Randomization and Combinatorial Optim-
ization. Algorithms and Techniques, pages 165–178, 2008. doi:10.1007/978-3-540-85363-3_
14.

19 Majid Mirzanezhad. On approximate near-neighbors search under the (continuous) Fréchet
distance in higher dimensions. Information Processing Letters, 183:106405, 2024. doi:
10.1016/j.ipl.2023.106405.

20 Mees van de Kerkhof, Irina Kostitsyna, Maarten Löffler, Majid Mirzanezhad, and Carola Wenk.
Global curve simplification. In Proc. 27th ESA, volume 144 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 67:1–67:14, 2019. doi:10.4230/LIPIcs.ESA.2019.67.

21 Marc van Kreveld, Maarten Löffler, and Lionov Wiratma. On optimal polyline simplification
using the hausdorff and fréchet distance. Journal of Computational Geometry, 11(1):1–25,
2020. doi:10.20382/jocg.v11i1a1.

SWAT 2024

https://doi.org/10.1145/3139958.3140062
https://doi.org/10.1145/3397536.3422245
https://doi.org/10.1145/3397536.3422245
https://archive.softwareheritage.org/swh:1:dir:c28806ab33cb4a564e1d492efd322b1dc32f7245;origin=https://github.com/NathenMat/SWAT24;visit=swh:1:snp:a052784ff6c68e081ad8aefeaedc032aef15e906;anchor=swh:1:rev:1d5a24b78bbc02b2b3c1e30bce4378db47c66101
https://github.com/NathenMat/SWAT24
https://doi.org/10.1145/3559764
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1145/5925.5933
https://doi.org/10.1016/B978-0-444-70467-2.50011-4
https://doi.org/10.1007/978-3-540-85363-3_14
https://doi.org/10.1007/978-3-540-85363-3_14
https://doi.org/10.1016/j.ipl.2023.106405
https://doi.org/10.1016/j.ipl.2023.106405
https://doi.org/10.4230/LIPIcs.ESA.2019.67
https://doi.org/10.20382/jocg.v11i1a1

Fixed-Parameter Tractable Certified Algorithms for
Covering and Dominating in Planar Graphs and
Beyond
Benjamin Merlin Bumpus #

University of Florida, Gainesville, FL, USA

Bart M. P. Jansen #

Eindhoven University of Technology, The Netherlands

Jaime Venne #

Eindhoven University of Technology, The Netherlands

Abstract
For a positive real γ ≥ 1, a γ-certified algorithm for a vertex-weighted graph optimization problem
is an algorithm that, given a weighted graph (G, w), outputs a re-weighting of the graph obtained by
scaling each weight individually with a factor between 1 and γ, along with a solution which is optimal
for the perturbed weight function. Here we provide (1 + ε)-certified algorithms for Dominating Set
and H-Subgraph-Free-Deletion which, for any ε > 0, run in time f(1/ε) · nO(1) on minor-closed
classes of graphs of bounded local tree-width with polynomially-bounded weights. We obtain our
algorithms as corollaries of a more general result establishing FPT-time certified algorithms for
problems admitting, at an intuitive level, certain “local solution-improvement properties”. These
results improve – in terms of generality, running time and parameter dependence – on Angelidakis,
Awasthi, Blum, Chatziafratis and Dan’s XP-time (1 + ε)-certified algorithm for Independent Set
on planar graphs (ESA2019). Furthermore, our methods are also conceptually simpler: our algorithm
is based on elementary local re-optimizations inspired by Baker’s technique, as opposed to the heavy
machinery of the Sherali-Adams hierarchy required in previous work.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Fixed parameter tractability

Keywords and phrases fixed-parameter tractability, certified algorithms

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.19

Funding Authors Bumpus and Jansen received funding by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement No
803421, ReduceSearch).

Acknowledgements We are grateful to the anonymous referees for pointing out Theorem 2.5 and
making suggestions that improved the presentation of the paper.

1 Introduction

In many algorithmic contexts there is no tolerance for uncertainty. For instance, when lives
are at stake (e.g. kidney exchanges [6, 15]), the difference between an approximate solution
and a truly optimal one is staggering. However, finding exact optima only makes sense if the
objective function which we are optimizing is known to accurately model the optimization
problem at hand (and often this is not the case in e.g. clustering or vertex-optimization
problems [13]). Indeed, if the objective function is only an approximate model, then there is
no use in finding a true optimum relative to this objective function: after all, how could one
tell whether the returned solution is “truly” optimal or if it is instead optimal simply due to
the error, or noise in the objective function?

© Benjamin Merlin Bumpus, Bart M. P. Jansen, and Jaime Venne;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 19; pp. 19:1–19:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:benjamin.merlin.bumpus@gmail.com
https://orcid.org/0000-0002-8686-2319
mailto:b.m.p.jansen@tue.nl
https://orcid.org/0000-0001-8204-1268
mailto:j.c.venne@student.tue.nl
https://doi.org/10.4230/LIPIcs.SWAT.2024.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Fixed-Parameter Tractable Certified Algorithms in Planar Graphs and Beyond

Thus it is clear that, if we are optimizing an objective function which is subject to a
certain degree γ of error, then it only makes sense to find optimal solutions when the inputs
are stable under γ-perturbations: i.e. stable under small variations in the objective by factors
which are at most our error γ. The precise formulation of the notion of γ-stability (which
follows) is due to Bilu and Linial [3] and is a necessary prerequisite to the notion of certified
algorithms, the focus of this paper.

▶ Definition 1.1 (γ-perturbation). For any γ ∈ R≥1 and set S, a γ-perturbation of a function
w : S → R is a function w′ : S → R satisfying w(v) ≤ w′(v) ≤ γ · w(v) for all v ∈ S.

▶ Definition 1.2 (γ-stable). For any γ ∈ R≥1, a γ-stable instance (G, w : V (G) → R) of a
vertex-minimization problem Π is an instance admitting a unique optimal solution S which
remains optimal (though not necessarily unique) even under γ-perturbations of (G, w).

Determining whether an instance is γ-stable or not can be a challenging computational
task [13]. However, this is often beside the point: if we do not know whether the objective
function we are optimizing has error or not, then it is enough to find a γ-approximate solution
with the extra guarantee that the returned solution is optimal whenever the instance is
γ-stable. Certified algorithms [3, 12, 13, 14] satisfy these requirements and more.

▶ Definition 1.3 (Certified algorithm). A γ-certified solution to an instance (G, w : V (G) → N)
of a weighted vertex-optimization problem Π is a pair (S, w′ : V (G) → R+) where w′ is a
γ-perturbation of w and S is an optimal solution on (G, w′). A γ-certified algorithm for Π
is one mapping instances of Π to γ-certified solutions.

Note that every γ-certified algorithm also serves as a factor-γ approximation algorithm [13,
Thm. 5.11] for the problem, while the converse is false in general. For example, a γ-
approximation for the Dominating Set problem may output a solution that fails to be
inclusion-minimal, but this can never be the output of a γ-certified algorithm since there is
no γ-perturbation for which such a solution is optimal.

Contributions. This paper is a foray into merging certified algorithms with parameterized
complexity: here we develop FPT-time (1 + ε)-certified algorithms for vertex-optimization
problems (Definition 2.2) parameterized by 1/ε. Specifically we provide certified algorithms
for H-Subgraph-Free-Deletion (for connected H) and Dominating Set which run in
polynomial time on minor-closed classes of bounded local tree-width, which are exactly
the apex-minor free graphs (Section 2). These results improve – in terms of generality,
running time and parameter dependence – on Angelidakis, Awasthi, Blum, Chatziafratis and
Dan’s XP-time (1 + ε)-certified algorithm for Independent Set on planar graphs [1] which
inspired the present paper.

Our results (Corollary 3.6) are obtained as by-products of our main theorem (Theorem 1.7).
They draw inspiration from Baker’s celebrated technique [2] and they establish FPT-time
certified algorithms for any problem Π on such graph classes provided Π satisfies certain
“local solution-improvement properties”. The rest of this section will lead up to the formal
statement of our main theorem by explaining precisely what these properties consist of.

The “local” nature of the “solution-improvement properties” mentioned above has to
do with the operation of m-stitching. Intuitively, this operation consists of amending a
given solution S1 by “stitching” onto it a small, local portion of another solution S2. In the
following definition, Nm

G [J] denotes the closed m-neighborhood of vertex set J (see Section 2).

B. M. Bumpus, B. M. P. Jansen, and J. Venne 19:3

▶ Definition 1.4 (m-stitch operation). For an integer m ≥ 0 and vertex sets J, S1, S2 ⊆ V (G)
of a graph G, we define the m-stitch of S2 onto S1 along J as:

S2 ⊕m
G,J S1 := (S1 \ J) ∪ (S2 ∩ Nm

G [J]).

Naturally we refer to vertex-optimization problems whose set of feasible solutions is closed
under the m-stitch operator as m-stitchable.

▶ Definition 1.5 (m-stitchable). A vertex-optimization problem Π is m-stitchable if, for any
feasible solutions S1 and S2 to Π on a graph G and any vertex set J ⊆ V (G), we have that
S2 ⊕m

G,J S1 is a feasible solution to Π on G.

While the stitching operation seems natural, we are not aware of earlier work exploiting this
idea. Our main theorem requires as a subroutine an algorithm for the following computational
task for minimization problems. Roughly speaking, algorithms for the task below should be
thought of as “local optimization” routines which improve any given solution S to produce
solutions which are at least as good as any m-stitch onto S.

Π-m-Stitching Parameter: tw(G[Nm
G [J]])

Input: an instance (G, w : V (G) → N) to an m-stitchable vertex-optimization problem Π
along with a solution S and a vertex set J ⊆ V (G).
Task: find a feasible solution S′ to Π on G, such that for all other feasible solutions S∗,
we have w(S′) ≤ w(S∗ ⊕m

G,J S).

Notice that Π-m-Stitching is parameterized by the tree-width of the closed distance-m
neighborhood of J ; this restricts the exponential dependency of this local optimization task
in terms of the tree-width of the closed m-neighborhood of J .

Finally, we can state our main result (Theorem 1.7) which, sweeping some details under
the rug, can be thought of as a way of turning any algorithm for Π-m-Stitching into an
FPT-time certified algorithm for Π whenever we can quickly guess at least one feasible
solution (Definition 1.6).

▶ Definition 1.6 (Guessable). We say that a vertex-optimization problem Π is guessable if
there is an algorithm that outputs a feasible solution (with no requirement for optimality) in
polynomial-time.

▶ Theorem 1.7 (main). Let G be a minor-closed graph class whose local tree-width is bounded
above by a linear function of the form g : r 7→ λr (where r ∈ N) for some given, fixed λ ∈ R.
If Π is a vertex-minimization problem such that:

Π is guessable and m-stitchable for some m ∈ N, and
there exists an algorithm A which solves Π-m-Stitching in time f(t) · |V (G)|O(1),
where t = tw(G[Nm

G [J]]) and f is some computable function;
then, for each ε > 0 there is a (1 + ε)-certified algorithm for Π which runs in time f(λm/ε) ·
|V (G)|O(1) on any input (G, w : V (G) → N) with G ∈ G and polynomially-bounded weights.

We note that Theorem 1.7 also applies to the complementary maximization problem (see
Section 5 for the formal definition) of any minimization problem Π as above. This observation
will furthermore allow us to obtain a 2O(1/ε) · nO(1)-time certified algorithm for the maximum
independent set problem (with polynomially bounded integer weights), which improves on
the algorithm with running time nO(1/ε) by Angelidakis, Awasthi, Blum, Chatziafratis and
Dan [1]. Apart from being more efficient and more general, our algorithm is also conceptually
simpler. It relies on repeated improvement of a solution in bounded-tree-width subgraphs,
rather than the technical machinery of the Sherali-Adams hierarchy employed in earlier work.

SWAT 2024

19:4 Fixed-Parameter Tractable Certified Algorithms in Planar Graphs and Beyond

Organization. After establishing some preliminary background and notation in Section 2,
we will show in Section 3 how to apply our main theorem to obtain certified algorithms
for H-Subgraph-Free-Deletion and Dominating Set. The main theorem itself (Theo-
rem 1.7) is instead proved later on in Section 4. We discuss our algorithmic results and their
application to complementary maximization problems in Section 5, which is also where we
pose open questions as an invitation to further work.

2 Preliminaries

We follow the convention that zero is a natural number. We only consider finite, simple, and
undirected graphs, which consist of a vertex set V (G) and edge set E(G) ⊆

(
V (G)

2
)
. For m ∈ N,

the closed m-neighborhood Nm
G [X] of a vertex subset X ⊆ V (G) in G is defined inductively

as Nm
G [X] := NG[Nm−1

G [X]] where N1
G[X] = NG[X] = {y ∈ V (G) | ∃x ∈ X : {x, y} ∈

E(G)} ∪ X. The open m-neighborhood Nm
G (X) is defined as Nm

G (X) := Nm
G [X] \ X. The

tree-width [8] of a graph G is denoted tw(G). The diameter of a connected graph G, which
is defined as the maximum number of edges on any shortest path, is denoted by diam(G).

Throughout this paper we will always assume that weight functions are polynomially
bounded in the size of the graph; i.e. we always consider weight functions of the form
w : V (G) → {0, . . . , |V (G)|O(1)}. This restriction is crucial to obtaining polynomial-time
algorithms for the vertex-optimization problems (defined below) considered in this paper.

▶ Definition 2.1. A vertex-subset property P assigns to each graph G the subset P(G) ⊆
2V (G) of vertex sets that satisfy property P on G. We say that a set S ⊆ V (G) is feasible
for P on G when S ∈ P(G).

▶ Definition 2.2 (vertex-optimization). A vertex-optimization problem Π is any pair of the
form (P, goal) consisting of a vertex-subset property P and a function goal ∈ {min, max}.
The task of Π is to find some vertex subset Ŝ ∈ P(G) such that w(Ŝ) = goalS∈P(G)w(S).
We call Π a vertex-minimization problem if goal = min and a vertex-maximization problem
otherwise.

Our main algorithmic theorems concern algorithms running in minor-closed classes of (linearly)
bounded local tree-width. We recall these notions below (where d(x, y) denotes the usual
shortest-paths distance metric on graphs).

▶ Definition 2.3 (local tree-width). Given a graph G, the local tree-width of G is the map

loctwG : N → N where loctwG : δ 7→ max
x∈V (G)

tw
(
G[{y ∈ V (G) : d(x, y) ≤ δ}]

)
.

▶ Definition 2.4 (graphs of bounded local tree-width). A graph class C has bounded local
tree-width if there is a function f : N → R such that loctwG(r) ≤ f(r) for all (G, r) ∈ C ×N.
Furthermore, if there is a λ ∈ R such that the function f above can be defined as f : r 7→ λr,
then we say that C has λ-linear local tree-width.

An apex graph is a graph that can be made planar by removing a single vertex. Eppstein [9]
proved that a minor-closed class of graphs has bounded local tree-width if and only if it
excludes an apex graph as a minor. Demaine and Hajiaghayi [7, Theorem 4.1] proved that
any apex-minor-free graph has linear local tree-width, thereby leading to the following
equivalence.

▶ Theorem 2.5 ([7, 9]). A minor-closed graph class C has bounded local tree-width if and
only if it has λ-linear local tree-width for some λ ∈ R.

B. M. Bumpus, B. M. P. Jansen, and J. Venne 19:5

For any graph-theoretic notation not defined here, we refer the reader to Diestel’s
textbook [8]; similarly for standard notation in parameterized complexity theory see Cygan
et al.’s textbook [4].

3 Applications of Theorem 1.7

Here we will apply Theorem 1.7 to obtain FPT-time certified algorithms for
Dominating Set and H-Subgraph-Free-Deletion. We recall the definitions of these
problems below.

H-Subgraph-Free-Deletion (for a fixed connected graph H)
Input: a vertex-weighted graph (G, w : V (G) → N).
Task: find a minimum-weight subset X ⊆ V (G) such that no subgraph of G − X is
isomorphic to H.

Dominating Set
Input: a vertex-weighted graph (G, w : V (G) → N).
Task: find a minimum-weight subset X ⊆ V (G) such that V (G) = NG[X].

To apply our main theorem to these problems we need to show that they are guessable
(which is trivially true: V (G) is feasible solution), m-stitchable for some appropriate choices of
m, and that there are FPT-time algorithms for the relevant stitching problems parameterized
by tree-width. We begin with stitchability.

▶ Lemma 3.1. Dominating Set is 2-stitchable while H-Subgraph-Free-Deletion is
diam(H)-stitchable for any connected graph H.

Proof. Consider any three vertex sets J, S1, S2 ⊆ V (G).
First we consider Dominating Set. If S1 and S2 are dominating sets, then so is

S2 ⊕2
G,J S1: any vertex of V (G) \ NG[J] is dominated by S1 \ J while vertices of NG[J] are

dominated by S2 ∩ N2
G[J]. Note that we need to consider the 2-neighborhood of J , since

there might be vertices in NG(J) that S1 dominates from within J but that S2 dominates
from N2

G(J).
Now we turn our attention to H-Subgraph-Free-Deletion. Let h : H ↪→ G be an

H-subgraph of G. If S1 and S2 are H-hitting sets and h(H) is not hit by S1 \ J , then
V (h(H) ∩ J) ̸= ∅. Hence h(H) lies entirely in N

diam(H)
G [J], since H is connected. But then

h(H) is hit by S2 ∩ N
diam(H)
G [J]. Thus S2 ⊕diam(H)

G,J S1 is an H-hitting set. ◀

Next we give algorithms for H-Subgraph-Free-Deletion-Stitching (Lemma 3.2) and
Dominating Set-Stitching (Lemma 3.3).

▶ Lemma 3.2. Let H be a fixed connected graph and m := diam(H). Given any algorithm A
which solves H-Subgraph-Free-Deletion on any vertex-weighted instance (G, w : V (G) →
N) in time f(tw(G)) · |V (G)|c for some function f and constant c, the following algorithm
solves H-Subgraph-Free-Deletion-m-Stitching in time f(tw(Q)) · |V (G)|c where Q =
G[Nm

G [J]].
Algorithm Stitch-H-Del
Input: a vertex-weighted graph (G, w : V (G) → N), a vertex set J ⊆ V (G), and a feasible
solution S1 on G, i.e., graph G − S1 has no subgraph isomorphic to H.
Output: a feasible solution S′ on G, such that for all other feasible solutions S∗, we have
w(S′) ≤ w(S∗ ⊕m

G,J S1).

SWAT 2024

19:6 Fixed-Parameter Tractable Certified Algorithms in Planar Graphs and Beyond

1. Let F = G[Nm
G [J] \ (S1 \ J)].

2. Let S2 be the output of the algorithm A on input (F, w|V (F)).
3. Return S2 ⊕m

G,J S1 if w(S2 ⊕m
G,J S1) < w(S1) and S1 otherwise.

Proof. The running time is clearly dominated by that of A. Notice, towards proving
correctness, that S2 ⊕m

G,J S1 is feasible: the set S′
2 := S2 ∪ (V (G) \ V (F)) ∪ (S1 ∩ Nm

G (J)) is
an H-deletion set in G and thus, by the m-stitchability of H-Subgraph-Free-Deletion
and definition of F , we find that S′

2 ⊕m
G,J S1 = S2 ⊕m

G,J S1 is an H-deletion set.
Now assume by way of contradiction that there is a feasible solution S3 such that

w(S2 ⊕m
G,J S1) > w(S3 ⊕m

G,J S1). Then we have that:

w|V (F)(S2) = w(S2) = (since S2 ⊆ V (F))
= w(S2 ∩ Nm

G [J]) (since V (F) ⊆ Nm
G [J])

= w(S1 \ J) + w(S2 ∩ Nm
G [J]) − w(S1 \ J)

= w
(
(S1 \ J) ∪ (S2 ∩ Nm

G [J])
)

− w(S1 \ J) (since V (F) ∩ (S1 \ J) = ∅)
= w(S2 ⊕m

G,J S1) − w(S1 \ J) (by def. of stitch)
> w(S3 ⊕m

G,J S1) − w(S1 \ J) (by assumption on S3)
= w

(
(S1 \ J) ∪ (S3 ∩ Nm

G [J])
)

− w(S1 \ J) (by def. of stitch)
= w

(
(S3 ∩ Nm

G [J]) \ (S1 \ J)
)

(w(A ∪ B) − w(A) = w(B \ A))
= w

(
S3 ∩ (Nm

G [J] \ (S1 \ J)
)

((A ∩ B) \ C = A ∩ (B \ C))
= w(S3 ∩ V (F)) (by def. of F)
= w|V (F)(S3 ∩ V (F))

which contradicts the fact that S2 was optimal on (F, w|V (F)) since S3 ∩ V (F) is an H-
deletion set on F (because the property of being an H-deletion set is closed under induced
subgraphs). ◀

Since – in contrast to H-deletion sets – the property of being a dominating set is not closed
under taking induced subgraphs, our algorithm for Dominating Set-2-Stitching will
require slightly different ideas from those in Lemma 3.2. Indeed, rather than finding a
solution that is locally optimal after the removal of S1 \ J (as we did in the previous lemma),
we will instead find a minimum-weight set that dominates all vertices which are not already
dominated by S1 \ J .

▶ Lemma 3.3. Given any algorithm A which solves Dominating Set on any vertex-weighted
instance (G, w : V (G) → N) in time f(tw(G)) · |V (G)|c for some function f and constant c,
the following algorithm solves Dominating Set-2-Stitching in time f(tw(Q)) · |V (G)|c
where Q = N2

G[J].
Algorithm Stitch-Dom-Set
Input: a vertex-weighted graph (G, w : V (G) → N), a vertex set J ⊆ V (G), and a
dominating set S1 on G.
Output: a dominating set S′ in G, such that, for all other dominating sets S∗, we have
w(S′) ≤ w(S∗ ⊕2

G,J S1).
1. Define F to be the graph obtained from G[N2

G[J]] by adding a new vertex f with
NF (f) := NG(NG[J]). (Vertex f is adjacent to the vertices at distance exactly two
from J in G.)

B. M. Bumpus, B. M. P. Jansen, and J. Venne 19:7

2. Define wF : V (F) → N as

wF : x 7→

{
0 if x ∈ (S1 \ J) ∪ {f}
w(x) otherwise.

(1)

3. Let S2 = S′
2 \ {f} where S′

2 is the output of algorithm A on input (F, wF).
4. Return S2 ⊕2

G,J S1 if w(S2 ⊕2
G,J S1) < w(S1) and S1 otherwise.

Proof. The proofs of the running-time bound and feasibility of S2 ⊕2
G,J S1 are virtually

identical to Lemma 3.2. Notice that we can assume that S1 ∩ N2
G(J) ⊆ S2 since, by its

definition in the algorithm above, wF (S1 \ J) = 0. The rest of the proof will make use of the
following auxiliary definition.

▶ Definition 3.4. Given a vertex subset X of a graph H, an X-dominating set in H is a set
S ⊆ V (H) such that y ∈ NH [S] for all y ∈ V (H) \ X.

We claim that S2 is a minimum-weight NF (f)-dominating set in G[N2
G[J]] with respect

to weight function w. To see this, first of all note that S2 is a NF (f)-dominating set
since it dominates every vertex in F − f−NF (f) = G[N2

G[J]] − NF (f): the vertex f that
is removed from the dominating set S′

2 in F only dominates vertices of {f} ∪ NF (f), so
the rest is dominated by S′

2 \ {f} = S2. Now suppose by way of contradiction that there
is an NF (f)-dominating set D in G[N2

G[J]] with w(D) < w(S2). Then, since wF (f) = 0,
wF (D ∪ {f}) = w(D) < w(S2) = wF (S2 ∪ {f}) which contradicts the fact that S2 ∪ {f} is a
minimum dominating set on (F, wF).

Now take any dominating set S3 in G. Observe that (S3 ⊕2
G,J S1) ∩ N2

G[J] is an NF (f)-
dominating set in G[N2

G[J]] and thus, by what we just showed,

w
(
(S3 ⊕2

G,J S1) ∩ N2
G[J]

)
≥ w(S2). (2)

Using the fact that S1 \ J = (S1 \ N2
G[J]) ∪ (S1 ∩ N2

G(J)), we thus have:

w(S3 ⊕2
G,J S1) = w

(
(S1 \ J) ∪ (S3 ∩ N2

G[J])
)

(by def. of stitch)
= w(S1 \ N2

G[J]) + w
(
(S1 ∩ N2

G(J)) ∪ (S3 ∩ N2
G[J])

)
(by fact above)

= w(S1 \ N2
G[J]) + w

(
(S3 ⊕2

G,J S1) ∩ N2
G[J]

)
(by def. of stitch)

≥ w(S1 \ N2
G[J]) + w(S2) (by Inequality (2))

= w(S1 \ N2
G[J]) + w

(
(S1 ∩ N2

G(J)) ∪ S2
)

(since S1 ∩ N2
G(J) ⊆ S2)

= w(S1 \ N2
G[J]) + w

(
(S1 ∩ N2

G(J)) ∪ (S2 ∩ N2
G[J])

)
(since S2 ⊆ V (F) \ {f})

= w
(
(S1 \ J) ∪ (S2 ∩ N2

G[J])
)

(since N2
G[J] \ N2

G(J) = J)
= w(S2 ⊕2

G,J S1). (by def. of stitch)
◀

From what we’ve seen so far in this section, we have that both Dominating Set and
H-Subgraph-Free-Deletion are stitchable (by Lemma 3.1). Thus, since these problems lie
in FPT parameterized by tree-width (as we recall for convenience in Theorem 3.5 below), we
can conclude by Lemmas 3.2 and 3.3 that both H-Subgraph-Free-Deletion-Stitching
and Dominating Set-Stitching also lie in FPT.

▶ Theorem 3.5 ([4, 5]). Given any weighted graph (G, w : V (G) → N) with tree-width at
most k, we can solve:

H-Subgraph-Free-Deletion in time 2O(k) · |V (G)|O(1) when H is a clique [5],

SWAT 2024

19:8 Fixed-Parameter Tractable Certified Algorithms in Planar Graphs and Beyond

H-Subgraph-Free-Deletion in time 2O(k)µ∗(H) log k ·|V (G)|O(1) when H is a connected
graph that is not a clique [5], and
Dominating Set in 2O(k) · |V (G)|O(1) [4, page 176],

where µ∗(H) for a connected graph H denotes the maximum, over all connected vertex
sets A ⊆ V (H) satisfying NH(NH [A]) ̸= ∅, of the quantity |NH(A)|.

Furthermore, since both H-Subgraph-Free-Deletion and Dominating Set are guess-
able, we can apply Theorem 3.5 to obtain (Corollary 3.6) polynomial time, certified algo-
rithms for H-Subgraph-Free-Deletion and Dominating Set on minor-closed classes
with bounded local tree-width.

▶ Corollary 3.6. For any minor-closed graph class C of λ-linear local tree-width
and each ε > 0 there are (1 + ε)-certified algorithms solving Dominating Set and
H-Subgraph-Free-Deletion whenever the input is of the form (G, w) with G ∈ C and
w : V (G) → N a polynomially-bounded weight function. Furthermore these algorithms respec-
tively admit the following worst-case running-time bounds:

2O(λ/ε) · |V (G)|O(1) in the case of H-Subgraph-Free-Deletion when H is a clique,
2O(k)µ∗(H) log k · |V (G)|O(1) (where µ∗(H) is the constant of Theorem 3.5 and k equals
diam(H)λ/ε) in the case of H-Subgraph-Free-Deletion for a connected graph H that
is not a clique, and
2O(2λ/ε) · |V (G)|O(1) in the case of Dominating Set.

4 Proving Theorem 1.7

The proof of Theorem 1.7 takes inspiration from Baker’s technique [2] for designing polynomial-
time approximation schemes on planar graphs. It will occur in three steps: we will outline
the algorithm in Section 4.2.1, show that it has the desired running time in Section 4.2.2,
and prove its correctness in Section 4.2.3. However, before doing so we shall briefly establish
a few useful definitions in Section 4.1 which will streamline the presentation of what follows.

4.1 Definitions for Theorem 1.7

Throughout we assume all graphs are connected unless stated otherwise and we denote any
interval {a, a + 1, . . . , b} in Z as [a, b]; furthermore we denote by ιa,b the obvious inclusion
ιa,b : [a, b] ↪→ Z given by ιa,b(i) = i for a ≤ i ≤ b. Often, we shall refer to ιa,b itself as an
interval.

▶ Definition 4.1 (m-boundary of an interval). Given any integer m ≥ 1, we define the left
and right m-boundaries of any interval ιa,b to respectively be the intervals

δL
m(ιa,b) : [a − m, a − 1] ↪→ Z and δR

m(ιa,b) : [b + 1, b + m] ↪→ Z.

We define the closed m-boundary of ιa,b as δm[ιa,b] : [a − m, a] ∪ [a, b] ∪ [b, b + m] ↪→ Z while
the open m-boundary of ιa,b is defined as δm(ιa,b) := δL

m(ιa,b) ∪ δR
m(ιa,b).

Recall that, given any vertex v in a graph G, the eccentricity of v in G is the maximum
length of a shortest path from v to any other vertex. Here we will denote this as ϵ̂(v, G) or
simply as ϵ̂(v) if G is understood from context.

B. M. Bumpus, B. M. P. Jansen, and J. Venne 19:9

Ripples
When one drops a stone in a pond, an outward-radiating rippling ring of waves forms where
the stone hit the surface of the water. In analogy to this phenomenon, we shall now define
an r-ripple1 in a graph as the sets of vertices (the waves, as it were) at fixed distances from
some given vertex r.

▶ Definition 4.2 (r-ripple). Given a vertex r in a graph G, we call the function

ρr : Z → 2V (G) where ρr : i 7→ {x ∈ V (G) : d(r, x) = i}

the r-ripple in G. The vertex-subsets that make up a ripple will be referred to as waves: for
any integer i, we define the i-th wave in ρr to be the set ρr(i).

In Definition 4.2 above, we call the vertex r the center of the ripple. If the center of the
ripple is understood from context, then we simply denote the ripple as ρ. Notice that the i-th
wave of a ripple will always be empty if i is negative or if it is greater than the eccentricity
ϵ̂(r) of the center of the ripple; one should think of such as “dummy” indices. Our choice to
represent ripples as functions with domain Z is simply for notational convenience; indeed,
one could instead restrict these functions to simply view any r-ripple as a function with
domain {0, . . . , ϵ̂(r)}.

▶ Definition 4.3 ((a, b)-subripple; see also Figure (1)). Let ρ be an r-ripple in a graph G

and ιa,b : [a, b] ↪→ Z be an interval. We define the (a, b)-subripple in ρ to be the function
ρa,b : [a, b] → 2V (G) defined as the composite ρa,b := ρ ◦ ιa,b. The width of a finite subripple
is the number of waves it consists of (e.g. the width of an (a, b)-ripple is |b − a + 1|).

For any graph G and (a, b)-subripple of an r-ripple ρ in G, the graph G[
⋃

a≤i≤b ρ(i)] is a
subgraph of the graph G′ obtained from G by contracting all vertices v with dG(r, v) < a

into r. As
⋃

a≤i≤b ρ(i) is contained in N b−a+1
G′ [r], the tree-width of G[

⋃
a≤i≤b ρ(i)] is bounded

in terms of the local tree-width of G′. Whenever G comes from a minor-closed graph class C
of bounded local tree-width, we have G′ ∈ C which ensures a bound on its local tree-width.
This yields the following observation.

▶ Observation 4.4 ([11]). Let C be a minor-closed class of graphs which has λ-bounded linear
local tree-width. If ρ is an r-ripple in a graph G belonging to C, then the tree-width of any
(a, b)-subripple of ρ is upper-bounded by tw(G[

⋃
a≤i≤b ρ(i)]) ≤ λ(|b − a + 1|).

We note that one can of course use composition to generalize the notion of m-boundaries
from intervals (Definition 4.1) to (sub)ripples. Indeed, we overload the notation so that, for
example, the left m-boundary of any (a, b)-subripple ρa,b is denoted δL

m(ρa,b) and it is defined
as the composite ρ ◦ δL

m(ιa,b). One can similarly define right, open and closed m-boundaries
of any (a, b)-subripple.

In the rest of this section we shall make two further definitions related to simple construc-
tions with ripples: modular slices of a ripple (Definition 4.5) and the difference of a ripple and
a modular slice (Definition 4.6). Since both of these concepts are very easy to grasp visually,
we defer their formal definitions and instead define them first “by picture” in Figure (1)
below. The notation S mod 4

2 (i) in Figure (1) denotes the i-th modular slice (an evenly spaced
sequence of subripples with a given start-index i) and the difference ρ ⊖ S mod 4

2 (i) is simply
the sequence of subripples that is “left-over” from ρ after we remove the modular slice
S mod 4

2 (i).

1 This is sometimes referred to as a “layering” in the literature.

SWAT 2024

19:10 Fixed-Parameter Tractable Certified Algorithms in Planar Graphs and Beyond

index : 0 1 2 3 4 5 6 7 8 9

ρ : ρ(0) ρ(1) ρ(2) ρ(3) ρ(4) ρ(5) ρ(6) ρ(7) ρ(8) ρ(9)

ρ1,4 : | |

S mod 4
2 (0) : | | | | | |

ρ ⊖ S mod 4
2 (0) | | | |

ρ0,1 ρ4,5 ρ8,9

ρ2,3 ρ6,7

Figure 1 Illustration of subripples, modular slices, and remainders.

▶ Definition 4.5 (modular slices). Let ρ be an r-ripple in a graph G. For any integers s and
k with 1 ≤ s ≤ k and any integer i ∈ {0, 1, . . . , k − 1} define the set

Zk
s(i) :=

⋃
j∈Z

{j · k + i, j · k + i + 1, . . . , j · k + i + s − 1}

and consider its obvious inclusion ιs,k,i : Zk
s ↪→ Z. We call the map S mod k

s (i) : Zk
s → 2V (G)

defined as the composite S mod k
s := ρ ◦ ιs,k,i the i-th modular k-slice of width s in ρ.

▶ Definition 4.6 (Remainder). Let s, k, and i be integers with 1 ≤ s ≤ k and 0 ≤ i ≤ k − 1.
Let ρ be an r-ripple in a graph G and S mod k

s (i) : Zk
s ↪→ 2V (G) be a modular k-slice of width

s in ρ. Letting ιs,k,i : Z \ Zk
s ↪→ Z be the obvious inclusion of Z \ Zk

s into Z, we define the
remainder of S mod k

s (i) in ρ, denoted as ρ ⊖ S mod k
s (i), to be the composite ρ ◦ ιs,k,i.

To ease legibility and conciseness, throughout this document, we shall treat any subripple
(resp. modular slice or difference thereof) as the union of all of its constituent waves
whenever performing set-theoretic operations. For example, for any subset X of V (G) and
any (a, b)-subripple ρa,b, we shall simply write X ∩ ρa,b instead of X ∩ (

⋃
a≤i≤b ρ(i)).

Pigeonhole arguments on ripples and their modular slices
We will conclude this preliminary section by proving two auxiliary lemmas (Lemmas 4.7
and 4.9) which will be of use to us in the proof of Theorem 1.7. Intuitively, the next lemma
says that for any weighted vertex set X in a graph G, when considering the modular k-slice
of width s of a ripple in G, there will be an offset i such that the vertices contained in its
waves at offset i contribute at most an s

k fraction of the total weight of X.

▶ Lemma 4.7. Let ρ be an r-ripple in a weighted graph (G, w : V (G) → R+) and let k ≥ 1
be an integer. For any vertex set X ⊆ V (G) and integer 1 ≤ s ≤ k, there exists an integer
i ∈ {0, . . . , k − 1} such that S mod k

s (i) satisfies w(X ∩ S mod k
s (i)) ≤ s

k w(X).

Proof. Seeking a contradiction, assume no such index i exists and hence conclude, by
summing over each index 0 ≤ j ≤ k − 1, that∑

0≤j≤k−1
w(X ∩ S mod k

s (j)) >
∑

0≤j≤k−1

s

k
w(X) = s · w(X) 1

k
= s · w(X). (3)

However, since each non-empty wave of the ripple ρ is counted by exactly s out of k of the
modular k-slices in the sum above, we can contradict the strictness of Inequality (3) by
verifying that

∑
0≤j≤k−1 w(X ∩ S mod k

s (j)) =
∑

j′∈Z s · w(X ∩ ρ(j′)) = s · w(X). ◀

B. M. Bumpus, B. M. P. Jansen, and J. Venne 19:11

Now consider, for example, the difference ρ ⊖ S mod 4
2 (0) shown in Figure 1 above. It is easy

to see (by inspection of the figure) that, after taking the closed 1-boundary of every subripple
in ρ ⊖ S mod 4

2 (0), the domains of the resulting subripples partition2 the domain of ρ. In
this case, we say simply that the extended subripples partition ρ. We can state this more
generally as the following observation.

▶ Observation 4.8. Let 0 ≤ 2s ≤ k be integers and ρ be an r-ripple in a graph G. If S mod k
2s

is a modular k-slice of width 2s in ρ, then
(
δs[ρa,b]

)
ρa,b∈ρ⊖S mod k

2s (i) partitions ρ for any i.

Observation 4.8 together with a pigeon-hole-like argument similar to that of the proof of
Lemma 4.7 yields the following lemma. It applies to two vertex subsets I and S in a weighted
graph G, which will later correspond to the solution S found by our algorithm and a solution I

that is purported to be better. The lemma applies when the weight of S \ I within the waves
of a ripple ρ, on vertices outside the i-th modular k-slice of a certain width 2s, is strictly
larger than the weight of I \ S. It guarantees the existence of a single subripple ρa,b with the
following special property: the weight of S \ I inside the subripple ρa,b is strictly larger than
the weight of I \ S inside the extended subripple ρa−s,...,b+s. We will later use this lemma
to argue that under certain conditions, a local optimization step can strictly improve the
solution.

▶ Lemma 4.9. Let ρ be an r-ripple in a weighted graph (G, w : V (G) → R+) and S mod k
s be

the modular k-slice of width 2s in ρ. If there are sets S, I ⊆ V (G) and an index i such that

w((S \ I) ∩ (ρ ⊖ S mod k
2s (i))) > w(I \ S), (4)

then there exists ρa,b ∈ ρ ⊖ S mod k
2s (i) satisfying w((S \ I) ∩ ρa,b) > w((I \ S) ∩ δs[ρa,b]).

Proof. Seeking a contradiction, assume no such subripple ρa,b exists; i.e. assume that

w((S \ I) ∩ ρa,b) ≤ w((I \ S) ∩ δs[ρa,b]) (5)

for all subripples ρa,b in the difference ρ ⊖ S mod k
2s (i). Then we have

w((S \ I) ∩ (ρ ⊖ S mod k
2s (i)) =

∑
ρa,b∈ρ⊖S mod k

2s (i)

w((S \ I) ∩ ρa,b) (by definition)

≤
∑

ρa,b∈ρ⊖S mod k
2s (i)

w((I \ S) ∩ δs[ρa,b]) (by Equation (5))

= w(I \ S)

where the last equality holds because
(
δs[ρa,b]

)
ρa,b∈ρ⊖S mod k

s (i) is a partition of ρ (by Obser-
vation 4.8). However, this contradicts Inequality (4) as desired. ◀

4.2 Proof of Theorem 1.7
We are now finally ready to prove Theorem 1.7: we will first describe (Section 4.2.1) the
algorithm mentioned in the statement of Theorem 1.7; then we shall establish its running time
guarantees (Section 4.2.2) and finally its correctness (Section 4.2.3). Using the existence of an
algorithm for Π-m-Stitching, it will be easy to describe our (1 + ε)-certified algorithms; the
main challenge lies in the proof that the solution it outputs is optimal for a (1+ε)-perturbation
of the input.

2 Notice that, although it is not drawn, ρ(0) is in the 1-boundary of the element ρ−1,−2 of ρ ⊖ S mod 4
2 (0).

SWAT 2024

19:12 Fixed-Parameter Tractable Certified Algorithms in Planar Graphs and Beyond

4.2.1 The algorithm
Throughout the rest of the proof of Theorem 1.7 we shall let Π be a vertex-optimization
problem as given in the statement of Theorem 1.7, i.e. it satisfies the following:
1. Π is guessable and m-stitchable for some given constant m ∈ N, and
2. there exists an algorithm A that solves Π-m-Stitching in time f(t)·|V (G)|O(1), where t =

tw(G[Nm
G [J]]) and f is some computable function.

In what follows, given any feasible solution S on an instance (G, w) of Π and any (a, b)-
subripple ρa,b of an r-ripple ρ, we denote by A((G, w), S, ρa,b) the output of running the
algorithm A for Π-m-Stitching on inputs (G, w), the vertex set J of ρa,b, and the solution S.
The algorithm is defined as follows.

Algorithm StitchAndCertify
Input: a (connected) vertex-weighted graph (G, w : V (G) → N) and ε > 0.
Output: a vertex set Ŝ ⊆ V (G) and (1 + ε)-perturbation w′ of w such that Ŝ is an
optimal solution for Π on (G, w′).

1. Let r ∈ V (G) be an arbitrary vertex and let ρ be the r-ripple in G.
2. Let Ŝ be a feasible solution for Π on G (obtained by leveraging the guessability of Π;

c.f. Definition 1.6).
3. Let k = ⌈ 2m

ε ⌉ + 2m.
4. While there exists an (a, b)-subripple ρa,b of width k − 2m such that

w
(
A((G, w), Ŝ, ρa,b)

)
< w(Ŝ) (6)

then replace Ŝ with A((G, w), S, ρa,b).
5. Otherwise, return (Ŝ, w′ : V (G) → R+) where w′ is defined as

w′ : x 7→

{
w(x) if x ∈ Ŝ

(1 + ε)w(x) otherwise.
(7)

4.2.2 Running time
Recall that the parameter for Π-Stitching is the tree-width of the closed m-neighborhood
of the vertex set J along which we stitch. Each call to the algorithm A for Π-Stitching
(Inequality 6) made inside StitchAndCertify runs on a subripple of width k − 2m. Hence the
closed m-neighborhood of the subgraph along which we stitch is contained in δm[ρa,b], which
is a subripple of width k − 2m + 2m = k. By Proposition 4.4 we know that G[δm[ρa,b]] has
tree-width at most λk. These observations allow us to upper-bound the running time of each
call to A by f

(
tw(G[δm[ρa,b]])

)
· |V (G)|O(1) ≤ f

(
λk

)
· |V (G)|O(1).

Now, since all other lines of the algorithm clearly take polynomial time (recall that
Π is guessable by Definition 1.6), the calls to A dominate the running time. Note that,
for W = maxx∈V (G) w(x), the number of iterations in which we find a strictly better solution
is bounded by W ·n: the weight of the initial solution is at most W ·n, all weights are integers,
and the value cannot improve to below 0. Thus, since k ∈ O(m/ε) the entire algorithm runs
in time at most W · f(O(λm/ε)) · |V (G)|O(1), as desired.

4.2.3 Proof of correctness
To prove that StitchAndCertify is indeed a (1 + ε)-certified algorithm, we must show that the
output (Ŝ, w′ : V (G) → R+) consists of an optimal solution Ŝ for Π on the instance (G, w′)
(which is clearly a (1 + ε)-perturbation of the input (G, w)). It is easy to see that Ŝ is indeed
a solution to Π, since it is initialized as a feasible solution and is only replaced by the output
of A, which is also a feasible solution by definition. Hence it suffices to prove optimality.

B. M. Bumpus, B. M. P. Jansen, and J. Venne 19:13

Assume, by way of contradiction, that Ŝ is not optimal. Then there is a solution I for Π
on (G, w′) such that

w′(Ŝ) > w′(I) =⇒ w′(Ŝ \ I) > w′(I \ Ŝ) =⇒ w(Ŝ \ I) > (1 + ε)w(I \ Ŝ) (8)

(by the definition of w′; see Equation (7)). The remainder of this proof will rest on the
following claim which states that not only is w(Ŝ \ I) > (1 + ε)w(I \ Ŝ), but moreover, there
exists an index of the modular slice whose intersection with Ŝ \ I has greater weight than
that of I \ Ŝ.

▷ Claim 4.10. For the given Ŝ and I, there exists an index 0 ≤ i ≤ k − 1 such that the
preconditions of Lemma 4.9 are met for s = m; stating this explicitly, there is a choice of i

such that w((Ŝ \ I) ∩ (ρ ⊖ S mod k
2m (i))) > w(I \ Ŝ).

Claim 4.10 (whose proof we defer to the end of this section) enables us to apply Lemma 4.9
in order to find a “heavy” subripple; i.e. a subripple ρa,b ∈ ρ ⊖ S mod k

2m (i) satisfying

w((Ŝ \ I) ∩ ρa,b) > w((I \ Ŝ) ∩ δm[ρa,b]). (9)

To aid the upcoming derivation, we now argue that the sets A := Ŝ\ρa,b, B := (I\Ŝ)∩δm[ρa,b],
and C := I ∩ Ŝ ∩ ρa,b, form a partition of D := (Ŝ \ ρa,b) ∪ (I ∩ δm[ρa,b]). To see this, observe
first that A, B, C are disjoint: A ∩ C = ∅ since C lives inside ρa,b but A outside; A ∩ B = ∅
since A lives inside Ŝ but B outside; and B ∩ C = ∅ since C lives inside Ŝ but B outside.
To establish that A, B, C partition D, it therefore suffices to argue their union covers D.
For this, the crucial insight is that those vertices of I ∩ Ŝ ∩ δm[ρa,b] that are not contained
in I ∩ Ŝ ∩ ρa,b, belong to Ŝ \ ρa,b and therefore to A.

Using this property we now deduce

w(Ŝ) = w
(
Ŝ \ ρa,b

)
+ w

(
Ŝ ∩ ρa,b

)
= w

(
Ŝ \ ρa,b

)
+ w

(
(Ŝ \ I) ∩ ρa,b

)
+ w

(
I ∩ Ŝ ∩ ρa,b

)
> w

(
Ŝ \ ρa,b

)
+ w

(
(I \ Ŝ) ∩ δm[ρa,b]

)
+ w

(
I ∩ Ŝ ∩ ρa,b

)
(by Inequality (9))

= w
(
(Ŝ \ ρa,b) ∪ (I ∩ δm[ρa,b])

)
(A, B, C partition D)

≥ w
(
(Ŝ \ ρa,b) ∪ (I ∩ Nm

G [ρa,b])
)

(δm[ρa,b] ⊇ Nm
G [ρa,b])

= w(I ⊕m
G,ρa,b

Ŝ) (by Definition 1.4).

But then this means that the m-stitch of I onto Ŝ along the subripple ρa,b of width
k − 2m yields a solution (since Π is m-stitchable) whose weight under w is strictly better
than Ŝ. By definition of Π-m-Stitching, the output of A for the subripple ρa,b is at least
as good, thus satisfying Inequality (6) of StitchAndCertify. We conclude that the algorithm
cannot possibly have terminated. Thus, since we have found our desired contradiction, all
that remains to be done is to prove Claim 4.10.

Proof of Claim 4.10. Applying Lemma 4.7 on (G, w) and ρ with X = (Ŝ \ I) we obtain an
index i such that modular k-slice S mod k

2m (i) satisfies

w((Ŝ \ I) ∩ S mod k
2m (i)) ≤ 2m

k
w(Ŝ \ I). (10)

SWAT 2024

19:14 Fixed-Parameter Tractable Certified Algorithms in Planar Graphs and Beyond

Now observe that, by the definition of ⊖ (Definition 4.6), we have

w((Ŝ \ I) ∩ (ρ ⊖ S mod k
2m (i))) = w(Ŝ \ I) − w((Ŝ \ I) ∩ S mod k

2m (i))

≥ w(Ŝ \ I) − 2m

k
w(Ŝ \ I) (by Inequality (10))

= k − 2m

k
w(Ŝ \ I)

>
k − 2m

k
(1 + ε)w(I \ Ŝ) (by Inequality (8)).

Notice that, since we defined k as k = ⌈ 2m
ε ⌉ + 2m (Line 3 of StitchAndCertify), we must have

ε ≥ 2m
k−2m . Combining this observation with our derivation above, we obtain precisely the

desired inequality of Claim 4.10 as follows.

w((Ŝ\I) ∩ (ρ ⊖ S mod k
2m (i))) >

k − 2m

k
(1 + ε)w(I \ Ŝ) (from the derivation above)

≥ k − 2m

k
(1 + 2m

k − 2m
)w(I \ Ŝ) = w(I \ Ŝ).

This concludes the proof of Claim 4.10 and hence also the proof of Theorem 1.7. ◁

5 Discussion

Our main theorem allows us to obtain FPT-time certified algorithms for vertex-minimization
problems such as H-Subgraph-Free-Deletion and Dominating Set (Corollary 3.6 of
Theorem 1.7). However, as mentioned in Section 1, our results also apply to the complementary
maximization problems simply by virtue of being certified algorithms. Inspired by Makarychev
and Makarychev’s notation [13], we define the notion of the complementary problem as
follows.

▶ Definition 5.1. Fix a vertex-minimization (resp. maximization) problem Π as in Defini-
tion 2.2. The complementary vertex-maximization (resp. minimization) problem is obtained
by equipping the vertex-subset property that encodes feasibility for Π with following maximiza-
tion (resp. minimization) objective: for any given vertex-weighted instance (G, w : V (G) → N)
find a set S ⊆ V (G) such that w(V (G) \ S) is maximum (resp. minimum) subject to the
requirement that S be feasible with respect to Π.

Makarychev and Makarychev [13] discuss many examples of complementary problems;
perhaps the prototypical example pair is Vertex Cover and Independent Set: every
minimum vertex cover S in a graph G corresponds to a maximum independent set V (G) \ S.

Notice that one can deduce [13, Theorem 5.11] that any certified algorithm A for some
problem Π is also an approximation algorithm for the complementary problem to Π; this
is recalled below for completeness. Furthermore, it is easy to show a polynomial-time
equivalence between certified algorithms for a problem and its complementary problem.

▶ Theorem 5.2 ([13]). If A is a γ-certified algorithm for a vertex-minimization (resp. maximi-
sation) problem Π, then A is a γ-approximation algorithm for both Π and its complementary
vertex-maximization (resp. minimization) problem.

Recalling that Vertex Cover is just K2-Deletion, we find that Corollary 3.6 yields a
polynomial-time (1 + ε)-certified algorithm for Independent Set on minor-closed graph
classes of bounded local tree-width. This improves – in terms of generality and running time
– on the XP-time (1 + ε)-certified algorithm for Independent Set on planar graphs which
was due to Angelidakis, Awasthi, Blum, Chatziafratis and Dan [1].

B. M. Bumpus, B. M. P. Jansen, and J. Venne 19:15

Further questions

As we mentioned in Section 1, any certified algorithm A for a problem Π happens to also be
an approximation algorithm for both Π and its complementary problem Πc. Thus a natural
direction for future work is to seek (1 + ε)-certified algorithms for other problems that admit
efficient polynomial-time approximation schemes. In contrast, by Theorem 5.2, whenever
either Π or Πc do not admit any EPTAS, then the question that we just posed is clearly
not a viable direction for further work. Thus for such problems such as weighted planar
Feedback Vertex Set (for which, for instance, bidimensional techniques [10] do not apply)
even simply finding XP-time certified algorithms can be a fruitful direction of research.

Another interesting direction for future research concerns the range of weight values. Our
running-time analysis crucially relies on the assumption that the weights are non-negative
integers of value at most nO(1): this property ensures that the local search terminates
after nO(1) improvements. The algorithm by Angelidakis et al. [1] also requires polynomially
bounded weights. Is it possible to give FPT-time (1 + ε)-certified algorithms on inputs whose
weights are encoded in nO(1) bits, but may have value 2Ω(n)?

References
1 H. Angelidakis, P. Awasthi, A. Blum, V. Chatziafratis, and C. Dan. Bilu-linial stability,

certified algorithms and the independent set problem. In Michael A. Bender, Ola Svensson,
and Grzegorz Herman, editors, 27th Annual European Symposium on Algorithms, ESA 2019,
September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages 7:1–7:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.7.

2 B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J. ACM,
41(1):153–180, January 1994. doi:10.1145/174644.174650.

3 Y. Bilu and N. Linial. Are stable instances easy? Comb. Probab. Comput., 21(5):643–660,
September 2012. doi:10.1017/S0963548312000193.

4 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

5 Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michał Pilipczuk. Hitting forbidden
subgraphs in graphs of bounded treewidth. Information and Computation, 256:62–82, 2017.
doi:10.1016/j.ic.2017.04.009.

6 M. Delorme, S. García, J. Gondzio, J. Kalcsics, D. Manlove, and W. Pettersson. New algorithms
for hierarchical optimisation in kidney exchange programmes. Technical report ERGO 20–005,
Edinburgh Research Group in Optimization, 2020. URL: https://optimization-online.org/
2020/10/8058/.

7 Erik D. Demaine and Mohammad Taghi Hajiaghayi. Equivalence of local treewidth and linear
local treewidth and its algorithmic applications. In J. Ian Munro, editor, Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, pages 840–849.
SIAM, 2004. URL: http://dl.acm.org/citation.cfm?id=982792.982919.

8 R. Diestel. Graph theory. Springer, 2010. ISBN:9783642142789.
9 David Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica,

27(3):275–291, 2000. doi:10.1007/S004530010020.
10 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Bidimensionality

and EPTAS. In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2011, pages 748–759. SIAM, 2011. doi:
10.1137/1.9781611973082.59.

11 M. Grohe. Local tree-width, excluded minors, and approximation algorithms. Combinatorica,
23:613–632, 2000. doi:10.1007/s00493-003-0037-9.

SWAT 2024

https://doi.org/10.4230/LIPIcs.ESA.2019.7
https://doi.org/10.1145/174644.174650
https://doi.org/10.1017/S0963548312000193
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.ic.2017.04.009
https://optimization-online.org/2020/10/8058/
https://optimization-online.org/2020/10/8058/
http://dl.acm.org/citation.cfm?id=982792.982919
https://doi.org/10.1007/S004530010020
https://doi.org/10.1137/1.9781611973082.59
https://doi.org/10.1137/1.9781611973082.59
https://doi.org/10.1007/s00493-003-0037-9

19:16 Fixed-Parameter Tractable Certified Algorithms in Planar Graphs and Beyond

12 T. Hazan, G. Papandreou, and D. Tarlow. Bilu-Linial Stability, pages 375–400. The MIT
Press, 2016.

13 Konstantin Makarychev and Yury Makarychev. Perturbation resilience. In Tim Roughgarden,
editor, Beyond the Worst-Case Analysis of Algorithms, pages 95–119. Cambridge University
Press, 2020. doi:10.1017/9781108637435.008.

14 Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Bilu-linial stable
instances of max cut and minimum multiway cut. In Chandra Chekuri, editor, Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pages
890–906. SIAM, 2014. doi:10.1137/1.9781611973402.67.

15 David Manlove. Algorithmics of matching under preferences, volume 2. World Scientific, 2013.

https://doi.org/10.1017/9781108637435.008
https://doi.org/10.1137/1.9781611973402.67

Sparsity-Parameterised Dynamic Edge Colouring
Aleksander B. G. Christiansen #

Technical University of Denmark, Lyngby, Denmark

Eva Rotenberg #

Technical University of Denmark, Lyngby, Denmark

Juliette Vlieghe #

Technical University of Denmark, Lyngby, Denmark

Abstract
We study the edge-colouring problem, and give efficient algorithms where the number of colours is
parameterised by the graph’s arboricity, α. In a dynamic graph, subject to insertions and deletions,
we give a deterministic algorithm that updates a proper ∆ + O(α) edge colouring in poly(log n)
amortized time. Our algorithm is fully adaptive to the current value of the maximum degree and
arboricity.

In this fully-dynamic setting, the state-of-the-art edge-colouring algorithms are either a ran-
domised algorithm using (1 + ε)∆ colours in poly(log n, ϵ−1) time per update, or the naive greedy
algorithm which is a deterministic 2∆ − 1 edge colouring with log(∆) update time.

Compared to the (1 + ε)∆ algorithm, our algorithm is deterministic and asymptotically faster,
and when α is sufficiently small compared to ∆, it even uses fewer colours. In particular, ours is
the first ∆ + O(1) edge-colouring algorithm for dynamic forests, and dynamic planar graphs, with
polylogarithmic update time.

Additionally, in the static setting, we show that we can find a proper edge colouring with ∆ + 2α

colours in O(m log n) time. Moreover, the colouring returned by our algorithm has the following
local property: every edge uv is coloured with a colour in {1, max{deg(u), deg(v)} + 2α}. The time
bound matches that of the greedy algorithm that computes a 2∆ − 1 colouring of the graph’s edges,
and improves the number of colours when α is sufficiently small compared to ∆.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases edge colouring, arboricity, hierarchical partition, dynamic algorithms, amort-
ized analysis

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.20

Related Version This paper is based on the master’s thesis of Juliette Vlieghe, supervised by Eva
Rotenberg and Aleksander B. G. Christiansen and defended on 30th June 2023.
Master’s Thesis: https://doi.org/10.13140/RG.2.2.18471.52648

Funding This work was supported by the VILLUM Foundation grant VIL37507 “Efficient Recompu-
tations for Changeful Problems”.

Acknowledgements We thank Jacob Holm for his interest in this work, and for comments and
improvements to an earlier version of this manuscript. We also thank an anonymous reviewer for
their highly detailed feedback and suggestions for improvement.

1 Introduction and related work

When working on rapidly evolving, large scale graphs, algorithms need to adapt to the
change in data quickly. The dynamic model is interested in maintaining some property in a
graph undergoing edge insertions and/or deletions, and has led to many fast algorithms, with
polylogarithmic update and query time, in particular through the use of amortized analysis.

© Aleksander B. G. Christiansen, Eva Rotenberg, and Juliette Vlieghe;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 20; pp. 20:1–20:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abgch@dtu.dk
https://orcid.org/0000-0002-9486-9115
mailto:erot@dtu.dk
https://orcid.org/0000-0001-5853-7909
mailto:jmvvl@student.dtu.dk
https://orcid.org/0009-0004-0079-8523
https://doi.org/10.4230/LIPIcs.SWAT.2024.20
https://doi.org/10.13140/RG.2.2.18471.52648
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Sparsity-Parameterised Dynamic Edge Colouring

Graph colouring is a family of fundamental problems with many applications in computer
science. We study the edge-colouring problem: the goal is to assign edges colours such that
edges sharing an endpoint are coloured differently. This problem has implications in resource
allocation and scheduling, for example to allocate bandwidth in an optical network [17].

A C-edge colouring of a graph G = (V,E) can be represented by a function f : E →
{1, ..., C}, and the smallest palette size C for which there exists a proper C edge colouring is
called the edge chromatic number of G, denoted χ′. If ∆ is the maximum degree of G, then the
edge chromatic number is clearly at least ∆. Vizing [30] proved that G can always be coloured
with ∆ + 1 colours. On the other hand, Holyer showed that it is NP-complete to determine
the edge chromatic index of an arbitrary graph [21], and the problem remains NP-complete
even for cubic graphs. A (∆(uv) +C)-edge colouring is a proper colouring of the graph where
each edge uv receives a colour from {1, ...,∆(uv) + C}. Here ∆(uv) = max{d(u), d(v)}.

Vizing’s proof is constructive and suggests a way to extend a proper partial colouring to
a larger subgraph by recolouring O(∆ + n) edges. Furthermore, the colour changes can be
performed in polynomial time. However, so far the fastest algorithms for statically (∆ + 1)
edge colouring a graph spend O(m

√
n) [28] or Õ(m∆) [18] time. For certain graphs, faster

algorithms are known [4, 8].
It is interesting to see whether one can reduce the running time by slightly increasing

the palette size. This line of research has been pursued before. In particular, the problem
of 2∆ − 1 edge colouring can be solved greedily, yielding static algorithms running in near-
linear time [14] and dynamic algorithms with O(log ∆) update time [6]. In this dynamic
setting, there are known algorithms [13, 16] that achieve a randomized (1 + ϵ)∆ colouring in
poly(log n, ϵ−1) time, with ϵ > 0 by Duan, He, and Zhang [16], and later Christiansen [13].

In the distributed setting, Chang, He, Li, Pettie and Uitto [11] designed a randomized
∆ + O(

√
∆) edge colouring in poly(log n) rounds based on the Lovasz Local Lemma and

Barenboim, Elkin and Maimon [2] describe a simple deterministic distributed algorithm for
∆ +O(α) colouring in polylogarithmic time. There are many more papers achieving different
trade-offs between time and palette size. See for instance [3, 15, 19, 29] for different trade-offs
in the distributed setting, or the papers [11, 19] for a more extensive discussion.

For some algorithmic problems, especially ones where recourse is an important part of
the running time of an algorithm, or the recourse is of interest on its own, the best known
analysis follows a specific proof strategy; “solution oblivious analysis”. By solution oblivious,
we mean that we do not only give guarantees against worst case input graphs at each step of
the algorithm, we furthermore always, when analysing the next step, are robust against an
adversary changing the solution to the worst-possible solution before every update. Examples
of such analysis include the analysis of the SAP protocol for maintaining maximum matchings
in bipartite graphs of Bernstein, Holm and Rotenberg [5], the analysis of recourse in the
edge-colouring algorithms of Bernshteyn [3], Christiansen [13], and Duan, He and Zhang [16],
and the analysis of the fully-dynamic out-orientation scheme due to Brodal & Fagerberg [10],
in which a potential function bounds the reorientations by comparing to an existing (but
not necessarily efficient) algorithm that augments paths whose lengths are bounded in an
oblivious manner.

For the edge-colouring problem, an interesting lower bound has been proved by Chang,
He, Li, Pettie and Uitto: they show that there exists a graph, and a partial colouring of this
graph with a single uncoloured edge, such that to colour this edge, one needs to recolour a
subgraph of diameter Ω(∆

c log(cn
∆)). This is then also a lower bound on the number of edges

that need to be recoloured. This means that if we restrict ourselves to solution oblivious
analysis, a dynamic algorithm with polylogarithmic update time will need a palette of size

A. B. G. Christiansen, E. Rotenberg, and J. Vlieghe 20:3

at least ∆ +O
(

∆
poly(log n)

)
. The analysis of Christiansen [13], and Duan, He and Zhang [16]

for their (1 + ϵ)∆ dynamic edge-colouring algorithms are solution oblivious, which results in
algorithms that have a polynomial dependency on ϵ−1.

Whether one can design an algorithm with poly log update time that only uses ∆+O(∆1−ε)
colours for some constant ε > 0 remains a fundamental open problem. Improved results for
special classes of graphs, like forests, planar graphs or sparse graphs, also receive attention
in the community. In the static setting, it was shown by Bhattacharya, Costa, Panski and
Solomon [8] that one can compute a (∆ + 1) edge colouring in Õ(min{m

√
n,m∆} · α

∆)-time.
Here α is the arboricity of the graph, and it is equal to the smallest number of forests needed
to cover the edges of a graph. It is within a factor of 2 of other sparsity measures like the
maximum subgraph density and the degeneracy. Many other problems like, for instance,
maintaining dynamic matchings [22, 26], maintaining a dynamic data structure that can
answer adjacency queries efficiently [10] and maintaining a maximal independent set [25]
also have solutions that run faster in graphs with low arboricity.

Our contribution. A natural question is therefore to ask if one can further reduce the
palette size in dynamic graphs that are at all times sparse. In this paper, we show that this is
the case. More specifically, we show that there exists a dynamic algorithm that can maintain
an edge colouring with only ∆ +O(α) colours in poly-logarithmic update time. Since the
arboricity can be as large as ∆

2 , this is not always an improvement, however for many graph
classes like forests, planar graphs, and graphs with constant arboricity, the number of colours
used is significantly reduced compared to other efficient dynamic edge-colouring algorithms.

Tables 1, 2 and 3 summarise the results mentioned above and are not a comprehensive
overview of the state of the art.

Table 1 A comparison of static edge-colouring algorithms.

Palette size Time Notes Reference

∆ O(m log ∆) bipartite multigraph [14]

2∆(uv) − 1 O(m log ∆) [6]

∆ + 1 O(m
√

n) randomised [28]

∆ + 1 Õ(m∆) [18]

∆ + 1 Õ(min{m
√

n, m∆} · α
∆) [8]

∆(uv) + 1 O(n2∆) [13]

∆(uv) + 2α − 2 O(m log ∆) new

Independent work. In independent and concurrent work, Bhattacharya, Costa, Panski, and
Solomon also maintain a ∆ + O(α) edge colouring in amortised polylogarithmic time per
insertion or deletion [7].

SWAT 2024

20:4 Sparsity-Parameterised Dynamic Edge Colouring

Table 2 A comparison of dynamic edge-colouring algorithms. If G goes through a sequence
of insertions and deletions G1...GT , ∆max = max

1≤t≤T
∆(Gt) is the maximum ∆ on all graphs in the

sequence. αmax is defined similarly.

Palette size Update time Notes Reference

2∆(uv) − 1 O(log ∆) worst case [6]

(1 + ϵ)∆ O(log9 n log6 ∆/ϵ6) worst-case, randomised [13]

(1 + ϵ)∆ O(log8 n/ϵ4) amortized, randomised [16]

∆ ∈ Ω(log2 n/ϵ2)

∆max + O(αmax) O(log n log ∆max) amortized new

∆(uv) + O(α) O(log2n log αmax log α log ∆max) amortized new

Table 3 State-of-the-art for edge-colouring algorithms in the LOCAL model.

Palette size Rounds Notes Reference

∆ + O(α) O(
√

α log n) LOCAL model [2]

∆ + 1 poly(∆, log n) LOCAL model [3]

1.1 Notations

In this paper, we focus on simple graphs. According to many definitions of edge colouring,
an edge from a vertex to itself can not be coloured.

Let G = (E, V) be the undirected input graph and H a subgraph of G. Define ΓH(v) to
be the neighbourhood of v with respect to a graph H, and given a subset of vertices U ⊆ V ,
define ΓU (v) to be the neighbourhood of v with respect to the subgraph induced by U in G.
Later, we use NH(v) to refer to a data structure containing ΓH(v). Define degH(v) to be
the degree of v with respect to a graph H. Formally, given H ⊆ G and U ⊆ V :

ΓH(v) = {u ∈ V | (u, v) ∈ E(H)}
ΓU (v) = {u ∈ U | (u, v) ∈ E(G)}

degH(v) = |ΓH(v)|
degU (v) = |ΓU (v)|

Let G go through a sequence of insertions and deletions G1...GT . At any iteration t, we
denote by ∆t(uv) the maximum degree of the endpoints of the edge uv and ∆t the maximum
degree of the graph considered. ∆max is the maximum ∆ on all graphs in the sequence.
Formally, at iteration t:

A. B. G. Christiansen, E. Rotenberg, and J. Vlieghe 20:5

∆t(uv) = max{degGt
(u), degGt

(v)}
∆t = ∆(Gt)

∆max = max
1≤t≤T

∆(Gt)

If the context is not ambiguous, we drop the subscript and write ∆,∆(uv) to refer to the
maximum degree and the maximum degree between u and v in the current iteration.

Arboricity. The arboricity α of a graph G = (V,E) is defined as:

α = max
U⊆V, |U |>1

⌈
|E(U)|
|U | − 1

⌉
On a more intuitive level, the arboricity can also be defined as the smallest number α such
that the edges of the graph can be partitioned in α forests. The two definitions are equivalent
by Nash-Williams theorem [24]. A relevant consequence is that there exists an orientation of
G where each vertex has at most α out-neighbours.

H-partition. Let H = {H1, ...Hk} be a partition of the vertex set V (G). If a vertex v is in
Hi, we say that the level of v is l(v) = i. We denote by Zi =

⋃
j≥i Hj the vertices in levels i

and above (Figure 1). We may abuse these notations and use Hi, Zi to refer to the subgraph
induced in G by those sets.

H1 H2 ... Hk

Zk = Hk

Z2

Z1 = V (G)

Figure 1 Hierarchical partition of the vertex set of a graph G.

Orientation. Consider the following orientation of the graph: if l(u) < l(v), we orient the
edge from u to v (Figure 2). If u and v are on the same level, we have an edge in both
directions. This orientation enables us, given a vertex v, to refer to the neighbours of v in
Zl(v) as the out-neighbours of v. We denote by deg+(v) the out-degree of v.

deg+(v) = degZl(v)
(v)

1.2 Palettes
In the following, a palette is a data structure that keeps track of the colours that are used or
not at a vertex. They cover colours [1, 2⌈log(2∆−1)⌉], where the value of ∆ can change. In the
dynamic algorithms, we will use the following result:

SWAT 2024

20:6 Sparsity-Parameterised Dynamic Edge Colouring

H1 H2 ... Hk

Figure 2 Hierarchical partition. In the static setting, the out degree of a vertex is bounded by d.

▶ Theorem 1 (Palettes). Consider two palettes P , Q such that there are a colours used in P

and b colours used in Q. We can find a colour that is available in [1, a+ b+ 1] in log ∆ time.

Proof. The proof is in the full version of the paper [12], along with the description of the
data structure, which is generalised from the palettes in [6]. ◀

1.3 Roadmap
Baremboim, Elkin and Maimon describe a simple distributed algorithm for ∆ + O(α)
colouring [2]. They form a hierarchical partition (or H-partition) of the graph, colour each
set greedily, then colour the edges going out of the sets in an appropriate order. In Section 2,
we show that this technique can easily be adapted into an efficient algorithm in the static
setting. We also show a simpler algorithm that yields a ∆ + 2α− 2 edge colouring within
the same time by building a degeneracy order of the graph instead of an H-partition.

In Sections 3 and 4, we maintain a valid edge colouring in poly logarithmic time. We first
present a simplified version of our algorithm that maintain a fully dynamic ∆max +O(αmax)
edge colouring in Section 3. This relies on two ideas: first, we maintain a dynamic H-partition,
which only requires simple changes from the decomposition of Bhattacharya, Henzinger,
Nanongkai, and Tsourakakis [9], namely, we need to maintain two palettes of available colours
at each vertex, one for its neighbours and one for its out-neighbours. Then it is easy to
colour an edge in a valid partition.

Then we present an algorithm that is adaptative to the maximum degree and arboricity
and maintains a ∆(uv) +O(α) edge colouring. Our data structure is derived from the Level
Data Structure of Henzinger, Neumann and Wiese [20], which has the following property:
instead of having an out-degree that depends on α, the levels of the partition have an
increasingly large out-degree, and the sequence of maximum out-degree is such that it will
be bounded by the current value of the arboricity, within a constant factor. Adapting to the
current maximum can be done by updating the few problematic neighbours of a vertex when
its degree decreases.

In the full version of the paper [12], we study the constants, and show that with small
modifications of the data structure, we can get ∆max + (4 + ϵ)αmax and ∆(uv) + (8 + ϵ)α
colours in the dynamic setting.

2 Static ∆(uv) + O(α) colouring

In this section, we describe a static edge-colouring algorithm. We arrange the vertices in a
hierarchical partition that results in a O(α) out-orientation, then we colour vertices from
right to left, so that for one of the endpoints, only the out-edges may already have colours.
As the other endpoint has at most ∆ coloured edges, the algorithm results in a ∆ +O(α)
edge colouring.

The partition as it will be a crucial part of the dynamic algorithm. However, in the static
setting, we could perform this algorithm with any α out-orientation. We show how this leads
to a ∆ + 2α− 2 edge colouring within the same asymptotic running time. We describe this
algorithm first.

A. B. G. Christiansen, E. Rotenberg, and J. Vlieghe 20:7

Arboricity and degeneracy. A graph G of arboricity α can be partitioned into α forests
has at most α(n − 1) edges, therefore it has a vertex of degree at most 2m/n ≤ 2α − 1:
the degeneracy of G is less than twice the arboricity. Therefore, the degeneracy is a 2-
approximation of the arboricity. We can compute a degeneracy order of the graph, in linear
time [23], and colour the edges as follows: we colour the out-edges of the vertices from right
to left. We describe this in more details in the following proof.

▶ Theorem 2. Given a graph of arboricity α, we can compute a ∆(uv) + 2α− 2 colouring
of the graph in O(m log ∆) time.

Proof. For this proof only, let d ≤ 2α− 1 denote the degeneracy of the graph. We compute
a degeneracy ordering, which can be done in linear time [23]. We greedily colour the edges
from vi to vj>i for i = n − 1, ..., 1. Let us prove by induction that we can always find an
available colour in a palette of size ∆(uv) + d − 1. At the first iteration, we can greedily
colour a potential edge from vn−1 to vn with one colour.

Assume that for i < n − 1, we have coloured any edge vjvj′ s.t. j, j′ > i with at most
∆(vjvj′) + d − 1 colours. Consider an uncoloured edge e = vivj with j > i. vj is incident
to at most deg(vj) − 1 coloured edges and vi is adjacent to at most d − 1 coloured edges,
therefore e sees at most deg(vj) + d− 2 colours and can find an available colour in a palette
of size deg(vj) + d− 1.

If we maintain a binary tree over the palette at each vertex, we can find an available
colour for an edge in O(log ∆) time according to Theorem 1. Therefore, colouring all the
edges takes O(m log ∆) time. ◀

This could conclude the static version. However, this algorithm does not translate into
an efficient dynamic algorithm, as far as we can say; therefore we introduce the notion of
hierarchical partition, which will be crucial in our dynamic algorithms. The rest of the
section proves a slightly weaker theorem through the use of such a partition:

▶ Theorem 3. We can compute a static ∆(uv) +O(α) edge colouring in O(mlog∆) time.

H-partition. In the following, we want to compute a partition such that in the corresponding
orientation, each vertex has out-degree at most O(α). Barenboim, Elkin and Maimon H-
partition from [1] describe a distributed algorithm which translates well to the static setting:
we call a vertex active if it does not have a level assigned yet. Initially, all the vertices are
active. A vertex that is active at iteration i will be part of the set Zi. We call active degree
the number of active neighbours of a vertex. Initially, the active degree of a vertex is its
degree. Then at iterations i = 1...k, we group all the vertices of active degree at most d = 4α
into a set Hi. For each vertex in Hi, we decrement the active degree of its neighbours and
continue.

▶ Lemma 4. We can compute a H-partition H = {H1, ...Hk} of a graph G of arboricity α
such that the size of the partition is at most k = ⌊log n⌋ + 1 and for all i, for all v ∈ Hi, the
degree of v in G(Zi) is at most 4α.

Proof. Consider a set Hi. The average degree is:

2 |E(Zi)|
|V (Zi)|

≤ 2α ≤ 4α
2

SWAT 2024

20:8 Sparsity-Parameterised Dynamic Edge Colouring

At most half of the vertices have a degree more than 4α, otherwise we would have an average
degree greater than 2α, leading to a contradiction. Therefore:

|Zi+1| ≤ |Zi|/2
|Zi| ≤ n/2i−1

|Z⌈log n⌉+1| < 1

Therefore, we can safely set k = ⌈log n⌉ ◀

▶ Lemma 5. We can compute the H-partition described in lemma 4 in O(m) time.

Proof. The sum of the degrees is 2m, so we cannot decrement the active degrees more than
O(m) time in total, and decrementing a degree takes constant time. Then, at iteration i, we
can search the vertices of low active degree in O(n/2i) time. Therefore, the running time to
compute the H-partition is O(m+ n). ◀

▶ Lemma 6. Given a H-partition, we can compute a ∆(uv) +O(α) colouring of the graph
in O(m log ∆) time.

Proof. Let d = 4α.
We greedily colour the edges from Hi to Hj≥i for i = k, ..., 1. Let us prove by induction

that we can always find an available colour in a palette of size ∆(uv) + d− 1. At the first
iteration, we can greedily colour Hk with 2d− 1 colours.

Assume that for i < k, we have coloured G(Hi+1 ∪ ...Hk) with at most ∆ + d− 1 colours.
Consider an uncoloured edge e = uv such that u ∈ Hi, v ∈ Hi ∪ ...Hk. v is incident to at
most deg(v) − 1 coloured edges and u is adjacent to at most d− 1 coloured edges, therefore e
sees deg(v) + d− 2 colours and can find an available colour in a palette of size deg(v) + d− 1.

If we maintain a binary tree over the palette at each vertex, we can find an available
colour for an edge in O(log ∆) time according to theorem 1. Therefore, colouring all the
edges given the H-partition takes O(m log ∆) time using theorem 1. ◀

3 Dynamic ∆max + O(αmax) colouring

In this section, we show how to update a dynamic edge colouring. We first discuss how we
can recolour an edge within a valid H-partition, then we show how we can maintain such a
partition. The algorithm requires αmax and ∆max to be known in advance.

3.1 Data structure
We consider a H-partition that maintains the following invariants, with d = 4αmax:
1. Each vertex v such that l(v) > 1 has at most βd neighbours in Zl(v) (out-neighbours). In

this section, we choose β = 5.
2. Each vertex v has at least d neighbours in Zl(v)−1
For each vertex v ∈ Hi, we store the following:

For each j < i, we store the neighbours of v at level j, ΓHj (v), in a linked list NHj (v).
We store the out-neighbours of v, ΓZi

(v), in a linked list NZi
(v).

We store the length of each linked list.
For each edge uv, we store a pointer to the position of u in the appropriate neighbour
list N·(v) and conversely.
We store two palettes: one for the neighbours of v and one for its out-neighbours. We
refer to those palettes as PG(v) and PZi

(i).

A. B. G. Christiansen, E. Rotenberg, and J. Vlieghe 20:9

3.2 Recolouring an edge
Let us start with a key sub problem: given an uncoloured edge in an otherwise valid data
structure, what is the cost of colouring the edge? We colour the edge uv as we would have in
section 2.

Let u be the leftmost vertex, i.e. i = l(u) ≤ l(v). We ignore the neighbours of u that
have a lower level, which can be done in practice by searching for an available colour in
PZi

(u) ∩ PG(v). The colour picked may conflict with a single edge from a neighbour of u on
a lower level. If that is the case, we recolour that edge in the same way.

▶ Lemma 7. An uncoloured edge uv in an otherwise valid data structure can be coloured in
O(min(l(u), l(v)) · log ∆) time.

Proof. Assume wlog. l(u) ≤ l(v). If uv is not coloured, at most βd−1 colours are represented
at u in the palette P (Zl(u)), and at most deg(v) − 1 colours are represented at v. Therefore,
there exists an available colour in the palette [deg(v) + βd − 1]. If there exists w such
that uw conflict with uv, then l(w) < l(u). Therefore, the level of the left endpoint of the
conflicting edge decrease at each iteration, which can happen at most l(u) − 1 times (Figure
1). Therefore, recolouring an edge and recursively resolving conflicts take O(l(u) · log ∆)
time. ◀

H1 H2

...

Hl(u)−1 Hl(u)

w u
v

Figure 3 We may need to recolour at most l(u) edges.

Algorithm 1 Recolour.

procedure Recolour(uv)
if l(u) > l(v) then

u, v = v, u

i = l(u)
// Pick a colour available in G(Zi) in the palette [deg(v) + βd− 1].
Colour(uv, deg(v) + βd− 1, PZi(u), PG(v))
if c(uv) is represented at u then

Use the pointer C(u)[c] to find the conflicting edge wu
Recolour(wu)

3.3 Updating the hierarchical partition and full algorithm
Updates. The algorithm for the updates is the following: let us say that a vertex that
violates Invariant 1 or 2 is dirty. As long as we have a dirty vertex v: if v violate the first
invariant, we increment its level. If it violates Invariant 2, we decrement it. when doing so,
we need to update our linked lists of neighbours and our tree palettes. Updating the trees is
the limiting factor. The details of the updates are described in Algorithm 5. The algorithm
terminates, which will be justified later, as we will define a positive potential that strictly
decreases at each step.

SWAT 2024

20:10 Sparsity-Parameterised Dynamic Edge Colouring

▶ Lemma 8. Increasing the level of a vertex takes O
(
deg+(v) log ∆

)
time. Decreasing the

level of a vertex takes O (d log ∆) time.

Proof. When we increment the level of a vertex, we first update the lists of neighbours
of v: we traverse NZi(v) to split it in NHi(v) and NZi+1(v) in O(deg+(v)) time. Then
we discard PZi

(v) and create PZi+1(v): we traverse the linked list NZi+1(v) and insert the
degZi+1(v) = O(deg+(v)) elements in the tree, which takes O(deg+(v) log ∆) time. We also
need to update the data structures of at most deg+(v) neighbours, which takes constant
time per neighbour for the linked lists and log ∆ time per neighbour for trees.

Finally, we need to check which vertices became dirty as a result of the operation. The
set Zi+1 has one more element, and for j ≠ i+ 1, Zj is unchanged. Therefore, we check if v
itself, or any vertex in NZi+1(u), breaks the first invariant, which takes O(degZi+1(v)) time.

The procedure for decrementing a level is similar. If we decrement the level of a vertex, we
know that the second invariant was not respected, i.e. degZi−1(v) < d. After the operation,
Zi does not include v any more and for j ̸= i, Zj is unchanged. To update the lists of
neighbours of v, we merge NHi−1(v) and NZi(v), which takes O(degZi−1(v)) = O(d) time.
We create the palette of v for the set Zi−1 in O(degZi−1

(v)) log ∆ = O(d log ∆) time. Then
we need to update the neighbour lists and the palettes of the neighbours of u in Zi, which
also takes constant time per neighbour for the lists and O(log ∆) time per neighbour for the
palettes. Finally, we check if v or any of its neighbours in Zi is dirty, which takes constant
time per vertex. ◀

Algorithm 2 Insert the edge uv.

procedure Add(uv)
if l(u) > l(v) then

Add(vu)
End procedure.

Add v to the out-neighbours of u and store the corresponding pointer.
if l(u) < l(v) then

Add u to NHl(u)(v), the neighbours of v at level l(u)
Store the corresponding pointer.

else
Add u to the out-neighbours of v and store the corresponding pointer.

// The palettes will be updated when uv gets a colour.
Check if u or v became dirty.
Recover
Recolour(uv)

▶ Theorem 9. We can maintain a dynamic ∆max +O(αmax) edge colouring of a graph in
O(log n log ∆max) amortized update time.

Proof. We define the following potential.

B = log ∆max

∑
v∈V

ϕ(v) + log ∆max

∑
e∈E

ψ(e)

ϕ(v) =
l(v)−1∑

j=1
max(0, βd− degZj

(v))

ψ(u, v) = 2(k − min(l(u), l(v))) + 1l(u)=l(v)

A. B. G. Christiansen, E. Rotenberg, and J. Vlieghe 20:11

Algorithm 3 Delete the edge uv.

procedure Delete(uv)
if l(u) > l(v) then

Delete(vu)
End procedure.

Remove the colour of uv from the palettes of neighbours of u and v.
Remove the colour of uv from the palette of out-neighbours of u.
if l(u) == l(v) then

Remove the colour of uv from the palette of out-neighbours of v.
Remove v from the neighbours of u using the corresponding pointer.
Remove u from the neighbours of v using the corresponding pointer.
Check if u or v became dirty.
Recover

Algorithm 4 Recursively fix the invariants.

procedure Recover
while there exists a dirty vertex v do

i = l(v)
if deg+(v) > βd then Increment(v)
else if degZi−1(v) < d then Decrement(v)

When we insert an edge, we create a potential ψ(u, v) ≤ 2k. The potential of the other
edges do not change and the potential of a vertex can only decrease, therefore the potential
B increase by at most 2k log ∆max. When we delete an edge, ϕ(u) and ϕ(v) increase by
at most k each, ψ(u, v) is deleted, and the other potentials are not affected, therefore the
potential increase by at most 2k log ∆max.

When a dirty vertex increment its level, the cost of the operation will be paid by the
drop in potential from the edges. When a dirty vertex decrements its level, the cost of the
operation is paid by the drop in potential from the vertex, despite the increase in potential
from the edges. For completeness, we repeat the details of the analysis that follows closely
that of [9]. Let i be the level of v before the operation.

Incrementing the level of a dirty vertex

When l(v) increases, we get l(v) = i+ 1, so we add max(0, βd− degZi
(v)) to ϕ(v). As

invariant 1 was violated, we must have had degZi
(v) > βd and therefore max(0, βd −

degZi
(v)) = 0: the potential of v is unchanged.

The potential of the other vertices can not increase (though it might decrease for a
neighbour of v).
The potential of an edge may only change if one of the endpoints is v and the other
endpoint u verifies l(u) ≥ i. Therefore, there are exactly deg+(v) edges whose potential
drop by one or two.

The total drop in potential is at least:

deg+(v) log ∆max = Ω(deg+(v) log ∆)

SWAT 2024

20:12 Sparsity-Parameterised Dynamic Edge Colouring

Algorithm 5 Incrementing / decrementing the level of a vertex.

procedure Increment(v)
i = l(v).
Split NZi(v) in NHi(v) and NZi+1(v).
Create the palette of v for Zi+1.
Discard the palette of v for Zi.
for u ∈ NZi+1(u) do

Using the pointer in uv, remove v from NHi(u), add v to NZi+1(u) or NHi+1(u).
Update the pointers accordingly.
if l(u) = i+ 1 then

Update the palette of u for the set Zi+1: add colour c(uv).
Increment l(v)

procedure Decrement(v)
i = l(v).
Merge NZi

(v) and NHi−1(v) into NZi−1(v).
Create the palette of v for Zi−1.
Discard the palette of v for Zi.
for u ∈ NZi

(v) do
Move v from NHi(u) or NZi(u) to NHi−1(u).
Update the pointers accordingly.
if l(u) = i then

Update the palette of u for the sets Zi: remove colour c(uv).
Decrement l(v)

Decrementing the level of a dirty vertex
We must have degZi−1

(v) < d ⇒ max(0, βd− degZi−1
(v) ≥ (β − 1)d = 4d. Therefore, the

ϕ(v) drops by at least 4d.
If u is a neighbour of v, degZj

(v) is decremented if j = i and is unchanged otherwise.
This affects the potential of u if l(u) > i. Therefore,

∑
u∈Γ(v) ϕ(u) increase by at most

degZi+1(v) < degZi−1(v) < d.
The potential of an edge may only change if one of the endpoints is v and the other
endpoint u verifies l(u) ≥ i. Therefore, there are exactly deg+(v) ≤ degZi−1(v) ≤ d edges
whose potential increase by one or two.

The total drop of potential is at least:

log ∆max (4d− d− 2d) = d log ∆max = Ω(d log ∆) ◀

4 Dynamic ∆(uv) + O(α) colouring

The data structure from the previous section could maintain a dynamic ∆max +O(αmax)
colouring. We modify it further to create a data structure that adapts to the maximum
degree and arboricity. We adapt the arboricity by making a structure that does not depend
explicitly on α: instead, we give the level increasingly large out-degrees and show how the
out-degree ends up being bounded by the current value of the arboricity within a constant
factor. To adapt to the maximum degree, we locally adapt to the degree of the vertices: when
the degree of a vertex decrease, we can recolour its problematic edges in polylogarithmic
time.

A. B. G. Christiansen, E. Rotenberg, and J. Vlieghe 20:13

4.1 Data Structure
In the following, L = 1 + ⌈log n⌉ . We now consider a H-partitions with k = L · ⌈log n⌉
levels. Let k′ = maxv∈V l(v) denote the maximum level of any vertex, that is, the highest
non-empty level.

We partition the levels into ⌈log n⌉ groups of size L (Figure 4).
Let g(v) denote the group of a vertex and d(v) = 2g(v). We will maintain the following:

1. Each vertex v has at most 2βd(v) neighbours in Zl(v). In this section, we choose β = 5,
so any vertex has at most 10d(v) out-neighbours.

2. Each vertex v has at least d(v) neighbours in Zl(v)−1
3. The colour of an edge uv is chosen from the first ∆(uv) + 2βd(v) colours of the palette.

This condition enables the data structure to adapt to changes in the arboricity. In
the following, we prove that for any vertex, g(v) ≤ ⌈log(4α)⌉, which will result in a
∆(uv) +O(α) colouring.

H1

...

HL

...

Hk−L−1

...

Hk

group 1 ... group ⌈log(n)⌉

Figure 4 Hierarchical partition with two levels. The in degree of a vertex v is still only bounded
by ∆, when the bound on the out degree depends on its group g(v).

We store the neighbours and palettes of the vertices as described in the previous section.

▶ Lemma 10 (Maximum level). The index of the highest non empty level, k′, is at most
O(logα log n).

Proof. Consider the group ⌈log(4α)⌉ and a level i in this group. We can repeat the arguments
from the proof of lemma 4 and show that the last set of the group ZL⌈log(4α)⌉, with L =
1+⌈log n⌉ = O(log n), has at most one element, therefore, all the higher groups are empty. ◀

▶ Lemma 11. An uncoloured edge uv in an otherwise valid data structure can be coloured in
time O(logα log n log ∆).

Proof. Following the same reasoning as in the previous section, we have to recolour O(k′)
edges, which we can do in O(k′ log ∆) time. ◀

4.2 Updating the hierarchical partition and full algorithm
When edges are deleted, the arboricity α or the maximum degree ∆ may decrease. To
adapt to the degree, we recolour the edges from in-neighbours of v when uv is deleted. To
maintain the arboricity, we will recolour the edges to the out-neighbours of v when its level
decrease. As a result, we maintain that an edge uv, l(u) ≤ l(v), has a colour from the palette
[deg(v) + βd(u) − 1]

▶ Lemma 12 (Adapting to the maximum degree). We can recolour the edges from the
in-neighbours of v in O(log n log2 α log ∆) time.

SWAT 2024

20:14 Sparsity-Parameterised Dynamic Edge Colouring

Proof. In each group i ≤ g(v), v might have at most one neighbour u such that uv has colour
deg(v) + 2βd(u) − 1. For each such group, it takes constant time to find this edge using the
pointer C(v)[deg(v) + 10 · 2i − 1]. There are therefore at most g(v) edges that we may have
to recolour, each in O(l(v) log ∆) time, when the degree of v decreases. When we delete an
edge, we do this for each of its two endpoints, which takes O(g(v)l(v) log ∆) time. ◀

...
u

v

Figure 5 When the degree of a vertex v decrease, we may need to recolour at most l(v) edges.

▶ Lemma 13 (Adapting to the arboricity). Increasing the level of a vertex v takes
O(deg+(v) log ∆) time. Decreasing the level of a vertex takes O(d · k′ log ∆) time.

Proof. The difference with the previous section is the following: when we decrement the
level of a vertex v, we may need to recolour any edge uv such that min(l(u), l(v)) decrease,
i.e. u was on the same level as v or higher. There are at most deg+(v) = O(d) such edges,
which can be recoloured in O(k′ log ∆) time. ◀

Algorithm 6 Decrementing the level of a vertex with adaptative arboricity.

procedure Adaptative Decrement(v)
i = l(v).
Merge NZi

(v) and NHi−1(v) into NZi−1(v).
Create the palette of v for Zi−1.
Discard the palette of v for Zi.
for u ∈ NZi(v) do

Move v from NHi
(u) or NZi

(u) to NHi−1(u).
Update the pointers accordingly.
if l(u) = i then

Update the palette of u for the sets Zi: remove colour c(uv).
Recolour(uv)

Decrement l(v)

▶ Theorem 14. We can maintain a dynamic ∆(uv) + O(α) edge colouring of a graph in
amortized O(log n logαmax log ∆max) time for insertions, O(log2n logαmax logα log ∆max)
for deletions.

A. B. G. Christiansen, E. Rotenberg, and J. Vlieghe 20:15

Proof. We define the following potential:

B = k′
max log ∆max

∑
v∈V

ϕ(v) + log ∆max

∑
e∈E

ψ(e)

ϕ(v) =
l(v)−1∑

j=1
max

(
0, βd(v) − degZj

(v)
)

ψ(u, v) = 2(k′
max − min(l(u), l(v))) + 1l(u)=l(v)

k′
max = L⌈log(4αmax)⌉ ∈ O(log n logαmax)

When we insert an edge, we create a potential ψ(u, v) ≤ 2k′
max. The potential of the other

edges do not change and the potential of a vertex can only decrease, therefore the potential B
increase by at most log ∆max · 2k′

max. When we delete an edge, we need O(log n log2α log ∆)
time to update the overflowing colours of the in-neighbours of v (lemma 12). Then for the
potentials: ϕ(u) and ϕ(v) increase by at most k′ each, ψ(u, v) is deleted, and the other
potentials are not affected, therefore the potential increase by at most k′

max log ∆max · 2k′,
therefore the costs.

Incrementing the level of a dirty vertex. Let d denote the value of d(v) before the change
of level and d′ the value after the modification.

If v changes group, we have d′ = 2d, otherwise d′ = d. Either way, we have deg+(v) >
10d ⇒ max(0, βd′ − deg+(v)) = 0. It follows that ϕ(v) is unchanged. The potential of
the other vertices can not increase (though it might decrease for a neighbour of v).
The potential of an edge may only change if one of the endpoints is v and the other
endpoint u verifies l(u) ≥ i. Therefore, there are exactly deg+(v) edges whose potential
drop by one or two.

The total drop in potential is at least:

deg+(v) log ∆max = Θ(deg+(v) log ∆)

Decrementing the level of a dirty vertex.
We must have degZi−1

(v) < d ⇒ max
(
βd− degZi−1

(v)
)

≥ 4d. Therefore, the ϕ(v) drops
by at least 4d. If the level of v decreases, the potential only decreases further.
If u is a neighbour of v, degZj

(v) is decremented if j = i and is unchanged otherwise.
This affects the potential of u if l(u) > i. Therefore,

∑
u∈Γ(v) ϕ(u) increase by at most

6 degZi+1
(v) < degZi−1

(v) < d.
The potential of an edge may only change if one of the endpoints is v and the other
endpoint u verifies l(u) ≤ i. Therefore, there are exactly deg+(v) < degZi−1

(v) < d edges
whose potential increase by one or two.

The total drop of potential is at least:

k′
max log ∆max (4d− d) − log ∆max · 2d ≥ k′

max log ∆max · d ◀

5 Conclusion

In this paper, we show how to maintain a ∆(uv) +O(α) edge colouring in polylogarithmic
time through the use of dynamic hierarchical partition. We also propose a simpler data
structure to maintain a ∆max +O(αmax) edge colouring, which can be done faster than the
aforementioned algorithm.

SWAT 2024

20:16 Sparsity-Parameterised Dynamic Edge Colouring

We give an amortized analysis of the running time of our dynamic algorithms. This raises
the question of what can be done in worst case time. In our case, we are only limited by the
updates of our hierarchical partitions, so it motivates the search for hierarchical partitions
with efficient worst-case update times.

The question that motivated our research is still open for graphs that have a large
arboricity compared to their maximum degrees: is it possible to maintain a ∆ +O(∆1−ϵ)
edge colouring, with ϵ a positive constant, in polylogarithmic time?

In the static setting, we showed that we can make a ∆(uv) + 2α − 2 edge colouring
in O(m log ∆) time, which is as fast as the greedy 2∆(uv) − 1 algorithm. Thus, we get a
∆(uv) + O(1) edge colouring for graphs of constant arboricity, such as planar graphs, in
near-linear time: more precisely, a planar graph has arboricity at most 3 [27], so by our
result, it can in near-linear time be edge-coloured with ∆(uv) + 2α− 2 = ∆(uv) + 4 colours.

Recently, it was shown by Bhattacharya, Costa, Panski and Solomon [8] that one can
compute a (∆ + 1) edge colouring in Õ(min{m

√
n,m∆} · α

∆)-time, which gives a near linear
time algorithm for graphs of polylogarithmic arboricity. It emphasises the question whether
a near-linear time ∆ +O(1) edge-colouring algorithm could be obtained for a wider class of
graphs.

References
1 Leonid Barenboim and Michael Elkin. Sublogarithmic distributed MIS algorithm for sparse

graphs using Nash-Williams decomposition. In Proceedings of the Twenty-Seventh ACM
Symposium on Principles of Distributed Computing, PODC ’08, pages 25–34, New York, NY,
USA, 2008. Association for Computing Machinery. doi:10.1145/1400751.1400757.

2 Leonid Barenboim, Michael Elkin, and Tzalik Maimon. Deterministic distributed (∆ + o(∆))-
edge-coloring, and vertex-coloring of graphs with bounded diversity. In Elad Michael Schiller
and Alexander A. Schwarzmann, editors, Proceedings of the ACM Symposium on Principles of
Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27, 2017, pages 175–184.
ACM, 2017. doi:10.1145/3087801.3087812.

3 Anton Bernshteyn. A Fast Distributed Algorithm for ((∆ + 1))-Edge-Coloring. Journal of
Combinatorial Theory, Series B, 152:319–352, 2022. doi:10.1016/j.jctb.2021.10.004.

4 Anton Bernshteyn and Abhishek Dhawan. Fast algorithms for vizing’s theorem on bounded
degree graphs. CoRR, abs/2303.05408, 2023. doi:10.48550/arXiv.2303.05408.

5 Aaron Bernstein, Jacob Holm, and Eva Rotenberg. Online bipartite matching with amortized
O(log 2 n) replacements. J. ACM, 66(5):37:1–37:23, 2019. doi:10.1145/3344999.

6 Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai.
Dynamic algorithms for graph coloring. In Artur Czumaj, editor, Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018, pages 1–20. SIAM, 2018. doi:10.1137/1.9781611975031.1.

7 Sayan Bhattacharya, Martín Costa, Nadav Panski, and Shay Solomon. Arboricity-dependent
algorithms for edge coloring. CoRR, abs/2311.08367, 2023. doi:10.48550/arXiv.2311.08367.

8 Sayan Bhattacharya, Martín Costa, Nadav Panski, and Shay Solomon. Density-sensitive
algorithms for (∆+1)-edge coloring. CoRR, abs/2307.02415, 2023. doi:10.48550/arXiv.2307.
02415.

9 Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos E. Tsouraka-
kis. Space- and time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic
streams. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015, pages 173–182. ACM, 2015. doi:10.1145/2746539.2746592.

https://doi.org/10.1145/1400751.1400757
https://doi.org/10.1145/3087801.3087812
https://doi.org/10.1016/j.jctb.2021.10.004
https://doi.org/10.48550/arXiv.2303.05408
https://doi.org/10.1145/3344999
https://doi.org/10.1137/1.9781611975031.1
https://doi.org/10.48550/arXiv.2311.08367
https://doi.org/10.48550/arXiv.2307.02415
https://doi.org/10.48550/arXiv.2307.02415
https://doi.org/10.1145/2746539.2746592

A. B. G. Christiansen, E. Rotenberg, and J. Vlieghe 20:17

10 Gerth Stølting Brodal and Rolf Fagerberg. Dynamic representations of sparse graphs. In
Frank Dehne, Jörg-Rüdiger Sack, Arvind Gupta, and Roberto Tamassia, editors, Algorithms
and Data Structures, Lecture Notes in Computer Science, pages 773–782, Netherlands, 1999.
Springer. 6th International Workshop on Algorithms and Data Structures. WADS 1999 ;
Conference date: 11-08-1999 Through 14-08-1999. doi:10.1007/3-540-48447-7_34.

11 Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. The complexity of
distributed edge coloring with small palettes. In Artur Czumaj, editor, Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New
Orleans, LA, USA, January 7-10, 2018, pages 2633–2652. SIAM, 2018. doi:10.1137/1.
9781611975031.168.

12 Aleksander B. G. Christiansen, Eva Rotenberg, and Juliette Vlieghe. Sparsity-parameterised
dynamic edge colouring. CoRR, abs/2311.10616, 2023. doi:10.48550/arXiv.2311.10616.

13 Aleksander Bjørn Grodt Christiansen. The power of multi-step vizing chains. In Barna Saha
and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory
of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 1013–1026. ACM,
2023. doi:10.1145/3564246.3585105.

14 Richard Cole, Kirstin Ost, and Stefan Schirra. Edge-coloring bipartite multigraphs in O(E log D

time. Combinatorica, 21(1):5–12, January 2001. doi:10.1007/s004930170002.
15 Peter Davies. Improved distributed algorithms for the lovász local lemma and edge coloring.

In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages
4273–4295. SIAM, 2023. doi:10.1137/1.9781611977554.ch163.

16 Ran Duan, Haoqing He, and Tianyi Zhang. Dynamic edge coloring with improved approxima-
tion. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’19, pages 1937–1945, USA, 2019. Society for Industrial and Applied Mathematics.

17 Thomas Erlebach and Klaus Jansen. The complexity of path coloring and call scheduling.
Theoretical Computer Science, 255(1):33–50, 2001. doi:10.1016/S0304-3975(99)00152-8.

18 Harold N. Gabow, Takao Nishizeki, Oded Kariv, Daniel Leven, and Osamu Terada. Algorithms
for edge-colouring graphs. Technical Report, 1985.

19 Mohsen Ghaffari, Fabian Kuhn, Yannic Maus, and Jara Uitto. Deterministic Distributed
Edge-Coloring with Fewer Colors. In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, pages 418–430, 2018.

20 Monika Henzinger, Stefan Neumann, and Andreas Wiese. Explicit and implicit dynamic
coloring of graphs with bounded arboricity, 2020. doi:10.48550/arXiv.2002.10142.

21 Ian Holyer. The np-completeness of edge-coloring. SIAM J. Comput., 10(4):718–720, 1981.
doi:10.1137/0210055.

22 Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. Orienting fully dynamic
graphs with worst-case time bounds. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt,
and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II,
volume 8573 of Lecture Notes in Computer Science, pages 532–543. Springer, 2014. doi:
10.1007/978-3-662-43951-7_45.

23 David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and graph coloring
algorithms. J. ACM, 30(3):417–427, July 1983. doi:10.1145/2402.322385.

24 C. St.J. A. Nash-Williams. Decomposition of Finite Graphs Into Forests. Journal of the
London Mathematical Society, s1-39(1):12–12, January 1964. doi:10.1112/jlms/s1-39.1.12.

25 Krzysztof Onak, Baruch Schieber, Shay Solomon, and Nicole Wein. Fully dynamic MIS in
uniformly sparse graphs. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx,
and Donald Sannella, editors, 45th International Colloquium on Automata, Languages, and
Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs,
pages 92:1–92:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/
LIPIcs.ICALP.2018.92.

SWAT 2024

https://doi.org/10.1007/3-540-48447-7_34
https://doi.org/10.1137/1.9781611975031.168
https://doi.org/10.1137/1.9781611975031.168
https://doi.org/10.48550/arXiv.2311.10616
https://doi.org/10.1145/3564246.3585105
https://doi.org/10.1007/s004930170002
https://doi.org/10.1137/1.9781611977554.ch163
https://doi.org/10.1016/S0304-3975(99)00152-8
https://doi.org/10.48550/arXiv.2002.10142
https://doi.org/10.1137/0210055
https://doi.org/10.1007/978-3-662-43951-7_45
https://doi.org/10.1007/978-3-662-43951-7_45
https://doi.org/10.1145/2402.322385
https://doi.org/10.1112/jlms/s1-39.1.12
https://doi.org/10.4230/LIPIcs.ICALP.2018.92
https://doi.org/10.4230/LIPIcs.ICALP.2018.92

20:18 Sparsity-Parameterised Dynamic Edge Colouring

26 David Peleg and Shay Solomon. Dynamic (1 + ϵ)-approximate matchings: A density-sensitive
approach. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016, pages 712–729. SIAM, 2016. doi:10.1137/1.9781611974331.ch51.

27 K. S. Poh. On the linear vertex-arboricity of a planar graph. J. Graph Theory, 14(1):73–75,
1990. doi:10.1002/jgt.3190140108.

28 Corwin Sinnamon. A randomized algorithm for edge-colouring graphs in O(m
√

n) time. CoRR,
abs/1907.03201, 2019. arXiv:1907.03201.

29 Hsin-Hao Su and Hoa T Vu. Towards the Locality of Vizing’s Theorem. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, pages 355–364, 2019.

30 V. G. Vizing. The chromatic class of a multigraph. Cybernetics, 1(3):32–41, May 1965.
doi:10.1007/BF01885700.

https://doi.org/10.1137/1.9781611974331.ch51
https://doi.org/10.1002/jgt.3190140108
https://arxiv.org/abs/1907.03201
https://doi.org/10.1007/BF01885700

Approximating Minimum Sum Coloring with
Bundles
Seyed Parsa Darbouy #

Department of Computing Science, University of Alberta, Canada

Zachary Friggstad1 #

Department of Computing Science, University of Alberta, Canada

Abstract
In the Minimum Sum Coloring with Bundles problem, we are given an undirected graph
G = (V, E) and (not necessarily disjoint) bundles V1, V2, . . . , Vp ⊆ V with associated weights
w1, . . . , wp ≥ 0. The goal is to give a proper coloring of G using positive integers to minimize the
weighted average/total completion time of all bundles, where the completion time of a bundle is
the maximum integer assigned to one of its nodes. This is a common generalization of the classic
Minimum Sum Coloring problem, i.e. when all bundles are singleton nodes, and the classic
Chromatic Number problem, i.e. the only bundle is all of V .

Despite its generality as an extension of Minimum Sum Coloring, only very special cases
have been studied with the most common being the line graph L(H) of a graph H (also known as
Coflow Scheduling). We provide the first constant-factor approximation in perfect graphs and,
more generally, graphs whose chromatic number is within a constant factor of the maximum clique
size in any induced subgraph. For example, we obtain constant-factor approximations for graphs
that are well-studied in minimum sum coloring such as interval graphs and unit disk graphs.

Next, we extend our results to get constant-factor approximations for a general model where
the bundles are disjoint (i.e. can be thought of as jobs brought by the corresponding client) and
we are only permitted to color/schedule a bounded number of jobs from each bundle at any given
time. Specifically, we get constant-factor approximations for this model if the nodes of graph G have
an ordering v1, v2, . . . , vn such that the left-neighborhood Nℓ(vi) := {vj : j < i, vivj ∈ E} can be
covered by O(1) cliques. For example, this applies to chordal graphs, unit disc graphs, and circular
arc graphs.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Scheduling algorithms

Keywords and phrases Approximation Algorithms, Scheduling, Coloring

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.21

Funding Zachary Friggstad: Supported by an NSERC Discovery Grant and an Accelerator Supple-
ment.

1 Introduction

The Minimum Sum Coloring (MSC) problem is a well-studied problem lying at the
intersection of scheduling theory and graph coloring. In it, we are given an undirected graph
G = (V, E) on n nodes. The goal is to find a proper coloring χ : V → {1, 2, . . .} of nodes
of V , i.e. χ(u) ̸= χ(v) for all uv ∈ E, with minimum total color

∑
v∈V χ(v). Viewed as a

scheduling problem, this models settings where unit-length jobs may be completed in parallel
but resource conflicts prevent certain pairs of jobs from being completed at the same time.

While different than standard graph coloring where the goal is to simply minimize the
number of distinct colors of the coloring, it is essentially just as hard to approximate. That
is, unless P = NP, there is no n1−δ-approximation for any constant δ > 0 [2]. However, in

1 Corresponding Author
© Seyed Parsa Darbouy and Zachary Friggstad;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 21; pp. 21:1–21:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:darbouy@ualberta.ca
mailto:zacharyf@ualberta.ca
https://orcid.org/0000-0003-4039-3235
https://doi.org/10.4230/LIPIcs.SWAT.2024.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Approximating Minimum Sum Coloring with Bundles

certain cases, it is possible to get improved approximations. For example, if it is possible
to efficiently compute a maximum independent set in G and any of its induced subgraphs
then greedily coloring by computing a maximum independent set I, coloring I with the next
unused integer, and then removing I from G yields a 4-approximation [2]. There is a large
body of work on getting improved constant-factor approximation in more structured special
cases or obtaining constant-factor approximations in other graph classes, see the related
works section below for further discussion.

In this work, we extend this model in two ways. The first extension is given as follows.

▶ Definition 1. In the Minimum Sum Coloring with Bundles problem (MSCB), we are
given an undirected graph G = (V, E) and collection of bundles V1, . . . , Vp ⊆ V with associated
weights w1, . . . , wp ≥ 0. The goal is to find a proper coloring χ : V → {1, 2, . . . , |V |} of V

in a way that minimizes the total weighted makespan of all bundles. That is, the coloring
should minimize

∑p
i=1 wi · maxv∈Vi χ(v).

If one views bundles as being associated with clients, then each client is interested in the
time it takes for their bundle to be complete. The objective of MSCB is then equivalent to
minimizing the average weighted completion time of all clients’ bundles. If all bundles are
singletons, then MSCB is the same as MSC. If the partition has only a single bundle, i.e.
p = 1, then MSCB is the same as computing the chromatic number of G. Thus, MSCB is
a common generalization of both problems.

It should be noted that MSCB has been studied previously in certain special cases. For
example, when G is the line graph of an undirected graph the problem is known as Coflow
Scheduling. See Section 1.1 for a discussion of this and other related problems.

Many techniques that are successful for MSC fail in MSCB. For example, while iteratively
computing a maximum independent set in G to color the nodes is a 4-approximation for MSC
[2], it could be as bad as an Ω(log n)-approximation for computing the chromatic number
even in trees (see Appendix A). Further difficulties in designing MSCB approximations will
be discussed in Section 1.3.

Our first main result is a constant-factor approximation for MSCB in perfect graphs.
Recall a graph G is perfect if the maximum clique size in G[U] equals the chromatic number
of G[U] for any U ⊆ V where G[U] = (U, {uv ∈ E : u, v ∈ U}) denotes the subgraph of G

induced by U . Examples of perfect graphs include bipartite graphs, line graphs of bipartite
graphs, interval graphs, comparability graphs, split graphs, permutation graphs, and chordal
graphs as well as the edge-complements of these graphs. For a broader discussion of perfect
graphs, we refer the reader to Golumbic’s excellent book [8].

▶ Theorem 2. MSCB on perfect graphs admits a polynomial-time 10.874-approximation.

Our presentation will first focus on proving Theorem 2 in the case of interval graphs. These
are graphs G = (V, E) where each v ∈ V is associated with an interval [sv, tv] ⊆ R and we
have an edge uv ∈ E whenever the corresponding intervals intersect, i.e. [su, tu] ∩ [sv, tv] ̸= ∅.
The linear programming (LP) relaxation we use in this case is simpler than in the general
case of perfect graphs. After presenting the algorithm for interval graphs, we discuss the few
necessary changes to extend it to perfect graphs in general.

Our techniques extend further to classes of graphs for which the chromatic number is
approximately equal to the maximum clique number and these quantities can be approximated
in polynomial time. Namely, we get the following extension. Recall a graph class G is
hereditary if for any G ∈ G we have G[U] ∈ G as well for all induced subgraphs of G.

S. P. Darbouy and Z. Friggstad 21:3

▶ Corollary 3. Let G be any hereditary graph class with the following properties: (a) the
maximum clique size is within a constant factor of the chromatic number of any G ∈ G,
(b) given vertex weights wv, v ∈ V for a graph G ∈ G, there is a constant-factor approx-
imation algorithm for the maximum-weight clique of G, and (c) there is a constant-factor
approximation for coloring any G ∈ G with the minimum number of colors. Then there is a
constant-factor approximation for MSCB for graphs in G.

For example, we get O(1)-approximations for the following graph classes:
Unit disc graphs: when vertices are associated with discs of radius 1 in the plane and edges
indicate when two discs intersect. The classic algorithm in [4] for computing a maximum-
size clique easily generalizes to compute a maximum-weight clique in polynomial time. It
is possible to color any unit disc graph with maximum clique size K using fewer than
3 · K colors in polynomial time [13].
Circular-arc graphs: when vertices are associated with arcs of a circle and edges indicate
when two such arcs intersect. A maximum weight clique can be found in polynomial time,
e.g. [3]. One can efficiently 2 · K-color a circular arc graph with maximum clique size
K by first coloring the arcs spanning one particular point with at most K colors. After
removing these arcs, we are left with an interval graph which can also be colored with K

additional colors since interval graphs are perfect.

Our general definition of MSCB allows bundles to overlap. A natural special case is
where the bundles constitute a partition V1, . . . , Vp of V , i.e. each client brings their own jobs
Vi to be processed. In this case, it is natural to imagine that clients themselves are somewhat
limited on how quickly they can interact with the service provider that is processing the jobs.
For example, perhaps clients can only deliver or take away a bounded number of jobs from
the processing center at any given time. We consider the following generalization of MSCB

▶ Definition 4. In the Minimum Sum Coloring with Bundles and Task Concurrency
problem (MSCB-TC), we are given a graph G = (V, E) and a partition V1, . . . , Vp of V

with associated weights w1, . . . , wp ≥ 0. Further, for each 1 ≤ i ≤ p we are given a bound
di ≥ 1 on the number of jobs from bundle i that may be processed at any moment. The goal
is still to find a proper coloring χ that minimizes the total weighted completion time of all
bundles, but we further require |{v ∈ Vi|χ(v) = t}| ≤ di for each 1 ≤ i ≤ p and each time
step/color t.

To the best of our knowledge, this extension of MSCB has not been previously studied even
in special cases. We obtain constant-factor approximations for this problem, though in more
restricted settings. Recall that a graph G is chordal if every cycle of length ≥ 4 has a chord.
That is, if v1, v2, . . . , vℓ, v1 is a cycle of length ℓ ≥ 4 then we also have vivj ∈ E for some
1 ≤ i, j ≤ ℓ where i, j are not consecutive indices around the cycle, i.e. 1 ≤ i ≤ j − 1 and if
i = 1 then j ̸= ℓ. Interval graphs, an important class of graphs in scheduling, are chordal.

▶ Theorem 5. MSCB-TC in chordal graphs admits a polynomial-time 16.31-approximation.

The key property of chordal graphs that drives our algorithm is that they admit perfect
elimination orderings. That is, it is possible to compute an ordering v1, v2, . . . , vn of all
nodes V such that the left-neighborhood Nℓ(vi) := {vj : j < i and vivj ∈ E} is a clique for
all 1 ≤ i ≤ n. In fact, a graph is chordal if and only if it admits such an ordering and this
ordering can be computed in linear time [8]. Our techniques extend more generally to other
classes of graphs.

SWAT 2024

21:4 Approximating Minimum Sum Coloring with Bundles

▶ Corollary 6. Let G be a hereditary graph class with the same properties as in Corollary
3. Further, for any G ∈ G suppose we can compute an ordering v1, . . . , vn of its nodes in
polynomial time such that the left-neighborhood Nℓ(vi) can be covered by a constant number
of cliques in polynomial time. Then MSCB-TC has a constant-factor when restricted to
inputs whose graphs lie in G.

For example, such an ordering exists for unit disk graphs (with each left-neighborhood being
covered by ≤ 3 cliques) [13]. Such an ordering can be also found for circular arc graphs with
each left-neighborhood being covered by ≤ 2 cliques, i.e. consider the coloring algorithm
mentioned above: if one orders the arcs spanning the selected point and then orders the
remaining arcs according to a perfect elimination ordering in the resulting interval graph.

The algorithm from Theorem 5 requires one additional structural result about coloring
than the algorithm from Theorem 2, namely Lemma 10 in Section 3. Unfortunately this
structural result fails to hold in perfect graphs, which is why Theorem 5 is only for chordal
graphs. Still, we are able to recover the following.

▶ Theorem 7. There is an O(
√

n)-approximation for MSCB-TC in perfect graphs.

While the ratio is quite large, it is at least better than the lower bound in general graphs
of n1−δ for any constant δ > 0, which is inherited from the same hardness for MSC [2].
Perhaps it is possible to design a constant-factor approximation for MSCB-TC in perfect
graphs, we leave this as an open problem.

1.1 Related Work
MSCB has been studied in certain special cases. The most notable example is Coflow
Scheduling, which is equivalent to MSCB when the input graph is the line graph2 of
a bipartite graph (i.e. at any given time step a matching of the edges/jobs is scheduled).
This problem was first introduced in [14] where a 22.34-approximation was given. Later,
4-approximations followed for Coflow Scheduling and generalizations with release times
for the jobs [1, 16, 6].

In a matroid setting, the jobs are given as items in the ground set X of a matroid rather
than as vertices in a graph and bundles are subsets of items in X. The set of jobs scheduled
at any given time must form an independent set of the matroid. A 2-approximation for the
problem of minimizing the total weighted completion time of all bundles was given in [12].

MSC itself is much more well studied. As mentioned earlier, a 4-approximation is known
in settings where the maximum independent set of the graph (and any induced subgraph)
can be computed in polynomial time [2]. Special attention has been given to particular
graph classes, in particular a 1.796-approximation is known in interval graphs [10] which
was recently extended to an algorithm with the same approximation guarantee for chordal
graphs [5]. In the more general setting of perfect graphs, a 3.591-approximation is known [7].
A broader summary of approximation algorithms for MSC in special graph classes can be
found in the survey article by Halldórsson and Kortsarz [9].

1.2 Organization
After discussing some challenges in adapting previous MSC and Coflow Scheduling
algorithms to MSCB, Section 2 presents our algorithm for MSCB and the proofs of Theorem
2 and Corollary 3. Section 3 extends these techniques to MSCB-TC and proves Theorem 5

2 Recall the line graph of G = (V, E) is the graph L(G) = (E, F) where two edges e, f ∈ E are considered
adjacent in L(G) if they share a common endpoint.

S. P. Darbouy and Z. Friggstad 21:5

B

A

C D1

2

3

4

A
A
B
B

A
A
C
C

B
B
C
C

C
C
D
D

Figure 1 An example of the reduction from an instance of the Maximum Independent Set
problem to a collection of intervals using t = 2. It is straightforward to verify a subset of nodes is
independent if and only if each point on the underlying line is spanned by at most t intervals in the
union of their bundles.

and Corollary 6. We also discuss why our MSCB-TC algorithm does not extend to perfect
graphs in general, point out that we can at least get an O(

√
n)-approximation in perfect

graphs for MSCB-TC, and leave further improvements for future work.

1.3 Challenges
While MSCB is a common generalization of MSC and Coflow Scheduling, it turns out
most techniques used to address these problems fail. For example, a 4-approximation for
MSC follows by iteratively finding a maximum independent set in the graph of unscheduled
tasks in each time step. But for the classic problem of computing the chromatic number of a
graph, i.e. the special case of MSCB where all nodes are in a single bundle, this can be as
bad as an Ω(log n)-approximation even if the underlying graph is a tree, see Appendix A for
a simple example.

Another strategy that is used to get refined approximations for MSC is to compute
maximum t-colorable subgraphs of G for a geometric sequence of values for t as in [10, 5].
For MSCB, one could consider an algorithm that for a geometric sequence of values t will
compute a maximum-size subset of bundles P ⊆ {1, 2, . . . , p} such that all nodes in these
bundles, i.e. ∪j∈PVj can be scheduled without conflict in t steps. That is, we do not just
compute a maximum-size t-colorable induced subgraph of G itself, rather we are concerned
with how many clients can have their bundles completed within t steps.

Unfortunately, even in the special case where G is an interval graph, this seems impossible
to approximate well.

▶ Lemma 8. Let G = (V, E) be an interval graph and V1, V2, . . . , Vp a partition of V . For
any t ≤ |V | and any constant δ > 0, there is no O(|V |1/3−δ)-approximation algorithm for
computing the maximum size P ⊆ {1, 2, . . . , p} such that ∪j∈PVj can be scheduled within t

steps unless P = NP.

Proof. We reduce from the Maximum Independent Set problem. Let H = (U, F) be an
undirected graph. Order F arbitrarily as e1, e2, . . . , e|F |. We build an interval graph over
the line [1, 2 · |F |]. Namely, for each v ∈ U and each ei having v as an endpoint, add t copies
of the interval [2 · i − 1, 2 · i]. Let Uv denote all intervals created from v ∈ U this way. Note,
there are exactly 2 · t intervals of the form [2 · i − 1, 2 · i] for each 1 ≤ i ≤ |F |, one for each
endpoint of ei. Let G be the resulting interval graph whose nodes/intervals are partitioned
as {Uv : v ∈ U}. Figure 1 illustrates this reduction.

Let I be a subset of bundles. It is straightforward to verify the intervals in ∪Uv∈IUv can
be t-colored (i.e. can be scheduled within t time steps) if and only if {v ∈ U : Uv ∈ I} is an
independent set in H.

SWAT 2024

21:6 Approximating Minimum Sum Coloring with Bundles

Finally, recall for any constant δ > 0, there is no |U |1−δ-approximation for the maximum
independent set problem unless P = NP [17]. Since t ≤ n, then G has 2 · |F | · t ≤ O(|U |3)
vertices, as required. Thus, an α = o(|V |1/3−δ/3)-approximation for the largest number of
parts that can be scheduled in t time steps would yield a o(|U |1−δ)-approximation for the
maximum independent set problem in H. Replacing δ by 3δ (again a constant) yields the
result. ◀

Since MSC techniques seem to fail for MSCB, one could look to techniques successfully
used for approximating Coflow Scheduling. Recall Coflow Scheduling is the special
case of MSCB when the graph G is the line graph L(H) of an undirected graph. A property
of Coflow Scheduling that is commonly leveraged to design approximation algorithms is
that for each edge e in H (i.e. a job), all other edges that conflict with e share one of two
endpoints with e.

For example, the algorithm in [1] solves a time-indexed LP relaxation and uses the familiar
trick of greedy scheduling jobs according to their fractional completion time. Their analysis
relies on the fact that there are only 2 “reasons” an edge may not be scheduled at a time
step (i.e. one of the two endpoints already has an edge at that time step). Also, in [6] a
hypergraph matching result by Haxell [11] is used to demonstrate that a good schedule of
jobs exists. However, the way this matching result is used in [6] crucially relies on the fact
that the formed hyperedges only have 3 nodes, which comes from the fact that each edge of
H has only two endpoints.

2 Approximating MSCB in Perfect Graphs

Despite the challenges pointed out in Section 1.3, we are still able to design a constant-factor
approximation for MSCB in perfect graphs. Our techniques can be seen as a workaround
to the problem highlighted in Lemma 8, though we also need to use LPs to do so. That is,
we use an LP-relaxation to fractionally schedule the jobs. For a geometrically-increasing
sequence of values t, we consider the jobs that are completed to an extent of at least 1/2 by
time t in the fractional solution. The LP constraints will witness that the size of the largest
clique among these jobs is O(t). The fact the graph is perfect then allows us to color these
jobs with O(t) colors, i.e. to schedule them all within O(t) time steps.

For simplicity of presentation, we suppose G = (V, E) is an interval graph with n = |V |
nodes and that V = {V1, V2, . . . , Vp}. This allows us to write a polynomial-size LP relaxation.
The straightforward extension to perfect graphs (albeit with an exponential-size LP) will
be discussed at the end of this section. Thus, we suppose each vertex v ∈ V is associated
with an interval [sv, tv] ⊆ R. It is a folklore result that we may further assume, without loss
of generality, that each endpoint of each interval lies in the set {1, 2, . . . , 2 · n}. For each
1 ≤ i ≤ 2 · n the set Ci := {v ∈ V : i ∈ [sv, tv]} is easily seen to be a clique in G. It is also
known [8] that every clique of G is a subset of Ci for some 1 ≤ i ≤ 2 · n.

Like some previous work in MSC [5] and Coflow Scheduling [1, 6], we consider a
time-indexed LP relaxation for MSCB. For each v ∈ V and 1 ≤ t ≤ n we let xv,t be a
variable indicating v should be colored t and for each 1 ≤ k ≤ p we let fk be a variable that is
intended to be the largest color used to color nodes in Vk (i.e. when all jobs for bundle k are
completed). Throughout this section, we adhere to the following indexing conventions: k will
be used for bundles, t for time steps/colors, i for points on the underlying line {1, 2, . . . , 2 · n}
in the interval graph, and j for indexing geometric groupings of jobs defined in the algorithm.

S. P. Darbouy and Z. Friggstad 21:7

minimize :
∑p

k=1 wk · fk

subject to : fk ≥
∑n

t=1 t · xv,t ∀ 1 ≤ k ≤ p, v ∈ Vk∑
v∈Ci

xv,t ≤ 1 ∀ 1 ≤ t ≤ n, ∀ 1 ≤ i ≤ 2 · n∑n
t=1 xv,t = 1 ∀ v ∈ V

x, f ≥ 0
(LP-MSCB)

The first constraint says that bundle k is considered finished only after each v ∈ Vk is
completed, and the second constraint ensures that at most one vertex from any clique in
the interval graph can be processed at a time. The third ensures each job is completed at
some point. Clearly, the optimum value of (LP-MSCB) is at most the optimum value of
the MSCB instance since the natural integer solution corresponding to the optimal MSCB
solution is feasible for this LP.

2.1 Rounding Algorithm
After computing an optimal solution to LP-MSCB, for each job v ∈ V we let τv denote the
smallest time t such that

∑
t′≤t xv,t′ ≥ 1/2, i.e. when the LP solution has completed v to an

extent of at least 1/2. Notice by minimality of τv we also have
∑

t′≥t xv,t′ = 1−
∑

t′<t xv,t′ >

1 − 1/2 = 1/2.
For a bundle k, we then let f̂k := maxv∈Vk

τv be the minimum time when all jobs in Vk

are completed to an extent of at least 1/2 by the LP solution. As we show below, it is not
hard to see

∑
k f̂k is within a constant factor of the optimal LP solution.

We then employ geometric grouping of the jobs v ∈ V . That is, for each time t in a
geometric sequence we form a group with all jobs v having τv ≤ t. Using properties of the LP
solution and interval graphs, we show we can properly color all jobs in each such group with
2 · t colors. Concatenating these schedules for the various groups in this geometric sequence
completes the algorithm.

To optimize our final ratio, we carefully choose the geometric growth rate and also pick an
initial random geometric offset, as has been done in many previous works in minimum-latency
problems, e.g. [10]. We could also try a different parameter than 1/2 as the choice of
threshold for the defining values τv, but it turns out that 1/2 is the optimal value for our
approach. Also, readers with experience in MSC algorithms may wonder about another
optimization. Namely, with MSC once one has colored a geometric group one may get a
slight improvement in the approximation guarantee by optimally ordering the colors so that
larger color classes are finished earlier. However, this optimization does not work in our
setting since we are concerned with the completion times of bundles and reordering color
classes within a group’s coloring may not affect the completion time of a bundle.

We let q > 1 be a constant. It turns out the optimal setting for q in our algorithm is
just e, the base of the natural logarithm. We leave q as an unspecified constant for now and
only set it at the point in the analysis where it is apparent that this was the best choice of
constant. The precise description of our rounding technique is presented in Algorithm 1.

2.2 Analysis
Recall the sets Uj described in Algorithm 1.

▷ Claim 9. For each j, the jobs in Uj can be scheduled without any conflicts using at most
2 · qj+α time steps.

SWAT 2024

21:8 Approximating Minimum Sum Coloring with Bundles

Algorithm 1 MSCB Scheduling.

Compute an optimal solution (x, f) to (LP-MSCB).
Set τv to the smallest integer such that

∑
t≤τv

xv,t ≥ 1/2 for each v ∈ V .
Sample α ∼ [0, 1) uniformly.
Let Uj = {v ∈ V : ⌊qj−1+α⌋ < τv ≤ ⌊qj+α⌋} for 0 ≤ j ≤ logq n.
for each Uj in increasing order of j do

Schedule all jobs in Uj within the next 2 · ⌊qj+α⌋ unused time steps. {Claim 9}

Proof. We claim the size of the largest clique contained in Uj is at most 2 · qj+α. If so, then
we can properly color all of Uj using at most 2 · qj+α colors because interval graphs are
perfect.

First, consider any v ∈ Uj and say v ∈ Vk. Then τ(v) ≤ f̂k ≤ qj+α, so

∑
t≤qj+α

xv,t ≥
∑

t≤τ(v)

xv,t ≥ 1
2 .

Now consider any point i ∈ {1, 2, . . . , 2 · n} on the interval, our goal is to show |Uj ∩ Ci| ≤
2 ·qj+α. Letting Xi,j :=

∑
v∈Uj∩Ci

∑
t≤qj+α xv,t, summing the above bound over v ∈ |Uj ∩Ci|

shows Xi,j ≥ |Uj ∩ Ci|/2.
On the other hand, by the LP constraints we also have

Xi,j =
∑

t≤qj+α

∑
v∈Uj∩Ci

xv,t ≤
∑

t≤qj+α

∑
v∈Ci

xv,t ≤
∑

t≤qj+α

1 = qj+α.

From these two bounds on Xi,j we have |Uj ∩ Ci|/2 ≤ Xi,j ≤ qj+α so |Uj ∩ Ci| ≤ 2 · qj+α.
Finally, consider any clique C ⊆ Uj . Any clique of G is contained in a clique of the form

Ci so C ⊆ Uj ∩ Ci. Thus, we have |C| ≤ |Uj ∩ Ci| ≤ 2 · qj+α, that is the bound holds for all
cliques C ⊆ Uj . ◁

Next, we show each bundle k finishes within time O(f̂k). Fix any such bundle k and
pick any vk ∈ Vk with τvk

= f̂k. For any value α sampled by the algorithm, the completion
time of bundle k is upper bounded by the completion time of all jobs in the bundle Uj that
contains vk. This is because no job of Vk will be placed in a bundle Uj′ having j′ > j and
because we concatenated the schedules for the various buckets in increasing order of j.

Since 0 ≤ α ≤ 1 then there is some integer jk such that vk ∈ Ujk−1 or k ∈ Ujk
, depending

on the value of α. The breaking point between these two events occurs at α = logq f̂k −(jk −1).
Letting Tα be the quantity 2 · qj+α for the group j ∈ {jk − 1, jk} that vk is assigned to for a
given α, we have:

Tα ≤

{
2 · qjk−1+α k ∈ Ujk−1

2 · qjk+α k ∈ Ujk

S. P. Darbouy and Z. Friggstad 21:9

Since we concatenate the schedules for the groups Uj in increasing order of index j and
each group Uj is completed by time 2 · qj+α (Claim 9), then for any j each job in Uj will be
completed by time

∑j
j′=1 2 · qj′+α ≤ 2·q

q−1 · qj+α. Therefore we have

Eα∼[0,1)[Tα] =
∫ 1

0
Tα dα

= 2 · q

q − 1 ·

(∫ logq f̂k−(jk−1)

0
qjk+α dα +

∫ 1

logq f̂k−(jk−1)
qjk−1+α dα

)

= 2 · q

q − 1 ·

 qjk+α

ln q

∣∣∣∣logq f̂k−(jk−1)

0
+ qjk−1+α

ln q

∣∣∣∣1
logq f̂k−(jk−1)

= 2 · q

ln q
· τvk

= 2 · q

ln q
· f̂k

At this point, we see the optimal choice of q is e ≈ 2.717, the base of the natural logarithm.
Setting q to e yields

Eα∼[0,1)[Tα] = 2 · q

ln q
· f̂k = 2 · e · f̂k

We complete the proof by bounding fk by O(f̂k). Recalling
∑

t≥τvk
xvk,t ≥ 1/2, we see

fk ≥
∑

t

t · xvk,t ≥
∑

t≥τvk

t · xvk,t ≥ τv ·
∑

t≥τvk

xvk,t ≥ τvk

2 = f̂k

2

To put this all together, by Claim 9 the completion time of a bundle k is at most Tα. In
expectation over the random choice of α, this is at most 2 · e · f̂k. Finally, from the bound
directly above we see the expected completion time of a bundle is then at most 4 · e · fk.
Thus, the expected total completion time of all bundles is at most 4 · e ≤ 10.874 times the
optimum value of (LP-MSCB).

2.3 Extensions
Perfect Graphs. The only change to the LP is that the second collection of constraints is
replaced by the following more general constraints:∑

v∈C

xv,t ≤ 1 ∀ t, ∀ cliques C of G (1)

In general there are exponentially many cliques (and even exponentially-many maximal
cliques) in a perfect graph. Still, these constraints can be separated in polynomial time
for perfect graphs (Theorem 67.6 in [15]) meaning the LP can still be solved optimally in
polynomial time.

The rest of the proof carries through essentially without modification: the size of a
maximum clique in Uj is still bounded to be at most 2 · qj+α. That is, let C ⊆ Uj be a clique.
Since each v ∈ Uj has τv ≤ ⌊qj+α⌋ then∑

v∈C

∑
t≤qj+α

xv,t ≥
∑
v∈C

1
2 = |C|/2.

SWAT 2024

21:10 Approximating Minimum Sum Coloring with Bundles

On the other hand, by the more general clique constraints (1) we have∑
t≤qj+α

∑
v∈C

xv,t ≤
∑

t≤qj+α

1 ≤ qj+α.

Since G is perfect, then by definition Uj can be colored using at most 2 · qj+α colors and such
a coloring can be done in polynomial time (Corollary 67.2c[15]). The rest of the analysis is
unchanged, thus the full form of Theorem 2 is proven.

Derandomizing. It is simple to efficiently derandomize our approach. We simply list all
break points α of the form logq f̂k − (jk − 1) over all bundles k and try all α between these
break points. Our algorithm is deterministic once α is given and these break points are
the only values of α where the behavior of the algorithm changes. Taking the best solution
found over all such α is surely no worse than the expected cost of the returned solution when
choosing α randomly

Extensions to Other Graph Classes. For Corollary 3, the assumptions mean we can
approximately separate the clique constraints

∑
v∈C xv,t ≤ 1 in polynomial time ultimately

leading to an efficient algorithm that finds an LP solution with cost at most OPT where
all constraints hold except perhaps these new clique constraints. Instead, we would have∑

v∈C xv,t ≤ c where c is the approximation factor of computing a maximum-weight clique
in G.

The approximate relationship between maximum cliques and the chromatic number of
graphs satisfying the assumptions of Corollary 3 allow us to conclude Uj can be colored with
at most c′ · qi+α colors where c′ is also a constant. Carrying this term through the rest of
the analysis shows the algorithm is an O(1)-approximation.

3 MSCB with Task Concurrencies

Recall in MSCB-TC, the bundles form a partition V1, . . . , Vp of P and for each bundle k

we have a bound dk on the number of jobs in Vk that can be scheduled at any single time.
This models settings where clients can only deliver/retrieve a bounded number of their jobs
at any single time. Also, recall that we assume G is a chordal graph.

The new algorithm starts with (LP-MSCB) except the cliques Ci used to define the
constraints are the polynomially-many maximal cliques of G [8] (which can be enumerated in
polynomial time) and two additional classes of constraints are added. First, for any bundle
1 ≤ k ≤ p and any time t we add the constraints∑

v∈Vk

xv,t ≤ dk.

That is, at any given time a maximum of dk jobs for bundle k can be processed. We call
these concurrency constraints. Next, For any bundle 1 ≤ k ≤ p we add the constraints

fk ≥ ⌈|Vk|/dk⌉

which enforces the trivial lower bound that ⌈|Vk|/dk⌉ time steps are required to finish bundle
k even if we processed dk of its jobs per step. Note, without this bound the LP could cheat
in the following way: if dk = 1 and Vk = {v1, . . . , vm} we could set xvi,t = 1/m for all
1 ≤ i ≤ m and 1 ≤ t ≤ m which would permit us to set fk = (m + 1)/2 whereas an integer
solution would clearly require fk ≥ m.

S. P. Darbouy and Z. Friggstad 21:11

For the rest of this section, by “schedule” we mean a proper coloring of G with the
additional constraint that for any bundle k and any time t we have at most dk jobs in Vk

being colored with t.
We need to make some minor modifications to the algorithm. First, we now define

f̂k := max{⌈|Vk|/dk⌉, maxv∈Vk
τv}. Next, we change Uj to be

Uj = {k : ⌊qj−1+α⌋ < f̂k ≤ ⌊qj+α⌋}.

Finally, when we color Uj , we will ensure that the new concurrency constraints are satisfied
with this coloring. The following structural result enables us to do this while limiting the
loss in the final approximation guarantee. Here, we are letting χ(G) denote the chromatic
number of G.

▶ Lemma 10. Let G = (V, E) be a chordal graph whose vertices are partitioned as V1, . . . , Vp.
Further, for each 1 ≤ k ≤ p let dk ≥ 1 be an integer. In polynomial time, we can compute a
proper coloring of G using at most χ(G)+maxk

⌈
|Vk|
dk

⌉
−1 colors such that for each 1 ≤ k ≤ p,

no color appears more than dk times among nodes in Vk.

Proof. Recall that a graph is a chordal graph if and only if it has a perfect elimination
ordering, i.e. an ordering v1, v2, . . . , vn such that for each 1 ≤ j ≤ n, the left-neighborhood
Nℓ(vj) = {i < j : vivj ∈ E} of each node is a clique and that this ordering can be computed
in linear time [8].

To compute the coloring we need, process the nodes vi in this order. When coloring vi,
we simply avoid using a color already assigned to a node in Nℓ(vi) or already assigned to
dk nodes in the same part Vk as vi. This can be done if we allow χ(G) + maxk

⌈
|Vk|
dk

⌉
− 1

colors. ◀

We briefly remark that Lemma 10 is tight even for interval graphs where dk = 1 for
all Vk. Consider the case where V1 consists of m jobs whose corresponding intervals are
[1, 2], [3, 4], [5, 6], . . . , [2m − 1, 2m] and V2, . . . , Vp each consists of a single job whose corres-
ponding interval is [1, 2m]. The chromatic number is exactly p but no two jobs can receive
the same color since the only non-intersecting pairs of intervals have their corresponding jobs
in the same bundle V1. Therefore, |V1| + |V2| + . . . + |Vp| = p + m − 1 colors are required.

Towards coloring Uj , we define Vj = {k : Vk ∩ Uj} ≠ ∅ to be all bundles having some job
in Uj and then we let Sj = maxk∈Vj

⌈|Vk ∩ Uj |/dk⌉. Since ⌈|Vk ∩ Uj |/dk⌉ is a lower bound
on the time required to finish all jobs Vk ∩ Uj due to the task concurrency constraint for
bundle k, we have that Sj is another lower bound for the time needed to complete all jobs in
the set Uj . The new LP constraints help assert this lower bound as well.

▶ Lemma 11. For each group j, Sj ≤ qj+α.

Proof. This is demonstrated by leveraging the additional constraint incorporated into our
LP. For every k ∈ Vj , we know that |Vk|

dk
≤ f̂k. Furthermore, based on the new definition

of Uj it is clear that f̂k ≤ qj+α. Consequently, |Vk|
dk

is less than equal to qj+α, implying
|Vk ∩ Uj | ≤ qj+α · dk. Therefore, it follows that Sj ≤ qj+α. ◀

As with the MSCB approximation, the maximum clique size in Uj is at most 2 · qj+α.
Further, we have just shown |Vk ∩ Uj | ≤ qj+α · dk for any k ∈ Vj . So Lemma 10 means there
is a proper coloring of Uj using at most 3 · qj+α colors such that no bundle in Vk has more
than dk jobs colored with the same color.

SWAT 2024

21:12 Approximating Minimum Sum Coloring with Bundles

The rest of the analysis is similar to the analysis of the algorithm for MSCB except the
approximation ratio has changed since we used 3 · qα+j colors instead of 2 · qα+j colors to
color each Uj . Thus, it is a 6 · e ≤ 16.31-approximation.

Corollary 6 essentially follows by how Corollary 3 followed from Theorem 2 but using a
more general form of Lemma 10. Namely, if there is an ordering of the nodes v1, v2, . . . , vn

such that the left-neighborhood Nℓ(vi) = {vj : vivj ∈ E, j < i} of any node vi can be
covered with R = O(1) cliques then we can find a proper coloring of G using at most
R · χ(G) + maxk⌊|Vk|/dk⌋ colors by picking the lowest available color not appearing in the
left-neighborhood of vi that is also not used dk times in the part Vk with vi.

4 MSCB-TC in Perfect Graphs – A Barrier

Lemma 10 fails to hold in perfect graphs even within any constant factor. That is, it may
require Θ(

√
n) · max{χ(G), maxk |Vk|/dk} colors to even if dk = 1 for all k. Consider the

following simple example on n = N2 nodes for some integer N . The graph GN = (V, E) is
partitioned into sets V1, . . . , VN and each Vk has exactly N nodes. We have an edge between
any pair of nodes in different parts, but each part is an independent set.

It is easy to see such graphs are perfect. More generally, a graph that is partitioned into
b nonempty independent sets and has all possible edges between these parts has chromatic
number b and maximum clique size b (pick one node from each part). Since any induced
subgraph of our graph GN is of this form, then GN is also perfect.

But any coloring satisfying task concurrency limits of dk = 1 for all parts must in fact
use n colors. Two nodes in different parts cannot receive the same color because they are
connected by an edge and two nodes in the same part cannot receive the same color because
the task concurrency limit is 1. Yet, χ(G) = N =

√
n and the maximum size of a part is

also N =
√

n.
Still, this is the worst case. The following variation of Lemma 10 leads to an O(

√
n)-

approximation for MSCB-TC in perfect graphs.

▶ Lemma 12. Let G = (V, E) be a graph whose vertices are partitioned as V1, . . . , Vp. Further,
for each 1 ≤ k ≤ p let dk ≥ 1 be an integer. There is a proper coloring of G using at most
√

n · max
{

χ(G), maxk

⌈
|Vk|
dk

⌉}
colors such that for each 1 ≤ k ≤ p, no color appears more

than dk times among nodes in Vk. Such a coloring can be computed in polynomial time if G

can be optimally colored in polynomial time.

Proof. If maxk⌈|Vk|/dk⌉ ≥
√

n, then the trivial n-coloring (i.e. all nodes get different colors)
suffices. Otherwise, consider a proper coloring σ : V → {1, 2, . . . , χ(G)} of G. Order the
nodes vk

1 , vk
2 , . . . , vk

|Vk| arbitrarily in each part Vk.
Recolor a vertex vk

i with the pair (χ(vk
i), ⌊i/dk⌋). Clearly, this is a proper coloring since

the first components of the new colors of nodes will differ on any edge of G. Further, at most
dk nodes in Vk will have the same second part of the pair describing their color. The number
of colors used is χ(G) · maxk⌈|Vk|/dk⌉ ≤ χ(G) ·

√
n, as required.

Finally, this can be done in polynomial time if we can compute a coloring of G with χ(G)
colors in polynomial time. ◀

Using this in place of Lemma 10 yields an O(
√

n)-approximation for MSCB-TC in
perfect graphs. This proves Theorem 7.

S. P. Darbouy and Z. Friggstad 21:13

5 Conclusion

We have given the first constant-factor approximations for MSCB in a large variety of graph
classes including perfect graphs and unit-disc graphs. Our techniques extend to give the
first constant-factor approximations for MSCB-TC in certain graphs like chordal graphs,
interval graphs, and unit-disc graphs.

It would be interesting to see what other graph classes admit constant-factor approxima-
tions for MSCB and, perhaps, also for MSCB-TC. Another interesting direction would be
to get a purely combinatorial constant-factor approximation for MSCB in certain graph
classes, i.e. one that avoids solving a linear program. Such algorithms exist for MSC in
many cases, e.g. [2, 10]. One barrier is that it seems hard to approximate the maximum
number of bundles that can be completed in a given number of time steps even in simple
graph classes like interval graphs (Lemma 8). Perhaps a bicriteria approximation could be
designed to circumvent this hardness, it would immediately lead to an O(1)-approximation
through standard minimum latency arguments.

References

1 S. Ahmadi, S. Khuller, M. Purohit, and S. Yang. On scheduling coflows – (extended abstract).
In Proceedings of 19th Conference on Integer Programming and Combinatorial Optimization
(IPCO), pages 13–24, 2017.

2 A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, and T. Tamir. On chromatic sums
and distributed resource allocation. Information and Computation, 140(2):183–202, 1998.

3 B. K. Bhattacharya and D. Kaller. An o(m + n log n) algorithm for the maximum-clique
problem in circular-arc graphs. Journal of Algorithms, 25(2):336–358, 1997.

4 B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Mathematics,
86(1):165–177, 1990. doi:10.1016/0012-365X(90)90358-O.

5 I. DeHaan and Z. Friggstad. Approximate minimum sum colorings and maximum k-colorable
subgraphs of chordal graphs. In Algorithms and Data Structures Symposium (WADS), pages
326–339, 2023.

6 T. Fukunaga. Integrality gap of time-indexed linear programming relaxation for coflow schedul-
ing. In In Proceedings of Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques(APPROX), volume 245, pages 36:1–36:13, 2022.

7 R. Gandhi, M. M. Halldórsson, G. Kortsarz, and H. Shachnai. Improved bounds for sum
multicoloring and scheduling dependent jobs with minsum criteria. In Approximation and
Online Algorithms, pages 68–82, 2005.

8 M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.
9 M. M. Halldórsson and G. Kortsarz. Algorithms for chromatic sums, multicoloring, and

scheduling dependent jobs. In Handbook of Approximation Algorithms and Metaheuristics,
Second Edition, Volume 1: Methologies and Traditional Applications, pages 671–684. Chapman
and Hall/CRC, 2018.

10 M. M. Halldórsson, G. Kortsarz, and H. Shachnai. Sum coloring interval and k-claw free
graphs with application to scheduling dependent jobs. Algorithmica, 37:187–209, 2003.

11 P. E. Haxell. A condition for matchability in hypergraphs. Graphs and Combinatorics,
11:245–248, 1995.

12 S. Im, B. Moseley, K. Pruhs, and M. Purohit. Matroid Coflow Scheduling. In 46th International
Colloquium on Automata, Languages, and Programming (ICALP), volume 132, pages 145:1–
145:13, 2019.

13 M. J. P. Peeters. On coloring j-unit sphere graphs. Research Memorandum FEW 512, Tilburg
University, School of Economics and Management, 1991.

SWAT 2024

https://doi.org/10.1016/0012-365X(90)90358-O

21:14 Approximating Minimum Sum Coloring with Bundles

14 Z. Qiu, C. Stein, and Y. Zhong. Minimizing the total weighted completion time of coflows in
datacenter networks. In Proceedings of the 27th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 294–303, 2015.

15 A. Schrijver. Combinatorial Optimization – Polyhedra and Efficiency. Springer, 2003.
16 M. Shafiee and J. Ghaderi. An improved bound for minimizing the total weighted completion

time of coflows in datacenters. IEEE/ACM Transactions on Networking, 26(4):1674–1687,
2018.

17 D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic
number. In Proc. of ACM Symposium on Theory of Computing (STOC 2006), pages 681–690,
2006.

A Greedy Coloring in Trees

We point out the greedy algorithm that iteratively picks a maximum independent set to color
a graph may be as bad as an Ω(log n)-approximation. We point this out to show that the
greedy 4-approximation for unweighted MSC does not extend to our setting which includes,
as a special case, computing the chromatic number of a graph. While this seems to be well
known in the community, we are unaware of a particular reference for such an example so we
provide a simple construction here for completeness.

Let T0 be the trivial tree with a single node. Inductively for i ≥ 1 let Ti be constructed
by attaching 2 leaf nodes to each node of Ti−1. So the number of nodes in Ti is 3i.

The only maximum independent set in Ti is the set of all leaves in Ti (which clearly forms
an independent set). To see this, let I be an independent set that includes an internal vertex
of Ti (i.e. a node of Ti−1). Neither leaf that was attached to v to form Ti is in I because I is
an independent set. But then we get a larger independent set by removing v from I and
adding in the two associated leaves.

The greedy algorithm to compute a maximum independent set in Ti will first pick all
of its leaves. Removing them leaves tree Ti−1. So by induction, with the base case i = 0
clearly requiring a single iteration to color, the number of iterations will be i + 1. Since i + 1
is logarithmic in the size of Ti (i.e. n := 3i) and since the chromatic number of Ti, i ≥ 1 is
2 (as is true for any tree with at least one edge), this is an Ω(log n)-approximation for the
chromatic number of a tree.

Stability in Graphs with Matroid Constraints
Fedor V. Fomin #

University of Bergen, Norway

Petr A. Golovach #

University of Bergen, Norway

Tuukka Korhonen #

University of Bergen, Norway

Saket Saurabh #

University of Bergen, Norway
The Institute of Mathematical Sciences, HBNI, Chennai, India

Abstract
We study the following Independent Stable Set problem. Let G be an undirected graph and
M = (V (G), I) be a matroid whose elements are the vertices of G. For an integer k ≥ 1, the task
is to decide whether G contains a set S ⊆ V (G) of size at least k which is independent (stable)
in G and independent in M. This problem generalizes several well-studied algorithmic problems,
including Rainbow Independent Set, Rainbow Matching, and Bipartite Matching with
Separation. We show that

When the matroid M is represented by the independence oracle, then for any computable
function f , no algorithm can solve Independent Stable Set using f(k) · no(k) calls to the
oracle.

On the other hand, when the graph G is of degeneracy d, then the problem is solvable in time
O((d + 1)k · n), and hence is FPT parameterized by d + k. Moreover, when the degeneracy d is a
constant (which is not a part of the input), the problem admits a kernel polynomial in k. More
precisely, we prove that for every integer d ≥ 0, the problem admits a kernelization algorithm
that in time nO(d) outputs an equivalent framework with a graph on dkO(d) vertices. A lower
bound complements this when d is part of the input: Independent Stable Set does not admit
a polynomial kernel when parameterized by k + d unless NP ⊆ coNP /poly. This lower bound
holds even when M is a partition matroid.

Another set of results concerns the scenario when the graph G is chordal. In this case, our
computational lower bound excludes an FPT algorithm when the input matroid is given by its
independence oracle. However, we demonstrate that Independent Stable Set can be solved
in 2O(k) · ∥M∥O(1) time when M is a linear matroid given by its representation. In the same
setting, Independent Stable Set does not have a polynomial kernel when parameterized by k

unless NP ⊆ coNP /poly.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Mathematics of
computing → Matroids and greedoids; Theory of computation → Graph algorithms analysis; Theory
of computation → Parameterized complexity and exact algorithms

Keywords and phrases frameworks, independent stable sets, parameterized complexity, kernelization

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.22

Related Version Full Version: https://arxiv.org/abs/2404.03979

Funding The research leading to these results has received funding from the Research Council of
Norway via the project BWCA (grant no. 314528) and the European Research Council (ERC) via
grant LOPPRE, reference 819416.

© Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Saket Saurabh;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 22; pp. 22:1–22:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Fedor.Fomin@uib.no
https://orcid.org/0000-0003-1955-4612
mailto:Petr.Golovach@ii.uib.no
https://orcid.org/0000-0002-2619-2990
mailto:Tuukka.Korhonen@uib.no
https://orcid.org/0000-0003-0861-6515
mailto:saket@imsc.res.in
https://orcid.org/0000-0001-7847-6402
https://doi.org/10.4230/LIPIcs.SWAT.2024.22
https://arxiv.org/abs/2404.03979
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Stability in Graphs with Matroid Constraints

1 Introduction

We initiate the algorithmic study of computing stable (independent) sets in frameworks. The
term framework, also known as pregeometric graph [28, 29], refers to a pair (G, M), where G

is a graph and M = (V (G), I) is a matroid on the vertex set of G. We remind the reader that
pairwise nonadjacent vertices of a graph form a stable or independent set. To avoid confusion
with independence in matroids, we consistently use the term “stable set” throughout the
paper. Whenever we mention independence, it is in reference to independence with respect
to a matroid. We consider the following problem.

Input: A framework (G, M) and an integer k ≥ 0.
Task: Decide whether G has vertex set S ⊆ V (G) of size at least k that is stable

in G and independent in M.

Independent Stable Set

The Independent Stable Set problem encompasses several well-studied problems
related to stable sets.

When M is a uniform matroid with every k-element subset of V (G) forming a basis, the
Independent Stable Set problem seeks to determine whether a graph G contains a stable
set of size at least k. This is the classic Stable Set problem.

For a partition matroid M whose elements are partitioned into k blocks and independent
sets containing at most one element from each block, Independent Stable Set transforms
into the rainbow-independence (or Rainbow-Stable Set) problem. To express this problem
in graph terminology, consider a graph G with a vertex set V (G) colored in k colors. A set
of vertices S is termed rainbow-independent if it is stable in G and no color occurs in S more
than once [3, 25]. This concept is also known in the literature as an independent transversal
[19, 18, 23] and an independent system of representatives [2].

Rainbow-independence generalizes the well-studied combinatorial concept of rainbow
matchings [1, 13]. (Note that a matching in a graph is a stable set in its line graph.) It
also has a long history of algorithmic studies. In the Rainbow Matching problem, we
are given a graph G, whose edges are colored in q colors, and a positive integer k. The
task is to decide whether a matching of size at least k exists whose edges are colored in
distinct colors. Itai, Rodeh, and Tanimoto in [24] established that Rainbow Matching
is NP-complete on bipartite graphs. Le and Pfender [26] strongly enhanced this result by
showing that Rainbow Matching is NP-complete even on paths and complete graphs.
Gupta et al. [21] considered the parameterized complexity of Rainbow Matching. They
gave an FPT algorithm of running time 2k · nO(1). They also provided a kernel with O(k2∆)
vertices, where ∆ is the maximum degree of a graph. Later, in [22], the same set of authors
obtained a kernel with O(k2) vertices for Rainbow Matching on general graphs.

When M is a transversal matroid, Independent Stable Set transforms into the
Bipartite Matching with Separation problem [30]. In this variant of the maximum
matching problem, the goal is to determine whether a bipartite graph H contains a matching
of size k with a separation constraint: the vertices on one side lie on a path (or a grid), and
two adjacent vertices on a path (or a grid) are not allowed to be matched simultaneously.
This problem corresponds to Independent Stable Set on a framework (G, M), where G

is a path (or a grid) on vertices U , and M is a transversal matroid of the bipartite graph
H = (U, W, EH) whose elements are U , and the independent subsets are sets of endpoints of
matchings of H. Manurangsi, Segal-Halevi, and Suksompong in [30] proved that Bipartite
Matching with Separation is NP-complete and provided approximation algorithms.

F. V. Fomin, P. A. Golovach, T. Korhonen, and S. Saurabh 22:3

Stable Set is a notoriously difficult computational problem. It is well-known to be
NP-complete and W[1]-complete when parameterized by k [9]. On the other hand, Stable
Set is solvable in polynomial time on perfect graphs [20]. When it comes to parameterized
algorithms and kernelization, Stable Set is known to be FPT and to admit polynomial (in
k) kernel on classes of sparse graphs, like graphs of bounded degree or degeneracy [10]. The
natural question is which algorithmic results about the stable set problem could be extended
to Independent Stable Set.

We commence with a lower bound on Independent Stable Set. Theorem 2 establishes
that when the matroid in a framework is represented by the independence oracle, for
any computable function f , no algorithm can solve Independent Stable Set using
f(k) · no(k) calls to the oracle. Moreover, we show that the lower bound holds for
frameworks with bipartite, chordal, claw-free graphs, and AT-free graphs for which the
classical Stable Set problem can be solved in polynomial time. While the usual bounds
in parameterized complexity are based on the assumption FPT ̸= W[1], Theorem 2 rules
out the existence of an FPT algorithm for Independent Stable Set parameterized by
k unconditionally.
In Section 4, we delve into the parameterized complexity of Independent Stable Set
when dealing with frameworks on d-degenerate graphs. The first result of this section,
Theorem 3, demonstrates that the problem is FPT when parameterized by d + k, by
providing an algorithm of running time O((d + 1)k · n). Addressing the kernelization
aspect, Theorem 5 reveals that when d is a constant, Independent Stable Set on
frameworks with graphs of degeneracy at most d, admits a kernel polynomial in k. More
precisely, we prove that for every integer d ≥ 0, the problem admits a kernelization
algorithm that in time nO(d) outputs an equivalent framework with a graph on dkO(d)

vertices. This is complemented by Theorem 6, establishing that Independent Stable
Set on frameworks with d-degenerate graphs and partition matroids lacks a polynomial
kernel when parameterized by k + d unless NP ⊆ coNP /poly.
Shifting the focus to the stronger maximum vertex degree ∆ parameterization, Theorem 4
establishes improved kernelization bounds. Specifically, Independent Stable Set
admits a polynomial kernel on frameworks that outputs an equivalent framework with a
graph on at most k2∆ vertices.
When it comes to perfect graphs, there is no hope of polynomial or even parameterized
algorithms with parameter k: Rainbow-Stable Set is already known to be NP-complete
and W[1]-complete when parameterized by k on bipartite graphs by the straightforward
reduction from the dual Mulitcolored Biclique problem [9]. Also, the unconditional
lower bound from Theorem 2 holds for bipartite and chordal graphs if the input matroids
are given by the independence oracles.
Interestingly, it is still possible to design FPT algorithms for frameworks with chordal
graphs when the input matroids are given by their representations. In Theorem 8, we
show that Independent Stable Set can be solved in 2O(k) ·∥A∥O(1) time by a one-sided
error Monte Carlo algorithm with false negatives on frameworks with chordal graphs
and linear matroids given by their representations A. When it concerns kernelization,
Theorem 9 shows that Independent Stable Set on frameworks with chordal graphs
and partition matroids does not admit a polynomial kernel when parameterized by k

unless NP ⊆ coNP /poly.

2 Preliminaries

In this section, we introduce the basic notation used throughout the paper and provide some
auxiliary results.

SWAT 2024

22:4 Stability in Graphs with Matroid Constraints

Graphs. We use standard graph-theoretic terminology and refer to the textbook of Dies-
tel [11] for missing notions. We consider only finite undirected graphs. For a graph G, V (G)
and E(G) are used to denote its vertex and edge sets, respectively. Throughout the paper,
we use n to denote the number of vertices if it does not create confusion. For a graph G

and a subset X ⊆ V (G) of vertices, we write G[X] to denote the subgraph of G induced
by X. We denote by G − X the graph obtained from G by the deletion of every vertex
of X (together with incident edges). For v ∈ V (G), we use NG(v) to denote the (open)
neighborhood of v, that is, the set of vertices of G that are adjacent to v; NG[v] = NG(v)∪{v}
is the closed neighborhood of v. For a set of vertices X, NG(X) =

(⋃
v∈X NG(v)

)
\ X and

NG[X] =
⋃

v∈X NG[v]. We use dG(v) = |NG(v)| to denote the degree of v; δ(G) and ∆(G)
denote the minimum and maximum degree of a vertex in G, respectively. For a nonnegative
integer d, G is d-degenerate if for every subgraph H of G, δ(H) ≤ d. Equivalently, a graph
G is d-degenerate if there is an ordering v1, . . . , vn of the vertices of G, called elimination
ordering, such that dGi

(vi) ≤ d for every i ∈ {1, . . . , n} where Gi = G[{vi, . . . , vn}]. Given a
d-degenerate graph G, the elimination ordering can be computed in linear time [32]. The
degeneracy of G is the minimum d such that G is d-degenerate. We remind that a graph G

is bipartite if its vertex set can be partitioned into two sets V1 and V2 in such a way that
each edge has one endpoint in V1 and one endpoint in V2. A graph G is chordal if it has
no induced cycles on at least four vertices. A graph G is said to be claw-free if it does not
contain the claw graph K1,3 as an induced subgraph. An independent set of three vertices
such that each pair can be joined by a path avoiding the neighborhood of the third is called
an asteroidal triple (AT). A graph is AT-free if it does not contain asteroidal triples.

Matroids. We refer to the textbook of Oxley [34] for the introduction to Matroid Theory.
Here we only briefly introduce the most important notions.

▶ Definition 1. A pair M = (V, I), where V is a ground set and I is a family of subsets,
called independent sets of M, is a matroid if it satisfies the following conditions, called
independence axioms:
(I1) ∅ ∈ I,
(I2) if X ⊆ Y and Y ∈ I then X ∈ I,
(I3) if X, Y ∈ I and |X| < |Y |, then there is v ∈ Y \ X such that X ∪ {v} ∈ I.
We use V (M) and I(M) to denote the ground set and the family of independent sets of M,
respectively, unless M is clear from the context. An inclusion-maximal set of I is called a
base; it is well-known that all bases of M have the same cardinality. A function r : 2V → Z≥0
such that for every X ⊆ V ,

r(X) = max{|Y | : Y ⊆ X and Y ∈ I}

is called the rank function of M. The rank of M, denoted r(M), is r(V); equivalently, the
rank of M is the size of any base of M. Let us remind that a set X ⊆ V is independent if and
only if r(X) = |X|. The closure of a set X is the set cl(X) = {v ∈ V : r(X ∪ {v}) = r(X)}.
The matroid M′ = (V \ X, I ′), where I ′ = {Y ∈ I : Y ⊆ V \ X}, is said to be obtained from
M by the deletion of X. The restriction of M to X ⊆ V is the matroid obtained from M by
the deletion of V \ X. If X is an independent set then the matroid M′′ = (V \ X, I ′′), where
I ′′ = {Y ⊆ V \ X : Y ∪ X ∈ I}, is the contraction of M by X. For a positive integer k, the
k-truncation of M = (V, I) is the matroid M′ with the same ground set V such that X ⊆ V

is independent in M′ if and only if X ∈ I and |X| ≤ k. Because in Independent Stable
Set, we are interested only in independent sets of size at most k, we assume throughout our
paper that the rank of the input matroids is upper bounded by k. Otherwise, we replace M
by its k-truncation.

F. V. Fomin, P. A. Golovach, T. Korhonen, and S. Saurabh 22:5

In our paper, we assume in the majority of our algorithmic results that the input
matroids in instances of Independent Stable Set are given by independence oracles. An
independence oracle for M takes as its input a set X ⊆ V and correctly returns either yes
or no in unit time depending on whether X is independent or not. We assume that the
memory used to store oracles does not contribute to the input size; this is important for our
kernelization results. Notice that given an independence oracle, we can greedily construct an
inclusion-maximal independent subset of X and this can be done in O(|X|) time. Note also
that the oracle for M can be trivially transformed to an oracle for the k-truncation of M.

Our computational lower bounds, except the unconditional bound in Theorem 2, are
established for partition matroids. The partition matroid for a given partition {V1, . . . , Vℓ} of
V is the matroid with the ground set V such that a set X ⊆ V is independent if and only if
|X ∩Vi| ≤ 1 for each i ∈ {1, . . . , ℓ} (in a more general setting, it is required that |V ∩Xi| ≤ di

where d1, . . . , dℓ are some constant but we only consider the case d1 = · · · = dℓ = 1).
Matroids also could be given by their representations. Let M = (V, I) be a matroid

and let F be a field. An r × n-matrix A is a representation of M over F if there is a
bijective correspondence f between V and the set of columns of A such that for every X ⊆ V ,
X ∈ I if and only if the set of columns f(X) consists of linearly independent vectors of Fr.
Equivalently, A is a representation of M if M is isomorphic to the column matroid of A, that
is, the matroid whose ground set is the set of columns of the matrix and the independence of
a set of columns is defined as the linear independence. If M has a such a representation,
then M is representable over F and it is also said M is a linear (or F-linear) matroid.

Parameterized Complexity. We refer to the books of Cygan et al. [9] and Fomin et al. [16]
for an introduction to the area. Here we only briefly mention the notions that are most
important to state our results. A parameterized problem is a language L ⊆ Σ∗ × N where
Σ∗ is a set of strings over a finite alphabet Σ. An input of a parameterized problem is a
pair (x, k) where x is a string over Σ and k ∈ N is a parameter. A parameterized problem
is fixed-parameter tractable (or FPT) if it can be solved in time f(k) · |x|O(1) for some
computable function f . The complexity class FPT contains all fixed-parameter tractable
parameterized problems. A kernelization algorithm or kernel for a parameterized problem L

is a polynomial-time algorithm that takes as its input an instance (x, k) of L and returns an
instance (x′, k′) of the same problem such that (i) (x, k) ∈ L if and only if (x′, k′) ∈ L and
(ii) |x′| + k′ ≤ f(k) for some computable function f : N → N. The function f is the size of
the kernel; a kernel is polynomial if f is a polynomial. While every decidable parameterized
problem is FPT if and only if the problem admits a kernel, it is unlikely that all FPT
problems have polynomial kernels. In particular, the cross-composition technique proposed
by Bodlaender, Jansen, and Kratsch [5] could be used to prove that a certain parameterized
problem does not admit a polynomial kernel unless NP ⊆ coNP /poly.

We conclude the section by defining Rainbow-Stable Set.

Input: A graph G and a partition {V1, . . . , Vk} of V (G) into k sets, called color
classes.

Task: Decide whether G has a stable set S of size k such that |S ∩ Vi| = 1 for
each i ∈ {1, . . . , k}.

Rainbow-Stable Set

As mentioned, Rainbow-Stable Set is a special case of Independent Stable Set
for partition matroids where k is the number of subsets in the partition defining the input
matroid.

SWAT 2024

22:6 Stability in Graphs with Matroid Constraints

3 Unconditional computational lower bound

Because Independent Stable Set generalizes the classical Stable Set problem, Inde-
pendent Stable Set is NP-complete [17] and W[1]-complete [12]. However, when the input
matroids are given by their independence oracles, we obtain an unconditional computational
lower bound. Moreover, we show that the lower bound holds for several graph classes for
which the classical Stable Set problem can be solved in polynomial time. For this, we
remind that Stable Set is polynomial on claw-free and AT-free graphs by the results of
Minty [33] and Broersma et al. [8], respectively.

▶ Theorem 2. There is no algorithm solving Independent Stable Set for frameworks
with matroids represented by the independence oracles using f(k) · no(k) oracle calls for any
computable function f . Furthermore, the bound holds for bipartite, chordal, claw-free, and
AT-free graphs.

Proof. First, we show the bound for claw-free and AT-free and then explain how to modify
the proof for other graph classes.

Let p and q be positive integers. We define the graph Gp,q as the disjoint union of Gi

constructed as follows for each i ∈ {1, . . . , p}.
For each j ∈ {1, . . . , q}, construct two vertices ai,j and bi,j ; set Ai = {ai,1, . . . , ai,q} and
Bi = {bi,1, . . . , bi,q}.
Make Ai and Bi cliques.
For each j ∈ {1, . . . , q} and for all distinct h, j ∈ {1, . . . , q}, make ai,h and bi,j adjacent.

Equivalently, each Gi is obtained by deleting a perfect matching from the complete graph
K2q. By the construction, Gp,q is both claw-free and AT-free and has 2pq vertices. Consider a
family of indices j1, . . . , jp ∈ {1, . . . , q} and set W =

⋃p
i=1{ai,ji

, bi,ji
}. We define the matroid

MW with the ground set V (Gp,q) as follows for k = 2p:
Each set X ⊆ V (Gp,q) of size at most k − 1 is independent and any set of size at least
k + 1 is not independent.
A set X ⊆ V (Gp,q) of size k is independent if and only if either X = W or there is
i ∈ {1, . . . , p} such that |Ai ∩X| ≥ 2 or |Bi ∩X| ≥ 2 or there are distinct h, j ∈ {1, . . . , q}
such that ai,h, bi,j ∈ X.

Denote by IW the constructed family of independent sets. We will now show that MW is
indeed a matroid.

▶ Claim 2.1. MW = (V (Gp,q), IW) is a matroid.

Proof of Claim 2.1. We have to verify that IW satisfies the independence axioms (I1)–(I3).
The axioms (I1) and (I2) for IW follow directly from the definition of IW . To establish (I3),
consider arbitrary X, Y ∈ IW such that |X| < |Y |. If |X| < k − 1 then for any v ∈ Y \ X,
Z = X ∪ {v} ∈ IW because |Z| ≤ k − 1.

Suppose |X| = k − 1 and |Y | = k. If there is i ∈ {1, . . . , p} such that |Ai ∩ X| ≥ 2
or |Bi ∩ X| ≥ 2 or there are distinct h, j ∈ {1, . . . , q} such that ai,h, bi,j ∈ X then for
any v ∈ Y \ X, the set Z = X ∪ {v} has the same property and, therefore, Z ∈ IW .
Assume that this is not the case. By the construction of Gp,q, we have that for each
i ∈ {1, . . . , p}, |X ∩ Ai| ≤ 1 and |X ∩ Bi| ≤ 1, and, furthermore, there is j ∈ {1, . . . , q}
such that X ∩ (Ai ∪ Bi) ⊆ {ai,j , bi,j}. Because |X| = k − 1, we can assume without loss of
generality that there are indices h1, . . . , hp ∈ {1, . . . , q} such that X ∩(Ai ∪Bi) = {ai,hi

, bi,hi
}

for i ∈ {1, . . . , p − 1} and X ∩ (Ap ∪ Bp) = {ap,hp}. Recall that W =
⋃p

i=1{ai,ji , bi,ji} for
j1, . . . , jp ∈ {1, . . . , q}. If there is v ∈ Y \ X such that v ≠ bp,jp

then consider Z = X ∪ {v}.

F. V. Fomin, P. A. Golovach, T. Korhonen, and S. Saurabh 22:7

We have that there is i ∈ {1, . . . , p} such that |Ai ∩ Z| ≥ 2 or |Bi ∩ Z| ≥ 2 or there are
distinct h, j ∈ {1, . . . , q} such that ai,h, bi,j ∈ Z, that is, Z ∈ IW . Now we assume that
Y \X = {bp,jp

}. Then Y = W and we can take v = bp,jp
. We obtain that X ∪{v} = Y ∈ IW .

This concludes the proof. ◁

We show the following lower bound for the number of oracle queries for frameworks
(Gp,q, MW).

▶ Claim 2.2. Solving Independent Stable Set for instances (Gp,q, MW , k) with the
matroids MW defined by the independence oracle for an (unknown) stable set W of Gp,q of
size k demands at least qp − 1 oracle queries.

Proof of Claim 2.2. Notice that every stable set of X of size k contains exactly two vertices
of each Gi and, moreover, there is j ∈ {1, . . . , q} such that X ∩ V (Gi) = {ai,j , bi,j}. Because
the only stable set of this structure that is independent with respect to MW is W , the task
of Independent Stable Set boils down to finding an unknown stable set W of Gp,q of
size k using oracle queries. Querying the oracle for sets X of size at most k − 1 or at least
k + 1 does not provide any information about W . Also, querying the oracle for X of size
k with the property that there is i ∈ {1, . . . , p} such that |Ai ∩ X| ≥ 2 or |Bi ∩ X| ≥ 2 or
there are distinct h, j ∈ {1, . . . , q} such that ai,h, bi,j ∈ X also does not give any information
because all these are independent. Hence, we can assume that the oracle is queried only for
sets X of size k with the property that for each i ∈ {1, . . . , p}, there is j ∈ {1, . . . , q} such
that X ∩ V (Gi) = {ai,j , bi,j}, that, is the oracle is queried for stable sets of size k. The graph
Gp,q has qp such sets. Suppose that the oracle is queried for at most qp − 2 stable sets of size
k with the answer no. Then there are two distinct stable sets W and W ′ of size k such that
the oracle was queried neither for W nor W ′. The previous queries do not help to distinguish
between W and W ′. Hence, at least one more query is needed. This proves the claim. ◁

Now, we are ready to prove the claim of the theorem. Suppose that there is an algorithm
A solving Independent Stable Set with at most f(k) · ng(k) oracle calls for computable
functions f and g such that g(k) = o(k). Without loss of generality, we assume that f and
g are monotone non-decreasing functions. Because g(k) = o(k), there is a positive integer
K such that g(k) < k/2 for all k ≥ K. Then for each k ≥ K, there is a positive integer Nk

such that for every n ≥ Nk, (f(k) · ng(k) + 1)kk/2 < nk/2.
Consider instances (Gp,q, MW , k) for even k ≥ K where p = k/2 and q ≥ Nk/k. We

have that k = 2p and n = 2pq. Then A applied to such instances would use at most
f(k) · ng(k) <

(
n
k

)k/2 − 1 = qp − 1 oracle queries contradicting Claim 2.2. This completes the
proof for claw and AT-free graphs.

Now we sketch the proof of Theorem 2 for bipartite graphs. For positive integers p and q,
we define Hp,q as the disjoint union of the graphs Hi for i ∈ {1, . . . , p} constructed as follows.

For each j ∈ {1, . . . , q}, construct three vertices ai,j , bi,j , and ci,j ; set Ai = {ai,1, . . . , ai,q},
Bi = {bi,1, . . . , bi,q}, and Ci = {ci,1, . . . , ci,q}.
For each j ∈ {1, . . . , q}, make ai,j and bi,j adjacent to every ci,h for h ∈ {1, . . . , q} such
that h ̸= j.

Notice that Hp,q is a bipartite graph with 3pq vertices. We define R =
⋃p

i=1(Ai ∪ Bi).
Consider a family of indices j1, . . . , jp ∈ {1, . . . , q} and set W =

⋃p
i=1{ai,ji

, bi,ji
}. Note that

W is a stable set of Hp,q of size 2p. We define the matroid MW with the ground set V (Hp,q)
by setting a set X ⊆ V (Hp,q) to be independent if and only if

for each i ∈ {1, . . . , p}, |Ci ∩ X| ≤ 1 and
it holds that

SWAT 2024

22:8 Stability in Graphs with Matroid Constraints

either X ∩ R = W ,
or |X ∩ R| < 2p,
or |X ∩ R| = 2p and there is i ∈ {1, . . . , p} such that |Ai ∩ X| ≥ 2 or |Bi ∩ X| ≥ 2 or
there are distinct h, j ∈ {1, . . . , q} such that ai,h, bi,j ∈ X.

We denote by IW the constructed family of independent sets and prove that MW is a
matroid.

▶ Claim 2.3. MW = (V (Hp,q), IW) is a matroid.

Proof of Claim 2.3. Let S =
⋃p

i=1 Ci and consider M1 = (S, I1) where I1 is the set of all
X ⊆ S such that |X ∩ Ci| ≤ 1 for i ∈ {1, . . . , p}. Clearly, M1 is a partition matroid. Now
consider M2 = (R, I2) where I2 consists of sets X ⊆ D such that either X = W , or |X| < 2p,
or |X| = 2p and there is i ∈ {1, . . . , p} such that |Ai ∩ X| ≥ 2 or |Bi ∩ X| ≥ 2 or there are
distinct h, j ∈ {1, . . . , q} such that ai,h, bi,j ∈ X. We observe that M2 is a matroid and the
proof of this claim is identical to the proof of Claim 2.1. To complete the proof, it remains
to note that MW = M1 ∪ M2, that is, a set X ∈ IW if and only if X = Y ∪ Z for Y ∈ I1
and Z ∈ I2. This implies that MW is a matroid [34]. ◁

We consider instances (Hp,q, MW , k) of Independent Stable Set with the matroid
MW defined by the independence oracle for an (unknown) W and k = 3p. By the definition
of MW , any stable set X of Hp,q of size k that is independent with respect to MW

has the property that |X ∩ Ci| = 1 for every i ∈ {1, . . . , p}. The construction of Hp,q

implies that if ci,j ∈ X ∩ Ci then X ∩ (Ai ∪ Bi) ⊆ {ai,j , bi,j}. Because |X| = k = 3p, we
obtain that X ∩ (Ai ∪ Bi) = {ai,j , bi,j}. Then by the construction of MW , we obtain that
X =

⋃p
i=1{ai,ji

, bi,ji
, ci,ji

} where W =
⋃p

i=1{ai,ji
, bi,ji

}, that is, X is uniquely defined by
W . In the same way as in Claim 2.2 we obtain that solving Independent Stable Set
for instances (Hp,q, MW , k) with the matroids MW defined by the independence oracle for
an (unknown) W demands at least qp − 1 oracle queries. Similarly to the case of claw and
AT-free graphs, we conclude that the existence of an algorithm for Independent Stable
Set using f(k) · no(k) oracle calls would lead to a contradiction. This finishes the proof for
bipartite graphs.

For chordal graphs, we modify the construction of Hp,q by making each Ci a clique.
Then Hp,q becomes chordal but we can apply the same arguments to show that solving
Independent Stable Set for instances (Hp,q, MW , k) with the matroids MW defined by
the independence oracle for an (unknown) W demands at least qp − 1 oracle queries. This
completes the proof. ◀

4 Independent Stable Set on sparse frameworks

In this section, we consider Independent Stable Set for graphs of bounded maximum
degree and graphs of bounded degeneracy. First, we observe that the problem is FPT
when parameterized by the solution size and the degeneracy by giving a recursive branching
algorithm.

▶ Theorem 3. Independent Stable Set can be solved in O((d+1)k ·n) time on frameworks
with d-degenerate input graphs.

Proof. The algorithm is based on the following observation. Let (G, M) be a framework
such that for every v ∈ V (G), {v} ∈ I. Then there is a stable set X of G that is independent
with respect to M whose size is maximum such that X ∩ NG[v] ̸= ∅. To see this, let X be a
stable set that is also independent in M and such that X ∩ NG[v] = ∅. Because {v} and

F. V. Fomin, P. A. Golovach, T. Korhonen, and S. Saurabh 22:9

X are independent, there is Y ⊆ X of size |X| − 1 such that Z = Y ∪ {v} is independent.
Because NG(v) ∩ Z = ∅ and Y is a stable set, Z is a stable set. Thus, set Z of size |X| is
stable in G and is independent in M. This proves the observation.

Consider an instance (G, M, k) of Independent Stable Set. Because G is a d-
degenerate graph, there is an elimination ordering v1, . . . , vn of the vertices of G, that is,
dGi(vi) ≤ d for every i ∈ {1, . . . , n} where Gi = G[{vi, . . . , vn}]. Recall that such an ordering
can be computed in linear time [32].

If there is v ∈ V (G) such that {v} /∈ I, then we delete v from the framework as such
vertices are trivially irrelevant. From now on, we assume that {v} ∈ I for any v ∈ V (G).
If k = 0, then ∅ is a solution, and we return yes and stop. If k ≥ 1 but V (G) = ∅, then we
conclude that the answer is no and stop. We can assume that V (G) ̸= ∅ and k ≥ 1.

Let u be the first vertex in the elimination ordering. Clearly, dG(u) ≤ d. We branch on
at most d + 1 instances (G − v, M/v, k − 1) for v ∈ NG[u], where M/v is the contraction of
M by {v}. By our observation, (G, M, k) is a yes-instance of Independent Stable Set if
and only if at least one of the instances (G − v, M/v, k − 1) is a yes-instance.

In each step, we have at most d + 1 branches and the depth of the search tree is at most
k. Note that we do not need to recompute the elimination ordering when a vertex is deleted;
instead, we just delete the vertex from the already constructed ordering. This means we can
use the ordering constructed for the original input instance. Thus, the total running time is
O((d + 1)k · n). This concludes the proof. ◀

For bounded degree graphs, we prove that Independent Stable Set has a polynomial
kernel when parameterized by k and the maximum degree.

▶ Theorem 4. Independent Stable Set admits a polynomial kernel on frameworks with
graphs of maximum degree at most ∆ such that the output instance contains a graph with at
most k2∆ vertices.

Proof. Let (G, M, k) be an instance of Independent Stable Set with ∆(G) ≤ ∆. Recall
that by our assumption, r(M) ≤ k. If r(M) < k then (G, M, k) is a no-instance. In this
case, our kernelization algorithm returns a trivial no-instance of constant size and stops.
Now we can assume that r(M) = k. If k = 0 then we return a trivial yes-instance as ∅ is a
solution. If ∆ = 0, then any base of M is a solution, and we return a trivial yes-instance.
Now we can assume that k ≥ 1 and ∆ ≥ 1.

We set W0 = ∅. Then for i = 1, . . . , ℓ where ℓ = k∆, we greedily select a maximum-
size independent set Wi ⊆ V (G) \

(⋃i−1
j=0 Wj

)
. Our kernelization algorithms returns the

instance (G′, M′, k) where G′ = G[
⋃ℓ

i=1 Wi] and M′ is the restriction of M to V (G′). It is
straightforward to see that |V (G′)| ≤ k2∆ as |Wi| ≤ r(M) = k and the new instance can be
constructed in polynomial time. We claim that (G, M, k) is a yes-instance of Independent
Stable Set if and only if (G′, M′, k) is a yes-instance.

Because G′ is an induced subgraph of G, any stable set of G′ is a stable set of G. This
immediately implies that if (G′, M′, k) is a yes-instance then any solution to (G′, M′, k) is
a solution to (G, M, k) and, thus, (G, M, k) is a yes-instance. Suppose that (G, M, k) is a
yes-instance. It means that G contains a stable set of size k independent in M. We show
that there is a stable set X ⊆ V (G′) of G of size k that is independent with respect to M.

To show this, let X be a stable set of size k that is independent in M with the maximum
number of vertices in V (G′). For the sake of contradiction, assume that there is u ∈ X \V (G′).
We define Y = X \ {u}. Consider the set Wi for some i ∈ {1, . . . , ℓ}. By the construction
of the set, we have that u ∈ cl(Wi). Then it holds that r(Y ∪ Wi) ≥ r(X). This implies
that there is wi ∈ Wi such that r(Y ∪ {wi}) = r(X) = k. Because this property holds for

SWAT 2024

22:10 Stability in Graphs with Matroid Constraints

arbitrary i ∈ {1, . . . , ℓ}, we obtains that there are ℓ = k∆ vertices w1, . . . , wℓ ∈ V (G′) such
that for any i ∈ {1, . . . , ℓ}, r(Y ∪ {wi}) = k. Notice that wi /∈ Y for i ∈ {1, . . . , ℓ} and
|NG(Y)| ≤ (k − 1)∆. Therefore, there is i ∈ {1, . . . , ℓ} such that wi is not adjacent to any
vertex of Y . Then Z = Y ∪ {wi} is a stable set of G. However, |Z ∩ V (G′)| > |X ∪ V (G′)|
contradicting the choice of X. This proves that there is a stable set X ⊆ V (G′) of G of size
k that is independent in M. Then X is a solution to (G′, M′, k), that is, (G′, M′, k) is a
yes-instance. This concludes the proof. ◀

Theorem 4 is handy for kernelization with parameter k when the degeneracy of the graph
in a framework is a constant.

▶ Theorem 5. For every integer d ≥ 0, Independent Stable Set admits a polynomial
kernel with running time nO(d) on frameworks with graphs of degeneracy at most d such that
the output instance contains a graph with dkO(d) vertices.

Proof. Let (G, M, k) be an instance of Independent Stable Set where the degeneracy of
G is at most d. We assume without loss of generality that r(M) = k. Otherwise, if r(M) < k,
then (G, M, k) is a no-instance, and we can return a trivial no-instance of constant size and
stops. If d = 0, then G is an edgeless graph, and any set of vertices forming a base of M is a
stable set of size k that is independent with respect to M, that is, (G, M, k) is a yes-instance.
Then we return a trivial yes-instance and stop. From now on, we assume that d ≥ 1. Also,
we assume that k ≥ 2. Otherwise, if k = 0, the empty set is a trivial solution. If k = 1 then
because r(M) = k ≥ 1, there is a vertex v such that {v} ∈ I(M) and {v} is an independent
set of size k. In both cases, we return a trivial yes-instance and stop.

Since G is a d-degenerate graph, it admits an elimination ordering v1, . . . , vn of the
vertices of G, that is, dGi

(vi) ≤ d for every i ∈ {1, . . . , n} where Gi = G[{vi, . . . , vn}]. Recall
that such an ordering can be computed in linear time [32]. For a set of vertices X ⊆ V (G),
we use F (X) to denote the set of common neighbors of the vertices of X that occur before
the vertices of X in the elimination ordering. Note that because G is a d-degenerate graph,
F (X) = ∅ if |X| > d. For an integer i ≥ 1, fi(G) = max{|F (X)| : X ⊆ V (G) and |X| = i}.
Clearly, fi(G) = 0 if i > d.

For each h = d, . . . , 1, we apply the following reduction rule starting with h = d. Whenever
the rule deletes some vertices, we do not recompute the elimination ordering; instead, we use
the induced ordering obtained from the original one by vertex deletions.

▶ Reduction Rule 5.1. Set dh = d + fh+1(G). For each X ⊆ V (G) such that |X| = h, do
the following:

(i) set W0 = ∅,
(ii) for i = 1, . . . , ℓ where ℓ = kdh, greedily select a maximum-size independent set Wi ⊆

F (X) \
(⋃i−1

j=0 Wj

)
,

(iii) delete the vertices of D = F (X) \
(⋃ℓ

i=1 Wi

)
and restrict M to V (G) \ D.

It is easy to see that the rule can be applied in nO(d) time. We show that the rule is safe,
that is, it returns an equivalent instance of the problem.

▶ Claim 5.1. Reduction Rule 5.1 is safe.

Proof of Claim 5.1. Let X ⊆ V (G) be of size h. Denote by G′ the graph obtained from G

by applying steps (i)–(iii) for X and let M be the restriction of M to V (G) \ D. We prove
that (G, M, k) is a yes-instance of Independent Stable Set if and only if (G′, M′, k) is
a yes-instance. Clearly, this is sufficient for the proof of the claim. Since G′ is an induced

F. V. Fomin, P. A. Golovach, T. Korhonen, and S. Saurabh 22:11

subgraph of G, any solution to (G′, M′, k) is a solution to (G, M, k). Thus, if (G′, M′, k) is
a yes-instance then the same holds for (G, M, k). Hence, it remains to show that if (G, M, k)
is a yes-instance then (G′, M′, k) is a yes-instance as well.

We use the following axillary observation: for every v ∈ V (G) \ X, |NG(v) ∩ F (X)| ≤
dh. To see this, consider v ∈ V (G) \ X, and denote by L and R the sets of vertices
of F (X) that are prior and after v, respectively, in the elimination ordering. By the
definition of an elimination ordering, |NG(v) ∩ R| ≤ d. For NG(v) ∩ L, we have that
NG(v) ∩ L ⊆ F (X ∪ {v}). Then |NG(v) ∩ L| ≤ |F (X ∪ {v})| ≤ fh+1. We conclude that
|NG(v) ∩ F (X)| = |NG(v) ∩ L| + |NG(v) ∩ R| ≤ d + fh+1 = dh. This proves the observation.

Suppose that G has a stable set Y of size k that is independent with respect to M.
Among all these sets, we select Y such that Y ∩ D has the minimum size. We claim that
Y ∩ D = ∅. The proof is by contradiction and is similar to the proof of Theorem 4. Assume
that there is u ∈ Y ∩ D and let Z = Y \ {u}. For each i ∈ {1, . . . , ℓ}, u ∈ cl(Wi) by the
construction of Wi. Thus, r(Z ∪ Wi) ≥ r(Y) and for each i ∈ {1, . . . , ℓ}, there is wi ∈ Wi

such that r(Z ∪ {wi}) = r(Y) = k. Therefore, there are ℓ vertices w1, . . . , wℓ ∈ F (X) \ D

such that for any i ∈ {1, . . . , ℓ}, r(Z ∪ {wi}) = k. Notice that wi /∈ Z for all i ∈ {1, . . . , ℓ}
and Y ∩ X = ∅ because u is adjacent to every vertex of X. By the above observation, we
have that |NG(Z) ∩ F (X)| ≤ (k − 1)dh. Since ℓ = kdh > (k − 1)dh, there is i ∈ {1, . . . , ℓ}
such that wi /∈ NG(Z). Then Y ′ = Z ∪ {wi} is a stable set of G. Because Y ′ is independent
with respect to M and u /∈ D, this leads to a contradiction with the choice of Y . We
conclude that there is a stable set Y of G of size k that is independent with respect to M
such that Y ∩ D = ∅. This means that Y is a solution to (G′, M′, k), that is, (G′, M′, k) is
a yes-instance of Independent Stable Set. This concludes the proof. ◁

Denote by (G′, M′, k) the instance of Independent Stable Set obtained after applying
Reduction Rule 5.1. We prove that the maximum degree of G′ is bounded.

▶ Claim 5.2. ∆(G′) ≤ dk2d+1.

Proof of Claim 5.2. For i ∈ {1, . . . , d}, denote by Gi the graph obtained from G by applying
Reduction Rule 5.1 for h = d, . . . , i. Note that G′ = G1. Because r(M) = k, for each set
Wj selected in step (ii) of Reduction Rule 5.1, |Wj | ≤ k. Therefore, |

⋃ℓ
j=1 Wj | ≤ kℓ =

k2dh. Notice that for h = d, fh+1(G) = 0 and, therefore, dh = d. This implies that
fd(Gd) ≤ k2d. For i < d, we have that fi(Gi) ≤ k2di = k2(d + fi+1(Gi+1)). Therefore,
fi(Gi) ≤ d

∑d
j=i k2(j−i+1) and, as k ≥ 2,

f1(G′) ≤ f1(G1) ≤ d
d∑

j=1
k2j = d

d∑
j=0

k2j − d = d
k2(d+1) − 1

k2 − 1 − d ≤ dk2d+1 − d.

Therefore, each vertex v of G′ has at most dk2d+1 − d neighbors in G′ that are prior v in the
elimination ordering. Because v has at most d neighbors that are after v in the ordering,
dG′(v) ≤ dk2d+1. This concludes the proof. ◁

Because the maximum degree of G′ is bounded, we can apply Theorem 4. Applying the
kernelization algorithm from this theorem to (G′, M′, k), we obtain a kernel with at most
dk2d+3 vertices. This concludes the proof of the theorem. ◀

In Theorem 5, we proved that Independent Stable Set admits a polynomial kernel on
d-degenerate graphs when d is a fixed constant. We complement this result by showing that
it is unlikely that the problem has a polynomial kernel when parameterized by both k and d.

SWAT 2024

22:12 Stability in Graphs with Matroid Constraints

▶ Theorem 6. Independent Stable Set on frameworks with d-degenerate graphs and
partition matroids does not admit a polynomial kernel when parameterized by k + d unless
NP ⊆ coNP /poly.

Proof. We use the fact that Rainbow-Stable Set is a special case of Independent
Stable Set and show that Rainbow-Stable Set does not admit a polynomial kernel
when parameterized by k + d unless NP ⊆ coNP /poly where k is the number of color classes.

We use cross-composition from Rainbow-Stable Set. We say that two instances
(G, {V1, . . . , Vk}) and (G′, {V ′

1 , . . . , V ′
k′}) are equivalent if |V (G)| = |V (G′)| and k = k′.

Consider t equivalent instances (Gi, {V i
1 , . . . , V i

k }) of Rainbow-Stable Set for i ∈ {1, . . . , t}
where each graph has n vertices. We assume that t = 2p for some p ≥ 1. Otherwise, we
add 2⌈log t⌉ − t copies of (G1, {V 1

1 , . . . , V 1
k }) to achieve the property for p = ⌈log t⌉; note

that by this operation, we may add at most t instances. Then we construct the instance
(G, {V1, . . . , Vk+p}) of Rainbow-Stable Set as follows.

Construct the disjoint union of copies of G1, . . . , Gt.
For each i ∈ {1, . . . , p},

construct two adjacent vertices ui and vi,
for each j ∈ {1, . . . , t}, consider the binary encoding of j − 1 as a string s with p

symbols and make all the vertices of Gj adjacent to ui if s[i] = 0 and make them
adjacent to vi, otherwise, for i ∈ {1, . . . , p}.

Define k + p color classes Vi =
⋃t

j=1 V j
i for i ∈ {1, . . . , k} and Vk+i = {ui, vi} for

i ∈ {1, . . . , p}.

It is straightforward to see that the instance (G, {V1, . . . , Vk+p}) of Rainbow-Stable Set
can be constructed in polynomial time. We claim that (G, {V1, . . . , Vk+p}) is a yes-instance
of Rainbow-Stable Set if and only if there is j ∈ {1, . . . , t} such that (Gj , {V j

1 , . . . , V j
k })

is a yes-instance of Rainbow-Stable Set.
Suppose that (Gj , {V j

1 , . . . , V j
k }) is a yes-instance for some j ∈ {1, . . . , t}. Then there is

a stable set X ⊆ V (Gj) of size k such that |X ∩ V j
i | = 1 for i ∈ {1, . . . , k}. Let s be the

string with p symbols that is the binary encoding of j − 1. Consider the set Y ⊆
⋃p

i=1{ui, vi}
such that for each i ∈ {1, . . . , p}, Y contains either ui or vi, and ui is in Y whenever
s[i] = 1. Observe that Z = X ∪ Y is a stable set of G and it holds that |Z ∩ Vh| = 1 for each
h ∈ {1, . . . , p+k}. This means that (G, {V1, . . . , Vk+p}) is a yes-instance of Rainbow-Stable
Set.

For the opposite direction, assume that (G, {V1, . . . , Vk+p}) is a yes-instance of Rainbow-
Stable Set. Then there is a stable set Z of G of size k′ = k + p such that |Z ∩ Vh| = 1 for
each h ∈ {1, . . . , p + k}. Let Y = Z ∩

(⋃p
i=1{ui, vi}

)
and X = Z \ Y . By the construction

of color classes and because Y is a stable set, for each i ∈ {1, . . . , p}, Y contains either ui or
vi. Also, we have that X ⊆

⋃t
j=1 V (Gj). Consider the binary string s of length p such that

s[i] = 1 if ui ∈ Y and s[i] = 0, otherwise, for all i ∈ {1, . . . , p}. Notice that the vertices of Gj

such that s is the binary encoding of j − 1 are not adjacent to the vertices of Y and for every
j′ ∈ {1, . . . , t} distinct from j, all the vertices of Gj′ are adjacent to at least one vertex of Y .
This implies that X ⊆ V (Gj). Therefore, X is a stable set of Gj of size k and |X ∩ V j

i | = 1
for i ∈ {1, . . . , k}, that is, (Gj , {V j

1 , . . . , V j
k }) is a yes-instance of Rainbow-Stable Set.

Notice that each vertex v ∈ V (Gj) for j ∈ {1, . . . , t} is adjacent in G to at most n − 1
vertices of Gj and p vertices of

⋃p
i=1{ui, vi}. Therefore, the degeneracy of G is at most n+log t.

Also, we have the number of color classes k′ = k + p ≤ n + log t. Then because Rainbow-
Stable Set is NP-complete and (G, {V1, . . . , Vk+p}) is a yes-instance of Rainbow-Stable
Set if and only if there is j ∈ {1, . . . , t} such that (Gj , {V j

1 , . . . , V j
k }) is a yes-instance of

F. V. Fomin, P. A. Golovach, T. Korhonen, and S. Saurabh 22:13

Rainbow-Stable Set, the result of Bodlaender, Jansen, and Kratsch [5] implies that
Rainbow-Stable Set does not admit a polynomial kernel unless NP ⊆ coNP /poly when
parameterized by the number of color classes k and the degeneracy of the input graph. This
concludes the proof. ◀

5 Independent Stable Set on chordal graphs

For chordal graphs, we show that Independent Stable Set is FPT in the case of linear
matroids when parameterized by k by demonstrating a dynamic programming algorithm
over tree decompositions exploiting representative sets [28, 31, 15, 27].

Let M = (V, I) be a matroid and let S be a family of subsets of V . For a positive integer
q, a subfamily Ŝ is q-representative for S if the following holds: for every set Y ⊆ V of size at
most q, if there is a set X ∈ S disjoint from Y with X ∪ Y ∈ I then there is X̂ ∈ Ŝ disjoint
from Y with X̂ ∪ Y ∈ I. We write Ŝ ⊆q

rep S to denote that Ŝ ⊆ S is q-representative for
S. We use the results of of Fomin et al. [15] to compute representative families for linear
matroids. A family of sets S is said to be a p-family for an integer p ≥ 0 if |S| = p for every
S ∈ S, and we use ∥A∥ to denote the bit-length of the encoding of a matrix A.

▶ Proposition 7 ([15, Theorem 3.8]). Let M = (V, I) be a linear matroid and let S =
{S1, . . . , St} be a p-family of independent sets. Then there exists Ŝ ⊆q

rep S of size at most(
p+q

p

)
. Furthermore, given a representation A of M over a field F, there is a randomized

Monte Carlo algorithm computing Ŝ ⊆q
rep S of size at most

(
p+q

p

)
in O(

(
p+q

p

)
tpω+t

(
p+q

q

)ω−1)+
∥A∥O(1) operations over F, where ω is the exponent of matrix multiplication.1

The following theorem is proved by the bottom-up dynamic programming over a nice
tree decomposition where representative sets are used to store partial solutions. Due to
space constraints, the proof is omitted in this extended abstract and can be found in the full
version [14].

▶ Theorem 8. Independent Stable Set can be solved in 2O(k) · ∥A∥O(1) time by a one-
sided error Monte Carlo algorithm with false negatives on frameworks with chordal graphs
and linear matroids given by their representations A.

The algorithm in Theorem 8 is randomized because it uses the algorithm from Proposition 7
to compute representative sets. For some linear matroids, the algorithm can be derandomized
using the deterministic construction of representative sets given by Lokshtanov et al. [27]. In
particular, this can be done for linear matroids over any finite field and the field of rational
numbers.

We complement Theorem 8 by proving that it is unlikely that Independent Stable
Set admits a polynomial kernel when parameterized by k in the case of chordal graphs.

▶ Theorem 9. Independent Stable Set on frameworks with chordal graphs and par-
tition matroids does not admit a polynomial kernel when parameterized by k unless NP ⊆
coNP /poly.

Proof. In the same way as in the proof of Theorem 6, we prove that Rainbow-Stable
Set does not admit a polynomial kernel when parameterized by k on chordal graphs unless
NP ⊆ coNP /poly where k is the number of color classes.

1 The currently best value is ω ≈ 2.3728596 [4].

SWAT 2024

22:14 Stability in Graphs with Matroid Constraints

We construct a cross-composition from Rainbow-Stable Set. Again, we say that two
instances (G, {V1, . . . , Vk}) and (G′, {V ′

1 , . . . , V ′
k′}) are equivalent if |V (G)| = |V (G′)| and

k = k′. Consider t equivalent instances (Gi, {V i
1 , . . . , V i

k }) of Rainbow-Stable Set for
i ∈ {1, . . . , t} where each graph is chordal and has n vertices. Then we construct the instance
(G, {V0, V1, . . . , Vk}) of Rainbow-Stable Set as follows.

Construct the disjoint union of copies of G1, . . . , Gt.
Construct a clique K with t vertices v1, . . . , vt.
For each j ∈ {1, . . . , t}, make vj adjacent to all the vertices of every Gi for i ∈ {1, . . . , t}
that is distinct from j.
Define k + 1 color classes V0 = K and Vi =

⋃t
j=1 V j

i for i ∈ {1, . . . , k}.
It is straightforward to see that G is chordal and the instance (G, {V0, V1, . . . , Vk})
of Rainbow-Stable Set can be constructed in polynomial time. We claim that
(G, {V0, V1, . . . , Vk}) is a yes-instance of Rainbow-Stable Set if and only if there is
j ∈ {1, . . . , t} such that (Gj , {V j

1 , . . . , V j
k }) is a yes-instance of Rainbow-Stable Set.

Suppose that (Gj , {V j
1 , . . . , V j

k }) is a yes-instance for some j ∈ {1, . . . , t}. Then there is a
stable set X ⊆ V (Gj) of size k such that |X ∩ V j

i | = 1 for i ∈ {1, . . . , k}. By the construction
of G, the vertex vj ∈ K is not adjacent to any vertex of Gj . Thus, Y = X ∪ {vj} is stable
set of G such that |Y ∩ Vi| = 1 for each i ∈ {0, . . . , k}. Therefore, (G, {V0, V1, . . . , Vk}) is a
yes-instance of Rainbow-Stable Set.

For the opposite direction, assume that (G, {V0, V1, . . . , Vk}) is a yes-instance of Rainbow-
Stable Set. Then there is a stable set Y of G of size k + 1 such that |Y ∩ Vi| = 1 for each
i ∈ {0, . . . , k}. In particular, |Y ∩ V0| = 1. Then there is j ∈ {1, . . . , t} such that vj ∈ Y . By
the construction of G, we have that X = Y \ {vj} ⊆ V (Gj). Then |X ∩ V j

i | = 1 for each
i ∈ {1, . . . , k}, that is, (Gj , {V j

1 , . . . , V j
k }) is a yes-instance of Rainbow-Stable Set.

Le and Pfender in [26] proved that Rainbow Matching remains NP-complete on paths.
This implies that Rainbow-Stable Set is also NP-complete on paths, and hence on chordal
graphs. Because the number of color classes is k + 1 ≤ n + 1 and Rainbow-Stable Set
is NP-complete on chordal graphs, we can apply the result of Bodlaender, Jansen, and
Kratsch [5]. This concludes the proof. ◀

6 Conclusion

In this paper, we investigated the parameterized complexity of the Independent Stable
Set problem for various classes of graphs where the classical Stable Set problem is tractable.
We derived kernelization results and FPT algorithms, complemented by complexity lower
bounds. We believe exploring Independent Stable Set on other natural graph classes with
similar properties would be interesting. For instance, Stable Set is solvable in polynomial
time on claw-free graphs [33] and AT-free graphs [8]. While our unconditional lower bound
from Theorem 2 applies to these classes, it does not rule out the possibility of FPT algorithms
for frameworks with linear matroids. A similar question arises regarding graphs with a
polynomial number of minimal separators [6, 7].

References
1 Ron Aharoni, Eli Berger, Maria Chudnovsky, David M. Howard, and Paul D. Seymour. Large

rainbow matchings in general graphs. Eur. J. Comb., 79:222–227, 2019. doi:10.1016/J.EJC.
2019.01.012.

2 Ron Aharoni, Eli Berger, and Ran Ziv. Independent systems of representatives in weighted
graphs. Combinatorica, 27(3):253–267, 2007.

https://doi.org/10.1016/J.EJC.2019.01.012
https://doi.org/10.1016/J.EJC.2019.01.012

F. V. Fomin, P. A. Golovach, T. Korhonen, and S. Saurabh 22:15

3 Ron Aharoni, Joseph Briggs, Jinha Kim, and Minki Kim. Rainbow independent sets in certain
classes of graphs. Journal of Graph Theory, 104(3):557–584, 2023.

4 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 522–539.
SIAM, 2021. doi:10.1137/1.9781611976465.32.

5 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by
cross-composition. SIAM J. Discret. Math., 28(1):277–305, 2014. doi:10.1137/120880240.

6 Vincent Bouchitté and Ioan Todinca. Treewidth and minimum fill-in: Grouping the minimal
separators. SIAM J. Comput., 31(1):212–232, 2001. doi:10.1137/S0097539799359683.

7 Vincent Bouchitté and Ioan Todinca. Listing all potential maximal cliques of a graph. Theor.
Comput. Sci., 276(1-2):17–32, 2002. doi:10.1016/S0304-3975(01)00007-X.

8 Hajo Broersma, Ton Kloks, Dieter Kratsch, and Haiko Müller. Independent sets in as-
teroidal triple-free graphs. SIAM J. Discret. Math., 12(2):276–287, 1999. doi:10.1137/
S0895480197326346.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

10 Marek Cygan, Fabrizio Grandoni, and Danny Hermelin. Tight kernel bounds for problems
on graphs with small degeneracy. ACM Trans. Algorithms, 13(3):43:1–43:22, 2017. doi:
10.1145/3108239.

11 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

12 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

13 Arthur A. Drisko. Transversals in row-latin rectangles. Journal of Combinatorial Theory,
Series A, 84(2):181–195, 1998. doi:10.1006/jcta.1998.2894.

14 Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Saket Saurabh. Stability in graphs
with matroid constraints, 2024. arXiv:2404.03979.

15 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. J. ACM,
63(4):29:1–29:60, 2016. doi:10.1145/2886094.

16 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory
of parameterized preprocessing. Cambridge University Press, 2019.

17 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

18 Alessandra Graf, David G. Harris, and Penny Haxell. Algorithms for weighted independent
transversals and strong colouring. ACM Trans. Algorithms, 18(1):1:1–1:16, 2022. doi:
10.1145/3474057.

19 Alessandra Graf and Penny Haxell. Finding independent transversals efficiently. Comb. Probab.
Comput., 29(5):780–806, 2020. doi:10.1017/S0963548320000127.

20 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combi-
natorial optimization, volume 2. Springer Science & Business Media, 2012.

21 Sushmita Gupta, Sanjukta Roy, Saket Saurabh, and Meirav Zehavi. Parameterized algorithms
and kernels for rainbow matching. Algorithmica, 81(4):1684–1698, 2019. doi:10.1007/
S00453-018-0497-3.

22 Sushmita Gupta, Sanjukta Roy, Saket Saurabh, and Meirav Zehavi. Quadratic vertex kernel for
rainbow matching. Algorithmica, 82(4):881–897, 2020. doi:10.1007/S00453-019-00618-0.

23 Penny Haxell. On forming committees. The American Mathematical Monthly, 118(9):777–788,
2011.

24 Alon Itai, Michael Rodeh, and Steven L. Tanimoto. Some matching problems for bipartite
graphs. J. ACM, 25(4):517–525, 1978. doi:10.1145/322092.322093.

SWAT 2024

https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1137/120880240
https://doi.org/10.1137/S0097539799359683
https://doi.org/10.1016/S0304-3975(01)00007-X
https://doi.org/10.1137/S0895480197326346
https://doi.org/10.1137/S0895480197326346
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/3108239
https://doi.org/10.1145/3108239
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1006/jcta.1998.2894
https://arxiv.org/abs/2404.03979
https://doi.org/10.1145/2886094
https://doi.org/10.1145/3474057
https://doi.org/10.1145/3474057
https://doi.org/10.1017/S0963548320000127
https://doi.org/10.1007/S00453-018-0497-3
https://doi.org/10.1007/S00453-018-0497-3
https://doi.org/10.1007/S00453-019-00618-0
https://doi.org/10.1145/322092.322093

22:16 Stability in Graphs with Matroid Constraints

25 Jinha Kim, Minki Kim, and O-joung Kwon. Rainbow independent sets on dense graph classes.
Discrete Applied Mathematics, 312:45–51, 2022.

26 Van Bang Le and Florian Pfender. Complexity results for rainbow matchings. Theor. Comput.
Sci., 524:27–33, 2014. doi:10.1016/J.TCS.2013.12.013.

27 Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. Deterministic
truncation of linear matroids. ACM Trans. Algorithms, 14(2):14:1–14:20, 2018. doi:10.1145/
3170444.

28 L. Lovász. Flats in matroids and geometric graphs. In Combinatorial surveys (Proc. Sixth
British Combinatorial Conf., Royal Holloway Coll., Egham, 1977), pages 45–86, 1977.

29 László Lovász. Graphs and geometry, volume 65 of American Mathematical Society Colloquium
Publications. American Mathematical Society, Providence, RI, 2019. doi:10.1090/coll/065.

30 Pasin Manurangsi, Erel Segal-Halevi, and Warut Suksompong. On maximum bipartite matching
with separation. Inf. Process. Lett., 182:106388, 2023. doi:10.1016/J.IPL.2023.106388.

31 Dániel Marx. A parameterized view on matroid optimization problems. Theor. Comput. Sci.,
410(44):4471–4479, 2009. doi:10.1016/j.tcs.2009.07.027.

32 David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and graph coloring
algorithms. J. ACM, 30(3):417–427, 1983. doi:10.1145/2402.322385.

33 George J. Minty. On maximal independent sets of vertices in claw-free graphs. J. Comb.
Theory, Ser. B, 28(3):284–304, 1980. doi:10.1016/0095-8956(80)90074-X.

34 James Oxley. Matroid theory, volume 21 of Oxford Graduate Texts in Mathematics. Oxford
University Press, Oxford, second edition, 2011. doi:10.1093/acprof:oso/9780198566946.
001.0001.

https://doi.org/10.1016/J.TCS.2013.12.013
https://doi.org/10.1145/3170444
https://doi.org/10.1145/3170444
https://doi.org/10.1090/coll/065
https://doi.org/10.1016/J.IPL.2023.106388
https://doi.org/10.1016/j.tcs.2009.07.027
https://doi.org/10.1145/2402.322385
https://doi.org/10.1016/0095-8956(80)90074-X
https://doi.org/10.1093/acprof:oso/9780198566946.001.0001
https://doi.org/10.1093/acprof:oso/9780198566946.001.0001

A Logarithmic Integrality Gap for Generalizations
of Quasi-Bipartite Instances of Directed Steiner
Tree
Zachary Friggstad #

University of Alberta, Canada

Hao Sun #

University of Alberta, Canada

Abstract
In the classic Directed Steiner Tree problem (DST), we are given an edge-weighted directed
graph G = (V, E) with n nodes, a specified root node r ∈ V , and k terminals X ⊆ V − {r}. The
goal is to find the cheapest F ⊆ E such that r can reach any terminal using only edges in F .

Designing approximation algorithms for DST is quite challenging, to date the best approximation
guarantee of a polynomial-time algorithm for DST is O(kϵ) for any constant ϵ > 0 [Charikar et
al., 1999]. For network design problems like DST, one often relies on natural cut-based linear
programming (LP) relaxations to design approximation algorithms. In general, the integrality gap of
such an LP for DST is known to have a polynomial integrality gap lower bound [Zosin and Khuller,
2002; Li and Laekhanukit, 2021]. So particular interest has been invested in special cases or in
strengthenings of this LP.

In this work, we show the integrality gap is only O(log k) for instances of DST where no Steiner
node has both an edge from another Steiner node and an edge to another Steiner node, i.e. the
longest path using only Steiner nodes has length at most 1. This generalizes the well-studied case
of quasi-bipartite DST where no edge has both endpoints being Steiner nodes. Our result is also
optimal in the sense that the integrality gap can be as bad as poly(n) even if the longest path with
only Steiner nodes has length 2.

2012 ACM Subject Classification Theory of computation → Routing and network design problems

Keywords and phrases Steiner Tree, Approximation Algorithms, Linear Programming

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.23

Funding Zachary Friggstad: Research supported by an NSERC Discovery Grant and Accelerator
Supplement.

1 Introduction

The Directed Steiner Tree problem (DST) is one of the most foundational models in
combinatorial optimization and network design. Given a directed graph G = (V, E) with
n nodes, a specified root node r ∈ V , and k terminals X ⊆ V − {r}, the goal is to buy the
cheapest F ⊆ E such that r can reach any terminal using only edges in F . Throughout, we
say nodes in V − (X ∪ {r}) are Steiner nodes.

Despite its central position in discrete optimization, there is a large gap in our under-
standing concerning its approximability. Namely, the best polynomial-time approximation is
currently an O(kϵ)-approximation for any constant ϵ > 0 by Charikar et al. [4]. Grandoni,
Laekhanukit, and Li show DST cannot be approximated within o(log2 n/ log log n) unless
NP ⊆ ∩0<δZTIME(2nδ) [12], improving on a slightly weaker lower bound than the one
inherited from Group Steiner Tree [13]. These bounds differ by an order of magnitude.
On the other hand, Grandoni, Laekhanukit, and Li do obtain matching O(log2 k/ log log k)-
approximation in quasi-polynomial time. Still, a polylogarithmic approximation in polynomial
time remains elusive.

© Zachary Friggstad and Hao Sun;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zacharyf@ualberta.ca
https://orcid.org/0000-0003-4039-3235
mailto:hsun14@ualberta.ca
https://doi.org/10.4230/LIPIcs.SWAT.2024.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 A Logarithmic Gap for Generalizions of Quasi-Bipartite DST

1.1 Linear Programming Relaxations and Previous Work
In this paper, we consider the following natural linear programming (LP) relaxation for DST
in which we have a variable xe for each edge e ∈ E modelling whether we include edge e in
the solution or not.

minimize :
∑

e∈E ce · xe

subject to : x(δin(S)) ≥ 1 ∀ S ⊆ V − {r}, S ∩X ̸= ∅
x(δin(v)) ≤ 1 ∀ v ∈ V

x ≥ 0

(DST-LP)

Here, for any S ⊆ V we let δin(S) = {(u, v) ∈ E : u /∈ S, v ∈ S} and we use the shorthand
δin(v) := δin({v}) for any v ∈ V . The cut constraints capture the fact that every cut
separating the root from some terminal must be crossed by at least one edge in a feasible
DST solution. In any minimal DST solution (i.e. a feasible F ⊆ E that can not be made
smaller by dropping an edge), every node will have indegree at most one since the solution
is a directed tree spanning all terminals and, perhaps, some Steiner nodes. This justifies
the indegree constraints. So the optimum LP solution value, denoted OPTLP , is at most
the cost of an optimal Steiner tree solution. We remark that (DST-LP) admits a simple
polynomial-time separation oracle by simply checking that we can send one unit of r− t flow
to each terminal when edges have capacity xe.

The integrality gap of this relaxation is well studied. First, Zosin and Khuller demonstrated
the gap can be Ω(

√
k) [19] in some instances. The number of vertices in their construction

is exponential in the number of terminals, so the possibility of an O(logc n) integrality gap
bound was open. More recently, this was refuted by Li and Laekhanukit [15] who gave an
example with integrality gap Ω(n0.0418). We remark that both [19] and [15] considered a
different flow-based relaxation and their relaxation did not include the indegree bound for
non-root nodes, but their examples are valid for (DST-LP).

Special Cases

Perhaps the first polylogarithimic integrality gap bound recorded for DST in certain settings
was an O(log k) upper bound in quasi-bipartite instances. These are instances of DST such
that every edge has at most one of its endpoints being a Steiner node. Another way to say this
is that the subgraph induced by Steiner nodes contains no edges. Hibi and Fujito first gave
an O(log k)-approximation for this setting [14] and Friggstad, Könemann, and Shadravan
then gave a primal-dual algorithm that demonstrated the integrality gap of (DST-LP) (even
without the indegree constraints) is bounded by O(log k) [7]. In quasi-bipartite instances of
DST where the underlying undirected graph excludes a fixed minor (e.g. planar graphs),
(DST-LP) is known to have an integrality gap of O(1) [8].

Chan et al. [3] generalized the O(log k) integrality gap bound to higher connectivity
settings. They demonstrate an appropriate generalization of (DST-LP) (without the
indegree constraints) for the problem of finding the cheapest F ⊆ E ensuring r is at least
R-edge connected to each terminal has an integrality gap bound of O(log k · log R).

Nutov [16] extended this to more settings involving more general supermodular cut
requirement functions in with relaxations to the quasi-bipartite property. Namely, [16]
considers a cut requirement function f : 2V −{r} → Z≥0 satisfies f(A) + f(B) ≤ f(A ∩B) +
f(A ∪B) whenever f(A) > 0, f(B) > 0 and A ∩B ∩ T = ∅. If one further has the property
that every edge has an endpoint v such that v ∈ X or f(A) = 0 for each {v} ⊆ A ⊆ V − {r}.
In this case, [16] gives an O(log k · log R)-approximation where R is the maximum value

Z. Friggstad and H. Sun 23:3

taken by f . Note, this does not capture our setting as our graphs can have edges (u, v) with
both u, v being Steiner nodes yet any A ⊆ V − {r} with u, v ∈ A and A ∩X ̸= ∅ requires an
incoming edge.

Layered Graphs

An instance of DST is ℓ-layered if V is partitioned as V1 = {r}, V2, V3, . . . , Vℓ = X and all
edges (u, v) ∈ E have u ∈ Vi, v ∈ Vi+1 for some 1 ≤ i < ℓ. An α-approximation for DST in
ℓ-layered graphs is known to yield an O(α · ℓ · k1/ℓ)-approximation in general [18, 2]. This
was the starting point for a kϵ-approximation by Charikar et al. [4].

The bad integrality gap examples in [19] and [15] are 5-layered instances of DST. It can
easily be seen that 3-layered instances of DST (which are necessarily quasi-bipartite) have
an integrality gap of O(log k) by adapting randomized Set Cover rounding techniques.

Friggstad et al. show the integrality gap of (DST-LP) remains O(log k) even in 4-layered
instances [6]. They do this by mapping an LP solution to a natural relaxation for a related
instance of Group Steiner Tree in a tree with constant height and using the known
integrality gap bound for such instances [10]. Intuitively, this is possible since the first two
layers of edges can only be reached in one way and each edge in the last layer is only used to
connect to one terminal.

The behavior of LP relaxations for DST under hierarchies has also been considered.
First, Rothvoss showed for ℓ-layered graphs that lifting a related flow-based LP relaxation
through O(ℓ) layers of the Laserre hierarchy reduces the integrality gap to O(ℓ · log k) [17].
Later, [6] showed the result holds for a considerably weaker version of (DST-LP) that is
valid only for layered graphs and using only the LP-based hierarchies of Lovasz-Schrijver
and Sherali-Adams.

Undirected Graphs

Finally, it should be noted that in undirected graphs, the integrality gap of a related relaxation
with undirected cut constraints x(δ(S)) ≥ 1 (and no vertex degree constraints) is well-known
to be exactly 2. If one considers the bi-directed cut relaxation, i.e. the directed graph
having both orientations of each undirected edge, then it is an open problem to determine if
(DST-LP) has an integrality gap being some constant smaller than 2. It is at least known
for quasi-bipartite graphs that the integrality gap of this bi-directed relaxation is better than
2 [9, 5]. Finally, a significant strengthening of the standard relaxation for general instances
of undirected Steiner Tree, known as they hypergraphic relaxation, is known to have an
integralty gap of ln(4) and can be efficiently solved to within any constant factor of the
optimum solution cost in polynomial time [1, 11].

1.2 Our Results
We consider a generalization of DST in quasi-bipartite graphs and prove the following result.

▶ Theorem 1. Suppose no Steiner node has both incoming and outgoing edges to other
Steiner nodes. Then the integrality gap of (DST-LP) is O(log k).

In other words, we consider instances where the subgraph induced by Steiner nodes may
contain edges but not paths with more than one edge. Thus, this is a generalization of
quasi-bipartite DST. This is also extends the integrality gap bound of O(log k) in 4-layered
graphs [6] to a more general setting.

SWAT 2024

23:4 A Logarithmic Gap for Generalizions of Quasi-Bipartite DST

We emphasize that an O(log k)-approximation for such graphs was already given by Hibi
and Fujito [14]. The main purpose of our paper is to establish integrality gap bounds. The
techniques in [14] seem unlikely to produce integrality gap bounds because they also produce
O(log k)-approximation for DST in 5-layered graphs, for which we know the integrality gap
is not polylogarithmic (see Section 1.1).

Our algorithm can be seen as a common generalization of the rounding algorithm for
quasi-bipartite instances from Chan et al. [3] and the analysis of Group Steiner Tree presented
by Rothvoss [17]. At a high level, we round edges in phases: each phase will reduce the
number of terminals we are required to connect by a constant while only paying O(OPTLP)
for the edges purchased each round.

In more detail, [3] identifies a maximal violated set around each such terminal (that
excludes other required terminals) is identified and each iteration will “cover” the violated
cuts in those sets. They show that no edge can be fully contained in more than one such
maximal violated set around the required terminals. Unfortunately, that is not the case in
our setting. Still, we can show the only edges shared between these maximal sets have at
least one endpoint being a terminal, so the overlap in these sets is limited to edges between
Steiner nodes. Then we use a variation of Group Steiner Tree rounding to ensure the edges e

that might be used to connect to multiple nodes are only sampled with probability O(xe) in
our algorithm.

2 Preliminaries

We call an edge e = (u, v) a Steiner edge if both u and v are Steiner nodes. Call a
Steiner node v a source-Steiner node if there is an edge (v, w) to another Steiner node w.
Otherwise, call v a sink-Steiner node.

Recall for a subset of edges F ⊆ E and a subset of nodes S ⊆ V we let δin
F (S) = {(u, v) ∈

F : u /∈ S, v ∈ S} be all edges of F entering S. Similarly, δout
F (S) are edges leaving S. If

F = E, we may omit the subscript and simply write δin(S) and δout(S). For brevity, we also
write δin

F (v) and δout
F (v) for a single node v ∈ V to mean δin

F ({v}) and δout
F ({v}).

Without loss of generality, we assume there is no edge entering r (they can be deleted),
no direct edge from X ∪ {r} to X (such an edge e can be subdivided with two Steiner nodes
into a path of length 3 with each edge having cost ce/3), and no Steiner node has no edge to
any other Steiner node (such a Steiner node v can be split into two Steiner nodes v+, v−

with a 0-cost edge from v+ to v−). It is straightforward to check these reductions do not
change the optimal value of (DST-LP) and that we can map solutions between the original
graph and the modified graph without increasing their costs. Again, throughout we will let
OPTLP denote the optimum solution value of (DST-LP).

2.1 Representative Terminals for Partial Solutions
Our algorithm will iteratively purchase subsets of edges over phases while making progress
toward a feasible solution. So we need to understand the structure of a partial solution
F ⊆ E that does not necessarily connect r to each terminal. If some terminals can already
reach other terminals in (V, F), we only need to focus on purchasing edges to ensure r is
connected to a subset of terminals that can reach all other terminals.

For F ⊆ E, we consider the following pruning process. First, consider the strongly-
connected components (SCCs) of (V, F). Since r has no incoming edges in G, then {r} is
an SCC of (V, F). Say an SCC C is a terminal-source component if C ∩X ̸= ∅ and the
only nodes in X ∪ {r} that can reach C ∩X in the graph (V, F) are those already in C.

Z. Friggstad and H. Sun 23:5

Let XF consist of a single arbitrarily-chosen terminal in each terminal-source SCC. Note
that in the graph (V, F) all terminals in X can be reached from some node in XF but no
node in XF can be reached from any other node in XF . To prune F means to iteratively
remove edges from F arbitrarily as long as doing so preserves the property that every node
in X can be reached from a node in XF ∪ {r}. After pruning, F looks like a directed forest
where all non-singleton components have a node in XF ∪ {r} as a root and only terminals
as leaf nodes. We say F is pruned with respect to XF after this process and we call XF

representative terminals.

▶ Lemma 2. Let F ⊆ E be pruned and F ′ ⊆ E − F . If (V, F ∪ F ′) contains an r − t path
for each t ∈ XF , then in fact it contains an r − t path for each t′ ∈ X.

Proof. Each t ∈ X is reachable from some t′ ∈ XF ∪{r} using edges in F . Since r can reach
t′ using edges in F ∪ F ′, it can also reach t using edges in F ∪ F ′ ◀

Additional useful properties of a pruned set of edges having roots XF ∪ {r} are:
Each terminal t ∈ X can be reached from exactly one t′ ∈ XF ∪ {r}.
Each Steiner node u can be reached from at most one t ∈ XF ∪ {r}. If u can be reached
this way, it is not a leaf node in its corresponding tree. If u cannot be reached from any
XF ∪ {r}, it is isolated (has no incoming or outgoing edges in F).

2.2 Tracking Progress
We will find a set of edges F ′ ⊆ E − F with cost bounded by the optimum solution value of
(DST-LP) that, in some sense, improves overall connectivity when added to F . If we could
also ensure the number of terminals not connected from r decreases by a constant factor
when adding F ′ to F , we would be done since it would be sufficient to iterate the procedure
O(log k) times.

This view too optimistic. Rather, we track progress a different way by showing |XF |
decreases by a constant factor each iteration. First, we show it suffices to ensure a constant
fraction of terminals in XF can be reached by another node in XF ∪ {r}. This is essentially
the same as Lemma 5 in [3], we include its proof for completeness in Appendix A.

▶ Lemma 3. 0 < α < 1 and let F ′ ⊆ E − F be such that for at least an α-fraction
of t ∈ XF , there is some other t′ ∈ XF − {t} that can reach t in (V, F ∪ F ′). Then
|XF ′∪F | ≤ (1− α/2) · |XF |.

Thus, our main algorithm boils down to finding such a set F ′.

▶ Theorem 4. Suppose XF ̸= ∅. There is a universal constant 0 < α < 1 and a randomized
algorithm with polynomial expected running time that is guaranteed to find a set F ′ ⊆ E − F

such that (a) at least an α-fraction of t ∈ XF are reachable from some t′ ∈ XF − {t} in
(V, F ∪ F ′), and (b) the cost of F ′ is O(OPTLP).

Proving Theorem 4 is the focus of Section 3.
Our final algorithm iterates the procedure from Theorem 4 and adds the resulting set

F ′ to the current set of given edges F . Since |XF | starts at k and decreases geometrically,
after O(log k) iterations the set of all edges F purchased satisfies XF = ∅ (i.e. all terminals
are reachable from r) and cost(F) = O(log k) · OPTLP . This procedure is summarized in
Algorithm 1.

SWAT 2024

23:6 A Logarithmic Gap for Generalizions of Quasi-Bipartite DST

Algorithm 1 DST Rounding.

Compute an optimal solution x to (DST-LP).
F ← ∅
XF ← X ∪ {r}
while XF ̸= {r} do

Obtain F ′ ⊆ E − F using the algorithm from Theorem 4.
F ← F ∪ F ′

Let XF be a set of terminals, one from each source SCC in (V, F).
Prune F with respect to XF .

return F

3 The Rounding Algorithm

This section is dedicated to the proof of Theorem 4. Let x be an optimal solution to
(DST-LP). We further assume that we cannot decrease any xe by any positive amount.

▶ Lemma 5. For each edge e = (u, v) ∈ E, xe ≤ 1. Additionally, if u ̸= r then xe ≤
x(δin(u)).

In fact, these properties would hold for any optimal solution if G had no 0-cost edges, we are
just making sure 0-cost edges are well-behaved under x for our algorithm.

Proof. That xe ≤ 1 is obvious because all cut constraints require 1 edge, so no edge would
be chosen to an extent of more than 1 in a minimal solution.

For the sake of contradiction, suppose u ̸= r yet xe > x(δin(u)). We claim that xe could
be decreased, contradicting minimality of x again. To see the latter, suppose otherwise, i.e.
x(δin(S)) = 1 for some constraint S with e ∈ δin(S). One easily checks

x(δin(S ∪ {u})) = x(δin(S)) + x(δin(u) ∩ δout(V − S))− x(δout(u) ∩ δin(S))
≤ x(δin(S)) + x(δin(u))− xe

< x(δin(S)) = 1.

This contradicts feasibility of x. ◀

Now let F ⊆ E be a set of given edges (i.e. purchased in previous iterations). Our
rounding procedure helps extend paths outward from nodes reachable from a node in XF ∪{r}
toward other nodes in XF . It does this in three phases, with the first two being very simple.

Step 1 – Forming F1

Consider an edge e = (u, v) with u ∈ X ∪{r} and v being a Steiner node. Let F1 ⊆ E−F be
formed by including each e ∈ E −F independently with probability xe. Clearly the expected
cost of F1 at most the cost of x.

Step 2 – Forming F2

Form F2 ⊆ E as follows. For each Steiner edge e = (u, v), if δin
F1

(u) ̸= ∅ then add f to F2
with probability xe

x(δin(u)) . Note the denominator cannot be 0 if we had successfully added
an edge of δin(u) to F1. So by Lemma 5, this is a valid probability. Now,

Z. Friggstad and H. Sun 23:7

<latexit sha1_base64="+Qkwz+X2O5yVhzLNBohcWo7l818=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQizcjmgckS5idzCZDZmeXmV4hLPkELx4U8eoXefNvnCR70GhBQ1HVTXdXkEhh0HW/nMLS8srqWnG9tLG5tb1T3t1rmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpG11O/9ci1EbF6wHHC/YgOlAgFo2il+9se9soVt+rOQP4SLycVyFHvlT+7/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUKOrNInYaxtKSQz9edERiNjxlFgOyOKQ7PoTcX/vE6K4aWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb78lzRPqt559ezutFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d6Tw7b877vLXg5DP78AvOxzc2Bo3E</latexit>

Ot
<latexit sha1_base64="a6ql2g27xIRn3iVNsLZOWZX56gQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRC0dI5JHAhswOvTAyO7uZmTUhhC/w4kFjvPpJ3vwbB9iDgpV0UqnqTndXkAiujet+O7m19Y3Nrfx2YWd3b/+geHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hofua3nlBpHssHM07Qj+hA8pAzaqxUr/aKJbfszkFWiZeREmSo9Ypf3X7M0gilYYJq3fHcxPgTqgxnAqeFbqoxoWxEB9ixVNIItT+ZHzolZ1bpkzBWtqQhc/X3xIRGWo+jwHZG1Az1sjcT//M6qQlv/QmXSWpQssWiMBXExGT2NelzhcyIsSWUKW5vJWxIFWXGZlOwIXjLL6+S5kXZuy5f1S9LlbssjjycwCmcgwc3UIEq1KABDBCe4RXenEfnxXl3PhatOSebOYY/cD5/AKC5jNY=</latexit>

H

<latexit sha1_base64="04r1TcXFmrIMSIT8tITaLupiPMU=">AAAB6nicbVDJSgNBEK2JW4xb1KOXxiB4CjPidgx68RiXLJAMoafTkzTp6Rm6a4Qw5BO8eFDEq1/kzb+xk8xBow8KHu9VUVUvSKQw6LpfTmFpeWV1rbhe2tjc2t4p7+41TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj66nfeuTaiFg94DjhfkQHSoSCUbTS/V0Pe+WKW3VnIH+Jl5MK5Kj3yp/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiFHVumTMNa2FJKZ+nMio5Ex4yiwnRHFoVn0puJ/XifF8NLPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwFl/+S5onVe+8enZ7Wqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OdJ6dN+d93lpw8pl9+AXn4xs6mI3H</latexit>

Rt

Figure 1 A depiction of the sets Ot ∪ H and Rt for some t ∈ XF . Terminals are drawn as squares,
Steiner nodes as circles. The edges shown are those in the pruned set F (though we do not show
edges of F contained in Rt). The set Rt, which will be contracted to a single node we call rt, consists
of all nodes reachable from some other node in XF ∪ {r} other than t. We just need to extend a
path from Rt to t, the rounding algorithm we describe below will do this with constant probability.

Pr[e ∈ F2] = Pr[e ∈ F2|δin
F1

(u) ̸= ∅] ·Pr[δin
F1

(u) ̸= ∅]

= xe ·
1−

∏
e∈δin(u)(1− xe)
x(δin(u))

≥ xe ·
1− exp(−x(δin(u))

x(δin(u))
≥ (1− exp(−1)) · xe

The first inequality is a standard application of the arithmetic-geometric mean inequality
and the bound (1 − z/B)B ≤ exp(−z) for B ≥ 1 and z ≥ 0. The second holds because
(1 − exp(−1)) · z ≤ 1 − exp(−z) ≤ z holds for any z ∈ [0, 1] and recalling the constraint
x(δin(u)) ≤ 1 from (DST-LP)1.

We also note a corresponding upper bound. The probability δin
F1

(u) ̸= ∅ is, by the union
bound, at most x(δin(u)). Using this upper bound above, we see Pr[e ∈ F2] ≤ xe.

Step 3 – Selecting the final set of edges

This step is considerably more involved, most of our new ideas are contained here. First, we
discuss intuition.

Let H be all Steiner nodes v with δin
F (v) = δout

F (v) = ∅. For each terminal t ∈ XF , let Ot

be the set of all nodes (including t) that t can reach in (V, F). Since F is pruned, Ot∩Ot′ = ∅
for distinct t, t′ ∈ XF . Note that Rt := V − (Ot ∪ H) is the set of all nodes that can be
reached by a node in XF −{t} using only edges in F , i.e. to reach t from XF −{t} it suffices
to have any node in Rt reach t.

Finally, consider the graph Gt obtained by contracting Rt to a single vertex, keeping
parallel edges that are created but discarding any loops. We let rt denote this new node.
Figure 1 illustrates these sets.

Now consider the following flow graph over Gt. For each edge e of Gt (i.e. an edge of G

that was not contracted to a loop), install a capacity of xe. Since r ∈ Rt, the LP constraints
ensure we can send one unit of rt − t flow in Gt. We would like to sample a path from a

1 This is the only point in our algorithm and analysis where we rely on this constraint.

SWAT 2024

23:8 A Logarithmic Gap for Generalizions of Quasi-Bipartite DST

<latexit sha1_base64="+Qkwz+X2O5yVhzLNBohcWo7l818=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQizcjmgckS5idzCZDZmeXmV4hLPkELx4U8eoXefNvnCR70GhBQ1HVTXdXkEhh0HW/nMLS8srqWnG9tLG5tb1T3t1rmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpG11O/9ci1EbF6wHHC/YgOlAgFo2il+9se9soVt+rOQP4SLycVyFHvlT+7/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUKOrNInYaxtKSQz9edERiNjxlFgOyOKQ7PoTcX/vE6K4aWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb78lzRPqt559ezutFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d6Tw7b877vLXg5DP78AvOxzc2Bo3E</latexit>

Ot

<latexit sha1_base64="a6ql2g27xIRn3iVNsLZOWZX56gQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRC0dI5JHAhswOvTAyO7uZmTUhhC/w4kFjvPpJ3vwbB9iDgpV0UqnqTndXkAiujet+O7m19Y3Nrfx2YWd3b/+geHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hofua3nlBpHssHM07Qj+hA8pAzaqxUr/aKJbfszkFWiZeREmSo9Ypf3X7M0gilYYJq3fHcxPgTqgxnAqeFbqoxoWxEB9ixVNIItT+ZHzolZ1bpkzBWtqQhc/X3xIRGWo+jwHZG1Az1sjcT//M6qQlv/QmXSWpQssWiMBXExGT2NelzhcyIsSWUKW5vJWxIFWXGZlOwIXjLL6+S5kXZuy5f1S9LlbssjjycwCmcgwc3UIEq1KABDBCe4RXenEfnxXl3PhatOSebOYY/cD5/AKC5jNY=</latexit>

H

<latexit sha1_base64="04r1TcXFmrIMSIT8tITaLupiPMU=">AAAB6nicbVDJSgNBEK2JW4xb1KOXxiB4CjPidgx68RiXLJAMoafTkzTp6Rm6a4Qw5BO8eFDEq1/kzb+xk8xBow8KHu9VUVUvSKQw6LpfTmFpeWV1rbhe2tjc2t4p7+41TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj66nfeuTaiFg94DjhfkQHSoSCUbTS/V0Pe+WKW3VnIH+Jl5MK5Kj3yp/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiFHVumTMNa2FJKZ+nMio5Ex4yiwnRHFoVn0puJ/XifF8NLPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwFl/+S5onVe+8enZ7Wqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OdJ6dN+d93lpw8pl9+AXn4xs6mI3H</latexit>

Rt

<latexit sha1_base64="jBrBb6PU3L6Y/VGWLvT3qbcxveo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgadn1mWPAi8eI5gHJEmYns8mQ2dllplcIIZ/gxYMiXv0ib/6Nk2QPGi1oKKq66e4KUykMet6XU1hZXVvfKG6WtrZ3dvfK+wdNk2Sa8QZLZKLbITVcCsUbKFDydqo5jUPJW+HoZua3Hrk2IlEPOE55ENOBEpFgFK1077nnvXLFc705yF/i56QCOeq98me3n7As5gqZpMZ0fC/FYEI1Cib5tNTNDE8pG9EB71iqaMxNMJmfOiUnVumTKNG2FJK5+nNiQmNjxnFoO2OKQ7PszcT/vE6GUTWYCJVmyBVbLIoySTAhs79JX2jOUI4toUwLeythQ6opQ5tOyYbgL7/8lzTPXP/Kvby7qNSqeRxFOIJjOAUfrqEGt1CHBjAYwBO8wKsjnWfnzXlftBacfOYQfsH5+AZWwo0p</latexit>

0.3
<latexit sha1_base64="2x+/jI/Qzp0ErW+luib1Y3XHTic=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgadkVHzkGvHiMaB6QLGF2MpsMmZ1dZnqFEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dYSqFQc/7dgpr6xubW8Xt0s7u3v5B+fCoaZJMM95giUx0O6SGS6F4AwVK3k41p3EoeSsc3c781hPXRiTqEccpD2I6UCISjKKVHjzX75UrnuvNQVaJn5MK5Kj3yl/dfsKymCtkkhrT8b0UgwnVKJjk01I3MzylbEQHvGOpojE3wWR+6pScWaVPokTbUkjm6u+JCY2NGceh7YwpDs2yNxP/8zoZRtVgIlSaIVdssSjKJMGEzP4mfaE5Qzm2hDIt7K2EDammDG06JRuCv/zyKmleuP61e3V/WalV8ziKcAKncA4+3EAN7qAODWAwgGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNTuo0n</latexit>

0.1
<latexit sha1_base64="tdXVQLcAlxApHpzX+mMmkqWE3Is=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8LbvBR44BLx4jmgckS5idzCZDZmeXmV4hhHyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXmEph0PO+nbX1jc2t7cJOcXdv/+CwdHTcNEmmGW+wRCa6HVLDpVC8gQIlb6ea0ziUvBWObmd+64lrIxL1iOOUBzEdKBEJRtFKD55b6ZXKnuvNQVaJn5My5Kj3Sl/dfsKymCtkkhrT8b0UgwnVKJjk02I3MzylbEQHvGOpojE3wWR+6pScW6VPokTbUkjm6u+JCY2NGceh7YwpDs2yNxP/8zoZRtVgIlSaIVdssSjKJMGEzP4mfaE5Qzm2hDIt7K2EDammDG06RRuCv/zyKmlWXP/avbq/LNeqeRwFOIUzuAAfbqAGd1CHBjAYwDO8wpsjnRfn3flYtK45+cwJ/IHz+QNVPo0o</latexit>

0.2

<latexit sha1_base64="2x+/jI/Qzp0ErW+luib1Y3XHTic=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgadkVHzkGvHiMaB6QLGF2MpsMmZ1dZnqFEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dYSqFQc/7dgpr6xubW8Xt0s7u3v5B+fCoaZJMM95giUx0O6SGS6F4AwVK3k41p3EoeSsc3c781hPXRiTqEccpD2I6UCISjKKVHjzX75UrnuvNQVaJn5MK5Kj3yl/dfsKymCtkkhrT8b0UgwnVKJjk01I3MzylbEQHvGOpojE3wWR+6pScWaVPokTbUkjm6u+JCY2NGceh7YwpDs2yNxP/8zoZRtVgIlSaIVdssSjKJMGEzP4mfaE5Qzm2hDIt7K2EDammDG06JRuCv/zyKmleuP61e3V/WalV8ziKcAKncA4+3EAN7qAODWAwgGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNTuo0n</latexit>

0.1
<latexit sha1_base64="2x+/jI/Qzp0ErW+luib1Y3XHTic=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgadkVHzkGvHiMaB6QLGF2MpsMmZ1dZnqFEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dYSqFQc/7dgpr6xubW8Xt0s7u3v5B+fCoaZJMM95giUx0O6SGS6F4AwVK3k41p3EoeSsc3c781hPXRiTqEccpD2I6UCISjKKVHjzX75UrnuvNQVaJn5MK5Kj3yl/dfsKymCtkkhrT8b0UgwnVKJjk01I3MzylbEQHvGOpojE3wWR+6pScWaVPokTbUkjm6u+JCY2NGceh7YwpDs2yNxP/8zoZRtVgIlSaIVdssSjKJMGEzP4mfaE5Qzm2hDIt7K2EDammDG06JRuCv/zyKmleuP61e3V/WalV8ziKcAKncA4+3EAN7qAODWAwgGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNTuo0n</latexit>

0.1

Figure 2 The Steiner node u is special for t as more than half of the value of x(δin(u)) comes
from nodes in Ot. Note u cannot be special for any other t′ ∈ XF since their associated sets Ot′ are
disjoint.

path decomposition of this flow, this would connect t from some other node in XF and the
expected cost of this path would be at most OPTLP since no edge would be added with
probability exceeding its x-value. The problem is that we cannot do this independently for
different representative terminals in XF since some edges are at risk of being considered
multiple times.

We will show there is an rt − t flow of value ≥ 1/2 that is safer to round. Intuitively, it
will be that only the first two edges of any path in a path decomposition of this “safer” flow
are at risk of supporting flows in Gt for too many terminals. The first two phases will have
decided whether these edges will be included so we don’t worry about oversampling them in
this step.

Say a node u ∈ H is special for terminal t ∈ XF if u is a source-Steiner node and the
following holds:∑

(w,u)∈δin
G (u)

s.t. w∈Ot

x(w,u) > x(δin
G (u))/2.

That is, u is special if more than half of the LP weight entering u comes from nodes only
reachable from t. This is illustrated in Figure 2.

▷ Claim 6. Each node u is special for at most one terminal in XF .

Proof. This is because Ot ∩Ot′ = ∅ for distinct t, t′ ∈ XF , so at most one terminal t ∈ XF

can have Ot claim more than half the LP weight of edges entering u. ◁

Finally, form a subgraph G′
t of Gt by including all vertices and edges except {(w, u) : w ∈

Ot and u is as source-steiner node that is not special for t}. We can still push a constant
amount of flow from rt to t in G′

t, as the following shows.

▶ Theorem 7. The maximum rt − t flow value in G′
t is at least 1/2.

Proof. For a graph G′, we use notation δG′(S) to denote the set of edges of G′ entering S

to emphasize which graph we are discussing. Let S ⊆ Ot ∪H be a subset of nodes in G′
t

including t. Viewed as a subset of nodes in G, we have x(δin
G (S)) ≥ 1 by feasibility of the LP.

Since Gt is obtained by contracting a subset of nodes lying outside of S, then x(δGt(S)) ≥ 1
as well. Next we show in G′

t that this cut still has at least 1/2 total x-weight in G′
t.

Z. Friggstad and H. Sun 23:9

Consider any (w, u) ∈ δin(S). If u is not a source-Steiner or if u is special for t node then
(w, u) ∈ δin

S′ . Otherwise, we know at least half of the weight of edges entering u comes from
outside Ot, these would all be in δin

G′
t
(S) as required. That is, x(δin(S)) ≥ 1/2. Since this

holds for all rt − t cuts S, by the max-flow/min-cut theorem, G′
t supports at least 1/2 units

of rt − t flow. ◀

Now consider any rt− t flow of value exactly 1/2 in G′
t and perform a path decomposition

of this flow. That is, for various simple rt − t paths P we have a value zP ≥ 0 such that∑
P zP = 1/2 and

∑
P :e∈P zP ≤ xe for each edge e of G′

t. It is well known that such a
decomposition exists with at most |E| paths and can be computed in polynomial time.

Creating F t
3

Finally we will create a set of edges F t
3 for each terminal t ∈ XF as follows. Consider an

rt − t path P in the support of the path decomposition of G′
t. Let E(P) denote the edges of

G that correspond to edges of P . Let e1(P), e2(P) ∈ E(P) be the first two edges of P (it
may be that |P | = 1 in which case e2(P) is not defined). Write e1(P) = (v1(P), v2(P)).

We consider the following random process to add some edges of E(P), in doing so we
also identify some initial edges i(P) for the path P . Generally speaking, these are edges
that we require to have been sampled in the formation of F1 ∪ F2 in order for us to consider
sampling the rest of the path P , though Case (iv) below differs slightly from this rule. Some
of these cases are illustrated in Figure 3.

Case (i): v1(P) is a sink-Steiner node.
Set i(P) := ∅. With probability zP , add all of E(P) to F t

3 .
Case (ii): v1(P) is a source-Steiner node
Set i(P) := {e1(P)}. If e1(P) ∈ F2, then with probability zP /xe1(P) add E(P)− i(P) to
F t

3 .
Case (iii): v1(P) ∈ X ∪ {r} and v2(P) is special for t

Set i(P) := {e1(P)}. If e1(P) ∈ F1, then with probability zP /xe1(P) add E(P)− i(P) to
F t

3 .
Case (iv): v1(P) ∈ X ∪ {r} and v2(P) is not special for t

Then it must be that e2(P) is defined; set i(P) := {e1(P), e2(P)}. If e2(P) ∈ F2 and if
some edge in δin(v2(P)) ∩ δout(Rt) was added to F1, then with probability zP /xe2(P)
add E(P)− i(P) to F t

3 with.

While case (ii) and (iii) are similar, there are important technical distinctions so we
distinguish these cases for clarity in our analysis below. Note in all cases, if the random
process adds edges of a path P to F t

3 it adds exactly the non-initial edges, i.e. P − i(P).

3.1 Analysis of the Formation of the Sets F t
3

We start by showing the probability any edge is added to a particular F t
3 is bounded by its

x-value.

▶ Lemma 8. For any rt−t path, the probability we added E(P)−i(P) to F3 due to processing
P in its corresponding case is at most zP . Consequently, for any t ∈ XF − {r} and any
e ∈ E, Pr[e ∈ F t

3] ≤ xe.

SWAT 2024

23:10 A Logarithmic Gap for Generalizions of Quasi-Bipartite DST

<latexit sha1_base64="+Qkwz+X2O5yVhzLNBohcWo7l818=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQizcjmgckS5idzCZDZmeXmV4hLPkELx4U8eoXefNvnCR70GhBQ1HVTXdXkEhh0HW/nMLS8srqWnG9tLG5tb1T3t1rmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpG11O/9ci1EbF6wHHC/YgOlAgFo2il+9se9soVt+rOQP4SLycVyFHvlT+7/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUKOrNInYaxtKSQz9edERiNjxlFgOyOKQ7PoTcX/vE6K4aWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb78lzRPqt559ezutFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d6Tw7b877vLXg5DP78AvOxzc2Bo3E</latexit>

Ot

<latexit sha1_base64="a6ql2g27xIRn3iVNsLZOWZX56gQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRC0dI5JHAhswOvTAyO7uZmTUhhC/w4kFjvPpJ3vwbB9iDgpV0UqnqTndXkAiujet+O7m19Y3Nrfx2YWd3b/+geHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hofua3nlBpHssHM07Qj+hA8pAzaqxUr/aKJbfszkFWiZeREmSo9Ypf3X7M0gilYYJq3fHcxPgTqgxnAqeFbqoxoWxEB9ixVNIItT+ZHzolZ1bpkzBWtqQhc/X3xIRGWo+jwHZG1Az1sjcT//M6qQlv/QmXSWpQssWiMBXExGT2NelzhcyIsSWUKW5vJWxIFWXGZlOwIXjLL6+S5kXZuy5f1S9LlbssjjycwCmcgwc3UIEq1KABDBCe4RXenEfnxXl3PhatOSebOYY/cD5/AKC5jNY=</latexit>

H

<latexit sha1_base64="04r1TcXFmrIMSIT8tITaLupiPMU=">AAAB6nicbVDJSgNBEK2JW4xb1KOXxiB4CjPidgx68RiXLJAMoafTkzTp6Rm6a4Qw5BO8eFDEq1/kzb+xk8xBow8KHu9VUVUvSKQw6LpfTmFpeWV1rbhe2tjc2t4p7+41TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj66nfeuTaiFg94DjhfkQHSoSCUbTS/V0Pe+WKW3VnIH+Jl5MK5Kj3yp/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiFHVumTMNa2FJKZ+nMio5Ex4yiwnRHFoVn0puJ/XifF8NLPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwFl/+S5onVe+8enZ7Wqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OdJ6dN+d93lpw8pl9+AXn4xs6mI3H</latexit>

Rt

<latexit sha1_base64="PVLoYEu6FXWuB+ATQdbeVkWK+5s=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoMQL2E3+DoGvHiMYB6QLGF20puMmZ1ZZmaFEPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dYcKZNp737eTW1jc2t/LbhZ3dvf2D4uFRU8tUUWxQyaVqh0QjZwIbhhmO7UQhiUOOrXB0O/NbT6g0k+LBjBMMYjIQLGKUGCs1seeX6+e9YsmreHO4q8TPSAky1HvFr25f0jRGYSgnWnd8LzHBhCjDKMdpoZtqTAgdkQF2LBUkRh1M5tdO3TOr9N1IKlvCuHP198SExFqP49B2xsQM9bI3E//zOqmJboIJE0lqUNDFoijlrpHu7HW3zxRSw8eWEKqYvdWlQ6IINTaggg3BX355lTSrFf+qcnl/UapVszjycAKnUAYfrqEGd1CHBlB4hGd4hTdHOi/Ou/OxaM052cwx/IHz+QNTfo5G</latexit>

e1(P)

<latexit sha1_base64="rG++UvcL+wJU6DtaiF2xp7YJNHM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoMQL2E3+DoGvHiMYB6QLGF20knGzO4sM7NCWPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dQSy4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8tEMWwwKaRqB1Sj4BE2DDcC27FCGgYCW8H4dua3nlBpLqMHM4nRD+kw4gPOqLFSE3vVcv28Vyy5FXcOskq8jJQgQ71X/Or2JUtCjAwTVOuO58bGT6kynAmcFrqJxpiyMR1ix9KIhqj9dH7tlJxZpU8GUtmKDJmrvydSGmo9CQPbGVIz0sveTPzP6yRmcOOnPIoTgxFbLBokghhJZq+TPlfIjJhYQpni9lbCRlRRZmxABRuCt/zyKmlWK95V5fL+olSrZnHk4QROoQweXEMN7qAODWDwCM/wCm+OdF6cd+dj0Zpzsplj+APn8wdVBY5H</latexit>

e2(P)

<latexit sha1_base64="T6/tpmmd614gJEvW0CJF8SPkkO4=">AAAB7XicbVDLTgJBEOzFF+IL9ehlIjHBC9kl+DiSePGIiTwS2JDZYRZGZmc2M7MkZMM/ePGgMV79H2/+jQPsQcFKOqlUdae7K4g508Z1v53cxubW9k5+t7C3f3B4VDw+aWmZKEKbRHKpOgHWlDNBm4YZTjuxojgKOG0H47u5355QpZkUj2YaUz/CQ8FCRrCxUmvS98qNy36x5FbcBdA68TJSggyNfvGrN5AkiagwhGOtu54bGz/FyjDC6azQSzSNMRnjIe1aKnBEtZ8urp2hC6sMUCiVLWHQQv09keJI62kU2M4Im5Fe9ebif143MeGtnzIRJ4YKslwUJhwZieavowFTlBg+tQQTxeytiIywwsTYgAo2BG/15XXSqla868rVQ61Ur2Zx5OEMzqEMHtxAHe6hAU0g8ATP8ApvjnRenHfnY9mac7KZU/gD5/MHbZeOVw==</latexit>

v1(P)

<latexit sha1_base64="m3L26ZUkU1DH+pziMZzvTxHq8tg=">AAAB7XicbVDLTgJBEOzFF+IL9ehlIjHBC9kl+DiSePGIiTwS2JDZYRZGZmc2M7MkZMM/ePGgMV79H2/+jQPsQcFKOqlUdae7K4g508Z1v53cxubW9k5+t7C3f3B4VDw+aWmZKEKbRHKpOgHWlDNBm4YZTjuxojgKOG0H47u5355QpZkUj2YaUz/CQ8FCRrCxUmvSr5Ybl/1iya24C6B14mWkBBka/eJXbyBJElFhCMdadz03Nn6KlWGE01mhl2gaYzLGQ9q1VOCIaj9dXDtDF1YZoFAqW8Kghfp7IsWR1tMosJ0RNiO96s3F/7xuYsJbP2UiTgwVZLkoTDgyEs1fRwOmKDF8agkmitlbERlhhYmxARVsCN7qy+ukVa1415Wrh1qpXs3iyMMZnEMZPLiBOtxDA5pA4Ame4RXeHOm8OO/Ox7I152Qzp/AHzucPbx6OWA==</latexit>

v2(P)

<latexit sha1_base64="PhAYtT5eT6K+un76XRbfMZST1OM=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBDjJewGX8eAF48RzAOSJcxOJsmQ2dllpjcQlnyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXEEth0HW/nbX1jc2t7dxOfndv/+CwcHTcMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmM7md+c8y1EZF6wknM/ZAOlOgLRtFKzXHXK9UuLruFolt25yCrxMtIETLUuoWvTi9iScgVMkmNaXtujH5KNQom+TTfSQyPKRvRAW9bqmjIjZ/Oz52Sc6v0SD/SthSSufp7IqWhMZMwsJ0hxaFZ9mbif147wf6dnwoVJ8gVWyzqJ5JgRGa/k57QnKGcWEKZFvZWwoZUU4Y2obwNwVt+eZU0KmXvpnz9eFWsVrI4cnAKZ1ACD26hCg9QgzowGMEzvMKbEzsvzrvzsWhdc7KZE/gD5/MHz0aOiA==</latexit>

v1(P
0)

<latexit sha1_base64="xlPlvNXqQgwWrLkh0WToXCglf9w=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMYL2E3+DoGvHiMYB6QLGF20psMmZ1dZmaFEPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju5nfekKleSwfzThBP6IDyUPOqLFSC3teuX5+0SuW3Io7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+7pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJrz1J1wmqUHJFovCVBATk9nvpM8VMiPGllCmuL2VsCFVlBmbUMGG4C2/vEqa1Yp3Xbl6uCzVqlkceTiBUyiDBzdQg3uoQwMYjOAZXuHNSZwX5935WLTmnGzmGP7A+fwBtRyOdw==</latexit>

e1(P
0)

Figure 3 The graph G′
t except we have expanded node rt to the full set Rt again. The top rt − t

path (larger dashes) illustrates a path P that could either be from Case (iii) or Case (iv), depending
on whether v2(P) is special for t or not. The lower path (with finer dots on the edges) illustrates a
path P ′ from Case (ii). It might even be that some other path in the decomposition exits Ot after
entering it before it eventually reaches t, but such a path could only use a Steiner edge (u, v) in H if
after entering Ot if u was special for t since.

Proof. Focus on an rt − t path P and consider the corresponding case case for path P : (i)
we simply added E(P) with probability zP , (ii) we added E(P) − i(P) with probability
zP /xe1(P) but only if e1(P) ∈ F2. As argued in Step 2, the latter happens with probability
at most xe1 so multiplying this against zP /xe1 finishes this case, (iii) e1(P) lies in F1 with
probability xe1(P) so the total probability we added E(P)− i(P) is exactly zP .

For the final case (iv), P is sampled with probability zP

xe2(P)
but only if the condition

that includes e2(P) ∈ F2 is satisfied. Again, such a condition can only be satisfied with
probability at most xe2(P). Thus P is sampled with probability at most zP overall.

The last statement in the lemma holds because the expected number of times an edge e

is added to F t
3 is then at most

∑
P :e∈P zP ≤ xe because P is a path decomposition of a flow

with capacity xe on edge e. ◀

But this is not enough for a good overall cost bound, one should be concerned that an
edge was added to multiple F t

3 sets for various t. The following effectively shows each edge
that is a candidate to be added to some F t

3 can only support flow for at most one terminal
t ∈ XF .

▶ Lemma 9. For each e ∈ E, there is at most one t such that e ∈ E(P) − i(P) for some
path P in the decomposition of the rt − t flow.

Proof. Suppose e = (u, v) has v ∈ X ∪ {r}. The only such edges in G′
t have v ∈ Ot since

the only terminals not contracted into tt are those in Ot. So e will only be an edge in G′
t for

at most one t.
Next, suppose u ∈ X ∪ {r}. If u /∈ Ot then u ∈ Rt and e = e1(P) so we are in case (iii)

or case (iv) for any path P containing e, but in either case e ∈ i(P). Thus, we can only have
e ∈ E(P)− i(P) for the terminal t with u ∈ Ot.

Finally, suppose (u, v) is a Steiner edge. Suppose (u, v) lies on some path P in some G′
t.

If u ∈ Rt we are in case (ii) and (u, v) ∈ i(P). If u /∈ Rt, then either u is special for t or else
the edge (w, u) prior to u is the first edge (i.e. w ∈ Rt) since we deleted all edges from Ot

to u as u was not special for t. In the latter, we are in case (iv), so (u, v) = e2(P) means
(u, v) ∈ i(P). ◀

▶ Theorem 10. The expected cost of F1 ∪ F2 ∪
⋃

t∈XF −{r} F t
3 is O(OPTLP).

Z. Friggstad and H. Sun 23:11

Proof. We have already shown the expected costs of F1 and F2 are bounded by O(OPTLP)
since each edge is in F1 or F2 with probability at most xe. We also know each e appears in
any given F t

3 with probability at most x3. Lemma 9 shows there is at most one F t
3 such that

e has a nonzero probability of appearing in F t
3 , so e lies in

⋃
t∈XF −{r} F t

3 with probability at
most xe. ◀

3.2 Success Probability
The last step is to show each terminal t ∈ XF can be reached from another node in XF −{r}
with good probability. This is a bit subtle as there is shared randomness between the various
rt−t paths P that reach t. Our analysis mirrors that in [17], which is providing an alternative
analysis of the Group Steiner Tree rounding algorithm from [10].

We first require a general result about random variables. A proof was provided in [17] for
the case E[X] = 1. We need it in a slightly more general context so we include its proof in
Appendix B for completeness.

▶ Lemma 11. Let µ, γ ≥ 0 and let X1, X2, . . . , Xm be indicator random variables and
X =

∑m
i=1 Xi be their sum. Suppose E[X] ≥ µ and E[X|Xj = 1] ≤ γ for any j. Then

Pr[X ≥ 1] ≥ µ/γ.

▶ Theorem 12. There is a fixed constant α′ > 0 such that for each t ∈ XF , with probability
at least α′ there is some t′ ∈ Xf ∪ {r} − {t} such that t′ can reach t in (V, F ∪ F ′).

Proof. We show we added E(P)−i(P) to F t
3 for at least one path P with constant probability,

which suffices to prove the main result as then Rt could reach t along this path P . Consider
the path decomposition and corresponding weights zP . The subscripts in the sums on the
right-hand side indicate which case the path corresponds to.

1
2 =

∑
P

zP =
∑
P :(i)

zP +
∑

P :(ii)

zP +
∑

P :(iii)

zP +
∑

P :(iv)

zP

At least one of these sums is is at least 1/8.

Case:
∑

P :(i) zP ≥ 1/8. These paths were independently sampled with probability zP

each. The probability we did not pick one of them is then at most

∏
P :(i)

(1− zP) ≤ exp

−∑
P :(i)

zP

 ≤ exp(−1/8)

So at least one path was picked with probability ≥ 1− exp(−1/8).

Case:
∑

P :(ii) zP ≥ 1/8. All paths discussed here are those corresponding to case (ii) so
we omit that qualifier throughout. We employ Lemma 11 where we have an indicator XP

for every path P and let X =
∑

P XP . A path is added if both e1(P) ∈ F1 and then if P is
sampled after that. This happens with probability xe1(P) · zP

xe1(P)
= zP . So E[X] ≥ 1/8.

Consider any particular path P ′, we want to bound E[X|XP ′ = 1]. We claim for any
path P that

Pr[XP = 1|XP ′ = 1] =

1 if P = P ′

zP if e1(P) ̸= e1(P ′)
zP

xe1(P ′)
otherwise

SWAT 2024

23:12 A Logarithmic Gap for Generalizions of Quasi-Bipartite DST

The first one is clear, the second is because Pr[XP = 1] = Pr[e1(P) ∈ F1] · zP

xe
= zP and

because the variables XP , XP ′ are independent (since the random choice to add their initial
edges F1 were made independently). If e1(P) = e1(P ′) then the only shared randomness
between XP and XP ′ was in the decision to add e1(P ′) to F1. If we are given XP ′ = 1, then
we know e1(P ′) ∈ F1 but the choice to extend this to selecting P entirely was then made
independently with probability zP

xe1(P ′)
.

So we have

E[X : XP ′ ≥ 1] = Pr[XP ′ = 1|XP ′ = 1] +
∑

P :e1(P)̸=e1(P ′)

Pr[XP = 1|XP ′ = 1]

+
∑

P :P ̸=P ′ and e1(P)=e1(P ′)

Pr[XP = 1|XP ′ = 1]

= 1 +
∑

P :e1(P)̸=e1(P ′)

zP +
∑

P :P ̸=P ′ and e1(P)=e1(P ′)

zP

xe1(P ′)

≤ 1 + 1
2 +

xe1(P ′)

xe1(P ′)

= 5/2

That is, the total weight of all paths in the decomposition is at most the value of the flow,
which is 1/2. Similarly, the total weight of all paths including the edge e1(P ′) is at most
xe1(P ′) since the flow respects capacities.

Using Lemma 11 with µ = 1/8 and γ = 5/2 shows at least one path is sampled with
probability at least 1/20.

Case:
∑

P :(iii) zP ≥ 1/8. The proof is essentially identical to the previous case and is
omitted. We get the probability at least one path is sampled is at least 1/20.

Case:
∑

P :(iv) zP ≥ 1/8. Use similar indicator variables XP and their sum X as in case
(ii), but this time for the paths of form (iv). For any such path P , we have

Pr[XP = 1] = zP

xe
·Pr[δin(v2(P)) ∩ δout(Rt) ∩ F1 ̸= ∅ ∧ e2(P) ∈ F2]

= zP

xe
·Pr[δin(v2(P)) ∩ δout(Rt) ∩ F1 ̸= ∅]

·Pr[e2(P) ∈ F2|δin(v2(P)) ∩ δout(Rt) ∩ F1 ̸= ∅]

= zP

xe
·Pr[δin(v2(P)) ∩ δout(Rt) ∩ F1 ̸= ∅] ·

xe

x(δin(u))

= zP

x(δin(u)) ·Pr[δin(v2(P)) ∩ δout(Rt) ∩ F1 ̸= ∅]

For brevity, let B = δin(v) ∩ δout(Rt). The last probability is

1−
∏
e∈B

(1− xe) ≥ 1− exp
(
−
∑
e∈B

xe

)
≥ 1− exp(−x(δin(v))/2)

The final inequality is because v2(P) is not special for t. For z ∈ [0, 1], we have2 1 −
exp(−z/2) ≥ (1− exp(−1/2)) · z, so the last expression is at least (1− exp(−1/2)) · x(δin(u))
and we finally see Pr[XP = 1] ≥ (1− exp(−1/2)) · zP . Thus, E[X] ≥ 1−exp(−1/2)

8 .

2 This holds since 1 − exp(−z/2) = (1 − exp(−1/2)) · z for z ∈ {0, 1} and since 1 − exp(−z/2) is concave.

Z. Friggstad and H. Sun 23:13

Finally, we upper bound E[X|XP ′ = 1] by a constant for any path P ′ considered in this
case. Partition the set of paths from this case (iv) into four sets essentially based on how they
interact with P ′ along their prefixes: {P ′},P0 = {P : v2(P) ̸= v2(P ′)},P1 = {P : v2(P) =
v2(P ′) yet e2(P) ̸= e2(P ′)}, and P2 = {P : e2(P) = e2(P ′)}.

For P ∈ P0, simple inspection shows XP and XP ′ are independent random variables so∑
P ∈P0

Pr[XP = 1|XP ′ = 1] =
∑

P ∈P0
Pr[XP = 1] ≤

∑
P ∈P0

zP ≤ 1
2 .

For P ∈ P1, we are given δin(v2(P)) ∩ δout(Rt) ∩ F1 ̸= ∅ since XP ′ = 1, so

Pr[XP = 1|XP ′ = 1] = zP

xe2(P)
·Pr[e2(P) ∈ F2|XP ′ = 1]

= zP

xe2(P)
·

xe2(P)

x(δin(v2(P))

= zP

x(δin(v2(P)) .

The total flow passing through v2(P) is at most its incoming edge capacity, so summing over
all P ∈ P1 shows

∑
P ∈P1

Pr[XP = 1|XP ′ = 1] ≤ 1.
For P ∈ P2, we simply have Pr[XP = 1|XP ′ = 1] = zP

xe2(P)
since the condition to be met

before sampling P is satisfied if we are given XP ′ = 1. So
∑

P ∈P2
Pr[XP = 1|XP ′ = 1] =∑

P ∈P2
zP

xe2(P)
≤ 1. Thus,

∑
P

Pr[XP = 1|XP ′ = 1] = 1 +
∑

i∈{0,1,2}

∑
P ∈Pi

Pr[XP = 1|XP ′ = 1] ≤ 1 + 1
2 + 1 + 1 = 7/2.

Using Lemma 11 with µ = 1−exp(−1/2)
8 and γ = 7/2 shows in the probability at least one

path is sampled is at least some universal constant. Summarizing, no matter which case has
at least 1/8 of the weight of paths we see there is a constant probability at least one path
will be sampled. This completes the proof. ◀

We have shown the expected cost of the set F ′ := F1 ∪ F2 ∪
⋃

t∈XF −{r} F t
3 is at most

c ·OPTLP for some universal constant c. We also showed each terminal t ∈ XF − {r} will
be reachable from some other t′ ∈ Xt − {t} with probability at least some universal constant
α′ > 0. So the expected number of terminals of this kind is at least α′ · |XF |.

Say this procedure failed if the cost of F ′ exceeds ∆ · c ·OTLP for some constant ∆ to
be determined soon, or if the number of representative terminals that are now reachable
from another representative is smaller than α′

2 · |XF |. Note we can check this condition in
polynomial time.

The former happens with probability at most 1/∆ by Markov’s inequality. A standard
variant of Markov’s inequality for lower tails shows that if Y is a random variable with
E[Y] ≥ α′·M where M is the maximum possible value of Y , then Pr[Y < α′

2 ·M] ≤ 1−α′

1−α′/2 < 1.
In our setting, we let Y be the number of representative terminals that become connected
from another node in Xt after buying F ′, so the maximum value of Y is |Xt| and the expected
value is at least α · |Xt|.

Thus, by the union bound the procedure fails with probability at most 1
∆ + 1−α

1−α/2 . For
sufficiently large constant ∆ depending only on α, this is a constant less than one. That
is, the procedure succeeds with constant probability. The final randomized algorithm then
iterates this procedure until it does not fail, the expected number of iterations is constant.
This proves Theorem 4.

SWAT 2024

23:14 A Logarithmic Gap for Generalizions of Quasi-Bipartite DST

References
1 Jarosław Byrka, Fabrizio Grandoni, Thomas Rothvoss, and Laura Sanità. Steiner tree

approximation via iterative randomized rounding. J. ACM, 60(1), 2013.
2 Gruia Calinescu and Alexander Zelikovsky. The polymatroid steiner problems. J. Combonat-

orial Optimization, 33(3):281–294, 2005.
3 Chun-Hsiang Chan, Bundit Laekhanukit, Hao-Ting Wei, and Yuhao Zhang. Polylogarithmic

approximation algorithm for k-connected directed steiner tree on quasi-bipartite graphs. arXiv
preprint, 2019. arXiv:1911.09150.

4 Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha,
and Ming Li. Approximation algorithms for directed steiner problems. Journal of Algorithms,
33(1):73–91, 1999.

5 Andreas Emil Feldmann, Jochen Könemann, Neil Olver, and Laura Sanità. On the equivalence
of the bidirected and hypergraphic relaxations for steiner tree. Mathematical Programming,
160:379–406, 2014.

6 Zachary Friggstad, Jochen Könemann, Young Kun-Ko, Anand Louis, Mohammad Shadravan,
and Madhur Tulsiani. Linear programming hierarchies suffice for directed steiner tree. In
International Conference on Integer Programming and Combinatorial Optimization, pages
285–296. Springer, 2014.

7 Zachary Friggstad, Jochen Könemann, and Mohammad Shadravan. A Logarithmic Integrality
Gap Bound for Directed Steiner Tree in Quasi-bipartite Graphs . In Rasmus Pagh, editor, 15th
Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016), volume 53 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1–3:11, Dagstuhl, Germany,
2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

8 Zachary Friggstad and Ramin Mousavi. A Constant-Factor Approximation for Quasi-Bipartite
Directed Steiner Tree on Minor-Free Graphs. In Approximation, Randomization, and Combinat-
orial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023), pages 13:1–13:18,
2023.

9 Isaac Fung, Konstantinos Georgiou, Jochen Könemann, and Malcolm Sharpe. Efficient
algorithms for solving hypergraphic steiner tree relaxations in quasi-bipartite instances. CoRR,
abs/1202.5049, 2012. arXiv:1202.5049.

10 Naveen Garg, Goran Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for
the group steiner tree problem. Journal of Algorithms, 37(1):66–84, 2000.

11 Michel X. Goemans, Neil Olver, Thomas Rothvoß, and Rico Zenklusen. Matroids and integrality
gaps for hypergraphic steiner tree relaxations. In Proceedings of the Forty-Fourth Annual
ACM Symposium on Theory of Computing, pages 1161–1176, 2012.

12 Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li. O (log2 k/log log k)-approximation
algorithm for directed steiner tree: a tight quasi-polynomial-time algorithm. In Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 253–264, 2019.

13 Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. In Proceedings
of the thirty-fifth annual ACM symposium on Theory of computing, pages 585–594, 2003.

14 Tomoya Hibi and Toshihiro Fujito. Multi-rooted greedy approximation of directed steiner
trees with applications. In International Workshop on Graph-Theoretic Concepts in Computer
Science, pages 215–224. Springer, 2012.

15 Shi Li and Bundit Laekhanukit. Polynomial integrality gap of flow lp for directed steiner tree.
arXiv preprint, 2021. arXiv:2110.13350.

16 Zeev Nutov. On rooted k-connectivity problems in quasi-bipartite digraphs. In Computer
Science – Theory and Applications: 16th International Computer Science Symposium, pages
339–348. Springer-Verlag, 2021.

17 Thomas Rothvoß. Directed steiner tree and the lasserre hierarchy. arXiv preprint, 2011.
arXiv:1111.5473.

18 Alexander Zelikovsky. A series of approximation algorithms for the acyclic directed steiner
tree problem. Algorithmica, 18(1):99–110, 1997.

19 Leonid Zosin and Samir Khuller. On directed steiner trees. In SODA, volume 2, pages 59–63.
Citeseer, 2002.

https://arxiv.org/abs/1911.09150
https://arxiv.org/abs/1202.5049
https://arxiv.org/abs/2110.13350
https://arxiv.org/abs/1111.5473

Z. Friggstad and H. Sun 23:15

A Proof of Lemma 3

Proof. For each t ∈ XF that can be reached from some other t′ ∈ XF ∪ {r} − {t} in
(V, F ∪ F ′), let d(t) = t′. If t can be reached from multiple such t′, pick one arbitrarily to be
d(t). Finally, let F ∗ be all such edges (d(t), t). We note that (V, F ∪F ′) and (V, F ∪F ′ ∪F ∗)
have the same SCCs because F ∗ provides direct connections between nodes that were already
reachable in (V, F ∪ F ′).

We add the edges of F ∗ one at a time to (V, F) and track how the number of terminal-
source SCCs decreases. Recall an SCC of (V, F) is a strongly connected component C

containing a terminal that cannot be reached from any other terminal apart from those in C.
When adding et = (d(t), t), let Sd(t) and St be the SCCs containing d(t) and t respectively

at that time. We note St was a source SCC just before adding et because no edge entered
the source component containing t before this addition.

If the number of terminal-source SCCs does not decrease after adding St, it must have
been that St could already reach Sd(t) by some path P . Let e′ be the edge entering Sd(t).
Note e′ ∈ F ∗ since no vertex outside of d(t)’s SCC in (V, F) could reach d(t) before (as it
was a source SCC). Also note that et and e′ are now drawn into the same SCC as St after
et is added so e′ will never enter another SCC again as we continue adding edges of F ∗.
That is, the number of iterations of adding an edge of the form et that do not cause the
number of source SCCs to drop is at most α/2 · |XF |, meaning the number of source SCCs
in (V, F ∪ F ∗) is at most (1 − α/2) · |XF |. Thus, the number of terminal-source SCCs in
(V, F ∪ F ′) is also bounded by (1− α/2) · |XF | as required. ◀

B Proof of Lemma 11

Proof. This proof essentially just verifies the arguments in [17] generalize as required.
Including the proof here also keeps our paper self-contained.

We do this in two steps. First, suppose we knew E[X|X ≥ 1] ≤ γ. Then

µ ≤ E[X] = E[X|X = 0] ·Pr[X = 0] + E[X|X ≥ 1] ·Pr[X ≥ 1] ≤ γ ·Pr[X ≥ 1].

Rearranging shows Pr[X ≥ 1] ≥ µ/γ which is what we wanted to show.
Now we show E[X|X ≥ 1] ≤ γ follows if E[X|Xj = 1] ≤ γ for any j. By Jensen’s

inequality applied to the conditioned distribution, we have

E[X|X ≥ 1]2 ≤ E[X2|X ≥ 1]

=
∑
(i,j)

Pr[Xi = 1 ∧ Xj = 1|X ≥ 1]

=
∑
(i,j)

Pr[Xj = 1|X ≥ 1 ∧ Xi = 1] · Pr[Xi = 1|X ≥ 1]

=
∑
(i,j)

Pr[Xj = 1|Xi = 1] · Pr[Xi = 1|X ≥ 1]

=
∑

i

Pr[Xi = 1|X ≥ 1] ·
∑

j

Pr[Xj = 1|Xi = 1]

=
∑

i

Pr[Xi = 1|X ≥ 1] · E[X|Xi = 1]

≤ γ ·
∑

i

Pr[Xi = 1|X ≥ 1]

= γ · E[X|X ≥ 1]

All sums over (i, j) are over all m2 ordered pairs of indices. To conclude, E[X|X ≥ 1]2 ≤
γ ·E[X|X ≥ 1] and γ ≥ 0 can only happen if E[X|X ≥ 1] ≤ γ. ◀

SWAT 2024

Optimizing Symbol Visibility Through
Displacement
Bernd Gärtner #

Department of Computer Science, ETH Zürich, Switzerland

Vishwas Kalani #

Department of Computer Science and Engineering, I.I.T. Delhi, India

Meghana M. Reddy1 #

Department of Computer Science, ETH Zürich, Switzerland

Wouter Meulemans #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Bettina Speckmann #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Miloš Stojaković #

Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Serbia

Abstract
In information visualization, the position of symbols often encodes associated data values. When
visualizing data elements with both a numerical and a categorical dimension, positioning in the
categorical axis admits some flexibility. This flexibility can be exploited to reduce symbol overlap,
and thereby increase legibility. In this paper we initialize the algorithmic study of optimizing symbol
legibility via a limited displacement of the symbols.

Specifically, we consider unit square symbols that need to be placed at specified y-coordinates.
We optimize the drawing order of the symbols as well as their x-displacement, constrained within a
rectangular container, to maximize the minimum visible perimeter over all squares. If the container
has width and height at most 2, there is a point that stabs all squares. In this case, we prove
that a staircase layout is arbitrarily close to optimality and can be computed in O(n log n) time.
If the width is at most 2, there is a vertical line that stabs all squares, and in this case, we give
a 2-approximation algorithm (assuming fixed container height) that runs in O(n log n) time. As a
minimum visible perimeter of 2 is always trivially achievable, we measure this approximation with
respect to the visible perimeter exceeding 2. We show that, despite its simplicity, the algorithm
gives asymptotically optimal results for certain instances.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases symbol placement, visibility, jittering, stacking order

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.24

Funding Meghana M. Reddy: Supported by the Swiss National Science Foundation within the
collaborative DACH project Arrangements and Drawings as SNSF Project 200021E-171681.
Wouter Meulemans: Partially supported by the Dutch Research Council (NWO) under project
number VI.Vidi.223.137.
Miloš Stojaković : Partly supported by Ministry of Science, Technological Development and Innovation
of Republic of Serbia (Grants 451-03-66/2024-03/200125 & 451-03-65/2024-03/200125). Partly
supported by Provincial Secretariat for Higher Education and Scientific Research, Province of
Vojvodina (Grant No. 142-451-2686/2021).

Acknowledgements This research was initiated at the 19th Gremo’s Workshop on Open Problems
(GWOP), Binn, Switzerland, June 13–17, 2022.

1 The third author’s full last name consists of two words and is Mallik Reddy. However, she consistently
refers to herself with the first word of her last name being abbreviated.

© Bernd Gärtner, Vishwas Kalani, Meghana M. Reddy, Wouter Meulemans, Bettina Speckmann, and
Miloš Stojaković;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 24; pp. 24:1–24:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gaertner@inf.ethz.ch
mailto:cs1200411@cse.iitd.ac.in
mailto:meghana.mreddy@inf.ethz.ch
https://orcid.org/0000-0001-9185-1246
mailto:w.meulemans@tue.nl
mailto:b.speckmann@tue.nl
https://orcid.org/0000-0002-8514-7858
mailto:milos.stojakovic@dmi.uns.ac.rs
https://orcid.org/0000-0002-2545-8849
https://doi.org/10.4230/LIPIcs.SWAT.2024.24
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Optimizing Symbol Visibility Through Displacement

1 Introduction

When communicating information visually, the position of symbols is an important visual
channel to encode properties of the data. For example, in a scatter plot that visualizes age
versus income of a given population, each data item (a person in the population) is visualized
with a symbol (commonly a square, a cross, or a circle) which is placed at an x-coordinate
that corresponds to their age and a y-coordinate that corresponds to their income. Hence
persons with similar values are placed in close proximity, which allows the user to visually
detect patterns. Another example from cartography are so-called proportional symbols maps
which visualize numerical data associated with point locations by placing a scaled symbol
(typically an opaque disc or square) at the corresponding point on the map. The size of
the symbol is proportional to the data value of its location, such as the magnitude of an
earthquake. The density and size of the symbols again supports visual pattern detection.

In both examples above, the position of the symbol is fixed and cannot be changed without
severely distorting the information it encodes. In other settings, such as map labeling, the
position of a symbol is not completely fixed, instead the symbol (the label) needs to be
placed in contact with a particular point on the map. There are infinitely many potential
placements for the symbol, but all must contain the same fixed point somewhere on its
boundary. In this paper we consider a related symbol placement problem, which is motivated
by the visualization of numerical data with associated categories: the age of employees within
a certain division of a company or the page rank of tweets that exhibit a certain sentiment
(positive, negative, neutral) on a topic such as vaccinations. Such data can be visualized in
categorical strips of fixed width w, restricting the symbols to lie in the strip, and placing the
symbols on a y-coordinate according to their numerical values (see Figure 1 for an example
using twitter data). There are again infinitely many potential placements per symbol, but
all placements are restricted to share the same y-coordinate.

If the positions of symbols are fixed or restricted, then close symbols will overlap, reducing
the visible part of – or even fully obscuring – other symbols. Correspondingly, there is an
ample body of work on optimizing the visibility of symbols under placement restrictions.
The algorithmic literature considers a couple of variants. First of all, we either display all
symbols or only a subset. For symbol maps and our categorical strips we always have to
display all symbols, since otherwise not all data is visualized. For map labeling one usually
chooses a subset of the labels which can be placed without any overlap; the corresponding
optimization problems attempt to maximize the number of these labels while also taking
priorities (such as city sizes) into account. If overlap between symbols might be unavoidable,
visibility is optimized by either maximizing the minimum perimeter of the symbol that has
least visibility or maximising the total visible perimeter. If the positions of the symbols are
completely fixed, then the only choice we can make is the drawing order of the symbols.

In this paper we study the novel algorithmic question of how to optimize the visibility of
a given set of symbols, all of which must be drawn, when we may choose their drawing order
and their x-coordinate, given a set of fixed (and distinct) y-coordinates for each symbol. We
measure the visibility of the result via the minimal visibility perimeter over all symbols [3].
Figure 1 shows that our algorithms do indeed greatly improve the visible perimeter and
thereby give the viewer a more accurate impression of the data. Note that our theoretical
results hold only for square symbols, but, as evidenced by Figure 1, the algorithms we
propose readily extend to rectangular symbols. Proving similar bounds for more general
symbol shapes is a challenging open problem.

B. Gärtner et al. 24:3

N
u
m
b
er

of
tw
ee
ts

(s
q
u
ar
e
ro
ot
)

Account 392Account 731
#saidnomother

Account 772
#va

Account 443
#measles

Account 168

Account 304
#imaginenigeria

Account 90
#afghanistan

Account 601

Account 359
#immunization

Account 604
#vaccineswork

Account 400
#saidnomotherAccount 91

Account 123
#diarrhoea

Account 369
#vaccination

Account 768
#measles

Account 182
#publichealth

Account 577
#gripe

Account 749
#polio
Account 519
#vaxxed

Account 652
#sciencematters

Account 113
#be

Account 379
#vaccineswork

Account 255

Account 764
#nigeria

Account 494
#vacunasfunc...

Account 631
#measles

Account 707
#vaccination

Account 310

Account 387
Account 508
#vaccineswork

Account 63

Account 504
#vacunas

Account 526
#vacunas

Account 741
#imaginenigeriaAccount 777

#chickenpoxAccount 374
#hpv

Account 586
#endp

Account 425
#vaccineswork

Account 81
#vacunas

Account 585
#vaccination

Account 394
#vaccineswork

Account 776
#vaccineswork

Account 759

Account 640
#polio

Account 673
#vaccineswork

Account 530
#polio

Account 418
#hpv

Account 53
#hpvvaccine

Account 129
Account 241

Account 682
#vaccination

Account 247
#stopavn

Account 532
#vacuna

Account 208
#vaccineAccount 170
#afghanist

Account 683
#hpv

Account 281
#vaccination

Account 736
Account 616
#vaccination

Account 712
#vaccination

Account 550
#galway

Account 611
#influenza

Account 725
#vaccines

Account 543

Account 625
#vaccineswork

Account 433
#cervicalcancer

Account 358

Account 380
#vaccineswork

Account 497
#chickenpox

Account 240
#sarampi

Account 618
#vaccines

Account 686
#saidnomother

Account 249
#hpvvaccination

Account 642
#protecto

Account 210
#vaccines

Account 599
#vaccination

Account 689
#nigeria

Account 506

Account 28
#tosferina

Account 476
#vaccine

Account 769
#immunization

Account 405
#hpv

Account 815
#vaccination

Account 453
#vph

Account 236
#getvax

Account 276
#v

Account 751 Account 527
#vaccineswork

Account 226
#flu

Account 203
#protecto

Account 152
#vaccine

Account 352
#hpv

Account 539
#vaccination

Account 263
#vaccination

Account 350
#hpv

Account 475
#vaccines

Account 114
#vaccineswork

Account 800
#galicia

Account 619
#vph

Account 672
#influenza

Account 548
#madagascarAccount 537

#not

Account 165
#vaccination

Account 729
#vaccineswork

Account 445
#vaccineswork

Account 628
#typhoid

Account 813
#measles

Account 178
#vaccination

Account 732
#vaccineswork

Account 271
#canadian

Account 117
#vaccineswork
Account 327
#mondaymotiv...

Account 648
#vaccinesworkAccount 786

#vaccination

Account 633
#autism

Account 791

Account 118
#vaccines

Account 664
#vaccineswork

Account 142
#flu

Account 67

Account 809
#syria

Account 590
#vaccinesare...

Account 264
#measles

Account 267
#vaccineswork

Account 107
#v

Account 670
#influenza

Account 234
#evinindia

Account 699
#vacunasfunc...

Account 455
#vaccinesworkAccount 317

#complenet

Account 656
#vacunas

Account 592

Account 179

Account 206
#immunology

Account 696
#hpv

Account 719

Account 8
#mmr

Account 159
#icymi

Account 146
#measles

Account 80
#vacunas
Account 578
#bashhpresident

Account 490
#fakenews

Account 534Account 720
#publichealth

Account 319
#vaccineswork

Account 318
#vaccine

Account 446
#vaccineswork

Account 248

Account 23
#cbseveningnews

Account 535
Account 128

Account 207
#vaccination

Account 71
#antivax

Account 120
#hpv

Account 582
#endcervical...

Account 775
#influenza

Account 744

Account 645
#vaccines

Account 704
#vaccineswork

Account 266
#lassafever

Account 84
#complenet

Account 579
#vaccineswork

Account 364
#gcrf

Account 225
Account 305Account 605

#vaccine

Account 754
#evinindia

Account 564
#vaccinationAccount 12

#biontech

Account 452
#d

Account 407

Account 408
#vaccine

Account 351
#hpvvax

Account 480
#vacunas

Account 347
#vaccinesworkAccount 356
#diphtheria

Account 588
#cervicalc

Account 172
#vacunas

Account 15

Account 273
#vaccine

Account 306
#vaccin

Account 245
#antivax
Account 639
#evinindia

Account 423

Account 256
#polio

Account 231
#vaccination

Account 690
#vaccineswork

Account 229
#vaccineswork

Account 288

Account 362
#hpv

Account 479
#vaccineswork

Account 612

Account 381
#nigeria

Account 417
#protect

Account 489
#texans

Account 726
#lassafever

Account 434
#vaccineswork

Account 804

Account 261
#vaccineswor

Account 237
#publichealth

Account 363
#vaccineswork

Account 756
#yemen

Account 329
#vaccineswork

Account 703
#vacunas

Account 104
#vaccineswork

Account 98

Account 603
#vaccinesworkAccount 730

#vaccination

Account 166
#vaccineswork

Account 36
#vaccins

Account 584
#whoopingcough

Account 679

Account 602
#vaccineswork

Account 134
#vaccines

Account 73
#autism

Account 533
#vaccinesw

Account 542
#measlesrube...

Account 124
#vaccineswork

Account 308
#vaccineswork

Account 3

Account 486
#ncirsseminar

Account 86
#vaccineswor

Account 357
#hpv

Account 763
#vaccinations

Account 702
#canadian

Account 353
#hpv

Account 326
#v

Account 131

Account 41Account 637Account 277
#vaccination

Account 662
#rotavirus

Account 316
#vaccineswork

Account 43
#webinar

Account 312
Account 32
#protectourf...

Account 44
#saidnomother

Account 96
Account 444

Account 512
#vaccineswork

Account 511
#hpv

Account 802
#hpv

Account 505
#vaccine

Account 184
#vaccineswork

Account 626
#vaccineswork

Account 74
#vaccine

Account 558
#yellowfever

Account 190

Account 265
#vaccineswork

Account 821

Account 258
#measles

Account 278
#eufightingflu

Account 384
#influenza

Account 614
#vaccination
Account 531
#evinindia

Account 591
#vaxtalk

Account 597
#fighthpvtog...

Account 390
#c

Account 58

Account 45

Account 309
#vaccineswork

Account 177
#sindh

Account 620
#vaccines

Account 360
#getvax

Account 587
#polio

Account 556
#vaccineswork

Account 6
#autism

Account 752
#typhoid

Account 761
#vaccinesworkAccount 568

#immunization

Account 373
#goatplague

Account 412
#hpv

Account 65

Account 551

Account 238

Account 145
#vaccineswork

Account 461
#vaccineswork

Account 718
#vaccineswork

Account 563
#measles

Account 393
#us

Account 538

Account 755
#measles

Account 220

Account 99
#nepal

Account 366
#vaccine

Account 481
#miviludes

Account 522

Account 493
#hpv

Account 810
#hpv

Account 753
#vaccineswork

Account 728
#dhvi

Account 694
#vaccineswork

Account 7
#prevention

Account 214
#gripe

Account 391

Account 436
#vaccines

Account 721
#vaccineAccount 222

#vaccinessav...
Account 675
#health

Account 474
#vaccine

Account 684
#fdaAccount 496

#visocinorte

Account 467
#whoopingcough

Account 681

Account 246
#homeopathy

Account 700
#vaccineswork

Account 805
#delbigtree

Account 623
#said

Account 430
#vaccineswork

Account 188
#vaccineAccount 103

Account 698
#vacunas

Account 93
#vaccines

Account 39
#vaccination

Account 24

Account 485
#vaccinatie

Account 348
Account 501
#vaccination

Account 150

Account 794
#vaccineswork

Account 513

Account 97
#vaccineswork

Account 773
#va

Account 593
#vaccineswork

Account 458
#antivaxAccount 244

#measles

Account 562
#vaccine

Account 297
Account 4
#lassfever

Account 230
#india Account 280

#fmd

Account 573
#measles

Account 46
#dhvi

Account 814
#polio

Account 235

Account 183
#vaccineswork

Account 339
#polio

Account 268
#vaccineswork

Account 790
#vaccineswork

Account 194
#influenza

Account 792
#vaccinesAccount 820

#vaccines

Account 50
#vaccines

Account 495
#vaccinations

Account 141
#vaccinegoodoh

Account 389
#vaccineswork

Account 733
#hpvawarenes...

Account 665
#vaccinAccount 167

#wales

Account 402

Account 660
#vaccine

Account 758
#polio

Account 517

Account 606
#vaccineswork

Account 274
#vaccine

Account 514
#vaccineswork

Account 269

Account 629
Account 630
#vaccination

Account 518
#polio

Account 779

Account 334
#vaccineswork

Account 566
#hpvvax

Account 525
#vaccinesworkAccount 122
Account 570

Account 454
#antivax

Account 375
#vaccineswork
Account 406

Account 788
#africa

Account 787
#karachi

Account 100
#vaccineswork

Account 275
#hpv

Account 583
#mmr

Account 671
#usaidtransf...Account 609

#vaccineswork

Account 21
#vaccines

Account 336

Account 450
#influenza

Account 212
#rotavirus

Account 192
#biontech

Account 737
#vaccineswork

Account 635
#globalhealth

Account 416
#influenza

Account 2
#homeopathyAccount 536

#hpvvax

Account 382
#vaccineswork

Account 544
#stopavn

Account 440
#vaccinesworkAccount 803

#saidnomother

Account 428Account 223
#hpv

Account 545
#vaccinesw

Account 204
#vaccineswork

Account 287
#antivax

Account 116
#antivax

Account 817
#hpv

Account 101
#c

Account 233
#vaccineswork

Account 163
#measles

Account 557
#measles

Account 627

Account 156
#d

Account 596
#vaccineswork

Account 488
#vaccination

Account 524
#india

Account 270
#vacunasAccount 528

#antivax

Account 323
#immunisation

Account 125
#polioAccount 92

#vaccineswork

Account 750
#vaccine

Account 251
#pakistan

Account 320
#vaccineswork

Account 701
#vaccines

Account 115
#vaccineswork

Account 284
#vaccine

Account 685
#vaccination

Account 27
#hpv

Account 594
#defeatdd

Account 139
#vaccine

Account 254
#vaccines

Account 739
#vaccineswork

Account 811
#polio

Account 176
#lassafever

Account 743
#indiaAccount 62

Account 529
#vaccination

Account 801
#imaginenigeria

Account 492
#cervicalcancer

Account 608
#vaccineswork

Account 487
#vaccine

Account 414
#vaccineAccount 746

#vaccineswork
Account 161

Account 523
Account 674
#hpv

Account 589
#vacunas

Account 757
#polio

Account 130

Account 262
#measles

Account 272
#hpvvax

Account 257
#vaccineswork

Account 313
#afgha
Account 330
#vacunas

Account 669
#brazil

Account 657
#rubella

Account 54
#india

Account 343
#vaccine

Account 17
#cbseveningnewsAccount 413
#vaccination

Account 136
#vaccines

Account 540
#vaccineswork

Account 464
#hpvvaccine

Account 344
#endcervical...

Account 200
#vaccines

Account 491
#measles

Account 291
#vaccines

Account 659
#gripe

Account 678
#jvirology

Account 197
#wales

Account 25
#vaccineswork

Account 610
#cholera

Account 110

Account 85

Account 431
#yellowfever

Account 232
#vacunasAccount 189

#measles

Account 600
#imaginenigeria

Account 483
#nigeria

Account 42
#vaccine

Account 765
#usaidtransf...

Account 760
#eica

Account 259
#influenza

Account 94
#vaccinesworkAccount 40

Account 419
#cAccount 735Account 300

#openaccess

Account 565
#vaccineswork

Account 148
#globalhealth
Account 378
#hpvvaccine

Account 169
#flu

Account 279
#vaccination

Account 785
#vaccines

Account 499

Account 286
Account 653
#vaccineswork

Account 432
#immunization

Account 51
#vacunas

Account 89

Account 164
#hpv

Account 607
Account 367
#vaccinesAccount 677

#vaccination

Account 349
#measles

Account 595

Account 667Account 315
#vaccineswork

Account 559
#ncirsseminar

Account 285
#vaccination

Account 102

Account 335
#vaccine

Account 361
#measles Account 676Account 9

Account 575
#hpv
Account 812
#vaccineswork

Account 171
#hpv

Account 108
#evinindia

Account 632
#wales

Account 789

Account 260
#measles

Account 106
#vaccineswork

Account 293
#missionindr...

Account 77Account 127
#vaccinesAccount 793 Account 650

#yemen

Account 401
#vaccineswork

Account 87
#vaccineswork

Account 429
#honor

Account 439
#vaccine

Account 500
#vaccineswork

Pro

Account 14

Account 5
#publichea

Account 55
#herpesAccount 59

#lassfever

Account 16
Account 56
#geoengineering

Account 78

Account 151
#falseflag

Account 19
#vaccine

Account 70Account 76
#goatplagueAccount 20

#opendata

Account 11
#scuolaAccount 10

#vaccine

Account 49
#herpes

Account 64

Account 149

Neutral

Account 395
#saidnomother

Account 205

Account 710
#autism

Account 641
#vaccineAccount 340

#flushot

Account 503
#cdcwhi

Account 742
#dorit

Account 762
#vaccine

Account 153
#cervar

Account 771
#stpatsforall

Account 502
#vaccineswork

Account 376
#saidnomother

Account 174
#vaccines

Account 345
#righttotry

Account 342

Account 314
#breaking

Account 799
#vaccines

Account 666

Account 780
#vaccine

Account 332

Account 567

Account 109
#vaxxed

Account 370
#vaccini

Account 48
#vaccine

Account 554
#cdcwhistleb...

Account 186
#vaccini

Account 613
#vaccine

Account 228
#vaxwithme

Account 541
#vaccine

Account 396
#italia

Account 224
#vaccine

Account 388
#thursdaytho...

Account 708
#vaccini

Account 82
#qanon

Account 473

Account 507
#autism

Account 218

Account 215
#tuesdaythou...

Account 295
#rougeole

Account 770
#vaccine

Account 459
#journalism

Account 509
#euronews

Account 409
#vaccine

Account 469
#societemoderne

Account 398

Account 283
#sb

Account 816
#vaccinations

Account 658

Account 717
#hpv

Account 88
#inchiesta

Account 498
#cdcwhistleb...

Account 668
#cdcexposed

Account 468
#saidnomother

Account 647
#vaccine

Account 441
#vaccin

Account 822
#bellavite

Account 560
#parentpower

Account 465
#vaccineswork

Account 187
#vaccini

Account 75
#vaxxed

Account 399
#vaccineswork

Account 581
#vaccini

Account 185
#vaccine

Account 397
#supporthb

Account 38
#hpv

Account 624
#journalism

Account 144

Account 553
#hpv

Account 243

Account 217

Account 140
#vaccini

Account 132
#not

Account 796
#timothycunn...

Account 180

Account 415
#mkultra

Account 337
#sternshow

Account 292
#nurses

Account 221
#unvaccinated

Account 716
#monsantobayer

Account 37
#vaccini

Account 30
#vaccini

Account 155
#vaccines

Account 687
#vaxxed

Account 426
#parentpower
Account 321
#vaccine

Account 52
#vaccini

Account 806
#c

Account 644

Account 372
#saidnomother

Account 324
#vaccine

Account 622

Account 404
#vaxxed

Account 250
#autismAccount 66

#breaking

Account 328
#vaccine

Account 325
#vaxxedAccount 781

#vaccineswork

Account 191
#nomandates

Account 296
#boycott

Account 31

Account 410
#maryland

Account 692
#news

Account 181
#vaccination...

Account 747
#qanon

Account 569
#lalibertAccount 634

#vaxxed

Account 147
#saidnomother

Account 95

Account 646
Account 520

Account 421
#msm

Account 57
#vaccini

Account 738
#disease
Account 621
#vaccine

Account 346
#vaccine

Account 311
#vaccine

Account 253
#vaccine

Account 13

Account 572
#novax

Account 216
#vaccineinjury

Account 617
#vaccini

Account 555
#saidnomother

Account 112

Account 680
#vaccine

Account 727
#italia

Account 331
#societemoderne

Account 47

Account 422

Account 709
#supporthb

Account 438

Account 695
#periscope

Account 449

Account 290
#health

Account 782
#philippines

Account 437
#hpv

Account 427
#vaccinations

Account 477
#vaccine

Account 482
#vaccine

Account 173
#vaccine

Account 354

Account 420
#vaccine

Account 377
#vaccines

Account 783
#vaccines

Account 157
#vaccine

Account 18
#fascismosan...

Account 307
#saidnomother

Account 510
#vaxxed

Account 69

Account 301
#vaccini

Account 478
#vaccin

Account 470
#vaxxed

Account 322
#vaccini

Account 371Account 547

Account 435
#vaccines

Account 1
#swineflu

Account 239
#vaccine

Account 711
#cdcexposed

Account 386
#saidnomother

Account 83
#vaccines

Account 302
#hpv

Account 338
#usa

Account 655
#falseflag

Account 706
#vaccine

Account 143
#vaccine

Account 823
#vaccination

Account 515
#vaccini

Account 661
#fascismosan...

Account 740

Account 713
#vaccine

Account 724
#vaccines

Account 705
#vaccine

Account 693

Account 154
#militari

Account 160
Account 521
#italia

Account 463
#autism

Account 460

Account 808
#cdcwhistleb...

Account 119
#thursdaytho...

Account 29

Account 385
#vaxxed

Account 162
#hpv

Account 819
#cdcwhistleb...

Account 451
#sylviesimon

Account 546
#cdcwhistleb...

Account 598

Account 211
#vaxxedAccount 824

#italie

Account 466
#maryland

Account 105
#vac

Account 341
#l

Account 252
Account 688
#vaccine

Account 158
#vaccine

Account 355
#vaccini

Account 294
#vaccine

Account 299

Account 722
Account 462
#supporthb

Account 26

Account 79

Account 638
#vaccine

Account 778
#vaxxed

Account 68

Account 774
#tragedy

Account 663
#vaccine

Account 298

Account 111
#flushot

Account 33
#hpv

Account 137
Account 424
#vaccine

Account 649

Account 442
#vaccine

Account 576
#vaccine

Account 745
#wednesdaywi...

Account 516
#vaccini

Account 198

Account 219
#saidnomother

Account 795
#vaccine

Account 121
#vaccinations

Account 484
#saidnomother

Account 411
#vaccine

Account 734
#vaccini

Account 797
#vaccine

Account 697
#ritual

Account 549
#study

Account 767
#hpv

Account 723
#vaccini

Account 798
#vaccineAccount 368

Account 138
#vaxxed

Account 807

Account 766
#cdcwhistleb...

Account 457
#saidnomother

Account 447
#qanon

Account 448
#sundaymorning

Account 615
#vaxxed

Account 199
#hpv

Account 242

Account 748
#saidnomother

Account 715
#vaccine

Account 35

Account 175
#vaccini

Account 714
#flushot

Account 34
#vaccine

Account 227
#geoengineering

Account 383
#antivaxxers

Account 651

Account 72
Account 195

Account 456
#vaccine

Account 636

Account 784

Account 201
#vaccini

Account 135
#chemistware...

Account 580
#hpv

Account 209
#vaxwithme

Account 282
#hpv

Account 22
#followthemoneyAccount 574

Account 213
#hpv

Account 202
#hpv

Account 818
#vaccine

Account 365
#vaccines

Account 471
#smallpox

Account 289
#autism

Account 126
#virus Account 61

Account 303
Account 60
#biggovtAccount 654

#educate

Account 333
#vaxxed

Account 403
#vaxxed

Account 196
#vaccines

Account 472

Account 571
#vaxxed

Account 133
#vaccine

Account 193
#vaccine

Account 691
#healthfreedom

Account 643
#kickbacks

Account 561
#vaccine

Con

Retweets same opinion

Retweets different opinion

Retweets same opinion

Retweets different opinion

N
u
m
b
er

of
tw
ee
ts

(s
q
u
ar
e
ro
ot
)

Account 434
#vaccineswork

Account 688
#nigeria

Account 312Account 587
#cervicalc

Account 718Account 36
#vaccins

Account 405
#hpv

Account 703
#vaccineswork

Account 54
#india

Account 636Account 523Account 624
#vaccineswork

Account 124
#vaccineswork

Account 236
#getvax

Account 39
#vaccination

Account 584
#vaccination

Account 67Account 450
#influenza

Account 550
#galway

Account 40Account 277
#vaccination

Account 725
#lassafever

Account 444Account 231
#vaccination

Account 517Account 226
#flu

Account 454
#antivax

Account 43
#webinar

Account 41Account 408
#vaccine

Account 551Account 45Account 663
#vaccineswork

Account 790Account 538Account 206
#immunology

Account 514
#vaccineswork

Account 500
#vaccineswork

Account 626Account 485
#vaccinatie

Account 98Account 625
#vaccineswork

Account 369
#vaccination

Account 42
#vaccine

Account 743Account 596
#fighthpvtog...

Account 145
#vaccineswork

Account 46
#dhvi

Account 594Account 499Account 677
#jvirology

Account 762
#vaccinations

Account 241Account 524
#india

Account 519
#vaxxed

Account 113
#be

Account 423Account 505
#vaccine

Account 522Account 763
#nigeria

Account 611Account 588
#vacunas

Account 758Account 73
#autism

Account 778Account 190Account 771
#va

Account 317
#complenet

Account 96Account 749
#vaccine

Account 391Account 387Account 234
#evinindia

Account 248Account 44
#saidnomother

Account 32
#protectourf...

Account 673
#hpv

Account 684
#vaccination

Account 728
#vaccineswork

Account 288Account 89
Account 85Account 139
#vaccine

Account 366
#vaccine

Account 455
#vaccineswork

Account 799
#galicia

Account 207
#vaccination

Account 535Account 156
#d

Account 129Account 74
#vaccine

Account 235Account 583
#whoopingcough

Account 608
#vaccineswork

Account 508
#vaccineswork

Account 220Account 84
#complenet

Account 244
#measles

Account 28
#tosferina

Account 428Account 275
#hpv

Account 752
#vaccineswork

Account 731
#vaccineswork

Account 319
#vaccineswork

Account 223
#hpv

Account 569Account 543Account 97
#vaccineswork

Account 390
#c

Account 203
#protecto

Account 131Account 150Account 7
#prevention

Account 168Account 170
#afghanist

Account 578
#vaccineswork

Account 300
#openaccess

Account 364
#gcrf

Account 629
#vaccination

Account 94
#vaccineswork

Account 12
#biontech

Account 734Account 413
#vaccination

Account 329
#vaccineswork

Account 102Account 595
#vaccineswork

Account 320
#vaccineswork

Account 280
#fmd

Account 494
#vacunasfunc...

Account 501
#vaccination

Account 670
#usaidtransf...

Account 483
#nigeria

Account 764
#usaidtransf...

Account 362
#hpv

Account 122Account 4
#lassfever

Account 592
#vaccineswork

Account 128Account 476
#vaccine

Account 649
#yemen

Account 491
#measles

Account 433
#cervicalcancer

Account 788Account 751
#typhoid

Account 65Account 504
#vacunas

Account 310Account 356
#diphtheria

Account 62Account 274
#vaccine

Account 496
#visocinorte

Account 803Account 678Account 600Account 735Account 680Account 17
#cbseveningnews

Account 287
#antivax

Account 192
#biontech

Account 141
#vaccinegoodoh

Account 9Account 540
#vaccineswork

Account 474
#vaccine

Account 336Account 792Account 537
#not

Account 91Account 536
#hpvvax

Account 81
#vacunas

Account 6
#autism

Account 591Account 675Account 628Account 458
#antivax

Account 271
#canadian

Account 351
#hpvvax

Account 445
#vaccineswork

Account 727
#dhvi

Account 348Account 548
#madagascar

Account 683
#fda

Account 230
#india

Account 237
#publichealth

Account 258
#measles

Account 208
#vaccine

Account 142
#flu

Account 381
#nigeria

Account 167
#wales

Account 118
#vaccines

Account 101
#c

Account 682
#hpv

Account 389
#vaccineswork

Account 652
#vaccineswork

Account 306
#vaccin

Account 419
#c

Account 748
#polio

Account 464
#hpvvaccine

Account 378
#hpvvaccine

Account 544
#stopavn

Account 130Account 51
#vacunas

Account 50
#vaccines

Account 152
#vaccine

Account 233
#vaccineswork

Account 512
#vaccineswork

Account 816
#hpv

Account 729
#vaccination

Account 717
#vaccineswork

Account 632
#autism

Account 563
#vaccination

Account 577
#bashhpresident

Account 811
#vaccineswork

Account 627
#typhoid

Account 804
#delbigtree

Account 750Account 589
#vaccinesare...

Account 334
#vaccineswork

Account 562
#measles

Account 100
#vaccineswork

Account 581
#endcervical...

Account 268
#vaccineswork

Account 347
#vaccineswork

Account 361
#measles

Account 511
#hpv

Account 148
#globalhealth

Account 146
#measles

Account 813
#polio

Account 161Account 787
#africa

Account 23
#cbseveningnews

Account 774
#influenza

Account 225Account 651
#sciencematters

Account 561
#vaccine

Account 615
#vaccination

Account 593
#defeatdd

Account 297Account 525
#vaccineswork

Account 786
#karachi

Account 701
#canadian

Account 528
#antivax

Account 493
#hpv

Account 183
#vaccineswork

Account 452
#d

Account 497
#chickenpox

Account 698
#vacunasfunc...

Account 134
#vaccines

Account 286Account 276
#v

Account 77Account 801
#hpv

Account 400
#saidnomother

Account 656
#rubella

Account 745
#vaccineswork

Account 759
#eica

Account 108
#evinindia

Account 527
#vaccineswork

Account 812
#measles

Account 127
#vaccines

Account 256
#polio

Account 604
#vaccine

Account 103Account 664
#vaccin

Account 742
#india

Account 2
#homeopathy

Account 238Account 590
#vaxtalk

Account 417
#protect

Account 479
#vaccineswork

Account 363
#vaccineswork

Account 99
#nepal

Account 602
#vaccineswork

Account 681
#vaccination

Account 539
#vaccination

Account 755
#yemen

Account 531
#evinindia

Account 262
#measles

Account 557
#yellowfever

Account 443
#measles

Account 305Account 15Account 598
#vaccination

Account 481
#miviludes

Account 270
#vacunas

Account 240
#sarampi

Account 8
#mmr

Account 582
#mmr

Account 323
#immunisation

Account 255Account 373
#goatplague

Account 266
#lassafever

Account 489
#texans

Account 407Account 533
#vaccinesw

Account 555
#vaccineswork

Account 674
#health

Account 490
#fakenews

Account 222
#vaccinessav...

Account 90
#afghanistan

Account 697
#vacunas

Account 506Account 330
#vacunas

Account 418
#hpv

Account 197
#wales

Account 414
#vaccine

Account 719
#publichealth

Account 107
#v

Account 178
#vaccination

Account 534Account 357
#hpv

Account 802
#saidnomother

Account 495
#vaccinations

Account 622
#said

Account 188
#vaccine

Account 110Account 711
#vaccination

Account 269Account 189
#measles

Account 412
#hpv

Account 123
#diarrhoea

Account 661
#rotavirus

Account 488
#vaccination

Account 631
#wales

Account 272
#hpvvax

Account 574
#hpv

Account 529
#vaccination

Account 393
#us

Account 358Account 80
#vacunas

Account 392Account 440
#vaccineswork

Account 278
#eufightingflu

Account 429
#honor

Account 545
#vaccinesw

Account 63Account 772
#va

Account 730
#saidnomother

Account 676
#vaccination

Account 606Account 115
#vaccineswork

Account 738
#vaccineswork

Account 247
#stopavn

Account 58Account 605
#vaccineswork

Account 793
#vaccineswork

Account 136
#vaccines

Account 689
#vaccineswork

Account 599
#imaginenigeria

Account 25
#vaccineswork

Account 53
#hpvvaccine

Account 382
#vaccineswork

Account 402Account 284
#vaccine

Account 24Account 613
#vaccination

Account 159
#icymi

Account 251
#pakistan

Account 367
#vaccines

Account 232
#vacunas

Account 638
#evinindia

Account 263
#vaccination

Account 720
#vaccine

Account 819
#vaccines

Account 27
#hpv

Account 431
#yellowfever

Account 177
#sindh

Account 695
#hpv

Account 374
#hpv

Account 261
#vaccineswor

Account 513Account 706
#vaccination

Account 343
#vaccine

Account 576
#gripe

Account 313
#afgha

Account 309
#vaccineswork

Account 326
#v

Account 820Account 335
#vaccine

Account 808
#syria

Account 163
#measles

Account 114
#vaccineswork

Account 171
#hpv

Account 86
#vaccineswor

Account 585
#endp

Account 406Account 116
#antivax

Account 360
#getvax

Account 609
#cholera

Account 630
#measles

Account 273
#vaccine

Account 212
#rotavirus

Account 565
#hpvvax

Account 767
#measles

Account 214
#gripe

Account 194
#influenza

Account 785
#vaccination

Account 315
#vaccineswork

Account 432
#immunization

Account 639
#polio

Account 776
#chickenpox

Account 169
#flu

Account 791
#vaccines

Account 327
#mondaymotiv...

Account 430
#vaccineswork

Account 532
#vacuna

Account 176
#lassafever

Account 556
#measles

Account 666Account 634
#globalhealth

Account 92
#vaccineswork

Account 394
#vaccineswork

Account 461
#vaccineswork

Account 279
#vaccination

Account 3Account 304
#imaginenigeria

Account 350
#hpv

Account 740
#imaginenigeria

Account 416
#influenza

Account 586
#polio

Account 647
#vaccineswork

Account 264
#measles

Account 669
#influenza

Account 732
#hpvawarenes...

Account 724
#vaccines
Account 339
#polio
Account 245
#antivax
Account 359
#immunization
Account 87
#vaccineswork
Account 106
#vaccineswork

Account 610
#influenza
Account 814
#vaccination
Account 293
#missionindr...
Account 281
#vaccination
Account 375
#vaccineswork
Account 259
#influenza

Account 344
#endcervical...
Account 182
#publichealth
Account 453
#vph
Account 125
#polio
Account 603
#vaccineswork
Account 572
#measles

Account 567
#immunization
Account 384
#influenza
Account 756
#polio

Account 117
#vaccineswork
Account 93
#vaccines
Account 693
#vaccineswork
Account 486
#ncirsseminar

Account 254
#vaccines
Account 672
#vaccineswork
Account 285
#vaccination
Account 668
#brazil
Account 179Account 257
#vaccineswork
Account 702
#vacunas
Account 757
#polio

Account 165
#vaccination
Account 446
#vaccineswork
Account 71
#antivax
Account 249
#hpvvaccination
Account 184
#vaccineswork

Account 229
#vaccineswork
Account 558
#ncirsseminar

Account 492
#cervicalcancer
Account 760
#vaccineswork
Account 210
#vaccines

Account 425
#vaccineswork
Account 204
#vaccineswork

Account 789
#vaccineswork

Account 518
#polio

Account 671
#influenza

Account 267
#vaccineswork

Account 260
#measles

Account 401
#vaccineswork

Account 200
#vaccines

Account 265
#vaccineswork

Account 349
#measles

Account 736
#vaccineswork

Account 644
#vaccines

Account 775
#vaccineswork

Account 655
#vacunas

Account 800
#imaginenigeria

Account 291
#vaccines

Account 607
#vaccineswork

Account 246
#homeopathy

Account 487
#vaccine

Account 753
#evinindia

Account 784
#vaccines
Account 641
#protecto

Account 21
#vaccines
Account 526
#vacunas
Account 699
#vaccineswork
Account 809
#hpv

Account 754
#measles

Account 379
#vaccineswork
Account 619
#vaccines
Account 436
#vaccines

Account 601
#vaccineswork

Account 316
#vaccineswork
Account 172
#vacunas
Account 467
#whoopingcough

Account 658
#gripe

Account 353
#hpv
Account 685
#saidnomother
Account 618
#vph

Account 120
#hpv

Account 164
#hpv

Account 659
#vaccine

Account 380
#vaccineswork

Account 318
#vaccine

Account 810
#polio

Account 530
#polio

Account 439
#vaccine

Account 104
#vaccineswork

Account 166
#vaccineswork

Account 564
#vaccineswork

Account 542
#measlesrube...

Account 700
#vaccines

Account 617
#vaccines

Account 768
#immunization

Account 308
#vaccineswork

Account 475
#vaccines

Account 352
#hpv

Account 480
#vacunas

Pro

Account 59
#lassfever

Account 56
#geoengineering

Account 16Account 55
#herpes

Account 5
#publichea

Account 20
#opendata

Account 49
#herpes

Account 151
#falseflag

Account 149
Account 70Account 76
#goatplague

Account 78
Account 14Account 64

Account 19
#vaccine

Account 10
#vaccine

Account 11
#scuola

Neutral

Account 715
#monsantobayer
Account 815
#vaccinations
Account 805
#c
Account 180Account 227
#geoengineering
Account 185
#vaccine
Account 47Account 202
#hpv
Account 399
#vaccineswork
Account 377
#vaccines
Account 35Account 721Account 427

#vaccinations
Account 692Account 549
#study

Account 296
#boycott

Account 687
#vaccine

Account 780
#vaccineswork

Account 88
#inchiesta

Account 460Account 650Account 137Account 746
#qanon

Account 332Account 635Account 121
#vaccinations

Account 462
#supporthb

Account 573Account 726
#italia

Account 294
#vaccine

Account 441
#vaccin

Account 438Account 132
#not

Account 690
#healthfreedom

Account 723
#vaccines

Account 282
#hpv

Account 61Account 325
#vaxxed

Account 657Account 252Account 642
#kickbacks

Account 472Account 144Account 424
#vaccine

Account 112Account 507
#autism

Account 196
#vaccines

Account 761
#vaccine

Account 31Account 215
#tuesdaythou...

Account 158
#vaccine

Account 198Account 484
#saidnomother

Account 173
#vaccine

Account 195Account 621Account 69Account 22
#followthemoney

Account 66
#breaking

Account 29
Account 303Account 342Account 105
#vac

Account 645Account 691
#news

Account 13Account 250
#autism

Account 653
#educate

Account 217Account 421
#msm

Account 773
#tragedy

Account 79Account 397
#supporthb

Account 376
#saidnomother

Account 138
#vaxxed

Account 575
#vaccine

Account 765
#cdcwhistleb...

Account 807
#cdcwhistleb...

Account 579
#hpv

Account 783Account 126
#virus

Account 597Account 654
#falseflag

Account 154
#militari

Account 290
#health

Account 633
#vaxxed

Account 82
#qanon

Account 181
#vaccination...

Account 821
#bellavite

Account 694
#periscope

Account 60
#biggovt

Account 72Account 509
#euronews

Account 705
#vaccine

Account 520Account 547Account 643Account 822
#vaccination

Account 174
#vaccines

Account 289
#autism

Account 709
#autism

Account 119
#thursdaytho...

Account 521
#italia

Account 463
#autism

Account 52
#vaccini

Account 371Account 568
#lalibert

Account 465
#vaccineswork

Account 679
#vaccine

Account 473Account 354Account 157
#vaccine

Account 228
#vaxwithme

Account 213
#hpv

Account 314
#breaking

Account 704
#vaccine

Account 817
#vaccine

Account 395
#saidnomother

Account 710
#cdcexposed

Account 457
#saidnomother

Account 614
#vaxxed

Account 823
#italie

Account 798
#vaccines

Account 777
#vaxxed

Account 447
#qanon

Account 345
#righttotry

Account 160Account 26Account 133
#vaccine

Account 696
#ritual

Account 333
#vaxxed

Account 338
#usa

Account 498
#cdcwhistleb...

Account 355
#vaccini

Account 818
#cdcwhistleb...

Account 311
#vaccine

Account 667
#cdcexposed

Account 449Account 398Account 18
#fascismosan...

Account 211
#vaxxed

Account 365
#vaccines

Account 459
#journalism

Account 48
#vaccine

Account 420
#vaccine

Account 448
#sundaymorning

Account 299Account 422Account 368Account 660
#fascismosan...

Account 553
#cdcwhistleb...

Account 713
#flushot

Account 686
#vaxxed

Account 337
#sternshow

Account 224
#vaccine

Account 503
#cdcwhi

Account 637
#vaccine

Account 795
#timothycunn...

Account 341
#l

Account 1
#swineflu

Account 471
#smallpox

Account 541
#vaccine

Account 385
#vaxxed

Account 292
#nurses

Account 205Account 243Account 566Account 442
#vaccine

Account 153
#cervar

Account 797
#vaccine

Account 388
#thursdaytho...

Account 806Account 253
#vaccine

Account 646
#vaccine

Account 560
#vaccine

Account 372
#saidnomother

Account 796
#vaccine

Account 665Account 37
#vaccini

Account 741
#dorit

Account 30
#vaccini

Account 155
#vaccines

Account 570
#vaxxed
Account 216
#vaccineinjury

Account 559
#parentpower
Account 781
#philippines
Account 34
#vaccine

Account 283
#sb
Account 175
#vaccini

Account 469
#societemoderne
Account 737
#disease
Account 620
#vaccine
Account 770
#stpatsforall

Account 554
#saidnomother
Account 739Account 321
#vaccine

Account 147
#saidnomother
Account 426
#parentpower
Account 415
#mkultra

Account 298Account 477
#vaccine
Account 386
#saidnomother

Account 769
#vaccine
Account 370
#vaccini

Account 733
#vaccini

Account 396
#italia

Account 451
#sylviesimon

Account 648Account 546
#cdcwhistleb...

Account 409
#vaccine

Account 456
#vaccine

Account 307
#saidnomother

Account 328
#vaccine

Account 437
#hpv

Account 295
#rougeole

Account 322
#vaccini

Account 95Account 403
#vaxxed

Account 111
#flushot

Account 516
#vaccini

Account 191
#nomandates

Account 68Account 109
#vaxxed

Account 135
#chemistware...

Account 193
#vaccine

Account 515
#vaccini
Account 571
#novax
Account 383
#antivaxxers
Account 340
#flushot
Account 199
#hpv
Account 744
#wednesdaywi...
Account 468
#saidnomother
Account 435
#vaccines
Account 324
#vaccine

Account 239
#vaccine
Account 640
#vaccine

Account 662
#vaccine

Account 482
#vaccine

Account 623
#journalism

Account 219
#saidnomother

Account 714
#vaccine

Account 747
#saidnomother

Account 410
#maryland

Account 346
#vaccine

Account 162
#hpv

Account 33
#hpv

Account 143
#vaccine

Account 411
#vaccine

Account 302
#hpv

Account 470
#vaxxed

Account 716
#hpv

Account 510
#vaxxed

Account 83
#vaccines

Account 766
#hpv

Account 187
#vaccini
Account 722
#vaccini
Account 221
#unvaccinated
Account 708
#supporthb

Account 331
#societemoderne

Account 38
#hpv

Account 75
#vaxxed

Account 552
#hpv

Account 186
#vaccini

Account 779
#vaccine

Account 201
#vaccini

Account 707
#vaccini

Account 140
#vaccini

Account 612
#vaccine

Account 712
#vaccine

Account 209
#vaxwithme

Account 57
#vaccini

Account 616
#vaccini

Account 580
#vaccini

Account 301
#vaccini

Account 242

Account 404
#vaxxed

Account 478
#vaccin

Account 218
Account 782
#vaccines

Account 502
#vaccineswork

Account 466
#maryland

Account 794
#vaccine

Con

Figure 1 A pro and con vaccination twitter discussion from 2018, capturing 823 accounts.
Accounts are placed in a categorical strip according to most frequent sentiment expressed. Color
indicates if account mostly mentions accounts with a similar opinion (blue) or with a different
opinion (red). Top: random jittering, bottom: our approximation algorithm described in Theorem 7.
Random jittering hides many details, such as pro-vaccination accounts that mention predominantly
anti-vaccination accounts (red boundaries). Many accounts at the bottom sent the same number of
tweets and hence share a y-coordinate, which inevitably covers most of their horizontal edges.

Contributions and organization. In this paper we initiate the algorithmic study of optimiz-
ing symbol visibility through displacement. Specifically, we focus on unit square symbols,
that may be shifted horizontally while remaining in a strip of width 2 (their categorical
strip). In Section 2 we introduce our notation and make some initial observations. Most
notably: the visible perimeter behaves non-continuously when squares are placed on the
same x-coordinate. Hence the optimal visible perimeter is a supremum that cannot always
be reached. In Section 3 we study the special case that the strip has height at most 2. In
this scenario all squares are stabbed by a point. We first establish several useful geometric
properties of so-called reasonable layouts – arrangements of the input squares which meet

SWAT 2024

24:4 Optimizing Symbol Visibility Through Displacement

certain lower bound conditions – and then use these properties to prove that a simple
O(n log n) algorithm suffices to compute a layout of the squares whose visible perimeter is
arbitrarily close to the supremum.

In Section 4 we then study the general case of strips of arbitrary height (but still width 2).
Here all squares are stabbed by a line. We leverage our previous result to obtain an O(n log n)-
time approximation algorithm. This approximation is with respect to the so-called gap –
the visible perimeter minus two – since a minimal visible perimeter of 2 is trivially obtained
for any instance. Furthermore, if the y-coordinates are uniformly distributed, then we can
show that a specific layout – the zigzag layout – is asymptotically optimal. We close with
a discussion of various avenues for future work, both towards the practical applicability of
our results in visualization systems and towards more theoretical results in other settings,
including different visibility definitions and other symbol shapes.

Related work. The questions we study in this paper combine various aspects and restrictions
of well-known placement problems in the algorithmic (geo-)visualization literature in a novel
way. Most closely related to our work are the two papers by Cabello et al. [3] and by Nivasch
et al. [15] that consider perimeter problems for sets of differently sized symbols at fixed
positions in the plane. Specifically, they consider the problems of maximizing the minimum
perimeter of the symbol that has least visibility (as we do in this paper) or maximizing the
total visible perimeter. Since the locations of the symbols are fixed, the algorithmic problem
reduces to finding the optimal (not necessarily stacking) order of the symbols. This contrasts
with our work where a limited form of displacement is allowed.

Labeling cartographic maps, where a subset of the labels are chosen such that they can be
placed without any overlap, and the corresponding optimization problems are computationally
complex in various settings [8], as they relate to maximum independent set. Constrained
displacement of labels is often also allowed, and various of such placement models have been
studied algorithmically [2, 4, 16, 17, 21]. The goal is always to place as many labels as possible
without overlap. Displacing labels to the boundary of a map has attracted considerable
algorithmic attention under different models as well, see [1] for a survey. However, such
practice relies on leader lines to connect labels to the points being labeled; making it harder
to identify data patterns and thus less suitable for visualizing data.

There is ample work on using symbol displacement to eliminate all symbol overlap, as it has
various applications in visualization, including visualizing disjoint glyphs in geovisualization
[11, 13, 20], removing overlap between vertices in graph drawing [6, 12], positioning nonspatial
data [10, 18] and computing Dorling and Demer’s cartograms [5, 14]. Such overlap-removal
problems are NP-hard in many settings [7, 19], though efficiently solvable in some specific
settings [13, 14]. However, eliminating all overlap may require considerable displacement,
thereby distorting the view of the data. Our goal is not to eliminate all overlap, but to use
both a limited displacement and a suitable drawing order to maximize visibility.

In the visualization literature, offsetting graphical symbols to improve visibility is known
as jittering [22]. Often, jittering is done randomly, though in context of dense plots, arising,
for example, from dimensionality reduction, more complex algorithms have been engineered
for this task; see e.g. [9] for a recent method. However, such approaches are often heuristic
in nature, without provable quality guarantees.

2 Preliminaries

Our input is a sequence of distinct y-coordinates y = (y1, y2, . . . , yn). We want to find
x-coordinates x = (x1, x2, . . . , xn), determining unit squares s1, s2, . . . , sn, where si has
centroid (xi, yi). We also want to find a stacking order, so that the minimum visible
perimeter among all squares is maximized.

B. Gärtner et al. 24:5

More specifically, we are given a strip T of width w > 1 and height h > 1, where we
assume that T = [0, w] × [0, h], and that 1

2 ≤ y1 < y2 < . . . < yn ≤ h − 1
2 . Thus, in terms of

the y-coordinates, we can speak about the highest, or the lowest, among any set of squares.
We require xi ∈ [1

2 , w − 1
2] for all i, so that all squares are in the strip. We say that si is left

(right) of sj if xi < xj (xi > xj). This determines a leftmost and a rightmost square among
any set of squares (ties handled as needed).

A stacking order is a total order ≺ among the squares. If i ≺ j, we say that sj is in front
of si, and si is behind sj . The bottom and top square are the first and last squares in the
order. The pair (x, ≺) is a layout for the instance (w, h, y).

The visible perimeter of a square in a layout is the total length of all its visible boundary,
where a point on the boundary is visible if any other square t containing it is behind s.
The top square has visible perimeter 4. The visible boundary is made up of (horizontal or
vertical) visible edges. Note that each side of s can host at most one visible edge, due to all
squares having the same size.

The gap of a square in a layout is its visible perimeter minus 2. If this is non-positive,
we say that the square has no gap. The gap of a layout is the minimum of the gaps of all
squares. This definition is motivated by the fact that we can always achieve a positive gap by
suitable “standard” layouts which we introduce below. Ideally, we want to find an optimal
layout, one that has the maximum gap among all layouts. However, this may not exist: one
can easily construct instances where the only candidates for optimal layouts have duplicate
x-coordinates, but no such layouts can actually be optimal, refer to Figure 2 for one such
instance. Therefore, we take the supremum gap over all layouts as the benchmark which we
want to approximate as closely as possible.

The bounding box of a collection of squares is the inclusion-minimal axis-parallel box
containing all the squares.

We call a layout a staircase if both x and ≺ are monotone:
x1 ≤ x2 ≤ · · · ≤ xn (“facing right”), or x1 ≥ x2 ≥ · · · ≥ xn (“facing left”); and
s1 ≺ s2 ≺ · · · ≺ sn (“facing up”), or s1 ≻ s2 ≻ · · · ≻ sn (“facing down”).

Hence, there are 4 types of staircases; the one in Figure 3 (left) is facing right and up.

2ε

ε

1 + ε

< ε

Figure 2 An instance with y2 − y1 = 2ε, y3 − y2 = ϵ and a strip of width w = 1 + ε, where
ε ≤ 0.2. From only looking at the two highest squares s2, s3, we see that the gap of every layout
is bounded from above by 2ε, and to achieve this gap, s2 and s3 together need to span the full
strip width. Given this, s1 cannot be the bottom square, since then it has visible perimeter at most
1 + 5ε ≤ 2 and hence no gap (left); s2 cannot be the bottom square, either, as this would limit
its visible perimeter to at most 1 + 2ε (middle). So s3 has to be the bottom square (right). Since
x1 = x2 would give the bottom square among s1, s2 a visible perimeter of at most 1 + 4ε, we need
to have x1 ̸= x2, but this means that s3 has gap less than 2ε. Hence, a gap of 2ε is not achievable,
but any smaller gap is (by the right layout, as x1 − x2 → 0).

SWAT 2024

24:6 Optimizing Symbol Visibility Through Displacement

Figure 3 A staircase (left), three generalized staircases (right).

We call a layout a generalized staircase if each square si lies in one of the four corners of
the bounding box of si and all squares in front of it. In a standard staircase, this corner is
the same for all squares (i.e., the lower left corner for a staircase facing right and up).

▶ Observation 1. For every instance, there is a staircase with positive gap.

Proof. We build a staircase facing right and up as in Figure 3 (left). Then the left and lower
sides of each square are completely visible, as well as parts of its right and upper side. This
yields a positive gap. ◀

▶ Definition 2. A layout is reasonable if it has positive gap, and it is ε-reasonable if it has
gap larger than ε > 0.

3 Squares stabbed by a point

Throughout this section, we fix a strip width w ≤ 2 and a strip height h ≤ 2. In this case,
all squares are stabbed by a single point. Subsection 3.1 proves a (tight) upper bound on
the gap of every layout, while Subsection 3.2 shows that a staircase layout of gap arbitrarily
close to the supremum can efficiently be computed.

3.1 Reasonable layouts
We start with a crucial structural result about reasonable layouts in the case w, h ≤ 2.

▶ Proposition 3. In a reasonable layout, the bottom square s is not contained in the bounding
box of the other squares.

Proof. Assume otherwise and consider the two squares sℓ and sr defining the left and right
sides of the bounding box. If one of them is above s and the other one below, the situation
is as in Figure 4 (left). Since sℓ and sr overlap in both x- and y-coordinate, s has horizontal
and vertical visible edges of total length at most 1 each. Thus, the visible perimeter of s is
at most 2. In the other case, sℓ and sr are w.l.o.g. both above s as in Figure 4 (right). Then
we consider the square sd defining the bottom side of the bounding box; w.l.o.g. sd is left of
s. In this case, sr and sd prove that s has no gap. ◀

▶ Lemma 4. Every layout A of n squares has gap at most w+h−2
n−1 , for n ≥ 2.

Proof. If A is unreasonable, there is nothing to prove. Otherwise, let t1, t2, . . . , tn be the
sequence of squares in stacking order, i.e. t1 ≺ t2 ≺ · · · ≺ tn, and let the bounding box of
ti, ti+1, . . . , tn be denoted by τi for 1 ≤ i ≤ n. Since A is reasonable, ti “sticks out” of τi+1
(i.e. it is not contained in it) by Proposition 3. There are two cases: ti is a “corner square”
(Figure 5 left), or a “side square” (Figure 5 middle and right). Let ∆Xi and ∆Yi quantify by
how much ti sticks out, horizontally and vertically. For a side square, one of those numbers
is 0.

B. Gärtner et al. 24:7

s

sr

s`

s

srs`

sd

Figure 4 The visible perimeter of bottom square s is at most two if it is contained in the bounding
box of the other squares.

For a corner square, the two sides of ti incident to the corner contribute visible perimeter
2, meaning that the gap of the square is ∆Xi + ∆Yi. For a horizontal side square as in
Figure 5 (middle), the visible perimeter is at most 2 + ∆Yi, and for a vertical side square
(right), it is at most 2 + ∆Xi. In both cases, ∆Xi + ∆Yi is also an upper bound for the gap
of the square.

This means that, for 1 ≤ i < n, the intervals corresponding to ∆Xi (as well as those
corresponding to ∆Yi) span disjoint x-intervals (or y-intervals) that are also disjoint from
the two intervals (one in each coordinate) of length one that is spanned by the top square.
Hence,

n−1∑
i=1

(∆Xi + ∆Yi) ≤ (w − 1) + (h − 1) = w + h − 2.

It follows that there is some ti with gap at most ∆Xi + ∆Yi ≤ w+h−2
n−1 . ◀

This upper bound on the gap is easily seen to be tight.

▶ Observation 5. There are instances of n squares for which a staircase has gap w+h−2
n−1 .

Proof. We consider the uniformly spaced instance (yi = 1
2 + (h − 1) i−1

n−1). Choosing xi =
1
2 + (w − 1) i−1

n−1 and s1 ≺ s2 · · · ≺ sn leads to a staircase with ∆Xi = w−1
n−1 and ∆Yi = h−1

n−1
for 1 ≤ i < n, and hence the gap is w+h−2

n−1 . ◀

ti

∆Xi

∆Yi

t

t′

w ≤ 2

h ≤ 2

ti

∆Xi

∆Yi

t

t′

w ≤ 2

h ≤ 2

ti

∆Xi

∆Yi

t

t′

w ≤ 2

h ≤ 2

Figure 5 Proof of Lemma 4.

SWAT 2024

24:8 Optimizing Symbol Visibility Through Displacement

3.2 Computing staircases with gap arbitrarily close to the supremum
We next prove that for every reasonable layout with gap g, there is a staircase with a gap at
least g − δ, for any δ > 0. Moreover, with γ⋆ being the supremum gap over all layouts, a
staircase of gap γ⋆ − δ can be efficiently computed.

For this, we first look at staircases in more detail. Consider a staircase of n squares,
facing right and up, with centroids (xi, yi), 1 ≤ i ≤ n. We define ∆yi = yi+1 − yi > 0 and
∆xi = xi+1 − xi ≥ 0, for 1 ≤ i ≤ n − 1. If ∆xi > 0, the left and lower sides of si are fully
visible, and the gap of si is ∆yi + ∆xi; the top square sn has gap 2. If all ∆xi are positive,
the staircase is called proper.

Now consider the problem of finding such a proper staircase of large gap. For this, the
∆yi are fixed, but x1 < x2 < · · · < xn can be chosen freely, meaning that the values ∆xi

can be any positive numbers satisfying
∑n−1

i=1 ∆xi ≤ w − 1. We want to maximize the
gap minn−1

i=1 (∆yi + ∆xi) subject to the previously mentioned constraints. Due to the strict
inequalities on the ∆xi’s, the maximum may not exist (as pointed out in Section 2). But
allowing ∆xi ≥ 0, the maximum is attained by the solution of a linear program:

maximize g

subject to ∆xi + ∆yi ≥ g, i = 1, . . . , n − 1∑n−1
i=1 ∆xi ≤ w − 1

∆xi ≥ 0, i = 1, . . . , n − 1.

(1)

Now we are prepared for the main result of this section which also implies that the
optimal solution g⋆ of this linear program equals γ⋆, the supremum gap over all layouts.

▶ Lemma 6. Let A be a reasonable layout with gap g. There exists a feasible solution of
the linear program (1) with value at least g. Moreover, for every δ > 0, there exists a proper
staircase A′ with gap at least g − δ.

Proof. As in the proof of Lemma 4, we consider the ∆Xi and ∆Yi, i = 1, . . . , n − 1,
quantifying by how much the i-th square in the stacking order sticks out of the bounding box
of the squares in front of it, horizontally and vertically. See Figure 6 (top left part) for an
illustration, where the ∆Xi and ∆Yi values are visualized as rectangle areas. Each rectangle
is spanned by a unit side and an interval corresponding to the value. For example, ∆X4, the
rectangle with the orange boundary, has the interval between the left sides of t4 and t5.

The ∆Yi rectangles are further subdivided into blocks whose intervals are gaps between
vertically adjacent squares. For example, ∆Y4 is made of two blocks. The interval of the
orange-black block is the vertical gap between the lower sides of t4 (orange) and t1 (black),
while the interval of the black-green block is the vertical gap between the lower sides of t1
(black) and t5 (green). Thus, each block interval is of the form ∆yj = yj+1 − yj .

As argued in the proof of Lemma 4, the ∆Xi and ∆Yi satisfy the constraints of the linear
program (1), with g being the gap of A.

We will perform discrete steps that gradually turn the ∆Yi into the prescribed ∆yi =
yi+1 − yi, while changing the ∆Xi into suitable ∆xi. If we can maintain the constraints
of (1) throughout, we will arrive at a feasible solution of (1) – that we can interpret as a
staircase – with value at least g. From this, we can construct a proper staircase with gap at
least g − δ, by slightly redistributing the ∆xi to make all of them positive.

We point out that the ∆Xi, ∆Yi are sorted by stacking order; our stepwise process will
first result in values ∆X ′

i, ∆Y ′
i such that the ∆Y ′

i are a permutation of the ∆yi. This means,
we still have to sort the values accordingly before we can interpret the solution of (1) as a
staircase. As the linear program is agnostic to permutations, this does not change the gap.

B. Gärtner et al. 24:9

t1

t2

t3

t4

t5

∆Yi

∆Xi

∆Xi + ∆Yi

→ →g

∆xi + ∆yi

∆xi

∆yi

(a) (b) (d)

→ · · · →

(c)

↓ ↑

Figure 6 The proof of Lemma 6.

If the ∆Yi are already a permutation of the ∆yi, we are done after sorting them (see the
end of the proof below). This is the case if and only if each ∆Yi consists of exactly one block.

But in general, some ∆Yi may have more than one block, or no block at all. In the
example in Figure 6, we have ∆Y4 = y4 − y2 consisting of two blocks with intervals between
t4 (orange) and t1 (black), and between t1 (black) and t5 (green). ∆Y1 in turn has no blocks,
as t1 does not stick out vertically.

All the ∆Yi together use all the n − 1 blocks. Indeed, the bounding box of the squares in
front of ti is disjoint from whatever sticks out of it, and the last bounding box only contains
the top square.

Now we repeatedly move blocks from rectangles with at least two blocks to rectangles
with no block. We can visually analyze this as follows: think of a basin that initially holds
the ∆Yi rectangles, i = 1, . . . , n − 1, as in part (a) of Figure 6. For each i, we pour ∆Xi

units of water into the basin, which corresponds to the area of the rectangles with colored
boundary in part (a) of Figure 6. As mini(∆Xi + ∆Yi) ≥ g, the water will settle at some
level ≥ g; see part (b) of the figure. Moving a block to a “free slot” will submerge it further,
and this can only increase the water level; see step (b)-(c).

In the end, we have one block ∆yj = yj+1 − yj per slot, and sorting the slots by index as
in part (d) yields rectangles ∆y1, . . . , ∆yn−1, with columns ∆x1, . . . ∆xn−1 of water above
them, such that min(∆xi + ∆yi) ≥ g. In general, some ∆yi’s can still be above the water
level in which case the corresponding ∆xi is 0. This is our desired solution of (1) from which
we can in turn build a staircase with the prescribed x- and y-gaps (upper right part of the
figure). ◀

SWAT 2024

24:10 Optimizing Symbol Visibility Through Displacement

2i

2i+ 1

gx gx(
1−δ
2)δ

Figure 7 Squeezing staircase layouts.

k = 8

Figure 8 Arranging n uniformly spaced
squares in a zigzag layout.

We remark that the linear program (1) can be efficiently solved in O(n log n) time,
employing the water analogy. After sorting the ∆yi rectangles, and assuming that the water
currently rises to the top of one of them, it is easy to compute in O(1) time the amount of
additional water required to reach the top of the next higher rectangle. Indeed, in this range,
the water level is a linear function of the amount of additional water. If reaching the top of
the next higher rectangle would need more water than our total budget of w − 1 allows, we
arrive at the optimal level g⋆ before.

4 Squares stabbed by a vertical line

Throughout this section, we consider a strip of width w ≤ 2 and arbitrary height h > 1, with
n squares of fixed y-coordinates 1

2 ≤ y1 < y2 < · · · < yn ≤ h − 1
2 . Let 1/k = (h − 1)/(n − 1)

be the (maximal) average y-distance between adjacent centroids in the y-order. We first
show that we can asymptotically approximate the supremum gap up to a factor of 2. More
precisely, as the strip remains fixed and n → ∞, we have 1/k → 0 and thus approach a factor
of 2 using Theorem 7 below. We still present our results in terms of k to make it clear what
happens if the strip height h grows with n.

▶ Theorem 7. Let γ⋆ be the supremum gap over all layouts. In time O(n log n), we can
construct a layout with gap at least γ⋆(1

2 − O(1
k)). We refer to this procedure as the squeezing

algorithm.

Proof. We partition the squares into buckets 1, . . . , ⌈h⌉, where bucket i contains the squares
j such that yj rounds to i (we round up in case of a tie). The squares within each bucket are
in a strip of height 2, and by Section 3, a (staircase) solution of gap arbitrarily close to the
supremum can efficiently be found, in time O(ℓ log ℓ) per bucket, where ℓ is the number of
squares in that bucket. Hence, the total time required is O(n log n).

The smallest bucket gap δ is (up to arbitrarily small error) an upper bound for γ⋆, as
each layout contains a sublayout for the squares in this worst bucket. We also note that
δ = O(1

k), since there must be a bucket with Ω(k) squares to which Lemma 4 applies.
In O(n) time, we now construct a layout for all squares, of gap roughly δ

2 , to prove the
statement. To do so, we “squeeze” the layouts in individual buckets appropriately. We
assume w.l.o.g. that the even bucket staircases are facing right and up, while the odd ones
are facing left and up, as in Figure 7 (left).

Multiplying all x-gaps by 1−δ
2 while keeping the even staircases aligned left and the odd

ones aligned right, see Figure 7 (left), leads to a layout where even staircase squares have
x ≤ 1 − δ

2 , and odd ones have x ≥ 1 + δ
2 . Each non-top square of each bucket still has

gap gy + gx
1−δ

2 where gx, gy are the previous x-gap and y-gap in the bucket solution, and

B. Gärtner et al. 24:11

g = gx + gy ≥ δ is the previous gap. It follows that the new gap is at least δ 1−δ
2 . The

top squares of each bucket have x-gap (and hence total gap) at least δ, by construction.
The resulting layout has therefore gap at least δ 1−δ

2 . Since γ⋆ ⪅ δ = O(1/k), the bound
follows. ◀

It is natural to ask whether squeezing the staircase layouts of individual buckets is the
best we can do. For general yi, we do not know the answer, but if the yi are uniformly
spaced, we can indeed prove that this procedure yields an asymptotically optimal gap.

Uniform spacing. For the rest of the section, we assume that yi+1 − yi = 1
k for 1 ≤ i < n.

In this case, the squeezing algorithm from Theorem 7 essentially produces the zigzag layout
(see Figure 8).

▶ Lemma 8. The zigzag layout has gap 1
k + 1

2k−1 .

Proof. See Figure 8. We place bundles of ⌊k⌋ squares each, as indicated in the figure, starting
from the lowest one. This layout uses precisely the 2⌊k⌋ x-coordinates 1

2 + i
2⌊k⌋−1 , i =

0, . . . , 2⌊k⌋−1. This means that every square has x-gap at least 1
2⌊k⌋−1 ≥ 1

2k−1 . The y-gap is
at least 1/k for each square, due to uniform spacing. Both gaps are attained for example by
the second-lowest square, so the bound in the lemma cannot be improved for this layout. ◀

Below, we will establish the following result, showing that the simple zigzag layout is
asymptotically optimal.

▶ Theorem 9. In the case of uniform spacing, every layout has gap at most 1
k + 1

2k−O(log k) .

In proving this, we can restrict to 1/k-reasonable layouts, the ones achieving gap larger
than 1/k in the first place. We also assume that k ≥ 2.

We will start by establishing a crucial fact about such layouts, namely that most of their
squares have 3 visible corners. To this end, we are going to upper-bound the number of
squares with at least 2 covered corners, eventually enabling us to remove them from the
layout while keeping most of the squares.

▶ Definition 10. Given a layout, a bad square is one with at least 2 covered corners. A bad
square with one vertical side covered is a standard bad square; see Figure 9 (left).

▶ Lemma 11. If a square s has both adjacent squares (in the y-order) in front of it, then s

is a standard bad square.

Proof. If the adjacent squares both have smaller or larger x-coordinate, then they together
hide a vertical side of s, see Figure 9 (b). The other case cannot happen in a reasonable
layout by Proposition 3; see Figure 9 (c)-(d). Since k ≥ 2, the adjacent squares actually
overlap vertically. ◀

Counting standard bad squares yields a bound for all bad squares.

▶ Lemma 12. For each non-standard bad square, an adjacent square (in the y-order) is a
standard bad square.

Proof. Let s be a non-standard bad square. We distinguish two cases.
The first one is that an upper corner and a lower corner of s are covered. These could be

adjacent corners (with some part of the connecting side visible), or antipodal corners as in
Figure 10. By Lemma 11, one of the adjacent squares must be behind s; w.l.o.g. it is the
next higher one b (blue).

SWAT 2024

24:12 Optimizing Symbol Visibility Through Displacement

(b)(a) (c) (d)

Figure 9 Bad squares: at least two covered corners; A standard bad square ((a) and (b)): one
vertical side is covered.

Figure 10 Case 1: A non-standard bad square (black)
with an upper and a lower corner covered.

Figure 11 Case 2: A non-standard
bad square (black) with two upper or
two lower corners covered.

Consider the square r (red) covering the upper corner. Square b is behind s and r,
and either “wedged” between them (w.r.t. to both x- and y-coordinate), or “sticking” out.
The former case (Figure 10 left) cannot happen, because b would have no gap then, see
Proposition 3. In the latter case, b is the required standard bad square (Figure 10 right).
This uses that r is higher than b due to uniform spacing.

The second case is that two upper or two lower corners of s are covered, see Figure 11.
Let us suppose w.l.o.g. that the two upper corners are covered. Then the upper side of s is
covered. This implies that the next higher square b is behind s, as otherwise, s has gap at
most 1/k. Again, b is a standard bad square. ◀

Through the previous lemma, each standard bad square is “charged” by at most three
bad squares (itself and the two adjacent ones).

▶ Corollary 13. For every vertical window W = [h, h] ⊆ [1
2 , h − 1

2] of a 1/k-reasonable layout,
the number of bad squares with yi ∈ W is at most three times the number of standard bad
squares with yi ∈ W ′ = [h − 1

k , h + 1
k].

It remains to count the number of standard bad squares.

▶ Lemma 14. For every vertical window W = [h, h + 1] of a 1/k-reasonable layout, there
are at most 2(log k + 1) standard bad squares with yi ∈ W .

Proof. Let us fix the window. We count the standard bad squares with the left side covered,
the overall bound follows by symmetry.

Let s1, . . . , sℓ be these squares; see Figure 12 (left). They must be stacked according to
x-coordinate, with squares of lower x-coordinate in front of squares with higher x-coordinate.
Indeed, a square si in front of a square sj with smaller x-coordinate would cover a third
corner of sj , and thus a full horizontal side, resulting in no gap (we are using here that the
window height is 1). The squares covering the left side of si are to the left of si and together
cover all of si in the left half of the strip.

Because the layout is 1/k-reasonable, each si has a part of each of its horizontal sides
visible. They are of lengths σi ≤ λi ≤ 1 such that σi + λi ≥ 1 + 1/k. Suppose that the
squares are ordered by decreasing x-coordinate. We show that the σi increase exponentially
with i.

B. Gärtner et al. 24:13

1

h

h

1

h

h

≤ 1

≥ ε

≤ 1− ε

≥ 2ε
≤ 1− 3ε

≥ 4ε

Figure 12 Counting standard bad squares with centers in a vertical window of height 1.

si

si−1

Figure 13 Proof of bitone
stacking order.

t s1

1

Figure 14 Two squares of different types in the subwindow.

We have λ1 ≤ 1, hence σ1 ≥ ε := 1/k; see Figure 12 (right). As a consequence, λ2 ≤ 1 − ε

(as s2 is by at least ε further to the left than s1). Hence, σ2 ≥ 2ε. This in turn means that
s3 is by at least ϵ + 2ε further to the left than s1, so λ3 ≤ 1 − 3ε and σ3 ≥ 4ε.

Continuing in this fashion, we see that σℓ ≥ 2ℓ−1ε ≤ 1. This implies that ℓ − 1 ≤
log(1/ε) = log k. ◀

▶ Corollary 15. In a reasonable layout, at most 6(log k + 1) squares out of any consecutive
k − 1 squares are bad squares.

Proof. The centers of k − 1 consecutive squares span a horizontal window of height 1 − 2/k.
Using Corollary 13 and the previous lemma, the number of bad squares in this window is at
most 3(2(log k + 1)). ◀

Hence, by removing O(log k) squares per bundle of k − 1 squares, we obtain a layout with
no bad squares left (observe that no surviving square can turn bad by removing squares).
Such a layout turns out to have a rather rigid structure.

▶ Lemma 16. After removal of all bad squares from a 1/k-reasonable layout, there is a
unique top square (fully visible), and the stacking order is determined: monotone decreasing
from the top square towards the highest as well as the lowest square.

Proof. A square with at least three visible corners (and only such squares remain) is called
down square if the lower side is fully visible, and up square if the upper side is fully visible.
A top square is both up and down.

SWAT 2024

24:14 Optimizing Symbol Visibility Through Displacement

Now let the squares be indexed from lowest to highest. We claim that if si is a down
square, then si−1 is also a down square that is behind si. To see this, consider a down square
si and the overlapping square si−1 (we have an overlap since we have removed only O(log k)
squares in between); see Figure 13. It is clear that si−1 must be behind si, and this in turn
implies that si is also a down square.

A symmetric statement holds for up squares. Hence, starting from any top square, we can
go both higher and lower, decreasing stacking height. In particular, we can never encounter
another top square. ◀

We now proceed to the proof of Theorem 9, showing that, under uniform spacing, we
cannot asymptotically beat the gap of the zigzag layout.

Proof of Theorem 9. We start with the layout obtained after removing all bad squares, as
in Lemma 16. W.l.o.g. we assume that the majority of squares is below the top square, and
we disregard all squares above. The stacking order then coincides with the y-order.

We now consider a window of height 4. Each square with center in that window is either
left or right of the next higher square, and based on this, we call it type L, or type R. We
focus on the middle subwindow of height 2. If all squares with centers in this subwindow
have the same type, we have a proper staircase of 2k − O(log k) squares; see Figure 14 (left).

Except O(log k) of them (the ones directly below a removed bad square), all squares have
y-gap 1/k. Let ε be the minimum x-gap among these squares. Then the layout has gap at
most 1/k + ε. But we know that the sum of all x-gaps is at most 1 (they don’t overlap and
“live” outside the top square), so the minimum x-gap is 1/(2k − O(log k)) which proves the
theorem in this case.

The other case is that there are two consecutive squares of different types with centers in
the subwindow, see Figure 14 (middle). In this case, we have a generalized staircase. We let
s be the lower one and t the higher of the two squares, and we zoom in on the situation; see
Figure 14 (right).

Both squares stick out of the ones up to 1 higher than s (otherwise, they can’t have
3 visible corners). On the other hand, the squares up to 1 lower than t stick out of both
s and t. It follows that – as in the previous case – the x-gaps of all involved squares live
outside of the top square among them, and they do not overlap (i.e. they are disjoint). More
specifically, the x-gaps of the squares above s live in the orange regions in Figure 14, while
the x-gaps of the squares below t live in the blue regions.

In total, we again have 2k − O(log k) squares with a y-gap of 1/k within the surrounding
window of height 4, so the minimum x-gap is 1/(2k − O(log k)). ◀

5 Conclusion

We initiated the algorithmic study of optimizing the visibility of overlapping symbols by
finding both a suitable drawing order and a limited displacement. This novel setting leads to
various interesting and challenging problems. In this paper we focused solely on unit squares,
presented structural insights, as well as several intricate approximation algorithms.

We are curious if the upper bound from Theorem 9 can be improved to one where
the O(log k) term is replaced with a constant. In our approach we derive the bound by
eliminating all the bad squares from the layout before estimating the gap. Hence, knowing
that (in a vertical window of mutually intersecting squares) the number of bad squares can
be as large as Θ(log k) a radically new approach would be needed to achieve such bound
improvement.

B. Gärtner et al. 24:15

0 0

0 0

1 1

1 1

2 2

2 2

3 3

3 3

4 4

4 4

5 5

5 5

6 6

6 6

7 7

7 7

8 8

8 8

2.257

0 0

0 0

1 1

1 1

2 2

2 2

3 3

3 34 4

4 4

5 5

5 5

6 6

6 6

7 7

7 7

8 8

8 8

2.3

0 0

0 0

1 1

1 1

2 2

2 2

3 3

3 3

4 4

4 4

5 5

5 5

6 6

6 6

7 7

7 7

8 8

8 8

2.2833

0 0

0 0

1 1

1 1

2 2

2 2

3 3

3 3

4 4

4 4

5 5

5 5

6 6

6 6

7 7

7 7

8 8

8 8

2.2832

Figure 15 Four layouts for y = {0.5, 0.7, 0.8, 1.25, 1.35, 1.45, 1.55, 1.65, 1.75}. The minimum
visible perimeter is indicated below each layout, the stacking order by the numbers in the corners
of each square. From left to right: optimal layout; optimal layout with a stacking order matching
the y-order; optimal layout with a stacking order matching the inverse y-order; optimal staircase.
These layouts were computed via (I)LPs using a difference of 0.001 to turn strict inequalities into
non-strict inequalities.

It is natural to wonder if the stacking order of every optimal solution follows its y-order.
However, this is not always the case, refer to Figure 15 for an illustration: the optimal layout
(leftmost figure) is better than the best layout when stacking order follows the y-order or the
inverse y-order (second and third figures), which is better than the best layout among all
staircases (rightmost figure).

An interesting and practically relevant scenario for future work are rectangular symbols.
Our algorithms (constructions of layouts) can also be used for this case and yield results of
high quality (see Figure 1). However, doing so loses the quality guarantees that we prove for
the square case, since the resulting rectangle layouts will not optimize visible perimeter, but
a variant of this measure in which horizontal and vertical visible edges have different weights.
Even more challenging are settings with differently sized symbols. We leave these question
to future work.

References
1 Michael A. Bekos, Benjamin Niedermann, and Martin Nöllenburg. External labeling techniques:

A taxonomy and survey. Computer Graphics Forum, 38(3):833–860, 2019.
2 Sujoy Bhore, Robert Ganian, Guangping Li, Martin Nöllenburg, and Jules Wulms. Worbel:

Aggregating point labels into word clouds. ACM Transactions on Spatial Algorithms and
Systems, 9(3), 2023. doi:10.1145/3603376.

3 Sergio Cabello, Herman J. Haverkort, Marc J. van Kreveld, and Bettina Speckmann. Algorith-
mic aspects of proportional symbol maps. Algorithmica, 58(3):543–565, 2010.

4 Thomas Depian, Guangping Li, Martin Nöllenburg, and Jules Wulms. Transitions in Dynamic
Point Labeling. In Proceedings of the 12th International Conference on Geographic Information
Science (GIScience 2023), volume 277 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 2:1–2:19, 2023. doi:10.4230/LIPIcs.GIScience.2023.2.

5 Danny Dorling. Area Cartograms: their Use and Creation, volume 59 of Concepts and
Techniques in Modern Geography. University of East Anglia, 1996.

6 Tim Dwyer, Kim Marriott, and Peter J. Stuckey. Fast node overlap removal. In Proceedings
of the International Symposium on Graph Drawing, LNCS 3843, pages 153–164, 2005.

7 Jiří Fiala, Jan Kratochvíl, and Andrzej Proskurowski. Systems of distant representatives.
Discrete Applied Mathematics, 145(2):306–316, 2005.

8 Michael Formann and Frank Wagner. A packing problem with applications to lettering of maps.
In Proceedings of the 7th Annual Symposium on Computational Geometry, pages 281–288,
1991.

SWAT 2024

https://doi.org/10.1145/3603376
https://doi.org/10.4230/LIPIcs.GIScience.2023.2

24:16 Optimizing Symbol Visibility Through Displacement

9 Loann Giovannangeli, Frédéric Lalanne, Romain Giot, and Romain Bourqui. Guaranteed
visibility in scatterplots with tolerance. IEEE Transactions on Visualizations and Computer
Graphics, to appear, 2023.

10 Erick Gomez-Nieto, Wallace Casaca, Luis Gustavo Nonato, and Gabriel Taubin. Mixed integer
optimization for layout arrangement. In Proceedings of the Conference on Graphics, Patterns
and Images, pages 115–122, 2013.

11 Daichi Hirono, Hsiang-Yun Wu, Masatoshi Arikawa, and Shigeo Takahashi. Constrained
optimization for disoccluding geographic landmarks in 3D urban maps. In Proceedings of the
2013 IEEE Pacific Visualization Symposium, pages 17–24, 2013.

12 Kim Marriott, Peter Stuckey, Vincent Tam, and Weiqing He. Removing node overlapping in
graph layout using constrained optimization. Constraints, 8(2):143–171, 2003.

13 Wouter Meulemans. Efficient optimal overlap removal: Algorithms and experiments. Computer
Graphics Forum, 38(3):713–723, 2019.

14 Soeren Nickel, Max Sondag, Wouter Meulemans, Stephen Kobourov, Jaakko Peltonen, and Mar-
tin Nöllenburg. Multicriteria optimization for dynamic Demers cartograms. IEEE Transactions
on Visualization and Computer Graphics, 28(6):2376–2387, 2022.

15 Gabriel Nivasch, János Pach, and Gábor Tardos. The visible perimeter of an arrangement of
disks. Computational Geometry, 47(1):42–51, 2014.

16 Sheung-Hung Poon, Chan-Su Shin, Tycho Strijk, Takeaki Uno, and Alexander Wolff. Labeling
points with weights. Algorithmica, 38(2):341–362, 2004. doi:10.1007/s00453-003-1063-0.

17 Nadine Schwartges, Jan-Henrik Haunert, Alexander Wolff, and Dennis Zwiebler. Point labeling
with sliding labels in interactive maps. In Joaquín Huerta, Sven Schade, and Carlos Granell,
editors, Connecting a Digital Europe Through Location and Place, pages 295–310. Springer
International Publishing, 2014. doi:10.1007/978-3-319-03611-3_17.

18 Hendrik Strobelt, Marc Spicker, Andreas Stoffel, Daniel Keim, and Oliver Deussen. Rolled-out
Wordles: A heuristic method for overlap removal of 2D data representatives. Computer
Graphics Forum, 31(3pt3):1135–1144, 2012.

19 Mereke van Garderen. Pictures of the Past – Visualization and visual analysis in archaeological
context. PhD thesis, Universität Konstanz, 2018.

20 Mereke van Garderen, Barbara Pampel, Arlind Nocaj, and Ulrik Brandes. Minimum-
displacement overlap removal for geo-referenced data visualization. Computer Graphics
Forum, 36(3):423–433, 2017.

21 Marc van Kreveld, Tycho Strijk, and Alexander Wolff. Point labeling with sliding labels.
Computational Geometry, 13(1):21–47, 1999.

22 Claus O. Wilke. Fundamentals of data visualization: a primer on making informative and
compelling figures. O’Reilly Media, 2019.

https://doi.org/10.1007/s00453-003-1063-0
https://doi.org/10.1007/978-3-319-03611-3_17

Delaunay Triangulations in the Hilbert Metric
Auguste H. Gezalyan #

Department of Computer Science, University of Maryland, College Park, MD, USA

Soo H. Kim #

Wellesley College, MA, USA

Carlos Lopez #

Montgomery Blair High School, Silver Spring, MD, USA

Daniel Skora #

Indiana University, Bloomington, IN, USA

Zofia Stefankovic #

Stony Brook University, Stony Brook, NY, USA

David M. Mount # Ñ

Department of Computer Science, University of Maryland, College Park, MD, USA

Abstract
The Hilbert metric is a distance function defined for points lying within the interior of a convex body.
It arises in the analysis and processing of convex bodies, machine learning, and quantum information
theory. In this paper, we show how to adapt the Euclidean Delaunay triangulation to the Hilbert
geometry defined by a convex polygon in the plane. We analyze the geometric properties of the
Hilbert Delaunay triangulation, which has some notable differences with respect to the Euclidean
case, including the fact that the triangulation does not necessarily cover the convex hull of the point
set. We also introduce the notion of a Hilbert ball at infinity, which is a Hilbert metric ball centered
on the boundary of the convex polygon. We present a simple randomized incremental algorithm that
computes the Hilbert Delaunay triangulation for a set of n points in the Hilbert geometry defined
by a convex m-gon. The algorithm runs in O(n(log n + log3 m)) expected time. In addition we
introduce the notion of the Hilbert hull of a set of points, which we define to be the region covered
by their Hilbert Delaunay triangulation. We present an algorithm for computing the Hilbert hull in
time O(nh log2 m), where h is the number of points on the hull’s boundary.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Delaunay Triangulations, Hilbert metric, convexity, randomized algorithms

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.25

Related Version Full Version: https://arxiv.org/abs/2312.05987

1 Introduction

David Hilbert introduced the Hilbert metric in 1895 [15]. Given any convex body Ω in
d-dimensional space, the Hilbert metric defines a distance between any pair of points in
the interior of Ω (see Section 2 for definitions). The Hilbert metric has a number of useful
properties. It is invariant under projective transformations, and straight lines are geodesics.
When Ω is an Euclidean ball, it realizes the Cayley-Klein model of hyperbolic geometry.
When Ω is a simplex, it provides a natural metric over discrete probability distributions (see,
e.g., Nielsen and Sun [21,22]). An excellent resource on Hilbert geometries is the handbook
of Hilbert geometry by Papadopoulos and Troyanov [23].

The Hilbert geometry provides new insights into classical questions from convexity
theory. Efficient approximation of convex bodies has a wide range of applications, including
approximate nearest neighbor searching both in Euclidean space [6] and more general

© Auguste H. Gezalyan, Soo H. Kim, Carlos Lopez, Daniel Skora, Zofia Stefankovic, and
David M. Mount;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 25; pp. 25:1–25:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:octavo@umd.edu
https://orcid.org/0000-0002-5704-312X
mailto:sk111@wellesley.edu
mailto:pcmr.carlos.lopez@gmail.com
mailto:danskora@iu.edu
mailto:zofia.stefankovic@stonybrook.edu
mailto:mount@umd.edu
https://www.cs.umd.edu/~mount/
https://orcid.org/0000-0002-3290-8932
https://doi.org/10.4230/LIPIcs.SWAT.2024.25
https://arxiv.org/abs/2312.05987
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Delaunay Triangulations in the Hilbert Metric

metrics [1], optimal construction of ε-kernels [4], solving the closest vector problem approxi-
mately [11, 12, 19, 25], and computing approximating polytopes with low combinatorial
complexity [3,5]. These works all share one thing in common – they approximate a convex
body by covering it with elements that behave much like metric balls. These covering
elements go under various names: Macbeath regions, Macbeath ellipsoids, Dikin ellipsoids,
and (2, ε)-covers. Vernicos and Walsh showed that these shapes are, up to a constant scaling
factor, equivalent to Hilbert balls [2,27]. In addition the Hilbert metric behaves nicely in the
context flag approximability of convex polytopes as studied by Vernicos and Walsh [28].

Other applications of the Hilbert metric include machine learning [21], quantum informa-
tion theory [24], real analysis [18], graph embeddings [22], and optimal mass transport [9].
Despite its obvious appeals, only recently has there been any work on developing classical
computational geometry algorithms that operate in the Hilbert metric. Nielsen and Shao
characterized balls in the Hilbert metric defined by a convex polygon with m sides [20].
Hilbert balls are convex polygons bounded by 2m sides. Nielsen and Shao showed that Hilbert
balls can be computed in O(m) time, and they developed dynamic software for generating
them. Gezalyan and Mount presented an O(mn log n) time algorithm for computing the
Voronoi diagram of n point sites in the Hilbert polygonal metric [13] (see Figure 1(a) and (b)).
They showed that the diagram has worst-case combinatorial complexity of O(mn). Bumpus
et al. [8] further analyzed the properties of balls in the Hilbert metric and presented software
for computing Hilbert Voronoi diagrams.

Ω Ω Ω

Figure 1 (a) A convex polygon Ω and sites, (b) the Voronoi diagram, and (c) the Delaunay
triangulation.

In this paper, we present an algorithm for computing the Delaunay triangulation of
a set P of n point sites in the Hilbert geometry defined by an m-sided convex polygon
Ω. The Hilbert Delaunay triangulation is defined in the standard manner as the dual of
the Hilbert Voronoi diagram (see Figure 1(c)). Our algorithm is randomized and runs in
O(n(log n + log3 m)) expected time. Excluding the polylogarithmic term in m, this matches
the time of the well-known randomized algorithm for Euclidean Delaunay triangulations [14].
It is significantly more efficient than the time to compute the Hilbert Voronoi diagram, which
is possible because of the smaller output size. A central element of our algorithm is an
O(log3 m) time algorithm for computing Hilbert circumcircles.

Unlike the Euclidean case, the Delaunay triangulation does not necessarily triangulate
the convex hull of P . We also provide a characterization of when three points admit a Hilbert
ball whose boundary contains all three points, and define the Hilbert hull, which we define to
be the region covered by the Hilbert Delaunay triangulation. We give an algorithm for the
Hilbert hull that runs in time O(nh log2 m), where h is the number of points on the Hilbert
hull’s boundary.

A. H. Gezalyan, S. H. Kim, C. Lopez, D. Skora, Z. Stefankovic, and D. M. Mount 25:3

2 Preliminaries

2.1 The Hilbert Metric and Hilbert Balls

The Hilbert metric is defined over the interior of a convex body Ω in Rd (that is, a closed,
bounded, full dimensional convex set). Let ∂ Ω denote Ω’s boundary. Unless otherwise stated,
we assume throughout that Ω is an m-sided convex polygon in R2. Given two points p and q

in Ω, let pq denote the chord of Ω defined by the line through these points.

Ω

pp′

q
q′

(a) (b) (c)

p

v

pv p

Ω Ω

B(p, ρ)

Figure 2 (a) The Hilbert distance dΩ(p, q), (b) spokes defined by p, and (c) the Hilbert ball
B(p, ρ).

▶ Definition 1 (Hilbert metric). Given a bounded convex body Ω in Rd and two distinct points
p, q ∈ int(Ω), let p′ and q′ denote endpoints of the chord pq, so that the points are in the
order ⟨p′, p, q, q′⟩. The Hilbert distance between p and q is defined

dΩ(p, q) = 1
2 ln

(
∥q − p′∥
∥p− p′∥

∥p− q′∥
∥q − q′∥

)
,

and define dΩ(p, p) = 0 (see Figure 2(a)).

Note that the quantity in the logarithm is the cross ratio (q, p; p′, q′). Since cross ratios
are preserved by projective transformations [20], it follows that the Hilbert distances are
invariant under projective transformations. Straight lines are geodesics, but not all geodesics
are straight lines under the Hilbert distance. The Hilbert distance satisfies all the axioms
of a metric, and in particular it is symmetric and the triangle inequality holds [23]. When
Ω is a probability simplex [7], this symmetry distinguishes it from other common methods
of calculating distances between probability distributions, such as the Kullback-Leibler
divergence [17].

Given p ∈ int(Ω) and ρ > 0, let B(p, ρ) denote the Hilbert ball of radius ρ centered at p.
Nielsen and Shao showed how to compute Hilbert balls [20]. Consider the set of m chords pv

for each vertex v of Ω (see Figure 2(b)). These are called the spokes defined by p. For each
spoke pv, consider the two points at Hilbert distance ρ on either side of p. B(p, ρ) is the
(convex) polygon defined by these 2m points (see Figure 2(c)). Given any line that intersects
Ω, a simple binary search makes it possible to determine the two edges of Ω’s boundary
intersected by the line. Applying this to the line passing through p and q, it follows that
Hilbert distances can be computed in O(log m) time.

SWAT 2024

25:4 Delaunay Triangulations in the Hilbert Metric

2.2 The Hilbert Voronoi Diagram

Given a set P of n point sites in int(Ω), the Hilbert Voronoi diagram of P is defined in
the standard manner as a subdivision of int(Ω) into regions, called Voronoi cells, based on
which site of P is closest in the Hilbert distance. It was shown by Gezalyan and Mount [13]
that each Voronoi cell is star-shaped with respect to its site. Given two sites p, q ∈ P , the
(p, q)-bisector is the set of points that are equidistant from both sites in the Hilbert metric
(see Figure 3(a)).

(a)

Ω

(b)

p

q

p

q

Ω

x

(p, q)-bisector

Figure 3 The (p, q)-bisector is a piecewise conic with joints on the spokes of p and q.

The distances from any point x on the (p, q)-bisector to p and q are determined by
the edges of ∂ Ω incident to the chords px and qx. We can subdivide the interior Ω into
equivalence classes based upon the identity of these edges. It is easy to see that as x crosses
a spoke of either p or q, it moves into a different equivalence class. It has been shown that
within each equivalence class, the bisector is a conic [8, 13]. It follows that the (p, q)-bisector
is a piecewise conic, whose joints lie on sector boundaries (see Figure 3(b)). It is also known
that the worst-case combinatorial complexity of the Hilbert Voronoi diagram is Θ(mn) [13].

2.3 The Hilbert Delaunay Triangulation

The Hilbert Delaunay triangulation of P , denoted DT(P), is defined as the dual of the Hilbert
Voronoi diagram, where two sites p and q are connected by an edge if their Voronoi cells
are adjacent. Throughout, we make the general-position assumption that no four sites of P

are Hilbert equidistant from a single point in int(Ω). It is easy to see that familiar concepts
from Euclidean Delaunay triangulations apply, but using Hilbert balls rather than Euclidean
balls. For example, two sites are adjacent in the triangulation if and only if there exists a
Hilbert ball whose boundary contains both sites, and whose interior contains no sites. (The
center of this ball lies on the Voronoi edge between the sites.) Also, three points define a
triangle if and only if there is a Hilbert ball whose boundary contains all three points, but is
otherwise empty.

Consider a triangle △pqr in Ω’s interior. A Hilbert ball whose boundary passes through
all three points is said to circumscribe this triangle. As we shall see in Section 4, some
triangles admit no circumscribing Hilbert ball, but the following lemma shows that if it does
exist, then it is unique. We refer to the boundary of such a ball as a Hilbert circumcircle.
(The proof of this lemma, and a number of other lemmas throughout the paper are available
in the full version of the paper.)

▶ Lemma 2. There is at most one Hilbert circumcircle for any three non-colinear points in
Ω’s interior.

A. H. Gezalyan, S. H. Kim, C. Lopez, D. Skora, Z. Stefankovic, and D. M. Mount 25:5

Note that the non-collinear assumption is necessary. To see why, let Ω be a axis aligned
rectangle, and let ℓ be a horizontal line through the rectangle’s center. It is easy to construct
two Hilbert balls, one above the line and one below, whose boundaries contain a segment
along this line. Placing the three points within this segment would violate the lemma.

The following lemma shows that DT(P) is a connected, planar graph. Its proof is similar
to the Euclidean case and appears in the full version of the paper.

▶ Lemma 3. Given any discrete set of points P , DT(P) is a planar (straight-line) graph
that spans P .

Another useful property of the Delaunay triangulation, viewed as a graph, is its relationship
to other geometric graph structures. The Hilbert minimum spanning tree of a point set P ,
denoted MSTΩ(P), is the spanning tree over P where edge weights are Hilbert distances.
The Hilbert relative neighborhood graph for a point set P , denoted RNGΩ(P) is a graph
over the vertex set P , where two points p, q ∈ P are joined by an edge if dΩ(p, q) ≤
max(dΩ(p, r), dΩ(q, r)), for all r ∈ P \ {p, q}. Toussaint proved that in the Euclidean metric,
the minimum spanning tree is a subgraph of the relative neighborhood graph, which is a
subgraph of the Delaunay graph [26]. The following (proved in the full version of the paper)
shows that this holds in the Hilbert metric as well. (Since MSTΩ(P) is connected, this
provides an alternate proof that DT(P) spans P .)

▶ Lemma 4. Given any discrete set of points P , MSTΩ(P) ⊆ RNGΩ(P) ⊆ DTΩ(P).

3 Hilbert Bisectors

In this section we present some utilities for processing Hilbert bisectors, which will be used
later in our algorithms. We start by recalling a characterization given by Gezalyan and
Mount for when a point lies on the Hilbert bisector [13]. Recall that three lines are said to
be concurrent in projective geometry if they intersect in a common point or are parallel.

▶ Lemma 5. Given a convex body Ω and two points p, q ∈ int(Ω), consider any other point
x ∈ Ω. Let p′ and p′′ denote the endpoints of the chord px so the points appear in the order
⟨p′, p, x, p′′⟩. Define q′ and q′′ analogously for qx.

(i) If x ∈ int(Ω), then it lies on the (p, q)-bisector if and only if the lines
←→
pq ,
←→
p′q′, and

←−→
p′′q′′ are concurrent (see Figure 4(a)).

(ii) If x ∈ ∂ Ω (implying that x = p′′ = q′′), then x is the limit point of the (p, q)-bisector
if and only if there is a supporting line through x concurrent with

←→
pq and

←→
p′q′ (see

Figure 4(b)).

The following utility lemmas arise as consequences of this characterization. Both involve
variants of binary search. Their proofs are given in the full version of the paper.

▶ Lemma 6. Given an m-sided convex polygon Ω, two points p, q ∈ int(Ω), and any ray
emanating from p, the point of intersection between the ray and the (p, q)-bisector (if it exists)
can be computed in O(log2 m) time.

▶ Lemma 7. Given an m-sided convex polygon Ω and any two points p, q ∈ int(Ω), the
endpoints of the (p, q)-bisector on ∂ Ω can be computed in O(log2 m) time.

SWAT 2024

25:6 Delaunay Triangulations in the Hilbert Metric

p q

(a)

x

p′′
q′′

q′

p′

p q

(b)

q′

x = p′′ = q′′

p′

Ω Ω

Figure 4 Properties of points on the Hilbert bisector.

4 Hilbert Circumcircles

In the Euclidean plane, any triple of points that are not collinear lie on a unique circle, that is,
the boundary of an Euclidean ball. This is not true in the Hilbert geometry, however. Since
Delaunay triangulations are based on an empty circumcircle condition, it will be important
to characterize when a triangle admits a Hilbert circumcircle and when it does not. In this
section we explore the conditions under which such a ball exists.

4.1 Balls at infinity

We begin by introducing the concept of a Hilbert ball centered at a point on the boundary of
Ω. Let x be any point on ∂ Ω. Given any point p ∈ int(Ω), we are interested in defining the
notion of a Hilbert ball centered at x whose boundary contains p. If we think of the points
on the boundary of Ω as being infinitely far from any point in int(Ω), this gives rise to the
notion of a ball at infinity.

Given x ∈ ∂ Ω and p ∈ int(Ω), let u be any unit vector directed from x into the interior
of Ω (see Figure 5(a)). Given any sufficiently small positive δ, let xδ = x + δu denote the
point at Euclidean distance δ from x along vector u, and let B(xδ, p) denote the Hilbert ball
centered at xδ of radius dΩ(xδ, p). The following lemma shows that as δ approaches 0, this
ball approaches a shape, which we call the Hilbert ball at infinity determined by x and u and
passing through p, denoted Bu(x, p) (see Figure 5(b)).

(a)

p

(b)

p

p′

q′
q

v
x x

(c)

p, p′

x

q, q′xδ

vp′′
q′′

uu

u

ℓ

Ω
Bu(x, p)

Figure 5 Constructing the Hilbert ball Bu(x, p) at infinity.

▶ Lemma 8. As δ approaches 0, B(xδ, p) approaches a convex polygon lying within Ω having
x on its boundary.

A. H. Gezalyan, S. H. Kim, C. Lopez, D. Skora, Z. Stefankovic, and D. M. Mount 25:7

A useful utility, which we will apply in Section 7, involves computing the largest empty
ball centered at any boundary point x with respect to a point set P . The proof is given in
the full version of the paper.

▶ Lemma 9. Given a set of n points P in the interior of Ω, and any point x ∈ ∂ Ω, in
O(n log m) time, it is possible to compute a point p ∈ P , such that there is a ball at infinity
centered at x whose boundary passes through p, and which contains no points of P in its
interior.

Balls at infinity are not proper aspects of Hilbert geometry, but they will be convenient
for our purposes. Given two points p, q ∈ int(Ω), let x denote the endpoint of the (p, q)-
bisector on ∂ Ω, oriented so that x lies to the left of the directed line −→pq. (It follows from the
star-shapedness of Voronoi cells that the bisector endpoints intersect ∂ Ω on opposite sides of
this line.) Let u denote a tangent (if x is a vertex of Ω) vector of the bisector at x. Define
B(p : q) = Bu(x, p). Note that this (improper) ball is both centered at and passes through x.
In this sense it circumscribes the triangle △pqx. Define B(q : p) analogously for the opposite
endpoint of this bisector (see Figure 6(a) and (b)).

We can now characterize the set of points r that admit a Hilbert circumcircle with respect
to two given points p and q. This characterization is based on two regions, called the overlap
and outer regions (see Figure 6(c)).

▶ Definition 10 (Overlap/Outer Regions). Given two points p, q ∈ int(Ω):
Overlap Region: denoted Z(p, q), is B(p : q) ∩B(q : p).
Outer Region: denoted W (p, q), is Ω \ (B(p : q) ∪B(q : p)).

(a) (b) (d)

q

p

q

p p

(c)

q

W (p, q)

Z(p, q)

q

p

x

x′

Ω

B(p : q)

B(q : p)
r

(p, q)-bisector

Figure 6 The overlap region Z(p, q) and the outer region W (p, q).

▶ Lemma 11. A triangle △pqr ⊆ int(Ω) admits a Hilbert circumcircle if and only if
r /∈ Z(p, q) ∪W (p, q).

As shown in Figure 1, the Delaunay triangulation need not cover the convex hull of the
set of sites. We refer to the region that is covered as the Hilbert hull of the sites. Later,
we will present an algorithm for computing the Hilbert hull. The following lemma will be
helpful. It establishes a nesting property for the overlap regions.

▶ Lemma 12. If r ∈ Z(p, q) then Z(p, r) ⊂ Z(p, q).

5 Computing Circumcircles

A fundamental primitive in the Euclidean Delaunay triangulation algorithm is the so-called
in-circle test [14]. Given a triangle △pqr and a fourth site s, the test determines whether
s lies within the circumscribing Hilbert ball for the triangle (if such a ball exists). In this

SWAT 2024

25:8 Delaunay Triangulations in the Hilbert Metric

section, we present an algorithm which given any three sites either computes the Hilbert
circumcircle for these sites, denoted B(p : q : r), or reports that no circumcircle exists. The
in-circle test reduces to checking whether dΩ(s, c) < ρ, which can be done in O(log m) time
as observed in Section 2.

▶ Lemma 13. Given a convex m-sided polygon Ω and triangle △pqr ⊂ int(Ω), in O(log3 m)
time it is possible to compute B(p : q : r) or to report that no ball exists.

The remainder of the section is devoted to the proof. The circumscribing ball exists if
and only if there is a point equidistant to all three, implying that (p, q)- and (p, r)-bisectors
intersect at some point c ∈ int(Ω). The following technical lemma shows that bisectors
intersect crosswise.

▶ Lemma 14. Given three non-collinear points p, q, r ∈ int(Ω), the (p, q)- and (p, r)-bisectors
have endpoints lying on ∂ Ω. If they intersect within int(Ω), they intersect transversely in a
single point (see Figure 7).

q r
p

(a) (b)

(p, r)-bisector

(p, q)-bisector

q r

p

c

B(p : q : r)
Ω

Figure 7 Circumcircles and bisector intersection.

It follows that the (p, q)- and (p, r)-bisectors subdivide the interior of Ω into either three
or four regions (three if they do not intersect, and four if they do). We can determine which
is this case by invoking Lemma 7 to compute the endpoints of these bisectors in O(log2 m)
time. If they alternate between (p, q) and (p, r) along the boundary of Ω, then the bisectors
intersect, and otherwise they do not. In the latter case, there is no circumcircle for p, q, and
r, and hence, no possibility of violating the circumcircle condition. (Note that this effectively
provides an O(log2 m) test for Lemma 11.) Henceforth, we concentrate on the former case.

Let us assume, without loss of generality, that △pqr is oriented counterclockwise. Let vq

denote the endpoint of the (p, q)-bisector that lies to the right of the oriented line −→pq. Let
vr denote the endpoint of the (p, r)-bisector that lies to the left of the oriented line −→pr (see
Figure 8(a)).

q r

p

(a) (b) (c)

c

vq vr

q r

p

c

v− v+v

vq vr

q r

p

c

vq vr

early late

v′+ v′−Ω

Figure 8 Computing the center of △pqr.

A. H. Gezalyan, S. H. Kim, C. Lopez, D. Skora, Z. Stefankovic, and D. M. Mount 25:9

Because Voronoi cells are star-shaped, it follows that the vector from p to the desired
circumcenter c lies in the counterclockwise angular interval from −→pvq to −→pvr (see Figure 8(b)).
The key to the search is the following observation. In the angular region from −→pvq to −→pc,
any ray shot from p intersects the (p, q)-bisector before hitting the (p, r)-bisector (if it hits
the (p, r)-bisector at all). On the other hand, in the angular region from −→pc to −→pvr, any
ray shot from p intersects the (p, r)-bisector before hitting the (p, q)-bisector (if it hits the
(p, q)-bisector at all). We say that the former type of ray is early and the latter type is late.

Let v− and v+ denote the points on ∂ Ω that bound the current search interval about p

(see Figure 8(c)). We will maintain the invariant that the ray −−→pv− is early and −−→pv+ is late.
Initially, v− = vq and v+ = vr. Let v′

− and v′
+ denote the opposite endpoints of the chords

pv− and pv+. Consider the portion of the boundary of Ω that lies counterclockwise from v−
and v+. If the angle ∠v−pv+ is smaller than π, also consider the portion of the boundary of
Ω that lies counterclockwise from v′

− and v′
+. With each probe, we sample the median vertex

v from whichever of these two boundary portions that contains the larger number of vertices.
If v comes from the interval [v−, v+], we probe along the ray −→pv, and if it comes from the
complementary interval, [v′

−, v′
+], we shoot the ray from p in the opposite direction from v.

We then apply Lemma 6 twice to determine in O(log2 m) time where this ray hits the (p, q)-
and (p, r)-bisectors (if at all). Based on the results, we classify this ray as being early or late
and recurse on the appropriate angular subinterval. When the search terminates, we have
determined a pair of consecutive spokes about p that contain c.

Because each probe eliminates at least half of the vertices from the larger of the two
boundary portions, it follows that at O(log m) probes, we have located c to within a single
pair of consecutive spokes around p. Since each probe takes O(log2 m) time, the entire search
takes O(log3 m) time.

We repeat this process again for r and q. The result is three double wedges defined by
consecutive spokes, one about each site. It follows from our earlier remarks from Section 2.2
that within the intersection of these regions, the bisectors are simple conics. We can compute
these conics in O(1) time [8] and determine their intersection point, thus yielding the desired
point c. The radius ρ of the ball can also be computed in O(1) time.

6 Building the Triangulation

In this section we present our main result, a randomized incremental algorithm for constructing
the Delaunay triangulation DT(P) for a set of n sites P in the interior of an m-sided convex
polygon Ω. Our algorithm is loosely based on a well-known randomized incremental algorithm
for the Euclidean case [10,14].

6.1 Orienting and Augmenting the Triangulation
In this section we introduce some representational conventions for the sake of our algorithm.
First, we will orient the elements of the triangulation. Given p, q ∈ int(Ω) define the endpoint
of the (p, q)-bisector to be the endpoint that lies to the left of the directed line −→pq. (It is
worth repeating that it follows from the star-shapedness of Voronoi cells that the bisector
endpoints intersect ∂ Ω on opposite sides of this line.) The opposite endpoint will be referred
to as the (q, p)-bisector endpoint. When referring to a triangle △pqr, we will assume that the
vertices are given in counterclockwise order. Also, edges in the triangulation are assumed to
be directed, so we can unambiguously reference the left and right sides of a directed edge pq.

As mentioned earlier, the triangulation need not cover the convex hull of the set of
sites (see Figure 9(a)). For the sake of construction, it will be convenient to augment the
triangulation with additional elements, so that all of Ω is covered. First, we add elements

SWAT 2024

25:10 Delaunay Triangulations in the Hilbert Metric

to include the endpoints of the Voronoi bisectors on ∂ Ω. For each edge pq such that the
external face of the triangulation lies to its left, the endpoint of the (p, q)-bisector intersects
the boundary of Ω. Letting x denote this boundary point, we add a new triangle △pqx,
called a tooth. (See the green shaded triangles in Figure 9(b).)

Ω Ω
standard triangle

tooth

gap

(b)(a)

q

p

x

v

y

Figure 9 The augmented triangulation.

Finally, the portion of Ω that lies outside of all the standard triangles and teeth consists
of a collection of regions, called gaps, each of which involves a single site, the sides of two
teeth, and a convex polygonal chain along ∂ Ω. While these shapes are not triangles, they
are defined by three points, and we will abuse the notation △pxy to refer to the gap defined
by the site p and boundary points x and y (see Figure 9(b)).

Even when sites are in general position, multiple teeth can share the same boundary
vertex. For example, in Figure 9(b) three teeth meet at the same boundary vertex v. In
our augmented representation, it will be convenient to treat these as three separate teeth,
meeting at three distinct (co-located) vertices, separated by two degenerate (zero-width)
gaps. This allows us to conceptualize the region outside of the standard triangulation as
consisting of an alternating sequence of teeth and gaps. The following lemma summarizes
a few useful facts about the augmented representation. The proof is straightforward and
appears in the full version of the paper.

▶ Lemma 15. Given a set of n point sites in the interior of a convex polygon Ω:
The augmented Delaunay triangulation has complexity O(n).
The region covered by standard triangles is connected.
Each standard triangle and each tooth satisfies the empty circumcircle property.
The region outside the standard triangles consists of an alternating sequence of teeth and
gaps.
For any p ∈ Ω, membership in any given triangle, tooth, or gap can be determined in
O(1) time.

6.2 Local and Global Delaunay
Given a set P of point sites, we say that an augmented triangulation T (P) is globally Delaunay
(or simply Delaunay) if for each standard triangle and each tooth △pqr, the circumscribing
ball, denoted B(p : q : r), exists and has no site within its interior. The incremental Euclidean
Delaunay triangulation algorithm employs a local condition, which only checks this for
neighboring triangles [10,14]. Given a directed edge pq of the triangulation that is incident
to two triangles or to a triangle and tooth, let a and b be the vertices of the incident triangles
lying to the left and right of the pq, respectively. We say that T (P) is locally Delaunay if

A. H. Gezalyan, S. H. Kim, C. Lopez, D. Skora, Z. Stefankovic, and D. M. Mount 25:11

a /∈ int(B(q : p : b)) and b /∈ int(B(p : q : a)) for all such edges. The following lemma shows
that it suffices to certify the Delaunay properties locally. The proof, which appears in the
full version of the paper, follows the same structure as the Euclidean case, but additional
care is needed due to the existence of teeth and gaps.

▶ Lemma 16. Given a set P of point sites, an augmented triangulation T (P) is globally
Delaunay if and only if it is locally Delaunay.

6.3 Incremental Construction
The algorithm operates by first randomly permuting the sites. It begins by inserting two
arbitrary sites a and b and generating the resulting augmented triangulation. In O(log2 m)
time, we can compute the endpoints of the (a, b)-bisector. We add the edge ab and create two
teeth by connecting a and b to the bisector endpoints (see Figure 10(a)). We then insert the
remaining points one by one, updating the triangulation incrementally after each insertion
(see Algorithm 1). Later, we will discuss how to determine which element each new site lies
in, but for now, let us focus on how the triangulation is updated.

Algorithm 1 Constructs the Hilbert Delaunay triangulation of a point set P .

procedure Delaunay(P) ▷ Build the Delaunay triangulation of point set P

T ← empty triangulation
Randomly permute P

a, b← any two points of P ▷ Initialize with sites a and b

x, y ← endpoints of the (a, b)-bisector ▷ See Figure 10(a)
Add edges ab, ax, ay, bx, by to T
for all p ∈ P \ {a, b} do ▷ Add all remaining sites

Insert(p, T)
end for
return T

end procedure

a
b

(a) (b)

x

y

p
a

b

c

a
b

c

p

(c)

a b

p

yx

pap

y

x

(d)

a
p

a

b

cΩ
Ω

Figure 10 (a) Initialization and insertion into a (b) standard triangle, (c) tooth, (d) gap.

When we insert a point, there are three possible cases, depending on the type of element
that contains the point, a standard triangle (three sites), a tooth (two sites), or a gap (one
site). The case for standard triangles is the same as for Euclidean Delaunay triangulations [14],
involving connecting the new site to the triangle’s vertices (see Figure 10(b)). Insertion into a
tooth involves removing the boundary vertex, connecting the new site to the two existing site
vertices, and creating two new teeth based on the bisectors to these sites (see Figure 10(c)).
Finally, insertion into a gap involves connecting the new site to the existing site vertex, and
creating two new teeth based on the bisectors to this site (see Figure 10(d)).

SWAT 2024

25:12 Delaunay Triangulations in the Hilbert Metric

Algorithm 2 Site insertion.

procedure Insert(p, T) ▷ Insert a new site p into triangulation T
△abc← the triangle of T containing p

if △abc is a standard triangle then ▷ See Figure 10(b)
Add edges ap, bp, cp to T
FlipEdge(ab, p, T); FlipEdge(bc, p, T); FlipEdge(ca, p, T)

else if △abc is a tooth then ▷ See Figure 10(c)
Let a and b be sites, and c be on boundary
x, y ← endpoints of the (a, p)- and (p, b)-bisectors, respectively
Remove c and edges ca and cb from T
Add edges ap, bp, ax, px, by, py to T
FlipEdge(ab, p, T);
FixTooth(△apx, p, T); FixTooth(△pby, p, T)

else ▷ △abc is a gap; see Figure 10(d)
Let a be the site, and let b and c be on the boundary
x, y ← endpoints of (a, p)- and (p, a)-bisectors, respectively
Add edges ap, ax, px, ay, py to T
FixTooth(△apx, p, T); FixTooth(△pay, p, T)

end if
end procedure

On return from Insert, T is a topologically valid augmented triangulation, but it may fail
to satisfy the Delaunay empty circumcircle conditions, and may even fail to be geometrically
valid. The procedures FlipEdge and FixTooth repair any potential violations of the local
Delaunay conditions.

The procedure FlipEdge is applied to all newly generated standard triangles △pab. It is
given the directed edge ab of the triangle, such that p lies to the left of this edge. It accesses
the triangle △abc lying to the edge’s right. This may be a standard triangle or a tooth. In
either case, it has an associated circumcircle, which we assume has already been computed.1
We test whether p encroaches on this circumcircle, and if so, we remove the edge ab. If △abc

is a standard triangle, then we complete the edge-flip by adding edge pc, and then continue
by checking the edges ac and cb (see Figure 11(a)). Otherwise, we remove vertex c, and
compute the endpoints x and y of the (p, a)- and (b, p)-bisectors, respectively. We create two
new teeth, △pax and △bpy (see Figure 11(b)). This creates a new (possibly degenerate)
gap △pxy. Later, we will show (see Lemma 17) that no further updates are needed. The
algorithm is presented in Algorithm 3.

The “else” clause creates two teeth △pax and △bpy. The following lemma (proved in the
full version of the paper) shows that there is no need to apply FixTooth to them.

▶ Lemma 17. On return from FlipEdge the teeth △pax and △bpy generated in the “else”
clause are both valid.

Finally, we present FixTooth. To understand the issue involved, consider Figure 10(d).
In the figure, the newly created teeth △pax and △apy both lie entirely inside the existing
gap. But, this need not generally be the case, and the newly created boundary vertex may

1 In the Euclidean case, the in-circle test may be run from either △abc or △pab, but this is not true for
the Hilbert geometry. In light of Lemma 11, we do not know whether the △pab has a circumcircle, so
we run the test from △abc.

A. H. Gezalyan, S. H. Kim, C. Lopez, D. Skora, Z. Stefankovic, and D. M. Mount 25:13

(a)

c

ab
p

c

ab
p

c

ab
p

x

ab
p

y

(b)

x

ca

b

z

(c)

ca

b

yB(a : c : b)

Figure 11 (a) Standard-triangle edge flip, (b) tooth edge flip, and (c) fixing a tooth.

Algorithm 3 In-circle test and edge flip.

procedure FlipEdge(ab, p, T) ▷ In-circle test. New site p lies to the left of edge ab.
c← vertex of triangle to right of ab in T
if p ∈ B(a : c : b) then ▷ p fails the in-circle test for △acb

Remove edge ab from T
if △acb is a standard triangle then ▷ See Figure 11(a)

Add edge pc to T
FlipEdge(ac, p, T); FlipEdge(cb, p, T) ▷ Create △pac and △bpc

else ▷ △acb is a tooth. See Figure 11(b)
x, y ← endpoints of (p, a)- and (b, p)-bisectors, respectively
Remove c and edges cb and ca from T
Add edges ax, px, by, py to T ▷ Create teeth △pax and △bpy

end if
end if

end procedure

lie outside the current gap, resulting in two or more teeth that overlap each other (see, e.g.,
Figure 11(c)). The procedure FixTooth is given a tooth △abx, where a and b are sites, and
x is on Ω’s boundary. Whenever it is invoked the new site p is either a or b. Recalling our
assumption that teeth and gaps alternate around the boundary of Ω, we check the teeth that
are expected to be adjacent to the current tooth on the clockwise and counterclockwise sides.
(Only the clockwise case is presented in the algorithm, but the other case is symmetrical,
with a and b swapped.)

Let △bcy denote the tooth immediately clockwise around the boundary. We test whether
these triangles overlap (see Figure 11(c)). If so, we know that the (a, b)-bisector (which
ends at x) and the (b, c)-bisector (which ends at y) must intersect. This intersection point
is the center of a Hilbert ball circumscribing △abc. We replace the two teeth △abx and
△bcy with the standard triangle △abc and the tooth △acz, where z is the endpoint of the
(a, c)-bisector. If p = a, then we invoke FlipEdge on the opposite edge bc from p, and we
invoke FixTooth on the newly created tooth. When the algorithm terminates, all the newly
generated elements have been locally validated. The algorithm is presented in Algorithm 4.

Based on our earlier remarks, it follows that our algorithm correctly inserts a site into
the augmented triangulation.

▶ Lemma 18. Given an augmented triangulation T (P) for a set of sites P , the procedure
Insert correctly inserts a new site p, resulting in the augmented Delaunay triangulation for
of P ∪ {p}.

The final issue is the algorithm’s expected running time. Our analysis follows directly
from the analysis of the randomized incremental algorithm for the Euclidean Delaunay
triangulation. We can determine which triangle contains each newly inserted point in

SWAT 2024

25:14 Delaunay Triangulations in the Hilbert Metric

Algorithm 4 Check for and fix overlapping teeth.

procedure FixTooth(△abx, p, T) ▷ Fix tooth △abx where p = a or p = b

Let △bcy be the tooth clockwise adjacent to △abx

if △abx overlaps △bcy then ▷ See Figure 11(c)
z ← endpoint of the (a, c)-bisector
Remove x and y and edges ax, bx, by, and cy from T
Add edges ac, az, and cz to T ▷ Create triangle △abc and tooth △acz

if p = a then
FlipEdge(bc, p, T) ▷ Check edge flip with triangle opposite bc

FixTooth(△acz, p, T) ▷ Check for further overlaps
end if

else
Repeat the above for the triangle counterclockwise from △abx swapping a↔ b

end if
end procedure

amortized O(log n) expected time either by building a history-based point location data
structure (as with Guibas, Knuth, and Sharir [14]) or by bucketing sites (as with de Berg et
al. [10]). The analysis in the Euclidean case is based on a small number of key facts, which
apply in our context as well. First, sites are inserted in random order. Second, the conflict
set for any triangle or tooth consists of the points lying in the triangle’s circumcircle. Both of
these clearly hold in the Hilbert setting. Third, the number of structural updates induced by
the insertion of site p is proportional to the degree of p following the insertion. This holds for
our algorithm, because each modification to the triangulation induced by p’s insertion results
in a new edge being added to p (and these edges are not deleted until future insertions).
Fourth, the structure is invariant to the insertion order. Finally, the triangulation graph is
planar, and hence it has constant average degree. The principal difference is that the in-circle
test involves computing a Hilbert circumcircle, which by Lemma 13 can be performed in
O(log3 m) time. These additional factors of O(log n) and O(log3 m) are performed a constant
number of times in expectation, for each of the n insertions. This implies our main result.

▶ Theorem 19. Given a set of n points in the Hilbert geometry defined by a convex m-gon
Ω, it is possible to construct the augmented Delaunay triangulation in randomized expected
time O(n(log n + log3 m)).

7 The Hilbert Hull

As observed earlier, the triangles of the Delaunay triangulation of P do not necessarily cover
the convex hull of P . The region covered by these triangles is called the Hilbert hull (the blue
region of Figure 9). In this section, we present a simple algorithm for computing this hull for
a set of n points in the Hilbert distance defined by a convex m-gon Ω as an alternative to
deriving it from the Delaunay triangulation of the point-set. Our approach is roughly based
on the Jarvis march algorithm [16] for computing convex hulls.

The standard Jarvis march maintains two consecutive sites on the hull, and it iteratively
computes the next point in O(n) time using an angular ordering induced by these two points.
Our algorithm will instead maintain a current site p on the hull, and a boundary point x,
such that there is an empty ball at infinity centered at x whose boundary passes through p.
It uses x and p to induce an angular order to select the next point.

A. H. Gezalyan, S. H. Kim, C. Lopez, D. Skora, Z. Stefankovic, and D. M. Mount 25:15

To start the process off, we need to identify a pair (p0, x0), where p0 ∈ P , x0 ∈ ∂ Ω,
and p0 lies on the boundary of an empty ball centered at x0. By Lemma 9, such a pair
can be computed in O(n log m) time. Assuming that the algorithm has generated an initial
sequence of points on the hull, arriving at a pair (pi, xi) satisfying the above invariant, we
compute the next pair as follows. First, we take r to be the point of P that minimizes the
counterclockwise angle ∠xipir. Such a point has not already been added to the hull.

We then enumerate the points of P \ {pi, r} to see whether any lie in the overlap region
Z(p, r). Whenever we encounter such a point, we set r to this point and continue the process.
After considering all the points of P , it follows from nesting properties of overlap regions (see
Lemma 12) that Z(p, r) is empty, and hence the (r, p)-bisector extends to the boundary of
Ω in the Voronoi diagram of P . Thus, we take pi+1 ← r, and xi+1 is the bisector endpoint.
From the remarks made after Lemma 14, we can test membership in the Z(p, r) in O(log2 m)
time, and by Lemma 7, we can compute the endpoint on the bisector in O(log2 m) time as
well. Since we consider at most n points, it takes a total of O(n log2 m) time to generate one
more point on the Hilbert hull. This implies that the overall running time is O(nh log2 m).

▶ Lemma 20. Given a set of n points in the Hilbert geometry defined by a convex m-gon Ω,
it is possible to construct the Hilbert hull in time O(nh log2 m), where h is the number of
points on the hull’s boundary.

8 Concluding Remarks

In this paper we presented an algorithm for computing the Delaunay triangulation of a set P

of n point sites in the Hilbert geometry defined by an m-sided convex polygon Ω in expected
O(n(log n + log3 m) time. Additionally we presented an algorithm for the Hilbert Hull, the
boundary of the Hilbert Delaunay triangulation, in time O(nh log2 m), where h is the number
of points on the boundary. Supporting results, such as the algorithm for determining if it
exists and computing the circumscribing ball of three non-collinear points in the interior of
Ω in O(log3 m) time, and the characterization of Hilbert balls at infinity, may be useful for
further algorithmic results in the Hilbert metric. As discussed in the introduction, the Hilbert
metric has a large variety of applications including convex approximation [2] [28], machine
learning [21], quantum information theory [24], real analysis [18], graph embeddings [22],
and optimal mass transport [9]. Extensions of algorithmic results from Euclidean to Hilbert
geometry may prove of use to researchers in these fields.

References
1 Ahmed Abdelkader, Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. Ap-

proximate nearest neighbor searching with non-Euclidean and weighted distances. In
Proc. 30th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 355–372, 2019. doi:
10.1137/1.9781611975482.23.

2 Ahmed Abdelkader and David M. Mount. Economical Delone sets for approximating convex
bodies. In Proc. 16th Scand. Workshop Algorithm Theory, pages 4:1–4:12, 2018. doi:10.4230/
LIPIcs.SWAT.2018.4.

3 Rahul Arya, Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. Optimal bound on
the combinatorial complexity of approximating polytopes. ACM Trans. Algorithms, 18:1–29,
2022. doi:10.1145/3559106.

4 Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. Near-optimal ε-kernel construc-
tion and related problems. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 10:1–15,
2017. doi:10.4230/LIPIcs.SoCG.2017.10.

SWAT 2024

https://doi.org/10.1137/1.9781611975482.23
https://doi.org/10.1137/1.9781611975482.23
https://doi.org/10.4230/LIPIcs.SWAT.2018.4
https://doi.org/10.4230/LIPIcs.SWAT.2018.4
https://doi.org/10.1145/3559106
https://doi.org/10.4230/LIPIcs.SoCG.2017.10

25:16 Delaunay Triangulations in the Hilbert Metric

5 Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. On the combinatorial complexity
of approximating polytopes. Discrete Comput. Geom., 58(4):849–870, 2017. doi:10.1007/
s00454-016-9856-5.

6 Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. Approximate polytope
membership queries. SIAM J. Comput., 47(1):1–51, 2018. doi:10.1137/16M1061096.

7 Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004. doi:10.1017/CBO9780511804441.

8 Madeline Bumpus, Caesar Dai, Auguste H. Gezalyan, Sam Munoz, Renita Santhoshkumar,
Songyu Ye, and David M. Mount. Software and analysis for dynamic Voronoi diagrams in the
Hilbert metric, 2023. arXiv:2304.02745.

9 Yongxin Chen, Tryphon Georgiou, and Michele Pavon. Entropic and displacement interpolation:
A computational approach using the Hilbert metric. SIAM J. Appl. Math., 76:2375–2396,
2016. doi:10.1137/16M1061382.

10 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computa-
tional Geometry: Algorithms and Applications. Springer, 3rd edition, 2010. doi:10.1007/
978-3-540-77974-2.

11 Friedrich Eisenbrand, Nicolai Hähnle, and Martin Niemeier. Covering cubes and the closest
vector problem. In Proc. 27th Annu. Sympos. Comput. Geom., pages 417–423, 2011. doi:
10.1145/1998196.1998264.

12 Friedrich Eisenbrand and Moritz Venzin. Approximate CVPs in time 20.802n. J. Comput. Sys.
Sci., 124:129–139, 2021. doi:10.1016/j.jcss.2021.09.006.

13 Auguste H Gezalyan and David M Mount. Voronoi diagrams in the hilbert metric. In 39th
International Symposium on Computational Geometry (SoCG 2023). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2023.

14 Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. Randomized incremental construction
of Delaunay and Voronoi diagrams. Algorithmica, 7:381–413, 1992. doi:10.1007/BF01758770.

15 D. Hilbert. Ueber die gerade Linie als kürzeste Verbindung zweier Punkte. Math. Annalen,
46:91–96, 1895. doi:10.1007/BF02096204.

16 Ray A Jarvis. On the identification of the convex hull of a finite set of points in the plane.
Information processing letters, 2(1):18–21, 1973.

17 S. Kullback and R. A. Leibler. On information and sufficiency. Annals. Math. Stat., 22:79–86,
1951. doi:10.1214/aoms/1177729694.

18 Bas Lemmens and Roger Nussbaum. Birkhoff’s version of Hilbert’s metric and its applications
in analysis, 2013. arXiv:1304.7921.

19 Márton Naszódi and Moritz Venzin. Covering convex bodies and the closest vector problem.
Discrete Comput. Geom., 67:1191–1210, 2022. doi:10.1007/s00454-022-00392-x.

20 Frank Nielsen and Laetitia Shao. On balls in a Hilbert polygonal geometry. In Proc. 33rd
Internat. Sympos. Comput. Geom., pages 67:1–67:4, 2017. (Multimedia contribution). doi:
10.4230/LIPIcs.SoCG.2017.67.

21 Frank Nielsen and Ke Sun. Clustering in Hilbert’s projective geometry: The case studies of
the probability simplex and the elliptope of correlation matrices. In Frank Nielsen, editor,
Geometric Structures of Information, pages 297–331. Springer Internat. Pub., 2019. doi:
10.1007/978-3-030-02520-5_11.

22 Frank Nielsen and Ke Sun. Non-linear embeddings in Hilbert simplex geometry, 2022. arXiv:
2203.11434.

23 Athanase Papadopoulos and Marc Troyanov. Handbook of Hilbert geometry, volume 22 of
IRMA Lectures in Mathematics and Theoretical Physics. European Mathematical Society
Publishing House, 2014. doi:10.4171/147.

24 David Reeb, Michael J. Kastoryano, and Michael M. Wolf. Hilbert’s projective metric in
quantum information theory. J. Math. Physics, 52(8), 2011. doi:10.1063/1.3615729.

https://doi.org/10.1007/s00454-016-9856-5
https://doi.org/10.1007/s00454-016-9856-5
https://doi.org/10.1137/16M1061096
https://doi.org/10.1017/CBO9780511804441
https://arxiv.org/abs/2304.02745
https://doi.org/10.1137/16M1061382
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1145/1998196.1998264
https://doi.org/10.1145/1998196.1998264
https://doi.org/10.1016/j.jcss.2021.09.006
https://doi.org/10.1007/BF01758770
https://doi.org/10.1007/BF02096204
https://doi.org/10.1214/aoms/1177729694
https://arxiv.org/abs/1304.7921
https://doi.org/10.1007/s00454-022-00392-x
https://doi.org/10.4230/LIPIcs.SoCG.2017.67
https://doi.org/10.4230/LIPIcs.SoCG.2017.67
https://doi.org/10.1007/978-3-030-02520-5_11
https://doi.org/10.1007/978-3-030-02520-5_11
https://arxiv.org/abs/2203.11434
https://arxiv.org/abs/2203.11434
https://doi.org/10.4171/147
https://doi.org/10.1063/1.3615729

A. H. Gezalyan, S. H. Kim, C. Lopez, D. Skora, Z. Stefankovic, and D. M. Mount 25:17

25 Thomas Rothvoss and Moritz Venzin. Approximate CVP in time 20.802n – Now in any norm!
In Proc. 23rd Internat. Conf. on Integ. Prog. and Comb. Opt. (IPCO 2022), pages 440–453,
2022. doi:10.1007/978-3-031-06901-7_33.

26 Godfried T. Toussaint. The relative neighbourhood graph of a finite planar set. Pattern
Recogn., 12:261–268, 1980. doi:10.1016/0031-3203(80)90066-7.

27 Constantin Vernicos. On the Hilbert geometry of convex polytopes. In Handbook of Hilbert
geometry, volume 22 of IRMA Lectures in Mathematics and Theoretical Physics, pages 111–126.
European Mathematical Society Publishing House, 2014. doi:10.48550/arXiv.1406.0733.

28 Constantin Vernicos and Cormac Walsh. Flag-approximability of convex bodies and volume
growth of Hilbert geometries, 2018. arXiv:1809.09471.

SWAT 2024

https://doi.org/10.1007/978-3-031-06901-7_33
https://doi.org/10.1016/0031-3203(80)90066-7
https://doi.org/10.48550/arXiv.1406.0733
https://arxiv.org/abs/1809.09471

No-Dimensional Tverberg Partitions Revisited
Sariel Har-Peled # Ñ

Department of Computer Science, University of Illinois, Urbana, IL, USA

Eliot W. Robson # Ñ

Department of Computer Science, University of Illinois, Urbana, IL, USA

Abstract
Given a set P ⊂ Rd of n points, with diameter ∆, and a parameter δ ∈ (0, 1), it is known that
there is a partition of P into sets P1, . . . , Pt, each of size O(1/δ2), such that their convex hulls all
intersect a common ball of radius δ∆. We prove that a random partition, with a simple alteration
step, yields the desired partition, resulting in a (randomized) linear time algorithm (i.e., O(dn)). We
also provide a deterministic algorithm with running time O(dn log n). Previous proofs were either
existential (i.e., at least exponential time), or required much bigger sets. In addition, the algorithm
and its proof of correctness are significantly simpler than previous work, and the constants are
slightly better.

We also include a number of applications and extensions using the same central ideas. For
example, we provide a linear time algorithm for computing a “fuzzy” centerpoint, and prove a
no-dimensional weak ε-net theorem with an improved constant.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Points, partitions, convex hull, high dimension

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.26

Related Version Full Version: https://arxiv.org/abs/2306.01678 [12]

Funding Partially supported by NSF AF award CCF-2317241.

Acknowledgements The authors thank Ken Clarkson and Sandeep Sen for useful discussions.

1 Introduction

Centerpoints

A point c is an α-centerpoint of a set P ⊆ Rd of n points, if all closed halfspaces containing
c also contain at least αn points of P . The parameter α is the centrality of c, while αn is its
Tukey depth. The centerpoint theorem [17], which is a consequence of Helly’s theorem [14],
states that a 1/(d + 1)-centerpoint (denoted cP) always exists.

In two dimensions, Jadhav and Mukhopadhyay [16] presented an O(n) time algorithm for
computing a 1/3-centerpoint (but not the point of maximum Tukey depth). Chan et al. [4]
presented an O(n log n + nd−1) algorithm for computing the point of maximum Tukey depth
(and thus also a 1/(d + 1)-centerpoint). It is believed that Ω(nd−1) is a lower bound on
solving this problem exactly, see [4] for details and history.

This guarantee of 1/(d + 1)-centerpoint is tight, as demonstrated by placing the points
of P in d + 1 small, equal size clusters (mimicking weighted points) in the vicinity of the
vertices of a simplex. Furthermore, the lower-bound of

⌈
n/(d + 1)

⌉
is all but meaningless if

d is as large as n − 1.

Approximating centrality

A randomized Õ(d9) time algorithm for computing a (roughly) 1/(4d2) centerpoint was
presented by Clarkson et al. [9], and a later refinement by Har-Peled and Jones [11] improved
this algorithm to compute a (roughly) 1/d2 centerpoint in Õ(d7) time, where Õ hides polylog
terms. Miller and Sheehy [19] derandomized the algorithm of Clarkson et al., computing a

© Sariel Har-Peled and Eliot W. Robson;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 26; pp. 26:1–26:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sariel@illinois.edu
http://sarielhp.org/
https://orcid.org/0000-0003-2638-9635
mailto:erobson2@illinois.edu
https://eliotwrobson.github.io/
https://orcid.org/0000-0002-1476-6715
https://doi.org/10.4230/LIPIcs.SWAT.2024.26
https://arxiv.org/abs/2306.01678
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 No-Dimensional Tverberg Partitions Revisited

Ω(1/d2) centerpoint in time nO(log d). Developing an algorithm that computes a 1/(d + 1)-
centerpoint in polynomial time (in d) in still open, although the existence of such an algorithm
with running time better than Ω(nd−1) seems unlikely, as mentioned above.

Tverberg partitions

Consider a set P of n points in Rd. Tverberg’s theorem states that such a set can be partitioned
into k =

⌊
n/(d + 1)

⌋
subsets, such that all of their convex-hulls intersect. Specifically, a point

in this common intersection is a 1/(d + 1)-centerpoint. Indeed, a point p contained in the
convex-hulls of the k sets of the partition is a k/n-centerpoint, as any halfspace containing p

must also contain at least one point from each of these k subsets. Refer to the surveys [10]
and [3] for information on this and related theorems.

This theorem has an algorithmic proof [20], but its running time is nO(d2). To understand
the challenge in getting an efficient algorithm for this problem, observe that it is not known,
in strongly polynomial time, to decide if a point is inside the convex-hull of a point set (i.e.,
is it 1/n-centerpoint?). Similarly, for a given point p, it is not known how to compute, in
weakly or strongly polynomial time, the centrality of p. Nevertheless, a Tverberg partition is
quite attractive, as the partition itself (and its size) provides a compact proof (i.e., lower
bound) of its centrality. If the convex-combination realization of p inside each of these sets is
given, then its k/n-centrality can be verified in linear time.

There has been significant work trying to compute Tverberg partitions with as many
sets as possible while keeping the running time polynomial. The best polynomial algorithms
currently known (roughly) match the bounds for the approximate centerpoint mentioned
above. Specifically, it is known how to compute a Tverberg partition of size O

(
n/(d2 log d)

)
(along with a point in the common intersection) in weakly polynomial time. See [13] and
references therein.

No-dimensional Tverberg theorem

Adiprasito et al. [1] proved a no-dimensional variant of Tverberg’s theorem. Specifically, for
δ ∈ (0, 1), they showed that one can partition a point set P into sets of size O(1/δ2), such
that the convex-hulls of the sets intersect a common ball of radius δdiam(P). Their result is
existential and does not yield an efficient algorithm. However, as the name suggests, it has
the attractive feature that the sets in the partition have size that does not depend on the
dimension.

Choudhary and Mulzer [7] gave a weaker version of this theorem, but with an efficient
algorithm. Speculatively, given a set P ⊂ Rd of n points, and a parameter δ ∈ (0, 1), P can
be partitioned, in O(nd log k) time, into k = O(δ

√
n) sets P1, . . . , Pk, each of size Θ(

√
n/δ),

such that there is a ball of radius δdiam(P) that intersects the convex-hull of Pi for every i.
Note that the later (algorithmic) result is significantly weaker than the previous (existential)
result, as the subsets have to be substantially larger.

Thus, the question remains: Can one compute a no-dimensional Tverberg partition with
the parameters of Adiprasito et al. [1] in linear time?

Centerball via Tverberg partition

As observed by Adiprasito et al. [1], a no-dimensional Tverberg partition readily implies a no-
dimensional centerpoint result, where the central point is replaced by a ball. Specifically, they
showed that one can compute a ball of radius δdiam(P) such that any halfspace containing
it contains Ω(δ2n) points of P .

S. Har-Peled and E. W. Robson 26:3

Centroid and sampling

The centroid of a point set P is the point mP =
∑

p∈P p/ |P |. The 1-mean price of
clustering P , using q, is the sum of squared distances of the points of P to q, that is
f(q) =

∑
p∈P ∥p − q∥2. It is not hard to verify that f is minimized at the centroid mP .

A classical observation of Inaba et al. [15] is that a sample R of size O(1/δ2) of points
from P is δ-close to the global centroid of the point set. That is, ∥mP − mR∥ ≤ δdiam(P)
with constant probability. Applications of this observation to k-means clustering and sparse
coresets are well known, see Clarkson [8, Section 2.4] and references therein.

Our results

We show that the aforementioned observation of Inaba et al. implies the no-dimensional
Tverberg partition. Informally, for a random partition of P into sets of size O(1/δ2), most
of the sets are in distance at most δdiam(P) from the global centroid of P . By folding the
far sets (i.e., “bad”), into the close sets (i.e., “good”), we obtain the desired partition. The
resulting algorithm has (expected) linear running time O(dn).

For the sake of completeness, we prove the specific form of the 1-mean sampling obser-
vation [15] we need in Lemma 3 – the proof requires slightly tedious but straightforward
calculations. The linear time algorithm for computing the no-dimensional Tverberg partition
is presented in Theorem 6, which is the main result of this paper.

In the other extreme, one wants to split the point set into two sets of equal size while
minimizing their distance. We show that a set P with 2n points can be split (in linear time)
into two sets of size n, such that (informally) the expected distance of their centroids is
≤ diam(P)/

√
n. The proof of this is even simpler (!), and the bound is tight; see Lemma 9.

We present several applications:

(I) No-dimensional Centerball. In Section 3.1, we present a no-dimensional general-
ization of the centerpoint theorem. As mentioned above, this was already observed by
Adiprasito et al. [1], but our version can be computed efficiently.

(II) Weak ε-net. A new proof of the no-dimensional version of the weak ε-net theorem
with improved constants, see Section 3.2.

(III) Derandomization. The sampling mean lemma (i.e., Lemma 3) can be derandomized
to yield a linear time algorithm, see Lemma 16. The somewhat slower version,
Lemma 15, is a nice example of using conditional expectations for derandomization.
Similarly, the halving scheme of Lemma 9 can be derandomized in a fashion similar to
discrepancy algorithms [18, 5]. The derandomized algorithm, presented in Lemma 17,
has linear running time O(dn).
This leads to a deterministic O(dn log n) time algorithm for the no-dimensional Tver-
berg partition, see Lemma 18. The idea is to repeatedly apply the halving scheme, in a
binary tree fashion, till the point set is partitioned into subsets of size O(1/δ2). Both
the running time and constants are somewhat worse than the randomized algorithm
of Theorem 6, but it is conceptually even simpler, avoiding the need for an alteration
step.

As an extra, another neat implication of the observation of Inaba et al. [15] is the dimension
free version of Carathéodory’s theorem [17], which we present in the full version.

SWAT 2024

26:4 No-Dimensional Tverberg Partitions Revisited

Simplicity

While simplicity is in the eyes of the beholder, the authors find the brevity of the results
here striking compared to previous work. In particular, our presentation here is longer than
strictly necessary, as we reproduce proofs of previous known results, such as Lemma 3 and
its variant Lemma 9, so our work is self contained.

2 Approximate Tverberg partition via mean sampling

In the following, for two points p, q ∈ Rd, let pq = ⟨p, q⟩ =
∑d

i=1 p[i]q[i] denote their dot-
product. Thus, p2 = ⟨p, p⟩ = ∥p∥2. Let P be a finite set of points in Rd (but any metric
space equipped with a dot-product suffices), and let mP =

∑
p∈P p/ |P | denote the centroid

of P . The average price of the 1-mean clustering of P is

∇(P) =
√∑

p∈P
∥p − mP ∥2

/ |P | ≤ diam(P). (2.1)

The last inequality follows as mP ∈ CH(P), and for any p ∈ P , we have ∥p − mP ∥ ≤ diam(P).
This inequality can be tightened.

▶ Lemma 1. We have ∇(P) ≤ diam(P)/
√

2, and there is a point set Q in Rd, such that

∇(Q) ≥
(
1 − 1

d

) 1√
2 diam(Q)

(i.e., the inequality is essentially tight).

Proof. This claim only improves the constant in our main result, and the reader can safely
skip reading the proof. Let P be a set of n points in Rd, with ∆ = diam(P) and ∇ = ∇(P).
Assume that mP = 0, as the claim is translation invariant. That is

∑
q∈P q = 0, and

β =
∑

p,q∈P

⟨p, q⟩ =
∑
p∈P

〈
p,
∑

q∈P
q
〉

=
∑
p∈P

⟨p, 0⟩ = 0.

We have

n∇2 =
∑
p∈P

∥p∥2 =
∑

p,q∈P

∥p∥2 + ∥q∥2

2n
=
∑

p,q∈P

∥p∥2 − 2 ⟨p, q⟩ + ∥q∥2

2n
+ 2β

2n
=
∑

p,q∈P

∥p − q∥2

2n

≤
∑

p∈P,q∈P

∆2

2n
= n2∆2

2n
.

Implying that ∇2 ≤ ∆2/2.
As for the lower bound, let ei be the ith standard unit vector1 in Rd, and consider

the point set Q = {e1, . . . , ed}. We have that diam(Q) =
√

2 and mQ = (1/d, . . . , 1/d).
Consequently,

∇(Q) =
√

1
|Q|

∑
q∈Q

∥q − mQ∥2 =
√

|Q|
|Q|

(
(1 − 1/d)2 + (d − 1)/d2

)
=

√
(d − 1)2 + d − 1

d2

=
√

d − 1
d

= diam(Q)√
2

√
1 − 1

d
≥
(

1 − 1
d

)
1√
2

diam(Q). ◀

▶ Definition 2. A subset X ⊆ P is δ-close if the centroid of X is in distance at most
δdiam(P) from the centroid of P – that is, ∥mX − mP ∥ ≤ δdiam(P).

1 That is, ei is 0 in all coordinates except the ith coordinate where it is 1.

S. Har-Peled and E. W. Robson 26:5

2.1 Proximity of centroid of a sample
The following is by now standard – a random sample of O(1/δ2) points from P is δ-close
with good probability, see Inaba et al. [15, Lemma 1]. We include the proof for the sake of
completeness, as we require this somewhat specific form.

▶ Lemma 3. Let P be a set of n points in Rd, and δ ∈ (0, 1) be a parameter. Let R ⊆ P

be a random sample of size r picked uniformly without replacement from P , where r ≥ ζ/δ2

and ζ > 1 is a parameter. Then, we have P
[
∥mP − mR∥ > δ∇(P)

]
< 1/ζ.

Proof. Let P = {p1, . . . , pn}. For simplicity of exposition, assume that mP =
∑n

i=1
1
n pi = 0,

as the claim is translation invariant. For ∇ = ∇(P), and we have ∇2 =
∑n

i=1
1
n p2

i . Let
Y =

∑
p∈R p =

∑n
i=1 Iipi, where Ii is an indicator variable for pi being in R. By linearity of

expectations, we have

E[Y] =
n∑

i=1
E[Ii] pi =

n∑
i=1

r

n
pi = r

n∑
i=1

1
n

pi = r mP = 0.

Observe that, for i ̸= j, we have

E
[
IiIj

]
= P

[
Ii = 1 and Ij = 1

]
=
(

n − 2
r − 2

)
/

(
n

r

)
= (n − 2)!

(r − 2)!(n − r)! · r!(n − r)!
n! = r(r − 1)

n(n − 1) .

(2.2)

By the above, and since E
[
I2

i

]
= E[Ii], we have

E
[
∥Y ∥2] = E

[
⟨Y, Y ⟩

]
= E

[(n∑
i=1

Iipi

)2
]

=
n∑

i=1
E[Ii] p2

i + 2
∑
i<j

E
[
IiIj

]
pipj

=
n∑

i=1

r

n
p2

i + 2
∑
i<j

r(r − 1)
n(n − 1)pipj ≤ r∇2 + r(r − 1)n

n − 1

(n∑
i=1

1
n

pi

)2
= r∇2, (2.3)

using the shorthand pipj =
〈
pi, pj

〉
and p2

i = ⟨pi, pi⟩. As (i) r = |R|, (ii) mR = Y/|R| = Y/r,
(iii) r ≥ ζ/δ2, and (iv) by Markov’s inequality, we have

P
[
∥mR∥ > δ∇

]
= P

[
∥Y ∥

r
> δ∇

]
= P

[
∥Y ∥2

> (rδ∇)2
]

≤ E[∥Y ∥2]
(rδ∇)2 ≤ r∇2

(rδ∇)2 = 1
rδ2 ≤ 1

ζ
.

◀

Lemma 3 readily implies the no-dimensional Carathéodory theorem, see the full version
for details.

2.2 Approximate Tverberg theorem
We now present the key technical lemma that will allow us to prove an approximate Tverberg
theorem.

▶ Lemma 4. Let P be a set of n points in Rd, and δ ∈ (0, 1) be a parameter, and assume that
n ≫ 1/δ4. Let ∇ = ∇(P). Then, one can compute, in O(nd/δ2) expected time, a partition
of P into k sets P1, . . . , Pk, and a ball b, such that

(i) ∀i |Pi| ≤ 4/δ2 + 6,
(ii) ∀i CH(Pi) ∩ b ̸= ∅,
(iii) radius(b) ≤ δ∇, and
(iv) k ≥ n/(4/δ2 + 6).

SWAT 2024

26:6 No-Dimensional Tverberg Partitions Revisited

Proof. Let b = b(mP , δ∇). Let ζ = 2(1 + δ2/8), and M = ⌈ζ/δ2⌉. We randomly partition
the points of P into t =

⌊
n/M

⌋
> M sets Q1, . . . , Qt, all of size either M or M + 1 (this can

be done by randomly permuting the points of P , and allocating each set a range of elements
in this permutation). Thus, each Qi, for i ∈ JtK = {1, . . . , t}, is a random sample according
to Lemma 3 with parameter ≥ ζ. Thus, with probability ≥ 1 − 1/ζ, the set Qi, for i ∈ JtK, is
δ-close – that is,

∥∥mQi − mP

∥∥ ≤ δ∇, and Qi is then considered to be good.
Let Z be the number of bad sets in Q1, . . . , Qt. The probability of a set to be bad is at

most 1/ζ, and by linearity of expectations, E[Z] ≤ t/ζ. Let β = t(1 + δ2/8)/ζ = t/2. By
Markov’s inequality, we have

P
[
Z ≥ t/2

]
= P[Z ≥ β] ≤ E[Z]

β
≤ t/ζ

(1 + δ2/8)t/ζ
= 1

1 + δ2/8 ≤ 1 − δ2

16 . (2.4)

We consider a round of sampling successful if Z < β = t/2. The algorithm can perform
the random partition and compute the centroid for all Pi in O(nd) time overall. Since a
round is successful with probability ≥ δ2/16, after ⌈16/δ2⌉ rounds, the algorithm succeeds
with constant probability. This implies that the algorithm performs, in expectation, O(1/δ2)
rounds till being successful, and the overall running time is O(nd/δ2) time in expectation.

In the (first and final) successful round, the number of bad sets is < t/2 – namely, it is
strictly smaller than the number of good sets. Therefore, we can match each bad set B in
the partition to a unique good set G, and replace both of them by a new set X = G ∪ B.
That is, every good set absorbs at most one bad set, forming a new partition with roughly
half the sets. For such a newly formed set X, we have that

|X| = |B|+ |G| ≤ 2(M +1) ≤ 2⌈ζ/δ2⌉+2 = 2
⌈

2(1 + δ2/8)
δ2

⌉
+2 ≤ 2

(
2
δ2 + 2

)
+2 ≤ 4

δ2 +6.

The point mG is in CH(G) ⊂ CH(X), and mG is in distance at most δ∇ from the centroid
of P . Thus, all the newly formed sets in the partition are in distance ≤ δ∇ from mP , and
CH(X) ∩ b ̸= ∅.

Finally, we have that the number of sets in the merged partition is at least k ≥ n
4/δ2+6 . ◀

▶ Remark 5. The mysterious requirement that n ≫ 1/δ4, in Lemma 4, is used in the partition
implicitly – the number of sets in the partition needs to be even. Thus, one set might need
to be absorbed in the other sets, or more precisely two sets, because of the rounding issues.
Namely, we first partition the set into groups of size M , and we need at least 2M + 2 sets in
the partition to have size M (one additional last set can have size smaller than M). Thus,
the proof requires that n ≥ (2M + 2)M + M = (2M + 3)M . This is satisfied, for example, if
n ≥ 27/δ4.

▶ Theorem 6. Let P be a set of n points in Rd, and δ ∈ (0, 1/
√

2) be a parameter, and
assume that n ≫ 1/δ4. Then, one can compute, in O(nd/δ2) expected time, a partition of P

into sets P1, . . . , Pk, and a ball b, such that
(i) ∀i |Pi| ≤ 2/δ2 + 6,
(ii) ∀i CH(Pi) ∩ b ̸= ∅,
(iii) radius(b) ≤ δdiam(P), and
(iv) k ≥ n/(2/δ2 + 6).

Proof. Let ∆ = diam(P). Use Lemma 4 with parameter
√

2δ. Observe that

radius(b) ≤
√

2δ∇ ≤
√

2δ(∆/
√

2) = δ∆,

by Lemma 1, where ∇ = ∇(P).

S. Har-Peled and E. W. Robson 26:7

Observe that the algorithm does not require the value of diam(P), but rather the value
of ∇(P), which can be computed in O(nd) time, see Eq. (2.1). ◀

▶ Corollary 7. The expected running time of Theorem 6 can be improved to O(nd), with two
of the guarantees being weaker:

(I) The sets are bigger: ∀i |Pi| ≤ 3/δ2 + 9.
(II) And there are fewer sets: k ≥ n/(3/δ2 + 9).

Proof. We use Lemma 4 as before, but now requiring only third of the sets to be good, and
merging triples of sets to get one final good set. The probability of success is now constant,
as Eq. (2.4) becomes

P
[
Z ≥ 2

3 t
]

= P
[
Z ≥ 4

3 · t

2

]
= P

[
Z ≥ 4

3β
]

≤ E[Z]
(4/3)β ≤ 3

4 .

Namely, the partition succeeds with probability at least 1/4, which implies that the algorithm
is done in expectation after O(1) partition rounds. ◀

▶ Remark 8. The (existential) result of Adiprasito et al. [1, Theorem 1.3] has slightly worse
constants, but it requires some effort to see, as they “maximize” the number of sets k (instead
of minimizing the size of each set). Specifically, they show that one can partition P into k

sets, with the computed ball having radius (2 +
√

2)
√

k/n diam(P) (intuitively, one wants k

to be as large as possible). Translating into our language, we require that

(2 +
√

2)
√

k

n
≤ δ =⇒ (2 +

√
2)2 k

n
≤ δ2 =⇒ k ≤ n

δ2

(2 +
√

2)2
.

Our result, on the other hand, states that k is at least (over-simplifying for clarify) n δ2

2 (for
δ sufficiently small). Adiprasito et al. mention, as a side note, that their constant improves
to 1 +

√
2 under certain conditions. Even then, the constant in the above theorem is better.

This improvement in the constant is small (and thus, arguably minor), but nevertheless,
satisfying.

2.3 Tverberg halving
An alternative approach is to randomly halve the point set and observe that the centroids
of two halves are close together. In this section, we show this line of thinking leads to
various algorithms that can be derandomized efficiently. Foundational to this approach is
the following lemma (which is a variant of Lemma 3).

▶ Lemma 9. Let U = {u1, . . . , u2n} be a set of 2n points in Rd with ∆ = diam(U). For
i = 1, . . . , n, with probability 1/2, let pi = u2i−1, qi = u2i, or otherwise, let pi = u2i, qi =
u2i−1. Let P = {p1, . . . , pn} and Q = {q1, . . . , qn}. For any parameter t ≥ 1, we have
P
[∥∥mP − mQ

∥∥ ≥ t√
n

∆
]

≤ 1
t2 .

Proof. This follows by adapting the argument used in the proof of Lemma 3, and the details
are included here for the sake of completeness.

Let vi = u2i−1 − u2i. Consider the random variable Y = mP − mQ =
∑n

i=1
Xivi

n , where
Xi ∈ {−1, +1} is picked independently with probability half. We first observe that

(i) E[Y] =
∑n

i=1 E[Xi] vi/n = 0,
(ii) E

[
X2

i

]
= 1, and

(iii) for i < j, E
[
XiXj

]
= 0.

SWAT 2024

26:8 No-Dimensional Tverberg Partitions Revisited

Thus, we have

E
[
∥Y ∥2] = E

[
⟨Y, Y ⟩

]
= E

[〈∑n

i=1

Xivi

n
,
∑n

i=1

Xivi

n

〉]
= 1

n2

n∑
i=1

E
[
X2

i

]
v2

i + 2 1
n2

∑
i<j

E
[
XiXjvivj

]
= 1

n2

n∑
i=1

v2
i ≤ n∆2

n2 = ∆2

n
, (2.5)

since ∥vi∥ = ∥u2i−1 − u2i∥ ≤ diam(U) = ∆. By Markov’s inequality, we have

P
[
∥Y ∥ > t

∆√
n

]
= P

[
∥Y ∥2

> t2 ∆2

n

]
≤ E[∥Y ∥2]

t2∆2/n
≤ 1

t2 . ◀

Remarks.
(A) Lemma 9 can be turned into an efficient algorithm using the same Markov’s inequality

argument used in Theorem 6. Specifically, for any parameter ξ ∈ (0, 1), one can compute
a partition into two sets P and Q with

∥∥mP − mQ

∥∥ ≤ (1+ξ)∆/
√

n, in O(nd/ξ) expected
time.

(B) Lemma 9 implies that there exists a partition P and Q of U such that∥∥mP − mQ

∥∥ ≤ ∆/
√

n.

Note that this is tight. To see this, let U be the standard basis of R2n, with its
diameter ∆ =

√
2. For any partition P and Q of U with |P | = |Q| = n, we have that∥∥mP − mQ

∥∥ =
√

2
∑n

i=1 1/n2 =
√

2/n = ∆/
√

n.

(C) As in the standard algorithm for computing a δ-net via discrepancy [5, 18], one can apply
repeated halving to get the desired Tverberg partition until the sets are the desired size.
This provides a method for a deterministic algorithm, which we present in Section 4.3.

3 Applications

3.1 No-dimensional centerball
We present an efficient no-dimensional centerpoint theorem; the previous version [1, The-
orem 7.1] did not present an efficient algorithm.

▶ Corollary 10 (No-dimensional centerpoint). Let P be a set of n points in Rd and δ ∈ (0, 1/2)
be a parameter, where n is sufficiently large (compared to δ). Then, one can compute, in
O(nd/δ2) expected time, a ball b of radius δdiam(P), such that any halfspace containing b

contains at least Ω(δ2n) points of P .

Proof. Follows by applying Theorem 6 and the observation that, for any halfspace containing
the computed ball b, it must also contain at least one point from each set of the partition
P1, . . . , Pk, where k = Ω(δ2n). Thus, the ball b is as desired. ◀

3.2 No-dimensional weak ε-net theorem
Originally given by Adiprasito et al. [1, Theorem 7.3], we prove a version of the no-
dimensional weak ε-net theorem with an improved dependence on the parameters. For a
sequence Q = (q1, . . . , qr) ∈ P r, let mQ =

∑r
i=1 qi/r. We reprove Lemma 3 under a slightly

different sampling model.

S. Har-Peled and E. W. Robson 26:9

▶ Lemma 11. Let P be a set of n points in Rd, and δ ∈ (0, 1/2) and ζ > 1 be parameters.
Let r ≥ ζ/δ2. For a random sequence Q = (q1, . . . , qr) picked uniformly at random from P r,
we have that P

[∥∥mP − mQ

∥∥ > δ∆
]

≤ 1/ζ, where ∆ = diam(P).

Proof. The argument predictably follows the proof of Lemma 3, and the reader can safely
skip reading it, as it adds little new. Assume that mP =

∑n
i=1

1
n pi = 0. Let ∇2 =

∑n
i=1

1
n p2

i

and Y =
∑r

i=1 qi. Then, E[Y] =
∑r

i=1 E[qi] = 0. As ∥Y ∥2 = ⟨Y, Y ⟩, it follows that

E
[
∥Y ∥2] = E

[(r∑
i=1

qi

)2
]

=
r∑

k=1
E
[
q2

k

]
+ 2

∑
i<j

E[qiqj]

=
r∑

k=1

n∑
i=1

1
n p2

i + 2
∑
i<j

E[qi]E[qj] = r∇2.

Since mR = Y/r, r ≥ ζ/δ2, and by Markov’s inequality, we have

P
[
∥mR∥ > δ∇

]
= P

[
∥Y ∥

r
> δ∇

]
= P

[
∥Y ∥2

> (rδ∇)2
]

≤ E[∥Y ∥2]
(rδ∇)2 ≤ r∇2

(rδ∇)2 = 1
rδ2 ≤ 1

ζ
.

◀

A sequence Q ∈ P r collides with a ball b if b intersects CH(Q). In particular, if∥∥mP − mQ

∥∥ ≤ δ∆, then Q collides with the ball b(mP , δ∆), where ∆ = diam(P).

▶ Lemma 12 (Selection lemma). Let P be a set of n points in Rd and δ ∈ (0, 1) be a parameter.
Let r = ⌈2/δ2⌉. Then, the ball b = b(mP , δ∆) collides with at least nr/2 sequences of P r.

Proof. Taking ζ = 2, by Lemma 11, a random r-sequence from P r has probability at least
half to collide with b, which readily implies that this property holds for half the sequences in
P r. ◀

▶ Theorem 13 (No-dimensional weak ε-net). Let P be a set of n points in Rd, with diameter
∆, and δ, ε ∈ (0, 1) be parameters, where 2/δ2 is an integer. Then, there exists a set F ⊂ Rd

of size ≤ 2ε−2/δ2 balls, each of radius δ∆, such that, for all Y ⊂ P , with |Y | ≥ εn, F

contains a ball of radius δ∆ that intersects CH(Y).

Proof. Our argument follows Alon et al. [2]. Let r = 2/δ2. Initialize F = ∅, and let H = P r.
If there is a set Q ⊂ P , with |Q| ≥ εn, where no ball of F intersects CH(Q), then applying
Lemma 12 to Q, the algorithm computes a ball b, of radius δ∆, that collides with at least
(εn)r/2 sequences of Qr. The algorithm adds b to the set F , and removes from H all the
sequences that collide with b. The algorithm continues till no such set Q exists.

As initially |H| = nr, the number of iterations of the algorithm, and thus the size of F , is
bounded by nr

(εn)r/2 = 2/εr. ◀

▶ Remark 14. In the version given by Adiprasito et al. [1, Theorem 7.3], the set F has size
at most (2/δ2)2/δ2

ε−2/δ2 , while our bound is 2ε−2/δ2 .

4 Derandomization

4.1 Derandomizing mean sampling
Lemma 3 can be derandomized directly using conditional expectations. We also present a
more efficient derandomization scheme using halving in Section 4.2.

SWAT 2024

26:10 No-Dimensional Tverberg Partitions Revisited

▶ Lemma 15. Let P be a set of n points in Rd. Then, for any integer r ≥ 1, one can
compute, in deterministic O(dn3) time, a subset R ⊂ P of size r, such that ∥mP − mR∥ ≤
∇(P)/

√
r ≤ diam(P)/

√
2r, where ∇ = ∇(P), see Eq. (2.1).

Proof. We derandomize the algorithm of Lemma 3. We assume for simplicity of exposition
that mP = 0. Let R be a sample of size r without replacement from P , and let Ii ∈ {0, 1}
be the indicator for the event that pi ∈ R.

Let Y =
∑n

i=1 Iipi. Then, mR = Y/r, and thus ∥mR − mP ∥ = ∥Y ∥/r. Consider the
quantity

β = Z(x1, . . . , xt) = E
[
∥Y ∥2

∣∣∣ E
]

, E ≡ (I1 = x1, . . . , It = xt),

where the expectation is over the random choices of It+1, . . . , In. At the beginning of the
(t + 1)th iteration, the values of x1, . . . , xt were determined in earlier iterations, and the task
at hand is to decide what value to assign to xt+1 that minimizes Z(x1, . . . , xt, xt+1). Thus,
the algorithm computes β0 = Z(x1, . . . , xt, 0) and β1 = Z(x1, . . . , xt, 1).

Using conditional expectations, Eq. (2.3) becomes

β = E
[
∥Y ∥2

∣∣∣ E
]

=
n∑

i=1
E[Ii | E] p2

i + 2
∑
i<j

E
[
IiIj

∣∣ E
]

pipj . (4.1)

Let α =
∑t

k=1 xk, and observe that r − α points are left to be chosen to be in R after E . As
such, arguing as in Eq. (2.2), for i < j, we have

E[Ii | E] =

xi i ≤ t
r−α
n−t i > t,

and E
[
IiIj

∣∣ E
]

=

xixj i < j ≤ t

xi
r−α
n−t i ≤ t < j

(r−α)(r−α−1)
(n−t)(n−t−1) t < i < j.

(4.2)

This implies that the algorithm can compute β in quadratic time directly via Eq. (4.1).
Similarly, the algorithm computes β0 and β1. Observe that

β = Z(x1, . . . , xt) = r − α

n − t
β1 + n − t − (r − α)

n − t
β0.

Namely, β is a convex combination of β0 and β1. Thus, if β0 ≤ β then the algorithm sets
xt+1 = 0, and otherwise the algorithm sets xt+1 = 1.

The algorithm now performs n such assignment steps, for t = 0, . . . , n − 1, to compute
an assignment of x1, . . . , xn such that Z(x1, . . . , xn) ≤ E[∥Y ∥2]. Overall, this leads to a
O(dn3) time algorithm. Specifically, the algorithm outputs a set R ⊆ P of size r, such that
R = {pi | xi = 1, i = 1, . . . , n} . Observe that Z(x1, . . . , xn) = ∥rmR∥2 ≤ E[∥Y ∥2]. Thus, by
Eq. (2.3) and Lemma 1, we have

∥mR − mP ∥ = ∥mR∥ ≤

√
E[∥Y ∥2]

r2 ≤
√

r∇2

r2 = ∇√
r

≤ diam(P)√
2r

. ◀

With some care, the running time of the algorithm of Lemma 15 can be improved to
O(dn) time, but the details are tedious, and we delegate the proof of the following lemma to
the full version.

▶ Lemma 16. Let P be a set of n points in Rd. Then, for any integer r ≥ 1, one can
compute, in O(dn) deterministic time, a subset R ⊂ P of size r, such that ∥mP − mR∥ ≤
∇(P)/

√
r ≤ diam(P)/

√
2r.

S. Har-Peled and E. W. Robson 26:11

4.2 Derandomizing the halving scheme
The algorithm of Lemma 9 can be similarly derandomized.

▶ Lemma 17. Let U = {u1, . . . , u2n} be a set of 2n points in Rd with ∆ = diam(U). One
can partition U , in deterministic O(dn) time, into two equal size sets P and Q, such that∥∥mP − mQ

∥∥ ≤ ∆/
√

n.

Proof. We follow Lemma 9. To this end, let vi = u2i−1 − u2i, for i = 1, . . . , n. Let
Y =

∑n
i=1

Xivi

n , where Xi ∈ {−1, +1}. Next, consider the quantity

Z(x1, . . . , xt) = E
[
∥Y ∥2

∣∣∣ E
]

, E ≡ (X1 = x1, . . . , Xt = xt),

where the expectation is over the random choices of Xt+1, . . . , Xn. By Eq. (2.5), we have
Z(x1, . . . , xt) = 1

n2

∑n
i=1 v2

i + 2
n2

∑
i<j E

[
XiXjvivj

∣∣ E
]

. The latter term is∑
i<j

E
[
XiXjvivj

∣∣ E
]

=
∑

i<j:i,j≤t

xixjvivj +
∑

i<j:i≤t<j

E
[
xiXjvivj

]
+

∑
i<j:t<i,j

E
[
XiXjvivj

]
=
∑

i<j≤t

xixjvivj ,

as E[Xi] = E
[
XiXj

]
= 0. Thus, Z(x1, . . . , xt) = 1

n2

∑n
i=1 v2

i + 2
n2

∑
i<j≤t xixjvivj . The key

observation is that

Z(x1, . . . , xt) = Z(x1, . . . , xt, −1) + Z(x1, . . . , xt, +1)
2 .

Our goal is to compute the assignment of x1, . . . , xn that minimizes Z. Observe that

Dt = Z(x1, . . . , xt, +1) − Z(x1, . . . , xt) = 2
n2

(∑
i<t+1

xivi

)
vt+1.

If Dt ≤ 0, then the algorithm sets xt+1 = +1, otherwise the algorithm sets xt+1 = −1.
The algorithm has to repeat this process for t = 1, . . . , n, and naively, each step takes
O(dn) time. Observe that if the algorithm maintains the quantity Vt =

∑t
i=1 xivi, then

Dt can be computed in O(d) time. This determines the value of xt+1, and the value of
Vt+1 = Vt + xt+1vt+1 can be maintained in O(d) time. As each iteration takes O(d) time,
the algorithm overall takes O(dn) time. By the end of this process, the algorithm will have
computed an assignment x1, . . . , xn, with an associated partition of U into P and Q. By
Eq. (2.5), we have

∥∥mP − mQ

∥∥2 ≤ E
[
∥Y ∥2] ≤ ∆2/n. ◀

4.3 A deterministic approximate Tverberg partition
▶ Lemma 18. Let P be a set of n points in Rd, and δ ∈ (0, 1/4) be a parameter. Then, one
can compute, in O(nd log n) deterministic time, a partition of P into sets P1, . . . , Pk, and a
ball b, such that

(i) ∀i |Pi| ≤ 8/δ2,
(ii) ∀i CH(Pi) ∩ b ̸= ∅,
(iii) radius(b) ≤ δdiam(P), and
(iv) k ≥ nδ2/8.

SWAT 2024

26:12 No-Dimensional Tverberg Partitions Revisited

Proof. Assume for the time being that n is a power of 2. As done for discrepancy, we halve
the current point set, and then continue doing this recursively (on both resulting sets), using
the algorithm of Lemma 17 at each stage. Conceptually, this is done in a binary tree fashion,
and doing this for i levels breaks the point set into 2i sets. Let ℓi be an upper bound on
the distance of the centroid of a set in the ith level from the centroid of its parent. By
Lemma 17, we have 2ℓi ≤ ∆/

√
n/2i (where i = 1 in the top level). Thus, repeating this

process for t levels, we have that the distance of any centroid at the leaves to the global
centroid is bounded by

Lt =
t∑

i=1
ℓi ≤

t∑
i=1

∆
2
√

n/2i
= ∆√

2n

t−1∑
i=0

√
2i = ∆√

2n

(
2t/2 − 1√

2 − 1

)

≤ 5∆
2
√

2n
2t/2 = 5∆

2
√

2

√
1

n/2t
. (4.3)

Solving for 5
2

√
2

√
1

n/2t ≤ δ, we get that this holds for n/2t ≥ 3.2/δ2. We stop our halving
procedure once t is large enough such that the preceding inequality no longer holds, implying
the stated bound on the size of each set.

If n is not a power of 2 then we apply the above algorithm to the largest subset that has
size that is a power of two, and then add the unused points in a round robin fashion to the
sets computed. ◀

▶ Remark 19. If instead of keeping both halves, as done by the algorithm of Lemma 18, one
throws one of the halves away, and repeats the halving process on the other half, we end up
with a single sample. One can repeat this halving process until the “sample” size is Θ(1/δ2).
Using the same argument as in Eq. (4.3) to bound the error, we obtain a sample R of size
Θ(1/δ2), such that ∥mR − mP ∥ ≤ δ diam(P). The running time is

∑
i O(dn/2i) = O(dn).

Namely, we get a deterministic O(dn) time algorithm that computes a sample with the
same guarantees as Lemma 16 – this version is somewhat less flexible and the constants are
somewhat worse.

5 Conclusions

Given a data set, archetypal analysis [6] aims to identify a small subset of points such that
all (or most) points in the data can be represented as a sparse convex-combination of these
“archtypes”. Thus, for a sparse convex-combination of points, generating a point can be
viewed as an “explanation” of how it is being induced by the data. It is thus natural to ask
for as many independent explanations as possible for a point – the more such combinations,
the more a point “arises” naturally from the data. Thus, an approximate Tverberg partition
can be interpreted as stating that high dimensional data has certain points (i.e., the centroid)
that are robustly generated by the data.

From a data-analysis point of view, an interesting open question is whether one can do
better than the “generic” guarantees provided here. If, for example, a smaller radius centroid
ball exists, can it be approximated efficiently? Can a sparser convex-combination of points
be computed efficiently?

While these questions in the most general settings seem quite challenging, even solving
them in some special cases might be interesting.

S. Har-Peled and E. W. Robson 26:13

In addition, prior works consider other no-dimensional results, such as a no-dimensional
version of Helly’s theorem [1], and a no-dimensional version of the colorful Tverberg the-
orem [7]. Our work did not address these problems because of the focus on simplicity, and a
possible further direction is to address these variants with extensions of the techniques used
here.

References
1 Karim A. Adiprasito, Imre Bárány, Nabil H. Mustafa, and Tamás Terpai. Theorems of

Carathéodory, Helly, and Tverberg without dimension. Discrete Comput. Geom., 64(2):233–
258, 2020. doi:10.1007/s00454-020-00172-5.

2 Noga Alon, Imre Bárány, Zoltán Füredi, and Daniel J. Kleitman. Point selections and
weak e-nets for convex hulls. Comb. Probab. Comput., 1:189–200, 1992. doi:10.1017/
S0963548300000225.

3 Imre Bárány and Pablo Soberón. Tverberg’s theorem is 50 years old: a survey. Bull. Amer.
Math. Soc. (N.S.), 55(4):459–492, 2018. doi:10.1090/bull/1634.

4 Timothy M. Chan, Sariel Har-Peled, and Mitchell Jones. Optimal algorithms for geometric
centers and depth. SIAM J. Comput., 51(3):627–663, 2022. doi:10.1137/21M1423324.

5 Bernard Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge
University Press, New York, 2001. URL: http://www.cs.princeton.edu/~chazelle/book.
html.

6 Yuansi Chen, Julien Mairal, and Zaid Harchaoui. Fast and robust archetypal analysis for
representation learning. In Proceedings of the 2014 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR ’14, pages 1478–1485, USA, 2014. IEEE Computer Society.
doi:10.1109/CVPR.2014.192.

7 Aruni Choudhary and Wolfgang Mulzer. No-dimensional Tverberg theorems and algorithms.
Discrete Comput. Geom., 68(4):964–996, 2022. doi:10.1007/s00454-022-00380-1.

8 Kenneth L. Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm.
In Shang-Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008,
pages 922–931. SIAM, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347183.

9 Kenneth L. Clarkson, David Eppstein, Gary L. Miller, Carl Sturtivant, and Shang-Hua Teng.
Approximating center points with iterative Radon points. Int. J. Comput. Geom. Appl.,
6(3):357–377, 1996. doi:10.1142/S021819599600023X.

10 Jesús A. De Loera, Xavier Goaoc, Frédéric Meunier, and Nabil H. Mustafa. The discrete
yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg. Bull. Amer.
Math. Soc. (N.S.), 56(3):415–511, 2019. doi:10.1090/bull/1653.

11 Sariel Har-Peled and Mitchell Jones. Journey to the center of the point set. ACM Trans.
Algorithms, 17(1):9:1–9:21, 2021. doi:10.1145/3431285.

12 Sariel Har-Peled and Eliot Wong Robson. No-dimensional Tverberg partitions revisited. CoRR,
abs/2306.01678, 2023. doi:10.48550/arXiv.2306.01678.

13 Sariel Har-Peled and Timothy Zhou. Improved approximation algorithms for Tverberg
partitions. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, Proc. 30th Annu.
Euro. Sympos. Alg. (ESA), volume 204 of LIPIcs, pages 51:1–51:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ESA.2021.51.

14 Eduard Helly. Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten.
Monatsh. Math. Phys., 37(1):281–302, 1930. doi:10.1007/BF01696777.

15 Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of weighted Voronoi diagrams
and randomization to variance-based k-clustering (extended abstract). In Kurt Mehlhorn,
editor, Proc. 10th Annu. Sympos. Comput. Geom. (SoCG), pages 332–339. ACM, 1994.
doi:10.1145/177424.178042.

SWAT 2024

https://doi.org/10.1007/s00454-020-00172-5
https://doi.org/10.1017/S0963548300000225
https://doi.org/10.1017/S0963548300000225
https://doi.org/10.1090/bull/1634
https://doi.org/10.1137/21M1423324
http://www.cs.princeton.edu/~chazelle/book.html
http://www.cs.princeton.edu/~chazelle/book.html
https://doi.org/10.1109/CVPR.2014.192
https://doi.org/10.1007/s00454-022-00380-1
http://dl.acm.org/citation.cfm?id=1347082.1347183
https://doi.org/10.1142/S021819599600023X
https://doi.org/10.1090/bull/1653
https://doi.org/10.1145/3431285
https://doi.org/10.48550/arXiv.2306.01678
https://doi.org/10.4230/LIPIcs.ESA.2021.51
https://doi.org/10.1007/BF01696777
https://doi.org/10.1145/177424.178042

26:14 No-Dimensional Tverberg Partitions Revisited

16 Shreesh Jadhav and Asish Mukhopadhyay. Computing a centerpoint of a finite planar set of
points in linear time. Discrete Comput. Geom., 12:291–312, 1994. doi:10.1007/BF02574382.

17 J. Matoušek. Lectures on Discrete Geometry, volume 212 of Grad. Text in Math. Springer,
2002. doi:10.1007/978-1-4613-0039-7.

18 Jirí Matoušek. Geometric Discrepancy, volume 18 of Algorithms and Combinatorics. Springer,
1999. doi:10.1007/978-3-642-03942-3.

19 Gary L. Miller and Donald R. Sheehy. Approximate centerpoints with proofs. Comput. Geom.
Theory Appl., 43(8):647–654, 2010. doi:10.1016/j.comgeo.2010.04.006.

20 Helge Tverberg and Sinsia Vreica. On generalizations of Radon’s theorem and the ham
sandwich theorem. Eur. J. Comb., 14(3):259–264, 1993. doi:10.1006/eujc.1993.1029.

https://doi.org/10.1007/BF02574382
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/978-3-642-03942-3
https://doi.org/10.1016/j.comgeo.2010.04.006
https://doi.org/10.1006/eujc.1993.1029

Optimizing Visibility-Based Search in Polygonal
Domains
Kien C. Huynh #

Linköping University, Sweden1

Joseph S. B. Mitchell #

Stony Brook University, NY, USA

Linh Nguyen2 #

Stony Brook University, NY, USA

Valentin Polishchuk #

Linköping University, Sweden

Abstract
Given a geometric domain P , visibility-based search problems seek routes for one or more mobile
agents (“watchmen”) to move within P in order to be able to see a portion (or all) of P , while
optimizing objectives, such as the length(s) of the route(s), the size (e.g., area or volume) of
the portion seen, the probability of detecting a target distributed within P according to a prior
distribution, etc. The classic watchman route problem seeks a shortest route for an observer, with
omnidirectional vision, to see all of P . In this paper we study bicriteria optimization problems for a
single mobile agent within a polygonal domain P in the plane, with the criteria of route length and
area seen. Specifically, we address the problem of computing a minimum length route that sees at
least a specified area of P (minimum length, for a given area quota). We also study the problem
of computing a length-constrained route that sees as much area as possible. We provide hardness
results and approximation algorithms. In particular, for a simple polygon P we provide the first
fully polynomial-time approximation scheme for the problem of computing a shortest route seeing
an area quota, as well as a (slightly more efficient) polynomial dual approximation. We also consider
polygonal domains P (with holes) and the special case of a planar domain consisting of a union
of lines. Our results yield the first approximation algorithms for computing a time-optimal search
route in P to guarantee some specified probability of detection of a static target within P , randomly
distributed in P according to a given prior distribution.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Quota watchman route problem, budgeted watchman route problem, visibility-
based search, approximation

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.27

Related Version Full Version: https://arxiv.org/abs/2402.05420

Funding This work is partially supported by the National Science Foundation (CCF-2007275) and
the Swedish Research Council and the Swedish Transport Administration.

1 Introduction

We investigate the Quota Watchman Route problem (QWRP) and the Budgeted
Watchman Route problem (BWRP) for a single mobile agent (a “watchman”) within a
polygonal domain P in the plane. These problems naturally arise in various applications,
including motion planning, search-and-rescue, surveillance, and exploration of a polygonal

1 Work done at Stony Brook University.
2 Corresponding author

© Kien C. Huynh, Joseph S. B. Mitchell, Linh Nguyen, and Valentin Polishchuk;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 27; pp. 27:1–27:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kchuynh@cs.stonybrook.edu
https://orcid.org/0000-0001-6247-8964
mailto:joseph.mitchell@stonybrook.edu
https://orcid.org/0000-0002-0152-2279
mailto:linh.nguyen.1@stonybrook.edu
https://orcid.org/0009-0009-3518-929X
mailto:valentin.polishchuk@liu.se
https://orcid.org/0000-0002-8292-2281
https://doi.org/10.4230/LIPIcs.SWAT.2024.27
https://arxiv.org/abs/2402.05420
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Optimizing Visibility-Based Search in Polygonal Domains

domain, where complete coverage is not feasible due to shortage of fuel, time, etc. The
QWRP seeks a route/tour that sees at least some specified area of the domain P with a
shortest length, while the BWRP seeks a route/tour that sees the maximum area subject to
a length constraint. Both can be seen as extensions of the well-known Watchman Route
Problem (WRP) with different objectives and constraints.

The challenge in addressing the trade-off between area seen and tour length is that one is
not able to exploit the optimality structure that is implied by having to see all of a polygon
P . It is this structure, yielding an ordered sequence of “essential cuts”, that allows the WRP
to be solved efficiently, e.g., as an instance of the “touring polygons problem” [13].

Results. We address the challenge by establishing new structural results that enable a
careful discretization and analysis, along with carefully crafted dynamic programs. We
provide several new results on optimal visibility search in a polygon:
(1) We prove that the QWRP and the BWRP are (weakly) NP-hard, even in a simple polygon;

this is to be contrasted with the WRP, for which exact polynomial-time algorithms are
known in simple polygons.

(2) For the QWRP in a simple polygon P , we give the first fully polynomial-time approx-
imation scheme (FPTAS), as well as a dual-approximation (with slightly more efficient
running time than the FPTAS) that computes a tour having length at most (1 + ε1)
times the length of an optimal tour that sees area at least A (where A is the area quota),
while seeing area at least (1 − ε2)A for any ε1, ε2 > 0.

(3) For the BWRP in simple P , we compute, in polynomial time, a tour of length at most
(1 + ε)B that sees a region within P of area at least that seen by an optimal tour of
length at most B.

(4) In a multiply connected domain, in a polygon P with holes, we provide hardness of
approximations and a (1 + ε, O(log n))-dual approximation (n is the number of vertices of
P) for the BWRP. In the special case of an arrangement of lines, we obtain polynomial-
time exact algorithms for both problems.

(5) We solve two visibility-based stochastic search problems that seek to locate a static
target given a prior probability distribution of its location within P : (a) compute the
minimum time to achieve a specified detection probability; (b) compute a search route
maximizing the probability of detection by time T for a mobile searcher.

Related Work
Chin and Ntafos introduced the classic Watchman Route Problem (WRP) [10]: compute
a shortest closed route (tour) within a polygon P from which every point of P can be seen;
they gave an O(n)-time algorithm for computing an optimal tour in a simple orthogonal
polygon, and later results established polynomial-time exact algorithms for the WRP in a
simple polygon P , both with and without an anchor point (depot) [5, 10, 11, 13, 26, 29, 30]. In
a polygon P with holes, the WRP is NP-hard [10, 17] and is, in fact, NP-hard to approximate
better than a logarithmic factor [25]; however, an O(log2 n)-approximation algorithm is
known [25]. The BWRP and the QWRP are natural variants of the WRP.

Another related problem is that of maximum visibility coverage with point guards: Given
an integer k, place k point guards within P to maximize the area of P seen by the guards.
When k is arbitrary, the problem is NP-hard [26], since an exact solution to this problem
would yield a method to compute the minimum number of guards needed to see a polygon.
Viewed as a maximum coverage problem, one can greedily compute an approximation, with
factor

(
1 − 1

e

)
, by iteratively placing a guard that sees the most unseen area [9, 26].

K. C. Huynh, J. S. B. Mitchell, L. Nguyen, and V. Polishchuk 27:3

The BWRP is related to the Orienteering problem. Given a budget constraint and
an edge-weighted graph where each vertex is associated with a prize, the objective of
Orienteering is to find a path/tour within the length budget maximizing the total reward
of the vertices visited. On the other hand, the QWRP is related to the Quota Traveling
Salesperson problem, which aims to minimize the distance travelled to achieve a given
quota of reward. The Euclidean versions of Orienteering and Quota TSP have polynomial-
time approximation schemes [8, 20, 24]. Both the QWRP and the BWRP can be considered a
reward (the area of P seen by the watchman) collecting process; however, the main difference
lies in the continuous nature of visibility, since we see portions of the domain as we travel to
checkpoints, we must take into account the area that has been seen previously.

Optimal search theory has been extensively studied in discrete, graph theoretic settings;
see, e.g., [18, 19, 31]. In geometric contexts, searching and target tracking have been studied
in the form of Visibility-based Pursuit-Evasion games. In [22], the visibility-based
version of the pursuit-evasion game was introduced and formulated as a geometric problem,
in which an evader moves unpredictably, arbitrarily fast within a polygonal domain, and
the goal is to strategically coordinate one or multiple pursuers to guarantee a finite time of
detection. See the survey [12] on visibility-based pursuit-evasion games.

2 The QWRP in a Simple Polygon

2.1 Preliminaries and Hardness Results

A simple polygon P is a simply connected subset of R2 whose boundary, ∂P , is a polygonal
cycle consisting of a finite set of line segments, whose endpoints are the vertices, v1, v2, . . . , vn,
of P . A vertex is reflex (resp. convex) if its internal angle is at least (resp. at most) 180
degrees. We consider polygons to be closed sets, including the interior and the boundary.
We use the notation | · | to denote the measure of several types of objects. In the case of a
segment or a route γ, |γ| denotes its length, while for a polygon P , |P | denotes the area of
P . For a finite set S, |S| is the cardinality of S. Based on the object within the notation,
the interpretation should be apparent.

Point x ∈ P sees point y ∈ P if the line segment connecting them lies entirely within P .
The visibility polygon of x, denoted V (x), is the closed region of P that x sees; necessarily,
V (x) is a simple polygon within P . For a subset X ⊂ P , let V (X) be the set of points that
are seen by at least one point in X; formally, V (X) =

⋃
x∈X V (x). The visibility polygon

of a point or a segment can be computed in time O(n) for a simple polygon, or in time
O(n + h log h) for a polygonal domain with n vertices and h holes [27]. Given a domain P

(a simple polygon or a polygon with holes) and an area quota 0 ≤ A ≤ |P |, in the QWRP,
the objective is to find a tour (a polygonal cycle) γ ⊂ P of minimum length |γ| such that
|V (γ)| ≥ A; see Figure 1. Note that when A = |P |, the QWRP is the classic Watchman
Route Problem.

We also distinguish between the anchored version (in which γ must pass through a given
depot point s) and the floating version (in which no depot is given). We provide the following
NP-hardness results (proved in the full version) for both the anchored and floating cases:

▶ Theorem 1. The QWRP in a simple polygon is weakly NP-hard, with or without an
anchor.

Throughout the paper, we assume a real RAM model of computation [28].

SWAT 2024

27:4 Optimizing Visibility-Based Search in Polygonal Domains

P
γ

v

v′

Figure 1 A route γ (red) that sees the white portion of P (the gray regions are unseen).

2.2 Structural Lemma
Let πP (x, y) denote the geodesic shortest path (shortest path constrained to stay within P)
between x ∈ P and y ∈ P ; πP (x, y) is unique in a simple P , and is the segment xy if x sees
y. For a subset S ⊆ P , the relative/geodesic convex hull of S is the minimal set that contains
S and is closed under taking shortest paths. Equivalently, the relative convex hull of S is
the minimum-perimeter connected subset of P that contains S. A set is relatively convex
if it is equal to its relative convex hull, and a closed curve is relatively convex if it is the
boundary of a relatively convex set. Let Pγ denote the connected region bounded by some
closed polygonal chain γ. If Pγ is a (sub)polygon of P and Pγ is relatively convex, then Pγ

is the relative convex hull of its convex vertices, and all reflex vertices of Pγ are necessarily
reflex vertices of P . We similarly define relative convexity of an open polygonal chain γ: if γ

is a connected subset of the boundary of the relative convex hull of γ, then we say that γ

is relatively convex. Geodesic shortest paths and relative convex hulls have been studied
extensively and can be computed efficiently [24].

An optimal solution to the QWRP in a simple polygon P satisfies a structural lemma:

▶ Lemma 2. For a simple polygon P with n vertices, and no depot, an optimal QWRP tour
is a relatively convex simple polygonal cycle of at most 2n vertices.

Proof. Let γ be an optimal QWRP tour and let P ′ = V (γ) be the visibility polygon of γ.
Since γ is connected, P ′ is a simple subpolygon of P ; some edges of P ′ coincide with edges
of P and some are shadow chords (chords separating V (γ) from the rest of P) supported by
reflex vertices of P . Then γ is a shortest watchman route in the simple polygon P ′. Thus, γ

is relatively convex in P ′, and thus in P , and γ has at most 2n vertices, since P ′ is easily
seen to have at most n vertices. (See [11, 25].)

Specifically, the polygon P ′ = V (γ) is obtained from P by removing certain subpolygons
(“shadow pockets”) of P that are each defined by a chord, vv′, extending from a reflex vertex,
v, of P , along the line through v and a convex vertex of γ, to the first point v′ on the
boundary of P . This process introduces a (convex) vertex v′ (on an edge of P , in general on
its interior), and removes at least one vertex of P , on the boundary of the pocket that is cut
off by the chord. Refer to Figure 1. Thus, P ′ has at most n vertices. For a simple polygon
with n vertices, any shortest watchman route has at most 2n vertices [5, 10, 11, 13, 26, 29, 30].
Moreover, all reflex vertices of P ′ must be reflex vertices of P , hence all reflex vertices of γ

must also be reflex vertices of P . ◀

K. C. Huynh, J. S. B. Mitchell, L. Nguyen, and V. Polishchuk 27:5

If there is a specified depot s ∈ ∂P , a statement similar to Lemma 2 holds. If s is interior
to P , an optimal tour γ = (s, w1, w2, . . . , wk, s) through s need not be relatively convex;
however, it is “nearly” relatively convex in that the tour obtained by replacing the two edges
sw1 and wks with the geodesic path πP (w1, wk) is relatively convex.

2.3 Dual approximation algorithm for anchored QWRP
An optimal tour for the QWRP will, in general, have (convex) vertices that are interior
to P , at locations within the continuum that are not known to come from a discrete set.
This poses a challenge to algorithms that are to compute solutions for the QWRP exactly
or approximately. We address this challenge by discretizing an appropriate portion of the
domain P using a (Steiner) triangulation whose faces are small enough that we can afford to
round an optimal tour to vertices of the triangles, while increasing the length of the tour
only slightly, and assuring that the rounded tour continues to see at least as much of P as
the optimal tour did. We focus here on the anchored case, with a specified depot s, which
we assume to be on ∂P for now.

First, we triangulate P (in O(n) time [6]), including s as a vertex of the triangulation.
We then overlay, centered on s, a regular square grid of pixels of side lengths δ within an
axis-aligned square of size L-by-L for a length L that is at least the optimal tour length;
we specify how to determine δ and L below. The overlay of the grid with the triangulation
yields a partition of P into convex cells of constant complexity, each of which we triangulate,
resulting in an overall Steiner triangulation of P , such that every triangle within distance
L/2 of s has diameter at most

√
2δ and perimeter at most 4δ; we let Sδ,L denote the set of

vertices of these triangles. We refer to Sδ,L as the set of candidate turn points for a route.

▶ Lemma 3. For an optimal tour γ for the QWRP with area quota A, there exists a polygonal
tour γ′ whose vertices are in the set Sδ,L of candidates, such that γ′ is relatively convex,
|γ′| ≤ |γ| + (8 + 4

√
2)δn and V (γ) ⊆ V (γ′).

Proof. Let c1, c2, . . . be convex vertices of the optimal tour γ (γ is the relative convex hull
of such vertices) and let σ1, σ2, . . . be (closed) cells of the decomposition that contain the
vertices. Let γ′ be the boundary of the relative convex hull of the cells. By construction, γ′

is a relatively convex tour enclosing γ, implying that any point seen by γ is also seen by γ′.
Furthermore, since s ∈ ∂P , it follows that s cannot be in the interior of Pγ′ , a subpolygon of
P , thus s ∈ γ′.

We claim that |γ′| is at most |γ| + (8 + 4
√

2)δn. For each edge e′ of γ′ going from σi to σj ,
we can bound its length by the sum of the length of the edge e of γ going from σi to σj (γ′

visits the cells containing the vertices of γ in the same order) and at most two connections
from endpoints of e to vertices of σi, σj , which is no more than 2

√
2δ, see Figure 2, right.

Additionally, the part of γ′ along the perimeters of σ1, σ2, . . . is no longer than 8δn. Hence,
|γ′| ≤ |γ| + (8 + 4

√
2)δn. ◀

From Lemma 3, if δ = O
(

ε|γ|
n

)
, then for approximation purposes within factor (1 + ε), it

suffices to search for a tour whose vertices come from Sδ,L. In fact, our algorithm returns
a tour no longer than (1 + ε1)|γ| for any ε1 > 0; however, due to discretization of the area
quota, we only guarantee the tour sees at least (1 − ε2)A for any ε2 > 0.

We now establish an ordering on the point set Sδ,L, so that a relatively convex chain of
the candidate points moves in increasing order. First, we compute T , the tree of shortest
paths rooted at s to all the candidate points; this takes O(|Sδ,L|) time [21]. The path from s

to a candidate point s′ in T is the geodesic shortest path πP (s, s′). Define a geodesic angular

SWAT 2024

27:6 Optimizing Visibility-Based Search in Polygonal Domains

σi

σj

e

e′

√
2δ

Figure 2 Left: γ′ (blue) is the relative convex hull of the vertices (blue) of the cells that contain
convex vertices of γ (red). Right: Each edge of γ′ that traverses between two different cells σi, σj

by triangle inequality, is no longer than the edge of γ between the same cells plus at most two
connections to two vertices of σi, σj .

order as follows: for two candidate points si, sj , if si is to the left of the extended geodesic
shortest path between s and sj , i.e πP (s, sj) with the last segment extending up to ∂P , then
si precedes sj . In case of ties, we break ties by increasing distance to s. For each reflex
vertex ri of P , we add another candidate sri

to the list to account for the possibility that
ri can appear as two different vertices of a relatively convex polygonal chain; sri obeys the
aforementioned geodesic angular order but precedes every candidate point in the subtree of T
rooted at ri. Sort the candidates accordingly, then append sm := s1 to the end of the sorted
list. Any relatively convex chain with vertices sequence oriented clockwise (s, si1 , si2 , . . .) has
1 < i1 < i2 < Without loss of generality, we consider any relatively convex polygonal
chain to be oriented clockwise.

Next, we examine the optimal substructure of the problem.

▶ Lemma 4 ([3]). The visibility region of the geodesic shortest path πP (s, sj) is the inclusion-
wise minimal set among all visibility regions of all paths from s to sj.

Let C be a relatively convex polygonal chain from s to a candidate point sj , and let si be
the vertex of C immediately preceding sj . We identify the overlap of visibility between the
segment sisj and Csi

, the subchain of C from s to si in Lemma 5.

▶ Lemma 5. V (Csi
) ∩ V (sisj) = V (πP (s, si)) ∩ V (sisj).

Proof. Refer to Figure 3. Let x ∈ P be a point seen by both πP (s, si) and sisj . Since
x ∈ V (πP (s, si)), it follows that x ∈ V (Csi) (Lemma 4). Thus, x ∈ V (Csi) ∩ V (sisj) and
V (πP (s, si)) ∩ V (sisj) ⊆ V (Csi

) ∩ V (sisj).
On the other hand, let x ∈ P be seen by both Csi and sisj . Since x ∈ V (Csi) ∩ V (sisj)

there exists x1 ∈ Csi
and x2 ∈ sisj such that xx1 and xx2 are contained within P . Thus,

the (pseudo)triangle xx1x2 is contained within P since P has no holes. By our ordering
scheme, sj is to the right of πP (s, si) with the last segment extended up to ∂P , while Csi is
to the left of it. This implies that in the relatively convex polygon PC∪πP (s,sj), x1, x2 are
in opposite sides with respect to πP (s, si). As we pivot a line of sight around x from x1 to
x2, it must intersect πP (s, si) at some point due to continuity as well as (relative) convexity,
therefore πP (s, si) sees x. Hence, V (Csi) ∩ V (sisj) ⊆ V (πP (s, si)) ∩ V (sisj). ◀

Based on Lemma 5, the overlap of visibility between the segment sisj , for i < j, and any
relatively convex chain Csi

from s to si does not depend on the vertices between s and si.
This leads to the optimal substructure utilized by our dynamic programming algorithm.

K. C. Huynh, J. S. B. Mitchell, L. Nguyen, and V. Polishchuk 27:7

s

si

sj

∂P

x

x1

x2

s

si

sj

∂P

x1

x2

x

s

si

sj

∂P

x1 x2

x

Figure 3 Proof of Lemma 5.

▶ Lemma 6. C is a shortest relatively convex polygonal chain from s to sj that sees at least
some area A if and only if Csi

is a shortest relatively convex polygonal chain from s to si

that sees at least area A − |V (sisj) \ V (πP (s, si))|.

Proof. We write V (C) as the union of 2 disjoint sets V (Csi
) and V (sisj) \ V (Csi

). Notice
that

V (sisj) \ V (Csi) = V (sisj) \ (V (Csi) ∩ V (sisj)) = V (sisj) \ (V (πP (s, si)) ∩ V (sisj))
= V (sisj) \ V (πP (s, si)),

therefore |V (Csi)| ≥ A − |V (sisj) \ V (πP (s, si))|. As a result, Csi must be the shortest chain
to achieve a visibility area of A − |V (sisj) \ V (πP (s, si))|, since the existence of a shorter
chain contradicts the optimality of C, and vice versa. ◀

A subproblem in the dynamic program is determined by a candidate point sj and an
area quota A. Let π(sj , A) denote the length of a shortest relatively convex polygonal
chain from s to sj that can see area at least A; and let C(sj , A) denote the associated
optimal chain. Initialize π(s, |V (s)|) = 0. The Bellman recursion for each subproblem with
j = 1, 2, . . . , m and all values of A would be given as follows, for all i < j such that sj sees
si and C(si, A − |V (sisj) \ V (πP (s, si))|) ∪ sisj is relatively convex:

i = arg min
i

{
π(si, A − |V (sisj) \ V (πP (s, si))|) + |sisj |

}
,

π(sj , A) = π(si, A − |V (sisj) \ V (πP (s, si))|) + |sisj |,
C(sj , A) = C(si, A − |V (sisj) \ V (πP (s, si))|) ∪ sisj .

Finally, return C(sm, A). Correctness of the algorithm follows from the principle of optimality.
Note that there always exists an optimal solution i to the above recursion such that

C(si, A − |V (sisj) \ V (πP (s, si))|) ∪ sisj is relatively convex. Otherwise, we can shortcut
C(si, A − |V (sisj) \ V (πP (s, si))|) ∪ sisj by connecting sj to the closest reflex vertex (of
P) or the point of tangency in C(si, A − |V (sisj) \ V (πP (s, si))|).

Since A can take values from a continuous set, it is impractical to tabulate all such values.
Instead, we bucket A into uniform intervals, and let the subproblems be defined by interval
endpoints. We round down the area of any visibility polygon to the nearest interval. Since
we sum up the area of at most 2(n − 3) + 2L

δ visibility polygons (each of the n − 3 diagonals
in the triangulation of P and L

δ horizontal/vertical grid lines potentially has at most 2

SWAT 2024

27:8 Optimizing Visibility-Based Search in Polygonal Domains

s

si

sj

∂P

πP (s, si)

Figure 4 Solving subproblem (sj , A).

vertices of the tour returned by the dynamic programming algorithm since we enforce relative
convexity), if we denote by I the length of each interval, the area lost by rounding down is
at most I

(
2(n − 3) + 2L

δ

)
. We run the algorithm on the “rounded down” instance with area

quota A − I
(
2(n − 3) + 2L

δ

)
, and since the optimal solution of the original instance is a

feasible solution of the new instance, the algorithm returns a tour no longer than an optimal
tour γ′ (that sees at least area A).

It remains to compute an appropriate L such that an optimal tour γ is contained within
the bounding box of the grid. Denote by Cg(r) the geodesic disk of radius r centered at s

(the locus of points whose length of the geodesic path to s is no greater than r). Let r := rmin
where rmin is the smallest value of r such that |V (Cg(r))| = A; then, r is a lower bound on
|γ|, since a tour of length r has geodesic radius at most r/2 and thus cannot see an area of A.
We can compute r by the “visibility wave” methods in [1] by considering all O(n2) edges of
the visibility graph Gv of P (nodes are vertices of P and two nodes are adjacent if they are
visible to one another); we have a sequence of visibility edges hit by Cg(r) for the first time
in the process of increasing r, obtained by sorting the distance from every visibility edge to s

in O(n2 log n) time.
Moreover, |∂Cg(r)| + 2r is an upper bound on |γ|, since if the watchman goes from s

to ∂Cg(r) (s may not be on ∂Cg(r)), follows along ∂Cg(r) then goes back to s, he sees an
area of A. We argue that |∂Cg(r)| + 2r = O(nr) as follows: ∂Cg(r) consists of polygonal
chains that are portions of ∂P and circular arcs; the circular arcs have total length at most
2πr. For each segment in the polygonal part of ∂Cg(r), we can bound its length by the sum
of geodesic distances from its endpoints to s (triangle inequality), which is no more than
2r. There are at most n segments in the polygonal portions of ∂Cg(r), therefore their total
length is no longer than 2nr, implying |γ| ≤ |∂Cg(r)| + 2r = 2nr + 2πr + 2r ≤ 6nr.

We initialize L := r and run the dynamic program with the following δ and I:

δ = ε1L

16 + 8
√

2n
, I = ε1ε2A

2(n − 3)ε1 + (32 + 16
√

2)n
.

Then, set L := 2L, and repeat until L ≥ 6nr. At some point, we must have |γ| ≤ L ≤ 2|γ|,
which means the approximate tour γ′ returned by the dynamic program will be such that
V |γ′| ≥ (1 − ε2)|V (γ)| and |γ′| ≤ (1 + ε1)|γ|. We return the shortest tour out of all tours

K. C. Huynh, J. S. B. Mitchell, L. Nguyen, and V. Polishchuk 27:9

that achieve the visibility area quota as we increase r. Since r ≤ |γ| = O(nr), the number of
iterations of the doubling search is O(log n). The resulting theorem (proof details in the full
version):

▶ Theorem 7. Given a starting point s, a dual approximation γ′ to an optimal solution γ of the
QWRP, with area quota A, in a simple polygon with n vertices, satisfying |V (γ′)| ≥ (1 − ε2)A
and |γ′| ≤ (1 + ε1)|γ| for any ε1, ε2 > 0, can be computed in O

(
n5

ε5
1ε2

log n
)

time if s ∈ ∂P

or O
(

n9

ε9
1ε2

log n
)

time if s /∈ ∂P .

3 The BWRP in a Simple Polygon

▶ Theorem 8 (proof in the full version). The BWRP in a simple polygon is weakly NP-hard.

3.1 Approximation algorithm for anchored BWRP
For a given budget length B > 0, and any fixed ε > 0, we compute a route of length at most
(1 + ε)B that sees at least as much area as an area-maximizing route γ of length B.

▷ Claim 9. Without loss of generality, we can assume that B is less than the length of
an optimal watchman route for P ; otherwise, the solution is simply an optimal WRP tour.
Hence, an optimal budgeted watchman route γ is necessarily the shortest watchman route of
the subpolygon V (γ), and so γ is relatively convex (otherwise, we can shortcut γ and expand
the remaining length budget to see more area, contradicting the optimality of γ).

Since it suffices to consider only relatively convex routes for the BWRP, the observation
in Lemma 5 allows us to prove the structure of an optimal BWRP tour.

▶ Lemma 10. C is a relatively convex polygonal chain from s to sj of length at most B that
sees the largest area possible if and only if Csi

is a relatively convex polygonal chain from s

to si of length at most B − |sisj | that sees the largest area possible.

Proof. The proof is identical to that of Lemma 6 and hence omitted in this version. ◀

We decompose P by overlaying a triangulation and regular square grid of δ-sized pixels
within an axis-aligned square of size B-by-B, centered on s, then sort the set of candidates
Sδ,B according to the geodesic angular order defined for the QWRP. Similarly, there exists a
route γ′ of length at most |γ| + (8 + 4

√
2)δn with vertices in Sδ,B .

Let a(sj , B) be the optimal area that a relatively convex polygonal chain from s to sj

that is no longer than B can see; and let C(sj , B) be the associated optimal chain of the
subproblem (sj , B). Initialize a(s, 0) = |V (s)|. The Bellman recursion for each subproblem
with j = 1, 2, . . . , m and all values of B would be given as follows, for all i < j such that sj

sees si and C(si, B − |sisj |) ∪ sisj is relatively convex

i = arg max
i

{
a(si, B − |sisj |) + |V (sisj) \ V (πP (s, si))|

}
a(sj , B) = a(si, B − |sisj |) + |V (sisj) \ V (πP (s, si))|,
C(sj , B) = C(si, B − |sisj |) ∪ sisj .

Then, return γ′ := C(sm, B + (8 + 4
√

2)δn).
To bound the number of subproblems, we consider a partition of an interval of length

B + (8 + 4
√

2)δn into uniform intervals, and round up the length of any segment sisj to the
nearest interval endpoint. Let I be the length of each interval, we run the algorithm on a

SWAT 2024

27:10 Optimizing Visibility-Based Search in Polygonal Domains

new instance with budget B + (8 + 4
√

2)δn +
(
2(n − 3) + 2B

δ

)
I and the subproblems defined

by intervals’ endpoints. The optimal solution of the original instance is a feasible solution of
the new instance; thus, we find a route seeing as much as the optimal route of the original
instance. The values of δ and I can be set as follows:

δ = εB

(16 + 8
√

2)n
, I = ε2B

4(n − 3)ε + (64 + 32
√

2)n
,

so that B + (8 + 4
√

2)δn +
(
2(n − 3) + 2B

δ

)
I ≤ (1 + ε)B. In the full paper we prove:

▶ Theorem 11. Given a starting point s, a route of length at most (1 + ε)B seeing at least
as much area as is seen by an optimal route of length B for the BWRP in a simple polygon
with n vertices can be computed in O

(
n5

ε6

)
time if s ∈ ∂P or O

(
n9

ε10

)
time if s /∈ ∂P .

3.2 From anchored BWRP to an FPTAS for anchored QWRP
We can adapt the algorithm for the anchored BWRP above to obtain an FPTAS for the
anchored QWRP. Let γ be an optimal QWRP tour, suppose we have some L such that
|γ| ≤ L ≤ 2|γ|. We divide L into L

⌈ 2
ε ⌉

uniform intervals, each of length no greater than ε|γ|.

The smallest interval endpoint L′ that is no smaller than |γ|, is a (1 + ε)-approximation
to |γ|. We can iterate through interval endpoints as the budget constraint and use the
approximation algorithm for the BWRP to compute a route of length at most (1 + ε)L′

that sees as much as an area-maximizing route of length L′ does, which sees more area than
does γ. The result is the following theorem, which, in contrast with the earlier Theorem 7, is
not a dual approximation (allowing for a relaxation of the quota constraint), but an FPTAS
for optimizing the length, subject to a hard constraint on the area seen. The running time of
the algorithm in the dual approximation of Theorem 7, however, is better than that of the
FPTAS, so it may be preferred in some settings.

▶ Theorem 12 (proof in the full version). Given a starting point s, an approximation γ′

to an optimal solution γ of the QWRP, with area quota A, in a simple polygon with n

vertices, satisfying |V (γ′)| ≥ A and |γ′| ≤ (1 + ε)|γ| for any ε > 0, can be computed in
O

(
n5

ε6 log n log 1
ε

)
if s ∈ ∂P or O

(
n9

ε10 log n log 1
ε

)
if s /∈ ∂P .

4 Floating QWRP and BWRP

When the starting point s of the tour is not specified (the so called “floating” case), the
WRP tends to be trickier: known algorithms for the floating WRP are O(n)-factor slower
than in the non-floating case [10, 5, 11, 30, 13, 26, 29]. If the optimal tour is not convex (but
only relatively convex), one can iterate through all reflex vertices of P as choices for s, and
thus reduce the floating version to the basic WRP; the same can be done for QWRP and
BWRP. Thus, the remaining challenge is to find the shortest (strictly, not just relatively)
convex tour.

Any convex polygon can be outer-approximated by a convex polygon with a constant
number of vertices: Dudley’s approximation [2, 14, 23] implies that for any length-L tour
γ, there is a length-(1 + ε)L tour γ′ with O

(
1√
ε

)
vertices that sees at least as much area

as γ does. To find γ′ (either for QWRP or BWRP), we use the techniques from [26]: For
each of the O(n4) cells of the visibility decomposition D (the visibility graph Gv of P as
defined Section 2.3, with maximally extended edges), points within the cell have visibility
polygons that are combinatorially equivalent, implying that the area seen by any point in

K. C. Huynh, J. S. B. Mitchell, L. Nguyen, and V. Polishchuk 27:11

Figure 5 What is seen from the interior of a segment does not change as the segment is moved
locally: whatever was hidden, but becomes seen from an interior point (red), was seen by a
neighboring point (black) before the move.

the cell is given by the same formula. Moreover, if each vertex of a tour sits within a fixed
cell of D and each edge of the tour passes through the same set of cells, the total area
seen from the tour is given by the same formula: the interiors of the edges do not add to
the area seen, so the total seen area is a function, f(v1, . . . , vk), of only the positions vi

of the tour’s k = O
(

1√
ε

)
vertices (Fig. 5). We further decompose the cells of D by lines

through all of D’s vertices. If the vertices of the tour are in the same cells of this refined
O(n8)-complex decomposition D′, then the edges of the tour pass through the same cells
of D. We iterate through all O(n8k) placements of vertices of the tour into cells of D′. For
each placement, finding v⃗ maximizing the seen area, f(v⃗), amounts to solving an O(k)-sized
system of polynomial equations having O(k) algebraic degree (the Lagrangian of the problem
will contain the constraint that the tour’s length is L, consisting of k terms and will have to
be squared O(k) times before becoming a polynomial). The solution can be found in kO(k)

time [4, Section 3.4]. We summarize in the following theorems:

▶ Theorem 13. Let γ be an optimal QWRP (no starting point) tour. In n
O

(
1√
ε

)
time, a

tour of length at most (1 + ε)|γ| can be found that sees at least as much area as does γ.

▶ Theorem 14. In n
O

(
1√
ε

)
time, a BWRP (no starting point) tour of length (1 + ε)L can

be found that sees at least as much area as does any tour of length L.

5 Domains that are a Union of Lines

We consider the QWRP and the BWRP in a domain P that is a connected union (arrangement)
of lines; it suffices to truncate the lines within a bounding box that encloses all vertices of the
line arrangement, so that P is bounded. Such domains, which are a special case of polygons
with holes, have been studied in the context of the Watchman Route Problem [15, 16].
In this setting, the QWRP seeks to minimize the length of a route contained within P that
visits at least a specified number of (truncated) lines, and the BWRP seeks to maximize the
number of lines visited by a route within P of length at most some budget. In this section
we do not assume a depot s is specified.

For a set of lines L, let A(L) denote the arrangement formed by L. We assume that not
all of the lines are parallel so that the union is connected. All of a line can be seen from
any point incident on it. Let G(L) denote the weighted planar graph with vertex V (A(L))
of intersections between lines. Two vertices in the graph are connected by an edge with
Euclidean weight if they share the same edge in L. Since the watchman is constrained to
travel within A(L) and the only time the route can have turning points not in V (A(L))
is when it traces out the same edge of G(L) consecutively in opposite directions, turning
somewhere interior to that edge. However, then we can shortcut that portion of the route
altogether while maintaining visibility coverage, it is easy to see that any optimal route for
BWRP or QWRP is polygonal and its vertices is a subset of V (A(L)).

SWAT 2024

27:12 Optimizing Visibility-Based Search in Polygonal Domains

We first explain our results for the QWRP, then we use them to solve the BWRP. The
following observation is essential to our algorithm: a line intersects a tour γ if and only if
it intersects the convex hull of γ. We define the quota intersecting convex hull problem as
follows: compute a cyclic sequence (v1, v2, . . . , vh) of vertices vi ∈ V (A(L)) in convex position
such that the number of lines intersecting the convex polygon (v1, v2, . . . , vh) is at least some
specified Q > 0 and

∑h
i |π(vi, vi+1)| is minimized (vh+1 = v1), where π(s, t) = πG(s, t) is

the shortest path connecting s and t in G(L). We show the relationship between the quota
intersecting convex hull problem and the QWRP in an arrangement of lines.

▶ Lemma 15. An optimal solution to the quota intersecting convex hull problem yields an
optimal solution to the QWRP in an arrangement of lines.

Proof. Suppose (v1, v2, . . . , vh) is an optimal solution to the quota intersecting convex hull
problem of length L intersecting Q lines. We concatenate π(v1, v2), . . . , π(vh−1, vh) and
π(vh, v1) to form γ. Every line intersecting the convex polygon (v1, v2, . . . , vh) must intersect
γ as well. Thus, γ is a route of length

∑h
i |π(vi, vi+1)| = L seeing Q lines.

We claim that there is no solution γ′ to the QWRP intersecting Q lines that is strictly
shorter than γ. Suppose to the contrary, take the convex hull of γ′, which has vertices in
V (A(L)) since vertices of γ′ are in V (A(L)). The vertices of the convex hull of γ′ form a
cyclic sequence that is feasible for the quota intersecting convex hull problem, and the length
is exactly |γ′| (or γ′ could be shortened while still intersecting Q lines), which is strictly
smaller than L. Thus, γ′ yields a feasible cyclic sequence intersecting Q lines while the length
is shorter than γ, violating the assumption that (v1, v2, . . . , vh) is optimal. ◀

Note that there can be many optimal solutions to the quota intersecting convex hull problem
yielding the same tour (Figure 6).

.

. . .

Figure 6 Multiple optimal solutions to the quota intersecting convex hull problem corresponding
to the same optimal solution of the QWRP.

K. C. Huynh, J. S. B. Mitchell, L. Nguyen, and V. Polishchuk 27:13

We give a dynamic programming algorithm to solve the quota intersecting convex hull
problem. Fix one vertex to be the lowest vertex, let that vertex be v1. We will examine
all possible choices of v1, and find the optimal cyclic sequence with each choice. Let
{v2, v3, . . . , vm−1} be the list of vertices above v1 sorted by increasing angle with the left
horizontal ray passing through v1, breaking ties by increasing distance to v1. Then, set
a new element vm := v1 and append it to the list. Thus, an optimal cyclic sequence
(v1, vi2 , vi3 , . . . , vm) has 1 < i2 < i3 < . . . < m. We can restrict ourselves to ordered pairs
(vi, vj) of consecutive vertices where 1 ≤ i < j ≤ m and either i ̸= 1 or j ̸= m in the sequence.

For 1 ≤ i < j ≤ m and either i ̸= 1 or j ̸= m, denote by Li,j the lines that intersect
the segment vivj (including at the endpoints vi, vj). Each vertex vj and a quota value
Q define a subproblem. Let π(vj , Q) be the shortest length of a sequence of vertices in
convex position from (v1, . . . , vj) intersecting at least Q lines. Starting from v1, we initialize
π(v1, |L1,1|) = 0 with the associated sequence (v1). For j = 2, . . . , m and Q = 1, 2, . . . , n, we
solve the subproblems (vj , Q) by the following Bellman recursion, for all i < j such that the
sequence associated with (vi, Q − |Li,j \ L1,i|) and vj are in convex position (Figure 7)

π(vj , Q) = min
i

{
π(vi, Q − |Li,j \ L1,i|) + |π(vi, vj)|

}
.

v1

vi

vj

v1

vi

vj

Figure 7 Solving subproblem (vj , Q). The sequence of vertices in convex position is drawn on
the left with a dashed red chain, and the corresponding part of γ is drawn with solid red segments
on the right.

Correctness of the algorithm follows from these two claims:
Given a sequence of vertices in convex position (v1, . . . , vi, vj), any line intersecting both
π(vi, vj) and the subsequence from v1 to vi, (v1, . . . , vi) must intersect the segment v1vi

and vice versa due to continuity and convexity. If a sequence (v1, . . . , vi, vj) is the shortest
among all sequences from v1 to vj intersecting at least Q lines, then the subsequence
from v1 to vi is the shortest sequence from v1 to vi intersecting Q − |Li,j \ L1,i|.
The sequence (v1, . . . , vi) associated with optimal solution i to the Bellman recursion is
such that (v1, . . . , vi) ∪ (vj) are in convex position.

▶ Theorem 16 (proof in the full version). The QWRP and the BWRP in an arrangement of
lines can be solved in O(n7) time.

▶ Remark 17. When Q = n, the algorithm solves the classic WRP in an arrangement of
lines, thus our result improves upon the O(n8) solution in [16].

SWAT 2024

27:14 Optimizing Visibility-Based Search in Polygonal Domains

6 The QWRP and BWRP in a Polygon With Holes

6.1 Hardness of approximation
▶ Theorem 18 (proof in the full version). The QWRP in a polygon with holes cannot be
approximated, in polynomial time, within a factor of c log n for some constant c > 0, unless
P = NP.

▶ Theorem 19 (proof in the full version). The BWRP in a polygon with holes cannot be
approximated, in polynomial time, within a factor of (1 − ε) for arbitrary ε > 0, unless P =
NP.

6.2 Approximation algorithm for the BWRP in a polygon with holes
We decompose P into small convex cells and obtain the set of candidates Sδ,B as in the case
with the BWRP in a simple polygon.

▶ Theorem 20. There exists a route γ′ whose vertices are a subset of Sδ,B such that
V (γ) ⊆ V (γ′) and |γ′| ≤ (1 + ε)B.

Proof. Consider an edge e of γ whose endpoints lie in cells σi and σj . We append ∂σi and
∂σj to γ. If the endpoints of e are not vertices of σi and σj , we replace e with a set of
edges whose endpoints are candidate points. The procedure can be described with a physical
analog: we slide an elastic string between the two intersection points of e with σi and σj

towards the exterior of γ until the two endpoints coincide with vertices of σi and σj , the
string is pulled taut and never passes through a hole; see Figure 8. The result is a geodesic
path e′ between two vertices of σi and σj that is no longer than |e| + 2

√
2δ.

Repeating the process for every edge of γ, we obtain γ′. If a point x seen by γ is inside
of Pγ′ , the extended line of vision between x and γ must intersect with γ′ since there is
no hole between γ and γ′. If x is outside of Pγ′ , then the line of vision between x and γ

must intersect γ′ due to the Jordan Curve Theorem. Thus, γ′ sees everything that γ sees,
moreover γ′ passes through s, a vertex in the decomposition. Since γ has O(n2) vertices [25],
for an appropriate choice of δ = O

(
εB
n2

)
we have |γ′| ≤ (1 + ε)B. ◀

σi σj

e

Figure 8 Replacing each edge (red) with the perimeters of the two cells containing its endpoints
and a geodesic path of the same homotopy type (blue).

We apply a known result for the Submodular Orienteering problem [7]: Given a
weighted directed graph G, two nodes s and t (which need not be distinct), a budget B > 0,
and a monotone submodular reward function defined on the nodes, find an s-t walk that
maximizes the reward, under the constraint that the length of the walk is no greater than B.

Let G1 be the visibility graph on the candidates set with Euclidean edge weights. Let
G2 be the line graph of G1: nodes of G2 correspond to edges of G1, and two nodes in G2
are adjacent if their respective edges in G1 are incident. The weight of an edge of G2 is the

K. C. Huynh, J. S. B. Mitchell, L. Nguyen, and V. Polishchuk 27:15

sum of the weights of the two edges in G1 corresponding to its endpoints, divided by two,
thus a closed walk of length B in G1 corresponds to a closed walk of length B in G2 and
vice versa. We apply the approximation algorithm from [7] on G2 to compute a closed walk
from any node in G2 corresponding to an edge incident with s, with the area of visibility as
the reward function and budget (1 + ε)B. The reason for using the line graph G2 is that, in
the Submodular Orienteering problem, rewards are associated with nodes, while in the
context of the BWRP, rewards are accumulated when traversing edges of the visibility graph
G1. We obtain the following:

▶ Theorem 21 (proof in the full version). Given a polygon P with holes with n vertices, let
β ≥ 2 be any constant of choice and OPT be the maximum area that a route of length B can
see. The BWRP has a dual approximation algorithm that computes a tour of length at most
(1+ε)B that sees an area of at least Ω

(
OP T log β

log n

)
, with running time

(
n
ε log B

)O(β log n
ε / log β).

7 Optimal Visibility-based Search for a Randomly Distributed Target

Our results can be applied to solve two problems of searching a randomly distributed static
target in a simple polygon P : Given a prior distribution of the target’s location in P , (1)
compute a route that achieves a given detection probability within the minimum amount of
time, where the target is detected if the watchman can see it; and (2) (dual to (1)) for a
given time budget T , compute a search route maximizing the probability of detecting the
target by time T . Denote by µ(.) the probability measure on all subsets of P ; µ(P1) is the
probability measure of P1 ⊆ P , i.e the probability that the target is in P1, then

0 ≤ µ(.) ≤ 1, µ(∅) = 0, µ(P) = 1,
µ(P1 ∪ P2) = µ(P1) + µ(P2) if P1 ∩ P2 = ∅.

We assume that we have access to µ(.) via an oracle: Given a triangular region in P , the
oracle returns its probability measure in O(1) time. Thus, for a point or a segment, the
probability measure of its visibility region can be computed in O(n) time. Furthermore, if
the watchman has constant speed, a time constraint/objective is equivalent to that of length.
An optimal search route for each problem can be computed using the algorithms given with
probability measure instead of area.

References
1 Esther M. Arkin, Alon Efrat, Christian Knauer, Joseph S. B. Mitchell, Valentin Polishchuk,

Günter Rote, Lena Schlipf, and Topi Talvitie. Shortest path to a segment and quickest visibility
queries. Journal of Computational Geometry, 7(2):77–100, 2016.

2 Efim M. Bronshteyn and L. D. Ivanov. The approximation of convex sets by polyhedra.
Siberian Mathematical Journal, 16(5):852–853, 1975.

3 Kevin Buchin, Valentin Polishchuk, Leonid Sedov, and Roman Voronov. Geometric secluded
paths and planar satisfiability. In 36th International Symposium on Computational Geometry
(SoCG 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

4 John Canny. The Complexity of Robot Motion Planning. MIT press, 1988.
5 Svante Carlsson, Håkan Jonsson, and Bengt J. Nilsson. Finding the shortest watchman route

in a simple polygon. Discrete & Computational Geometry, 22:377–402, 1999.
6 Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete & Computational

Geometry, 6(3):485–524, 1991.
7 Chandra Chekuri and Martin Pal. A recursive greedy algorithm for walks in directed graphs.

In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), pages
245–253. IEEE, 2005.

SWAT 2024

27:16 Optimizing Visibility-Based Search in Polygonal Domains

8 Ke Chen and Sariel Har-Peled. The Euclidean orienteering problem revisited. SIAM Journal
on Computing, 38(1):385–397, 2008.

9 Otfried Cheong, Alon Efrat, and Sariel Har-Peled. Finding a guard that sees most and a shop
that sells most. Discrete & Computational Geometry, 37:545–563, 2007.

10 Wei-Pang Chin and Simeon Ntafos. Optimum watchman routes. In Proceedings of the 2nd
Annual Symposium on Computational Geometry, pages 24–33, 1986.

11 Wei-Pang Chin and Simeon Ntafos. Shortest watchman routes in simple polygons. Discrete &
Computational Geometry, 6(1):9–31, 1991.

12 Timothy H. Chung, Geoffrey A. Hollinger, and Volkan Isler. Search and pursuit-evasion in
mobile robotics: A survey. Autonomous Robots, 31:299–316, 2011.

13 Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph S. B. Mitchell. Touring a sequence of
polygons. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pages
473–482, 2003.

14 Richard M. Dudley. Metric entropy of some classes of sets with differentiable boundaries.
Journal of Approximation Theory, 10(3):227–236, 1974.

15 Adrian Dumitrescu, Joseph S. B. Mitchell, and Paweł Żyliński. The minimum guarding tree
problem. Discrete Mathematics, Algorithms and Applications, 6(01):1450011, 2014.

16 Adrian Dumitrescu, Joseph S. B. Mitchell, and Paweł Żyliński. Watchman routes for lines
and line segments. Computational Geometry, 47(4):527–538, 2014.

17 Adrian Dumitrescu and Csaba D. Tóth. Watchman tours for polygons with holes. Computa-
tional Geometry, 45(7):326–333, 2012.

18 James N. Eagle. The optimal search for a moving target when the search path is constrained.
Operations Research, 32(5):1107–1115, 1984.

19 James N. Eagle and James R. Yee. An optimal branch-and-bound procedure for the constrained
path, moving target search problem. Operations Research, 38(1):110–114, 1990.

20 Lee-Ad Gottlieb, Robert Krauthgamer, and Havana Rika. Faster algorithms for orienteering
and k-tsp. Theoretical Computer Science, 914:73–83, 2022.

21 Leonidas Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert Tarjan. Linear
time algorithms for visibility and shortest path problems inside simple polygons. In Proceedings
of the 2nd Annual Symposium on Computational Geometry, pages 1–13, 1986.

22 Leonidas J. Guibas, Jean-Claude Latombe, Steven M. LaValle, David Lin, and Rajeev Motwani.
Visibility-based pursuit-evasion in a polygonal environment. In Algorithms and Data Structures:
5th International Workshop, WADS’97 Halifax, Nova Scotia, Canada August 6–8, 1997
Proceedings 5, pages 17–30. Springer, 1997.

23 Sariel Har-Peled and Mitchell Jones. Proof of Dudley’s convex approximation. arXiv preprint,
2019. arXiv:1912.01977.

24 Joseph S. B. Mitchell. Geometric shortest paths and network optimization. Handbook of
Computational Geometry, 334:633–702, 2000.

25 Joseph S. B. Mitchell. Approximating watchman routes. In Proceedings of the 24th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 844–855, 2013.

26 Simeon Ntafos and Markos Tsoukalas. Optimum placement of guards. Information Sciences,
76(1-2):141–150, 1994.

27 Joseph O’Rourke. Visibility. In Handbook of Discrete and Computational Geometry, pages
875–896. Chapman and Hall/CRC, 2017.

28 Michael Ian Shamos. Computational Geometry. Yale University, 1978.
29 Xuehou Tan. Fast computation of shortest watchman routes in simple polygons. Information

Processing Letters, 77(1):27–33, 2001.
30 Xuehou Tan, Tomio Hirata, and Yasuyoshi Inagaki. Corrigendum to “an incremental algorithm

for constructing shortest watchman routes”. International Journal of Computational Geometry
& Applications, 9(03):319–323, 1999.

31 K. E. Trummel and J. R. Weisinger. The complexity of the optimal searcher path problem.
Operations Research, 34(2):324–327, 1986.

https://arxiv.org/abs/1912.01977

Search-Space Reduction via Essential Vertices
Revisited: Vertex Multicut and Cograph Deletion
Bart M. P. Jansen #

Eindhoven University of Technology, The Netherlands

Ruben F. A. Verhaegh #

Eindhoven University of Technology, The Netherlands

Abstract
For an optimization problem Π on graphs whose solutions are vertex sets, a vertex v is called
c-essential for Π if all solutions of size at most c · opt contain v. Recent work showed that
polynomial-time algorithms to detect c-essential vertices can be used to reduce the search space
of fixed-parameter tractable algorithms solving such problems parameterized by the size k of the
solution. We provide several new upper- and lower bounds for detecting essential vertices. For
example, we give a polynomial-time algorithm for 3-Essential detection for Vertex Multicut,
which translates into an algorithm that finds a minimum multicut of an undirected n-vertex graph G

in time 2O(ℓ3) ·nO(1), where ℓ is the number of vertices in an optimal solution that are not 3-essential.
Our positive results are obtained by analyzing the integrality gaps of certain linear programs. Our
lower bounds show that for sufficiently small values of c, the detection task becomes NP-hard
assuming the Unique Games Conjecture. For example, we show that (2 − ε)-Essential detection
for Directed Feedback Vertex Set is NP-hard under this conjecture, thereby proving that the
existing algorithm that detects 2-essential vertices is best-possible.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Linear programming; Theory of computation → Rounding techniques; Theory of
computation → Fixed parameter tractability

Keywords and phrases fixed-parameter tractability, essential vertices, integrality gap

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.28

Related Version Full Version: https://arxiv.org/abs/2404.09769

Funding Bart M. P. Jansen: Supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 803421,
ReduceSearch).

1 Introduction

Preprocessing is an important tool for dealing with NP-hard problems. The idea is that
before starting a time-consuming computation on an input, one first exhaustively applies
simple transformation steps that provably do not affect the desired output, but which make
the subsequently applied solver more efficient. Preprocessing is often highly effective in
practice [1, 34].

There have been several attempts to theoretically explain the speed-ups obtained by
preprocessing. The concept of kernelization [12, 14], phrased in the language of parame-
terized complexity theory [9, 10], is one such attempt. Recently, Bumpus, Jansen, and de
Kroon [4] proposed an alternative framework for developing and analyzing polynomial-time
preprocessing algorithms that reduce the search space of subsequently applied algorithms
for NP-hard graph problems. They presented the first positive and negative results in this
framework, which revolves around the notion of so-called c-essential vertices. In this paper,
we revisit this notion by providing new preprocessing results and new hardness proofs.

© Bart M. P. Jansen and Ruben F. A. Verhaegh;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 28; pp. 28:1–28:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:b.m.p.jansen@tue.nl
https://orcid.org/0000-0001-8204-1268
mailto:r.f.a.verhaegh@tue.nl
https://orcid.org/0009-0008-8568-104X
https://doi.org/10.4230/LIPIcs.SWAT.2024.28
https://arxiv.org/abs/2404.09769
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Search-Space Reduction via Essential Vertices Revisited

To be able to discuss our results, we first introduce and motivate the concept of c-
essential vertices and the corresponding algorithmic preprocessing task. Our results apply
to optimization problems on graphs in which the goal is to find a minimum-size vertex set
that hits all obstacles of a certain kind. The (Undirected) Vertex Multicut problem
is a prime example. Given an undirected graph G, annotated by a collection T consisting
of pairs of terminal vertices, the goal is to find a minimum-size vertex set whose removal
disconnects all terminal pairs. The decision version of this problem is NP-complete, but
fixed-parameter tractable parameterized by the size of the solution: there is an algorithm by
Marx and Razgon [26] that, given an n-vertex instance together with an integer k, runs in
time 2O(k3) · nO(1) and outputs a solution of size at most k, if one exists. The running time
therefore scales exponentially in the size of the solution, but polynomially in the size of the
graph. This yields a great potential for preprocessing: if an efficient preprocessing phase
manages to identify some vertices S ⊆ V (G) that are guaranteed to be part of an optimal
solution, then finding a solution of size k in G reduces to finding a solution of size k − |S|
in G − S, thereby reducing the running time of the applied algorithm and its search space.
To be able to give guarantees on the amount of search-space reduction achieved, the question
becomes: under which conditions can a polynomial-time preprocessing algorithm identify
vertices that belong to an optimal solution?

Essential vertices. The approach that Bumpus et al. [4] take when answering this question
originates from the idea that it may be feasible to detect vertices as belonging to an optimal
solution when they are essential for making an optimal solution. This is formalized as follows.
For a real number c ≥ 1 and fixed optimization problem Π on graphs whose solutions are
vertex subsets, a vertex v of an input instance G is called c-essential if vertex v is contained
in all c-approximate solutions to the instance. Hence a c-essential vertex is not only contained
in all optimal solutions, but even in all solutions whose size is at most c · opt. To obtain
efficient preprocessing algorithms with performance guarantees, the goal then becomes to
develop polynomial-time algorithms to detect c-essential vertices in the input graph, when
they are present.

For some problems like Vertex Cover (in which the goal is to find a minimum-size
vertex set that intersects each edge), it is indeed possible to give a polynomial-time algorithm
that, given a graph G, outputs a set S of vertices that is part of an optimal vertex cover and
contains all 2-essential vertices. For optimization problems whose structure is more intricate,
like Odd Cycle Transversal, finding c-essential vertices from scratch still seems like a
difficult task. Bumpus et al. [4] therefore formulated a slightly easier algorithmic task related
to detecting essential vertices and proved that solving this simpler task is sufficient to be
able to achieve search-space reduction. For a vertex hitting set problem Π whose input is a
(potentially annotated) graph G and whose solutions are vertex sets hitting all (implicitly
defined) constraints, we denote by optΠ(G) the cardinality of an optimal solution to G. The
detection task is formally defined as follows, for each real c ≥ 1.

c-Essential detection for Π
Input: A (potentially annotated) graph G and integer k.
Task: Find a vertex set S ⊆ V (G) such that:
G1 if optΠ(G) ≤ k, then there is an optimal solution in G containing all of S, and
G2 if optΠ(G) = k, then S contains all c-essential vertices.

The definition above simplifies the detection task by supplying an integer k in addition
to the input graph, while only requiring the algorithm to work correctly for certain ranges
of k. The intuition is as follows: when k is correctly guessed as the size of an optimal

B. M. P. Jansen and R. F. A. Verhaegh 28:3

solution, the preprocessing algorithm should find all c-essential vertices, and is allowed to
find additional vertices as long as they are part of an optimal solution. Bumpus et al. [4] give
a dove-tailing-like scheme that manages to use algorithms for c-Essential detection for
Π to give improved fixed-parameter tractable running times for solving Π from scratch. The
exponential dependence of the running time of the resulting algorithm is not on the total size
of the solution, but only on the number of vertices in the solution that are not c-essential.
Hence their results show that large optimal solutions can be found efficiently, as long as they
are composed primarily out of c-essential vertices. For example, they prove that a minimum
vertex set intersecting all odd cycles (a solution to Odd Cycle Transversal) can be
computed in time 2.3146ℓ · nO(1), where ℓ is the number of vertices in an optimal solution
that are not 2-essential and which are therefore avoided by at least one 2-approximation.
Apart from polynomial-time algorithms for c-Essential detection for Π for various
combinations of Π and c, they also prove several lower bounds. One of their main lower
bounds concerns the Perfect Deletion problem, whose goal is to obtain a perfect graph
by vertex deletions [18]. They rule out the existence of a polynomial-time algorithm for
c-Essential detection for Perfect Deletion for any c ≥ 1, assuming FPT ̸= W[1].
(They even rule out detection algorithms running in time f(k) · nO(1) for some function f .)

We continue exploring the framework of search-space reduction by detecting essential
vertices, from two directions. We provide both upper bounds (new algorithms for c-Essential
detection for Π) as well as lower bounds. We start by discussing the upper bounds.

Our results: Upper bounds. The Vertex Multicut problem is the subject of our first
results. The problem played a pivotal role in the development of the toolkit of parameterized
algorithms for graph separation problems and stood as a famous open problem for years, until
being independently resolved by two teams of researchers [3, 26]. The problem is not only
difficult to solve exactly, but also to approximate: Chawla et al. [7] proved that, assuming
Khot’s [21] Unique Games Conjecture (UGC), it is NP-hard to approximate the edge-deletion
version of the problem within any constant factor. A simple transformation shows that the
same holds for the vertex-deletion problem.

Our first result (Theorem 4.2) is a polynomial-time algorithm for 3-Essential detection
for Vertex Multicut, which is obtained by analyzing the integrality gap of a restricted
type of linear program associated with the problem. Using known results, this preprocessing
algorithm translates directly into search-space reduction for the current-best FPT algorithms
for solving Vertex Multicut. This results in an algorithm (Corollary 4.3) that computes
an optimal vertex multicut in an n-vertex graph in time 2O(ℓ3) · nO(1), where ℓ is the number
of vertices in an optimal solution that are not 3-essential.

Our approach for essential detection also applies for the variation of Vertex Multicut
on directed graphs. Since the directed setting is more difficult to deal with, vertices have
to be slightly more essential to be able to detect them, resulting in a polynomial-time
algorithm for 5-Essential detection for Directed Vertex Multicut (Theorem 4.5).
This detection algorithm does not directly translate into running-time guarantees for FPT
algorithms, though, as Directed Vertex Multicut is W[1]-hard parameterized by the
size of the solution [29]. (When the solution is forbidden from deleting terminals, the directed
problem is already W [1]-hard with four terminal pairs, although the case of three terminal
pairs is FPT [17].)

Our second positive result concerns the Cograph (Vertex) Deletion problem. Given
an undirected graph G, it asks to find a minimum-size vertex set S such that G−S is a cograph,
i.e., the graph G − S does not contain the 4-vertex path P4 as an induced subgraph. The

SWAT 2024

28:4 Search-Space Reduction via Essential Vertices Revisited

problem is motivated by the fact that efficient algorithms for solving optimization problems
on cographs can often be extended to work on graphs which are close to being cographs,
as long as a deletion set is known [6, §6]. The decision version of Cograph Deletion is
NP-complete due to the generic results of Lewis and Yannakakis [24]. Parameterized by
the size k of the desired solution, Cograph Deletion is fixed-parameter tractable via
the method of bounded-depth search trees [5]: branching on vertices of a P4 results in a
running time of 4k · nO(1). Nastos and Gao [27] proposed a refined branching strategy by
exploiting the structure of P4-sparse graphs, improving the running time to 3.115k · nO(1),
following earlier improvements via the interpretation of Cograph Deletion as a 4-Hitting
Set problem [13, 16, 28]. The latter viewpoint also gives a simple polynomial-time 4-
approximation. Whether a (4 − ε)-approximation can be computed in polynomial time is
unknown; Drescher poses this [11, §8 Question 5] as an open problem for vertex-weighted
graphs.

Our second result (Lemma 4.6) is a polynomial-time algorithm for 3.5-Essential de-
tection for Cograph Deletion. It directly translates into an FPT algorithm (Corol-
lary 4.8) that, given a graph G, outputs a minimum set S for which G − S is a cograph
in time 3.115ℓ · nO(1); here ℓ is the number of vertices in an optimal solution that are not
3.5-essential. Similarly as for Vertex Multicut, our detection algorithm arises from a new
bound of 2.5 on the integrality gap of a restricted version of a natural linear-programming
relaxation associated to the deletion problem.

The fact that our algorithm detects 3.5-essential vertices is noteworthy. It is known [4,
§8] that for any c ≥ 1, an algorithm for c-Essential detection for Π follows from an
algorithm that computes a factor-c approximation for the problem of finding a minimum-size
solution avoiding a given vertex v. In this setting, a 4-approximation algorithm for Cograph
Deletion easily follows since the problem is a special case of d-Hitting Set. We consider
it interesting that we can obtain a detection algorithm whose detection constant c = 3.5 is
strictly better than the best-known approximation ratio 4 for the problem.

Since our positive results all arise from bounding the integrality gap of certain restricted
LP-formulations, we also study the integrality gap of a standard Cograph Deletion LP
and prove it to be 4 (Theorem 4.9) using the probabilistic method. This provides a sharp
contrast to the gap of 2.5 in our restricted setting.

Our results: Lower bounds. Our second set of results concerns lower bounds, showing
that for certain combinations of Π and c there are no efficient algorithms for c-Essential
detection for Π under common complexity-theoretic hypotheses. In their work, Bumpus
et al. [4] identified several problems Π such as Perfect Deletion for which the detection
problem is intractable for all choices of c. Their proofs are based on the hardness of FPT-
approximation for Dominating Set [30]. The setting for our lower bounds is different.
We analyze problems for which the detection task is polynomial-time solvable for some
essentiality threshold c, and investigate whether polynomial-time algorithms can exist for a
smaller threshold c′ < c.

Our most prominent lower bound concerns the Directed Feedback Vertex Set
problem (DFVS), which has attracted a lot of attention from the parameterized complexity
community [8, 25]. It asks for a minimum vertex set S of a directed graph G for which G − S

is acyclic. Svensson proved that under the UGC [32], the problem is NP-hard to approximate
to within any constant factor. Nevertheless, a polynomial-time algorithm for 2-Essential
detection for DFVS was given by Bumpus et al. [4, Lemma 3.3]. We prove (Theorem 5.2)
that the detection threshold 2 achieved by their algorithm is likely optimal: assuming the

B. M. P. Jansen and R. F. A. Verhaegh 28:5

UGC, the detection problem for c′ = 2 − ε is NP-hard for any ε ∈ (0, 1]. To prove this, we
show that an algorithm with c′ = (2 − ε) would be able to distinguish instances with small
solutions from instances with large solutions, while the hardness of approximation result
cited above [32] show this task to be NP-hard under the UGC.

Apart from Directed Feedback Vertex Set, we provide two further lower bounds.
For the Vertex Cover (VC) problem, an algorithm to detect 2-essential vertices is known [4].
Assuming the UGC, we prove (Theorem 5.6) that (1.5 − ε)-Essential detection for VC
is NP-hard for all ε ∈ (0, 0.5]. A simple transformation then shows (1.5 − ε)-Detection
for Vertex Multicut is also NP-hard under the UGC. These bounds leave a gap with
respect to the thresholds of the current-best detection algorithms (2 and 3, respectively).
We leave it to future work to close the gap.

Organization. The remainder of the paper is organized as follows. In Section 2 we give
preliminaries on graphs and linear programming. Section 3 introduces our formalization for
hitting set problems on graphs and provides the connection between integrality gaps and
detection algorithms. Section 4 contains our positive results, followed by the negative results
in Section 5. We conclude with some open problems in Section 6. Due to space limitations,
the proofs of statements marked (⋆) are deferred to the full version of this paper [20].

2 Preliminaries

We consider finite simple graphs, some of which are directed. Directed graphs or objects
defined on directed graphs will always be explicitly indicated as such. We use standard
notation for graphs and parameterized algorithms. We re-iterate the most relevant terminology
and notation, but anything not defined here may be found in the textbook by Cygan et al. [9]
or in the previous work on essential vertices [4].

Graph notation. We let Pℓ denote the path graph on ℓ vertices. The weight of a path in
a vertex-weighted graph is the sum of the weights of the vertices on that path, including
the endpoints. Given two disjoint vertex sets S1 and S2 in a (directed) graph G, we call a
third vertex set X ⊆ V (G) a (directed) (S1, S2)-separator in G if it intersects every (directed)
(S1, S2)-path in G. Note that X may intersect S1 and S2. If S1 or S2 is a singleton set, we
may write the single element of the set instead to obtain a (v, S2)-separator for example.
Menger’s theorem relates the maximum number of pairwise vertex-disjoint paths between
two (sets of) vertices to the minimum size of a separator between those two (sets of) vertices.
We consider the following formulation of the theorem:

▶ Theorem 2.1 ([31, Corollary 9.1a]). Let G be a directed graph and let s, t ∈ V (G) be
non-adjacent. Then the maximum number of internally vertex-disjoint directed (s, t)-paths is
equal to the minimum size of a directed (s, t)-separator that does not include s or t.

A fractional (directed) (S1, S2)-separator is a weight function that assigns every vertex in
a graph a non-negative weight such that every (directed) (S1, S2)-path has a weight of at
least 1. The total weight of a fractional (directed) separator is the sum of all vertex weights.

Linear programming notation. We employ well-known concepts from linear programming
and refer to a textbook for additional background [31]. A solution to a linear program (LP)
where all variables are assigned an integral value is called an integral solution. As we only
consider LPs with a one-to-one correspondence between its variables and the vertices in a

SWAT 2024

28:6 Search-Space Reduction via Essential Vertices Revisited

graph, integral solutions admit an alternative interpretation as vertex sets: the set of vertices
whose corresponding variables are assigned a positive value. We use the interpretations of
integral solutions as variable assignments or vertex sets interchangeably. We say that a
minimization LP has an integrality gap of at most c for some c ∈ R if the cost of an optimal
integral solution is at most c times the cost of an optimal fractional solution.

3 Essential vertices for Vertex Hitting Set problems

Our positive contributions all build upon the same result from Bumpus et al. [4, Theorem 4.1],
which relates integrality gaps of certain LPs to the existence of c-Essential detection
algorithms. A slightly generalized formulation of this can be found below as Theorem 3.1.
First, we introduce the required background and notation.

The result indicates a strategy towards constructing a polynomial-time algorithm for
c-Essential detection for Π for a vertex selection problem Π, by considering a specific
special variant of that problem, that we refer to as its v-Avoiding variant. It is defined almost
identically to the original problem Π, but the input additionally contains a distinguished
vertex v ∈ V (G) which is explicitly forbidden to be part of a solution.

The original theorem from Bumpus et al. [4] is specifically targeted at C-Deletion
problems for hereditary graph classes C. A graph class C is said to be hereditary when
it exhibits the property that all induced subgraphs of a graph in C are again in C. The
corresponding C-Deletion problem is that of finding a minimum size vertex set whose
removal turns the input graph into one contained in C. We remark however that the theorem
holds for a broader collection of problems, namely those that can be described as Vertex
Hitting Set problems. To define which problems qualify as a Vertex Hitting Set
problem, we first recall the definition of the well-known optimization problem Hitting Set,
on which our definition of Vertex Hitting Set problems is based.

Hitting Set
Input: A universe U and a collection S ⊆ 2U of subsets of U .
Feasible solution: A set X ⊆ U such that X ∩ S ̸= ∅ for all S ∈ S.
Objective: Find a feasible solution of minimum size.

We define Vertex Hitting Set problems as vertex selection problems that can be
described as a special case of Hitting Set where the universe U is the vertex set of the
input graph and the collection S is encoded implicitly by the graph.

This definition in particular contains all C-Deletion problems for hereditary graph
classes C. This is because every hereditary graph class can be characterized by a (possibly
infinite) set of forbidden induced subgraphs. A graph G is in C if and only if none of its
induced subgraphs are isomorphic to a forbidden induced subgraph. Therefore, a C-Deletion
instance G is equivalent to the Hitting Set instance (V (G), S), with S being the collection
of all the vertex subsets that induce a forbidden subgraph in G.

Now, as mentioned, the v-Avoiding variants of vertex selection problems are of particular
interest. A useful consequence of considering Vertex Hitting Set problems as special cases
of Hitting Set, is that this yields a well-defined canonical LP formulation for such problems
that can easily be modified to describe their v-Avoiding variant. This LP formulation
is based on the following standard LP for a Hitting Set instance (U, S), which uses
variables xu for every u ∈ U :

B. M. P. Jansen and R. F. A. Verhaegh 28:7

minimize
∑
u∈U

xu

subject to:
∑
u∈S

xu ≥ 1 for every S ∈ S

0 ≤ xu ≤ 1 for every u ∈ U

To describe the v-Avoiding variant of a Vertex Hitting Set problem, this LP can simply
be modified by adding the constraint xv = 0. For a given Vertex Hitting Set problem Π,
a graph G and a vertex v ∈ V (G), we denote the resulting LP as LPΠ(G, v).

Although the original theorem from Bumpus et al. [4] makes a statement about C-
deletion problems only, it is not too hard to see that this statement also holds for any
other Vertex Hitting Set problem. We therefore present this result as the following slight
generalization.

▶ Theorem 3.1. Let Π be a Vertex Hitting Set problem and let c ∈ R≥1. Then there
exists a polynomial-time algorithm for (c + 1)-Essential detection for Π if the following
two conditions are met:
1. For all G and v ∈ V (G), there is a polynomial-time separation oracle for LPΠ(G, v).
2. For all G and v ∈ V (G) for which {v} solves Π on G, the integrality gap of LPΠ(G, v) is

at most c.

This statement admits a proof that is almost identical to the proof by Bumpus et al. [4,
Theorem 4.1]. At any point in that proof where the assumption is used that Π is a C-
Deletion problem for some hereditary C, this assumption may be replaced by the property
that any superset of a solution to Π is also a solution. This property is satisfied for every
Vertex Hitting Set problem. Otherwise, no changes to the proof are required. We
therefore refer the reader to this prior work for the details of the proof.

Many known results about the approximation of Hitting Set or about the integrality
gap of Hitting Set LPs consider the restriction to d-Hitting Set. This is the problem
obtained by requiring every S ∈ S in the input to be of size at most d for some positive
integer d. Both upper bounds and lower bounds are known for the integrality gaps of the
standard LP describing d-Hitting Set instances. The standard LP is the linear program
given above for the general Hitting Set problem.

It is well-known that this LP has an integrality gap of at most d and that there exist
instances for which this bound is tight. This result is for example mentioned as an exercise
in a book on approximation algorithms [33, Exercise 15.3], framed from the equivalent
perspective of the Set Cover problem.

4 Positive results

This section contains our positive results for essential vertex detection. For three different
problems Π and corresponding values of c, we provide polynomial-time algorithms for c-
Essential detection for Π. The first two of these, being strongly related, are presented in
Section 4.1. There, we provide c-Essential detection algorithms for Vertex Multicut
and Directed Vertex Multicut with c = 3 and c = 5 respectively. Afterward, we provide
a 3.5-Essential detection algorithm for the Cograph Deletion problem in Section 4.2.

SWAT 2024

28:8 Search-Space Reduction via Essential Vertices Revisited

4.1 Vertex Multicut
Our first two positive results concern the well-studied Vertex Multicut problem and
its directed counterpart Directed Vertex Multicut. These are optimization problems
defined as follows.

(Directed) Vertex Multicut
Input: A (directed) graph G and a set of (ordered) vertex pairs T = {(s1, t1), . . . , (sr, tr)}

called the terminal pairs.
Task: Find a minimum size vertex set S ⊆ V (G) such that there is no (si, ti) ∈ T for which

G − S contains a (directed) (si, ti)-path.

We start by observing that both problems are Vertex Hitting Set problems: if we
let PT (G) be the collection of vertex subsets that form a (directed) (si, ti)-path in G, then
the (Directed) Vertex Multicut instance (G, T) is equivalent to the Hitting Set
instance (V (G), PT (G)). This interpretation of the problems as special cases of Hitting Set
is also captured by the standard LP formulations of the problems, on which the v-Avoiding
LP below is based:

minimize
∑

u∈V (G)

xu

subject to:
∑

u∈V (P)

xu ≥ 1 for every (directed) path P from some si to ti

xv = 0
0 ≤ xu ≤ 1 for u ∈ V (G)

The set of constraints in this LP formulation not only depends on the structure of the
input graph G, but also on the set T of terminal pairs. Hence, we denote the LP above
as LPVM(G, T , v) for undirected G or as LPDVM(G, T , v) for directed G. The standard LP
formulations of Vertex Multicut and Directed Vertex Multicut are obtained by
simply removing the constraint xv = 0.

The undirected case. We start with the undirected version of the problem and show
in Lemma 4.1 that LPVM(G, T , v) has an integrality gap of at most 2 for all Vertex
Multicut instances (G, T) where v ∈ V (G) is such that {v} is a solution. This bound
yields a polynomial-time algorithm for 3-Essential detection for Vertex Multicut
as presented in Theorem 4.2.

▶ Lemma 4.1. Let (G, T) be a Vertex Multicut instance with some v ∈ V (G) such that
{v} is a solution for this instance. Then LPVM(G, T , v) has an integrality gap of at most 2.

Proof. Let x = (xu)u∈V (G) be an optimal solution to LPVM(G, T , v) and let z =
∑

u∈V (G) xu

be its value. If we interpret the values of xu, as given by x, as vertex weights, then by
definition of the LP, all (si, ti)-paths have weight at least 1 for all {si, ti} ∈ T . Moreover, all
such paths must pass through v because {v} is a solution, so we know for every {si, ti} ∈ T
that all (si, v)-paths or all (ti, v)-paths (or both) have weight at least 1

2 .
We proceed by stating a reformulation of this property. Let D ⊆ V (G) be the set of all

vertices u such that every (u, v)-path has weight at least 1
2 . Then, the above property can

also be described as follows: for every {si, ti} ∈ T , at least one of si and ti is in D.

B. M. P. Jansen and R. F. A. Verhaegh 28:9

Using this alternate formulation, it follows that every (v, D)-separator X is also a valid
solution to the given Vertex Multicut instance. To see this, consider an arbitrary (si, ti)-
path P for some arbitrary {si, ti} ∈ T . Since {v} is a solution, P intersects v. If si ∈ D,
then the fact that X is a (v, D)-separator implies that X intersects the subpath of P between
v and si. The same holds for ti. Since at least one of si and ti is in D, it follows that X

must intersect P . Because P was an arbitrary (si, ti)-path for an arbitrary terminal pair
{si, ti}, X hits all such paths and therefore it is a vertex multicut.

Now to prove that LPVM(G, T , v) has an integrality gap of at most 2, it suffices to show
that there exists a (v, D)-separator X ⊆ V (G) of size at most 2z that does not contain v.
To see that this is indeed the case, we start by constructing a fractional (v, D)-separator
f : V (G) → R of weight at most 2z and with f(v) = 0. We obtain f by simply doubling
the values given by x, i.e.: f(u) := 2xu for all u ∈ V (G). This step is inspired by a proof
from Golovin, Nagarajan, and Singh that shows an upper bound on the integrality gap of a
Multicut variant in trees [15].

We observe that indeed f(v) = 2 · xv = 0, since x is a solution to LPVM(G, T , v), which
requires that xv = 0. Furthermore, D was constructed such that all paths from v to a vertex
in D have a weight of at least 1

2 under the vertex weights as given by x. Hence, under the
doubled weights of f , all such paths have a weight of at least 1, witnessing that f is in fact a
fractional (v, D)-separator.

The final step of the proof is now to show that the existence of this fractional (v, D)-
separator of weight 2z implies the existence of an integral (v, D)-separator of size at most
2z that does not contain v. To do so, we use Menger’s theorem on the auxiliary directed
graph G′ obtained from G by turning all undirected edges into bidirected edges, while adding
a sink node t with incoming edges from all vertices in D.

Consider a maximum collection P of internally vertex-disjoint directed (v, t)-paths in G′.
Let X ⊆ V (G′) \ {v, t} be a directed (v, t)-separator in G′ of size |P|, whose existence is
guaranteed by Theorem 2.1. The construction of G′ ensures that X is a (v, D)-separator in G

that does not contain v, and therefore corresponds to an integral solution to LPVM(G, T , v).
To bound the integrality gap by 2, it therefore suffices to prove that |P| = |X| ≤ 2z.

For each (v, t)-path P ∈ P in G′, the prefix obtained by omitting its endpoint t yields
a (v, D)-path in G. Since f is a fractional (v, D)-separator, it must assign every such prefix
of P ∈ P a weight of at least 1. Because f(v) = 0 and because the paths in P are internally
vertex-disjoint, we find that the total weight of f must be at least |P| = |X|. Since the
weight of f is at most 2z, we find that |P| = |X| ≤ 2z. This concludes the proof. ◀

We can even construct Vertex Multicut instances (G, T) that are solved by some
{v} ⊆ V (G) for which the integrality gap of LPVM(G, T , v) is arbitrarily close to 2, showing
that the bound in Lemma 4.1 is tight. To construct such an instance, let G be a (large) star
graph, let v ∈ V (G) be its center and let T =

(
V (G)\{v}

2
)
. Clearly, {v} is a solution to the

Vertex Multicut instance (G, T).
To determine the integrality gap of LPVM(G, T , v), we first note that any solution to the

Vertex Multicut instance that avoids v must, at least, include all but one of the leaves
from G. Any such set is indeed a solution, which shows that the smallest integral solution to
LPVM(G, T , v) has value |V (G)| − 2. A smaller fractional solution to the program may be
obtained by assigning every leaf of G a value of 1

2 , which would yield a solution with a total
value of 1

2 · (|V (G)| − 1). Observe that such a construction of G, T , and v can be used to get
an LP with an integrality gap arbitrarily close to 2 by having the star graph G be arbitrarily
large.

SWAT 2024

28:10 Search-Space Reduction via Essential Vertices Revisited

Regardless of the bound on the integrality gap being tight, Lemma 4.1 and Theorem 3.1
combine to prove the following result.

▶ Theorem 4.2. (⋆) There exists a polynomial-time algorithm for 3-Essential detection
for Vertex Multicut.

The algorithm to detect 3-essential vertices leads in a black-box fashion to a search-space
reduction guarantee for the current-best algorithm for solving Vertex Multicut due to
Marx and Razgon [26]. This follows from a result of Bumpus et al. [4, Theorem 5.1] (cf. [20,
Theorem A.1]). While they originally stated their connection between essential detection
and search-space reduction for C-Deletion problems, it is easy to see that the same proof
applies for any Vertex Hitting Set problem: the only property of C-Deletion that is
used in their proof is that for any vertex set X ⊆ V (G), a vertex set Y ⊆ V (G − X) is a
solution to G − X if and only if X ∪ Y is a solution to G; this property holds for any Vertex
Hitting Set problem.

▶ Corollary 4.3. There is an algorithm that, given a Vertex Multicut instance (G, T)
on n vertices, outputs an optimal solution in time 2O(ℓ3) · nO(1), where ℓ is the number of
vertices in an optimal solution that are not 3-essential.

The directed case. Keeping in mind the techniques used to prove Lemma 4.1, we proceed
to the next problem: Directed Vertex Multicut. By similar arguments, we find the v-
Avoiding LP of this problem to have a bounded integrality gap as well. However, adaptations
to these arguments are required to take the directions of edges into consideration, yielding a
higher bound on the integrality gap of the directed version of the problem.

▶ Lemma 4.4. (⋆) Let (G, T) be a Directed Vertex Multicut instance with some
v ∈ V (G) such that {v} is a solution for it. Then LPDVM(G, T , v) has an integrality gap of
at most 4.

Similar to the undirected setting, this upper bound on the integrality gap leads to the
following algorithmic result when combined with Theorem 3.1.

▶ Theorem 4.5. There exists a polynomial-time algorithm for 5-Essential detection
for Directed Vertex Multicut.

This statement admits a proof that is almost identical to the proof of Theorem 4.2, since the
shortest-path algorithm that provides the separation oracle of the Vertex Multicut LP
can also take directed graphs as input.

4.2 Cograph Deletion
Our next positive result concerns the Cograph Deletion problem. As this is a specific
case of C-Deletion, this is more in line with the original research direction for c-Essential
detection introduced by Bumpus et al. [4], where a framework was built around C-Deletion
problems. The Cograph Deletion problem is defined as follows.

Cograph Deletion
Input: An undirected graph G.
Task: Find a minimum size set S ⊆ V (G) such that G − S is a cograph (i.e.: G − S does

not contain a path on 4 vertices as an induced subgraph).

B. M. P. Jansen and R. F. A. Verhaegh 28:11

We start by observing that the Cograph Deletion problem is a Vertex Hitting Set
problem: if we let P4(G) be the collection of vertex subsets that induce a P4 in G, then the
Cograph Deletion instance G is equivalent to the Hitting Set instance (V (G), P4(G)).
Again, motivated by Theorem 3.1, we study the v-Avoiding LP for this problem:

minimize
∑

u∈V (G)

xu

subject to:
∑

u∈V (H)

xu ≥ 1 for every induced subgraph H of G isomorphic to P4

xv = 0
0 ≤ xu ≤ 1 for u ∈ V (G)

For a given graph G and vertex v ∈ V (G), we denote the LP above as LPCD(G, v). Whenever
v is such that G − v is a cograph, the resulting LP admits a simple upper bound on the
integrality gap. This bound is derived from the observation that the v-Avoiding Cograph
Deletion problem is a special case of 3-Hitting Set: the vertex sets to be hit in the
problem are the triplets of vertices that, together with v, induce a P4 in G. As the natural
LP describing 3-Hitting Set has an integrality gap of at most 3, it follows that the natural
LP formulation of v-Avoiding Cograph Deletion, to which the above LP is equivalent,
also has an integrality gap of at most 3.

This section is dedicated to proving a stronger result than this trivial bound. We prove
that, whenever v is such that G−v is a cograph, LPCD(G, v) has an integrality gap of at most
2.5. To prove this, we use a method inspired by iterative rounding [19], where an approximate
integral solution can be obtained by solving the LP, picking all vertices that receive a large
enough value, updating the LP to no longer contain these vertices and repeating these steps
until a solution is found.

For our purposes, we consider values of at least 0.4 to be “large enough”. However, we will
see that an extension to the original method is required since LPCD(G, v) is not guaranteed
to always have an optimal solution that assigns at least one vertex a value of ≥ 0.4. This
issue is reflected in the inductive proof below by having the step case split into two subcases.
The first of these deals with the standard iterative rounding setup, while the second subcase
deals with the possibility of an optimal solution not assigning any vertex a large value.

▶ Lemma 4.6. Let G be a graph and let v ∈ V (G) be such that G − v is a cograph. Then
LPCD(G, v) has an integrality gap of at most 2.5.

Proof. We prove the statement by induction on the value of an optimal fractional solution
to the linear program.

First, consider as base case that LPCD(G, v) has an optimal fractional solution of value 0.
Then this solution is the all-zero solution. This is also an integral optimum solution to the
program, so the integrality gap of the program is 1 and the claim holds.

Next, let x = (xu)u∈V (G) be an optimal solution to LPCD(G, v), let z =
∑

u∈V (G) xu be
its value and let V≥0.4 ⊆ V (G) be the set of vertices that are assigned a value of at least 0.4
in this solution. We distinguish two cases.

Case 1. Suppose V≥0.4 ̸= ∅. Consider the pair (G − V≥0.4, v) and note that (G − V≥0.4) − v,
being an induced subgraph of G − v, is a cograph. Also note that the restriction of x
to G − V≥0.4 is a feasible solution to LPCD(G − V≥0.4, v). This solution has a value of
z −

∑
u∈V≥0.4

xu ≤ z − 0.4 · |V≥0.4|, which is strictly smaller than z by the assumption that
V≥0.4 ̸= ∅. If we let zres be the value of an optimal solution to LPCD(G − V≥0.4, v), then this
implies that zres ≤ z − 0.4|V≥0.4| < z as well.

SWAT 2024

28:12 Search-Space Reduction via Essential Vertices Revisited

Then, by the induction hypothesis, an integral solution Vres to LPCD(G − V≥0.4, v) with
|Vres| ≤ 2.5zres exists. To prove that LPCD(G, v) has an integrality gap of at most 2.5, we
proceed by showing that Vres ∪ V≥0.4 is an integral solution to LPCD(G, v) with value at most
2.5z. We start by arguing that Vres ∪ V≥0.4 is a valid integral solution.

First note that neither Vres nor V≥0.4 contains v since both LPCD(G − V≥0.4, v) and
LPCD(G, v) require xv = 0. Therefore, the union of these two sets also does not contain v.
Secondly, note that Vres (by construction of LPCD(G−V≥0.4, v)) contains a vertex from every
induced P4 in G that does not already have a vertex in V≥0.4. As such, Vres ∪ V≥0.4 contains
a vertex from every induced P4 in G, which makes it a feasible solution to LPCD(G, v).

Knowing this, it remains to prove that Vres ∪ V≥0.4 has size at most 2.5z. Recall that we
derived zres ≤ z − 0.4 · |V≥0.4|. We can use this inequality to make the following derivation:

|Vres ∪ V≥0.4| ≤ |Vres| + |V≥0.4| ≤ 2.5zres + |V≥0.4| by definition of Vres

≤ 2.5 (z − 0.4 · |V≥0.4|) + |V≥0.4| by the above inequality
= 2.5z − |V≥0.4| + |V≥0.4| = 2.5z since 2.5 · 0.4 = 1

Case 2. Suppose V≥0.4 = ∅. Let V ∗ ⊆ V (G) \ {v} be the set of vertices other than v that
are part of at least one induced P4 in G. To prove that LPCD(G, v) has an integrality gap of
at most 2.5, we show that the smaller set of V ∗ ∩ NG(v) and V ∗ \ NG(v) is a solution to the
program with size at most 2.5z.

We start by proving that V ∗ ∩ NG(v) and V ∗ \ NG(v) are both feasible solutions to
LPCD(G, v). We do so using an observation about the structure of the graph P4. Observe
that this graph has the property that each vertex has at least one neighbor and at least one
non-neighbor. Since v is part of every induced P4 in G by assumption, this means that every
induced P4 in G contains both a neighbor and a non-neighbor of v.

The above observation implies that V ∗ ∩ NG(v) and V ∗ \ NG(v) both intersect all
induced subgraphs of G isomorphic to P4. Hence, both of these sets are feasible solutions to
LPCD(G, v). It remains to prove that the smaller of the two sets has a size of at most 2.5z.

Since V ∗ ∩NG(v) and V ∗ \NG(v) form a partition of V ∗ into two parts, the smaller of the
two will always be of size at most |V ∗|/2. Therefore, it suffices to show that |V ∗|/2 ≤ 2.5z.
To prove this, we start by showing that the assumption that V≥0.4 = ∅ implies that xw ≥ 0.2
for all vertices w ∈ V ∗.

We prove this property by contradiction, so suppose there is some vertex w ∈ V (G) \ {v}
that is part of an induced P4, but which has xw < 0.2. Let H be an induced subgraph of G

that is isomorphic to P4 and with w ∈ V (H). Because G − v is a cograph, v is contained in
every induced P4 and in particular v ∈ V (H). By definition of LPCD(G, v), we have xv = 0.
By the assumption that V≥0.4 = ∅, the two vertices in V (H) \ {w, v} have value at most 0.4,
so

∑
u∈V (H) xu < 1, which contradicts the validity of x.

Knowing that xw ≥ 0.2 for all w ∈ V ∗, it follows that z =
∑

u∈V (G) xu ≥ 0.2|V ∗|.
Rewriting this inequality, we obtain |V ∗|/2 ≤ 2.5z. ◀

At the moment, we are not aware of any examples of pairs (G, v) where G−v is a cograph
and for which LPCD(G, v) has an integrality gap of 2.5. Therefore, the bound above does
not have to be tight and the integrality gap of such programs may even be as small as 2.
However, there do exist pairs (G, v) where G − v is a cograph and for which LPCD(G, v) has
an integrality gap arbitrarily close to 2.

Such a pair (G, v) may be obtained by constructing G as the union of m disjoint edges
and adding the vertex v to it which is adjacent to exactly one endpoint of each of these m

edges. Then, any integral solution to LPCD(G, v) must include, at least, one endpoint from
all but one of the original m edges. Any such set of vertices is in fact a feasible integral
solution, so a smallest integral solution has size m − 1.

B. M. P. Jansen and R. F. A. Verhaegh 28:13

An optimal fractional solution may be obtained by assigning all m neighbors of v a
value of 0.5, which yields a total value of m/2. Hence, the integrality gap of LPCD(G, v) is
m−1
m/2 = 2 · m−1

m , which can be arbitrarily close to 2 for arbitrarily large m.
Like earlier, the upper bound on the integrality gap shown in Lemma 4.6 leads to the

following algorithmic result.

▶ Theorem 4.7. (⋆) There exists a polynomial-time algorithm for 3.5-Essential detection
for Cograph Deletion.

The algorithm to detect 3.5-essential vertices leads to a search-space reduction guarantee
for the current-best parameterized algorithm for Cograph Deletion [27] via Theorem 5.1
by Bumpus et al. [4].

▶ Corollary 4.8. There is an algorithm that, given a Cograph Deletion instance G on n

vertices, outputs an optimal solution in time 3.115ℓ · nO(1), where ℓ is the number of vertices
in an optimal solution that are not 3.5-essential.

In the full version of this paper [20, Section 4.2.1] we contrast the integrality gap of 2.5
for the v-avoiding version of Cograph Deletion to the standard version for the problem,
for which we provide the following lower bound using the probabilistic method.

▶ Theorem 4.9. (⋆) For all ε > 0, the integrality gap of the standard Cograph Deletion
LP is larger than 4 − ε.

5 Hardness results

In this section, we show two main hardness results regarding essential detection algorithms.
The first of these concerns Directed Feedback Vertex Set (DFVS). The objective
in this problem is to find a smallest vertex set S in a directed input graph G such that
G − S is acyclic. We slightly abuse notation by using the acronym DFVS to denote both
a (not necessarily optimal) solution to a given input and the name of the problem itself.
Additionally, we let DFVS(G) denote the size of a smallest DFVS in G. The hardness result
obtained for DFVS can be extended to Directed Vertex Multicut. The second result
concerns Vertex Cover (VC) and it can be extended to other vertex hitting set problems
on undirected graphs, including Vertex Multicut.

Our results are based on the hardness assumption posed by the Unique Games Conjecture
(UGC) [21]. Although the conjecture has remained open since its introduction in 2002, many
conditional hardness results in the area of approximation algorithms follow from it. Before
stating our first new hardness result, we mention the known result it is derived from, which
itself is an implication of the UGC. By the nature of the UGC, many results derived from it
show the conditional hardness of distinguishing between two types of problem inputs: one
with a very small solution and one with a very large solution. Indeed, we derive our hardness
from one such result due to Svensson [32, Theorem 1.1] that implies the following.

▶ Lemma 5.1. (⋆) Assuming the UGC, the following problem is NP-hard for any integer
r ≥ 2 and sufficiently small constant δ > 0. Given a directed n-vertex graph G, distinguish
between the following two cases:

DFVS(G) ≤
(1−δ

r + δ
)

n

DFVS(G) ≥ (1 − δ)n

We use this formulation to prove the following.

▶ Theorem 5.2. Assuming the UGC, (2 − ε)-Essential detection for DFVS is NP-hard
for any ε ∈ (0, 1].

SWAT 2024

28:14 Search-Space Reduction via Essential Vertices Revisited

Proof. Let ε ∈ (0, 1] be given. We can assume w.l.o.g. that 2
ε is integral. If not, we could

consider some ε′ < ε such that 2
ε′ is integer and prove hardness for (2 −ε′)-essential detection.

As a (2 − ε)-essential detection algorithm is also a valid algorithm for (2 − ε′)-essential
detection, this would imply the hardness of (2 − ε)-essential detection as well.

Now, we use Lemma 5.1 as a starting point for hardness. To do so, let G be an arbitrary
directed graph on n vertices. To use Lemma 5.1, we show how to reduce G into a directed
graph G′, such that solving (2 − ε)-Essential detection for DFVS on G′ allows us
to distinguish between DFVS(G) ≤

(1−δ
r + δ

)
n and DFVS(G) ≥ (1 − δ)n for some integer

r ≥ 2 and arbitrarily small δ > 0. We assume w.l.o.g. that n · ε/2 is integer. If not, we could
consider the graph obtained by having 2/ε independent copies of G instead, as the minimum
size of a DFVS relative to the total graph size would be the same. We proceed by explaining
the reduction, after which we prove its correctness.

Our reduction starts with the directed graph G and depends on the value of ε. The full
version of this paper contains a visual example [20, Figure 1]. We start the construction of G′

as a copy of G. To avoid confusion between vertices in G and G′, we denote the current vertex
set of G′ as P . Next, we expand the graph with two additional sets of vertices Qin and Qout.
These sets each consist of m := (1 − ε

2)n vertices, which is integer by our assumptions on n

and ε. We denote the vertices of Qin as q1, . . . , qm and the vertices of Qout as q′
1, . . . , q′

m. We
define Q := Qin ∪ Qout.

We complete the construction of G′ by adding more arcs to it. For every i ∈ [m], we add
the arc (qi, q′

i). For every p ∈ P and qi ∈ Qin, we add the arc (p, qi). For every p ∈ P and
q′

i ∈ Qout, we add the arc (q′
i, p). This completes the construction of G′. Observe that it

ensures that (p, qi, q′
i) is a directed cycle for every p ∈ P and i ∈ [m].

To prove the correctness of this reduction, we show that the output of an algorithm for
(2 − ε)-Essential detection for DFVS on G′ can be used as subroutine to distinguish
between DFVS(G) ≤

(1−δ
r + δ

)
n and DFVS(G) ≥ (1 − δ)n for some integer r ≥ 2 and

arbitrarily small δ > 0. In particular, we show that this is possible for r = 4
ε , which is integer

by the assumption that 2
ε is integer. From now on, we fix r = 4

ε and δ > 0 to be arbitrarily
small so that δ ≤ ε

4 in particular.
Now, suppose that an algorithm for (2 − ε)-Essential detection for DFVS exists

and let S ⊆ V (G′) be its output when run on G′ with k set to n. (Recall, k represents a
guess for (an upper bound) of the size of an optimal solution in G′. In this setting, that
would be a guess for the size of a minimum size DFVS in G′.) We show that the following
two implications hold:

▷ Claim 5.3. (⋆) If DFVS(G) ≤
(1−δ

r + δ
)

n, then |S| < n.

▷ Claim 5.4. (⋆) If DFVS(G) ≥ (1 − δ)n, then |S| = n.

Then, simply checking the size of the output set S suffices to distinguish between DFVS(G) ≤(1−δ
r + δ

)
n and DFVS(G) ≥ (1 − δ)n. From Lemma 5.1, we know that this distinction is

NP-hard to make under the UGC, meaning that (2 − ε)-Essential detection for DFVS
is also NP-hard when assuming the UGC. To prove Theorem 5.2, it therefore suffices to
prove Claim 5.3 and Claim 5.4. The full proofs can be found in the full version.

Proof sketch for Claim 5.3. Let X be a smallest DFVS in G. It follows from the construction
of G′ that the set X ∪ Qin is a DFVS in G′. Its size is strictly smaller than n, which follows
from our choice of r and by δ being arbitrarily small. Since we invoke the algorithm for
(2 − ε)-Essential detection for DFVS with k = n, by Property (G1) the set S must be
a subset of some smallest DFVS in G′. This implies that |S| < n, proving the claim. ◁

B. M. P. Jansen and R. F. A. Verhaegh 28:15

Proof sketch for Claim 5.4. Suppose that DFVS(G) ≥ (1 − δ)n. By construction of G′, the
set P is a DFVS in G′ so that DFVS(G′) ≤ |P | = n. We aim to show that P is in fact the
unique smallest DFVS in G′, by showing that all vertices in P are (2 − ε)-essential in G′

and therefore cannot be avoided in any (2 − ε)-approximate solution, let alone in an optimal
solution. Assuming the (2 − ε)-essentiality of the vertices in P , it follows from Property (G2)
that the set S (the output of running a (2 − ε)-Essential detection for DFVS algorithm
on G′ with k set to n) must contain all of P , so |S| ≥ n. By Property (G1), no other vertices
can be in S, so |S| = n.

To establish the claim, it therefore suffices to prove that all vertices of P are (2 − ε)-
essential. By construction of G′, each vertex p ∈ P forms a directed cycle with each of the m

pairs (qi, q′
i) in Q. Any solution avoiding p therefore contains at least m vertices from Q, but

also contains at least DFVS(G) ≥ (1 − δ)n vertices from P to hit all cycles of G′[P] = G.
Our choice of m and δ ensure m + (1 − δ)n ≥ (2 − ε)n ≥ (2 − ε)DFVS(G′). ◁

This concludes the proof of Theorem 5.2. ◀

The lower bound of Theorem 5.2 yields an analogous lower bound for Directed Vertex
Multicut, since the set of solutions for Directed Feedback Vertex Set on a graph G

equals the set of solutions to the Directed Vertex Multicut instance obtained from G

by introducing a terminal pair (u2, u1) for every arc (u1, u2) of G.

▶ Corollary 5.5. Assuming the UGC, (2−ε)-Essential detection for Directed Vertex
Multicut is NP-hard for any ε > 0.

By applying the proof technique above, but starting from a result about hardness of
approximation for d-Hitting Set [22], we prove the following lower bound for Vertex
Cover. It implies the same lower bound for Undirected Vertex Multicut.

▶ Theorem 5.6. (⋆) Assuming the UGC, (1.5 − ε)-Essential detection for VC is
NP-hard for any ε ∈ (0, 0.5].

▶ Corollary 5.7. (⋆) Assuming the UGC, (1.5 − ε)-Essential detection for Vertex
Multicut is NP-hard for any ε ∈ (0, 0.5].

6 Conclusion and discussion

We revisited the framework of search-space reduction via the detection of essential vertices.
The improved running-time guarantees for fixed-parameter tractable algorithms that result
from our detection algorithms give insight into which types of inputs of NP-hard vertex
hitting set problems can be solved efficiently and optimally: not only the inputs whose total
solution size is small, but also those in which all but a small number of vertices of an optimal
solution are essential. Our detection algorithms arise by analyzing the integrality gap for the
v-Avoiding version of the corresponding LP-relaxation, which only has to be analyzed for
inputs in which {v} is a singleton solution. Our results show that the integrality gaps in this
setting are much smaller than for the standard linear program of the hitting set formulation.

For Directed Feedback Vertex Set, our lower bound shows that the polynomial-time
algorithm that detects 2-essential vertices is best-possible under the UGC. For Vertex
Cover and Vertex Multicut, our lower bounds do not match the existing upper bounds.
It would be interesting to close these gaps.

Our positive results rely on standard linear programming formulations of the associated
hitting set problems. In several scenarios, algorithms based on the standard linear program
can be improved by considering stronger relaxations such as those derived from the Sherali-
Adams hierarchy or Lasserre-hierachy (cf. [23]). For example, Aprile, Drescher, Fiorini, and

SWAT 2024

28:16 Search-Space Reduction via Essential Vertices Revisited

Huynh [2] proved that for the Cluster Vertex Deletion problem (which asks to hit
all the induced P3 subgraphs) the integrality gap of the standard LP-formulation is 3, but
decreases to 2.5 using the first round of the Sherali-Adams hierarchy. Applying (1/ε)O(1)

rounds further decreases the gap to 2 + ε. Can such hierarchies lead to better algorithms for
c-Essential detection?

So far, the notion of c-essentiality has been explored for vertex hitting set problems on
graphs. For other optimization problems whose solutions are subsets of objects (for example,
edge subsets, or subsets of tasks in a scheduling problem) one can define c-essential objects as
those contained in all c-approximate solutions. Does this notion have interesting applications
for problems that are not about graphs?

References
1 Tobias Achterberg, Robert E. Bixby, Zonghao Gu, Edward Rothberg, and Dieter Weninger.

Presolve reductions in mixed integer programming. Technical Report 16-44, ZIB, Takustr.7,
14195 Berlin, 2016. URL: http://nbn-resolving.de/urn:nbn:de:0297-zib-60370.

2 Manuel Aprile, Matthew Drescher, Samuel Fiorini, and Tony Huynh. A tight approximation
algorithm for the cluster vertex deletion problem. Math. Program., 197(2):1069–1091, 2023.
doi:10.1007/S10107-021-01744-W.

3 Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is FPT. SIAM J. Comput.,
47(1):166–207, 2018. doi:10.1137/140961808.

4 Benjamin Merlin Bumpus, Bart M. P. Jansen, and Jari J. H. de Kroon. Search-space reduction
via essential vertices. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman,
editors, Proceedings of the 30th Annual European Symposium on Algorithms, ESA 2022, volume
244 of LIPIcs, pages 30:1–30:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.ESA.2022.30.

5 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett., 58(4):171–176, 1996. doi:10.1016/0020-0190(96)00050-6.

6 Leizhen Cai. Parameterized complexity of vertex colouring. Discret. Appl. Math., 127(3):415–
429, 2003. doi:10.1016/S0166-218X(02)00242-1.

7 Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivakumar. On the
hardness of approximating multicut and sparsest-cut. Comput. Complex., 15(2):94–114, 2006.
doi:10.1007/S00037-006-0210-9.

8 Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. J. ACM, 55(5):21:1–21:19, 2008.
doi:10.1145/1411509.1411511.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

10 Rodney G. Downey and M. R. Fellows. Parameterized Complexity. Springer Publishing
Company, Incorporated, 2012.

11 Matthew Drescher. Two Approaches to Approximation Algorithms for Vertex Deletion Problems.
PhD thesis, Université libre de bruxelles, 2021. URL: https://knavely.github.io/knavely.
gitub.io/thesis.pdf.

12 Michael R. Fellows. The lost continent of polynomial time: Preprocessing and kernelization.
In Proceedings of the 2nd International Workshop on Parameterized and Exact Computation,
IWPEC 2006, pages 276–277, 2006. doi:10.1007/11847250_25.

13 Henning Fernau. A top-down approach to search-trees: Improved algorithmics for 3-hitting
set. Algorithmica, 57(1):97–118, 2010. doi:10.1007/S00453-008-9199-6.

14 Fedor Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory of
parameterized preprocessing. Cambridge University Press, 2019.

15 Daniel Golovin, Viswanath Nagarajan, and Mohit Singh. Approximating the k-multicut
problem. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2006, pages 621–630. ACM Press, 2006. URL: http://dl.acm.org/citation.cfm?id=
1109557.1109625.

http://nbn-resolving.de/urn:nbn:de:0297-zib-60370
https://doi.org/10.1007/S10107-021-01744-W
https://doi.org/10.1137/140961808
https://doi.org/10.4230/LIPIcs.ESA.2022.30
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1016/S0166-218X(02)00242-1
https://doi.org/10.1007/S00037-006-0210-9
https://doi.org/10.1145/1411509.1411511
https://doi.org/10.1007/978-3-319-21275-3
https://knavely.github.io/knavely.gitub.io/thesis.pdf
https://knavely.github.io/knavely.gitub.io/thesis.pdf
https://doi.org/10.1007/11847250_25
https://doi.org/10.1007/S00453-008-9199-6
http://dl.acm.org/citation.cfm?id=1109557.1109625
http://dl.acm.org/citation.cfm?id=1109557.1109625

B. M. P. Jansen and R. F. A. Verhaegh 28:17

16 Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Automated generation of search
tree algorithms for hard graph modification problems. Algorithmica, 39(4):321–347, 2004.
doi:10.1007/S00453-004-1090-5.

17 Meike Hatzel, Lars Jaffke, Paloma T. Lima, Tomás Masarík, Marcin Pilipczuk, Roohani Sharma,
and Manuel Sorge. Fixed-parameter tractability of DIRECTED MULTICUT with three
terminal pairs parameterized by the size of the cutset: twin-width meets flow-augmentation.
In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2023, pages 3229–3244. SIAM, 2023. doi:10.1137/
1.9781611977554.CH123.

18 Pinar Heggernes, Pim van ’t Hof, Bart M. P. Jansen, Stefan Kratsch, and Yngve Villanger.
Parameterized complexity of vertex deletion into perfect graph classes. Theor. Comput. Sci.,
511:172–180, 2013. doi:10.1016/J.TCS.2012.03.013.

19 Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network problem.
Comb., 21(1):39–60, 2001. doi:10.1007/s004930170004.

20 Bart M. P. Jansen and Ruben F. A. Verhaegh. Search-space reduction via essential vertices
revisited: Vertex multicut and cograph deletion, 2024. arXiv:2404.09769.

21 Subhash Khot. On the power of unique 2-prover 1-round games. In John H. Reif, editor,
Proceedings on 34th Annual ACM Symposium on Theory of Computing, STOC 2002, pages
767–775. ACM, 2002. doi:10.1145/509907.510017.

22 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2 − ε.
J. Comput. Syst. Sci., 74(3):335–349, 2008. doi:10.1016/J.JCSS.2007.06.019.

23 Monique Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relax-
ations for 0-1 programming. Math. Oper. Res., 28(3):470–496, 2003. doi:10.1287/MOOR.28.3.
470.16391.

24 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. doi:10.1016/0022-0000(80)
90060-4.

25 Daniel Lokshtanov, Pranabendu Misra, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi.
FPT-approximation for FPT problems. In Dániel Marx, editor, Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, pages 199–218. SIAM, 2021.
doi:10.1137/1.9781611976465.14.

26 Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the
size of the cutset. SIAM J. Comput., 43(2):355–388, 2014. doi:10.1137/110855247.

27 James Nastos and Yong Gao. Bounded search tree algorithms for parametrized cograph
deletion: Efficient branching rules by exploiting structures of special graph classes. Discret.
Math. Algorithms Appl., 4(1), 2012. doi:10.1142/S1793830912500085.

28 Rolf Niedermeier and Peter Rossmanith. An efficient fixed-parameter algorithm for 3-hitting
set. J. Discrete Algorithms, 1(1):89–102, 2003. doi:10.1016/S1570-8667(03)00009-1.

29 Marcin Pilipczuk and Magnus Wahlström. Directed multicut is W[1]-hard, even for four
terminal pairs. ACM Trans. Comput. Theory, 10(3):13:1–13:18, 2018. doi:10.1145/3201775.

30 Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. On the parameterized complexity
of approximating dominating set. J. ACM, 66(5):33:1–33:38, 2019. doi:10.1145/3325116.

31 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer,
2003.

32 Ola Svensson. Hardness of vertex deletion and project scheduling. Theory Comput., 9:759–781,
2013. doi:10.4086/toc.2013.v009a024.

33 Vijay V. Vazirani. Approximation algorithms. Springer, 2001. URL: http://www.springer.
com/computer/theoretical+computer+science/book/978-3-540-65367-7.

34 Karsten Weihe. Covering trains by stations or the power of data reduction. In Algorithms and
Experiments (ALEX98), pages 1–8, 1998. URL: https://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.57.2173.

SWAT 2024

https://doi.org/10.1007/S00453-004-1090-5
https://doi.org/10.1137/1.9781611977554.CH123
https://doi.org/10.1137/1.9781611977554.CH123
https://doi.org/10.1016/J.TCS.2012.03.013
https://doi.org/10.1007/s004930170004
https://arxiv.org/abs/2404.09769
https://doi.org/10.1145/509907.510017
https://doi.org/10.1016/J.JCSS.2007.06.019
https://doi.org/10.1287/MOOR.28.3.470.16391
https://doi.org/10.1287/MOOR.28.3.470.16391
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1137/1.9781611976465.14
https://doi.org/10.1137/110855247
https://doi.org/10.1142/S1793830912500085
https://doi.org/10.1016/S1570-8667(03)00009-1
https://doi.org/10.1145/3201775
https://doi.org/10.1145/3325116
https://doi.org/10.4086/toc.2013.v009a024
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.2173
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.2173

Edge Multiway Cut and Node Multiway Cut Are
Hard for Planar Subcubic Graphs
Matthew Johnson #

Durham University, UK

Barnaby Martin #

Durham University, UK

Sukanya Pandey #

Utrecht University, The Netherlands

Daniël Paulusma #

Durham University, UK

Siani Smith #

University of Bristol, UK
Heilbronn Institute for Mathematical Research, Bristol, UK

Erik Jan van Leeuwen #

Utrecht University, The Netherlands

Abstract
It is known that the weighted version of Edge Multiway Cut (also known as Multiterminal
Cut) is NP-complete on planar graphs of maximum degree 3. In contrast, for the unweighted
version, NP-completeness is only known for planar graphs of maximum degree 11. In fact, the
complexity of unweighted Edge Multiway Cut was open for graphs of maximum degree 3 for
over twenty years. We prove that the unweighted version is NP-complete even for planar graphs of
maximum degree 3. As weighted Edge Multiway Cut is polynomial-time solvable for graphs of
maximum degree at most 2, we have now closed the complexity gap. We also prove that (unweighted)
Node Multiway Cut (both with and without deletable terminals) is NP-complete for planar
graphs of maximum degree 3. By combining our results with known results, we can apply two
meta-classifications on graph containment from the literature. This yields full dichotomies for all
three problems on H-topological-minor-free graphs and, should H be finite, on H-subgraph-free
graphs as well. Previously, such dichotomies were only implied for H-minor-free graphs.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Theory of computa-
tion → Graph algorithms analysis; Theory of computation → Problems, reductions and completeness

Keywords and phrases multiway cut, planar subcubic graph, complexity dichotomy, graph contain-
ment

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.29

Related Version Full Version: https://doi.org/10.48550/arXiv.2211.12203

Acknowledgements The authors wish to thank Jelle Oostveen for his helpful comments.

1 Introduction

In this paper we consider the unweighted edge and node versions of the classic Multiway
Cut problem, which is one of the most central separation/clustering graph problems with
applications in, for example, computer vision [3, 6] and multi-processor scheduling [26].

To define these problems, let G = (V, E) be a graph. For a subset S of either vertices or
edges of G, let G − S denote the graph obtained from G after deleting all elements, either
vertices (and incident edges) or edges, of S. Now, let T ⊆ V be a set of specified vertices

© Matthew Johnson, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Siani Smith, and
Erik Jan van Leeuwen;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 29; pp. 29:1–29:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matthew.johnson2@durham.ac.uk
https://orcid.org/0000-0002-7295-2663
mailto:barnaby.d.martin@durham.ac.uk
https://orcid.org/0000-0002-4642-8614
mailto:s.pandey1@uu.nl
https://orcid.org/0000-0001-5728-1120
mailto:daniel.paulusma@durham.ac.uk
https://orcid.org/0000-0001-5945-9287
mailto:siani.smith@bristol.ac.uk
https://orcid.org/0000-0003-0797-0512
mailto:e.j.vanleeuwen@uu.nl
https://orcid.org/0000-0001-5240-7257
https://doi.org/10.4230/LIPIcs.SWAT.2024.29
https://doi.org/10.48550/arXiv.2211.12203
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 EMWC and NMWC Are Hard for Planar Subcubic Graphs

that are called the terminals of G. A set S ⊆ E is an edge multiway cut for (G, T) if every
connected component of G − S contains at most one vertex of T . In order words, removing S

pairwise disconnects the terminals of T . We define the notion of a node multiway cut S ⊆ V

in the same way, but there are two versions depending on whether or not S can contain
vertices of T . This leads to the following three decision problems, where the second one is
also known as Unrestricted Node Multiway Cut and the third one as Restricted
Node Multiway Cut or Node Multiway Cut with Undeletable Terminals.

Edge Multiway Cut
Input: A graph G, a set of terminals T ⊆ V and an integer k.
Question: Does (G, T) have an edge multiway cut S ⊆ E of size at most k?

Node Multiway Cut with Deletable Terminals
Input: A graph G, a set of terminals T ⊆ V and an integer k.
Question: Does (G, T) have a node multiway cut S ⊆ V of size at most k?

Node Multiway Cut
Input: A graph G, a set of terminals T ⊆ V and an integer k.
Question: Does (G, T) have a node multiway cut S ⊆ V \ T of size at most k?

In Weighted Edge Multiway Cut, we are given a function ω : E(G) → Q+. The goal is
to decide if (G, T) admits an edge multiway cut of total weight at most k. If ω ≡ 1, then we
obtain Edge Multiway Cut. Similarly, we can define weighted variants of both versions of
Node Multiway Cut with respect to a node weight function ω : V (G) → Q+.

The above problems have been studied extensively; see, for example, [2, 8, 9, 10, 11, 12,
15, 16, 17, 19, 20, 22, 23]. The problems can be thought of as the natural dual problems of
the Steiner Tree problem. In their famous study of Edge Multiway Cut, Dahlhaus
et al. [13] showed that it is NP-complete even if the set of terminals has size |T | = 3. Garg
et al. [16] showed the same for Node Multiway Cut. We note that this is a tight result:
if |T | = 2, then both problems reduce to the Minimum Cut problem. The latter problem
can be modelled as a maximum flow problem, and hence is well known to be solvable in
polynomial time [14]. Note that Node Multiway Cut with Deletable Terminals is
trivially polynomial-time solvable for any fixed |T |.

Our Focus. A graph is subcubic if it has maximum degree at most 3. Our goal in this paper
is to answer the following question:

What is the computational complexity of Edge Multiway Cut and both versions of Node
Multiway Cut for planar subcubic graphs?

Motivation. Our first reason is due to a complexity gap that was left open in the literature
for over twenty years. That is, in addition to their NP-completeness result for |T | = 3,
Dahlhaus et al. [13] also proved that Weighted Edge Multiway Cut is NP-complete on
planar subcubic graphs using integral edge weights. Any edge of integer weight j can be
replaced by j parallel edges (and vice versa) without changing the problem. Hence, their
reduction implies that Edge Multiway Cut is NP-complete on planar graphs of maximum
degree at most 11 [13, Theorem 2b].

Dahlhaus et al. [13] write that “The degree bound of 11 is not the best possible. Using a
slight variant on the construction and considerably more complicated arguments, we believe
it can be reduced at least to 6”, but no further arguments were given. Even without the

M. Johnson, B. Martin, S. Pandey, D. Paulusma, S. Smith, and E. J. van Leeuwen 29:3

planarity condition and only focussing on the maximum degree bound, the hardness result of
Dahlhaus et al. [13] is still best known. Given that the problem is polynomial-time solvable
if the maximum degree is 2, this means that there is a significant complexity gap that has
yet to be addressed.

To the best of our knowledge, there is no explicit hardness result in the literature that
proves NP-completeness of either version of Node Multiway Cut on graphs of any fixed
degree or on planar graphs. However, known and straightforward reductions (see e.g. [16, 23])
immediately yield NP-hardness on planar subcubic graphs for Node Multiway Cut with
Deletable Terminals (see Theorem 1.2), but only on planar graphs of maximum degree 4
for Node Multiway Cut (see Proposition 3.1).

Our second reason is the central role planar subcubic graphs play in complexity dichotomies
of graph problems restricted to graphs that do not contain any graph from a set H as a
topological minor1 or subgraph; such graphs are said to be H-topological-minor-free or H-
subgraph-free, respectively. For both the topological minor containment relation [24] and the
subgraph relation (see [18]) meta-classifications exist. To apply these meta-classifications, a
problem must satisfy certain conditions, in particular being NP-complete for subcubic planar
graphs for the topological minor relation, and being NP-complete for subcubic graphs for the
subgraph relation. These two conditions are exactly what is left to prove for Edge Multiway
Cut and both versions of Node Multiway Cut. In contrast, the results of [1, 13, 24]
and the aforementioned reductions from [16, 23] imply that all three problems are fully
classified for H-minor-free graphs: the problems are polynomial-time solvable if H contains a
planar graph and NP-complete otherwise (see also [18]). Hence, determining the complexity
status of our three problems for planar subcubic graphs is a pressing issue for obtaining new
complexity classifications for H-topological-minor-free graphs and H-subgraph-free-graphs.

Our third reason is the rich tradition to investigate the NP-completeness of problems on
subcubic graphs and planar subcubic graphs (see e.g. the list given by Johnson et al. [18])
which continues till this day, as evidenced by recent NP-completeness results for subcubic
graphs (e.g. [4, 27]) and planar subcubic graphs (e.g. [5, 28]). We also note that Edge
Multicut, the standard generalization of Edge Multiway Cut where given pairs of
terminals must be disconnected by an edge cut’, is NP-complete even on subcubic trees [7].

For the above reasons, the fact that the complexity status of our three problems restricted
to (planar) subcubic graphs has remained open this long is unexpected.

1.1 Our Results
The following three results fully answer our research question.

▶ Theorem 1.1. Edge Multiway Cut is NP-complete for planar subcubic graphs.

▶ Theorem 1.2. Node Multiway Cut with Deletable Terminals is NP-complete for
planar subcubic graphs.

▶ Theorem 1.3. Node Multiway Cut is NP-complete for planar subcubic graphs.

We prove Theorem 1.1 in Section 2 and Theorems 1.2 and 1.3 in the Section 3.

1 A graph G contains a graph H as a topological minor if G can be modified into H by a sequence of edge
deletions, vertex deletions and vertex dissolutions, where a vertex dissolution is the contraction of an
edge incident to a vertex of degree 2 whose (two) neighbours are non-adjacent.

SWAT 2024

29:4 EMWC and NMWC Are Hard for Planar Subcubic Graphs

In spirit, our construction for Edge Multiway Cut is similar to the one by Dahlhaus et
al. [13] for graphs of maximum degree 11. For non-terminal vertices of high degree, a local
replacement by a (sub)cubic graph is relatively easy. However, for terminal vertices of high
degree, a local replacement strategy seems impossible. Hence, the fact that terminals in the
construction of Dahlhaus et al. [13] can have degree up to 6 becomes a crucial bottleneck. To
ensure that our constructed graph has maximum degree 3, we therefore need to build different
gadgets. We then leverage several deep structural properties of the edge multiway cut in the
resulting instance, making for a significantly more involved and technical correctness proof.
Crucially, we first prove NP-completeness for a weighted version of the problem on graphs
of maximum degree 5, in which each terminal is incident with exactly one edge of weight 3.
Then we replace weighted edges and high-degree vertices with appropriate gadgets.

The NP-completeness for Node Multiway Cut for planar subcubic graphs follows from
the NP-hardness of Edge Multiway Cut by constructing the line graph of input graph.
The hardness for Node Multiway Cut with Deletable Terminals on planar subcubic
graphs follows from a straightforward reduction from Vertex Cover.

1.2 Consequences
As discussed above, we immediately have the following dichotomy.

▶ Corollary 1.4. For every ∆ ≥ 1, Edge Multiway Cut and both versions of Node
Multiway Cut on graphs of maximum degree ∆ are polynomial-time solvable if ∆ ≤ 2, and
NP-complete if ∆ ≥ 3.

From a result of Robertson and Seymour [24], it follows that any problem Π that is NP-hard
on subcubic planar graphs but polynomial-time solvable for graphs of bounded treewidth can
be fully classified on H-topological minor-free graphs. Namely, Π is polynomial-time solvable
if H contains a subcubic planar graph and NP-hard otherwise. It is known that Edge
Multiway Cut and both versions of Node Multiway Cut satisfy the second property [1].
As Theorems 1.1–1.3 show the first property, we obtain the following dichotomy.

▶ Corollary 1.5. For every set of graphs H, Edge Multiway Cut and both versions of
Node Multiway Cut on H-topological-minor-free graphs are polynomial-time solvable if H
contains a planar subcubic graph, and NP-complete otherwise.

Let the ℓ-subdivision of a graph G be the graph obtained from G after replacing each edge
uv by a path of ℓ + 1 edges with end-vertices u and v. A problem Π is NP-hard under edge
subdivision of subcubic graphs if for every integer j ≥ 1 there is an ℓ ≥ j such that: if Π is
NP-hard for the class G of subcubic graphs, then Π is NP-hard for the class Gℓ consisting
of the ℓ-subdivisions of the graphs in G. Now say that Π is polynomial-time solvable on
graphs of bounded treewidth and NP-hard for subcubic graphs and under edge subdivision
of subcubic graphs. The meta-classification from Johnson et al. [18] states that for every
finite set H, Π on H-subgraph-free graphs is polynomial-time solvable if H contains a graph
from S, and NP-hard otherwise. Here, S is the set consisting of all disjoint unions of zero or
more paths and subdivided claws (4-vertex stars in which edges may be subdivided). Results
from Arnborg, Lagergren and Seese [1] and Johnson et al. [18] show the first two properties.
Theorems 1.1–1.3 show the last property. Thus, we obtain:

▶ Corollary 1.6. For every finite set of graphs H, Edge Multiway Cut and both versions of
Node Multiway Cut on H-subgraph-free graphs are polynomial-time solvable if H contains
a graph from S, and NP-complete otherwise.

M. Johnson, B. Martin, S. Pandey, D. Paulusma, S. Smith, and E. J. van Leeuwen 29:5

2 The Proof of Theorem 1.1

In this section, we show that Edge Multiway Cut is NP-complete on subcubic graphs.
We reduce the problem from Planar 2P1N-3SAT, which is a restricted version of 3-SAT.
Given a CNF-formula Φ with the set of variables X and the set of clauses C, the incidence
graph of the formula is the graph GX,C which is a bipartite graph with one of the partitions
containing a vertex for each variable and the other partition containing a vertex for each
clause of Φ. There exists in GX,C an edge between a variable-vertex and a clause-vertex if
and only if the variable appears in the clause. We define Planar 2P1N-3SAT as follows.

Planar 2P1N-3SAT
Input: A set X = {x1, . . . , xn} of variables and a CNF formula Φ over X and clause set
C with each clause containing at most three literals and each variable occurring twice
positively and once negatively in Φ such that GX,C is planar.
Question: Is there an assignment A : X → {0, 1} that satisfies Φ?

The above problem was shown to be NP-complete by Dahlhaus et al. [13]. By their con-
struction, each variable occurs in at least two clauses having size 2. This property becomes
important later in our NP-completeness proof.

We need two further definitions. Recall that in Weighted Edge Multiway Cut, we are
given a function ω : E(G) → Q+ in addition to G, T, k. The goal is to decide if (G, T) admits
an edge multiway cut of total weight at most k. If the image of ω is the set X, we denote
the corresponding Weighted Edge Multiway Cut problem as X-Edge Multiway Cut.
Also note that if an edge/node multiway cut S has smallest possible size (weight) among
all edge/node multiway cuts for the pair (G, T), then S is a minimum(-weight) edge/node
multiway cut.

We show the reduction in two steps. In the first step, we reduce from Planar 2P1N-
3SAT to {1, 2, 3, 6}-Edge Multiway Cut restricted to planar graphs of maximum degree 5
where the terminals all have degree 3. In the second step, we show how to make the instance
unweighted while keeping it planar and making its maximum degree bounded above by 3.

▶ Theorem 1.1 (Restated). Edge Multiway Cut is NP-complete for planar subcubic
graphs.

Proof. Clearly, Edge Multiway Cut is in NP. We reduce Edge Multiway Cut from
Planar 2P1N-3SAT. Let Φ be a given CNF formula with at most three literals in each
clause and each variable occurring twice positively and once negatively.

We assume that each clause has size at least 2 and every variable occurs in at least two
clauses of size 2. Let X = {xi | 1 ≤ i ≤ n} be the set of variables in Φ and C = {cj | 1 ≤
j ≤ m} be the set of clauses. We assume that the incidence graph GX,C is planar. By the
reduction of Dahlhaus et al. [13], Planar 2P1N-3SAT is NP-complete for such instances.

We now describe the graph construction. For each vertex of GX,C corresponding to a
clause cj in C, we create a clause gadget (depending on the size of the clause), as in Figure 1.
For each vertex of GX,C corresponding to a variable xi ∈ X, we create a variable gadget, also
shown in Figure 1. The gadgets have two terminals each (marked as red squares in Figure 1),
a positive and a negative one. In a variable gadget, the positive terminal is attached to the
diamond and the negative one to the hat, by edges of weight 3; refer to Figure 1. In a clause
gadget, each literal corresponds to a triangle, with these triangles connected in sequence,
and the positive and negative terminal are attached to triangles at the start and end of the
sequence, again by edges of weight 3.

SWAT 2024

29:6 EMWC and NMWC Are Hard for Planar Subcubic Graphs

3 3

1 1

1 1

1

1 1

xi xi

3 32 2 2

1 1 1 1
1 1

c+g c−g 3 32 2

1 1 1 1

c+h c−h

Diamond Hat

Outer edges

Outer edges

1

Outer edges

outer triangle

middle triangle

outer triangle

Figure 1 The gadgets for the variables (top) as well as those for the clauses (bottom). The bottom-
left gadget corresponds to a clause with three literals whereas the bottom-right one corresponds to a
clause with two literals. The terminals are depicted as red squares.

Each degree-2 vertex in a gadget (marked blue in Figure 1) acts as a connector. For a
variable xi, if xi ∈ cj and xi ∈ ck for clauses cj , ck, then we connect the degree-2 vertices of
the diamond of xi to some degree-2 vertex of the gadgets for cj and ck, each by an edge of
weight 6. If xi ∈ cl for clause cl, then we connect the degree-2 vertex of the hat of xi and
some degree-2 vertex on the gadget for cl, again by an edge of weight 6. These connecting
edges are called links. A link structure is depicted in Figure 2, while an example of such
variable and clause connections is depicted in Figure 4. By the assumptions on Φ, we can
create the links such that each degree-2 vertex in the variable gadget is incident on exactly
one link and corresponds to one occurrence of the variable. Similarly, each degree-2 vertex of
a clause gadget is incident on exactly one link.

The graph thus created is denoted by G. We can construct G in such a way that it is
planar, because GX,C is planar and has maximum degree 3. Note that G has maximum
degree 5. Let T be the set of terminals in the constructed graph G. Note that G has a total
of 2n + 2m terminals.

We observe that all edges in G have weight at most 6. Non-terminal vertices are incident
on edges of total weight at most 8. Crucially, terminals are incident on edges of total weight
at most 3.

We introduce some extra notions to describe the constructed graph G. The edges of the
two triangles adjacent to a link are called connector edges. The edge of such a triangle that
is not adjacent to the link is called the base of the triangle. The connector edges closest to
the terminals are called outer edges, as indicated in Figure 1. The structure formed by the
two pairs of connector edges and the link is called the link structure; see Figure 2. Since
each variable occurs twice positively and once negatively in Φ, the constructed graph G has
exactly 3n link structures.

We now continue the reduction to obtain an unweighted planar subcubic graph. We
replace all the edges in G of weight greater than 1 by as many parallel edges between their
end-vertices as the weight of the edge. Each of these parallel edges has weight 1. We refer
to this graph as G′. Next, for each vertex v in G′ of degree greater than 3, we replace v

by a large honeycomb (hexagonal grid), as depicted in Figure 3, of 1000 × 1000 cells (these

M. Johnson, B. Martin, S. Pandey, D. Paulusma, S. Smith, and E. J. van Leeuwen 29:7

xi xi

c+j c−j

6

1 1

1 1

Figure 2 The figure shows a link structure formed by the connector edges of a clause-triangle
and its corresponding variable-triangle. The two bases that complete the triangles are not drawn.

numbers are picked for convenience and not optimized). The neighbours of v, of which there
are at most eight by the construction of G, are now attached to distinct degree-2 vertices on
the boundary of the honeycomb such that the distance along the boundary between any pair
of them is 100 cells of the honeycomb. These degree-2 vertices on the boundary are called
the attachment points of the honeycomb. The edges not belonging to the honeycomb that
are incident on these attachment points are called attaching edges. In the construction, we
ensure that the attaching edges occur in the same cyclical order on the boundary as the
edges to the neighbors of v originally occured around v. Let the resultant graph be G̃.

Note that the degree of any vertex in G̃ is at most 3. For terminals, this was already the
case in G′. Note that, therefore, terminals were not replaced by honeycombs to obtain G̃. For
non-terminals, this is clear from the construction of G′ and G̃. Moreover, all the edge weights
of G̃ are equal to 1, and thus we can consider it unweighted. Also, all the replacements can be
done as to retain a planar embedding of G and hence, G̃ is planar. G̃ has size bounded by a
polynomial in n + m and can be constructed in polynomial time. Finally, we set k = 7n + 2m.

For the sake of simplicity, we shall first argue that Φ is a yes instance of Planar
2P1N-3SAT if and only if (G, T, k) is a yes instance of {1, 2, 3, 6}-Edge Multiway Cut.
Later, we show that the same holds for G̃ by proving that no edge of any of the honeycombs
is ever present in any minimum edge multiway cut in G̃.

Suppose that A is a truth assignment satisfying Φ. Then, we create a set of edges
S ⊆ E(G), as follows:

If a variable is set to “true” by A, then add to S all the three edges of the hat in the
corresponding gadget. If a variable is set to “false” by A, then add to S all the five edges
of the diamond.
For each clause, pick a true literal in it and add to S all the three edges of the clause-
triangle corresponding to this literal.
Finally, for each link structure with none of its edges in S yet, add the two connector
edges of its clause-triangle to S.

▷ Claim 2.1. S is an edge multiway cut of (G, T) of weight at most 7n + 2m.

Proof. For each variable, either the positive literal is true, or the negative one. Hence, either
all the three edges of its hat are in S or all the five edges of the diamond. Therefore, all the
paths between terminal pairs of the form xi − xi, for all 1 ≤ i ≤ n, are disconnected in G − S.

SWAT 2024

29:8 EMWC and NMWC Are Hard for Planar Subcubic Graphs

Figure 3 Construction of G̃ from G′ by replacing every edge of weight greater than 1 by as many
parallel edges as its weight and then replacing the vertices of degree greater than 3 by a honeycomb
of size 1000 × 1000.

Consider the link structure in Figure 2. By our choice of S, at least one endpoint of each link
in G−S is a vertex of degree 1, hence a dead end. Therefore, no path connecting any terminal
pair in G − S passes through any link. As all the paths in G between a variable-terminal
and a clause-terminal must pass through some link, we know that all terminal pairs of this
type are disconnected in G − S. Since A is a satisfying truth assignment of Φ, all the edges
of one triangle from every clause gadget are in S. Hence, all the paths between terminal
pairs of the form c+

j − c−
j , for all 1 ≤ j ≤ m, are disconnected in G − S. Hence, S is an edge

multiway cut.
It remains to show that the weight of S is at most 7n + 2m. Since A satisfies each

clause of Φ, there are exactly m triangle-bases of weight 2 from the clause gadgets in S.
Similarly, the variable gadgets contribute exactly n bases to S. Finally, for each of the 3n

link structures, by the definition of S and the fact that A is a satisfying assignment, either
the two connector edges of the variable-triangle are in S or the two connector edges of the
clause-triangle. Together, they contribute a weight of 6n to the total weight of S. Therefore,
S is an edge multiway cut in G of weight at most 7n + 2m. ◁

Conversely, assume that (G, T, k) is a yes instance of {1, 2, 3, 6}-Edge Multiway Cut.
Hence, there exists an edge multiway cut of (G, T) of weight at most 7n + 2m. We shall
demonstrate an assignment that satisfies Φ. Before that, we shall discuss some structural
properties of a minimum-weight edge multiway cut. In the following arguments, we assume
that the clauses under consideration have size three, unless otherwise specified. While making
the same arguments for clauses of size 2 is easier, we prefer to argue about clauses of size
three for generality.

▷ Claim 2.2 (adapted from [13]). If e is an edge in G incident on a non-terminal vertex v

of degree > 2 such that e has weight greater than or equal to the sum of the other edges
incident on v, then there exists a minimum-weight edge multiway cut in G that does not
contain e.

The above claim implies that there exists a minimum-weight multiway cut containing no
such edge e. To see this, note that an iterative application of the local replacement used
in Claim 2.2 would cause a conflict in the event that the replacement is cyclical. Suppose

M. Johnson, B. Martin, S. Pandey, D. Paulusma, S. Smith, and E. J. van Leeuwen 29:9

3 3

1 1

1 1
1

1 1
6

6

6

xi xi

c−j
c+h

c−g

1

2 2

2

1 1

1 1 1 1

Figure 4 Shown in the figure is the variable interface of xi. The positive literal xi occurs in the
clauses cj and cg, whereas xi occurs in ch. No terminal is reachable from the vertex closest to the
red dashed lines in the direction of the paths crossed by it.

that the edges are replaced in the sequence e → e1 → . . . → er → e. Then the weight of e1,
denoted by w(e1) must be strictly less than the weight of e. Similarly, w(ei) < w(ej) for
i < j. This would mean that w(e) < w(e), which is a contradiction.

▷ Claim 2.3 ([13]). If a minimum-weight edge multiway cut contains an edge of a cycle,
then it contains at least two edges from that cycle.

It follows from Claim 2.2 and the construction of G that there exists a minimum-weight
edge multiway cut for (G, T) that neither contains the edges incident on the terminals nor
does it contain the links. Among the minimum-weight edge multiway cuts that satisfy
Claim 2.2, we shall select one that contains the maximum number of connector edges and
from the ones that satisfy both the aforementioned properties, we shall pick one that contains
the maximum number of triangle-bases from clause gadgets of size 2. Let S be a minimum
edge multiway cut that fulfills all these requirements.

We say a link e incident on a gadget reaches a terminal t if e is the first edge on a path
P from the gadget to t and no edge on P is contained in S. A terminal t is reachable by a
gadget if one of the links incident on the gadget reaches t. Note that, for any terminal t′ in
the gadget, if t is reached from some incident link by a path P , then P can be extended to a
t′-t path in G using only edges inside the gadget. However, among the edges used by such
an extension, at least one must belong to S, or else t = t′.

▷ Claim 2.4. S contains exactly one base of a triangle from each variable gadget.

Proof. Clearly, S must contain at least one base from each variable gadget, else by the fact
that S contains no edges incident on terminals, a path between the terminals in such a gadget
would remain in G − S.

Suppose that S contains two bases of some variable gadget, say that of xi. By Claim 2.3,
S must also contain at least three connector edges from this variable gadget: at least two
connector edges (of the two triangles) of the diamond and at least one connector edge of the
hat. We claim that, without loss of generality, at least all the outer connector edges must

SWAT 2024

29:10 EMWC and NMWC Are Hard for Planar Subcubic Graphs

be in S. If for some triangle the outer connector edge next to terminal t is not in S, then
the link incident on this triangle does not reach any terminal t′ ̸= t; otherwise, a t-t′ path
would remain in G − S, a contradiction. Hence, we simultaneously replace all inner connector
edges for which the corresponding outer connector edge is not in S by their corresponding
outer connector edge. For the resulting set S′, the variable terminals of the gadget and their
neighbors in G form a connected component of G − S′. Since the link incident on a triangle
for which the outer connector edge (next to terminal t) was not in S does not reach any
terminal t′ ̸= t, S′ is feasible. Moreover, it has the same properties we demanded of S. Thus,
henceforth, we may assume that all the outer connector edges of the xi-gadget are in S.

We now distinguish six cases based on how many links of the gadget reach a terminal:

Case 1. No link of the xi gadget reaches a terminal.
We can remove one of the two bases from S without connecting any terminal pairs. This is
so because in order to disconnect xi from xi, it suffices for S to contain either the base of
the diamond along with the two outer connector edges or the base and outer connector edge
of the hat. No other terminal pairs are connected via the gadget by the assumption of this
case. Hence, we contradict the minimality of S.

Case 2. A link of the xi-gadget reaches at least two distinct terminals.
By the definition of reaches, this implies that there is a path in G − S between any two of
the reached terminals. This contradicts that S is an edge multiway cut for (G, T).

Case 3. Exactly one link e of the xi-gadget reaches some terminal t.
We remove from S the base of a triangle that is not attached to e and add the remaining
connector edge of the triangle that is attached to e (if it is not already in S). Consequently,
although e reaches t, both connector edges incident on e are in S. Since no other link reached
any terminals and xi remains disconnected from xi in G − S, we can obtain an edge multiway
cut for (G, T) satisfying Claim 2.2 that has the same or less weight as S, but has strictly
more connector edges than S. This is a contradiction to our choice of S.

Case 4. Exactly two links e, e′ of the xi-gadget reach two distinct terminals t and t′,
respectively.
Recall that all three outer connector edges are in S. Now at least one of the inner connector
edges of the gadget must be in S, or else t would be connected to t′ via this gadget. In
particular, both the connector edges of at least one of the two triangles attached to e, e′

must be in S. We can remove from S one of the two bases and add instead the remaining
connector edge of the other triangle (if it is not already in S). Consequently, although e

reaches t and e′ reaches t′, all connector edges incident on e and e′ are in S. Moreover, xi

and xi are not connected to each other in G − S, as one base and its corresponding outer
connector(s) are still in S. The transformation results in an edge multiway cut for (G, T)
satisfying Claim 2.2 that has the same or less weight than S, but has strictly more connector
edges than S. This is a contradiction to our choice of S.

Case 5. All the three links of the xi-gadget reach distinct terminals t, t′, t′′, respectively.
Recall that all three outer connected edges are in S. Now at most one (inner) connector edge
of the xi-gadget is not in S, or else at least one pair of terminals among {(t, t′), (t′, t′′), (t′′, t)}
would remain connected via the gadget. We replace one of the bases in S with this connector
edge (if it is not already in S). The resulting edge multiway cut is no heavier. To see that
it is also feasible, note that while t, t′, t′′ are still reached from the links of the gadget, all
the connector edges of this gadget are in the edge multiway cut. The terminals xi and xi

M. Johnson, B. Martin, S. Pandey, D. Paulusma, S. Smith, and E. J. van Leeuwen 29:11

are disconnected from each other in G − S′ because one triangle-base and its connectors are
still in the edge multiway cut. Hence, we obtain an edge multiway cut for (G, T) satisfying
Claim 2.2 that has the same or less weight than S, but with strictly more connector edges
than S, a contradiction to our choice of S.

Case 6. At least two links of the xi-gadget reach exactly one terminal t outside the gadget.
Recall that every variable occurs in at least two clauses of size 2. Hence, t is reachable via
a link from the xi-gadget to at least one directly linked clause gadget of a clause of size 2.
Also recall that S is a minimum-weight edge multiway cut containing the maximum number
of bases from clauses of size 2.

Suppose that there exists a size-2 clause gadget c, directly linked to the xi-gadget, that
does not contain t and via which t is reachable from the xi-gadget. That is, some link
reaches t via a path P that contains edges of c, but t is not in c. Then S must contain two
base-connector pairs from c; else, some terminal of c would not be disconnected from t in
G − S. Now remove from S the base of one of the two triangles of c and add the remaining
two connector edges of c. This does not increase the weight, as the base of the clause-triangle
has weight 2 and the connectors have weight 1 each. The only terminal pair that could get
connected by the transformation is the pair of terminals on c itself. However, one of the
bases is still in the transformed cut. This new cut contradicts our choice of S, as it has
strictly more connector edges and satisfies the other conditions.

Suppose t is contained in one of the size-2 clause gadgets, c′, directly linked to the
xi-gadget. If the link between the xi-gadget and c′ is not one of the links meant in the
assumption of this case, then the situation of the previous paragraph holds and we obtain
a contradiction. Thus, t is reachable from the xi-gadget via both links of c′. Hence, a
base-connector pair of the triangle of c′ that t is not attached to must be in S. Consider the
link of the xi-gadget that is not attached to c′ but reaches t and let P be a corresponding
path, starting at this link and going to t. Note that P passes through a clause gadget c′′

directly linked to the xi-gadget. If c′′ is a size-2 clause gadget, then we obtain a contradiction
as before. Hence, c′′ corresponds to a size-3 clause (as in Figure 5). Since P must either
enter or leave c′′ through one of its outer triangles, a base-connector pair of at least one outer
triangle of c′′ must be in S, or the attached terminal would reach t in G − S, contradicting
that S is an edge multiway cut for (G, T). Let Λ be such an outer triangle (see Figure 5).

We argue that, without loss of generality, S contains a base-connector pair of the other
outer triangle, ∆. Suppose not. Then, in particular, the base of ∆ is not in S. If P passes
through the link attached to ∆, then one of the endpoints of the base of ∆ must be on P .
Since the base of ∆ is not in S, the terminal t′′ next to ∆ remains connected to t in G − S,
a contradiction. Hence, P must either enter or exit c′′ via the link attached to its middle
triangle µ. Moreover, S must contain a base-connector pair of µ (see Figure 5), or t′′ would
still reach t in G − S. We now modify S to obtain a set S′. If both connector edges of ∆ are
in S, then replace the base of µ by the base of ∆ to obtain S′. Then all edges of ∆ are in S′.
Otherwise, no edge of ∆ is in S and thus no terminal is reachable via the link attached to ∆
(or it would be connected to t′′ in G − S). So, we replace the base-connector pair of µ by a
base-connector pair of ∆ to obtain S′. Then S′ is an edge multiway cut for (G, T) of the
same weight at S that has the same properties as S. Hence, we may assume S = S′. Then S

contains a base-connector pair of ∆.
Now remove from S the base and connector edge of Λ. Then t and t′ become connected

to each other in G − S, but not to any other terminal, or that terminal would already be
connected to t in G − S. Now add the base and outer connector edge of the triangle in c′

that t is attached to. This restores that S is an edge multiway cut for (G, T). The edge

SWAT 2024

29:12 EMWC and NMWC Are Hard for Planar Subcubic Graphs

t

c′

c′′

xi xi

µ ∆t′ Λ t′′

Figure 5 A variable gadget for xi for which two of its bases are in S. There is a terminal t

reachable via (at least) two links of the xi-gadget. Moreover, t appears in a clause gadget c′

corresponding to a clause of size 2 that is directly linked to the xi-gadget.

multiway cut we obtain has the same weight as S and satisfies Claim 2.2. Moreover, it has
no less connectors than S but contains at least one more base of a clause gadget of size 2.
Hence, we obtain a contradiction to our choice of S. ◁

We now focus on the link structures.

▷ Claim 2.5 (proof omitted). There cannot exist a link structure in G that contributes less
than two edges to S and for which the clause-triangle of the link structure contributes no
connector edges to S.

▷ Claim 2.6. S contains at least two edges from each link structure.

Proof. Suppose that there exists a link structure ℓ that contributes less than two edges to S.
Suppose that ℓ connects the clause gadget c and the variable gadget xi. By Claim 2.5, we
know that the clause-triangle of ℓ must contribute an edge e to S. Therefore, none of the
connectors of the variable-triangle attached to ℓ are in S. As a result, the variable-terminal
of the xi-gadget attached to ℓ, say we call it t, is reachable from c via ℓ.

By Claim 2.3 and the fact that only e is in S, the base of the clause-triangle must also
be in S. We do the following replacement: remove from S the base-connector pair of the
clause-triangle and add the base and (possibly two) connectors of the variable-triangle of ℓ,
as follows. If the variable-triangle of ℓ is part of a diamond, then we add to S the base and
two outer connectors, thereby getting an edge multiway cut of equal weight but strictly more
connectors. If the variable-triangle is a hat, then we add to S the base and outer connector
of the hat, obtaining an edge multiway cut for (G, T) of strictly smaller weight than S. If we
can show that the resultant edge multiway cut is feasible, we obtain a contradiction in either
scenario. We claim that such a replacement does not compromise the feasibility of S.

Let a, b be the endpoints of the base of the clause-triangle of ℓ, where a is the endpoint
on which e is incident (see Figure 6). Note that no terminal other than t should be reachable
in G − S from b; else, there would be a path from t to that terminal via ℓ. In particular, the

M. Johnson, B. Martin, S. Pandey, D. Paulusma, S. Smith, and E. J. van Leeuwen 29:13

ℓ

xi-gadget

c-gadget

ab

e

Figure 6 A link structure with the variable gadget of xi at the top and its clause gadget for c at
the bottom. The crossed-out edges are assumed to be in the minimum edge multiway cut S. The
dashed red lines depict that the terminals cannot be reached from the vertices a or b.

terminal of the clause gadget for c on the side of b can not be reached in G − S from the
vertex b. By removing the base-connector pair of the clause-triangle of ℓ, we may expose the
clause-terminal on the side of the vertex a (or another terminal outside c) to t. However, by
adding the base and (possibly two) connectors closest to t, we disconnect any path between
this terminal and t. Since we did not modify the cut in any other way, no new connections
would have been made. This shows the feasibility of the resultant edge multiway cut and
thus proves our claim. ◁

▷ Claim 2.7. If there exists an edge multiway cut of weight at most 7n + 2m for (G, T),
then there exists a satisfying truth assignment for Φ.

Proof. Let S be the edge multiway cut defined before. The immediate consequence of
Claims 2.4 and 2.6 is that the weight of S is at least n + 2 · (3n) = 7n. S must also contain at
least one base per clause gadget lest the two terminals on a clause gadget remain connected.
Therefore, its weight is at least 7n + 2m. Since it is an edge multiway cut of weight at most
7n + 2m, it has exactly one base per clause gadget.

We also claim that for each link structure, if one of the triangles attached to it has its
base in S, then the other one cannot: note that if both the triangles had their bases in S,
then each of them would also have a connector edge in S by Claim 2.3. By Claim 2.6 and the
assumption that the weight of S is at most 7n + 2m, the other two connector edges of the
link structure are not in S. Since at most one base per variable/clause gadget can be in S,
there would be a path between one of the variable-terminals and one of the clause-terminals
in the linked gadgets through the link structure, a contradiction to S being an edge multiway
cut for (G, T). Figure 7 shows one such case.

We now define the truth assignment A. For each variable-terminal, if the diamond has its
base in S, we make it “false”, otherwise if the hat has its base in S we make it “true”. Each
clause gadget has exactly one triangle contributing its base to S. From the above argument,
we know that the variable-triangle linked to this clause-triangle must not contribute its base
to S. Hence, every clause gadget is attached to one literal triangle such that its base is not
in S, and is therefore “true”. Hence, every clause is satisfied by the truth assignment A and
Φ is a yes instance of Planar 2P1N-3SAT. ◁

SWAT 2024

29:14 EMWC and NMWC Are Hard for Planar Subcubic Graphs

Figure 7 The figure shows a link structure with the variable gadget at the bottom and its
connected clause gadget at the top. The crossed-out red edges are the ones contained in the
minimum edge multiway cut S. The green curve shows the existence of a path between a variable-
terminal and a clause-terminal.

The above implies that {1, 2, 3, 6}-Edge Multiway Cut is NP-complete on planar
subcubic graphs. We now proceed to prove that (unweighted) Edge Multiway Cut is
NP-complete on planar subcubic graphs. The proof follows from the claim below, which
states that the honeycombs of G̃ (defined before) do not contribute any edge to any minimum
edge multiway cut for (G̃, T).

▷ Claim 2.8 (proof omitted). Any minimum edge multiway cut for (G̃, T) does not contain
any of the honeycomb edges.

By the construction of G̃ and Claims 2.1, 2.7, and 2.8, we conclude that Edge Multiway
Cut is NP-complete on planar subcubic graphs. ◀

3 Proofs of Theorems 1.2 and 1.3

We first prove Theorem 1.2.

▶ Theorem 1.2 (Restated). Node Multiway Cut with Deletable Terminals is
NP-complete for planar subcubic graphs.

Proof. It is readily seen that Node Multiway Cut with Deletable Terminals belongs
to NP. We now reduce from Vertex Cover on planar subcubic graphs, which is known to
be NP-complete [21]. Let G be the graph of an instance of this problem. We keep the same
graph, but set T = V (G). Since any two adjacent vertices are now adjacent terminals, any
vertex cover in G corresponds to a node multiway cut for (G, T). The result follows. ◀

To prove Theorem 1.3, we first make the following observation (proof omitted).

▶ Proposition 3.1. Node Multiway Cut is NP-complete for planar graphs of maximum
degree 4.

We also need the following lemma from Johnson et al. [18].

▶ Lemma 3.2. If Edge Multiway Cut is NP-complete for a class H of graphs, then it is
also NP-complete for the class of graphs consisting of the 1-subdivisions of the graphs of H.

M. Johnson, B. Martin, S. Pandey, D. Paulusma, S. Smith, and E. J. van Leeuwen 29:15

We are now ready to prove Theorem 1.3.

▶ Theorem 1.3 (Restated). Node Multiway Cut is NP-complete for planar subcubic
graphs.

Proof. It is readily seen that Node Multiway Cut belongs to NP. In Theorem 1.1, we
showed that Edge Multiway Cut is NP-complete on the class of planar subcubic graphs.
We will now reduce Node Multiway Cut from Edge Multiway Cut restricted to the
class of planar subcubic graphs. Let G be a planar subcubic graph with a set of terminals T .

From G, we create an instance of Node Multiway Cut by the following operations;
here, the line graph of a graph G = (V, E) has E as vertex set and for every pair of edges e

and f in G, there is an edge between e and f in the line graph of G if and only if e and f

share an end-vertex.

We construct the 2-subdivision of G, which we denote by G′.
Next, we construct the line graph of G′, which we denote by L.
Finally, we create the terminal set of L as follows: for each terminal t in G′, consider
the edges incident on it. In the line graph L, these edges must form a clique, Ki for
i ∈ {1, 2, 3} : i = deg(t). In this clique, we pick one vertex and make it a terminal. We
denote the terminal set in L by TL.

Note that L is planar, as G′ is planar and every vertex in G′ has degree at most 3 [25]. Note
also that L is subcubic, as every edge in G′ has one end-vertex of degree 2 and the other
end-vertex of degree at most 3. Moreover, L and TL can be constructed in polynomial time.

▷ Claim 3.3 (proof omitted). There exists an edge multiway cut of (G, T) of size at most k

if and only if there exists a node multiway cut of (L, TL) of size at most k.

By our construction and Claim 3.3, Node Multiway Cut is NP-complete on the class of
planar subcubic graphs. ◀

4 Conclusions

We proved that Edge Multiway Cut and both versions of Node Multiway Cut are
NP-complete for planar subcubic graphs. We also showed that these results filled complexity
gaps in the literature related to maximum degree, H-topological-minor-free graphs and
H-subgraph-free graphs. The last dichotomy result assumes that H is a finite set of graphs.
We therefore pose the following challenging question.

▶ Open Problem 1. Classify the complexity of Edge Multiway Cut and both versions of
Node Multiway Cut for H-subgraph-free graphs when H is infinite.

An answer to Open Probem 1 will require novel insights into the structure of H-subgraph-free
graphs.

References
1 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable

graphs. Journal of Algorithms, 12:308–340, 1991.
2 Benjamin Bergougnoux, Charis Papadopoulos, and Jan Arne Telle. Node multiway cut and

subset feedback vertex set on graphs of bounded mim-width. Algorithmica, 84:1385–1417,
2022.

SWAT 2024

29:16 EMWC and NMWC Are Hard for Planar Subcubic Graphs

3 Stan Birchfield and Carlo Tomasi. Multiway cut for stereo and motion with slanted surfaces.
In Proc. ICCV 1999, pages 489–495. IEEE Computer Society, 1999.

4 Hans L. Bodlaender, Édouard Bonnet, Lars Jaffke, Dusan Knop, Paloma T. Lima, Martin
Milanic, Sebastian Ordyniak, Sukanya Pandey, and Ondrej Suchý. Treewidth is NP-complete
on cubic graphs. In Proc. IPEC 2023, volume 285 of LIPIcs, pages 7:1–7:13. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2023.

5 Édouard Bonnet, Dibyayan Chakraborty, and Julien Duron. Cutting Barnette graphs perfectly
is hard. In Proc. WG 2023, volume 14093 of LNCS, pages 116–129. Springer, 2023.

6 Yuri Boykov, Olga Veksler, and Ramin Zabih. Markov random fields with efficient approxima-
tions. In Proc. CVPR 1998, pages 648–655. IEEE Computer Society, 1998.

7 Gruia Călinescu and Cristina G. Fernandes. Multicuts in unweighted digraphs with bounded
degree and bounded tree-width. Electronic Notes in Discrete Mathematics, 7:194–197, 2001.

8 Gruia Călinescu, Howard J. Karloff, and Yuval Rabani. An improved approximation algorithm
for Multiway cut. Journal of Computer and System Sciences, 60:564–574, 2000.

9 Yixin Cao, Jianer Chen, and Jia-Hao Fan. An O∗(1.84k) parameterized algorithm for the
Multiterminal Cut problem. Information Processing Letters, 114:167–173, 2014.

10 Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized algorithm for the
Minimum Node Multiway Cut problem. Algorithmica, 55:1–13, 2009.

11 Rajesh Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Fixed-parameter tractability
of Directed Multiway Cut parameterized by the size of the cutset. SIAM Journal on Computing,
42:1674–1696, 2013.

12 Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry Wojtaszczyk. On
Multiway Cut parameterized above lower bounds. ACM Transactions on Computation Theory,
5:3:1–3:11, 2013.

13 Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and Mihalis
Yannakakis. The complexity of multiterminal cuts. SIAM Journal on Computing, 23:864–894,
1994.

14 Lester R. Ford and Delbert R. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics, 8:399–404, 1956.

15 Esther Galby, Dániel Marx, Philipp Schepper, Roohani Sharma, and Prafullkumar Tale.
Domination and cut problems on chordal graphs with bounded leafage. In Proc. IPEC 2022,
volume 249 of LIPIcs, pages 14:1–14:24. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022.

16 Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Multiway cuts in node weighted
graphs. Journal of Algorithms, 50:49–61, 2004.

17 David Hartvigsen. The Planar Multiterminal Cut problem. Discrete Applied Mathematics,
85:203–222, 1998.

18 Matthew Johnson, Barnaby Martin, Jelle J. Oostveen, Sukanya Pandey, Siani Smith, and
Erik Jan van Leeuwen. Complexity framework for forbidden subgraphs I: The framework.
arXiv, 2022. arXiv:2211.12887.

19 Philip N. Klein and Dániel Marx. Solving Planar k-Terminal Cut in O(nc
√

k) time. In Proc.
ICALP 2012, volume 7391 of LNCS, pages 569–580. Springer, 2012.

20 Dániel Marx. A tight lower bound for Planar Multiway Cut with fixed number of terminals.
In Proc. ICALP 2012, volume 7391 of LNCS, pages 677–688. Springer, 2012.

21 Bojan Mohar. Face covers and the genus problem for apex graphs. Journal of Combinatorial
Theory, Series B, 82:102–117, 2001.

22 Sukanya Pandey and Erik Jan van Leeuwen. Planar Multiway Cut with terminals on few
faces. In Proc. SODA 2022, pages 2032–2063. SIAM, 2022.

23 Charis Papadopoulos and Spyridon Tzimas. Subset feedback vertex set on graphs of bounded
independent set size. Theoretical Computer Science, 814:177–188, 2020.

24 Neil Robertson and Paul D. Seymour. Graph minors. V. Excluding a planar graph. Journal
of Combinatorial Theory, Series B, 41:92–114, 1986.

https://arxiv.org/abs/2211.12887

M. Johnson, B. Martin, S. Pandey, D. Paulusma, S. Smith, and E. J. van Leeuwen 29:17

25 J. Sedlaác̆ek. Some properties of interchange graphs. In Theory of Graphs and Its Applications,
pages 145–150. Academic Press, 1964.

26 H.S. Stone. Multiprocessor scheduling with the aid of network flow algorithms. IEEE
Transactions on Software Engineering, SE-3(1):85–93, 1977.

27 Martin Škoviera and Peter Varša. NP-completeness of perfect matching index of cubic
graphs. In Proc. STACS 2022, volume 219 of LIPIcs, pages 56:1–56:12. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022.

28 Radoslaw Ziemann and Pawel Zylinski. Vertex-edge domination in cubic graphs. Discrete
Mathematics, 343:112075, 2020.

SWAT 2024

Parameterized Complexity of Submodular
Minimization Under Uncertainty
Naonori Kakimura #

Department of Mathematics, Keio University, Yokohama, Japan

Ildikó Schlotter #

HUN-REN Centre for Economic and Regional Studies, Budapest, Hungary
Budapest University of Technology and Economics, Hungary

Abstract
This paper studies the computational complexity of a robust variant of a two-stage submodular
minimization problem that we call Robust Submodular Minimizer. In this problem, we are given
k submodular functions f1, . . . , fk over a set family 2V , which represent k possible scenarios in the
future when we will need to find an optimal solution for one of these scenarios, i.e., a minimizer for
one of the functions. The present task is to find a set X ⊆ V that is close to some optimal solution
for each fi in the sense that some minimizer of fi can be obtained from X by adding/removing
at most d elements for a given integer d ∈ N. The main contribution of this paper is to provide a
complete computational map of this problem with respect to parameters k and d, which reveals a
tight complexity threshold for both parameters:

Robust Submodular Minimizer can be solved in polynomial time when k ≤ 2, but is NP-hard
if k is a constant with k ≥ 3.
Robust Submodular Minimizer can be solved in polynomial time when d = 0, but is NP-hard
if d is a constant with d ≥ 1.
Robust Submodular Minimizer is fixed-parameter tractable when parameterized by (k, d).

We also show that if some submodular function fi has a polynomial number of minimizers, then
the problem becomes fixed-parameter tractable when parameterized by d. We remark that all our
hardness results hold even if each submodular function is given by a cut function of a directed graph.

2012 ACM Subject Classification Theory of computation → Submodular optimization and poly-
matroids; Theory of computation → Fixed parameter tractability; Mathematics of computing →
Combinatorial optimization

Keywords and phrases Submodular minimization, optimization under uncertainty, parameterized
complexity, cut function

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.30

Related Version Full Version: https://arxiv.org/abs/2404.07516 [17]

Funding Naonori Kakimura: Supported by JSPS KAKENHI Grant Numbers JP22H05001,
JP20H05795, and JP21H03397, Japan and JST ERATO Grant Number JPMJER2301, Japan.
Ildikó Schlotter : Supported by the Hungarian Academy of Sciences under its János Bolyai Research
Scholarship and its Momentum Programme (LP2021-2).

Acknowledgements The authors are grateful to the organizers of the 14th Emléktábla Workshop
which took place in Vác, Hungary in 2023, and provided a great opportunity for our initial discussions.

1 Introduction

This paper proposes a two-stage robust optimization problem under uncertainty. Suppose
that we want to find a minimum cut on a directed graph under uncertainty. The uncertainty
here is represented by k directed graphs G1, . . . , Gk on the same vertex set V ∪ {s, t}. That
is, we have k possible scenarios of graph realizations in the future. At the moment, we want

© Naonori Kakimura and Ildikó Schlotter;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 30; pp. 30:1–30:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kakimura@math.keio.ac.jp
https://orcid.org/0000-0002-3918-3479
mailto:schlotter.ildiko@krtk.hun-ren.hu
https://orcid.org/0000-0002-0114-8280
https://doi.org/10.4230/LIPIcs.SWAT.2024.30
https://arxiv.org/abs/2404.07516
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Parameterized Complexity of Submodular Minimization Under Uncertainty

to choose an (s, t)-cut in advance, so that after the graph is revealed, we will be able to
obtain a minimum (s, t)-cut in the graph with small modification. Therefore, our aim is to
find an (s, t)-cut that is close to some minimum (s, t)-cut in each graph Gi for i = 1, . . . , k.

Let us formalize this problem. For a vertex set X in a directed graph G = (V ∪ {s, t}, E),
the cut function f : 2V → Z is the number of out-going edges from X. Let us denote the family
of minimum (s, t)-cuts in G by Cs,t(G), that is, Cs,t(G) = {Y ⊆ V : f(Y) ≤ f(Y ′) ∀Y ′ ⊆ V }.
Given directed graphs G1, . . . , Gk over a common vertex set V ∪ {s, t}, we want to find a
subset X ⊆ V and sets Yi ∈ Cs,t(Gi) for each i ∈ [k] that minimizes maxi∈[k] |X △ Yi| where
△ stands for symmetric difference and [k] denotes {1, . . . , k} for any positive integer k.

We study a natural generalization of this problem where, instead of the cut functions of
directed graphs which are known to be submodular [28], we consider arbitrary submodular
set functions over some non-empty finite set V . Let f1, . . . , fk : 2V → R be k submodular
functions. Let arg min fi = {Y ⊆ V : fi(Y) ≤ fi(Y ′) ∀Y ′ ⊆ V } refer to the set of minimizers
of fi. We want to find a subset X ⊆ V and sets Yi ∈ arg min fi for all i ∈ [k] that

minimize max
i∈[k]
|X △ Yi|.

We call the decision version of this problem Robust Submodular Minimizer.

Robust Submodular Minimizer:
Input: A finite set V , submodular functions f1, . . . , fk : 2V → R, and an integer d ∈ N.
Task: Find a set X ⊆ V such that for each i ∈ [k] there exists Yi ∈ arg min fi with

|X △ Yi| ≤ d, or detect if no such set exists.

We remark that the min-sum variant of the problem, that is, the problem obtained by
replacing the condition maxi∈[k] |X △ Yi| ≤ d with

∑
i∈[k] |X △ Yi| ≤ d, was introduced by

Kakimura et al. [16], who showed that it can be solved in polynomial time.

1.1 Our Contributions and Techniques
Our contribution is to reveal the complete computational complexity of Robust Submodu-
lar Minimizer with respect to the parameters k and d. We also provide an algorithm for
the case when one of the submodular functions has only polynomially many minimizers. Our
results are as follows:
1. Robust Submodular Minimizer can be solved in polynomial time when k ≤ 2

(Theorem 6), but is NP-hard if k is a constant with k ≥ 3 (Corollary 24).
2. Robust Submodular Minimizer can be solved in polynomial time when d = 0

(Observation 4), but is NP-hard if d is a constant with d ≥ 1 (Theorem 20).
3. Robust Submodular Minimizer is fixed-parameter tractable when parameterized

by (k, d).
4. Robust Submodular Minimizer is fixed-parameter tractable when parameterized by d,

if the size of arg min fi for some i ∈ [k] is polynomially bounded.

When k = 1, Robust Submodular Minimizer is equivalent to the efficiently solvable
submodular function minimization problem [20], in which we are given a single submodular
function f : 2V → R and want to find a set X ⊆ V in arg min f . It is not difficult to observe
that Robust Submodular Minimizer for d = 0 can also be solved in polynomial time by
computing a minimizer of the submodular function

∑k
i=1 fi; see Section 3.1.

The rest of our positive results are based on Birkhoff’s representation theorem on
distributive lattices [1] that allows us to maintain the family of minimizers of a submodular
function in a compact way. Specifically, even though the number of minimizers may be

N. Kakimura and I. Schlotter 30:3

exponential in the input size, we can represent all minimizers as a family of cuts in a directed
acyclic graph with polynomial size. As we show in Section 3.1, we can use this representation
to solve an instance I of Robust Submodular Minimizer with k = 2 by constructing a
directed graph with two distinct vertices, s and t, in which a minimum (s, t)-cut yields a
solution for I. More generally, Birkhoff’s compact representation allows us to reduce Robust
Submodular Minimizer for arbitrary k to the so-called Multi-Budgeted Directed Cut
problem, solvable by an algorithm due to Kratsch et al. [18], leading to a fixed-parameter
tractable algorithm for the parameter (k, d). We note that a similar construction was used
to show that the min-sum variant of the problem is polynomial-time solvable [16].

In Section 3.3, we consider the case when one of the k submodular functions has only
polynomially many minimizers. As mentioned in [16], Robust Submodular Minimizer
is NP-hard even when each submodular function fi has a unique minimizer. In fact, the
problem is equivalent to the Closest String problem over a binary alphabet, shown to be
NP-hard under the name Minimum Radius by Frances and Litman [11]. For the case when
| arg min fi| is polynomially bounded for some i ∈ [k], we present a fixed-parameter tractable
algorithm parameterized only by d. Our algorithm guesses a set in arg min fi and uses it as
an “anchor,” then solves the problem recursively by the bounded search-tree technique.

Section 4 contains our NP-hardness results for the cases when either d is a constant at
least 1, or k is a constant at least 3. We present reductions from an intermediate problem
that may be of independent interest: in this problem, we are given k set families F1, . . . ,Fk

over a universe V containing two distinguished elements, s and t, with each Fi containing
pairwise disjoint subsets of V ; the task is to find a set X ⊆ V containing s but not t that
has a bounded distance from each family Fi for a specific distance measure.

The symbol ⋆ marks statements whose proofs we defer to the full version of our paper [17].

1.2 Related Work
Robust Submodular Minimizer is related to the robust recoverable combinatorial op-
timization problem, introduced by Liebchen et al. [22]. It is a framework of mathematical
optimization that allows recourse in decision-making to deal with uncertainty. In this frame-
work, we are given a problem instance with some scenarios and a recovery bound d, and the
task is to find a feasible solution X (the first-stage solution) to the instance that can be
transformed to a feasible solution Yi (the second-stage solutions) in each scenario i respecting
the recovery bound (e.g., |X△Yi| ≤ d for each i). The cost of the solution is usually evaluated
by the sum of the cost of X and the sum of the costs of Yi’s. Robust recoverable versions
have been studied for a variety of standard combinatorial optimization problems. Examples
include the shortest path problem [5], the assignment problem [10], the travelling salesman
problem [12], and others [14, 19, 21]. The setting was originally motivated from the situation
where the source of uncertainty was the cost function which changes in the second stage. We
consider another situation dealing with structural uncertainty, where some unknown set of
input elements can be interdicted [8, 15]. Recently, a variant of robust recoverable problems
has been studied where certain operations are allowed in the second stage [13].

Reoptimization is another concept related to Robust Submodular Minimizer. In
general reoptimization, we are given an instance I of a combinatorial optimization problem
and an optimal solution X for I. Then, for a slightly modified instance I ′ of the problem,
we need to make a small change to X so that the resulting solution X ′ is an optimal (or a
good approximate) solution to the modified instance I ′. Reoptimization has been studied for
several combinatorial optimization problems such as the minimum spanning tree problem [4],
the traveling salesman problem [23], and the Steiner tree problem [2].

SWAT 2024

30:4 Parameterized Complexity of Submodular Minimization Under Uncertainty

2 Preliminaries

Graphs and Cuts

Given a directed graph G = (V, E), we write uv for an edge pointing from u to v. For a
subset X ⊆ V of vertices in G, let δG(X) denote the set of edges leaving X. If G is an
undirected graph, then δG(X) for some set X of vertices denotes the set of edges with exactly
one endpoint in X. We may simply write δ(X) if the graph is clear from the context.

For two vertices s and t in a directed or undirected graph G = (V, E), an (s, t)-cut is a
set X of vertices such that s ∈ X but t /∈ X. A minimum (s, t)-cut in G is an (s, t)-cut X

that minimizes |δ(X)|. Given a cost function c : E → R+∪{+∞} on the edges of G where R+
is the set of all non-negative real numbers, the (weighted) cut function κG : 2V → R+∪{+∞}
is defined by

κG(X) =
∑

e∈δ(X)

c(e). (1)

A minimum-cost (s, t)-cut is an (s, t)-cut X that minimizes κG(X).

Distributive Lattices

In this paper, we will make use of properties of finite distributive lattices on a ground set V .
A distributive lattice is a set family L ⊆ 2V that is closed under union and intersection,

that is, X, Y ∈ L implies X ∪ Y ∈ L and X ∩ Y ∈ L. Then L is a partially ordered set with
respect to set inclusion ⊆, and has a unique minimal element and a unique maximal element.

Birkhoff’s representation theorem is a useful tool for studying distributive lattices.

▶ Theorem 1 (Birkhoff’s representation theorem [1]). Let L ⊆ 2V be a distributive lattice.
Then there exists a partition of V into U0, U1, . . . , Ub, U∞, where U0 and U∞ can possibly be
empty, such that the following hold:
(1) Every set in L contains U0.
(2) Every set in L is disjoint from U∞.
(3) For every set X ∈ L, there exists a set J ⊆ [b] of indices such that X = U0 ∪

⋃
j∈J Uj.

(4) There exists a directed acyclic graph G(L) that has the following properties.
(a) The vertex set is {U0, U1, . . . , Ub}.
(b) U0 is a unique sink1 of G(L).
(c) For a non-empty set Z of vertices in G(L), Z has no out-going edge if and only if⋃

Uj∈Z Uj ∈ L.

For a distributive lattice L ⊆ 2V , we call the directed acyclic graph G(L) above a compact
representation of L. Note that the size of G(L) is O(|V |2) while |L| can be as large as 2|V |.

Submodular Function Minimization

Let V be a non-empty finite set. A function f : 2V → R is submodular if f(X) + f(Y) ≥
f(X ∪Y) + f(X ∩Y) for all X, Y ⊆ V . A typical example of submodular functions is the cut
function κG of a directed (or undirected) edge-weighted graph G as defined in (1). If the graph
G = (V ∪{s, t}, E) contains two distinct vertices, s and t, then we can restrict the cut function
to the domain of (s, t)-cuts in the following sense: each X ⊆ V corresponds to an (s, t)-cut
X ∪ {s} in G; then the function λG : 2V → R+ ∪ {+∞} defined by λG(X) = κG(X ∪ {s}) is
submodular.

1 A sink is a vertex of out-degree zero.

N. Kakimura and I. Schlotter 30:5

When we discuss computations on a submodular function f : 2V → R, we assume that
we are given a value oracle of f . A value oracle takes X ⊆ V as an input, and returns the
value f(X). Assuming that we are given a value oracle, we can minimize a submodular
function in polynomial time. The currently fastest algorithm for submodular function
minimization was given by Lee et al. [20] and runs in Õ(n3EO + n4) time, where n = |V |
and EO is the query time of a value oracle.

Let f : 2V → R be a submodular function. A subset Y ⊆ V is a minimizer of the
function f if f(Y) ≤ f(Y ′) for all Y ′ ⊆ V . The set of minimizers of f is denoted by arg min f .
The following is a well-known fact on submodular functions.

▶ Lemma 2 (See e.g., [28]). Let f : 2V → R be a submodular function. Then arg min f forms
a distributive lattice.

A compact representation of the distributive lattice arg min f can be constructed in
Õ(n5EO + n6) time via Orlin’s submodular function minimization algorithm [25]. See [24,
Notes 10.11–10.12]. We will assume that the submodular functions given in our problem
instances are given via their compact representation.

As a special case, consider minimum (s, t)-cuts in a directed graph G = (V ∪ {s, t}, E)
with a positive cost function c on its edges. By Lemma 2, the family of minimum (s, t)-cuts
forms a distributive lattice. A compact representation for this lattice can be constructed
from a maximum flow in the (s, t)-network in linear time [26]. Thus the running time is
dominated by the maximum flow computation, and this can be done in |E|1+o(1) time [6].

Parameterized Complexity

In parameterized complexity, each input instance I of a parameterized problem Q is associated
with a parameter k, usually an integer or a tuple of integers, and we consider the running
time of any algorithm solving Q as not only a function of the input length |I|, but also as a
function of the parameter k. An algorithm for Q is fixed-parameter tractable or FPT, if it
runs in time g(k)|I|O(1) for some computable function g. Such an algorithm can be efficient
in practice if the parameter is small. See the books [7, 9] for more background.

3 Algorithms for Robust Submodular Minimizer

In this section, we present algorithms for Robust Submodular Minimizer. We start with
a construction that we will use in most of our algorithms. Let IRSM = (V, f1, . . . , fk, d) be
our input instance.

For each i ∈ [k], let Li = arg min fi denote the set of minimizers. By Lemma 2, using
Birkhoff’s representation theorem we may assume that fi is given through a compact
representation G(Li) of Li, whose vertex set is {U i

0, U i
1, . . . , U i

bi
} with U i

∞ = V \
⋃bi

j=0 U i
j .

We then construct a directed graph Gi from G(Li) by expanding each vertex in G(Li) to
a complete graph. More precisely, Gi has vertex set V i ∪ {s, t} where V i = {vi : v ∈ V } is a
copy of V , and its edge set Ei is defined as follows.

uivi ∈ Ei if u, v ∈ U i
j for some j ∈ {0, 1, . . . , bi,∞}.

uivi ∈ Ei for any u ∈ U i
j and v ∈ U i

j′ if G(Li) has an edge from U i
j to U i

j′ .
uis ∈ Ei and sui ∈ Ei if u ∈ U i

0.
uit ∈ Ei and tui ∈ Ei if u ∈ U i

∞.

We define the function λi : 2V i → Z+ so that λi(X) = |δGi(X∪{s})| for a subset X ⊆ V i.
Then it is observed below that each subset X ⊆ V i with λi(X) = 0 corresponds to a
minimizer of fi.

SWAT 2024

30:6 Parameterized Complexity of Submodular Minimization Under Uncertainty

▶ Lemma 3 ([16, Lemma 3.2]). Let X be a subset in V , and Xi = {vi ∈ V i : v ∈ X} its
copy in Gi. Then λi(Xi) = 0 if and only if X ∈ Li.

The rest of the section is organized as follows. In Section 3.1 we present polynomial-time
algorithms for the cases d = 0 and k = 2. In Section 3.2 we give an FPT algorithm for the
combined parameter (k, d). Section 3.3 deals with the case when some function fi has only
polynomially many minimizers, allowing for an FPT algorithm with parameter d.

3.1 Polynomial-time algorithms

We start by observing that the case d = 0 is efficiently solvable by computing a minimizer
for the function

∑
i∈[k] fi which is also submodular.

▶ Observation 4 (⋆). Robust Submodular Minimizer can be solved in polynomial time
if d = 0.

Next, we show that the problem is polynomial-time solvable when k = 2. We will need
the following intuitive fact.

▶ Proposition 5 (⋆). Let Y1, Y2 be two subsets of a set V . Then |Y1 △ Y2| ≤ 2d if and only
if there exists a set X ⊆ V such that |X △ Yi| ≤ d for each i ∈ {1, 2}.

▶ Theorem 6. Robust Submodular Minimizer for k = 2 can be solved in polynomial
time via a maximum flow computation.

Proof. Let our instance be IRSM = (V, f1, f2, d). Using the method explained at the beginning
of Section 3, we construct the directed graphs G1 = (V 1∪{s, t}, E2) and G2 = (V 2∪{s, t}, E2)
for f1 and f2. We then construct a directed graph G̃ = (Ṽ , Ẽ) by identifying s, as well as t,
in G1 and G2, and then connecting the corresponding copies of each vertex with a bidirected
edge. That is, Ṽ = V 1 ∪ V 2 ∪ {s, t} and Ẽ = E1 ∪E2 ∪E′ where E′ =

{
v1v2, v2v1 : v ∈ V

}
.

We set c(e) = +∞ for all edges e ∈ E1 ∪ E2, and we set c(e) = 1 for all edges e ∈ E′.
We next compute a minimum-cost (s, t)-cut Z in the graph G̃ with cost function c using

standard flow techniques. Let κG̃ denote the cut function in this graph. We will show below
that κG̃(Z) ≤ 2d if and only if the answer is “yes”.

First suppose that κG̃(Z) ≤ 2d. Let Y1 = {v ∈ V : v1 ∈ Z} and Y2 = {v ∈ V : v2 ∈ Z}.
Since δG̃(Z) has no edges in E1 ∪E2, we see that λi({vi ∈ V i : v ∈ Yi}) = 0 for both i = 1, 2,
and therefore the set Yi is in Li by Lemma 3. Since |Y1△Y2| = κG̃(Z) ≤ 2d, we can compute
a set X such that |X △ Yi| ≤ d for both i = 1, 2 by Proposition 5.

Conversely, let X ⊆ V and Yi ∈ Li for each i = 1, 2 such that |X △ Yi| ≤ d. Define
Z = {s} ∪ {v1 ∈ V 1 : v ∈ Y1} ∪ {v2 ∈ V 2 : v ∈ Y2}. Due to Lemma 3 we know that
λi({vi ∈ V i : v ∈ Yi}) = 0 for both i = 1, 2. This implies κG̃(Z) = |Y1 △ Y2| ≤ 2d where the
inequality follows from Proposition 5. ◀

3.2 FPT algorithm for parameter (k, d)

We propose a fixed-parameter tractable algorithm for Robust Submodular Minimizer
parameterized by k and d; let IRSM = (V, f1, . . . , fk, d) denote our instance.

▶ Theorem 7. Robust Submodular Minimizer can be solved in FPT time when para-
meterized by (k, d).

N. Kakimura and I. Schlotter 30:7

To this end, we reduce our problem to the Multi-Budgeted Directed Cut problem [18],
defined as follows. We are given a directed graph D = (V, E) with distinct vertices s and t,
together with pairwise disjoint edge sets A1, . . . , Ak, and positive integers d1, . . . , dk. The
task is to decide whether D has an (s, t)-cut X such that |δ(X) ∩Ai| ≤ di for each i ∈ [k].

▶ Proposition 8 (Kratsch et al. [18]). The Multi-Budgeted Directed Cut problem can
be solved in FPT time when the parameter is

∑k
i=1 di.

In fact, we will need to use forbidden edges, so let us define the Multi-Budgeted
Directed Cut with Forbidden Edges problem as follows. Given an instance IMBC
of Multi-Budgeted Directed Cut and a set F of forbidden edges, find a solution X

for IMBC such that δ(X) is disjoint from F . It is straightforward to solve this problem using
the results by Kratsch et al. [18], after replacing each forbidden edge with an appropriate
number of parallel edges. Hence, we get the following.

▶ Proposition 9 (⋆). The Multi-Budgeted Directed Cut with Forbidden Edges
problem can be solved in FPT time when the parameter is

∑k
i=1 di.

Reduction to Multi-Budgeted Directed Cut with Forbidden Edges

Compute the graph Gi for each i ∈ [k], as described at the beginning of Section 3. We
construct a large directed graph G̃ = (Ṽ , Ẽ) as follows. We identify all vertices s (and t,
respectively) in the graphs Gi into a single vertex s (and t, respectively). We further prepare
another copy of V , which is denoted by V ∗ = {v∗ : v ∈ V }. Thus the vertex set of G̃ is
defined by Ṽ =

⋃k
i=1 V i ∪ V ∗ ∪ {s, t}. The edge set of G̃ consists of Ei and bidirected edges

connecting v∗ and the copy vi of v in Gi, for each i ∈ [k]. That is,

Ẽ =
k⋃

i=1

(
Ei ∪Ai

)
where Ai =

{
v∗vi, viv∗ : v ∈ V

}
.

We also set di = d for each i ∈ [k]. Consider the instance IMBC = (G̃, s, t, {Ai}k
i=1, {di}k

i=1)
of multi-budgeted directed cut with F =

⋃k
i=1 Ei as forbidden edges; note that its

parameter is k · d. Theorem 7 immediately follows from Proposition 9 and Lemma 10 below.

▶ Lemma 10. There exists a solution for IRSM if and only if there exists a solution for the
instance (IMBC, F) of Multi-Budgeted Directed Cut with Forbidden Edges.

Proof. Suppose that (IMBC, F) admits a solution. That is, there exists a subset X of Ṽ

containing s but not t such that δG̃(X) is disjoint from F and satisfies |δG̃(X) ∩Ai| ≤ di for
each i ∈ [k]. Define Y i = X ∩ V i for i = 1, . . . , k. Observe that all edges within Gi leaving
Y i ∪ {s} also leave X in G̃, since s ∈ X but t /∈ X. Since all edges in Ei are forbidden edges,
we see that λi(Y i) = 0. Let Yi = {v ∈ V : vi ∈ Y i}, so that Y i contains the copy of each
vertex of Yi in Gi. Then Yi is in Li by Lemma 3.

Define the subset X∗ = {v : v∗ ∈ X} of V . Observe that

δG̃(X) ∩Ai = {v∗vi : v ∈ X∗, v /∈ Yi} ∪ {viv∗ : v /∈ X∗, v ∈ Yi}.

Therefore, we get that |X∗△ Yi| = |δG̃(X) ∩Ai| ≤ di = d for each i ∈ [k] as required, so X∗

is a solution to our instance IRSM of Robust Submodular Minimizer.

SWAT 2024

30:8 Parameterized Complexity of Submodular Minimization Under Uncertainty

Conversely, let X ⊆ V and Yi ∈ Li for each i ∈ [k] such that |X △ Yi| ≤ d. Define
X∗ = {v∗ ∈ V ∗ : v ∈ X} and Y i = {vi ∈ V i : v ∈ Yi}. Then the set X̃ = {s}∪X∗ ∪

⋃k
i=1 Y i

is an (s, t)-cut of G̃ such that

δG̃(X̃) ∩Ai = {v∗vi : v∗ ∈ X∗, v ̸∈ Y i} ∪ {viv∗ : v∗ ̸∈ X∗, vi ∈ Y i}
= {v∗vi : v ∈ X, v ̸∈ Yi} ∪ {viv∗ : v ̸∈ X, v ∈ Yi} = X △ Yi.

Hence we obtain |δG̃(X̃) ∩ Ai| = |X △ Yi| ≤ d = di for each i ∈ [k]. Since Yi is in Li,
by Lemma 3 we know λi(Y i) = 0 for each i ∈ [k]. Thus δG̃(X̃) is disjoint from the
set F of forbidden edges, and therefore X̃ is indeed a solution to our instance (IMBC, F) of
Multi-Budgeted Directed Cut with Forbidden Edges. ◀

3.3 Polynomially many minimizers: FPT algorithm parameterized by d

In this section, we present a fixed-parameter tractable algorithm for the case when our
threshold d is small, assuming that |L1| can bounded by a polynomial of the input size. Note
that even with a much stronger assumption, Robust Submodular Minimizer remains
intractable (see also [16]):

▶ Observation 11. Robust Submodular Minimizer is NP-hard even if |Li| = 1 for each
i ∈ [k].

Proof. If |Li| = 1 for each i ∈ [k], then there is a unique minimizer Yi ⊆ V for each fi, and
the problem is equivalent with finding a set X ⊆ V whose symmetric difference is at most d

from each of the sets Yi, i ∈ [k]. This is the Closest String problem over a binary alphabet,
shown to be NP-hard under the name Minimum Radius by Frances and Litman [11]. ◀

▶ Theorem 12. Robust Submodular Minimizer can be solved in |L1|g(d)nc time where
c is a constant and g is a computable function.

Let us consider a slightly more general version of Robust Submodular Minimizer
which we call Anchored Submodular Minimizer. In this problem, in addition to an
instance IRSM = (V, f1, . . . , fk, d) of Robust Submodular Minimizer, we are given a
set Y0 ⊆ V and integer d0 ≤ d, and we aim to find a subset X such that

|X △ Y0| ≤ d0 and (2)
|X △ Yi| ≤ d for some Yi ∈ Li, for each i ∈ [k]. (3)

Observe that we can solve our instance IRSM = (V, f1, . . . , fk, d) by solving the instance
(V, f2, . . . , fk, d, Y0, d0) of Anchored Submodular Minimizer for each Y0 ∈ L1 and d0 = d.
Hence, Theorem 12 follows from Theorem 13 below.

▶ Theorem 13. Anchored Submodular Minimizer can be solved in FPT time when
parameterized by d.

To prove Theorem 13, we will use the technique of bounded search-trees. Given an
instance I = (V, f1, . . . , fk, d, Y0, d0), after checking whether Y0 itself is a solution, we search
for a minimizer Yi ∈ Li for which d < |Y0△ Yi| ≤ d + d0. It is not hard to see the following.

▶ Observation 14. If X is a solution for an instance I = (V, f1, . . . , fk, d, Y0, d0) of An-
chored Submodular Minimizer, and Yi ∈ Li fulfills |X△Yi| ≤ d, then for all T ⊆ Y0△Yi

with |T | > d it holds that there exists some v ∈ T with v ∈ X △ Y0.

N. Kakimura and I. Schlotter 30:9

Proof. Indeed, assuming that the claim does not hold, we have that T ∩ (Y0 \ Yi) ⊆ X and
that (T ∩ (Yi \Y0))∩X = ∅. From the former, T ∩ (Y0 \Yi) ⊆ X \Yi follows, while the latter
implies T ∩ (Yi \ Y0) ⊆ Yi \X. Thus,

X △ Yi = (X \ Yi) ∪ (Yi \X) ⊇ (T ∩ (Y0 \ Yi)) ∪ (T ∩ (Yi \ Y0)) = T ∩ (Y0 △ Yi) = T.

Hence, |X △ Yi| ≥ |T | > d, contradicting our assumption that X is a solution for I. ◀

Our algorithm will compute in O∗(2d) time2 a set T ⊆ Y0 \ Yi of size d < |T | ≤ d + d0 that
contains some element v fulfilling the above conditions. Then, by setting Y0 ← Y0 △ {v}
and reducing the value of d0 by one, we obtain an equivalent instance I ′ of Anchored
Submodular Minimizer which we solve by applying recursion.

Description of our algorithm

Our algorithm will make “guesses”; nevertheless, it is a deterministic one, where guessing
a value from a given set U is interpreted as branching into |U | branches. We continue the
computations in each branch, and whenever a branch returns a solution for the given instance,
we return it; if all branches reject the instance (by outputting “No”), we also reject it. See
Algorithm ASM for a pseudo-code description.

We start by checking whether Y0 is a solution for our instance I = (V, f1, . . . , fk, d, Y0, d0),
that is, whether it satisfies (3). This can be done in polynomial time, since the set function
γi(Z) = min{|Z △ Yi| : Yi ∈ Li} is known to be submodular and can be computed via a
maximum flow computation [16]. If Y0 satisfies (3), i.e., γi(Y0) ≤ d for each i ∈ [k], then we
output Y0; note that (2) is obviously satisfied by Y0, so Y0 is a solution for I.

Otherwise, if d0 = 0, then we output “No” as in this case the only possible solution could
be Y0. We proceed by fixing an index i ∈ [k] such that γi(Y0) > d, that is, |Y0 △ Y | > d for
all minimizers Y ∈ Li.

▶ Observation 15. If X is a solution for I that satisfies |X △ Yi| ≤ d for some Yi ∈ Li,
then |Yi △ Y0| ≤ d + d0.

Proof. Since X is a solution for I, we have |X △ Y0| ≤ d0, and thus the triangle inequality
implies |Yi △ Y0| ≤ |X △ Yi|+ |X △ Y0| ≤ d + d0. ◀

By our choice of i and Observation 15, we know that d < |Y0△Yi| ≤ d + d0. We are going
to compute a set T ⊆ Y0△ Yi with the same bounds on its cardinality, i.e., d < |T | ≤ d + d0.

To this end, we compute a compact representation G(Li) of the distributive lattice Li;
let P = {U0, U1, . . . , Ub, U∞} be the partition of V in this representation.

Next, we proceed with an iterative procedure which also involves a set of guesses. We
start by setting Y = Y0 and T = ∅. We will maintain a family of fixed sets from P for which
we already know whether they are in Yi or not (according to our guesses); initially, no set
from P is fixed.

After this initialization, we start an iteration where at each step we check whether Y ∈ Li

or |T | > d. If yes, then we stop the iteration. If not, then it can be shown that one of the
following conditions holds:
Condition 1: there exists a set S ∈ P such that S ∩ Y ̸= ∅ and S \ Y ̸= ∅;
Condition 2: there exists an edge (S, S′) in G(Li) for which S ⊆ Y but S′ ∩ Y = ∅.

2 The O∗() notation hides polynomial factors.

SWAT 2024

30:10 Parameterized Complexity of Submodular Minimization Under Uncertainty

If Condition 1 holds for some set S ∈ P, then we guess whether S is contained in Yi. If
S ⊆ Yi according to our guesses, then we add S \ Y to T ; otherwise, we add S ∩ Y to T . In
either case, we declare S as fixed, and proceed with the next iteration.

By contrast, if Condition 1 fails, but Condition 2 holds for some edge (S, S′) in G(Li)
with endpoints S, S′ ∈ P, then we proceed as follows. If both S and S′ are fixed, then we
stop and reject the current set of guesses. If S is fixed but S′ is not, then we add all elements
of S′ to T . If S′ is fixed but S is not, then we add S to T . If neither S nor S′ is fixed, then
we guess whether S is contained in Yi or not, and in the former case we add S′ to T , while in
the latter case we add S to T . In all cases except for the last one, we declare both S and S′

as fixed; in the last case declare only S as fixed.
Next, we modify Y to reflect the current value of T by updating Y to Y0△T . If |T | > d+d0,

then we reject the current branch. If d < |T | ≤ d + d0, then we finish the iteration; otherwise,
we proceed with the next iteration.

Finally, when the iteration stops, we guess a vertex v ∈ T , define Y ′
0,v = Y0 △ {v} and

call the algorithm recursively on the instance I ′
v := (V, f1, . . . , fk, d, Y ′

0,v, d0 − 1).

Algorithm ASM Solving Anchored Submodular Minimizer on I = (V, f1, . . . , fk, d, Y0, d0).

1: for all j ∈ [k] do compute the value γj = min{|Y0 △ Y | : Y ∈ arg min fj}.
2: if γj ≤ d for each j ∈ [k] then return Y0.
3: if d0 = 0 then return “No”.
4: Fix an index i ∈ [k] such that γi > d.
5: Compute the graph G(Li), and let P be its vertex set.
6: Set T := ∅ and Y := Y0, and fixed(S) := false for each S ∈ P .
7: while Y /∈ Li and |T | ≤ d do
8: if ∃S ∈ P : S ∩ Y0 ̸= ∅, S \ Y0 ̸= ∅ then
9: Guess contained(S) from {false, true}.

10: if contained(S) = true then set T := T ∪ (S \ Y).
11: else set T := T ∪ (S ∩ Y).
12: Set fixed(S) := true.
13: else Find an edge (S, S′) ∈ G(Li) such that S ⊆ Y and S′ ∩ Y = ∅.
14: if fixed(S) = true then
15: if fixed(S′) = true then return “No”.
16: else set T := T ∪ S′ and fixed(S′) := true.
17: else ▷ fixed(S) = false.
18: if fixed(S′) = true then set T := T ∪ S and fixed(S) := true.
19: else guess contained(S) from {false, true}.
20: if contained(S) = true then set T := T ∪S′, fixed(S) := fixed(S′) := true.
21: else set T := T ∪ S and fixed(S) := true.
22: Set Y := Y0 △ T .
23: if |T | > d + d0 then return “No”.
24: Guess a vertex v from T .
25: Set Y ′

0,v = Y0 △ {v} and I ′
v = (V, f1, . . . , fk, d, Y ′

0,v, d0 − 1).
26: return ASM(I ′

v).

Proof of Theorem 13. We first prove the correctness of the algorithm. Clearly, for d0 = 0,
the algorithm either correctly outputs the solution Y0, or rejects the instance. Hence, we can
apply induction on d0, and assume that the algorithm works correctly when called for an
instance with a smaller value for d0.

N. Kakimura and I. Schlotter 30:11

We show that any set X returned by the algorithm is a solution for I. First, this is clear if
X = Y0, as the algorithm explicitly checks whether γi(Y0) ≤ d holds for each i ∈ [k]; second,
if X was returned by a recursive call on some instance I ′

v, then by our induction hypothesis
we know that X is a solution for I ′

v = (V, f1, . . . , fk, d, Y ′
0,v, d0 − 1). Hence, X satisfies (3);

moreover, by |X △ Y ′
0,v| ≤ d0 − 1, it also satisfies |X △ Y0| ≤ d0, because |Y0 △ Y ′

0,v| = 1.
Let us now prove that if I admits a solution X, then the algorithm correctly returns a

solution for I. Let Yi ∈ Li be a minimizer such that |X △ Yi| ≤ d where i is the index fixed
for which γi(Y0) > d.

▷ Claim 16 (⋆). Assuming that all guesses made by the algorithm are correct, in the iterative
process of modifying T and Y it will always hold that
(i) T ⊆ Yi △ Y0, and
(ii) for each S ∈ P :

(a) if S is fixed, then S ⊆ Y ⇐⇒ S ⊆ Yi, and S ∩ Y = ∅ ⇐⇒ S ∩ Yi = ∅, and
(b) if v ∈ S and S is not fixed, then v ∈ Y ⇐⇒ v ∈ Y0.
Next, we show that in each run of the iteration, Condition 1 or Condition 2 holds. Indeed,

if neither holds, then (1) Y =
⋃

U∈P′ U for some P ′ ⊆ P , and (2) no edge leaves P ′ in G(Li).
Hence, Y ∈ Li by Birkhoff’s representation theorem. However, since |T | ≤ d holds at the
beginning of each iteration, |Y △ Y0| = |T | ≤ d follows, contradicting our choice of i.

Therefore, in each run of the iteration, at least one element of V is put into T . Thus, the
iteration stops after at most d + 1 runs, at which point the obtained set T has size greater
than d. Using now statement (i) of Claim 16, Observation 14 yields that T contains at least
one vertex from X △ Y0. Assuming that the algorithm guesses such a vertex v correctly,
it is clear that our solution X for I will also be a solution for the instance I ′

v. Using our
inductive hypothesis, we obtain that the recursive call returns a correct solution for I ′

v which,
as discussed already, will be a solution for I as well. Hence, our algorithm is correct.

Finally, let us bound the running time. Consider the search tree T where each node
corresponds to a call of Algorithm ASM. Note that the value of d0 decreases by one in each
recursive call, and the algorithm stops when d0 = 0. Hence T has depth at most d0. Consider
the guesses made during the execution of a single call of the algorithm (without taking into
account the guesses in the recursive calls): we make at most one guess in each iteration on
line 9 or on line 19, leading to at most 2d+1 possibilities. Then the algorithm further guesses
a vertex from T , leading to a total of at most 2d+1|T | ≤ 2d+1(d + d0) = 2O(d) possibilities;
recall that d0 ≤ d. We get that the number of nodes in our search tree is 2d0O(d). Since all
computations for a fixed series of guesses take polynomial time, we obtain that the running
time is indeed fixed-parameter tractable with parameter d. ◀

4 Hardness Results

We first introduce a separation problem that we will use as an intermediary problem in our
hardness proofs. Given a subset X ⊆ V of some universe V that contains two distinguished
elements, s and t, and a family Π of pairwise disjoint subsets of V , we define the distance of
the set X from Π as

∑
S∈Π dists,t(X, S) where

dists,t(X, S) =

min{|S \X|, |S ∩X|} if s /∈ S, t /∈ S;
|S \X| if s ∈ S, t /∈ S;
|S ∩X| if s /∈ S, t ∈ S;
+∞ if s ∈ S, t ∈ S.

SWAT 2024

30:12 Parameterized Complexity of Submodular Minimization Under Uncertainty

Given a collection of set families Π1, . . . , Πk, the goal is to find a set X ⊆ V that separates s

from t in the sense that s ∈ X but t /∈ X, and subject to this constraint, minimizes the
maximum distance of X from the given set families. Formally, the problem is:

Robust Separation:
Input: A finite set V with two elements s, t ∈ V , set families Π1, . . . , Πk where each Πi

is a collection of pairwise disjoint subsets of V , and an integer d ∈ N.
Task: Find a set X ⊆ V containing s but not t such that for each i ∈ [k]∑

S∈Πi

dists,t(X, S) ≤ d, (4)

or output “No” if no such set X exists.

Given an instance (V, s, t, Π1 . . . , Πk, d) of Robust Separation, the reduction proving
Lemma 17 below constructs a graph Gi over V for each i ∈ [k] in which each set in Πi forms
a clique, and defines a submodular function fi based on the cut function of Gi.

▶ Lemma 17 (⋆). Robust Separation can be reduced to Robust Submodular Minimizer
in polynomial time via a reduction that preserves the values of both k and d.

4.1 NP-hardness for a constant d ≥ 1
In this section, we prove that Robust Submodular Minimizer is NP-hard for each
constant d ≥ 1. To this end, we first prove the NP-hardness of Robust Separation in the
case d = 1, and then extend this result to hold for any constant d ≥ 1.

For the case d = 1, we present a reduction from the 1-in-3 SAT problem. In this problem,
we are given a set V of variables and a set C of clauses, with each clause C ∈ C containing
exactly three distinct literals; here, a literal is either a variable v ∈ V or its negation v.
Given a truth assignment ϕ : V → {true, false}, we automatically extend it to the set
V = {v : v ∈ V } of negative literals by setting ϕ(v) = true if and only if ϕ(v) = false. We
say that a truth assignment is valid, if it maps exactly one literal in each clause to true. The
task in the 1-in-3 SAT problem is to decide whether a valid truth assignment exists. This
problem is NP-complete [27].

▶ Theorem 18 (⋆). Robust Separation is NP-hard even when d = 1.

Proof. Suppose that we are given an instance of the 1-in-3 SAT problem with variable set V

and clause set C = {C1 . . . , Cm}. We construct an instance IRS of Robust Separation
as follows. In addition to the set V of variables and the set V = {v : v ∈ V } of negative
literals, we introduce our two distinguished elements, s and t. We further introduce a set
Rj = {rj,1, rj,2, rj,3} together with an extra element zj for each clause Cj ∈ C to form our
universe U . We let R = R1 ∪ · · · ∪Rm and Z = {z1, . . . , zm}, so that

U = V ∪ V ∪ {s, t} ∪
⋃

j∈[m]

(Rj ∪ {zj}) = V ∪ V ∪ {s, t} ∪R ∪ Z.

Next, for each variable, we introduce two set families, Πv and Πv, where

Πv = {{s, v, v} ∪R} and Πv = {{v, v, t}}.

For simplicity, we write Π(V) = ⟨Πv, Πv : v ∈ V ⟩ to denote the 2|V |-tuple formed by these
set families. For each clause Cj ∈ C, we fix an arbitrary ordering of its literals, and we denote
the first, second, and third literals in Cj as ℓj,1, ℓj,2 and ℓj,3. We define three set families:

N. Kakimura and I. Schlotter 30:13

ΠCj
= {Sj} where Sj = Cj ∪ {t} = {ℓj,1, ℓj,2, ℓj,3, t},

Πα
Cj

= {Sα,1
j , Sα,2

j } where Sα,1
j = {ℓj,1, zj},

Sα,2
j = {ℓj,2, rj,2};

Πβ
Cj

= {Sβ,1
j , Sβ,2

j } where Sβ,1
j = {rj,1, zj},

Sβ,2
j = {ℓj,3, rj,3}.

We also write Π(C) = ⟨ΠC , Πα
C , Πβ

C : C ∈ C⟩ to denote the 3|C|-tuple formed by these set
families in an arbitrarily fixed ordering. We set our threshold as d = 1. Thus, our instance
of Robust Separation is IRS = (U, s, t, Π(V), Π(C), 1).

We will show that the constructed instance IRS has a solution if and only if our in-
stance (V, C) of the 1-in-3 SAT problem is solvable.

First suppose that there is a valid truth assignment ϕ for (V, C). Consider the set

X = {s} ∪R ∪ {ℓ : ℓ ∈ V ∪ V , ϕ(ℓ) = true} ∪ {zj : zj ∈ Z, ϕ(ℓj,3) = false}.

Note that X contains s, but not t; we are going to show that it is a solution for IRS. Since ϕ

maps exactly one literal in {v, v} to true for each v ∈ V , by R ∪ {s} ⊆ X we get that∑
S∈Πv

dists,t(X, S) = |({s, v, v} ∪R) \X| = |{v, v} \X| = 1 and

∑
S∈Πv

dists,t(X, S) = |({v, v, t}) ∩X| = |{v, v} ∩X| = 1.

For the distance of X from the set families associated with some clause Cj ∈ C, by the
validity of ϕ we obtain∑

S∈ΠCj

dists,t(X, S) = |(Cj ∪ {t}) ∩X| = 1;

∑
S∈Πα

Cj

dists,t(X, S) = min{|Sα,1
j \X|, |Sα,1

j ∩X|}+ min{|Sα,2
j \X|, |Sα,2

j ∩X|}

= min{|{ℓj,1, zj} \X|, |{ℓj,1, zj} ∩X|}
+ min{|{ℓj,2, rj,2} \X|, |{ℓj,2, rj,2} ∩X|}

=

min{0, 2}+ min{1, 1} = 1 if ϕ(ℓj,1) = true
min{1, 1}+ min{0, 2} = 1 if ϕ(ℓj,2) = true
min{2, 0}+ min{1, 1} = 1 if ϕ(ℓj,3) = true

 = 1;

∑
S∈Πβ

Cj

dists,t(X, S) = min{|Sβ,1
j \X|, |Sβ,1

j ∩X|}+ min{|Sβ,2
j \X|, |Sβ,2

j ∩X|}

= min{|{rj,1, zj} \X|, |{rj,1, zj} ∩X|}
+ min{|{ℓj,3, rj,3} \X|, |{ℓj,3, rj,3} ∩X|}

=

min{0, 2}+ min{1, 1} = 1 if ϕ(ℓj,1) = true
min{0, 2}+ min{1, 1} = 1 if ϕ(ℓj,2) = true
min{1, 1}+ min{0, 2} = 1 if ϕ(ℓj,3) = true

 = 1.

Hence, X satisfies constraint (4) for each set family, and thus is a solution for IRS.
We prove the other direction of the claim in the full version of our paper [17]. ◀

SWAT 2024

30:14 Parameterized Complexity of Submodular Minimization Under Uncertainty

Using Theorem 18, it is not hard to show that Robust Separation remains NP-hard
for any constant d ≥ 1.

▶ Lemma 19 (⋆). Robust Separation is NP-hard for each constant d ≥ 1.

▶ Corollary 20. Robust Submodular Minimizer is NP-hard for each constant d ≥ 1.

4.2 NP-hardness for a constant k ≥ 3
In this section we prove that Robust Separation, and hence, Robust Submodular
Minimizer is NP-hard even for k = 3. To this end, we are going to define another intermediary
problem. First consider the Most Balanced Minimum Cut problem, proved to be NP-
complete by Bonsma [3]. The input of this problem is an undirected graph G = (V, E) with
two distinguished vertices, s and t, and a parameter ℓ. The task is to decide whether there
exists a minimum (s, t)-cut X ⊆ V in G such that min{|X|, |V \X|} ≥ ℓ; recall that a set of
vertices X ⊆ V is a minimum (s, t)-cut in the undirected graph G if s ∈ X, t /∈ X and subject
to this, the value |δ(X)|, i.e., the number of edges between X and V \X, is minimized.

Instead of the Most Balanced Minimum Cut problem, it will be more convenient to
use a variant that we call Perfectly Balanced Minimum Cut where we seek a minimum
(s, t)-cut that contains exactly half of the vertices. Formally, its input is an undirected
graph G = (V, E) with two distinguished vertices, s and t, and its task is to find a minimum
(s, t)-cut X with |X| = |V |/2. Since Most Balanced Minimum Cut can be reduced to
Perfectly Balanced Minimum Cut by simply adding a sufficient number of isolated
vertices, we obtain the following.

▶ Lemma 21 (⋆). Perfectly Balanced Minimum Cut is NP-complete.

▶ Theorem 22 (⋆). Robust Separation is NP-hard even when k = 3.

Proof. We present a reduction from the Perfectly Balanced Minimum Cut problem.
Let I = (G, s, t) be our input instance where G = (V, E). Clearly, we may assume that |V |
is even, as otherwise I is trivially a “no”-instance. First we compute the number of edges
in a minimum (s, t)-cut using standard flow techniques; let δ∗ denote this value, that is,
δ∗ = minY :s∈Y ⊆V \{t} |δ(Y)|.

Second, we modify G in order to ensure that there are at least 2δ∗ + 2 vertices in
the graph; if this holds already for G, then we set G′ = G. Otherwise, we construct a
new graph G′ = (V ′, E′) by adding two sets of vertices, As and At, to the graph with
|As| = |At| = ⌈(2δ∗ + 2 − |V |)/2⌉, and connecting each vertex in As to s, as well as each
vertex in At to t, with an edge. Observe that all minimum (s, t)-cuts in G′ contain As and
are disjoint from At. Moreover, any minimum (s, t)-cut X in G corresponds to a minimum
(s, t)-cut X ∪ AS in G′ and vice versa. Thus, I ′ = (G′, s, t) is an instance of Perfectly
Balanced Minimum Cut equivalent with I. Let 2n + 2 denote the number of vertices
in G′, so that Ṽ := V ′ \ {s, t} has 2n vertices. By our choice of |As| = |At|, we know that
the number of vertices in G′ is |V ′| = 2n + 2 ≥ |V |+ (2δ∗ + 2− |V |) = 2δ∗ + 2, as promised.

Let us construct an instance J of Robust Separation. We define our universe U

as follows. For each v ∈ V ′ we introduce a set P (v) = {v̂} ∪ {vu : uv ∈ E}, and we
additionally define a copy V ∗ = {v∗ : v ∈ V } of V , a set R of size |R| = n − δ∗, and a
copy R′ = {r′ : r ∈ R} of R. Thus, we have

U =
⋃

v∈V ′

P (v) ∪ V ∗ ∪R ∪R′.

N. Kakimura and I. Schlotter 30:15

We set s∗ and t∗, both in V ∗, as our two distinguished vertices.
We define our three families for J as follows:

Π1 = {S1} where S1 = V ∗ \ {t∗} ∪R ∪ P (s);
Π2 = {S2} ∪ {Sv

2 : v ∈ Ṽ } where S2 = V ∗ \ {s∗} ∪R′ ∪ P (t),
Sv

2 = P (v) ∀v ∈ Ṽ ;
Π3 = {Sv

3 : v ∈ Ṽ } ∪ {Se
3 : e ∈ E′} ∪ {Sr

3 : r ∈ R} where Sv
3 = {v̂, v∗} ∀v ∈ Ṽ ,

Se
3 = {uv, vu} ∀e = uv ∈ E′,

Sr
3 = {r, r′} ∀r ∈ R.

Thus, Π1 contains only a single set, Π2 contains |Ṽ |+1 pairwise disjoint sets, and Π3 contains
|Ṽ |+ |E′|+ |R| pairwise disjoint sets. We finish the definition of our instance J by setting
d = n as our threshold, so that J = (U, s∗, t∗, Π1, Π2, Π3, n).

We claim that G′ admits a minimum (s, t)-cut containing exactly n + 1 vertices if and
only if J is a “yes”-instance of Robust Separation. The proof of this claim can be found
in the full version of our paper [17]. ◀

Clearly, we can increase the value of parameter k without changing the solution set of our
instance of Robust Separation by repeatedly adding a copy of, say, the first set family Π1.
Using also Lemma 17, we have the following easy consequences of Theorem 22:

▶ Corollary 23. Robust Separation is NP-hard for each constant k ≥ 3.

▶ Corollary 24. Robust Submodular Minimizer is NP-hard for each constant k ≥ 3.

5 Conclusion

In this paper, we studied the computational complexity of Robust Submodular Minimizer,
and provided a complete computational map of the problem with respect to the parameters k

and d, offering dichotomies for the case when one of these parameters is a constant, and
giving an FPT algorithm for the combined parameter (k, d). Regarding the case when one
of the functions fi has only polynomially bounded minimizers, there are a few questions
left open: First, what is the computational complexity of this variant when parameterized
by k? Second, is there an algorithm for this case with running time 2O(d)|I|O(1) on some
instance I instead of the running time 2O(d2)|I|O(1) we obtained based on the algorithm for
Theorem 13?

We remark that our algorithmic results can be adapted in a straightforward way to a
slightly generalized problem: given k submodular functions f1, . . . , fk with non-negative
integers d1, . . . , dk, we aim to find a set X such that, for each i ∈ [k], there exists some
set Yi ∈ arg min fi with |X △ Yi| ≤ di for each i ∈ [k]. As mentioned in Section 1.2, Robust
Submodular Minimizer is related to recoverable robustness. We can consider the robust
recoverable variant of submodular minimization: given submodular functions f0, f1, . . . , fk,
we aim to find a set X that minimizes

f0(X) + max
i∈[k]

min
Yi:|Yi△X|≤d

fi(Xi).

The optimal value is lower-bounded by f0(Y0)+maxi∈[k] fi(Yi) where Yi ∈ arg min fi for each
i ∈ {0, 1, . . . , k}. Our results imply that we can decide efficiently whether the optimal value
attains this lower bound or not, when d and k are parameters, or when f0 has polynomially
many minimizers.

SWAT 2024

30:16 Parameterized Complexity of Submodular Minimization Under Uncertainty

References
1 Garrett Birkhoff. Rings of sets. Duke Math. J., 3(3):443–454, 1937. doi:10.1215/

S0012-7094-37-00334-X.
2 Hans-Joachim Böckenhauer, Karin Freiermuth, Juraj Hromkovic, Tobias Mömke, Andreas

Sprock, and Björn Steffen. Steiner tree reoptimization in graphs with sharpened triangle
inequality. J. Discrete Algorithms, 11:73–86, 2012. doi:10.1016/J.JDA.2011.03.014.

3 Paul Bonsma. Most balanced minimum cuts. Discrete Applied Mathematics, 158:261–276,
2010. doi:10.1016/j.dam.2009.09.010.

4 Nicolas Boria and Vangelis Th. Paschos. Fast reoptimization for the minimum spanning tree
problem. J. Discrete Algorithms, 8(3):296–310, 2010. doi:10.1016/J.JDA.2009.07.002.

5 Christina Büsing. Recoverable robust shortest path problems. Networks, 59(1):181–189, 2012.
doi:10.1002/NET.20487.

6 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Almost-linear-time algorithms for maximum flow and minimum-cost flow.
Commun. ACM, 66(12):85–92, 2023. doi:10.1145/3610940.

7 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, Cham,
2015. doi:10.1007/978-3-319-21275-3.

8 Mitre Costa Dourado, Dirk Meierling, Lucia Draque Penso, Dieter Rautenbach, Fábio Protti,
and Aline Ribeiro de Almeida. Robust recoverable perfect matchings. Networks, 66(3):210–213,
2015. doi:10.1002/NET.21624.

9 Rod G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, London, 2013. doi:10.1007/978-1-4471-5559-1.

10 Dennis Fischer, Tim A. Hartmann, Stefan Lendl, and Gerhard J. Woeginger. An investigation
of the recoverable robust assignment problem. In Petr A. Golovach and Meirav Zehavi,
editors, 16th International Symposium on Parameterized and Exact Computation, IPEC 2021,
September 8-10, 2021, Lisbon, Portugal, volume 214 of LIPIcs, pages 19:1–19:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.IPEC.2021.19.

11 Moti Frances and Ami Litman. On covering problems of codes. Theory Comput. Syst.,
30(2):113–119, 1997. doi:10.1007/s002240000044.

12 Marc Goerigk, Stefan Lendl, and Lasse Wulf. On the recoverable traveling salesman problem.
CoRR, abs/2111.09691, 2021. arXiv:2111.09691.

13 Felix Hommelsheim, Nicole Megow, Komal Muluk, and Britta Peis. Recoverable robust
optimization with commitment. CoRR, abs/2306.08546, 2023. arXiv:2306.08546.

14 Mikita Hradovich, Adam Kasperski, and Pawel Zielinski. Recoverable robust spanning tree
problem under interval uncertainty representations. J. Comb. Optim., 34(2):554–573, 2017.
doi:10.1007/S10878-016-0089-6.

15 Takehiro Ito, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, and Yoshio Okamoto.
A parameterized view to the robust recoverable base problem of matroids under structural
uncertainty. Oper. Res. Lett., 50(3):370–375, 2022. doi:10.1016/J.ORL.2022.05.001.

16 Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, and Yoshio Okamoto. Submodular
reassignment problem for reallocating agents to tasks with synergy effects. Discret. Optim.,
44(Part):100631, 2022. doi:10.1016/j.disopt.2021.100631.

17 Naonori Kakimura and Ildikó Schlotter. Parameterized complexity of submodular minimization
under uncertainty. CoRR, abs/2404.07516, 2024. arXiv:2404.07516.

18 Stefan Kratsch, Shaohua Li, Dániel Marx, Marcin Pilipczuk, and Magnus Wahlström.
Multi-budgeted directed cuts. Algorithmica, 82(8):2135–2155, 2020. doi:10.1007/
S00453-019-00609-1.

19 Thomas Lachmann, Stefan Lendl, and Gerhard J. Woeginger. A linear time algorithm for
the robust recoverable selection problem. Discret. Appl. Math., 303:94–107, 2021. doi:
10.1016/J.DAM.2020.08.012.

https://doi.org/10.1215/S0012-7094-37-00334-X
https://doi.org/10.1215/S0012-7094-37-00334-X
https://doi.org/10.1016/J.JDA.2011.03.014
https://doi.org/10.1016/j.dam.2009.09.010
https://doi.org/10.1016/J.JDA.2009.07.002
https://doi.org/10.1002/NET.20487
https://doi.org/10.1145/3610940
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1002/NET.21624
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.4230/LIPICS.IPEC.2021.19
https://doi.org/10.1007/s002240000044
https://arxiv.org/abs/2111.09691
https://arxiv.org/abs/2306.08546
https://doi.org/10.1007/S10878-016-0089-6
https://doi.org/10.1016/J.ORL.2022.05.001
https://doi.org/10.1016/j.disopt.2021.100631
https://arxiv.org/abs/2404.07516
https://doi.org/10.1007/S00453-019-00609-1
https://doi.org/10.1007/S00453-019-00609-1
https://doi.org/10.1016/J.DAM.2020.08.012
https://doi.org/10.1016/J.DAM.2020.08.012

N. Kakimura and I. Schlotter 30:17

20 Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method and its
implications for combinatorial and convex optimization. In IEEE 56th Annual Symposium
on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17–20 October, 2015,
pages 1049–1065, 2015. doi:10.1109/FOCS.2015.68.

21 Stefan Lendl, Britta Peis, and Veerle Timmermans. Matroid bases with cardinality
constraints on the intersection. Math. Program., 194(1):661–684, 2022. doi:10.1007/
S10107-021-01642-1.

22 Christian Liebchen, Marco E. Lübbecke, Rolf H. Möhring, and Sebastian Stiller. The concept of
recoverable robustness, linear programming recovery, and railway applications. In Ravindra K.
Ahuja, Rolf H. Möhring, and Christos D. Zaroliagis, editors, Robust and Online Large-Scale
Optimization: Models and Techniques for Transportation Systems, volume 5868 of Lecture
Notes in Computer Science, pages 1–27. Springer, 2009. doi:10.1007/978-3-642-05465-5_1.

23 Jérôme Monnot. A note on the traveling salesman reoptimization problem under vertex
insertion. Inf. Process. Lett., 115(3):435–438, 2015. doi:10.1016/J.IPL.2014.11.003.

24 Kazuo Murota. Discrete Convex Analysis. SIAM, 2003. doi:10.1137/1.9780898718508.
25 James B. Orlin. A faster strongly polynomial time algorithm for submodular function

minimization. Math. Program., 118(2):237–251, 2009. doi:10.1007/s10107-007-0189-2.
26 Jean-Claude Picard and Maurice Queyranne. On the structure of all minimum cuts in a

network and applications. Mathematical Programming Studies, 13:8–16, 1980. doi:10.1007/
BFb0120902.

27 Thomas J Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth
ACM Symposium on Theory of Computing (STOC ’78), pages 216–226. ACM, 1978. doi:
10.1145/800133.804350.

28 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin,
2003.

SWAT 2024

https://doi.org/10.1109/FOCS.2015.68
https://doi.org/10.1007/S10107-021-01642-1
https://doi.org/10.1007/S10107-021-01642-1
https://doi.org/10.1007/978-3-642-05465-5_1
https://doi.org/10.1016/J.IPL.2014.11.003
https://doi.org/10.1137/1.9780898718508
https://doi.org/10.1007/s10107-007-0189-2
https://doi.org/10.1007/BFb0120902
https://doi.org/10.1007/BFb0120902
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/800133.804350

Optimal In-Place Compaction of Sliding Cubes
Irina Kostitsyna #

TU Eindhoven, The Netherlands

Tim Ophelders #

Utrecht University, The Netherlands
TU Eindhoven, The Netherlands

Irene Parada #

Universitat Politècnica de Catalunya, Barcelona, Spain

Tom Peters #

TU Eindhoven, The Netherlands

Willem Sonke #

TU Eindhoven, The Netherlands

Bettina Speckmann #

TU Eindhoven, The Netherlands

Abstract
The sliding cubes model is a well-established theoretical framework that supports the analysis of
reconfiguration algorithms for modular robots consisting of face-connected cubes. As is common
in the literature, we focus on reconfiguration via an intermediate canonical shape. Specifically, we
present an in-place algorithm that reconfigures any n-cube configuration into a compact canonical
shape using a number of moves proportional to the sum of coordinates of the input cubes. This
result is asymptotically optimal and strictly improves on all prior work. Furthermore, our algorithm
directly extends to dimensions higher than three.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Sliding cubes, Reconfiguration algorithm, Modular robots

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.31

Related Version Full Version: https://arxiv.org/abs/2312.15096

Supplementary Material Audiovisual: https://www.computational-geometry.org/SoCG-videos/
socg24video/optimal-in-place-compaction-of-sliding-cubes.mp4

Funding Tim Ophelders: partially supported by the Dutch Research Council (NWO) under project
no. VI.Veni.212.260.

1 Introduction

Modular robots consist of a large number of comparatively simple robotic units. These
units can attach and detach to and from each other, move relative to each other, and in
this way form different shapes or configurations. This shape-shifting ability allows modular
robots to robustly adapt to previously unknown environments and tasks. One of the major
questions regarding modular robots is universal reconfiguration: is there a sequence of moves
which transforms any two given configurations into each other, and if so, how many moves
are necessary? There are a variety of real-world mechatronics or theoretical computational
models for modular robots and the answer to the universal reconfiguration question differs
substantially between systems [3].

In this paper, we study the sliding cube model, which is a well-established theoretical
framework that supports the analysis of reconfiguration algorithms for modular robots
consisting of face-connected cubes. In this model, a module (cube) can perform two types of
moves: straight-line moves called slides and moves around a corner called convex transitions

© Irina Kostitsyna, Tim Ophelders, Irene Parada, Tom Peters, Willem Sonke, and Bettina Speckmann;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 31; pp. 31:1–31:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:i.kostitsyna@tue.nl
https://orcid.org/0000-0003-0544-2257
mailto:t.a.e.ophelders@uu.nl
https://orcid.org/0000-0002-9570-024X
mailto:irene.parada@upc.edu
https://orcid.org/0000-0003-2401-8670
mailto:t.peters1@tue.nl
https://orcid.org/0000-0002-2702-7532
mailto:w.m.sonke@tue.nl
https://orcid.org/0000-0001-9553-7385
mailto:b.speckmann@tue.nl
https://orcid.org/0000-0002-8514-7858
https://doi.org/10.4230/LIPIcs.SWAT.2024.31
https://arxiv.org/abs/2312.15096
https://www.computational-geometry.org/SoCG-videos/socg24video/optimal-in-place-compaction-of-sliding-cubes.mp4
https://www.computational-geometry.org/SoCG-videos/socg24video/optimal-in-place-compaction-of-sliding-cubes.mp4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Optimal In-Place Compaction of Sliding Cubes

(a) (b)

Figure 1 Moves in the sliding cube model: slide (a) and convex transition (b). Solid cubes are
part of the configuration.

(see Figure 1). Maintaining connectivity during a sequence of moves is the main challenge
when developing algorithms in the sliding cube model. During a move, the configuration
(excluding the moving cube) must stay connected. Furthermore, there have to be sufficient
empty cells to perform the move. This connectivity is crucial for most actual modular robotic
systems since it allows them to retain their structure, communicate, and share other resources
such as energy.

Almost 20 years ago, Dumitrescu and Pach [8] showed that the sliding cube model in
2D (or sliding square model) is universally reconfigurable. More precisely, they presented
an algorithm that transforms any two given configurations with n squares into each other
in O(n2) moves. This algorithm transforms any given configuration into a canonical shape
(a horizontal line) and then reverts the procedure to reach the final configuration. It was
afterwards adapted to be in-place using flooded bounding boxes as canonical intermediate
configurations [15]. Recently, Akitaya et al. [4] presented Gather&Compact: an input-
sensitive in-place algorithm which uses O(Pn) moves, where P is the maximum among the
perimeters of the bounding boxes of the initial and final configurations. The authors also
show that minimizing the number of moves required to reconfigure is NP-hard.

These algorithms in 2D do not directly transfer to 3D: they fundamentally rely on the
fact that a connected cycle of squares encloses a well-defined part of the configuration.
One could ask whether the fact that enclosing space in 3D is more difficult has positive
or negative impact on universal reconfiguration in 3D. Miltzow et al. [14] showed that
there exist 3D configurations in which no module on the external boundary is able to move
without disconnecting the configuration. Hence, simple reconfiguration strategies [11, 13]
can generally not guarantee reconfiguration for all instances.

Until very recently, the most efficient algorithm for the reconfiguration problem in 3D
was the algorithm by Abel and Kominers [1], which uses O(n3) moves to transform any
n-cube configuration into any other n-cube configuration. As is common in the literature,
this algorithm reconfigures the input into an intermediate canonical shape. Stock et al. [17]
just announced a worst-case bound of O(n2) moves for the Abel and Kominers algorithm.
Furthermore, their paper presents an in-place reconfiguration algorithm, which runs in
time proportional to a measure of the size of the bounding box times the number of cubes.
Specifically, their algorithm requires O(n(wd + h)) moves in the worst-case, where w, d, and
h are the width, depth, and height of the bounding box, respectively.

Results. In this paper we present an in-place algorithm that reconfigures any n-cube
configuration into a compact canonical shape using a number of moves proportional to the
sum of coordinates of the input cubes. This result is asymptotically optimal and strictly
stronger than the bounds obtained by Stock et al. [17]. Furthermore, our algorithm directly
extends to hypercube reconfiguration in dimensions higher than three. Last but not least, the
restriction of our algorithm to two dimensions improves upon the best bound for compacting
sliding squares [4].

I. Kostitsyna, T. Ophelders, I. Parada, T. Peters, W. Sonke, and B. Speckmann 31:3

x

y

z

Additional related work. For more restricted sliding models, for example, only allowing
one of the two moves in the sliding cube model, reconfiguration is not always possible.
Michail et al. [13] explore universal reconfiguration using helpers or seeds (dedicated cubes
that help other cubes move). They show that the problem of deciding how many seeds are
needed is in PSPACE.

Another popular model for modular robots is the pivoting cube model, in which the
modules move by rotating around an edge shared with a neighboring module. In this model
the extra free-space requirements for the moves that come from pivoting instead of sliding
mean that there are configurations in which no move is possible. Akitaya et al. [3] show
that the reconfiguration problem in this setting is PSPACE-complete. In contrast, adding
five additional modules to the outer boundary guarantees universal reconfigurability in 2D
using O(n2) moves [2]. Other algorithms for pivoting modules require the absence of narrow
corridors in both the initial and final configurations [10, 18]. A more powerful move is to
allow the modules to tunnel through the configuration. With it, O(n) parallel steps suffice
to reconfigure 2D and 3D cubes [5, 6, 12]. However, for most real-world prototype systems,
tunnelling requires the use of metamodules [16] which are sets of modules which act as a
single unit with enhanced capabilities, increasing the granularity of the configurations.

We require that the configuration stays connected at all times. In a slightly different
model that relaxes the connectivity requirement (referred to as the backbone property), Fekete
et al. [9] show that scaled configurations of labeled squares can be efficiently reconfigured
using parallel coordinated moves with a schedule that is a constant factor away from optimal.

2 Preliminaries

In this paper, we study cubical modules moving in the 3-dimensional grid Z3. The handedness
of the coordinate system does not have any impact on the correctness of our algorithm.

A configuration C is a subset of coordinates in the grid. The elements of C are called
cubes. We call two cubes adjacent if they lie at unit distance. For a configuration C, denote
by GC the graph with vertex set C, whose edges connect all adjacent cubes. We say a cell is
a vertex of GZ3 which is not occupied by a cube in C. We always require a configuration
to remain connected, that is, GC must be connected. For ease of exposition we assume C
consists of at least two cubes. Let BC be the bounding box of a configuration C. W.l.o.g. we
assume that the vertex in BC with minimum x-, y-, and z-coordinate is the origin of GZ3 .

In the sliding cubes model, a configuration can rearrange itself by letting cubes perform
moves. A move replaces a single cube c ∈ C by another cube c′ /∈ C. Moves come in two
types: slides and convex transitions (see Figure 1). In both cases, we consider a 4-cycle γ

in GZ3 . For slides, exactly three cubes of γ are in C; c′ is the cell of γ not in C, and c is
adjacent to c′. For convex transitions, γ has exactly two adjacent cubes in C; c is one of
these two cubes, and c′ is the vertex of γ not adjacent to c. The slide or convex transition is
a move if and only if C \ {c} is connected.

SWAT 2024

31:4 Optimal In-Place Compaction of Sliding Cubes

Call a cube c = (x, y, z) finished if the cuboid spanned by the origin and c is completely
in C, that is, if {0, . . . , x}×{0, . . . , y}×{0, . . . , z} ⊆ C. We call C finished if all cubes in C are
finished. The compaction problem starts with an arbitrary connected configuration C with
bounding box BC and is solved when all cubes are finished. An algorithm for this problem is
in-place if at most a single cube simultaneously moves through cells face-adjacent to BC .

Most of the algorithm works on vertical contiguous strips of cubes in C called subpillars.
More precisely, a subpillar of C is a subset of C of the form {x} × {y} × {zb, . . . , zt}. In the
remainder of this paper, we denote this subpillar by ⟨x, y, zb .. zt⟩. The cube (x, y, zt) is called
the head, and the remainder ⟨x, y, zb .. zt − 1⟩ is called the support of the subpillar. A pillar
is a maximal subpillar, that is, a subpillar that is not contained in any other subpillar. Note
that there can be multiple pillars above each other with the same x- and y-coordinates, as
long as there is a gap between them. Two sets S and S′ of cubes are adjacent if S contains a
cube adjacent to a cube in S′. The pillar graph PS of a set S of cubes is the graph whose
vertices are the pillars of S and whose edges connect adjacent pillars.

3 Algorithm

For a set of cubes S ⊆ C, let its coordinate vector sum be (XS , YS , ZS) =
∑

(x,y,z)∈S(x, y, z).
Let C>0 be the subset of cubes (x, y, z) ∈ C for which z > 0, and C0 be the subset of cubes for
which z = 0. Let the potential of a cube c = (cx, cy, cz) be Πc = wc(cx + 2cy + 4cz), where
the weight wc depends on the coordinates of c in the following way. If cz > 1, then wc = 5;
if cz = 1, then wc = 4. If cz = 0, then wc depends on cy. If cy > 1, then wc = 3; if cy = 1,
then wc = 2 and lastly, if cz = cy = 0, then wc = 1. We aim to minimize the potential
function ΠC =

∑
c∈C Πc. From now on, let C be an unfinished configuration. We call a

sequence of m moves applied to C safe if the result is a configuration C′, such that ΠC′ < ΠC
and m = O(ΠC − ΠC′). This means that the sequeence of moves reduces the potential by at
least some constant fraction of m by going from C to C′. We show that if C is unfinished, it
always admits a safe move sequence.

The main idea is as follows. For a configuration C, whenever possible, we try to reduce
ZC by some sequence of moves. If that is not possible, then the configuration must admit
another sequence of moves, where a complete pillar is moved to a different x- or y-coordinate.
In this way, by reducing either the z-coordinate of cubes, or the x- or y-coordinate, we
guarantee that eventually every cube becomes finished.

In this paper, we describe the algorithm in three dimensions. However, it naturally
extends to higher dimensions, and also works for squares in two dimensions. In fact, we will
use the algorithm in two dimensions as a subroutine for the three-dimensional case.

Local z reduction. Let P = ⟨x, y, zb .. zt⟩ be a subpillar of C. We refer to the four
coordinates {(x − 1, y), (x + 1, y), (x, y − 1), (x, y + 1)} as the sides of P . On each side, P

has zero or more adjacent pillars. We order these by their z-coordinates; as such, we may
refer to the top- or bottommost adjacent pillar on a side of P . We say that a set of cubes
S ⊆ C is non-cut if GC\S is connected or empty. A pillar of C is non-cut if and only if it is a
non-cut vertex of the pillar graph PC .

Let P = ⟨x, y, zb .. zt⟩ be a non-cut subpillar, and let P ′ = ⟨x′, y′, z′
b .. z′

t⟩ be a pillar
adjacent to P . We define a set of operations of at most three moves within P which locally
reduce ZC (see Figure 2). Because P is non-cut, C \ P is connected. Therefore, if cubes of P

move in such a way that each component (of cubes originally in P) remains adjacent to a
cube of C \ P , then the result of that operation is a valid configuration.

I. Kostitsyna, T. Ophelders, I. Parada, T. Peters, W. Sonke, and B. Speckmann 31:5

(a)

z

(b)

P ′
2

P

unlock

P ′

(c)

1

unlock

2

P P

P P ′ P ′P

P ′

(d)

P
P ′ 1

unlock

P

2

P ′
1 1

2 3

Figure 2 Examples of operations (a–d); hatched cubes are non-cut and dashed outlines indicate
cells that must be empty. Each case admits a move sequence that reduces ZC .

(a) If P ′ is a topmost adjacent pillar of P and z′
t ≤ zt − 2, then the topmost cube of P

admits a convex transition that decreases ZC .
(b) If z′

b > zb and (x, y, z′
b −1) is a non-cut cube, then there is a move sequence that decreases

ZC : first slide (x, y, z′
b − 1) to (x′, y′, z′

b − 1) and then slide (x, y, z′
b) to (x, y, z′

b − 1).
There is one special case. We say that P is locked if the head of P has no adjacent
cubes except for P ’s support. If P is locked and z′

b = zt − 1, then the second slide would
disconnect P ’s head from the rest of the configuration. To avoid this, before performing
the second slide, we unlock P by sliding the head of P from (x, y, zt) to (x′, y′, zt), as
shown in the right part of Figure 2b.

(c) If (x, y, zb − 1) /∈ C and z′
b < zb, then (after unlocking P , if necessary) (x, y, zb) admits a

slide to (x, y, zb − 1) that decreases ZC .
(d) If (x, y, zb − 1) /∈ C, P ′ is a bottommost adjacent pillar of P , and zb = z′

b > 0, then (after
unlocking P , if necessary) (x, y, zb) admits a convex transition to (x′, y′, z′

b − 1) that
decreases ZC .

▶ Lemma 1. Let P = ⟨x, y, zb .. zt⟩ be a non-cut pillar. Assume P does not admit any
operation of type (a–d). Then, on each side, P has at most one adjacent pillar P ′ =
⟨x′, y′, z′

b .. z′
t⟩. For these pillars P ′, we have zt ≤ z′

t + 1, and either zb < z′
b or zb = z′

b = 0.

Proof. Consider one side s of P . Because (a) does not apply to P , for any adjacent
pillar P ′ = ⟨x′, y′, z′

b .. z′
t⟩, we know that zt ≤ z′

t + 1. Consider the case that (x, y, z′
b − 1)

is a non-cut cube. Because (b) does not apply, zb ≥ z′
b, and because (c) does not apply

either, zb = z′
b, and finally because (d) does not apply, we have zb = z′

b = 0. Now consider
the case that (x, y, z′

b − 1) is a cut cube. Then because (c) does not apply, we have zb ≤ z′
b,

and finally because (d) does not apply, we have zb < z′
b or zb = z′

b = 0. If zb = z′
b = 0 for

each adjacent pillar P ′, then each side of P can have at most one pillar. If zb < z′
b, then,

because (b) does not apply, (x, y, z′
b − 1) is a cut cube. Therefore, also in this case, there can

be no cube adjacent to the subpillar ⟨x, y, zb .. z′
b − 2⟩, and therefore also in this case there

can be at most one adjacent pillar on each side. ◀

Pillar shoves. Next, we consider longer move sequences that still involve a single subpillar. A
central operation of our algorithm is a pillar shove, which takes as parameters a subpillar P =
⟨x, y, zb .. zt⟩ and a side (x′, y′) of P . The result of the pillar shove is the set of cubes

shove(C, P, (x′, y′)) := (C \ P) ∪ ⟨x′, y′, zb .. zt − 1⟩ ∪ {(x, y, zb)},

in which the support is effectively shifted to the side (x′, y′), and the head is effectively
moved from (x, y, zt) to (x, y, zb). Although shove(C, ⟨x, y, zb .. zt⟩, (x′, y′)) is well-defined, it
is not necessarily a connected configuration, let alone safely reachable from C.

SWAT 2024

31:6 Optimal In-Place Compaction of Sliding Cubes

(e)

P
→ →

→ →3 2

3

(|P | − 9 times)

11

2

→

P ′

(e′)

P

P ′

→ →

Figure 3 Examples of pillar shoves for a long pillar (e) and a short pillar (e′). The zipper
operation on the left is executed |P | − 9 times.

Let P = ⟨x, y, zb .. zt⟩ be a non-cut subpillar, and assume that on at least two sides (x′, y′)
and (x′′, y′′) of P , no cube except possibly the head (x, y, zt) has an adjacent cube. Moreover,
assume that (x′, y′, zt) ∈ C. We define two types of pillar shoves, each of which transforms C
into shove(C, ⟨x, y, zb .. zt⟩, (x′, y′)): a long pillar shove (for |P | ≥ 9; see Figure 3(e)) and a
short pillar shove (for |P | < 9; see Figure 3(e’)). Note that the short pillar shove could be
applied to the |P | ≥ 9 case as well. However, a short pillar shove takes a number of moves
quadratic in |P | and hence would not be safe. A long pillar shove, on the other hand, takes
a number of moves linear in |P | as for each cube, we take a constant number of moves to
move it to its new location (the “zipper” operation shown in the framed part of Figure 3(e)).
As such, both pillar shoves reduce ZC by zt − zb and take O(zt − zb) moves, so they are safe.

(e) Assume that no operations of type (a–d) are possible. Then, by Lemma 1, P =
⟨x, y, zb .. zt⟩ has at most one adjacent pillar on each side, and there exists an adjacent
pillar P ′ = ⟨x′, y′, z′

b .. z′
t⟩ with z′

b > zb (assume that P ′ is such a pillar with the lowest
z′

b), and there is a side (x′′, y′′) ̸= (x′, y′) of P such that (x′′, y′′, zb) /∈ C. Together, this
implies that both sides (x′′, y′′) and (x′, y′) are empty up to at least z′

b − 1 (otherwise
P ′ would not be the pillar with lowest z′

b > zb). Then the subpillar ⟨x, y, zb .. z′
b⟩ (after

unlocking P , if necessary) admits a pillar shove.

▶ Lemma 2. Let P = ⟨x, y, zb .. zt⟩ be a non-cut subpillar. Assume P does not admit any
operation of type (a–e). Then P has no adjacent pillar ⟨x′, y′, z′

b .. z′
t⟩ with z′

b > zb.

Proof. Assume that P has at least two adjacent pillars, say P ′ = ⟨x′, y′, z′
b .. z′

t⟩ and P ′′ =
⟨x′′, y′′, z′′

b .. z′′
t ⟩, such that zb < z′

b and zb < z′′
b ; let P ′ denote the lowest one, such that

zb < z′
b ≤ z′′

b . Then (x′′, y′′, zb) /∈ C, which contradicts that (e) does not apply. Therefore,
there can be at most one such pillar. However, this, together with Lemma 1, implies that
on all other sides (x′′, y′′) ̸= (x′, y′), (x′′, y′′, zb) ∈ C. This means that (x, y, z′

b − 1) is a
non-cut cube, contradicting that (b) does not apply. Therefore, there can be no such adjacent
pillars. ◀

I. Kostitsyna, T. Ophelders, I. Parada, T. Peters, W. Sonke, and B. Speckmann 31:7

H3 H1 H3H2
H1

L1 L2 L3 L4
L1

L2
L3

L4

H2

Figure 4 An example configuration C and its low-high graph LHC . This configuration does still
admit operations of type (a–g).

In summary, if (a–e) do not apply to any non-cut subpillar, then for any non-cut pillar P =
⟨x, y, zb .. zt⟩ and any adjacent pillar ⟨x′, y′, z′

b .. z′
t⟩, we have z′

b = zb = 0.

Local potential reduction. Let C>0 be the subconfiguration consisting of cubes with z > 0.
We may greedily reduce the potential by moving individual cubes in C>0.

(f) Perform any move of C that moves a cube c of C>0, reduces the potential, and keeps c

inside the bounding box BC of C.

▶ Lemma 3. If an unfinished configuration C does not admit any operation of type (a–f),
and some maximal connected component of C>0 consists of a single pillar P = ⟨x, y, zb .. zt⟩,
then P = {(0, 0, 1)} and (0, 0, 0) ∈ C.

Proof. Because C>0 does not contain cubes with z = 0, we have zb = 1 or zb > 1. If zb > 1,
then ⟨x, y, zb .. zt⟩ would be disconnected from the rest of C, so this cannot be the case.
Likewise, if zb = 1 then (x, y, 0) /∈ C would mean that ⟨x, y, zb .. zt⟩ is disconnected from C,
so this cannot be the case either. Therefore zb = 1 and (x, y, 0) ∈ C. If zt > 1, then the
topmost cube of P can do a convex transition to (x + 1, y, zt − 1), reducing the potential.
Therefore zt = 1 and P = {(x, y, 1)}. If x > 0 or y > 0, then we can move the single cube
of P : using the cube at (x, y, 0), the cube of P can slide or convex transition closer to the
origin (0, 0, 0). Therefore, zb = zt = 1 and x = y = 0. ◀

▶ Corollary 4. If a configuration C does not admit any operation of type (a–f) then of the
connected components of C>0, at most one consists of a single pillar.

Low and high components. Let LHC be the bipartite graph obtained from GC by contracting
the components of GC0 and GC>0 to a single vertex (see Figure 4). We call LHC the low-high
graph of C, and we call the vertices of LHC that correspond to components of GC0 and GC>0

low and high components, respectively. For brevity, we may refer to a low or high component
by its corresponding vertex in LHC and vice versa.

We will use the following lemma several times.

▶ Lemma 5. Let H be a high component and P be a pillar of H. For every component H ′

of H \ P , there exists a non-cut pillar of H ′ that is also a non-cut pillar of H.

Proof. Any component with at least two pillars contains at least two non-cut pillars and
every component contains at least one non-cut pillar, so let P ′ be an arbitrary non-cut pillar
of H ′. H \P ′ has at most two components, namely H ′ \P ′ and H \H ′. If P ′ is a non-cut pillar

SWAT 2024

31:8 Optimal In-Place Compaction of Sliding Cubes

of H , the lemma holds. Else, if P ′ is a cut pillar of H , then it has exactly these components,
so H ′ \ P ′ is nonempty and P is adjacent to P ′. Therefore, H ′ consists of multiple pillars and
hence contains at least two non-cut pillars. Let P ′′ ̸= P ′ be a second non-cut pillar of H ′.
We claim that P ′′ is also a non-cut pillar of H. Indeed, because P and P ′ are adjacent, the
sets H ′ \ P ′′ ⊇ P ′ and H \ H ′ ⊇ P are adjacent. Hence, H \ P ′′ = (H ′ \ P ′′) ∪ (H \ H ′) has
a single component, so P ′′ is a non-cut pillar of H. ◀

▶ Lemma 6. Assume C does not admit any operation of type (a–f). Suppose that H is a high
component such that C \ H is connected. Then any pillar of H is a non-cut subpillar of C.

Proof. Suppose for a contradiction that a pillar P of H is a cut subpillar of C. Then C \ P

contains at least one component H ′ that does not intersect C \ H. Therefore, H ′ is also a
component of H \ P , so by Lemma 5, there exists a non-cut pillar P ′ = ⟨x′, y′, z′

b .. z′
t⟩ of H ′

that is also a non-cut pillar of H. If z′
b > 1 or (x′, y′, 0) /∈ C, then P ′ would be a non-cut

pillar of C. If C does not admit any operation of type (a–f), all non-cut pillars of C start
at z = 0, which contradicts z′

b > 1 or (x′, y′, 0) /∈ C. Therefore, z′
b = 1 and (x′, y′, 0) ∈ C,

but then H ′ would not be a component of C \ P , as H ′ is adjacent to (x′, y′, 0) ∈ C \ P .
Hence, H ′ cannot exist, completing the proof. ◀

▶ Corollary 7. If H is a high component such that C \ H is connected, then every pillar of H

is part of a pillar of C starting at z = 0.

▶ Lemma 8. Assume C does not admit any operation of type (a–f). If H is a high component
such that C \ H is connected, then H consists entirely of finished cubes.

Proof. Assume for contradiction that H contains an unfinished cube. Because of Corollary 7,
every pillar of H is part of a pillar of C starting at z = 0. Therefore, H contains an unfinished
cube (x, y, z) with x > 0 or y > 0. Let c be such a cube that lexicographically maximizes
(z, −y, −x). If x > 0 and (x − 1, y, z) /∈ H (and thus (x − 1, y, z) /∈ C), then we can move
c to either (x − 1, y, z) or (x − 1, y, z − 1), reducing the potential while keeping all cubes
within the bounding box BC , so (f) would apply. If y > 0 and (x, y − 1, z) /∈ H , then we can
similarly move c to either (x, y −1, z) or (x, y −1, z −1). On the other hand, if both (1) x = 0
or (x − 1, y, z) ∈ H and (2) y = 0 or (x − 1, y, z) ∈ H, then because c is the unfinished cube
of H that maximizes (z, −y, −x), the cubes (x − 1, y, z) (if x > 0) and (x, y − 1, z) (if y > 0)
are finished, but then (x, y, z) would also be finished. Contradiction. ◀

▶ Corollary 9. There is at most one high component that contains a finished cube, as any
high component that contains a finished cube also contains (0, 0, 1).

Handling low components. We pick a vertex R of LHC that we call the root of LHC .
If (0, 0, 0) ∈ C, pick R to be the low component that contains (0, 0, 0). Otherwise, pick R to
be an arbitrary low component. Let d be the maximum distance in the graph LHC from R

to any vertex. Let U be the set of vertices of LHC that are locally furthest away (in LHC)
from R. That is, all neighbors v of a vertex u ∈ U lie closer to R. All vertices of U are
non-cut subsets of C. Therefore, if U contains a high component H, then H consists entirely
of finished cubes (and H is adjacent to R), so U contains at most one high component.

If d = 0, then C consists of a single low component. If d = 1, then C consists of one high
and one low component. Set U contains exactly one high component, and it consists entirely
of finished cubes. If d ≥ 2, then C consists of at least two low components and U consists of
at least one low component, and at most one high component. We now give operations that
can be executed when d ≥ 2, such that we end up with a configuration where d = 0 or d = 1.
We will show how to handle the case where d = 0 or d = 1 afterwards.

I. Kostitsyna, T. Ophelders, I. Parada, T. Peters, W. Sonke, and B. Speckmann 31:9

We call a low component L clear if C \ L is connected, L ≠ R, and L is connected to a
non-cut pillar P in C \ L. We call such a pillar P a clearing pillar. We show in Lemma 10
that if d ≥ 2, there is at least one clear low component. For this, consider a low component
that is furthest from R (that is, at distance d), and let H be an adjacent high component.
Let LH be the set of low components in U that are adjacent to H (and hence also lie at
distance d from R).

▶ Lemma 10. At least one low component L ∈ LH is connected to H via a non-cut pillar
of C \ L.

Proof. Let C′ = C \
⋃

L∈LH
L. Let HLH

be the set of cubes of H that are adjacent to a low
component in LH . Fix an arbitrary cube cs of R, and in the graph GC′ , consider a cube
c of HLH

that is farthest from cs. Let P be the pillar of H that contains c. We will show
that P is a non-cut pillar of C′. Suppose for a contradiction that P is a cut pillar, then C′ \ P

contains at least two components, at most one of which contains R. Let H ′ be a component
of C′ \ P not containing R. If H ′ contains a cube not in H, then that cube lies in a low or
high component of C′ that lies closer to R, which therefore remains connected to R after
removing P . Therefore, H ′ is a subset of H.

All cubes (x, y, z) ∈ H ′ with z = 1 lie farther from cs than c, and therefore H ′ does not
contain any cubes of HLH

, so H ′ is not adjacent to any cubes of LH . Therefore, H ′ is not
adjacent to any cubes of (C \ P) \ H ′. By Lemma 5, H ′ contains at least one non-cut pillar
P ′ that is also a non-cut pillar of H. P ′ is also a non-cut pillar of C, but all non-cut pillars
of C start at z = 0 (Corollary 7), which is a contradiction. ◀

We will now present an algorithm that repeatedly selects a (non-root) clear low compo-
nent L, and performs the following operation on it:

(g) Perform any move of C that moves a cube c of L, reduces the potential, and keeps c

inside the bounding box BC of C.

Note that (g) is essentially the same as (f), but now executed on a low rather than a high
component. When operations of type (g) are executed, one of three special events can occur:
(1) L connects to a different low component, merging them.
(2) L connects to the root, and becomes part of the root.
(3) L reaches the origin (at which point it becomes the root).

When none of the operations (a–g) are available for a clear low component L with
clearing pillar ⟨px, py, zb .. zt⟩, there are two cases. Either L contains enough cubes to reach
the origin (|L| ≥ x + y), or L does not contain enough cubes to reach the origin (|L| < x + y).
We call these low components big and small respectively and we handle them differently. For
small low components, we would like to shove the clearing pillar. However, this might not
be valid and might disconnect the configuration in the process. Therefore, we will devise a
special operation that is only safe on small low components.

Small low components. If a clear low component is too small to reach the origin, we want
to move the clearing pillar and do a pillar shove. However, it could be that moving the
clearing pillar would disconnect the low component, or that there are cubes around the
clearing pillar obstructing the shove. For both of these situations, we devise a new operation.
Let NP be the set of cells c with z = 1 in BC neighboring P .

SWAT 2024

31:10 Optimal In-Place Compaction of Sliding Cubes

▶ Lemma 11. Let C be a configuration that does not admit operations of type (a–g). Let L

be a clear component and P = ⟨x, y, zb .. zt⟩ be its clearing pillar. Assume zt ≥ 2. The cubes
in NP need to be either all present, or all absent from C.

Proof. Assume for a contradiction that at least one, but at most three of the cubes neighboring
P with z = 1 are present. Denote these cubes by c1, c2, and c3; not all need to be present.
Since P is a clearing pillar, (C\L)\P is connected. If the cube (x, y, 2) is completely surrounded
by cubes, then it can do a potential reducing operation of type (b). Otherwise, the cube
(x, y, 2) can do a potential reducing operation of type (f). Both lead to a contradiction. ◀

Depending on if the cubes in NP are present, we perform the following operations on L.

(h) Let L be a clear component and P = ⟨x, y, zb .. zt⟩ be its clearing pillar. Assume at least
one of the cubes in NP is present. By definition, L ̸= R. Therefore, there exists an
empty cell e, with coordinates (ex, ey, 0), with ex < x or ey < y. Let e be such an empty
cell with highest y, and from those, the one with highest x. We now want to take the
cube c = (x, y, 0) and move it on a shortest path via z = −1 towards e, reducing its
potential. This however, could disconnect parts of L if c is a cut cube of L and if zt = 1.
(If zt ≥ 2, then by Lemma 11, all cubes in NP are present and c is not a cut cube of
the configuration.) In this case, we first gather cubes from L to fill the 3 × 3 horizontal
square centered around c, making c a non-cut cube, before moving c towards e. Now the
configuration stays connected when moving c to e. If we gathered cubes because zt = 1,
the head of P at (x, y, 1) is not a cut cube, and can subsequently move down.

If (a–h) do not apply, then all cubes from NP are not in C.
(i) Let L be a clear component and P = ⟨x, y, zb .. zt⟩ be its clearing pillar. All cubes in NP

are absent from C. Gather cubes from L towards P according to Figure 5 and do a pillar
shove on P . Then, move the extra cubes back to their original location.

The only reason that (e) is not possible, is that P is a cut pillar, since it is the only
pillar connecting L to the other components. Therefore, gathering cubes from L to P makes
the operations (h) and (i) viable. This is done in the following way. Let the clearing pillar
of L be P = ⟨x, y, zb .. zt⟩. Let zt be the highest z such that only (x, y, zt) has a horizontal
neighboring cube (x′, y′, zt). Let c = (x, y, 0) ∈ L be the cube below P . Assume that P has at
least size 5. Then, repeatedly select the non-cut cube c ∈ L that lexicographically maximizes
(z, y, x) and move it towards P to fill the 3 × 3 square (for (h)), or create the configuration
shown in Figure 5a (for (i)). The cubes that were gathered keep the configuration connected
during the operation. For (i), if P has fewer than 5 cubes, we gather cubes towards P in a
different way. Because P is too small to gather enough cubes for a pillar shove, we simply
fill the cells that P would want to go towards, see Figure 5b. Then, the original P can be
deconstructed. Again, using a constant number of moves, we can decrease the potential
vector, while maintaining connectivity.

▶ Lemma 12. Operations of type (h) and (i) are safe.

Proof. For an operation of type (h) or (i), let c = (cx, cy, cz) be the head of P . We will show
that any operation of type (i) strictly decreases PC by O(cz +cy +cx) and uses O(cz +cy +cx)
moves to do so. First we analyze the operations of type (h) or (i) with a pillar of size larger
than one: the head c = (cx, cy, cz) of the pillar involved moves down from cz to z = 1, so PC
reduces by 4(cz − 1). The cubes beneath c from z = 1 up to cz might increase their x- or
y-coordinate by 1. Therefore, the potential also increases by 2(cz − 1) at most. The cubes
that are gathered and then returned do not move positions and therefore do not affect the

I. Kostitsyna, T. Ophelders, I. Parada, T. Peters, W. Sonke, and B. Speckmann 31:11

(a) (b)

(x′, y′)
(x′, y′)

Figure 5 The start configuration for a pillar shove for a clearing pillar. The white pillar is the
clearing pillar. The red cube is part of L. The blue cubes are required and need to be gathered. (a)
Clearing pillar of height at least 5. (b) The configuration for a pillar shove of height at most 4.

potential. Moreover, wc becomes one lower, because cz decreases from cz > 1 to cz = 1. In
total, the potential PC decreases by 2(cz − 1) + cx + cy. For operations of this type with a
pillar of size one, the potential decreases by cz + cy + cx, since the head moves from z = 1 to
z = 0.

Now we will show that executing one of these operations, which reduces ΠC by O(cz +
cy + cx), takes O(cz + cy + cx) moves and is therefore safe. Moving via a shortest path over
a component with x cubes takes O(x) moves. Gathering the seven cubes from L to the
clearing pillar and moving them back takes at most O(cx + cy) moves, since L is a small
low component and has therefore size at most O(cx + cy). Then, the normal pillar shove
takes O(cz) moves. Hence, the total operation takes O(cz + cy + cx) moves and is safe. ◀

Big low components. If a low component L is big, that is, if it contains enough cubes to
reach the origin from its clearing pillar, we want L to actually contain the origin. Performing
operations of types (g) is not sufficient to achieve this, and operations (h) and (i) are only
safe on small low components. To make L contain the origin, note that all of our operations
not only work in 3D, but also in 2D when instead of prioritizing reducing the z-coordinate,
we prioritize reducing the y-coordinate. We run the algorithm on L in 2D, with an additional
constraint. We fix an arbitrary clearing pillar of L, and call the cube p of L below that
clearing pillar its pinned cube. When executing the algorithm in 2D, we never move p. With
minor changes, all of the lemmas above still hold in the presence of at most one pinned cube.

We abstract from L being a clear low component, and instead consider a component C in
which we disallow a single cube p ∈ C from moving. We again call this cube p the pinned cube.
We adapt our algorithm for configurations without pinned cubes to one for configurations
with pinned cubes as follows. Whenever we are looking for the next operation to perform,
simply disregard any operation that would move the pinned cube. We cannot guarantee
that this adapted algorithm results in a finished configuration, but for our purposes, it is
sufficient to prove that it reaches the origin if it is big enough.

Recall that R is a vertex of LHC chosen as follows. If C contains a low component that
contains the origin, then let R be that low component. Otherwise, we choose R to be an
arbitrary low component. If C already contains the origin, the lemma trivially holds, so we
would choose R to be an arbitrary low component. However, since there exists a pinned
cube p, we need to be more careful with our choice and instead pick R as follows. If there
exists a low component that either contains p or that neighbors a pillar containing p, let R

be that low component. We are now ready to prove the following lemma.

SWAT 2024

31:12 Optimal In-Place Compaction of Sliding Cubes

▶ Lemma 13. Let C be a configuration with a single pinned cube p = (px, py, pz) and assume
C has at least px + py + pz cubes. If C does not admit operations of type (a–i) that do not
move p, then C contains the origin.

Proof. Assume there are at least two low components. Let L1 and L2 be the low components
such that the distance between them in LHC is maximized. Hence, if there would be no pinned
cube p, we could pick any of them and the other would be clear (Lemma 10). Because C only
contains a single pinned cube, we pick R to be either L1 or L2 such that the other one is
clear. Therefore, there is always a clear low component. While a clear low component exists,
we can execute operations (g–i) if it is small, or perform operations one dimension lower if it
is big and does not contain the origin. This is a contradiction and therefore there can be at
most one low component L.

Because no operations of type (h) or (i) are possible on L, its clearing pillar must contain p.
Furthermore, no operations are possible on L in one dimension lower, so L must contain
its own origin by recursion. Because there are no possible operations of type (g) on L and
because it is big enough, this means that L also contains the global origin. ◀

If none of the operations (a–g) are possible, every clear low component either contains
the origin, or is too small to do so.

The algorithm terminates when no clear low component (and hence only the root low
component) remains. Recall that d is the maximum distance from the root R of LHC over
all vertices. We are left with two cases. Either no high component remains (d = 0), or there
is at most one high component (d = 1), which consists of entirely finished cubes.

As stated before, all operations (a–i) not only work in 3 dimensions, they also work in 2
dimensions when instead of prioritizing reducing the z-coordinate, we prioritize reducing the
y-coordinate. Moreover, these operations never move the origin. Therefore, we can now run
the exact same operations on the bottom layer in 2D, until the root component is finished. If
there is still a high component, it stays connected via the origin. We end up with a finished
configuration.

Running time. Recall that the potential of a cube c = (cx, cy, cz) is Πc = wc(cx + 2cy + 4cz),
where the weight wc depends on the coordinates of c in the following way. If cz > 1, then
wc = 5, if cz = 1, then wc = 4. If cz = 0, then wc depends on cy. If cy > 1, then wc = 3,
if cy = 1, then wc = 2 and lastly, if both cz = cy = 0, then wc = 1. The potential of the
complete configuration is the sum of potential of the individual cubes. Moreover, a sequence
of m moves is safe if the result is a configuration C′ inside BC , such that ΠC′ < ΠC and
m = O(ΠC − ΠC′). Each operation of type (a–i) strictly reduces the potential function.
Moreover, each of the operations (a–g) is trivially safe. We have shown that operations (h)
and (i) are also safe (see Lemma 12).

Because all operations are safe and reduce the potential, the algorithm performs at most
O(ΠC) = O(XC + YC + ZC) moves. For the problem of reconfiguring the cubes into a finished
configuration, this is worst-case optimal. An example achieving this bound is a configuration
consisting of a path of cubes in a bounding box of equal side lengths w tracing from the
origin to the opposite corner of the bounding box. To see that, note that any finished cube
at position (x, y, z) requires there to exist n ≥ x · y · z cubes, so at least one of x, y, and z

is at most n1/3 for any candidate finished position. There are Ω(n) cubes (x′, y′, z′) that
are initially Ω(w − n1/3) = Θ(n) = Θ(x′ + y′ + z′) away from any such potential finished
position.

I. Kostitsyna, T. Ophelders, I. Parada, T. Peters, W. Sonke, and B. Speckmann 31:13

4 Conclusion

We presented an in-place algorithm that reconfigures any configuration of cubes into a compact
canonical shape using a number of moves proportional to the sum of coordinates of the
input cubes. This result is asymptotically optimal. However, just as many other algorithms
in the literature, our bounds are amortized in the sense that we make use of a number of
dedicated cubes which help other cubes move by establishing the necessary connectivity in
their neighborhood. This is in particular the case with our pillar shoves, that need some
additional cubes to gather at the pillar, to then move up and down the pillar to facilitate
moves. These extra moves are charged to one cube in the pillar reducing its coordinates. In
the literature such cubes are referred to as helpers, seeds, or even musketeers [2, 7, 13, 17].

Such helping cubes are in many ways in conflict with the spirit of modular robot
reconfiguration: ideally each module should be able to run the same program more or less
independently, without some central control system sending helpers to those places where
they are needed. The input-sensitive Gather&Compact algorithm in 2D by Akitaya et al. [4]
does not require amortized analysis and gives a bound on the number of moves for each
square in terms of the perimeters of the input and output configurations. The question
hence arises whether it is possible to arrive at sum-of-coordinates bounds either in 2D or 3D
without amortization? For example, is there a compaction algorithm in which each cube in
the configuration that starts at position (x, y, z) performs at most O(x + y + z + a) moves,
where a is the average L1-distance that cubes lie from the origin?

References
1 Zachary Abel and Scott Duke Kominers. Universal reconfiguration of (hyper-)cubic robots.

arXiv e-Prints, 2011. arXiv:0802.3414v3.
2 Hugo A. Akitaya, Esther M. Arkin, Mirela Damian, Erik D. Demaine, Vida Dujmovic, Robin Y.

Flatland, Matias Korman, Belén Palop, Irene Parada, André van Renssen, and Vera Sacristán.
Universal reconfiguration of facet-connected modular robots by pivots: The O(1) musketeers.
Algorithmica, 83(5):1316–1351, 2021. doi:10.1007/S00453-020-00784-6.

3 Hugo A. Akitaya, Erik D. Demaine, Andrei Gonczi, Dylan H. Hendrickson, Adam Hesterberg,
Matias Korman, Oliver Korten, Jayson Lynch, Irene Parada, and Vera Sacristán. Characterizing
universal reconfigurability of modular pivoting robots. In Proc. 37th International Symposium
on Computational Geometry (SoCG 2021), volume 189 of LIPIcs, pages 10:1–10:20, 2021.
doi:10.4230/LIPIcs.SoCG.2021.10.

4 Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna, Irene Parada, Willem
Sonke, Bettina Speckmann, Ryuhei Uehara, and Jules Wulms. Compacting squares: Input-
sensitive in-place reconfiguration of sliding squares. In Proc. 18th Scandinavian Symposium
and Workshops on Algorithm Theory (SWAT), volume 227 of LIPIcs, pages 4:1–4:19, 2022.
doi:10.4230/LIPICS.SWAT.2022.4.

5 Greg Aloupis, Sébastien Collette, Mirela Damian, Erik D. Demaine, Robin Flatland, Stefan
Langerman, Joseph O’Rourke, Val Pinciu, Suneeta Ramaswami, Vera Sacristán, and Stefanie
Wuhrer. Efficient constant-velocity reconfiguration of crystalline robots. Robotica, 29(1):59–71,
2011. doi:10.1017/S026357471000072X.

6 Greg Aloupis, Sébastien Collette, Mirela Damian, Erik D. Demaine, Robin Flatland, Stefan
Langerman, Joseph O’Rourke, Suneeta Ramaswami, Vera Sacristán, and Stefanie Wuhrer.
Linear reconfiguration of cube-style modular robots. Computational Geometry, 42(6):652–663,
2009. doi:10.1016/j.comgeo.2008.11.003.

7 Matthew Connor and Othon Michail. Centralised connectivity-preserving transformations by
rotation: 3 musketeers for all orthogonal convex shapes. In Proc. 18th International Symposium
on Algorithmics of Wireless Networks (ALGOSENSORS 2022), volume 13707 of LNCS, pages
60–76. Springer, 2022. doi:10.1007/978-3-031-22050-0_5.

SWAT 2024

https://arxiv.org/abs/0802.3414v3
https://doi.org/10.1007/S00453-020-00784-6
https://doi.org/10.4230/LIPIcs.SoCG.2021.10
https://doi.org/10.4230/LIPICS.SWAT.2022.4
https://doi.org/10.1017/S026357471000072X
https://doi.org/10.1016/j.comgeo.2008.11.003
https://doi.org/10.1007/978-3-031-22050-0_5

31:14 Optimal In-Place Compaction of Sliding Cubes

8 Adrian Dumitrescu and János Pach. Pushing squares around. Graphs and Combinatorics,
22:37–50, 2006. doi:10.1007/s00373-005-0640-1.

9 Sándor P. Fekete, Phillip Keldenich, Ramin Kosfeld, Christian Rieck, and Christian Scheffer.
Connected coordinated motion planning with bounded stretch. In Proc. 32nd International
Symposium on Algorithms and Computation (ISAAC 2021), volume 212 of LIPIcs, pages
9:1–9:16, 2021. doi:10.4230/LIPIcs.ISAAC.2021.9.

10 Daniel Feshbach and Cynthia Sung. Reconfiguring non-convex holes in pivoting modular
cube robots. IEEE Robotics and Automation Letters, 6(4):6701–6708, 2021. doi:10.1109/
LRA.2021.3095030.

11 Robert Fitch, Zack Butler, and Daniela Rus. Reconfiguration planning for heterogeneous self-
reconfiguring robots. In Proc. IEEE/RSJ International Conference on Intelligent Robots and
System (IROS 2003), volume 3, pages 2460–2467, 2003. doi:10.1109/IROS.2003.1249239.

12 Ferran Hurtado, Enrique Molina, Suneeta Ramaswami, and Vera Sacristán. Distributed
reconfiguration of 2D lattice-based modular robotic systems. Autonomous Robots, 38:383–413,
2015. doi:10.1007/s10514-015-9421-8.

13 Othon Michail, George Skretas, and Paul G. Spirakis. On the transformation capability
of feasible mechanisms for programmable matter. In Proc. 44th International Colloquium
on Automata, Languages, and Programming (ICALP 2017), volume 80 of LIPIcs, pages
136:1–136:15, 2017. doi:10.4230/LIPICS.ICALP.2017.136.

14 Tillmann Miltzow, Irene Parada, Willem Sonke, Bettina Speckmann, and Jules Wulms. Hiding
sliding cubes: Why reconfiguring modular robots is not easy. In Proc. 36th International
Symposium on Computational Geometry, (SoCG 2020, Media Exposition), volume 164 of
LIPIcs, pages 78:1–78:5, 2020. doi:10.4230/LIPICS.SOCG.2020.78.

15 Joel Moreno and Vera Sacristán. Reconfiguring sliding squares in-place by flooding. In Proc.
36th European Workshop on Computational Geometry (EuroCG), pages 32:1–32:7, 2020.

16 Irene Parada, Vera Sacristán, and Rodrigo I. Silveira. A new meta-module design for efficient
reconfiguration of modular robots. Autonomous Robots, 45(4):457–472, 2021. doi:10.1007/
s10514-021-09977-6.

17 Frederick Stock, Hugo Akitaya, Matias Korman, Scott Kominers, and Zachary Abel. A
universal in-place reconfiguration algorithm for sliding cube-shaped robots in quadratic time.
In Proc. 40th International Symposium on Computational Geometry (SoCG), 2024. To appear.

18 Cynthia R. Sung, James M. Bern, John Romanishin, and Daniela Rus. Reconfiguration planning
for pivoting cube modular robots. In Proc. IEEE International Conference on Robotics and
Automation (ICRA 2015), pages 1933–1940, 2015. doi:10.1109/ICRA.2015.7139451.

https://doi.org/10.1007/s00373-005-0640-1
https://doi.org/10.4230/LIPIcs.ISAAC.2021.9
https://doi.org/10.1109/LRA.2021.3095030
https://doi.org/10.1109/LRA.2021.3095030
https://doi.org/10.1109/IROS.2003.1249239
https://doi.org/10.1007/s10514-015-9421-8
https://doi.org/10.4230/LIPICS.ICALP.2017.136
https://doi.org/10.4230/LIPICS.SOCG.2020.78
https://doi.org/10.1007/s10514-021-09977-6
https://doi.org/10.1007/s10514-021-09977-6
https://doi.org/10.1109/ICRA.2015.7139451

Canonizing Graphs of Bounded Rank-Width in
Parallel via Weisfeiler–Leman
Michael Levet1 #

Department of Computer Science, College of Charleston, SC, USA

Puck Rombach #

Department of Mathematics and Statistics, University of Vermont, Burlington, VT, USA

Nicholas Sieger #

Department of Mathematics, University of California San Diego, La Jolla, CA, USA

Abstract
In this paper, we show that computing canonical labelings of graphs of bounded rank-width is in
TC2. Our approach builds on the framework of Köbler & Verbitsky (CSR 2008), who established
the analogous result for graphs of bounded treewidth. Here, we use the framework of Grohe &
Neuen (ACM Trans. Comput. Log., 2023) to enumerate separators via split-pairs and flip functions.
In order to control the depth of our circuit, we leverage the fact that any graph of rank-width k

admits a rank decomposition of width ≤ 2k and height O(log n) (Courcelle & Kanté, WG 2007).
This allows us to utilize an idea from Wagner (CSR 2011) of tracking the depth of the recursion in
our computation.

Furthermore, after splitting the graph into connected components, it is necessary to decide
isomorphism of said components in TC1. To this end, we extend the work of Grohe & Neuen (ibid.)
to show that the (6k + 3)-dimensional Weisfeiler–Leman (WL) algorithm can identify graphs of
rank-width k using only O(log n) rounds. As a consequence, we obtain that graphs of bounded
rank-width are identified by FO + C formulas with 6k + 4 variables and quantifier depth O(log n).
Prior to this paper, isomorphism testing for graphs of bounded rank-width was not known to be
in NC.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Theory of com-
putation → Circuit complexity; Theory of computation → Graph algorithms analysis; Mathematics
of computing → Graph algorithms

Keywords and phrases Graph Isomorphism, Weisfeiler–Leman, Rank-Width, Canonization, De-
scriptive Complexity, Circuit Complexity

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.32

Related Version Full Version: https://arxiv.org/abs/2306.17777

Funding This work was completed in part at the 2022 Graduate Research Workshop in Combinatorics,
which was supported in part by NSF grant #1953985 and a generous award from the Combinatorics
Foundation.
Michael Levet: Partially supported by J. A. Grochow’s NSF award CISE-2047756 and the University
of Colorado Boulder, Department of Computer Science Summer Research Fellowship.

1 Introduction

The Graph Isomorphism problem (GI) takes as input two graphs G and H, and asks if
there exists an isomorphism φ : V (G) → V (H). GI is in particular conjectured to be NP-
intermediate; that is, belonging to NP but neither in P nor NP-complete [36]. Algorithmically,
the best known upper-bound is nΘ(log2 n), due to Babai [3]. It remains open as to whether

1 Corresponding author

© Michael Levet, Puck Rombach, and Nicholas Sieger;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 32; pp. 32:1–32:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:levetm@cofc.edu
mailto:Puck.Rombach@uvm.edu
mailto:nsieger@ucsd.edu
https://doi.org/10.4230/LIPIcs.SWAT.2024.32
https://arxiv.org/abs/2306.17777
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Canonizing Graphs of Bounded Rank-Width in Parallel via Weisfeiler–Leman

GI belongs to P. There is considerable evidence suggesting that GI is not NP-complete
[42, 6, 30, 3, 33, 1, 39]. In a precise sense, GI sits between linear and multilinear algebra. For
any field F, GI belongs to F-Tensor Isomorphism (TIF). When F is finite, TIF ⊆ NP ∩ coAM
[16, 17]. In contrast, the best known lower-bound for GI is DET [44], which contains NL and
is a subclass of TC1. It is thus natural to inquire as to families of graphs where isomorphism
is decidable in sub-classes of DET.

There has been considerable work on efficient algorithms for special families of graphs.
Sparse graphs, in particular, have received considerable attention from the perspective of
polynomial-time computation, though less is known for dense graphs– see [24] for discussion.
The story is similar in the setting of NC isomorphism tests, with considerable work on planar
graphs (see the references in [12]) and graphs of bounded treewidth [25, 46, 11], culminating
in L-completeness results for both families (see [12, 43] for planar graphs, and and [15] for
graphs of bounded treewidth). Isomorphism testing for graphs of bounded genus is also
L-complete [14]. We now turn to dense graphs. An NC isomorphism test is known for graphs
of bounded eigenvalue multiplicity [2]. The isomorphism problems for interval graphs [32]
and Helly ciruclar-arc graphs [35] are both L-complete.

The k-dimensional Weisfeiler–Leman algorithm (k-WL) serves as a key combinatorial
tool in GI. It works by iteratively coloring k-tuples of vertices in an isomorphism-invariant
manner. On its own, Weisfeiler–Leman serves as an efficient polynomial-time isomorphism
test for several families of graphs, including planar graphs [31, 21], graphs of bounded
genus [18, 20], and graphs for which a specified minor H is forbidden [19]. WL even serves as
an NC isomorphism test for graphs of bounded treewidth [25] and planar graphs [25, 45, 21].
Despite the success of WL, it is insufficient to place GI into P [7, 40]. Nonetheless, WL
remains an active area of research. For instance, Babai’s quasipolynomial-time algorithm [3]
combines O(log n)-WL with group-theoretic techniques.

Graphs of bounded rank-width have only recently received attention from the perspective
of isomorphism testing. Grohe & Schweitzer [24] gave the first polynomial-time isomorphism
test for graphs of bounded rank-width. In particular, their isomorphism test ran in time
nf(k), where f(k) was a non-elementary function of the rank-width k. Subsequently, Grohe
& Neuen [22] showed that graphs of rank-width k have Weisfeiler–Leman dimension ≤ 3k+ 5,
which yields an O(n3k+6 log n)-time isomorphism test and also the first polynomial-time
canonical labeling procedure for this family. In particular, it is open as to whether graphs of
bounded rank-width admit NC or FPT isomorphism tests. This is in contrast to graphs of
bounded treewidth, where NC [25, 34, 46, 11, 15] and FPT [38, 23] isomorphism tests are
well-known.

Closely related to Graph Isomorphism is Graph Canonization, which for a class
C of graphs, asks for a function F : C → C such that for all X,Y ∈ C, X ∼= F (X) and
X ∼= Y ⇐⇒ F (X) = F (Y). Graph Isomorphism reduces to Graph Canonization, and
the converse remains open. Nonetheless, efficient canonization procedures have often followed
efficient isomorphism tests, usually with non-trivial work– see e.g., [29, 22, 34, 46, 15, 4].

Main Results. In this paper, we investigate the parallel and descriptive complexities
of identifying and canonizing graphs of bounded rank-width, using the Weisfeiler–Leman
algorithm.

▶ Theorem 1. Let G be a graph on n vertices, of rank-width k. We can compute a canonical
labeling for G using a TC circuit of depth O(log2 n) and size nO(16k).

Our approach in proving Thm. 1 was inspired by the previous work of Köbler & Verbitsky [34],
who established the analogous result for graphs of bounded treewidth. Köbler & Verbitsky
crucially utilized the fact that graphs of treewidth k admit balanced separators of size k + 1,

M. Levet, P. Rombach, and N. Sieger 32:3

where removing such a separator leaves connected components each of size ≤ n/2. This
ensures that the height of their recursion tree is O(log n). For graphs of bounded rank-width,
we are unable to identify such separators. Instead, we leverage the framework of Grohe &
Neuen to descend along a rank decomposition, producing a canonical labeling along the way.
To ensure that our choices are canonical, we utilize the Weisfeiler–Leman algorithm. As a
first step, we will establish the following:

▶ Theorem 2. The (6k + 3)-dimensional Weisfeiler–Leman algorithm identifies graphs of
rank-width k in O(log n) rounds.

Combining Thm. 2 with the parallel WL implementation of Grohe & Verbitsky [25], we
obtain the first NC bound for isomorphism testing of graphs of bounded rank-width. This is
a crucial ingredient in obtaining the TC2 bound for Thm. 1.

▶ Corollary 3. Let G be a graph of rank-width O(1), and let H be arbitrary. We can decide
isomorphism between G and H in TC1.

Furthermore, in light of the close connections between Weisfeiler–Leman and FO + C
[29, 7], we obtain the following corollary. Let Cm,r denote the m-variable fragment of FO + C
where the formulas have quantifier depth at most r (see Sec. 2.3).

▶ Corollary 4. For every graph G of rank-width at most k, there is a sentence φG ∈
C6k+4,O(logn) that characterizes G up to isomorphism. That is, whenever H ̸∼= G, we have
that G |= φG and H ̸|= φG.

We will discuss shortly the proof technique for Thm. 2. We first discuss how we will utilize
Thm. 2 to establish Thm. 1. As (6k+3)-WL identifies all graphs of rank-width ≤ k in O(log n)
rounds, (10k+3)-WL identifies the orbits of sequences of vertices of length ≤ 4k (see Lem. 21).
By applying (10k + 3)-WL for O(log n) rounds at each recursive call to our canonization
procedure, we give canonical labelings to the various parallel choices considered by the
algorithm. While there exists a suitable rank decomposition of height O(log n) [8], it is open
whether such a decomposition can be computed in NC [10]. Instead of explicitly constructing
a rank decomposition, we instead track the depth of our recursion tree. By leveraging the
framework of Grohe & Neuen [22], we show that one of our parallel computations witnesses
the balanced rank decomposition of Courcelle & Kanté [8].

We will now outline the proof strategy for Thm. 2. Our work follows closely the strategy
of Grohe & Neuen [22]. We again combine the balanced rank decomposition from [8] with a
careful analysis of the pebbling strategy of Grohe & Neuen [22]. In parts of their argument,
Grohe & Neuen utilize (an analysis of) the stable coloring of 1-WL. For a graph G, Grohe
& Neuen [22, Sec. 3] construct an auxiliary graph that they call the flipped graph, whose
construction depends on a specified set of vertices called a split pair and a coloring of the
vertices. While the flipped graph is compatible with any vertex coloring, Grohe & Neuen [22,
Lem. 3.6] crucially utilize the stable coloring of 1-WL to show that WL can detect which
edges are present in the flipped graph. Even though we allow for higher-dimensional WL,
the restriction of O(log n) rounds creates a technical difficulty in adapting [22, Lem. 3.6].

To resolve this issue, we consider a different notion of flipped graph– namely, a vertex
colored variant introduced in [22, Sec. 5]. In this second definition, edges of the flipped
graph depend only on the split pair and not the coloring. Grohe & Neuen established [22,
Lem. 5.6], which is analogous to their Lem. 3.6. The proof of their Lem. 5.6 depends only on
the structure of the graph and not the vertex colorings. In particular, Weisfeiler–Leman can
take advantage of [22, Lem. 5.6] within O(log n) iterations.

SWAT 2024

32:4 Canonizing Graphs of Bounded Rank-Width in Parallel via Weisfeiler–Leman

The second such place where Grohe & Neuen rely on the stable coloring of 1-WL to detect
the connected components of the flipped graph. We will show that 2-WL can in fact identify
these components in O(log n) rounds. We further reduce the round complexity via a simple
observation. In the pebble game characterization, if Duplicator fails to respect connected
components of the flipped graph, Spoiler can win in O(log n) rounds without descending
down the rank decomposition. Otherwise, Spoiler only needs a constant number of rounds to
descend to a child node in the rank decomposition. In either case, we only need O(log n)
rounds total, which yields a TC1 isomorphism test.

In the process of our work, we came across a result of Bodlaender [5], who showed that
any graph of treewidth k admits a binary tree decomposition of width ≤ 3k + 2 and height
O(log n). Using Bodlaender’s result, we were able to modestly improve the descriptive
complexity for graphs of bounded treewidth.

▶ Theorem 5. The (3k + 6)-dimensional Weisfeiler–Leman algorithm identifies graphs of
treewidth k in O(log n) rounds.

In light of the above theorem, we obtain the following improvement in the descriptive
complexity for graphs of bounded treewidth.

▶ Corollary 6. Let G be a graph of treewidth k. Then there exists a formula φG ∈ C3k+7,O(logn)
that identifies G up to isomorphism. That is, for any H ̸∼= G, G |= φG and H ̸|= φG.

2 Preliminaries

2.1 Weisfeiler–Leman
We begin by recalling the Weisfeiler–Leman algorithm for graphs, which computes an
isomorphism-invariant coloring. Let G be a graph on n vertices, let χ : V (G) → [n] be a
coloring of the vertices, and let k ≥ 2 be an integer. The k-dimensional Weisfeiler–Leman,
or k-WL, algorithm begins by constructing an initial coloring χ0 : V (G)k → K, where K is
our set of colors, by assigning each k-tuple a color based on its isomorphism type under the
coloring χ.2 Two k-tuples (v1, . . . , vk) ∈ V (G)k and (u1, . . . , uk) ∈ V (G)k receive the same
color under χ0 if and only if the following conditions all hold

For all i, j, vi = vj ⇔ ui = uj .
The map vi 7→ ui (for all i ∈ [k]) is an isomorphism of the induced subgraphs
G[{v1, . . . , vk}] and G[{u1, . . . , uk}]
χ(ui) = χ(vi) for all i ∈ [k].

For r ≥ 0, the coloring computed at the rth iteration of Weisfeiler–Leman is refined as
follows. For a k-tuple v = (v1, . . . , vk) and a vertex x ∈ V (G), define

v(vi/x) = (v1, . . . , vi−1, x, vi+1, . . . , vk).

The coloring computed at the (r + 1)st iteration, denoted χr+1, stores the color of the given
k-tuple v at the rth iteration, as well as the colors under χr of the k-tuples obtained by
substituting a single vertex in v for another vertex x. We examine this multiset of colors
over all such vertices x. This is formalized as follows:

χr+1(v) =(χr(v), {{(χr(v(v1/x)), . . . , χr(v(vk/x))
∣∣x ∈ V (G)}}),

2 Note that for k-WL applied to two graphs G and H, each of order n, there are at most 2nk color classes.
So without loss of generality, we may take K = [2nk].

M. Levet, P. Rombach, and N. Sieger 32:5

where {{·}} denotes a multiset. Note that the coloring χr computed at iteration r induces
a partition of V (G)k into color classes. The Weisfeiler–Leman algorithm terminates when
this partition is not refined, that is, when the partition induced by χr+1 is identical to that
induced by χr. The final coloring is referred to as the stable coloring, which we denote
χ∞ := χr.

The 1-dimensional Weisfeiler–Leman algorithm, sometimes referred to as Color Refinement,
works nearly identically. The initial coloring is that provided by the vertex coloring for the
input graph. For the refinement step, we have that: χr+1(u) = (χr(u), {{χr(v) : v ∈ N(u)}}).
We have that 1-WL terminates when the partition on the vertices is not refined.

As we are interested in both the Weisfeiler–Leman dimension and the number of rounds,
we will use the following notation.

▶ Definition 7. Let k ≥ 1 and r ≥ 1 be integers. The (k, r)-WL algorithm is obtained by
running k-WL for r rounds. Here, the initial coloring counts as the first round.

Let S be a sequence of vertices. The individualize-and-refine paradigm works first by
assigning each vertex in S a unique color. We then run (k, r)-WL starting from this choice
of initial coloring. We denote the coloring computed by (k, r)-WL after individualizing S as
χSk,r. When there is ambiguity about the graph G in question, we will for clarity write χS,Gk,r .

For two graphs G and H, we say that (k, r)-WL distinguishes G and H if there is
some color c such that: |{v ∈ V (G)k : χG,k,r(v) = c}| ̸= |{w ∈ V (H)k : χH,k,r(w) = c}|.
Additionally, (k, r)-WL identifies a graph G if (k, r)-WL distinguishes G from every graph
H such that G ̸∼= H.

▶ Remark 8. Grohe & Verbitsky [25] previously showed that for fixed k, the classical k-
dimensional Weisfeiler–Leman algorithm for graphs can be effectively parallelized. Precisely,
each iteration (including the initial coloring) can be implemented using a logspace uniform
TC0 circuit.

2.2 Pebbling Game
We recall the bijective pebble game introduced by [26, 27] for WL on graphs. This game is
often used to show that two graphs X and Y cannot be distinguished by k-WL. The game is
an Ehrenfeucht–Fraïssé game (c.f., [13, 37]), with two players: Spoiler and Duplicator. We
begin with k + 1 pairs of pebbles. Prior to the start of the game, each pebble pair (pi, p′

i)
is initially placed either beside the graphs or on a given pair of vertices vi 7→ v′

i (where
vi ∈ V (X), v′

i ∈ V (Y)). We refer to this initial configuration for X as v, and this initial
configuration for Y as v′. Each round r proceeds as follows.
1. Spoiler picks up a pair of pebbles (pi, p′

i).
2. Duplicator chooses a bijection fr : V (X) → V (Y) (we emphasize that the bijection chosen

depends on the round and, implicitly, the pebbling configuration at the start of said
round).

3. Spoiler places pi on some vertex v ∈ V (X). Then p′
i is placed on f(v).

Let v1, . . . , vm be the vertices of X pebbled at the end of round r of the game, and let
v′

1, . . . , v
′
m be the corresponding pebbled vertices of Y . Spoiler wins precisely if the map

vℓ 7→ v′
ℓ is not an isomorphism of the induced subgraphs X[{v1, . . . , vm}] and Y [{v′

1, . . . , v
′
m}].

Duplicator wins otherwise. Spoiler wins, by definition, at round 0 if X and Y do not have the
same number of vertices. We note that v and v′ are not distinguished by the first r rounds of
k-WL if and only if Duplicator wins the first r rounds of the (k + 1)-pebble game [26, 27, 7].

SWAT 2024

32:6 Canonizing Graphs of Bounded Rank-Width in Parallel via Weisfeiler–Leman

We establish a helper lemma, which effectively states that Duplicator must respect
connected components of pebbled vertices.

▶ Lemma 9. Let G,H be graphs on n vertices. Suppose that (u, v) 7→ (u′, v′) have been
pebbled. Furthermore, suppose that u, v belong to the same connected component of G, while
u′, v′ belong to different connected components of H. Then Spoiler can win using 1 additional
pebble and O(log n) rounds.

2.3 Logics
We recall key notions of first-order logic. We have a countable set of variables {x1, x2, . . .}.
Formulas are defined inductively. For the basis, we have that xi = xj is a formula for all pairs
of variables. Now if φ1, φ2 are formulas, then so are the following: φ1∧φ2, φ1∨φ2,¬φ1, ∃xi φ1,

and ∀xi φ1. In order to define logics on graphs, we add a relation E(x, y), where E(x, y) = 1
if and only if {x, y} is an edge of our graph, and 0 otherwise. In keeping with the conventions
of [7], we refer to the first-order logic with relation E as L and its k-variable fragment as Lk.
We refer to the logic C as the logic obtained by adding counting quantifiers ∃≥nxφ (there
exist at least n elements x that satisfy φ) and ∃!nxφ (there exist exactly n elements x that
satisfy φ) and its k-variable fragment as Ck.

The quantifier depth of a formula φ (belonging to either L or C) is the depth of its
quantifier nesting. We denote the quantifier depth of φ as qd(φ) This is defined inductively
as follows.

If φ is atomic, then qd(φ) = 0.
qd(¬φ) = qd(φ).
qd(φ1 ∨ φ2) = qd(φ1 ∧ φ2) = max{qd(φ1), qd(φ2)}.
qd(Qxφ) = qd(φ) + 1, where Q is a quantifier in the logic.

We denote the fragment of Lk (respectively, Ck) where the formulas have quantifier depth
at most r as Lk,r (respectively, Ck,r). Let v ∈ V (X)k, v′ ∈ V (Y)k. We note that v, v′

are distinguished by (k, r)-WL if and only if there exists a formula φ ∈ Ck+1,r such that
(X, v) |= φ and (Y, v′) ̸|= φ [29, 7].

2.4 Rank-Width
Oum & Seymour [28] introduced the rank-width parameter to measure the width of a certain
hierarchical decomposition of graphs. The goal is to intuitively split the vertices of a graph
along cuts of low complexity in a hierarchical fashion. Here, the complexity is the F2-rank of
the matrix capturing the adjacencies crossing the cut.

Precisely, let G be a graph, and let X,Y ⊆ V (G). Define M(X,Y) ∈ FX×Y
2 to be the

matrix where (M(X,Y))uv = 1 if and only if uv ∈ E(G). That is, M(X,Y) is the submatrix
of the adjacency matrix whose rows are indexed by X and whose columns are indexed by Y .
Denote ρ(X) := rkF2(M(X,X)).

A rank decomposition of G is a tuple (T, γ), where T is a rooted binary tree and
γ : V (T) → 2V (G) satisfying the following:

For the root r of T , γ(r) = V (G),
For an internal node t ∈ V (T), denote the children of t as s1, s2. For every internal node
t, we have that γ(t) = γ(s1) ∪ γ(s2), and γ(s1) ∩ γ(s2) = ∅.
For any leaf t ∈ V (T), |γ(t)| = 1.

M. Levet, P. Rombach, and N. Sieger 32:7

▶ Remark 10. Let L(T) be the set of leaves of T . Instead of providing γ, we can equivalently
define a bijection f : V (G) → L(T). By the second condition of a rank decomposition, f
completely determines γ.

The width of a rank decomposition (T, γ) is: wd(T, γ) := max{ρG(γ(t)) : t ∈ V (T)}. The
rank-width of a graph G is: rw(G) := min{wd(T, γ) : (T, γ) is a rank decomposition of G}.

The parameter rank-width is closely related to the parameter clique width, introduced by
Courcelle & Olariu [9]. Oum & Seymour [28] showed that: rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1.
Denote tw(G) to be the treewidth of G. Oum [41] showed that rw(G) ≤ tw(G) + 1. Note
that tw(G) cannot be bounded in terms of rw(G); for instance, the complete graph Kn has
rw(Kn) = 1 but tw(Kn) = n− 1.

3 Weisfeiler–Leman for Graphs of Bounded Rank-Width

3.1 Split Pairs and Flip Functions
In designing a pebbling strategy for graphs of bounded rank-width, Grohe & Neuen [22]
sought to pebble a set of vertices X ⊆ V (G) such that ρ(X) ≤ k and pebbling X partitions
the remaining vertices into sets C1, . . . , Cℓ that can be treated independently. Furthermore,
we want for each i ∈ [ℓ] that either Ci ⊆ X or Ci ⊆ X. As there can be many edges between
X and X, this is hard to accomplish in general. To this end, Grohe & Neuen [22] utilized
split pairs and flip functions. We will now recall their framework.

Let G(V,E, χ) be a colored graph on n vertices, and suppose the rank-width of G is at
most k. Let X ⊆ V (G). For v ∈ X, define vecX(v) = (av,w)w∈X ∈ FX2 , where av,w = 1 if
and only if vw ∈ E(G). For S ⊆ X, define vecX(S) = {vecX(v) : v ∈ S}. A split pair for X
is a pair (A,B) such that:
(a) A ⊆ X, and B ⊆ X,
(b) vecX(A) forms a linear basis for ⟨vecX(X)⟩, and
(c) vecX(B) forms a linear basis for ⟨vecX(X)⟩.

An ordered split pair for X is a pair ((a1, . . . , aq), (b1, . . . , bp)) such that ({a1, . . . , aq},
{b1, . . . , bp}) is a split pair for X.

Let G(V,E, χ) be a colored graph on n vertices, and suppose the rank-width of G is at
most k. An ordered split pair, (a, b), of order at most 2k is a pair (a, b), where a, b ∈ V (G)≤2k.
For v, w ∈ V (G), we say that v ≈(a,b) w if N(v) ∩ (a, b) = N(w) ∩ (a, b) (here, we consider
N(v)∩(a, b) as a set). Observe that ≈(a,b) forms an equivalence relation. For (a, b) ∈ V (G)≤2k,
let 2a∪b be the set of all subsets of a ∪ b ⊆ V (G), where we abuse notation by considering
a, b as subsets of V (G). A flip extension of an ordered split pair (a, b) is a tuple:

s :=
(
a, b, f :

(
2a∪b

)2
→ [n] ∪ {⊥}

)
,

such that for all M,N ∈ 2a∪b with M ̸= N , either f(M,N) =⊥ or f(N,M) =⊥. There is
no restriction on f(M,N) if M = N . For v, w ∈ V (G), we say that v ≈s w if v ≈(a,b) w.
Denote [v]≈s to be the equivalence class of v with respect to ≈s. Define the flipped graph
Gs = (V,Es, χ, a, b), where V (Gs) = V (G),

Es := {vw ∈ E(G) : f(N(v) ∩ (a, b), N(w) ∩ (a, b)) = d ∈ [n] ∧ |N(v) ∩ [w]≈s| < d}
∪ {vw ̸∈ E(G) : f(N(v) ∩ (a, b), N(w) ∩ (a, b)) = d ∈ [n] ∧ |N(v) ∩ [w]≈s| ≥ d},

SWAT 2024

32:8 Canonizing Graphs of Bounded Rank-Width in Parallel via Weisfeiler–Leman

and χ is the same coloring as in G. Denote Comp(G, s) ⊆ 2V (G) be the set of vertex sets
of the connected components of Gs. Observe that Comp(G, s) forms a partition of V (G).
Grohe & Neuen [22] established that for any choice (a, b) of split pair, there exists a suitable
flip function; and thus, a suitable flip extension.

▶ Lemma 11 ([22, Lem. 5.6]). Let G be a (colored) graph, and let X ⊆ V (G). Furthermore,
let (a, b) be an ordered split pair for X. Then there exists a flip extension s := (a, b, f) such
that C ⊆ X or C ⊆ X for every C ∈ Comp(G, s).

Grohe & Neuen [22, Sec. 5] considered uncolored flipped graphs. As the conditions for
determining the edges of the flipped graph do not depend on the vertex colors, [22, Lem. 5.6]
holds in our setting.

We now turn to showing that the flip extensions preserve both isomorphism and the
effects of Weisfeiler–Leman. To do so, we consider vertex colorings χ that refine the coloring
χ1,3 computed by (1, 3)-WL. The advantage of incorporating such a coloring on the vertices,
is that it encodes some data about how the vertices of G interact with the specified split pair.
Furthermore, the colorings computed by Weisfeiler–Leman are invariant under isomorphism.
We take advantage of this to establish that the flipped graph preserves both the isomorphism
problem (Lem. 12) and the effects of Weisfeiler–Leman (Lem. 13). For a graph G of rank-
width k, we will be running (6k+3, O(log n)), and so we may assume without loss of generality
that the vertices of G have been colored according to (1, 3)-WL.

▶ Lemma 12. Let G,H be graphs, and let s = (a, b, f), s′ = (a′, b′, f) be flip extensions for
G,H, respectively (we stress that the function f appearing in s is the same as that appearing
in s′). Let k ≥ 1, r ≥ 3. Consider the colorings χ(a,b),G

k,r , χ
(a′,b′),H
k,r obtained by individualizing

(a, b) 7→ (a′, b′) and applying (k, r)-WL.
Let φ : V (G) → V (H) be a bijection. We have that φ is an isomorphism of the colored

graphs (G,χ(a,b),G
k,r) ∼= (H,χ(a′,b′),H

k,r) if and only if φ is an isomorphism of Gs ∼= Hs′ .

▶ Lemma 13 (cf. [22, Lem. 3.10]). Let G(V,E, χ), G′(V ′, E′, χ′) be colored graphs, and let
s = (a, b, f) and s′ = (a′, b′, f) be flip extensions (we are using the same flip function f for
both s, s′). Let χ1,3 be the coloring resulting from individualizing (a, b) 7→ (a′, b′) and running
(1, 3)-WL. Suppose that χ, χ′ both refine χ1,3. Let ((v, w)) = ((v1, . . . , vℓ), (w1, . . . , wℓ)) be
a position in the ℓ-pebble bijective pebble game. We have that Spoiler wins from ((v, w)) in
the ℓ-pebble, r-round game on (G,G′) if and only if Spoiler wins from from ((v, w)) in the
ℓ-pebble, r-round game on (Gs, (G′)s).

▶ Corollary 14 (Compare rounds cf. [22, Corollary 3.12]). Let G(V,E, χ), G′(V ′, E′, χ′) be
colored graphs, and let s = (a, b, f) and s′ = (a′, b′, f) be flip extensions (we are using the
same flip function f for both s, s′). Let χ1,3 be the coloring resulting from individualizing
(a, b) 7→ (a′, b′) and running (1, 3)-WL. Suppose that χ, χ′ both refine χ1,3.

Let v ∈ V k, v′ ∈ (V ′)k. Let C be a connected component of Gs such that χ(u) ̸=
χ(w) for all u ∈ C and all w ∈ V \ C. Let C ′ be a connected component of (G′)s′

such that χ′(u′) ̸= χ′(w′) for all u′ ∈ C ′ and w′ ∈ V ′ \ C ′. Let r ≥ 1. Suppose
that: (G[C], χv,G1,r) ̸∼= (G′[C ′], χv′,G′

1,r). Let w := C ∩ v and w′ := C ′ ∩ v′. Then either:
(G[C], χw,G1,r) ̸∼= (G′[C ′], χw′,G′

1,r), or r rounds of Color Refinement distinguishes (G,χv) from
(G′, (χ′)v′).

M. Levet, P. Rombach, and N. Sieger 32:9

3.2 WL for Graphs of Bounded Rank-Width
Our goal in this section is to establish the following.

▶ Theorem 15. Let G be a graph on n vertices of rank-width k, and let H be an arbitrary
graph such that G ̸∼= H. We have that the (6k + 3, O(log n))-WL algorithm will distinguish
G from H.

▶ Definition 16 ([22, Definition 4.1]). Let G be a graph, and let X,X1, X2 ⊆ V (G) such that
X = X1 ⊔X2. Let (A,B) be a split pair for X, and let (Ai, Bi) (i = 1, 2) be a split pair for
Xi. We say that (Ai, Bi) are nice with respect to (A,B) if the following conditions hold:
(a) A ∩Xi ⊆ Ai for each i ∈ {1, 2}, and
(b) B2 ∩X1 ⊆ A1 and similarly B1 ∩X2 ⊆ A2.
A triple ((A,B), (A1, B1), (A2, B2)) of ordered split pairs is nice if the underlying triple of
unordered split pairs is nice.

▶ Lemma 17 ([22, Lem. 4.2]). 3 Let G be a graph, and let X,X1, X2 ⊆ V (G) such that
X = X1 ⊔X2. Let (A,B) be a split pair for X. There exist nice split pairs (Ai, Bi) for Xi

(i = 1, 2) such that additionally Bi ∩Xi ⊆ B.

▶ Definition 18. Let G be a graph. A component partition of G is a partition P of V (G)
such that every connected component appears in exactly one block of P. That is, for every
connected component C of G, there exists a P ∈ P such that C ⊆ P .

▶ Lemma 19 ([22, Observation 4.3]). Let G,H be two non-isomorphic graphs, and let P,Q
be component partitions of G,H respectively. Let σ : V (G) → V (H) be a bijection. There
exists a vertex v of G such that G[P] ̸∼= H[Q], where P ∈ P is the unique set containing v
and Q ∈ Q is the unique set containing σ(v).

We now prove Thm. 15.

Proof Idea of Thm. 15 . We follow the strategy of [22, Thm. 4.4]. We will briefly discuss
the how we modified the proof from [22]; the full proof will appear in the full version. Let
G(V,E, χG) be a colored graph of rank width ≤ k, and let H be an arbitrary graph such
that G ̸∼= H. By [8, Thm. 5], G admits a rank decomposition (T, γ) of width at most 2k
where T has height at most 3 · (log(n) + 1).

We will show that Spoiler has a winning strategy in the 6k + 3 pebble game in O(log n)
rounds. In a similar manner as in the proof of [22, Thm. 4.4], we will first argue that 12k+ 5
pebbles suffice, and then show how to improve the bound to use only 6k + 3 pebbles.

Spoiler’s strategy is to play along the rank decomposition (T, γ) starting from the root.
As Spoiler proceeds down the tree, the non-isomorphism is confined to increasingly smaller
parts of G and H. At a node t ∈ V (T), Spoiler pebbles a split pair (a, b) 7→ (a′, b′), where
(a, b) corresponds to a flip extension s = (a, b, f) of X = γ(t). Let s′ := (a′, b′, f). Now
to confine the non-isomorphism, Spoiler identifies, after individualizing the split pair and
performing three steps of Color Refinement- the initial coloring and two refinement steps, a
pair of non-isomorphic components C ⊆ X,C ′ ⊆ V (H) in the flipped graphs Gs and Hs′ .
In particular, Spoiler seeks to find such components C and C ′ such that C is increasingly

3 Grohe & Neuen use in the proof of [22, Thm. 5.5] that [22, Lem. 4.2] holds for the flipped graphs they
define in Section 5, and not just the earlier notion of flipped graphs they consider in Section 3. Hence,
[22, Lem. 4.2] holds in our setting as well.

SWAT 2024

32:10 Canonizing Graphs of Bounded Rank-Width in Parallel via Weisfeiler–Leman

further from the root of T . Once Spoiler reaches a leaf node of T , Spoiler can quickly win.
Spoiler places a pebble on a vertex in C and its image in C ′, under Duplicator’s bijection at
the given round.

We note that the three rounds of Color Refinement suffice for WL to detect the partitioning
induced by the flip function, though it is not sufficiently powerful to detect the connected
components of Gs and Hs′ . In the argument below, we will technically consider graphs where
the refinement step uses (2, O(log n))-WL. This ensures that after individualizing a vertex on
a given component C, that the vertices of C receive different colors than those of V (G) \ C.
This will eventually happen, and so in the pebble game characterization, we can continue to
descend along T as if the vertices of C have been distinguished from V (G) \C. This is a key
point where our strategy deviates from that of [22, Thm. 4.4]. The remaining details will
appear in the full version. ◀

4 Canonical Forms in Parallel

In this section, we will establish the following.

▶ Theorem 20. Let G be a graph on n vertices, of rank-width k. We can compute a canonical
labeling for G using a TC circuit of depth O(log2 n) and size nO(16k).

We will prove Thm. 20 via the individualization-and-refinement paradigm. Our strategy
is similar to that of Köbler & Verbitsky [34], who established the analogous result for
treewidth. We will begin by briefly recalling their approach. Köbler & Verbitsky began
by enumerating ordered sequences of vertices of length ≤ k + 1, testing whether each such
sequence disconnected the graph. In particular, Köbler & Verbitsky crucially used the fact
that a graph of treewidth k admits a so-called balanced separator S of size ≤ k + 1, which
splits G into connected components each of size ≤ n/2. Köbler & Verbitsky then colored the
vertices of each connected component of G − S according to how they connected back to
S. As graphs of bounded treewidth are hereditary (closed under taking induced subgraphs),
Köbler & Verbitsky were then able to recurse on the connected components. The existence
of balanced separators guarantees that only O(log n) such recursive calls are needed.

Instead of relying on balanced separators, it is sufficient to guarantee that after O(log n)
recursive calls, each connected component will be a singleton. To this end, we again leverage
the result of [8], who showed that a graph of rank-width k admits a rank decomposition
(T, γ) of width ≤ 2k and height O(log n).

Thus, we would intuitively like to descend along such a rank decomposition (T, γ) of width
≤ 2k and height O(log n). Fix a node t ∈ V (T), and let t1 be the left child and t2 be the right
child of t. We would then enumerate over all pairs of flip extensions ((a1, b1, f1), (a2, b2, f2)),
where intuitively si := (ai, bi, fi) is a flip extension for γ(ti). Then for each i = 1, 2 and
each component Ci ∈ Comp(G[γ(t)], si), we apply the construction recursively. Note that
we are not able to efficiently compute a rank decomposition of width ≤ 2k and height
O(log n). Nonetheless, Lem. 11 guarantees the existence of flip extensions that witness the
decomposition of a fixed rank decomposition (T, γ). Following an idea of Wagner [46], we
consider all possible flip extensions in parallel, and thus ensure that the flip extension which
respects a fixed rank decomposition is considered by the algorithm. As we will show in
Lem. 24, the existence of a rank decomposition of height O(log n) allows us to guarantee
that at least one of the flip extensions considered by the algorithm will produce a labeling,
and Lem. 25 will then guarantee that the minimum such labeling (which is the labeling the
algorithm will return) is in fact canonical. Now to the details.

M. Levet, P. Rombach, and N. Sieger 32:11

We first show that we can enumerate the split pairs in a canonical manner. To this end,
we will need the following lemma, which is essentially well-known amongst those working on
the Weisfeiler–Leman algorithm (cf., [29, 22]).

Let G be a graph. The (k, r)-Weisfeiler-Leman algorithm determines orbits of ℓ-tuples
if, for every graph H, every v ∈ V (G)ℓ and every w ∈ V (H)ℓ such that χk,r(v) = χk,r(w),
there is an isomorphism φ : V (G) → V (H) such that φ(v) = w.

▶ Lemma 21. Let C be a class of graphs such that (k, r)-WL identifies all (colored) G ∈ C.
Then for any ℓ ≥ 1 and all (colored) G ∈ C, (k+ ℓ, r)-WL determines the orbits of all ℓ-tuples
of vertices in G.

By Thm. 2, we have that (6k + 3, O(log n))-WL identifies all graphs of rank-width k. As
we will need to enumerate split pairs, which have length ≤ 4k, we will run (10k+ 3, O(log n))-
WL at each stage. Lem. 21 ensures that enumerating the split pairs in color class order is
canonical. Note that a flip function is represented as a tuple in {0, . . . , n}24k . So for a fixed
split pair (a, b), we can canonically enumerate the flip functions in lexicographic order. Thus,
flip extensions can be enumerated in a canonical order.
▶ Remark 22. Now let (a, b) be a split pair on G and (c, d) be a split pair on H such
that χ10k+3,O(logn)((a, b)) = χ10k+3,O(logn)((c, d)). Let f be a given flip function, and let
s = (a, b, f), s′ = (c, d, f) be flip extensions. By Lem. 21, there is an isomorphism mapping
(a, b) 7→ (c, d). Hence, Lem. 12 provides that the flipped graphs Gs, Hs′ are isomorphic
whenever G ∼= H. In particular, if there is an isomorphism φ : G ∼= H mapping (a, b) 7→ (c, d),
then φ is also an isomorphism of Gs ∼= Hs′ .

▶ Lemma 23. Let G be a graph, X ⊆ V (G), and s = (a, b, f) be a flip extension for G[X].
We may write down the flipped graph Gs and identify the connected components of G[X]s
in L.

We will now pause to outline the procedure for the reader. Let s := (a, b, f) be a flip
extension for V (G). We will first individualize (a, b) and apply (10k + 3, O(log n))-WL to
G. For each component C ∈ Comp(G, s), this will encode the isomorphism class of G[C] (as
(6k + 3, O(log n))-WL identifies all graphs of rank-width ≤ k– see Thm. 15), as well as how
G[C] connects back to the rest of G. It is easy to see that for any two vertices v, w, if v, w
receive the same color under χ(a,b)

10k+3,O(logn), then the following conditions hold:
(a) N(v) ∩ (a ∪ b) = N(w) ∩ (a ∪ b), and
(b) For any vertex u, |N(v) ∩ [u]≈s| = |N(w) ∩ [u]≈s|.
Intuitively, this coloring encodes how each given vertex connects to the rest of G. Precisely,
let G ∼= H be graphs of rank-width ≤ k, and suppose that the algorithm returns the labeling
λ : V (G) → [n] for G and labeling κ : V (H) → [n] for H (where n = |G| = |H|). If
v, w ∈ V (G) belong to different components of Comp(G, s), then we need to ensure that
{v, w} ∈ E(G) if and only if {(κ−1 ◦ λ)(v), (κ−1 ◦ λ)(w)} ∈ E(H). By the definition of the
flipped graph (Sec. 3), conditions (a) and (b) determine precisely whether {v, w} ∈ E(G).

By Lem. 23, we may write down the connected components for the flipped graph Gs in L.
We will then sort these connected components in lexicographic order by color class, which is
L-computable. It may be the case that for two connected components Ci, Cj ∈ Comp(G, s),
G[Ci] and G[Cj] are isomorphic and connect to the rest of G in the same way, and so receive
the same multiset of colors. In this case, we may arbitrarily choose whether G[Ci] will be
sorted before G[Cj]. The output will not depend on this particular choice, as there is an
automorphism of G which exchanges the two components. Now for each C ∈ Comp(G, s),
we will apply the procedure recursively on G[C], incrementing the local depth variable
by 1. If for each connected component of Comp(G, s) we are given a valid labeling, we

SWAT 2024

32:12 Canonizing Graphs of Bounded Rank-Width in Parallel via Weisfeiler–Leman

may recover a labeling for G as follows. Let Cj ∈ Comp(G, s), with the labeling function
ℓj : V (Cj) → {1, . . . , |V (Cj)|} returned by applying our canonization procedure recursively
to G[Cj]. Let hj := |C1| + · · · + |Cj−1|. We will recover a canonical labeling ℓ : V (G) → [n]
by, for each such j and v ∈ Cj , setting ℓ(v) := ℓj(v) + hj . As each vertex of G appears in
exactly one Cj , ℓ is well-defined.

We stress here again that the recursive calls to the canonization procedure track the
depth to ensure that we do not make ≥ 3 · (log(n) + 1) recursive calls. If the depth parameter
is ever larger than 3 · (log(n) + 1), then the algorithm returns ⊥ to indicate an error. In the
recombine stage of our divide and conquer procedure, if any of the labelings returned for the
components of Comp(G, s) are ⊥, then the algorithm simply returns ⊥. Thus, a priori, our
algorithm may not return a labeling of the vertices. We will prove later (see Lem. 24) that
our algorithm actually does return a labeling.

We now give a more precise description of our algorithm and proceed to prove its
correctness. We define a canonical labeling Can(G) of a graph, via a subroutine Can(G, d).
The subroutine Can(G, d) takes an n-vertex graph G and a depth parameter d, and outputs
either a bijection λ : V (G) → [n] or a failure symbol ⊥. In pseudocode, our canonical labeling
subroutine works as follows:

Algorithm 1 Can(G, d).

Input: A colored graph G = (V,E, χ) of rank-width ≤ k, and a parameter d for depth.
1. If d > 3 · (log(n) + 1), return ⊥.
2. If d ≤ 3 · (log(n) + 1) and |V | = 1, return λ(v) = 1.
3. Otherwise, if d ≤ 3 · (log(n) + 1) and |V | > 1, do the following steps:
4. Run (10k + 3, O(log n))-WL on G.
5. In parallel, enumerate all possible flip extensions s = (a, b, f) in lexicographic order, where

the order on (a, b) is considered with respect to the ordering induced by the coloring
χ10k+3,O(logn) (by [25], the colors are represented by numbers, and so color class order is
well-defined).

6. For each flip extension, s = (a, b, f),
a. Compute the coloring χ(a,b)

10k+3,O(log(n)) applied to G.
b. Construct the flipped graph Gs.
c. Compute the set of connected components Comp(G, s). If Gs is connected, then return

⊥. Note that there exists a rank decomposition (T, γ) in which for all u, v ∈ V (T),
γ(u) ̸= γ(v). So there exists a flip extension s that splits Gs into at least two connected
components.

d. Order the components C ∈ Comp(G, f) by lexicographic ordering of the multiset of
colors χa,b10k+3,O(log(n))(G[C]). Let C1, . . . , Cℓ be the components in this ordering.

e. Compute Can(d+1, G[C1]), . . . ,Can(d+1, G[Cℓ]) and let λs,1, . . . , λs,ℓ be the resulting
labelings.

f. If λs,i = ⊥ for any i ∈ [ℓ] set λs = ⊥. Otherwise, if λs,1, . . . , λs,ℓ are the (canonical)
labelings returned by the recursive calls, set

λs(v) = λs,i(v) +
i−1∑
j=1

|Cj |

where Ci ∋ v.
7. Return the labeling λs corresponding to the first flip extension s (relative to the order in

which the flip extensions were enumerated) that is not ⊥.

M. Levet, P. Rombach, and N. Sieger 32:13

We then define the canonical labeling by setting Can(G) = Can(G, 0) via the subroutine.
We now show that our subroutine satisfies the desired properties.

▶ Lemma 24. If G is a graph of rank-width at most k, the above procedure terminates and
does not return ⊥.

Proof. For termination, we observe that at each step the depth parameter d increases and
that if d becomes larger than 3 log(n) + 1, the procedure returns. Hence, the procedure must
terminate.

We will now show by induction that Algorithm 1 returns a labeling instead of ⊥. Fix
(T, γ) to be a rank decomposition of G, of width ≤ 2k and height ≤ 3 · (log(n) + 1). Let
t ∈ V (T), and let t1, t2 be the children of t in T . We will use Lem. 11, which provides that for
each t ∈ V (T), there exists a flip extension s so that for every C ∈ Comp(G[γ(t)], s), there
exists an i = 1, 2 such that C ⊆ γ(ti). We will use this to show that the algorithm constructs
a non-empty set of labelings for G. As the algorithm chooses the least such labeling4, it
follows that the algorithm in fact returns a labeling. Note that while the algorithm will
not be explicitly constructing (T, γ), the algorithm still descends along (T, γ) in one of its
parallel computations.

Consider first the case when |V (G)| = 1. Here, the algorithm returns λ(v) = 1, where
v ∈ V (G). Now fix a node t ∈ V (T), and let γ(t) be the corresponding set of vertices.
Suppose that |γ(t)| > 1. Let t1, t2 be the children of t in T . By Lem. 11, there exists
a flip extension s = (a, b, f) such that for every component C ∈ Comp(G[γ(t)], s), either
C ∈ γ(t1) or C ∈ γ(t2). As we consider all flip extensions of γ(t) in parallel, one of our
parallel computations will consider s. We will analyze this parallel computation.

Prior to recursively invoking the algorithm on each G[C] (C ∈ Comp(G[γ(t)], s)), the
algorithm first sorts said components (For the purposes of showing that the algorithm
yields a (not necessarily canonical) labeling, the precise ordering does not matter. We will
argue later that the ordering used by the algorithm is canonical– see Lem. 25). For each
C ∈ Comp(G[γ(t)], s), the algorithm is then applied recursively to G[C].

Now for i = 1, 2, let Ci,1, . . . , Ci,ji ∈ Comp(G[γ(t)], s) be precisely the components in
γ(ti). Observe that a flip extension on γ(ti) restricts to a flip extension on an individual
component Ci,h (h ∈ [ji]). Conversely, given flip extensions si,h (h ∈ [ji]), the union of these
flip extensions induce a flip extension s on γ(ti).

By Lem. 11, there exists a flip extension si such that for every component C ′ ∈
Comp(G[γ(ti)], si), C ′ ∈ γ(ti,1) or C ′ ∈ γ(ti,2). Suppose that si is the union of the flip
extensions (si,h)h∈[ji]. As, for each h ∈ [ji], the recursive call of the algorithm applied
to Ci,h will consider all flip extensions of Ci,h in parallel. Thus, via the recursive calls
to the components Ci,h (h ∈ [ji]), the algorithm will consider all flip extensions of γ(ti),
including the flip extension si. Thus, some parallel choice will descend along (T, γ), and so
we may assume that the algorithm computes a labeling for each C ∈ G([γ(t)], s). As these
components are disjoint and listed in a fixed order, the algorithm in fact computes a labeling
for γ(t). The result now follows by induction. ◀

▶ Lemma 25. Let G be a colored graph of rank-width at most k and let H be an arbitrary
graph. If λ : V (G) → [n] and κ : V (H) → [n] are the labelings output by Algorithm 1 on G

and H respectively, then G ∼= H if and only if the map κ−1 ◦ λ is an isomorphism.

4 with respect to the order in which the flip extensions were enumerated– See Algorithm 1, Line 5

SWAT 2024

32:14 Canonizing Graphs of Bounded Rank-Width in Parallel via Weisfeiler–Leman

Proof. If κ−1 ◦ λ is an isomorphism, then clearly G ∼= H. We show that if G ∼= H, then
κ−1 ◦λ is an isomorphism. The proof is by induction on the number of vertices in G. Assume
that |V (G)| = 1 and G ∼= H. Note that the algorithm returns λ = κ = id, the identity
permutation, on a graph with one vertex. Thus, κ−1 ◦ λ is an isomorphism as desired.

Suppose that |V (G)| > 1. Let λ be the labeling returned for G and κ the labeling returned
for H. Let (a, b) be the split pair the algorithm selects for λ on the initial call (when the
algorithm is invoked on G with depth = 0). By the algorithm, χ10k+3,O(logn)((a, b)) belongs
to the minimal color class where a labeling was returned. Let (a′, b

′) be the corresponding
split pair of H selected for κ. Observe5 that (10k + 3, O(log(n))-WL must assign the same
color to the tuples (a, b) and (a′, b

′).
As the algorithm enumerates the flip extensions in lexicographical order, it considers the

flip functions in lexicographical order. As the ordering on flip functions does not depend on
the choice of split pair, and we have that G ∼= H, the flip function6 f : (2a∪b)2 → [n] ∪ {⊥}
selected for G will also be used for H. Write s := (a, b, f) and s′ := (a′, b

′
, f). The

algorithm next computes the flipped graphs Gs and Hs′ . By Lem. 12, we have that:
(Gs, χ(a,b)

6k+3,O(logn)) ∼= (Hs′
, χ

(a′,b
′)

6k+3,O(logn)). It follows that ℓ := |Comp(G, s)| = |Comp(H, s′)|.
Label the components of Comp(G, s) as C1, . . . , Cℓ, and the components of Comp(H, s′)
as D1, . . . , Dℓ. Furthermore, by (4), there exists a bijection ψ : [ℓ] → [ℓ] such that for
all i ∈ [ℓ], G[Ci] ∼= H[Dψ(i)]. In particular, as we compute χ

(a,b)
10k+3,O(logn) at line 6(a),

the isomorphism class of G[Ci] ∼= H[Dψ(i)] takes into account how G[Ci] connects to the
rest of G and how H[Dψ(i)] connects back to the rest of H (see the discussion in the
two paragraphs immediately below Lem. 23). As the algorithm sorts the components of
Comp(G, s) (respectively, Comp(H, s′)), we may without loss of generality take ψ to be the
identity permutation.

By the inductive hypothesis, we may assume that for each i ∈ [ℓ], the algorithm computes
a labeling ℓi : Ci → [|Ci|], a labeling κi : ψ′(Ci)) → [|Ci|], and that κ−1

i ◦ℓi is an isomorphism.
Now by construction, if v ∈ Ci, then

λ(v) = λi(v) +
i−1∑
j=1

|Cj |,

and κ is defined analogously. As Ci ∩ Ch = ∅ (resp., Di ∩Dh = ∅) whenever i ̸= h, λ and
κ are well-defined. Furthermore, as κ−1

i ◦ λi is an isomorphism of G[Ci] ∼= H[Di] for each
i ∈ [ℓ], κ|−1

H[Di] ◦ λ|G[Ci] is an isomorphism of G[Ci] ∼= H[Di].
Now suppose that v, w belong to different components of Comp(G, s). Let v′ := (κ−1◦λ)(v)

and w′ := (κ−1 ◦ λ)(w). We will show that vw ∈ E(G) if and only if v′w′ ∈ E(H). By
the definition of the flipped graph (see Section 3), we can determine whether vw ∈ E(G)
based on N(v) ∩ (a ∪ b), N(w) ∩ (a ∪ b), and |N(v) ∩ [w]≡s|. All of this information is
encoded in χ

(a,b)
10k+3,O(logn)((v, w)), and χ

(a′,b
′)

10k+3,O(logn)((v, w)). Thus, vw ∈ E(G) if and only
if v′w′ ∈ E(H). It follows that the map κ−1 ◦ λ is an isomorphism. The result follows. ◀

Proof of Thm. 20. Let λ : V (G) → [n] be the output of Can(G, 3 log(n) + 1). Correctness
follows from Lem. 24 and Lem. 25. We now establish the complexity. At each recursive call
to Can(G, d), we invoke (10k + 3, O(log n))-WL on G, once at line (4), and then in parallel
for each flip extension. Our calls to (10k + 3, O(log n))-WL are TC1-computable [25]. We

5 Full details of this claim will appear in the full version.
6 We abuse a ∪ b to denote the indices of the vertices as they appear in (a, b).

M. Levet, P. Rombach, and N. Sieger 32:15

write down the flipped graph and identify its connected components in L (Lem. 23). So the
non-recursive work within a single call to Can(G, d) is TC1-computable. Can(G, d) makes
nO(16k) recursive calls. The height of our recursion tree is O(log n). The result follows. ◀

5 Logarithmic Weisfeiler–Leman and Treewidth

In the process of our work, we came across a way to modestly improve the descriptive
complexity for graphs of bounded treewidth. Our main result in this section is the following.
▶ Theorem 26. The (3k + 6)-dimensional Weisfeiler–Leman algorithm identifies graphs of
treewidth k in O(log n) rounds.

In order to prove Thm. 26, we utilize a result of [5] that graphs of treewidth k admit a
binary tree decomposition of width ≤ 3k + 2 and height O(log n). With this decomposition
in hand, we leverage a pebbling strategy that is considerably simpler than that of Grohe &
Verbitsky [25] and improves the descriptive complexity (Cor. 6).
▶ Lemma 27. Let G,H be graphs. Suppose that a separator S ⊆ V (G) has been pebbled. If
the corresponding pebbled set S′ ⊆ V (H) is not a separator of H, then Spoiler can win with 3
additional pebbles and O(log n) additional rounds.

This next lemma states that if we have pebbled the vertices of some node β(t) of the
tree decomposition (T, β), then Spoiler can force Duplicator to preserve a given subtree T ′

(setwise) of the tree decomposition by pebbling some vertex v ∈ V (G) where there exists
u ∈ V (T ′) such that v ∈ β(u).
▶ Lemma 28. Let G be a connected graph, and let (T, β) be the binary tree decomposition of
G afforded by [5]. Let t ∈ V (T), and suppose that each vertex in β(t) has been pebbled. Let
C be the connected component of T − tu that contains u, and let T ′ := C ∪ tu.

Let v, w ∈ V (G) be vertices contained in the subgraph of G induced by T ′, such that
v, w ̸∈ β(t). Suppose that (v, w) 7→ (v′, w′) are pebbled. Let f : V (G) → V (H) be Duplicator’s
bijection. If v′, w′ belong to different components of H \ f(β(t) \ β(u)), then Spoiler can win
with 1 additional pebble and O(log n) additional rounds.
Proof Sketch of Thm. 26. Full details will in the full version. If G is not connected, it
is easy to see that Spoiler can force Duplicator to play on non-isomorphic components.
Thus, without loss of generality, we may assume that G is connected. Let (T, β) be a tree
decomposition for G of width ≤ 3k+2 and height O(log n), with T a binary tree, as prescribed
by [5]. Let s be the root node of T . Spoiler begins by pebbling the vertices of β(s), using
≤ 3k + 3 pebbles. Let f : V (G) → V (H) be Duplicator’s bijection. If G[β(s)] ̸∼= H[f(β(s))],
then Spoiler wins. So suppose that G[β(s)] ∼= H[f(β(s))].

Let ℓ be the left child of s, and r be the right child of s in T . At the next two rounds,
Spoiler places a pebble on some vertex of β(ℓ) \ β(s) and a pebble on some vertex of
β(r) \ β(s). By Lem. 28, Duplicator must select bijections preserving the left and right sub-
trees. Necessarily, either the left or right sub-tree is mapped to a non-isomorphic component
of H. Without loss of generality, suppose the left sub-tree is mapped to a non-isomorphic
component of H. In this case, Spoiler removes the pebble in β(r) and all but one pebble of
β(s) \ β(ℓ).

We may thus iterate on the above argument, starting from ℓ as the root node in our
subtree in the tree decomposition. As G ̸∼= H , we will eventually reach a stage (such as when
all of β(t) is pebbled for some leaf node t ∈ V (T)) where the map induced by the pebbled
vertices does not extend to an isomorphism. In the full version, we will carefully show that
only 3k + 6 pebbles on the board and O(log n) rounds suffice. ◀

SWAT 2024

32:16 Canonizing Graphs of Bounded Rank-Width in Parallel via Weisfeiler–Leman

References
1 V. Arvind and Piyush P. Kurur. Graph isomorphism is in SPP. Information and Computation,

204(5):835–852, 2006. doi:10.1016/j.ic.2006.02.002.
2 L. Babai, E. Luks, and A. Seress. Permutation groups in NC. In STOC 1987, STOC ’87,

pages 409–420, New York, NY, USA, 1987. Association for Computing Machinery. doi:
10.1145/28395.28439.

3 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In STOC’16—
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, pages
684–697. ACM, New York, 2016. Preprint of full version at arXiv:1512.03547v2 [cs.DS].
doi:10.1145/2897518.2897542.

4 László Babai. Canonical form for graphs in quasipolynomial time: Preliminary report. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, pages 1237–1246, New York, NY, USA, 2019. Association for Computing Machinery.
doi:10.1145/3313276.3316356.

5 Hans L. Bodlaender. NC-algorithms for graphs with small treewidth. In J. van Leeuwen,
editor, Graph-Theoretic Concepts in Computer Science, pages 1–10, Berlin, Heidelberg, 1989.
Springer Berlin Heidelberg. doi:10.1007/3-540-50728-0_32.

6 Harry Buhrman and Steven Homer. Superpolynomial circuits, almost sparse oracles and the
exponential hierarchy. In R. K. Shyamasundar, editor, Foundations of Software Technology
and Theoretical Computer Science, 12th Conference, New Delhi, India, December 18-20, 1992,
Proceedings, volume 652 of Lecture Notes in Computer Science, pages 116–127. Springer, 1992.
doi:10.1007/3-540-56287-7_99.

7 Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identification. Combinatorica, 12(4):389–410, 1992. Originally appeared in
SFCS ’89. doi:10.1007/BF01305232.

8 Bruno Courcelle and Mamadou Kanté. Graph operations characterizing rank-width and
balanced graph expressions. In Graph-Theoretic Concepts in Computer Science, 33rd Interna-
tional Workshop, WG 2007, Dornburg, Germany, June 21-23, 2007. Revised Papers, pages
66–75, June 2007. doi:10.1007/978-3-540-74839-7_7.

9 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1):77–114, 2000. doi:10.1016/S0166-218X(99)00184-5.

10 Bireswar Das, Anirban Dasgupta, Murali Krishna Enduri, and I. Vinod Reddy. On nc
algorithms for problems on bounded rank-width graphs. Information Processing Letters,
139:64–67, 2018. doi:10.1016/j.ipl.2018.07.007.

11 Bireswar Das, Jacobo Torán, and Fabian Wagner. Restricted space algorithms for isomorphism
on bounded treewidth graphs. Information and Computation, 217:71–83, 2012. doi:10.1016/
j.ic.2012.05.003.

12 Samir Datta, Nutan Limaye, Prajakta Nimbhorkar, Thomas Thierauf, and Fabian Wag-
ner. Planar graph isomorphism is in log-space. In 2009 24th Annual IEEE Conference on
Computational Complexity, pages 203–214, 2009. doi:10.1109/CCC.2009.16.

13 Heinz-Dieter Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer, 2 edition,
1994. doi:10.1007/978-1-4757-2355-7.

14 Michael Elberfeld and Ken-ichi Kawarabayashi. Embedding and canonizing graphs of bounded
genus in logspace. In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of
Computing, STOC ’14, pages 383–392, New York, NY, USA, 2014. Association for Computing
Machinery. doi:10.1145/2591796.2591865.

15 Michael Elberfeld and Pascal Schweitzer. Canonizing graphs of bounded tree width in logspace.
ACM Trans. Comput. Theory, 9(3), October 2017. doi:10.1145/3132720.

16 Vyacheslav Futorny, Joshua A. Grochow, and Vladimir V. Sergeichuk. Wildness for tensors.
Lin. Alg. Appl., 566:212–244, 2019. Preprint arXiv:1810.09219 [math.RT]. doi:10.1016/j.
laa.2018.12.022.

https://doi.org/10.1016/j.ic.2006.02.002
https://doi.org/10.1145/28395.28439
https://doi.org/10.1145/28395.28439
https://arxiv.org/abs/1512.03547v2
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/3313276.3316356
https://doi.org/10.1007/3-540-50728-0_32
https://doi.org/10.1007/3-540-56287-7_99
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/978-3-540-74839-7_7
https://doi.org/10.1016/S0166-218X(99)00184-5
https://doi.org/10.1016/j.ipl.2018.07.007
https://doi.org/10.1016/j.ic.2012.05.003
https://doi.org/10.1016/j.ic.2012.05.003
https://doi.org/10.1109/CCC.2009.16
https://doi.org/10.1007/978-1-4757-2355-7
https://doi.org/10.1145/2591796.2591865
https://doi.org/10.1145/3132720
https://doi.org/10.1016/j.laa.2018.12.022
https://doi.org/10.1016/j.laa.2018.12.022

M. Levet, P. Rombach, and N. Sieger 32:17

17 Joshua A. Grochow and Youming Qiao. Isomorphism problems for tensors, groups, and cubic
forms: completeness and reductions. arXiv:1907.00309 [cs.CC], 2019. doi:10.48550/arXiv.
1907.00309.

18 Martin Grohe. Isomorphism testing for embeddable graphs through definability. In Proceedings
of the Thirty-Second Annual ACM Symposium on Theory of Computing, STOC ’00, pages
63–72, New York, NY, USA, 2000. Association for Computing Machinery. doi:10.1145/
335305.335313.

19 Martin Grohe. Fixed-point definability and polynomial time on graphs with excluded minors.
J. ACM, 59(5), November 2012. doi:10.1145/2371656.2371662.

20 Martin Grohe and Sandra Kiefer. A Linear Upper Bound on the Weisfeiler-Leman Dimension
of Graphs of Bounded Genus. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini,
and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and
Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 117:1–117:15, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. doi:10.4230/LIPIcs.ICALP.2019.117.

21 Martin Grohe and Sandra Kiefer. Logarithmic Weisfeiler-Leman Identifies All Planar Graphs.
In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium
on Automata, Languages, and Programming (ICALP 2021), volume 198 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 134:1–134:20, Dagstuhl, Germany, 2021. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2021.134.

22 Martin Grohe and Daniel Neuen. Canonisation and definability for graphs of bounded rank
width. ACM Trans. Comput. Log., 24(1):6:1–6:31, 2023. doi:10.1145/3568025.

23 Martin Grohe, Daniel Neuen, Pascal Schweitzer, and Daniel Wiebking. An improved iso-
morphism test for bounded-tree-width graphs. ACM Trans. Algorithms, 16(3), June 2020.
doi:10.1145/3382082.

24 Martin Grohe and Pascal Schweitzer. Isomorphism testing for graphs of bounded rank width.
In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pages 1010–1029,
2015. doi:10.1109/FOCS.2015.66.

25 Martin Grohe and Oleg Verbitsky. Testing graph isomorphism in parallel by playing a game.
In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata,
Languages and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy, July
10-14, 2006, Proceedings, Part I, volume 4051 of Lecture Notes in Computer Science, pages
3–14. Springer, 2006. doi:10.1007/11786986_2.

26 Lauri Hella. Definability hierarchies of generalized quantifiers. Annals of Pure and Applied
Logic, 43(3):235–271, 1989. doi:10.1016/0168-0072(89)90070-5.

27 Lauri Hella. Logical hierarchies in PTIME. Information and Computation, 129(1):1–19, 1996.
doi:10.1006/inco.1996.0070.

28 Sang il Oum and Paul Seymour. Approximating clique-width and branch-width. Journal of
Combinatorial Theory, Series B, 96(4):514–528, 2006. doi:10.1016/j.jctb.2005.10.006.

29 Neil Immerman and Eric Lander. Describing graphs: A first-order approach to graph can-
onization. In Alan L. Selman, editor, Complexity Theory Retrospective: In Honor of Juris
Hartmanis on the Occasion of His Sixtieth Birthday, July 5, 1988, pages 59–81. Springer New
York, New York, NY, 1990. doi:10.1007/978-1-4612-4478-3_5.

30 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

31 Sandra Kiefer, Ilia Ponomarenko, and Pascal Schweitzer. The Weisfeiler–Leman dimension of
planar graphs is at most 3. J. ACM, 66(6), November 2019. doi:10.1145/3333003.

32 Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbitsky. Interval graphs:
Canonical representations in logspace. SIAM Journal on Computing, 40(5):1292–1315, 2011.
doi:10.1137/10080395X.

SWAT 2024

https://doi.org/10.48550/arXiv.1907.00309
https://doi.org/10.48550/arXiv.1907.00309
https://doi.org/10.1145/335305.335313
https://doi.org/10.1145/335305.335313
https://doi.org/10.1145/2371656.2371662
https://doi.org/10.4230/LIPIcs.ICALP.2019.117
https://doi.org/10.4230/LIPIcs.ICALP.2021.134
https://doi.org/10.1145/3568025
https://doi.org/10.1145/3382082
https://doi.org/10.1109/FOCS.2015.66
https://doi.org/10.1007/11786986_2
https://doi.org/10.1016/0168-0072(89)90070-5
https://doi.org/10.1006/inco.1996.0070
https://doi.org/10.1016/j.jctb.2005.10.006
https://doi.org/10.1007/978-1-4612-4478-3_5
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1145/3333003
https://doi.org/10.1137/10080395X

32:18 Canonizing Graphs of Bounded Rank-Width in Parallel via Weisfeiler–Leman

33 Johannes Köbler, Uwe Schöning, and Jacobo Torán. Graph isomorphism is low for PP. Comput.
Complex., 2:301–330, 1992. doi:10.1007/BF01200427.

34 Johannes Köbler and Oleg Verbitsky. From invariants to canonization in parallel. In Edward A.
Hirsch, Alexander A. Razborov, Alexei Semenov, and Anatol Slissenko, editors, Computer
Science – Theory and Applications, pages 216–227, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg. doi:10.1007/978-3-540-79709-8_23.

35 Johannes Köbler, Sebastian Kuhnert, and Oleg Verbitsky. On the isomorphism problem for
helly circular-arc graphs. Information and Computation, 247:266–277, 2016. doi:10.1016/j.
ic.2016.01.006.

36 Richard E. Ladner. On the structure of polynomial time reducibility. J. ACM, 22(1):155–171,
January 1975. doi:10.1145/321864.321877.

37 Leonid Libkin. Elements of Finite Model Theory. Springer, 2004. doi:10.1007/
978-3-662-07003-1_1.

38 Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Fixed-parameter
tractable canonization and isomorphism test for graphs of bounded treewidth. SIAM Journal
on Computing, 46(1):161–189, 2017. doi:10.1137/140999980.

39 Rudolf Mathon. A note on the graph isomorphism counting problem. Information Processing
Letters, 8(3):131–136, 1979. doi:10.1016/0020-0190(79)90004-8.

40 Daniel Neuen and Pascal Schweitzer. An exponential lower bound for individualization-
refinement algorithms for graph isomorphism. In Ilias Diakonikolas, David Kempe, and
Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 138–150.
ACM, 2018. doi:10.1145/3188745.3188900.

41 Sang-il Oum. Rank-width is less than or equal to branch-width. Journal of Graph Theory,
57(3):239–244, 2008. doi:10.1002/jgt.20280.

42 Uwe Schöning. Graph isomorphism is in the low hierarchy. Journal of Computer and System
Sciences, 37(3):312–323, 1988. doi:10.1016/0022-0000(88)90010-4.

43 Thomas Thierauf and Fabian Wagner. The isomorphism problem for planar 3-connected
graphs is in unambiguous logspace. Theory Comput. Syst., 47(3):655–673, 2010. doi:10.1007/
S00224-009-9188-4.

44 Jacobo Torán. On the hardness of graph isomorphism. SIAM J. Comput., 33(5):1093–1108,
2004. doi:10.1137/S009753970241096X.

45 Oleg Verbitsky. Planar graphs: Logical complexity and parallel isomorphism tests. In
STACS 2007, pages 682–693, Berlin, Heidelberg, 2007. Springer-Verlag. doi:10.5555/1763424.
1763505.

46 Fabian Wagner. Graphs of bounded treewidth can be canonized in AC1. In Proceedings of the
6th International Conference on Computer Science: Theory and Applications, CSR’11, pages
209–222, Berlin, Heidelberg, 2011. Springer-Verlag. doi:10.1007/978-3-642-20712-9_16.

https://doi.org/10.1007/BF01200427
https://doi.org/10.1007/978-3-540-79709-8_23
https://doi.org/10.1016/j.ic.2016.01.006
https://doi.org/10.1016/j.ic.2016.01.006
https://doi.org/10.1145/321864.321877
https://doi.org/10.1007/978-3-662-07003-1_1
https://doi.org/10.1007/978-3-662-07003-1_1
https://doi.org/10.1137/140999980
https://doi.org/10.1016/0020-0190(79)90004-8
https://doi.org/10.1145/3188745.3188900
https://doi.org/10.1002/jgt.20280
https://doi.org/10.1016/0022-0000(88)90010-4
https://doi.org/10.1007/S00224-009-9188-4
https://doi.org/10.1007/S00224-009-9188-4
https://doi.org/10.1137/S009753970241096X
https://doi.org/10.5555/1763424.1763505
https://doi.org/10.5555/1763424.1763505
https://doi.org/10.1007/978-3-642-20712-9_16

Sparse Cuts in Hypergraphs from Random Walks
on Simplicial Complexes
Anand Louis #

Indian Institute of Science, Bangalore, India

Rameesh Paul #

Indian Institute of Science, Bangalore, India

Arka Ray #

Indian Institute of Science, Bangalore, India

Abstract

There are a lot of recent works on generalizing the spectral theory of graphs and graph partitioning to
k-uniform hypergraphs. There have been two broad directions toward this goal. One generalizes the
notion of graph conductance to hypergraph conductance [Louis, Makarychev – TOC’16; Chan, Louis,
Tang, Zhang – JACM’18]. In the second approach, one can view a hypergraph as a simplicial complex
and study its various topological properties [Linial, Meshulam – Combinatorica’06; Meshulam,
Wallach – RSA’09; Dotterrer, Kaufman, Wagner – SoCG’16; Parzanchevski, Rosenthal – RSA’17]
and spectral properties [Kaufman, Mass – ITCS’17; Dinur, Kaufman – FOCS’17; Kaufman, Openheim
– STOC’18; Oppenheim – DCG’18; Kaufman, Openheim – Combinatorica’20].

In this work, we attempt to bridge these two directions of study by relating the spectrum
of up-down walks and swap walks on the simplicial complex, a downward closed set system, to
hypergraph expansion. More precisely, we study the simplicial complex obtained by downward
closing the given hypergraph and random walks between its levels X(l), i.e., the sets of cardinality
l. In surprising contrast to random walks on graphs, we show that the spectral gap of swap walks
and up-down walks between level m and l with 1 < m ⩽ l cannot be used to infer any bounds on
hypergraph conductance. Moreover, we show that the spectral gap of swap walks between X(1)
and X(k − 1) cannot be used to infer any bounds on hypergraph conductance. In contrast, we
give a Cheeger-like inequality relating the spectra of walks between level 1 and l for any l ⩽ k to
hypergraph expansion. This is a surprising difference between swaps walks and up-down walks!

Finally, we also give a construction to show that the well-studied notion of link expansion in
simplicial complexes cannot be used to bound hypergraph expansion in a Cheeger-like manner.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Sparse Cuts, Random Walks, Link Expansion, Hypergraph Expansion,
Simplicial Complexes, High Dimensional Expander, Threshold Rank

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.33

Related Version Full Version: https://arxiv.org/abs/2212.13406

Funding Anand Louis: Supported in part by SERB Award CRG/2023/002896 and the Walmart
Center for Tech Excellence at IISc (CSR Grant WMGT-23-0001).
Rameesh Paul: Supported by Prime Minister’s Research Fellowship, India.
Arka Ray: Supported by the Walmart Center for Tech Excellence at IISc (CSR Grant WMGT-23-
0001).

Acknowledgements We would like to thank Madhur Tulsiani, Fernando Jeronimo, and anonymous
referees for their helpful comments.

© Anand Louis, Rameesh Paul, and Arka Ray;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 33; pp. 33:1–33:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anandl@iisc.ac.in
https://orcid.org/0000-0002-4727-9219
mailto:rameeshpaul@iisc.ac.in
https://orcid.org/0009-0002-5158-0247
mailto:arkaray@iisc.ac.in
https://orcid.org/0000-0002-2428-6504
https://doi.org/10.4230/LIPIcs.SWAT.2024.33
https://arxiv.org/abs/2212.13406
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Sparse Cuts in Hypergraphs from Random Walks on Simplicial Complexes

1 Introduction

In recent years, there have been two broad directions of generalizations of graph partitioning
and the spectral theory of graphs to hypergraphs. One direction attempts to generalize the
notion of conductance in graphs to hypergraphs [23, 8]. The graph expansion (also referred
to as graph conductance) is defined as

ϕG
def= min

S⊆V

volG(S)⩽ volG(V)
2

ϕG(S), where ϕ(S) def= w(∂G(S))
volG(S)

with volG(S) being the sum of degrees of the vertices in S and ∂G(S) being the edges crossing
the boundary of the set S, hence w(∂G(S)) is the sum of weights of the edges on the boundary.
Analogously, the hypergraph expansion/conductance is defined as

ϕH
def= min

S⊆V

volH (S)⩽ volH (V)
2

ϕH(S), where ϕH(S) def= Π (∂H(S))
volH(S)

with volH(S) being the sum of degrees of the vertices in S, and ∂H(S) being the edges
crossing the boundary of the set S, and Π(∂H(S)) is the sum of the weight of edges on the
boundary.

Another direction views a hypergraph as a simplicial complex, a downward closed set
system, and studies its various topological properties [22, 24, 12, 26] and spectral properties
[19, 11, 20, 21, 25]. The work [11] introduced a generalization of random walks on graphs
to random walks over the faces1 of the simplicial complex; this random walk has found
numerous applications in a myriad of other problems [11, 9, 4, 3, 1], etc., to state a few.

There has been a lot of work on understanding the relationship between random walks
on graphs (including the spectra of the random walk operator) and graph partitioning. The
celebrated Cheeger’s inequality gives one such relation between the graph expansion and the
second eigenvalue of the random walk matrix λ2 as,

1 − λ2

2 ⩽ ϕG ⩽
√

2(1 − λ2).

In this work, we aim to bridge the gap between these two directions by studying the
relationship between hypergraph expansion and random walks on the corresponding simplicial
complex.

In a seminal work, [5] showed that if a graph has a “small” threshold rank2, then they
can compute a near-optimal assignment to unique games in time exponential in the threshold
rank. The works [7, 15] gave an SoS hierarchy-based algorithm generalizing this result to
any 2-CSP. The work [2] introduces the notion of swap walks and uses that to define a
notion of threshold rank for simplicial complexes. Using their notion of threshold rank, they
generalized the results of [7, 15] to k-CSPs. Further, [5] showed that large threshold rank
graphs must have a small non-expanding set (they also gave a polynomial time algorithm to
compute such a set). A natural open question from the work of [2, 17] is whether hypergraphs
with large threshold rank (the hypergraph analogue is called non-splittability) have a small,
non-expanding set. Our first result answers this question negatively.

1 The faces (the hyperedges) here may belong to different levels. A level X(l) denotes the set of hyperedges
of cardinality l.

2 the number of “large” eigenvalues of the adjacency matrix, see Definition 30 for formal definition.

A. Louis, R. Paul, and A. Ray 33:3

▶ Theorem 1 (Informal Version of Theorem 34 and Corollary 35). For any n ⩾ 6, k ⩾ 3, there
exists a k-uniform hypergraph H with at least n vertices such that ϕH ⩾ 1

k but for any m, l,
if either m, l ⩾ 2 or m = k − l, the swap walk from X(m) to X(l) has threshold rank at least
Ωk(n) (for any τ ∈ [−1, 1] as choice of threshold). Moreover, H is not (τ, Ωk(n))-splittable
for any τ ∈ [−1, 1].

For a splittable hypergraph, there is some l, such that the swap walk graph between
X(l) and X(k − l) has low threshold rank. Then, it follows from Theorem 1 that there are
non-splittable expanding hypergraphs (see Corollary 35 for the precise statement).

[2, 9] show that for a high dimensional expander (HDX)3 the swap walks indeed have a
large spectral gap4. However, we are interested in the case when the hypergraph instance is
not an HDX. One recalls that for a non-expanding graph, Cheeger’s inequality and Fiedler’s
algorithm allow us to compute a combinatorial sparse cut in the graph. Similarly, we ask
whether one can compute a sparse cut in the input hypergraph in this setting.

Unfortunately, in the light of Theorem 1, computing a sparse cut in the hypergraph when
swap walks (in the setting studied by [2, 17]; see Theorem 34 for the precise statement)
have a small spectral gap is generally not possible. This is in surprising contrast to the case
of graphs where the swap walk reduces to the usual random walk, and the second largest
eigenvalue of the random walk matrix is related to graph expansion via Cheeger’s inequality.

Next, we investigate whether the spectral gap of the up-down walk introduced by [11] can
be related to hypergraph expansion. More formally, we investigate whether the spectral gap
of the up-down walk between levels X(m) and X(l) (l > m) be related to the hypergraph
expansion in a Cheeger-like manner. Here, the answer depends on m and l. We first show
that if m ⩾ 2, then no such relation is possible.

▶ Theorem 2 (Informal Version of Theorem 36). For any positive integers n, k with n ⩾
6, k ⩾ 3, there exists a k-uniform hypergraph H on at least n vertices such that ϕH ⩾ 1

k and
for all positive integers 2 ⩽ m < l ⩽ k the threshold rank of the up-down walk matrix between
levels X(m) and X(l) is at least Ωk(n) (for any τ ∈ [−1, 1] as choice of threshold).

Contrasting this, we show that if m = 1, then such a relationship is indeed possible.

▶ Theorem 3 (Informal Version of Theorem 18). Given a hypergraph, where the second largest
eigenvalue of the up-down walk matrix (of simplicial complex induced by the hypergraph)
between levels X(1) and X(l), for some l ∈ [k] is 1 − ε we have ε

k ⩽ ϕH ⩽ 4
√

ε. Furthermore,
there exists a polynomial time algorithm which, when given such a hypergraph, outputs a set
S such that its expansion in the hypergraph ϕH(S) ⩽ 4

√
ε.

Theorem 3 and Theorem 1 also show a surprising difference between up-down walks and
swap walks whereby we can compute sparse cut on the hypergraph using up-down walk from
X(1) to X(l), l ∈ [k] using a Cheeger-like inequality, whereas it is not possible (in general)
to compute a sparse cut by considering the spectrum of swap walks from X(1) to X(k − 1).

Yet another notion of spectral expansion called link expansion of a simplicial complex has
been studied recently in many works [19, 11, 20, 21, 25] having applications in [11, 9, 4, 3, 1]
(see Definition 9 for formal definition). Our final result shows that hypergraphs with large
hypergraph expansion and arbitrarily small link expansion exist. Therefore, hypergraph
expansion cannot be bounded by link expansion in a Cheeger-like manner.

3 For formal definition see Definition 9.
4 For a linear operator A : V → W where V ̸= W the spectral gap refers to σ1(A) − σ2(A), while for a

linear operator B : V → V , it refers to λ1(A) − λ2(A).

SWAT 2024

33:4 Sparse Cuts in Hypergraphs from Random Walks on Simplicial Complexes

▶ Theorem 4 (Informal Version of Theorem 43). Let n, k be any positive integers such that
n ⩾ 3k and k ⩾ 3, there exists a k-uniform hypergraph H on n + k − 2 vertices such that the
link expansion of the induced simplicial complex X is at most O(1

n2) and the expansion of H

is at least Ωk(1).

To the best of our knowledge, this is the first construction to show this.
The work [23] (see Remark 1.9) used an example similar in spirit to our constructions to

show that another notion of expansion on simplicial complexes called co-boundary expansion
is incomparable to the hypergraph expansion. In particular, they constructed a class of
k-uniform hypergraphs, each with co-boundary expansion (at dimension k) as one but
containing hypergraphs with essentially arbitrary hypergraph expansion. Still, [23] did
not give an explicit example that shows a separation between hypergraph expansion and
quantities like the link expansion, spectral gap, or threshold rank of the random walks on a
simplicial complex (i.e., up-down walk, swap walk).

The m-dimensional co-boundary expansion may also seem related to the expansion of
the up-walk from the level m − 1 to m as both of these consider the ratio of the number
of m-dimensional faces containing a set of m − 1-dimensional faces to the volume of the
set with the only difference being how the volume is computed. Yet, we do not know if
such a relation exists. One may similarly compare the expansion of the down-walk and
the boundary expansion. But still, Steenbergen, Klivian, and Mukherjee [28] and Gundert
and Wagner [14] were able to show that for the m-dimensional co-boundary expansion no
Cheeger-type inequality can be shown, whereas such a relation is immediate from Cheeger’s
inequality in case of up-walk. Nevertheless, [28] obtained (under some minor assumptions)
an extension of Cheeger’s inequality on the m-dimensional boundary expansion. Finally, [10]
showed that the operator norm of the difference between up-down and down-up walks between
two consecutive levels is within an O(k) factor of link expansion. In contrast, no such relation
between up-Laplacian, down-Laplacian (see [28] for definition) and link expansion is known.

1.1 Additional Related Works
The work [8] generalized the Laplacian of graphs to hypergraphs by expressing the graph
Laplacian in terms of a non-linear diffusion process. They showed an analogue of Cheeger’s
inequality relating the expansion of the hypergraph to the second smallest eigenvalue of the
Laplacian. Yoshida [30] introduced the notion of submodular transformations and extended
the notions of degree, cut, expansion, and Laplacian to them. They derived the Cheeger’s
inequality in this setting. This generalizes Cheeger’s inequality on graphs and hypergraphs
(as in [8]) while showing similar inequalities for entropy.

There are also several works exploring Cheeger-like inequalities for simplicial complexes.
Parzanchevski, Rosenthal, and Tessler [27] defined the notion of Cheeger constant h(X) for
a simplicial complex, a generalization of the sparsity of a graph. The quantity h(X) is the
minimum over all partitions of the vertex set V into k sets the fraction of k-dimensional
faces present crossing the partition compared to the maximum possible k-dimensional faces
crossing the partition. They also showed that for simplicial complex X with a complete
skeleton h(X) ⩾ λ(X) where λ(X) is the link expansion of the simplicial complex. Gundert
and Szedlák [13] extended this result to any simplicial complex. Very recently, Jost and
Zhang [18] extended the Cheeger-like inequality for bipartiteness ratio5 on graphs due to
Trevisan [29] to a cohomology based definition of bipartiteness ratio for simplicial complexes.

5 The bipartiteness ratio of G is defined as βG = minS⊆V,L⊔R=S
2∂(L)+2∂(R)+∂(S)

volG(S) .

A. Louis, R. Paul, and A. Ray 33:5

In the case of an HDX, Bafna, Hopkins, Kaufmann, and Lovett [6] consider high-
dimensional walks (a generalization of swap walks and up-down walks) on levels i < k.
They then relate the (non-)expansion of a link6 of a level-j face (with j ⩽ i) in the graph
corresponding to the walk and level-j approximate eigenvalue of the walk. Here λj is the
level-j approximate eigenvalue of a high-dimensional walk M if there is a function fj such
that ∥Mfj − λjfj∥ ⩽ O(√γ) ∥fj∥ and fi = Ui−jg where g ∈ RX(j).

1.2 Preliminaries

1.2.1 Simplicial Complexes

▶ Definition 5. A simplicial complex X is a set system that consists of a ground set V and
a downward closed collection of subsets of V , i.e., if s ∈ X and t ⊆ s then t ∈ X. The sets
in X are called the faces of X.

We define a level/slice X(l) of the simplicial complex X as X(l) = {s ∈ X||s| = l}. Note
that for the simplicial complex corresponding to the hypergraph, the top level X(k) is the set
of k-uniform hyperedges and the ground set of vertices7 is denoted by X(1). By convention
we have that X(0) = {∅}. Similarly, we define X(⩽ l) = {s ∈ X||s| ⩽ l}.

We call a simplicial complex X as k-dimensional if k is the smallest integer for which
X(⩽ k) = X.8 A k-dimensional simplicial complex X is a pure simplicial complex if for all
s ∈ X there exists t ∈ X(k) such that s ⊆ t.

▶ Remark 6. We note that our definition of dimension deviates slightly from the standard
definition. In the standard definition, the dimension is the cardinality of the largest face
minus 1.

Given a k-uniform hypergraph H = (V, E), we obtain a pure simplicial complex X where
the ground set is V and downward close the set system E of hyperedges. Given a distribution
Πk on the hyperedges, we have an induced distribution Πl on sets s in level X(l) given by
Πl(s) = 1

(k
l)

∑
e∈E|s⊆e Πk(e). We refer to the joint distribution as Π = (Πk, Πk−1, . . . , Π1).

If the input hypergraph is unweighted, then we take the distribution Πk to be the uniform
distribution on X(k). We thus obtain a weighted simplicial complex (X, Π). We refer to
(X, Π) as the (weighted9) simplicial complex induced by (H, Πk).

▶ Lemma 7 (Folkore). For any two non-negative integers m ⩽ l and any s ∈ X(m), we have
that

∑
t∈X(l)|t⊇s Πl(t) =

(
l

m

)
Πm(s).

In this work, we consider a notion of expansion for weighted simplicial complexes called
link expansion. To that end, we first define the notion of a link of a complex and its skeleton.

▶ Definition 8. For a simplicial complex X and some s ∈ X, Xs denotes the link complex
of s defined by Xs = {t \ s|s ⊆ t ∈ X}. The skeleton of a link Xs for a face s ∈ X(⩽ k − 2)
(where k is the size of the largest face) denoted by G(Xs) is a weighted graph with vertex set
Xs(1), edge set Xs(2) and weights proportional to Π2.

6 [6] uses a different (albeit related) notion of the link of a face σ ∈ X(j). There, the link of a face σ is
the set of level-i faces containing σ.

7 We shall often simply write v for a face {v} ∈ X(1)
8 We shall often write X(⩽ k) for X to stress the fact that X is k-dimensional
9 Whenever it is clear from the context, we use X in place of (X, Π) for the sake of brevity.

SWAT 2024

33:6 Sparse Cuts in Hypergraphs from Random Walks on Simplicial Complexes

▶ Definition 9 (γ-HDX, [19, 11]). A simplicial complex X(⩽ k) is a γ-High Dimensional
Expander (γ-HDX) if for all s ∈ X(⩽ k − 2), the second singular value of the adjacency
matrix of the graph G(Xs) (denoted by σ2(G(Xs))) satisfies σ2(G(Xs)) ⩽ γ. We refer to
1 − γ as the link-expansion of X.

▶ Definition 10 (Weighted inner product). Given two functions f, g ∈ RS, i.e., f, g : S → R
and a measure µ on S, we define the weighted inner product of these functions as, ⟨f, g⟩µ =
Es∼µ[f(s)g(s)] =

∑
s∈S f(s)g(s)µ(s) . We drop the subscript µ from ⟨·, ·⟩µ whenever µ is

clear from context.

▶ Remark. In this paper, we will use the weighted inner product between two functions f, g ∈
RX(m) on levels X(m) of the simplicial complex X under consideration and with the measure
Πm, unless otherwise specified. In particular, for any linear operator A : RX(m) → RX(l) the
adjoint A† and the i-th largest singular value σi(A) are with respect to this inner-product.

1.2.2 Walks on a Simplicial Complex

▶ Definition 11 (Up and Down operators). Given a simplicial complex (X, Π), we define the
up operator Ui : RX(i) → RX(i+1) that acts on a function f ∈ RX(i) as

[Uif](s) = E
s′∈X(i),s′⊆s

[f(s′)] = 1
i + 1

∑
x∈s

f(s \ {x})

and the down operator Di+1 : RX(i+1) → RX(i) that acts on a function g ∈ RX(i+1) as

[Di+1g](s) = E
s′∼Πi+1,s′⊃s

[g(s′)] = 1
i + 1

∑
x/∈s

g(s ∪ {x})Πi+1(s ∪ {x})
Πi(s) .

As a consequence of the definition of the up and down operators, the following holds.

▶ Lemma 12 (Folklore). U†
i = Di+1.

The up operator, Ui, can be thought of as defining a random walk moving from X(i + 1)
to X(i) where a subset of size i is selected uniformly for a given face s ∈ X(i + 1). Similarly,
the down operator Di+1 can be thought of as defining a random walk moving from X(i) to
X(i + 1) where a superset s′ ∈ X(i + 1) of size i + 1 is selected for a given face s ∈ X(i) with
probability Πi+1(s′)

Πi(s) . This leads us to the following definition.

▶ Definition 13. Given a simplicial complex (X, Π) and its two levels X(m), X(l), we
define a bipartite graph on X(m) ∪ X(l) as Bm,l = (X(m) ∪ X(l), Em,l, wm,l) where Em,l =
{{s, t} |s ∈ X(m), t ∈ X(l), and s ⊆ t} and m ⩽ l. The weight of an edge {s, t} where
s ∈ X(m) and t ∈ X(l) is given by wm,l(s, t) =

(
k
l

)
Πl(t).

As we will show in Fact 16, in the random walk on Bm,l the block corresponding to the
transition from a vertex in X(m) to a vertex in X(l) is the up walk (i.e., the down operator)
and the block corresponding to the transition from a vertex in X(l) to a vertex in X(m) is
the down-walk (i.e., the up operator).

Now, we define the B
(2)
m,l graph such that the random walk on it corresponds to the two-

step walk starting from vertices in X(m) on Bm,l, i.e., the random walk on B
(2)
m,l corresponds

to an up-walk followed by a down-walk. Fact 17 shows that this correspondence indeed holds.

A. Louis, R. Paul, and A. Ray 33:7

▶ Definition 14. Given a simplicial complex (X, Π) and its two levels X(m), X(l) with
m ⩽ l, we define a graph on X(m) as B

(2)
m,l = (X(m), E

(2)
m,l, w

(2)
m,l) where

E
(2)
m,l = {{s, t} |s, t ∈ X(m) and ∃s′ ∈ X(l) such that s′ ⊇ s ∪ t} .

The weight of an edge {s, t} where s, t ∈ X(m) is given by w
(2)
m,l(s, t) =

∑
s′⊇s∪t wm,l(s, s′) =(

k
l

) ∑
s′⊇s∪t Πl(s′). The normalized adjacency matrix corresponding to B

(2)
m,l is denoted by

A(2)
m,l.

▶ Definition 15 (Up-Down Walk, [19, 20]). For positive integers m ⩽ l, let Dm,l and
Ul,m denote the products, Dm+1Dm+2 . . . Dl−1Dl and Ul−1Ul−2 . . . Um+1Um respectively. We
denote the following walk between X(m) and X(l) as Nm,l,

Nm,l =
[

0 Dm,l

Ul,m 0

]
=

[
0 Dm,l

D†
m,l 0

]
,

where the second equality is due to Lemma 12. The up-down walk on X(m) through X(l) is a
random walk on X(m) whose transition matrix (denoted by N(2)

m,l) is given by N(2)
m,l = Dm,lUl,m.

▶ Fact 16. The transition matrix for random walk on Bm,l is Nm,l.

▶ Fact 17. The transition matrix for random walk on B
(2)
m,l is Dm,lUl,m.

1.2.3 Notations
We use [n] for the set {1, 2, . . . , n} and A ⊔ B for disjoint union of sets A and B.

2 Computing Sparse Cut in Hypergraphs

Theorem 18 shows an analogue of Cheeger’s inequality based on the eigenvalues of up-down
walks N1,l.

▶ Theorem 18. Let H = (V, E) be a k-uniform hypergraph such that the induced simplicial
complex X has a up-down walk N(2)

1,l such that λ2(N1,l) = 1 − ε for some ε > 0 and some
l ∈ {2, 3, . . . , k}. Then ε

k ⩽ ϕH ⩽ 4
√

ε. Furthermore there is an algorithm which on input H,
outputs a set S ⊂ V such that ϕH(S) ⩽ 4

√
ε in poly(|V |, |E|) time where poly is a polynomial.

Fact 19 will allow us to work with D1,2 instead of N1,l for some l ∈ {3, 4, . . . , k}.

▶ Fact 19 (Folklore). Let A ∈ Rn×m, B ∈ Rm×p and σi denote the ith singular value. Then,
we have

σi(AB) ⩽ σ1(A)σi(B) and σi(AB) ⩽ σi(A)σ1(B),

for i = 1, . . . , r, where r = rank(AB).

▶ Corollary 20. If σ2 (D1,l) = 1−ε for an arbitrary l ∈ {2, 3, . . . , k}, we have that σ2(D1,2) ⩾
1 − ε.

Proof. The proof follows by using Fact 19 and writing D1,l = D1,2D2,l to get

σ2 (D1,l) = σ2 (D1,2D2,l)
Fact 19
⩽ σ2(D1,2)σ1(D2,l) = σ2 (D1,2) ,

where the last equality holds since σ1 (D2,l) = 1. ◀

SWAT 2024

33:8 Sparse Cuts in Hypergraphs from Random Walks on Simplicial Complexes

Next, we show that we can use this information about σ2(D1,2) to compute a set S ⊂ V

such that its expansion in the graph B
(2)
1,2 is at most 2

√
ε.

▶ Lemma 21. If σ2(D1,2) = 1 − ε for some ε ∈ (0, 1), then there exists a set S ⊆ X(1) such
that ϕ

B
(2)
1,2

(S) ⩽ 2
√

ε. Furthermore, there is a poly(|V
B

(2)
1,2

|, |E
B

(2)
1,2

|) time algorithm to compute
such a set S.

A natural choice for our set S with low conductance in input hypergraph is this set S

guaranteed by Fiedler’s algorithm for which ϕ
B

(2)
1,2

(S) is small. We show in Lemma 22 that

B
(2)
1,2 is a weighted graph where the weight of an edge between two distinct vertices in X(1)

is the multiplicity of that edge in the construction of B
(2)
1,2 graph. We note that a hyperedge

e, induces a clique on the vertices in the hyperedge e, in the B
(2)
1,2 graph. This is commonly

known as the clique expansion of the hypergraph.

▶ Lemma 22. For any k-uniform hypergraph H = (V, E), let X be the induced sim-
plicial complex and let {s, t} be an edge in B

(2)
m,l with s, t ∈ X(m). Then w(s, t) =(

k−|s∪t|
l−|s∪t|

) ∑
e∈E|s∪t⊆e Πk(e) and deg

B
(2)
m,l

(s) =
(

l
m

)2 (k
l)

(k
m)

∑
e∈E|e⊇s Πk(e).

Now in Lemma 23, we show how the weight of edges cut in the boundary of the weighted
graph B

(2)
1,2 and the input hypergraph are related.

▶ Lemma 23. Given a set S ⊂ X(1) we have

(k − 1)Πk (∂H(S)) ⩽ w(∂
B

(2)
1,2

(S)) .

Proof. By Lemma 22, B
(2)
1,2 is a weighted graph where the weight w(i, j) of an edge {i, j}

where i ̸= j is given by w(i, j) =
∑

e∈E|{i,j}⊆e Πk(e). Therefore, to compute w(∂
B

(2)
1,2

(S)) we
sum over all i ∈ S and j ∈ V \ S, the number of hyperedges containing {i, j}, i.e.,

w(∂
B

(2)
1,2

(S)) =
∑

i∈S,j∈V \S

∑
e∈H

e⊇{i,j}

Πk(e) =
∑
e∈H

∑
i∈S,j∈V \S

{i,j}⊆e

Πk(e),

where the last equality in the equation above follows by exchanging the order of summation.
Now, we note that the number of {i, j} ⊆ e where i ∈ S and j ∈ V \ S is non-zero if and
only if e ∈ ∂H(S), and hence,

w(∂
B

(2)
1,2

(S)) =
∑

e∈∂H (S)

∑
i∈S,j∈V \S

{i,j}⊆e

Πk(e). (1)

Now, let e ∩ S = {i1, i2, . . . , it} for some t ∈ {1, 2, . . . , k − 1}. For the lower bound, we
note that the number of {i, j} ⊆ e where i ∈ S and j ∈ V \ S is t(k − t). Therefore, for some
e ∈ ∂H(S), we have the minimum value of t(k − t) as k − 1 and hence u eqn. (1) to get,

w(∂
B

(2)
1,2

(S)) ⩾
∑

e∈∂H (S)

(k − 1)Πk(e)=(k − 1)Πk (∂H(S))

Πk(∂H(S)) =
∑

e∈∂H (S)

Πk(e)

 .

◀

We now show an upper bound for the boundary of B
(2)
1,l in terms of the boundary of H.

A. Louis, R. Paul, and A. Ray 33:9

▶ Lemma 24. For any l, such that 2 ⩽ l ⩽ k, Given a set S ⊂ X(1) we have

w(∂
B

(2)
1,l

(S)) ⩽
(

k

l

)(
l

2

)
Πk (∂H(S)) .

Next, in Lemma 25, we will use these bounds to analyze the expansion of this set S in
the input hypergraph.

▶ Lemma 25. For an arbitrary set S ⊂ X(1), we have that ϕH(S) ⩽ 2ϕ
B

(2)
1,2

(S).

Proof. We start by comparing the numerator in the expressions for expansion of the given
arbitrary set S in original hypergraph |∂H(S)| and in the B

(2)
1,2 graph, i.e., w(∂

B
(2)
1,2

(S)). Using
Lemma 23 we have that, Πk (∂H(S)) ⩽ 1

(k−1) · w(∂
B

(2)
1,2

(S)).
Next, we compare the denominators in the respective expression for expansions, i.e.,

volH(S) and vol
B

(2)
1,2

(S). For the hypergraph, by definition we have that volH(S) =∑
i∈S deg(i). By Lemma 22 we have

vol
B

(2)
1,2

(S) =
∑
i∈S

deg
B

(2)
1,2

(i) =
∑
i∈S

(
2
1

)2
k(k − 1)

2k
degH(i) = 2(k − 1)volH(S).

Now, putting everything together, we have

ϕH(S) = Πk (∂H(S))
volH(S) = 2(k − 1)Πk (∂H(S))

vol
B

(2)
1,2

(S) ⩽ 2 · (k − 1)
(k − 1) ·

w(∂
B

(2)
1,2

(S))

vol
B

(2)
1,2

(S) = 2ϕ
B

(2)
1,2

(S) . ◀

▶ Lemma 26. For an arbitrary set S ⊂ X(1), we have that ϕH(S) ⩾ 2
k ϕ

B
(2)
1,l

(S).

Proof of Theorem 18. First, we note by Fact 51, 1 − ε ⩽
√

1 − ε ⩽
√

λ2(N(2)
1,l) = σ2(D1,l).

Now, using Corollary 20 we conclude that σ2(D1,2) = 1 − ε′ ⩾ 1 − ε for some ε′ ⩽ ε.
Further, in Lemma 21, we show that we can use this information about the spectrum of D1,2

to compute a set S ⊂ V such that its expansion in the graph B
(2)
1,2 is at most 2

√
ε. We fix

this as the set S we return in our sparse cut. In Lemma 25 we show that expansion of this
set S in the input hypergraph is at most 2ϕ

B
(2)
1,2

(S) and hence

ϕH(S) ⩽ 2ϕ
B

(2)
1,2

(S) ⩽ 4
√

ε .

Now, by Fact 17 the matrices N(2)
1,l and A(2)

1,l are similar and hence have the same eigenvalues
and therefore by Cheeger’s inequality, we have ϕ

B
(2)
1,l

⩾ ε
2 . Therefore by Lemma 26, we have

ϕH ⩾
2
k

ϕ
B

(2)
1,l

⩾
ε

k
. ◀

3 An expanding hypergraph with walks having small spectral gap

3.1 Splittability of a Hypergraph
In this section, we consider a “non-lazy” version of the up-down walk. While typically, for
a walk on the graph to be non-lazy, we require that there be no transition from a vertex
to itself, we obtain the swap walks by imposing an even stronger condition where we don’t
allow any face to have a transition to another face with a non-empty intersection with the
starting face.

SWAT 2024

33:10 Sparse Cuts in Hypergraphs from Random Walks on Simplicial Complexes

▶ Definition 27 (Swap walk, [2, 9]). Given a k-dimensional simplicial complex (X, Π),
for non-negative integers m, l such that l + m ⩽ k we define the swap walk denoted by
Sm,l : RX(l) → RX(m) that acts on a f ∈ RX(l) as,

[Sm,lf](s) = E
s′∼Πm+l|s′⊇s

f(s′ \ s).

▶ Lemma 28 ([2]). S†
m,l = Sl,m.

Again, the swap walk Sm,l can be thought of as defining a random walk moving from X(m)
to X(l) where we first move from s ∈ X(m) to a superset s′′ ∈ X(m + l) with probability
Πm+l(s′′)

Πm(s) and then determistically move to s′ = s′′ \ s, i.e., we move from face s ∈ X(m) to a
disjoint face s′ ∈ X(l) with probability Πm+l(s⊔s′)

Πm(s) . This leads us to the following definition
for swap graphs.

▶ Definition 29 (Swap graph, Section 6 in [2]). Given a simplicial complex (X, Π) and its two
levels X(m), X(l), the swap graph (denoted by Gm,l) is defined as a bipartite graph Gm,l =
(X(m) ∪ X(l), E(m, l), wm,l) where the weight function is defined as, wm,l(s, t) = Πm+l(s⊔t)

(m+l
m)

and E(m, l) = {{s, t} |s ∈ X(m), t ∈ X(l), and s ⊔ t ∈ X(m + l)}.

The random walk matrix corresponding to these walks denoted by Wm,l is a matrix of
size (|X(m)| + |X(l)|) × (|X(m)| + |X(l)|) and is given by,

Wm,l =
[

0 Sm,l

Sl,m 0

]
=

[
0 Sm,l

S†
m,l 0

]
, (2)

where the last equality is a consequence of Lemma 28.
Arora, Barak, and Steurer [5] introduced the notion of the threshold rank of a graph.

▶ Definition 30 (Threshold rank of a graph, [5]). Given a weighted graph G = (V, E, w) and
its normalized random walk matrix W such that λn(W) ⩽ λn−1(W) ⩽ . . . ⩽ λ1(W) = 1 and a
threshold τ ∈ (0, 1], we define the τ -threshold rank of the graph G (denoted by rank⩾τ (W)) as
rank⩾τ (W) = |{i|λi(W) ⩾ τ}|.

[2] proposed an analogue of the threshold rank for hypergraphs called (τ, r)-splittability
by considering specific sets of swap walks given by the following class of binary tree.

▶ Definition 31 (k-splitting tree, Section 7 in [2]). A binary tree T given with its labeling is
called a k-splitting tree if

T has exactly k leaves.
The root of T is labeled with k and all other vertices in T are labeled with a positive
integer.
All the leaves are labeled with 1.
The label of every internal node of T is the sum of the labels of its two children.

Now, we define a set of swap walks and its threshold rank based on a k-splitting tree T .

▶ Definition 32 (Swap graphs in a tree, Section 7 in [2]). For a simplicial complex X(⩽ k)
and a k-splitting tree T , we consider all swap graphs (denoted by Swap(T , X)) from X(a) to
X(b) where a and b are labels of a non-leaf node in T . Further, we extend the definition of
threshold rank as

rank⩾τ (Swap(T , X)) = max
G∈Swap(T ,X)

rank⩾τ (G) .

A. Louis, R. Paul, and A. Ray 33:11

Finally, define (τ, r)-splittability by considering all such sets of swap walks.

▶ Definition 33 ((τ, r)-splittability, Definition 7.2 in [2]). A k-uniform hypergraph with an
induced simplicial complex X(⩽ k) is said to be (τ, r)-splittable if there exists some k-splittable
tree T such that rank⩾τ (Swap(T , X)) ⩽ r.

3.2 The main results
In Theorem 34, we show an example of an expanding hypergraph such that for all m, l such
that m + l ⩽ k the swap walk from X(m) to X(l) in the corresponding simplicial complex
has its top r singular values as 1 (for r ≈ n/k) if either m, l ⩾ 2 or m = k − l.

▶ Theorem 34. For any positive integers r, k with r ⩾ 2, k ⩾ 3, there exists an k-uniform
hypergraph H on n(= r(k − 1) + 1) vertices such that ϕH ⩾ 1

k and for any m, l such that
m + l ⩽ k, if either m, l ⩾ 2 or m = k − l then λr(Gm,l) = σr(Sm,l) = 1, where Sm,l, Gm,l

are the swap walk and the swap graph on the induced simplicial complex X, respectively.

Now, Corollary 35 is a simple consequence of Theorem 34 and the definition of splittability.

▶ Corollary 35. For any positive integers r, k with r ⩾ 2, k ⩾ 3, there exists an k-uniform
hypergraph H on n(= r(k − 1) + 1) vertices, such that ϕH ⩾ 1

k and the induced simplicial
complex X is not (τ, r)-splittable for all τ ∈ [−1, 1].

We were also able to show that in the above example, for all m, l such that 2 ⩽ m < l ⩽ k,
the up-down walk from X(m) to X(l) has its top r singular value as 1 (for r ≈ n/k).

▶ Theorem 36. For any positive integers r, k with r ⩾ 2, k ⩾ 3, there exists a k-uniform
hypergraph H on n(= r(k − 1) + 1) vertices such that rank⩾τ

(
N(2)

m,l

)
⩾ r for all τ ∈ [−1, 1]

but ϕH ⩾ 1
k .

We use the following construction to show Theorem 34, Corollary 35 and Theorem 36.

▶ Construction 37. Take the vertex set of the hypergraph H(V, E) to be V =
[n] where n = r(k − 1) + 1 and the edge set E = {e1, e2, . . . , er} where ei =
{0, (k − 1)(i − 1) + 1, . . . , (k − 1)i}. Let X be the simplicial complex induced by H and
Sm,l, Nm,l be the corresponding walk matrices.

▶ Remark 38. Remark 1.9 of [23] considers all hypergraphs whose edges intersected at most
k−2 vertices to show a separation between co-boundary expansion and hypergraph expansion.
Here, we consider a sub-class of such hypergraphs with edges intersecting exactly one vertex.
Although the second singular value of the up-down walks and co-boundary expansion may
seem related, a relation between them is not known. Also, the way in which [23] bounds
the co-boundary expansion is similar to how we bound the spectrum of the up-down walks.
However, here, we also prove that the threshold rank (for any threshold) can be made
arbitrarily large while having the same bound on the hypergraph expansion.

First, we show that any swap walk Sl,k−l has σi = 1, for any i ∈ [r].

▶ Lemma 39. Given a hypergraph as per Construction 37,
we have that λr(G1,k−1) = σr(S1,k−1) = σr(Sk−1,1) = 1.

Proof. Firstly, using Fact 52 and eqn. (2) we have λi(G1,k−1) = σi(S1,k−1), ∀i ∈ [r].
We note that for any i ∈ [r], the edge {{(k − 1)(i − 1)} , ei \ {(k − 1)(i − 1)}} is the only

edge in G1,k−1 (and Gk−1,1) incident on the vertices {(k − 1)(i − 1)} , ei \ {(k − 1)(i − 1)}.
Again, G1,k−1 has r connected components, and hence λr(G1,k−1) = σr(S1,k−1) =
σr(Sk−1,1) = 1. ◀

SWAT 2024

33:12 Sparse Cuts in Hypergraphs from Random Walks on Simplicial Complexes

▶ Lemma 40. Given a hypergraph as per Construction 37, and for any m, l ⩾ 2 such that
m + l ⩽ k, we have that λr(Gm,l) = σr(Sm,l) = 1.

▶ Lemma 41. Given a hypergraph as per Construction 37 and an arbitrary set S ⊆ V where
volH(S) ⩽ volH(V)/2, we have that ϕH(S) ⩾ 1

k .

Proof. We consider an arbitrary (non-empty) set S ⊂ V such that volH(S) ⩽ volH(V)/2.
Let |S ∩ e1| = t1, |S ∩ e2| = t2, . . . , |S ∩ er| = tr and let t = t1 + t2 + . . . tr. We note that
volH(V) = r(k − 1) + r where r(k − 1) is the contribution from the vertices in V \ {0} and we
have a contribution of r from the vertex {0}. Next, we will precisely compute the expansion
ϕH(S). We will break into cases depending upon whether {0} ∈ S or {0} /∈ S.

First, consider the case where {0} ∈ S. We note that in this case, ti ⩾ 1, ∀i ∈ [r]. In this
case, we have that |{i|ti = k}| < r/2. This is because otherwise volH(S) ⩾ r + r

2 (k − 1) > rk
2

which contradicts volH(S) ⩽ volH(V)/2. Thus, |{i|ti < k}| ⩾ r/2 and hence ∂H(S) ⩾ r/2.
Next we have that volH(S) = r+

r∑
i=1

(ti −1) = t1 +t2 + . . . tr = t. Using volH(S) ⩽ volH(V)/2,

we have that t ⩽ rk/2 and we get

ϕH(S) = |∂H(S)|
volH(S) ⩾

r

2t
⩾

1
k

.

Next, we consider the case where {0} /∈ S. Let t+ = |{i} |ti > 0|. Since {0} /∈ S, we
know that ti < k, ∀i ∈ [r] and hence the number of edges in the boundary of S is exactly t+.
Moreover we can bound the volume of S as volH(S) ⩽ t+(k − 1) and hence we have

ϕH(S) = |∂H(S)|
volH(S) ⩾

t+

t+(k − 1) ⩾
1
k

. ◀

Proof of Theorem 34. Immediate from Lemma 41, Lemma 40, and Lemma 39. ◀

Proof of Corollary 35. Consider the hypergraph H (and the induced simplicial complex)
guaranteed by Theorem 34. Fix any τ ∈ [−1, 1] and any k-splitting tree T . We note
Gl,k−1 ∈ Swap(T , X) for some l ∈ [k − 1] as children of the root of T must be labeled l and
k − l for some l. Note that we have λr(Gl,k−l) = 1. Hence, we have rank⩾τ (Swap(T , X)) ⩾
rank⩾τ (Gl,k−l) ⩾ r. Since, rank⩾τ (Swap(T , X)) ⩾ r for any k-splitting tree T , therefore
(X, Π) is not (τ, r)-splittable for any τ ∈ [−1, 1]. ◀

▶ Lemma 42. Given a hypergraph as per Construction 37, and any m, l ∈ [k] such that
2 ⩽ m ⩽ l, we have that λr(N(2)

m,l) = 1.

Proof of Theorem 36. Immediate from Lemma 41 and Lemma 42. ◀

4 An expanding hypergraph with low link expansion

In Theorem 43, we show that there is a family of expanding k-uniform hypergraphs H with
the induced simplicial complex having low link expansion.

▶ Theorem 43. Let n, k be any positive integers such that n ⩾ 3k and k ⩾ 3, there exists a
k-uniform hypergraph H on n + k − 2 vertices such that the link expansion of the induced
simplicial complex X is at most 1 − cos 2π

n and the expansion of H is at least 1
(3k)k .

Construction 44 is a k-hypergraph with n + k − 2 vertices such that its expansion is 1
(3k)k

while the link expansion for the induced simplicial complex is 1 − cos 2π
n .

A. Louis, R. Paul, and A. Ray 33:13

▶ Construction 44. Take the vertex set of the hypergraph H(V, E) to be V = [n+k−2] and the
edge set E =

([n]
k

)
∪{e ∪ {n + 1, . . . , n + k − 2} |e ∈ Cn} where Cn = {{i, i + 1} |i ∈ [n − 1]}∪

{{n, 1}}, i.e., Cn is the set of edges in a cycle on [n]. Let X be the simplicial complex induced
by H.

The idea behind this construction is to have the cycle Cn as the link of
{n + 1, ..., n + k − 2} while adding sufficient edges to make the hypergraph into an expanding
hypergraph.

▶ Lemma 45. For any n, k such that n ⩾ 3k and k ⩾ 3, the hypergraph H as defined in
Construction 44 has expansion ϕH ⩾ 1

(3k)k .

We now show that the simplicial complex X is not a γ-HDX (refer to Definition 9). For
this we consider the face τ = {n + 1, n + 2, . . . , n + k − 2} and the link complex Xτ .

By definition of Xτ and our construction in Construction 44, the two-dimensional link
complex Xτ is the downward closure of Cn. Hence, the corresponding skeleton graph G(Xτ)
is the cycle on [n].

▶ Fact 46 (Folklore). The second singular value of the normalized adjacency matrix of an
n-cycle is cos 2π

n .

Therefore, we have the following lemma by Definition 9.

▶ Lemma 47. X has link expansion at most 1 − cos 2π
n .

Theorem 43 follows directly from Lemma 47 and Lemma 45.

References
1 Dorna Abdolazimi, Kuikui Liu, and Shayan Oveis Gharan. A matrix trickle-down theorem

on simplicial complexes and applications to sampling colorings. In 2021 IEEE 62nd Annual
Symposium on Foundations of Computer Science – FOCS 2021, pages 161–172. IEEE Computer
Soc., Los Alamitos, CA, 2022.

2 Vedat Levi Alev, Fernando Granha Jeronimo, and Madhur Tulsiani. Approximating constraint
satisfaction problems on high-dimensional expanders. In 2019 IEEE 60th Annual Symposium
on Foundations of Computer Science, pages 180–201. IEEE Comput. Soc. Press, Los Alamitos,
CA, 2019. doi:10.1109/FOCS.2019.00021.

3 Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence in high-dimensional
expanders and applications to the hardcore model. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science, pages 1319–1330. IEEE Computer Soc., Los Alamitos, CA,
2020. doi:10.1109/FOCS46700.2020.00125.

4 Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials
II: High-dimensional walks and an FPRAS for counting bases of a matroid. In STOC’19 –
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages
1–12. ACM, New York, 2019. doi:10.1145/3313276.3316385.

5 Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique games
and related problems. In 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science – FOCS 2010, pages 563–572. IEEE Computer Soc., Los Alamitos, CA, 2010.

6 Mitali Bafna, Max Hopkins, Tali Kaufman, and Shachar Lovett. High dimensional expanders:
Eigenstripping, pseudorandomness, and unique games. In Joseph (Seffi) Naor and Niv
Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 1069–
1128. SIAM, 2022. doi:10.1137/1.9781611977073.47.

SWAT 2024

https://doi.org/10.1109/FOCS.2019.00021
https://doi.org/10.1109/FOCS46700.2020.00125
https://doi.org/10.1145/3313276.3316385
https://doi.org/10.1137/1.9781611977073.47

33:14 Sparse Cuts in Hypergraphs from Random Walks on Simplicial Complexes

7 Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite programming
hierarchies via global correlation. In 2011 IEEE 52nd Annual Symposium on Foundations
of Computer Science – FOCS 2011, pages 472–481. IEEE Computer Soc., Los Alamitos, CA,
2011. doi:10.1109/FOCS.2011.95.

8 T.-H. Hubert Chan, Anand Louis, Zhihao Gavin Tang, and Chenzi Zhang. Spectral properties
of hypergraph Laplacian and approximation algorithms. J. ACM, 65(3):Art. 15, 48, 2018.
doi:10.1145/3178123.

9 Yotam Dikstein and Irit Dinur. Agreement testing theorems on layered set systems. In 2019
IEEE 60th Annual Symposium on Foundations of Computer Science, pages 1495–1524. IEEE
Comput. Soc. Press, Los Alamitos, CA, 2019. doi:10.1109/FOCS.2019.00088.

10 Yotam Dikstein, Irit Dinur, Yuval Filmus, and Prahladh Harsha. Boolean function analysis on
high-dimensional expanders. In Approximation, randomization, and combinatorial optimization.
Algorithms and techniques, volume 116 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No.
38, 20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

11 Irit Dinur and Tali Kaufman. High dimensional expanders imply agreement expanders. In
58th Annual IEEE Symposium on Foundations of Computer Science – FOCS 2017, pages
974–985. IEEE Computer Soc., Los Alamitos, CA, 2017. doi:10.1109/FOCS.2017.94.

12 Dominic Dotterrer, Tali Kaufman, and Uli Wagner. On expansion and topological overlap. In
Sándor P. Fekete and Anna Lubiw, editors, 32nd International Symposium on Computational
Geometry, SoCG 2016, June 14-18, 2016, Boston, MA, USA, volume 51 of LIPIcs, pages
35:1–35:10. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
SoCG.2016.35.

13 Anna Gundert and May Szedlák. Higher dimensional discrete cheeger inequalities. J. Comput.
Geom., 6(2):54–71, 2015. doi:10.20382/jocg.v6i2a4.

14 Anna Gundert and Uli Wagner. On eigenvalues of random complexes. Israel Journal of
Mathematics, 216:545–582, 2016.

15 Venkatesan Guruswami and Ali Kemal Sinop. Lasserre hierarchy, higher eigenvalues, and
approximation schemes for graph partitioning and quadratic integer programming with PSD
objectives. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 482–491.
IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.36.

16 Kenneth Hoffman and Ray Kunze. Linear Algebra. Prentice-Hall, 2nd edition, 1971.
17 Fernando Granha Jeronimo, Shashank Srivastava, and Madhur Tulsiani. Near-linear time

decoding of ta-shma’s codes via splittable regularity. In Samir Khuller and Virginia Vassilevska
Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021, pages 1527–1536. ACM, 2021. doi:10.1145/3406325.
3451126.

18 Jürgen Jost and Dong Zhang. Cheeger inequalities on simplicial complexes. arXiv preprint,
2023. arXiv:2302.01069.

19 Tali Kaufman and David Mass. High dimensional random walks and colorful expansion. In
8th Innovations in Theoretical Computer Science Conference, volume 67 of LIPIcs. Leibniz Int.
Proc. Inform., pages Art. No. 4, 27. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

20 Tali Kaufman and Izhar Oppenheim. Construction of new local spectral high dimensional
expanders. In STOC’18 – Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, pages 773–786. ACM, New York, 2018. doi:10.1145/3188745.3188782.

21 Tali Kaufman and Izhar Oppenheim. High order random walks: Beyond spectral gap. Comb.,
40(2):245–281, 2020. doi:10.1007/S00493-019-3847-0.

22 Nathan Linial and Roy Meshulam. Homological connectivity of random 2-complexes. Comb.,
26(4):475–487, 2006. doi:10.1007/s00493-006-0027-9.

23 Anand Louis and Yury Makarychev. Approximation algorithms for hypergraph small-set
expansion and small-set vertex expansion. Theory Comput., 12:Paper No. 17, 25, 2016.
doi:10.4086/toc.2016.v012a017.

https://doi.org/10.1109/FOCS.2011.95
https://doi.org/10.1145/3178123
https://doi.org/10.1109/FOCS.2019.00088
https://doi.org/10.1109/FOCS.2017.94
https://doi.org/10.4230/LIPIcs.SoCG.2016.35
https://doi.org/10.4230/LIPIcs.SoCG.2016.35
https://doi.org/10.20382/jocg.v6i2a4
https://doi.org/10.1109/FOCS.2011.36
https://doi.org/10.1145/3406325.3451126
https://doi.org/10.1145/3406325.3451126
https://arxiv.org/abs/2302.01069
https://doi.org/10.1145/3188745.3188782
https://doi.org/10.1007/S00493-019-3847-0
https://doi.org/10.1007/s00493-006-0027-9
https://doi.org/10.4086/toc.2016.v012a017

A. Louis, R. Paul, and A. Ray 33:15

24 Roy Meshulam and N. Wallach. Homological connectivity of random k-dimensional complexes.
Random Struct. Algorithms, 34(3):408–417, 2009. doi:10.1002/rsa.20238.

25 Izhar Oppenheim. Local spectral expansion approach to high dimensional expanders Part
II: Mixing and geometrical overlapping. Discrete Comput. Geom., 64(3):1023–1066, 2020.
doi:10.1007/s00454-019-00117-7.

26 Ori Parzanchevski and Ron Rosenthal. Simplicial complexes: spectrum, homology and random
walks. Random Structures Algorithms, 50(2):225–261, 2017. doi:10.1002/rsa.20657.

27 Ori Parzanchevski, Ron Rosenthal, and Ran J. Tessler. Isoperimetric inequalities in simplicial
complexes. Comb., 36(2):195–227, 2016. doi:10.1007/s00493-014-3002-x.

28 John Steenbergen, Caroline J. Klivans, and Sayan Mukherjee. A cheeger-type inequality on
simplicial complexes. Adv. Appl. Math., 56:56–77, 2014. doi:10.1016/j.aam.2014.01.002.

29 Luca Trevisan. Max cut and the smallest eigenvalue. SIAM J. Comput., 41(6):1769–1786,
2012. doi:10.1137/090773714.

30 Yuichi Yoshida. Cheeger inequalities for submodular transformations. In Timothy M. Chan,
editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2582–2601. SIAM, 2019.
doi:10.1137/1.9781611975482.160.

A Additional Preliminaries

Linear Algebra
We recall a few facts and definitions from linear algebra.

▶ Fact 48 ([16]). Let V, W be two vector spaces with inner products ⟨·, ·⟩V , ⟨·, ·⟩W . If
A : V → W be a linear operator, then there exists a unique linear operator B : W → V such
that ⟨Af, g⟩W = ⟨f, Bg⟩V . If v ∈ V then there exists a unique linear operator C : V → R
such that Cu = ⟨v, u⟩V for any u ∈ V .

▶ Definition 49. Given a linear operator A : V → W between two vector spaces V and W

with inner products ⟨·, ·⟩V and ⟨·, ·⟩W defined on them, the adjoint of A is defined as the
(unique) linear operator A† : W → V such that ⟨Af, g⟩W =

〈
f, A†g

〉
V

for any f ∈ V and
g ∈ W . Furthermore, given any v ∈ V we define v† : V → R as the linear operator which
satisfies v†u = ⟨v, u⟩V for any u ∈ V .

It can be easily verified that most properties of the transpose of an operator also hold for
the adjoint, e.g., (A†)† = A, (AB)† = B†A†, etc.

▶ Definition 50. Given a linear operator A : V → W between two inner product spaces V

and W a singular value σ is a non-negative real number such that there exists v ∈ V and
w ∈ W which satisfy Av = σw and w†A = σv†. The vectors v and w are called the right and
left singular vectors, respectively, associated with the singular value σ. We denote the i-th
largest singular value of A by σi(A).

▶ Fact 51. Let V ,W be two inner product spaces, and A : V → W be a linear operator.
Then the eigenvalues λi(A†A) are non-negative. Furthermore, the singular values σi(A) =√

λi(A†A).

▶ Fact 52. Let V ,W be two inner product spaces and A : V → W be a linear operator and
let B be defined by the expression,

B =
[

0 A
A† 0

]
then for any i ∈ {1, . . . , r}, σi(A) = λi(B) where r = rank(A).

SWAT 2024

https://doi.org/10.1002/rsa.20238
https://doi.org/10.1007/s00454-019-00117-7
https://doi.org/10.1002/rsa.20657
https://doi.org/10.1007/s00493-014-3002-x
https://doi.org/10.1016/j.aam.2014.01.002
https://doi.org/10.1137/090773714
https://doi.org/10.1137/1.9781611975482.160

Reconfiguration Algorithms for Cubic Modular
Robots with Realistic Movement Constraints
MIT–NASA Space Robots Team1

Massachusetts Institute of Technology, Cambridge, MA, USA
NASA Ames Research Center, Moffett Field, CA, USA

Josh Brunner #

Massachusetts Institute of Technology, Cambridge, MA, USA

Kenneth C. Cheung #

NASA Ames Research Center, Moffett Field, CA, USA

Erik D. Demaine #

Massachusetts Institute of Technology, Cambridge, MA, USA

Jenny Diomidova #

Massachusetts Institute of Technology, Cambridge, MA, USA

Christine Gregg #

NASA Ames Research Center, Moffett Field, CA, USA

Della H. Hendrickson #

Massachusetts Institute of Technology, Cambridge, MA, USA

Irina Kostitsyna #

KBR at NASA Ames Research Center, Moffett Field, CA, USA

Abstract
We introduce and analyze a model for self-reconfigurable robots made up of unit-cube modules.
Compared to past models, our model aims to newly capture two important practical aspects of
real-world robots. First, modules often do not occupy an exact unit cube, but rather have features
like bumps extending outside the allotted space so that modules can interlock. Thus, for example,
our model forbids modules from squeezing in between two other modules that are one unit distance
apart. Second, our model captures the practical scenario of many passive modules assembled by a
single robot, instead of requiring all modules to be able to move on their own.

We prove two universality results. First, with a supply of auxiliary modules, we show that
any connected polycube structure can be constructed by a carefully aligned plane sweep. Second,
without additional modules, we show how to construct any structure for which a natural notion
of external feature size is at least a constant; this property largely consolidates forbidden-pattern
properties used in previous works on reconfigurable modular robots.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Modular robotics, programmable matter, digital materials, motion planning

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.34

Related Version Full Version: https://arxiv.org/abs/2405.15724

1 Introduction

Algorithmic shape formation with self-reconfigurable modular robots has attracted significant
interest by the computational geometry community in the past two decades [16, 2, 7, 9, 8,
10, 6, 34, 17, 24, 29, 4, 3, 5, 15, 12, 13, 25, 18, 28, 27]. In general, the idea is to build a

1 Artificial first author to highlight that the other authors (in alphabetical order) worked as an equal
group. Please include all authors (including this one) in your bibliography, and refer to the authors as
“MIT–NASA Space Robots Team” (without “et al.”).

© MIT–NASA Space Robots Team, Josh Brunner, Kenneth C. Cheung, Erik D. Demaine,
Jenny Diomidova, Christine Gregg, Della H. Hendrickson, and Irina Kostitsyna;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 34; pp. 34:1–34:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:brunnerj@mit.edu
mailto:kenny@nasa.gov
mailto:edemaine@mit.edu
https://orcid.org/0000-0003-3803-5703
mailto:diomidova@mit.edu
mailto:christine.e.gregg@nasa.gov
mailto:della@mit.edu
mailto:irina.kostitsyna@nasa.gov
https://orcid.org/0000-0003-0544-2257
https://doi.org/10.4230/LIPIcs.SWAT.2024.34
https://arxiv.org/abs/2405.15724
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Reconfiguration Algorithms for Cubic Modular Robots

self-reconfigurable “robot” out of n identical modules, each of which can move in some way
relative to its neighbors, subject to some constraints like maintaining global connectivity.
This approach enables the robot to drastically change its overall shape, often with algorithmic
universality results showing that any shape is possible, up to some constant feature size
and/or forbidden small patterns. Real-world modular robots have been built by multiple
robotics groups [31, 11, 33, 21, 32, 36], with the ultimate goal of building “programmable
matter”: objects that can arbitrarily change their shape.

Sliding cubes. One of the first and simplest models for modular robot reconfiguration is
sliding squares in 2D [16] or sliding cubes in 3D [2, 1]. Each module is a unit square/cube
placed at a node of a square/cube lattice, and the modules must at each step have a connected
dual graph (according to facet adjacencies). Figure 1 illustrates the two possible moves:
(1) straight slide moves a (green) module to an adjacent empty location along two faces
of a pair of adjacent (blue) modules; and (2) corner slide moves a (green) module to an
adjacent empty location, and immediately turning the 90◦ corner around its original (blue)
neighbor, moves the module one more unit to restore the adjacency with the neighbor. This
model enables universal reconfiguration between polyominoes/polycubes, with Θ(n2) moves
necessary and sufficient in the worst case for 2D [16] and (in a recent breakthrough) for
3D [1, 23].

Figure 1 The two moves in the sliding-cubes
model. Left: straight slide. Right: corner slide.

Figure 2 The two moves in the pivoting-cubes
model. Left: straight pivot. Right: corner pivot.

Pivoting cubes. Another extensively studied model for modular robot reconfiguration is
the pivoting squares/hexagons in 2D [13, 3, 4] and pivoting cubes in 3D [34, 17, 24]. In
the pivoting-cube model, a module can move by rotating around a common edge shared with
an adjacent module. Similarly to the previous model, a module moves to an adjacent empty
location or to an empty location around the corner of an adjacent module (see Figure 2).
However, unlike in the sliding-cube model, for a pivoting move to be valid, all cells of the grid
intersected by the pivoting module must remain empty. Existing results rely on the definition
of so called forbidden pattern, that is, a specific constant-size configuration of empty
and non-empty cells, whose existence may block a possible reconfiguration. Specifically, the
forbidden patterns are of the form: for any k1 × k2 × k3 (for specific small values of k1,
k2, and k3) axis aligned bounding box of grid cells with two modules present in the two
diagonally opposite corners of the box, the remaining cells of the box must not be empty.
The set of forbidden patterns consists of the 3 × 1 × 1-pattern (two modules with a single
empty cell in between), the 2 × 2 × 1-pattern (two edge adjacent modules with no other
mutually adjacent modules), and the 3×2×1-pattern. The series of works on reconfiguration
in the pivoting-cube model [34, 17, 24] resulted in a universal reconfiguration algorithm for a
class of shapes that do not contain any of the three forbidden patterns.

MIT–NASA Space Robots Team 34:3

Figure 3 Photograph of ARMADAS robot attempting to place a module between two modules
and failing due to collisions of mechanical alignment features (red arrows).

1.1 Our Model
In this paper, we introduce a new model for modular robot reconfiguration that aims to
capture two important practical aspects of real-world systems, motivated by our experience
with the robots and structural modules of the NASA Ames Automated Reconfigurable Mission
Adaptive Digital Assembly Systems (ARMADAS) project [30]. Our model is a refinement of
the sliding-cubes model, adding constraints to the moves. Notably, the constraints on the
moves in our model are strictly stronger than in the pivoting-cube model as well. Thus our
universality results can be seen as strengthenings of past work to better apply to real-world
robotics.

Loose sliding. The first practical issue we address is that modules typically need more
room than a unit cube to actually move without collision. Figure 3 shows an example of
this issue in the context of ARMADAS. To enable secure and precise relative positioning of
adjacent modules, modules often have mechanical alignment features (matching bumps and
indentations) that extend outside the bounding box. Having these features integrated into
modules allows for high-precision, high-repeatability, and high-throughput manufacturing
processes such as injection molding to make high-quality connections, rather than requiring
the added complexity and weight of active attachment mechanisms [14, 20].

To avoid collision between modules with these bumps, modules need to move slightly away
from neighboring modules before sliding to an adjacent cell. Thus a moving module needs
the space to move a small distance away from its neighbors. In particular, it is impossible
for a module to pass through a unit-wide gap between two other modules; see Figure 4.

We formalize this requirement as the loose-sliding constraint (refer to Figure 5): a
moving module must at all times be within an otherwise empty 2 × 2 × 2 cube in space that
moves continuously (or equivalently, moves in unit axis-aligned steps on a grid). In other
words, each unit step taken by the moving module (one for a straight slide, two for a corner
slide) must have both its start and end positions within a common 2 × 2 × 2 cube empty of
other modules; in addition, in the case of a corner slide, the first 2 × 2 × 2 empty cube must
be translatable (continuously or in unit axis-aligned steps) to the second 2 × 2 × 2 empty

SWAT 2024

34:4 Reconfiguration Algorithms for Cubic Modular Robots

Figure 4 Valid (green) and invalid (red) moves of the green module in the loose-sliding model.

Figure 5 Valid moves in the loose-sliding model. Left: straight slide move and the corresponding
2 × 2 × 2 empty cube. Middle and right: corner slide move and the corresponding translation
(indicated by the orange paths) of the 2 × 2 × 2 empty cube.

cube while remaining empty of other modules throughout the translation. In particular,
loose sliding prevents a module from sliding into a unit-wide gap between two other modules,
because such a gap is not contained in an empty 2 × 2 × 2 cube. More generally, we can
define k-loose sliding to require a k × k × k empty cube surrounding the moving module.

Passive modules via accessible sliding. The second practical issue is that modular re-
configurable robots do not scale well. Each module must have its own power, processor,
networking, attachment mechanisms, and movement actuators. This module complexity
limits the number of modules and practicality of the programmable matter dream.

A more recent alternative approach [30, 22, 35] is to have two types of modules: many
passive/static modules that cannot move on their own and primarily serve structural purposes,
and a smaller number of robots (even one) that can pick up, carry, place, and attach passive
modules. Figure 6 shows this approach in action in the context of the ARMADAS project,
where the primary goal is to assemble passive parts into a desired geometry – a digital cellular
solid [14, 19]. (Of course, disassembly and reconfiguration is also possible.) The moving
robots are more complicated than the passive modules, and thus are naturally a little larger.
The simplicity of passive modules enables them to be cheaply constructed in large numbers,
vastly increasing applicability [20].

MIT–NASA Space Robots Team 34:5

Figure 6 Photograph of ARMADAS robots operating in the laboratory. Each of the external
robots has two primary “hands”, and can hold onto the already-built structure with either hand
while moving the other hand. The right robot is carrying a module via a third hand on its back;
this module can be added to the structure by another robot, such as the left robot.

Instead of explicitly modeling both moving robot(s) and passive modules, which would
vastly complicate the model, we show how to obtain a similar effect via a small tweak to
the loose-sliding-cubes model. Specifically, define a slide to be k-accessible if it is both
k-loose (i.e. is the only module in some otherwise empty k × k × k cube), and also that
that k × k × k is connected to infinity via a path of k × k × k empty cubes, both before
and after the move. Such a module can be reached by a moving robot on the outside of
the shape, removed and picked up by the robot, and then placed and attached in the new
location. Thus any sequence of k-accessible moves can be simulated by passive modules plus
one moving robot whose size is at most k × k × k.

Our algorithms for sliding cubes satisfy this k-accessible property. Thus they are equally
suitable for both modular robot reconfiguration (where every module can move on its own)
and a hybrid system of passive modules and one or more moving robots. By contrast, all past
sliding-cube algorithms [16, 2, 1] do not satisfy the accessible property. Indeed, no universal
algorithm without extra modules can be accessible (even 1-accessible), because it is known
that there are 3D configurations with no movable modules on the outside [26].

1.2 Our Results
We develop two very different reconfiguration algorithms, establishing two different univer-
sality results in the 2-accessible sliding-cubes model:
1. Allowing extra modules, we show how to construct any connected polycube from a straight

line, and thus how to reconfigure between any two connected polycubes [Section 2]. The
total number of extra modules is linear in the number of modules in the polycube. We
also give a negative result that there are structures which are impossible to reconfigure
between in the 3-loose sliding-cubes model, thus showing that our algorithm’s result is
tight.

SWAT 2024

34:6 Reconfiguration Algorithms for Cubic Modular Robots

2. Without extra modules, we show how to construct any connected polycube having
“external feature size” at least 2, and thus how to reconfigure between any two such
polycubes [Section 3]. Here we define external feature size at least k as follows:
a. Every empty 1 × 1 × 1 cube Q is contained in an empty k × k × k cube Q̂ (see Figure 5

(left)); and
b. For every pair of edge-adjacent empty 1 × 1 × 1 cubes Q1 and Q2, there exist empty

k × k × k cubes Q̂1 and Q̂2 containing Q1 and Q2 respectively, such that we can
continuously slide Q̂1 into Q̂2 by axis-parallel unit slides while preserving emptyness
of the intermediate k × k × k cube and remaining within the bounding box of Q̂1 ∪ Q̂2
(see Figure 5 (middle and right)).

As already mentioned, 2-loose sliding is a slightly stricter constraint than in the pivoting-
cubes model. In our second result we build upon the techniques developed for both, the
sliding-cube and the pivoting-cube models.

The second construction has a useful additional property called monotonicity. Assume
we start from a line or box of modules, and the goal is to assemble the desired polycube
adjacent to this starting configuration. Then we move the modules in order, and once a
module stops moving, we never move it again. Monotonicity implies both accessibility and
the lack of extra modules. Furthermore, monotonicity tells us that the assembly process
is particularly efficient to simulate with one moving robot and many passive modules: the
robot simply needs to double the motion of each module (once to move the module in place,
and then in reverse to get the next module).

Our algorithm descriptions focus on the case k = 2, as it is the simplest case where the
model differs from past work, and as an ARMADAS robot can fit within a 2 × 2 × 2 cube.

2 Universality with Extra Modules: 3D Printing

In this section, we will give a 2-accessible algorithm to disassemble any connected structure
using extra “scaffolding” modules. More precisely, given an initial configuration T of n

modules, and a line of O(n) extra modules attached to it, the algorithm will reconfigure
the structure into a single line of modules. The intuition behind the algorithm is to “3D
print” the structure in reverse by gradually moving a sweep plane through the structure.
The sweep plane is filled with modules to preserve the connectivity of the structure, allowing
the modules of T to be removed one at a time. We will first describe a simpler version of the
algorithm for two-dimensional structures to give intuition.

2.1 2D
Let T ⊆ Z2 be the shape we want to disassemble and U ⊆ Z2 be an axis-aligned rectangle
which contains T . We will reconfigure it into a single long line L.

The main idea is to sweep U with a diagonal line of scaffolding, placing modules in front
of it if they are not already present, and removing modules behind it. We use a possibly
counterintuitive slope of 3 : 5 for the sweep line. As it will become clear later, it is hard
to maintain connectivity of the intermediate structure with simpler slopes. In particular, a
simpler horizontal, vertical or 1 : 1 diagonal slope does not allow us to “dig” a small hole
in the sweep line to remove a module from behind it without either temporarily breaking
connectivity or moving a module that is not 2-accessible.

Let f(x, y) = 3x + (5 − ε)y for some small ε ≪ 1/n. Our diagonal line of scaffolding
will consist of all modules which are intersected by the line f(x, y) = t for some t which we
gradually decrease to sweep the line across. This is equivalent to sweeping a 3 : 5 slope line

MIT–NASA Space Robots Team 34:7

Figure 7 The 2D sweep line approach. Blue squares are part of the sweep line, gray squares
are the remaining part of T that has not been deconstructed. (Not all gray squares correspond to
existing modules, since T is an arbitrary connected subset.) Purple squares are the next modules to
be added or removed. The outer black box is the boundary of U . The green squares are the line L

where removed modules are appended.

across, and when it hits several modules simultaneously, tiebreaking in favor of processing
the higher y valued ones first. We define an intermediate state Rt to be the union of the
following four sets (refer to Figure 7):

remainder of the structure {(x, y) ∈ T | f(x, y) ≤ t},
a diagonal “sweep line” of modules {(x, y) ∈ U | t < f(x, y) ≤ t + 8 − ε},
a path outside of U connecting the two ends of the sweep line. This is just to ensure the
structure remains connected when we remove modules from the sweep line, and
the portion of L that has been built so far: a line of modules that have been removed
from T that is attached to the path outside of U .

▶ Observation 1. Any 2-accessible module can slide along the exterior of Rt to the end of
the line L in O(n) moves.

Using the above observation, any extra modules that are not part of Rt at time t are
placed in the line L. For the rest of this section, whenever we refer to “removing” a module,
we mean sliding it to the end of L.

Initially, we construct a bounding box made of the additional modules around U with an
extra gap of two units. Furthermore, we connect T to this bounding box. Specifically, we
build a path of modules out from the right-most top-most module of T to the upper right
corner of the bounding box. This is done simply to ensure the sweep line is connected to T

initially (and we can equivalently think of T as containing this additional path).
We are going to gradually decrease t, starting from R∞ = T and ending at R−∞ = ∅. As

we decrease t, Rt changes only when t = f(x, y) or t = f(x, y) − 8 + ε for some (x, y) ∈ U ,
which happens |U | times. More specifically, a module at (x, y) is added to the sweep line

SWAT 2024

34:8 Reconfiguration Algorithms for Cubic Modular Robots

Figure 8 An example of processing a sweep-line event. Reading left to right, this shows the
intermediate steps of adding and removing a module from Rt, when both cells outlined in orange
are empty. The red outlined module is being removed and the purple outlined one is being added.
Other cases are treated similarly; the details can be found in the full version of this paper.

when t = f(x, y), and is removed from it when t = f(x, y) − 8 + ε. Note that, whenever the
first condition is met for (x, y), the second condition is met for (x + 1, y + 1). Thus, each
event updating Rt will involve removing one module at (x + 1, y + 1) and adding one module
at (x, y). Consecutive states of Rt differ in only these two modules. We will show that we
can always transition from Rt to Rt−ε in a constant number of moves near the sweep line,
plus, if necessary, a linear number of moves to take the removed modules out to the end of
the line L.

The proof of the following lemma is omitted and can be found in the full version of this
paper.

▶ Lemma 2. There is a sequence of O(n) 2-accessible moves that reconfigures Rt to Rt−ε.

Because each dimension of U is O(n), the sweep line consists of O(n) modules, so we
only use O(n) additional modules to deconstruct T .

▶ Theorem 3. Any polyomino shape T can be deconstructed into a line with 2-accessible
sliding moves with the help of additional O(n) modules.

2.2 3D
Next we describe the full three-dimensional algorithm for disassembling a structure. Let
T ⊆ Z3 be the shape we want to disassemble, and U ⊆ Z3 be an axis-aligned bounding box
which contains T . Similarly to the 2D case, we sweep a diagonal plane of scaffolding. At each
step, we add a module in front of the sweep plane if it is not already present and remove a
module from behind the plane.

Define f(x, y, z) = x + (3 − ε)y + (3 − ε2)z, for sufficiently small ε. Again, we define Rt to
be the set of modules still present in the structure at time t, which is the union of three sets:

the remainder of the structure: {(x, y, z) ∈ T | f(x, y, z) ≤ t},
the diagonal sweep plane of scaffolding keeping everything connected: {(x, y, z) | t <

f(x, y, z) ≤ t + 4 − ε},

MIT–NASA Space Robots Team 34:9

x
y

z

Figure 9 The state of our “3D printing” algorithm before processing an event. The scaffolding
plane is shown in blue. Purple cell is at (x, y, z) and a module is to be placed in it; green module is
at (x + 1, y + 1, z) and is to be removed.

x
y

z

Figure 10 The solid orange module behind
the purple cell is part of T . The small blue
and green blocks correspond to the modules that
are removed in order to access the purple cell
without breaking connectivity.

x
y

z

Figure 11 There is an empty cell behind the
purple cell. The small blue and green blocks
correspond to the modules that are removed in
order to access the purple cell without breaking
connectivity.

the portion of L that has been built so far: a line of modules that have been removed
from T that is attached to the path outside of U , and
additional modules near the boundary of the sweep plane which help preserve connectivity
of the sweep plane near the boundary of U : {(x, y, z) | t < f(x, y, z) ≤ t + 6 − 2ε}, when
(x, y, z) is outside of U but is within four-unit distance of the boundary of U .

Similarly to the 2D case, as the sweep plane moves, we keep the line L attached to the
scaffolding. Whenever a module is removed, it can slide along this connection to the end of
L to be deposited.

▶ Lemma 4. There is a sequence of O(n) 2-accessible moves that reconfigures Rt to Rt−ε.

Proof. As before, we continuously decrease t. Each time Rt changes, up to one module is
added to the sweep plane at (x, y, z) and the module at (x + 1, y + 1, z) is removed from it
(refer to Figure 9). Removing modules is straightforward: they can slide to the end of L.
Adding modules, however, requires some care. When we need to add a module at location
(x, y, z) in front of the sweep plane, we “dig” a small hole in the plane, add the new module,
and then fill in the hole back.

Next we provide specific steps for processing the event f(x, y, z) = t. First, if a module
at (x, y, z) already exists in Rt, we simply remove the module at (x + 1, y + 1, z). When a
cell (x, y, z) is not occupied and a module needs to be placed in it, we consider the following
two cases, based on whether (x − 1, y, z) is present or not.

SWAT 2024

34:10 Reconfiguration Algorithms for Cubic Modular Robots

Case 1: cell (x − 1, y, z) is occupied. See Figure 10.
1. Remove (x + i, y + 1, z) for i = 1, 0, and (x, y, z + 1).
2. Remove (x + i, y, z) for i = 1, 2, 3.
3. Place (x + i, y, z) for i = 0, 1, 2, 3.
4. Place (x, y + 1, z) and (x, y, z + 1).

Case 2: cell (x − 1, y, z) is empty. See Figure 11.
1. Remove (x + i, y + 1, z) for i = 1, 0, −1, and (x + i, y, z + 1) for i = 0, −1.
2. Place (x, y, z).
3. Place (x + i, y + 1, z) and (x + i, y, z + 1) for i = −1, 0.

Note, that every module that is being removed or added in the steps above is 2-accessible
by construction.

When we are outside of U , we will use a different method to add and remove modules
from the sweep plane. As the modules of the scaffold that are outside of U are sufficiently
removed from T , the empty cells in front of the sweep plane adjacent to them are in fact
2-accessible. Thus, we can simply add a module directly to the front of the sweep plane and
remove a module directly from the back side.

Observe that in this case the connectivity of the scaffolding is preserved. Every point
(x, y, z) with f(x, y, z) < t that is face-adjacent to a module in the sweep plane maintains
the property that at least one of the modules in the sweep plane that it is face-adjacent to
is present at all points during the process. This means that if the structure was connected
before this step of the algorithm, it remains connected during this step, and will still be
connected afterward. ◀

Each dimension of U is O(n). However, because the sweep plane is two-dimensional, this
means that our algorithm requires O(n2) additional modules. We can reduce the number of
modules needed by reducing the size of U . Instead of using a full bounding box, we construct
U as follows. Consider a discretization of the lattice grid into 2 × 2 × 2 metacells. For each
module in T , consider the line passing through the center of the module perpendicular to
the sweep plane. We let U be the intersection of the bounding box of T and union of all
metacells that are pierced by any such line.

Because we maintain the 4-module offset of the boundary of U be padded with an extra
layer of modules in the front of the sweep plane, our sweep plane stays connected at each
step of the reconfiguration regardless of the shape of the boundary of U . By construction of
U , as it is made of 2 × 2 × 2 metacells, the empty cells, adjacent to the front of the sweep
plane, within distance 4 of the boundary of U are necessarily 2-accessible. Since the original
algorithm does not depend on the specific shape of U but only the fact that the edge modules
are 2-accessible, the correctness of the algorithm follows. The size of the intersection of our
sweep plane with U is O(n) by construction, so we now only need O(n) additional modules.

▶ Theorem 5. Any polycube shape T can be deconstructed into a line with 2-accessible sliding
moves with the help of additional O(n) modules.

2.3 Impossibility of 3-loose algorithm
In this section we describe a structure which cannot be reconfigured into a line with any
3-loose algorithm. We will first describe a 2D version and then generalize to a 3D version.

Consider the structure in Figure 12. It consists of a hollow 5 × 5 square, as well as the
four modules in the corners of a concentric 3 × 3 square (marked in red). Suppose we can
disassemble this structure. Consider the first time we place or remove a module in the central

MIT–NASA Space Robots Team 34:11

Figure 12 2D configuration that cannot be disassembled with a 3-loose algorithm. The red blocks
cannot be removed until at least one other red block is removed.

3 × 3 square. We cannot place a module anywhere inside the 3 × 3 square, because it would
be blocked by red modules. So we must remove a red module. Then this red module must
the only module in some 3 × 3 square. It is not hard to show that this module cannot have
any neighbors, which violates connectivity.

In 3 dimensions, we instead use a hollow 5 × 5 × 5 with 8 modules in the corners of a
3 × 3 × 3 cube. We can use a similar argument to show that no module can be placed or
removed inside the central 3 × 3 × 3 cube.

3 Universality without Extra Modules

In this section we show how to reconfigure a modular robot, whose shape satisfies the property
of external feature size at least 2, into a line. The resulting reconfiguration will consist of
2-accessible and monotone moves (every sliding move will have a sufficient amount of empty
space around it, and each module moves only once in a continuous motion from its starting to
its target position). Reversing the sequence moves results in a schedule for the construction
of the given structure starting from a line of modules.

The approach we take is similar to the one for the pivoting-cube model, presented in [34]
and later further developed in [17, 24]. We deconstruct the robot structure slice by slice
(parallel to the horizontal plane), ensuring the connectivity of the intermediate structure and
the invariant of external feature size at least 2. In our algorithm, the choice of which slice
to deconstruct is made in the same way as in [34, 17, 24]. The difference of our algorithm
with these approaches, and its main difficulty, lies in deciding in which order to deconstruct
(partially or fully) a given slice, such that the requirements on the connectivity and the
external feature size are satisfied for the intermediate structures.

Slice graph. We adapt the definition of a slice graph from [34]. Let Vz=k denote the
subset of nodes of the lattice with the z-coordinate fixed to k. Let VR denote the subset of
nodes of the lattice which contain a module in an intermediate configuration R. Define a
slice graph Gs(Vs, Es) of R in the following way. The nodes Vs of Gs correspond to the
maximally connected components of the modules with the same z-coordinate, such that
these components have at least one module adjacent to the empty outer space. That is, each
connected component of the induced graphs on VR ∩ Vz=k (for all k), that has a module
adjacent to and empty cell of an outer empty space, is added to Vs. Two nodes in Vs are
connected with an edge if the corresponding slices contain (vertically) adjacent modules (see
Figure 13).

A slice s ∈ Vs is locally maximal (minimal), if all the adjacent slices of s in Gs contain
modules with only lower (higher) z-coordinate than s.

Outline of the algorithm. Consider the initial configuration T with external features of
size at least 2. Let s0 be the slice in Gs with the globally maximum z-coordinate. Select an
arbitrary module m0 from s0. Define a configuration L to be formed by a vertical line of n

SWAT 2024

34:12 Reconfiguration Algorithms for Cubic Modular Robots

Figure 13 A robot configuration on the left, and the corresponding slice graph on the right.

modules with m0 as the bottom-most module, i.e., all the other modules have the same x-
and y-coordinates as m0, and have z-coordinates larger than z-coordinate of m0. We will
prove that we can reconfigure from T to L in O(n2) number of moves.

We iteratively consider a locally extremal outer-surface slice s other than s0 which is
not needed for the connectivity of the current slice graph, and move its modules to the top
of the line above m0. There are two cases: either removing s disconnects the structure or
it does not. If removal of s does not disconnect the robot structure, we simply completely
deconstruct s and proceed with the next locally extremal outer-surface slice.

The harder case is when s disconnects the structure. In this case, s must lie on the
boundary of a void, an enclosed empty space. Furthermore, withing this void there must be
some modules attached to s which are connected to the rest of the structure only through
s. Then, we partially disassemble s while ensuring the connectivity of the intermediate
structure, preserving the property of external feature size 2, and connecting the void to the
outer empty space.

To summarize, our algorithm consists of the following steps:
1. Construct the slice graph H;
2. Using H, select a locally extremal outer-surface slice s to deconstruct;
3. Deconstruct s fully (if connectivity is maintained) or partially, update H accordingly;
4. Repeat steps 2 and 3 until L has been constructed.

Step 1: Constructing the slice graph. The definition of a slice graph from [34] does not
require that at least one module from each slice is on the outer surface (adjacent to an
empty cell of the outer empty space). Their result relies on the assumption that any void, a
structure to be deconstructed may have, is convex. Thus, all the slices of the structure have
modules that lie on its outer surface. In particular, all the modules of any locally extremal
slice lie on the outer surface. In our case, however, the structure may have non-convex voids,
and thus some slices (including locally extremal ones) may be “trapped” inside a void. We
can only move modules that are on the outer surface of the structure. Thus, to facilitate
the choice of a slice to deconstruct, we only maintain the slices in H that are not trapped
in a void. That is, we require the nodes of Gs to correspond to the slices with at least one
module on the outer surface of the structure.

Step 2: Selecting a slice to deconstruct. We require the slice we select for deconstruction
to satisfy two properties: (1) its removal should not disconnect the remaining structure, and
(2) it should be locally extremal in the z-direction to give enough space for the modules

MIT–NASA Space Robots Team 34:13

to move on its top (or bottom). Note that naively selecting a slice that corresponds to a
non-cut node in H may violate property (2), and selecting a top-most or bottom-most slice
may violate property (1).

Slice s0, containing the node m0 (the end of the line L) will be the last one to be
deconstructed. If there are no other nodes left in H, we deconstruct s0. Otherwise, consider
the degrees of the nodes in Vs. If there is a node s ̸= s0 with degree 1, we select it for
deconstruction. Otherwise, select a locally extremal slice s that is furthest away from s0 in
H. Removing s from H does not disconnect the graph. Indeed, otherwise, after the removal
of s from H , the component not containing s0 would have at least two locally extremal slices.
At least one of these slices existed in H before removing s, and is further away from s0 than
s. Thus, the lemma follows.

▶ Lemma 6. If H has more than one slice, there is always a locally extremal slice s ̸= s0 in
H whose removal does not break the connectivity of H.

Step 3: Deconstructing a locally extremal slice. Consider a set of empty cells Ve of
the empty outer-space component, adjacent to the modules of the structure. Connect
two face-adjacent nodes of Ve with an edge, if the corresponding move is 2-loose or is a
convex transition consisting of two 2-loose slide steps. Observe, that by definition of the
external feature size property, graph Ge is connected. And furthermore, any two nodes of Ve

corresponding to face-adjacent cells have an edge connecting them.

▶ Observation 7. Consider a structure T that has external feature size at least 2, and a
top-most node m0. Consider an additional module m anywhere on the outer surface of T .
Then m can move to the top of m0 with loose-sliding moves.

Let s be our locally extremal slice, and let zs be the value of the z-coordinate of the
modules in s. By symmetry, suppose s has no adjacent modules in the positive z direction,
thus all the modules adjacent to the modules of s have z-coordinate equal to zs − 1.

Following the notation of [24], we assign colors to the modules of s, depending on whether
they have adjacent modules below or not (refer to Figure 14). A module m in s is colored:

red if the cell below m is occupied by some module m′, and the slice containing m′ is
adjacent to the outer empty component,
green if the cell below m is empty and belongs to the outer component of R,
blue if the cell below m is empty and does not belong to an outer empty component (i.e.,
it is a void), and
orange if the cell below m is occupied by some module m′, and the slice containing m′

is not adjacent to the outer empty component (i.e., it is enclosed in a void).

We consider two cases, whether the removal of s from the modular structure breaks its
connectivity, or not. If the removal of s does not break the connectivity of the structure, we
move all the modules of s one by one to the end of L. The proof of the following lemma can
be found in the full version of this paper.

▶ Lemma 8. Suppose that removing a locally extremal slice s of H does not disconnect
the modular structure. Then s can be completely deconstructed, and the resulting structure
maintains the external-feature-size-2 property.

Consider now the case when removing s disconnects the modular structure. This is the
case if the structure contains a void, and the void has trapped modules inside, attached to
s. In this case we no longer can completely deconstruct s, and our goal instead is to cut a
hole into at least one void without breaking connectivity and while preserving the external
feature size of at least 2.

SWAT 2024

34:14 Reconfiguration Algorithms for Cubic Modular Robots

To do so, we define a directed graph Gs on the modules of s. All pairs of face-adjacent
modules in s are connected with a directed edge. Using Gs, we select which modules from
s are to be removed at this step of the algorithm. In particular, all the modules of s that
are reachable from orange modules in Gs remain in the slice. All the other modules are
deconstructed. Below, we argue that this preserves the external-feature-size-2 property, and
eliminates at least one void. Afterwards, we update the slice graph H by adding to it new
slices that were trapped inside the eliminated void(s), and proceed to the next iteration of
the algorithm.

We construct Gs in the following way. Add all modules of s as nodes in Gs. We call a
module of s reddish if it has a module in the layer below it (and so is either red or orange in
color), and bluish if it does not (and thus is either green or blue). Add the following edges
to Gs (refer to Figure 14):

For two face-adjacent modules with the same y-coordinate, add an edge directed to the
left.
For two face-adjacent modules with the same x-coordinate, add an edge directed upward.
For a triplet of bluish-bluish-reddish modules oriented left-to-right (or top-to-bottom),
add a directed edge from the left-most (top-most) bluish module to the reddish module.

▶ Lemma 9. If there are modules present at both locations a and b, and a and b are at most
2 units apart in each dimension, then there is a path in the adjacency graph of s from a to b

within the bounding box spanned by a and b.

Proof. Suppose this is the minimal such counterexample. Consider a sequence of empty cells
within this bounding box which starts adjacent to a and ends adjacent to b. (If there are no
such adjacent empty cells to a and b, then this example was not minimal: we could have
instead taken one of the occupied cells adjacent to a or b and gotten a smaller counterexample).
Now we know that each of these cells is contained in an empty 2 × 2 × 2 region. Consider
this sequence of 2 × 2 × 2 regions. It must be possible to slide between each adjacent pair of
modules of empty space because we have external feature size 2. However, this is not going
to be possible because we cannot fit an empty 2 × 2 × 2 cube between a and b. ◀

Lemma 9 is the key reason why we use external feature size 2. It follows directly that
none of the 1 × 1 × 3, 1 × 2 × 2, and 1 × 2 × 3 forbidden patterns in [34] will be present in
our structure, and also ensures that every module that is accessible is 2-accessible.

The proof of the following lemma can be found in the full version of this paper.

Figure 14 Extremal slice with its modules colored according to the adjacency with the nodes in
the slice below. Component of the directed graph Gs of modules reachable from orange modules,
used in Lemma 9.

MIT–NASA Space Robots Team 34:15

▶ Lemma 10. Every minimal path between any module and a blueish module is bitonic in
both x and y: it never goes right after going left and it never goes down after going up.

▶ Corollary 11. All blueish cells reachable from an orange cell are either strictly above it or
strictly to the left of it.

Proof. Consider the shortest path to some cell. By construction of Gs, the first move must
be to the left or up. If it has non-zero leftward component, then it can never go right. If it
has non-zero upward component, then it can never go down. ◀

▶ Corollary 12. There is an orange module such that a 2 × 2 square directly below and to
the right of it is unreachable.

▶ Corollary 13. If two modules a and b on the same row or column are reachable from an
orange module, then every module in between also is.

▶ Lemma 14. Any two 2 × 2 × 2 edge-adjacent empty regions can be slid together until they
overlap in at least one cell.

Proof. Suppose for contradiction that we have two such edge-adjacent 2 × 2 × 2 empty cubes
that cannot be slid closer together. This means there is a 2 × 2 × 1 pattern of diagonally
opposite modules with empty space at the other two corners. Suppose we created such a
pattern containing one of the modules we removed. Because the region we removed is convex
by Corollary 13, it must contain a module from the layer below. In particular, the removed
cell from this layer must be red, and there must be an adjacent bluish cell that is not removed.
However, in our directed graph there is always an edge from a blue cell to an adjacent red
cell, so this is impossible. ◀

▶ Lemma 15. Every removed blue cell is part of a 2 × 2 removed square of blue cells.

Proof. Suppose that a removed blue module is not part of a blue 2 × 2 disassembled square.
Then it must have two neighbors on opposite sides that are each either reddish or unremoved
blue. It cannot have two unremoved blue neighbors on each side because of the convexity of
the removed area the algorithm generates. It cannot have two reddish neighbors on each
side because that would violate the external feature size beforehand. Finally, it cannot have
a unremoved blue pixel on one side and a reddish on the other side because the rules that
generate the graph would have connected the blue to the reddish neighbor. ◀

▶ Lemma 16. For any pair of overlapping 2 × 2 × 2 empty cubes, at least one of which was
created by removing a module from this layer, we can continuously slide one into the other
while preserving emptiness.

Proof. Because every removed cube is part of a 2 × 2 removed square of blue pixels by
Lemma 15, every new empty space is part of some empty 2 × 2 × 2 cube.

Let the deconstructed layer have z = zs. Consider two overlapping 2 × 2 × 2 empty cubes
Q̂1 and Q̂2 after partially deconstructing s. If both cubes reside in z = zs − 1 and z = zs,
then we consider cubes Q̂′

1 and Q̂′
2 that are the projection of Q̂1 and Q̂2 to layers z = zs − 1

and z = zs − 2. Due to the external feature size, Q̂′
1 and Q̂′

2 must both have been empty
and it must have been possible to slide between them. We project that motion back up to
Q̂1 and Q̂2 and get a motion that sweeps between the two cubes.

If both Q̂1 and Q̂2 reside in z = zs and z = zs + 1, we consider cases based on the
difference in their x and y coordinates. If they share the same x or y coordinates, then there
is a direct motion between them maintaining the shared coordinate. If one of them is larger

SWAT 2024

34:16 Reconfiguration Algorithms for Cubic Modular Robots

in both x and y, we know that their bounding box is empty by the convexity of the removed
area, so any motion suffices. If one is smaller in x and larger in y, then we slide it first in the
increasing x direction, and then in the decreasing y direction.

If, w.l.o.g., Q̂1 resides in z = zs and z = zs − 1, and Q̂2 in z = zs and z = zs + 1, then
we slide Q̂1 up one layer first, then proceed with a similar argument to the case above. ◀

By Lemmas 14 and 16, everything must still have external feature size at least 2.
Finally, by Corollary 12, we have made a hole in slice s, which allows us to access modules

inside the void. We have made progress by opening up at least one void. Since at each step of
the algorithm we either clear one slice or open at least one void, and there are finitely many
voids in the structure, we must eventually terminate with the entire shape deconstructed.
Because each module needs to move a distance of at most O(n), and each module is only
moved once, the total number of moves is at most O(n2).

▶ Theorem 17. A modular structure with external-feature size at least 2 can be reconfigured
into a line in O(n2) 2-accessible moves.

4 Open Problems

The main open question is how many extra modules we need to achieve universal reconfig-
uration in the k-accessible sliding-cubes model. Our solution in Section 2 uses Θ(n) extra
modules in the worst case. But plausibly O(1) extra modules suffice via a different method;
such a result was previously obtained for the pivoting-squares model [3].

Another open problem is whether universal reconfiguration is possible for the k-loose
sliding-cubes model – without the k-accessible constraint. In particular, this would require
handling complex 3D configurations with no movable modules on the outside [26]. Previous
solutions in the sliding-cubes model [27] are not loose.

References
1 Zachary Abel, Hugo Akitaya, Matias Korman, Scott Kominers, and Frederick Stock. A

universal in-place reconfiguration algorithm for sliding cube-shaped robots in quadratic time.
To appear at the 40th International Symposium on Computational Geometry (SoCG), 2024.

2 Zachary Abel and Scott D. Kominers. Pushing hypercubes around, 2008. arXiv:0802.3414v2.
3 Hugo A. Akitaya, Esther M. Arkin, Mirela Damian, Erik D. Demaine, Vida Dujmović, Robin

Flatland, Matias Korman, Belén Palop, Irene Parada, André van Renssen, and Vera Sacristán.
Universal reconfiguration of facet-connected modular robots by pivots: The O(1) musketeers.
Algorithmica, 83(5):1316–1351, 2021. doi:10.1007/s00453-020-00784-6.

4 Hugo A. Akitaya, Erik D. Demaine, Andrei Gonczi, Della H. Hendrickson, Adam Hesterberg,
Matias Korman, Oliver Korten, Jayson Lynch, Irene Parada, and Vera Sacristán. Characterizing
universal reconfigurability of modular pivoting robots. In Proc. 37th International Symposium
on Computational Geometry (SoCG), pages 10:1–10:20, 2021. doi:10.4230/LIPIcs.SoCG.
2021.10.

5 Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna, Irene Parada, Willem
Sonke, Bettina Speckmann, Ryuhei Uehara, and Jules Wulms. Compacting squares: Input-
sensitive in-place reconfiguration of sliding squares. In Proc. 18th Scandinavian Symposium
and Workshops on Algorithm Theory (SWAT), volume 227 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 4:1–4:19, 2022. doi:10.4230/LIPIcs.SWAT.2022.4.

6 Greg Aloupis, Nadia Benbernou, Mirela Damian, Erik D. Demaine, Robin Flatland, John
Iacono, and Stefanie Wuhrer. Efficient reconfiguration of lattice-based modular robots.
Computational Geometry: Theory and Applications, 46(8):917–928, October 2013. doi:
10.1016/j.comgeo.2013.03.004.

https://arxiv.org/abs/0802.3414v2
https://doi.org/10.1007/s00453-020-00784-6
https://doi.org/10.4230/LIPIcs.SoCG.2021.10
https://doi.org/10.4230/LIPIcs.SoCG.2021.10
https://doi.org/10.4230/LIPIcs.SWAT.2022.4
https://doi.org/10.1016/j.comgeo.2013.03.004
https://doi.org/10.1016/j.comgeo.2013.03.004

MIT–NASA Space Robots Team 34:17

7 Greg Aloupis, Sébastien Collette, Mirela Damian, Erik D. Demaine, Dania El-Khechen,
Robin Flatland, Stefan Langerman, Joseph O’Rourke, Val Pinciu, Suneeta Ramaswami, Vera
Sacristán, and Stefanie Wuhrer. Realistic reconfiguration of crystalline (and telecube) robots.
In Proceedings of the 8th International Workshop on the Algorithmic Foundations of Robotics
(WAFR 2008), volume 57 of Springer Tracts in Advanced Robotics, pages 433–447, Guanajuato,
México, December 7–9 2008.

8 Greg Aloupis, Sébastien Collette, Mirela Damian, Erik D. Demaine, Robin Flatland, Stefan
Langerman, Joseph O’Rourke, Suneeta Ramaswami, Vera Sacristán, and Stefanie Wuhrer.
Linear reconfiguration of cube-style modular robots. Computational Geometry: Theory and
Applications, 42(6–7):652–663, August 2009.

9 Greg Aloupis, Sébastien Collette, Erik D. Demaine, Stefan Langerman, Vera Sacristán, and
Stefanie Wuhrer. Reconfiguration of cube-style modular robots using O(log n) parallel moves.
In Proceedings of the 19th Annual International Symposium on Algorithms and Computation
(ISAAC 2008), pages 342–353, Gold Coast, Australia, December 15–17 2008.

10 Greg Aloupis, Sébastien Collette, Mirela Damian, Erik D. Demaine, Robin Flatland, Stefan
Langerman, Joseph O’Rourke, Val Pinciu, Suneeta Ramaswami, Vera Sacristán, and Stefanie
Wuhrer. Efficient constant-velocity reconfiguration of crystalline robots. Robotica, 29(1):59–71,
2011. doi:10.1017/S026357471000072X.

11 Byoung Kwon An. EM-Cube: Cube-shaped, self-reconfigurable robots sliding on structure
surfaces. In Proc. IEEE International Conference on Robotics and Automation (ICRA), pages
3149–3155, 2008. doi:10.1109/ROBOT.2008.4543690.

12 Nora Ayanian, Paul J. White, Ádám Hálász, Mark Yim, and Vijay Kumar. Stochastic
control for self-assembly of XBots. In Proc. ASME International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference (IDETC-CIE), pages
1169–1176, 2008. doi:10.1115/DETC2008-49535.

13 Nadia M. Benbernou. Geometric algorithms for reconfigurable structures. PhD thesis,
Massachusetts Institute of Technology, 2011.

14 Kenneth C. Cheung and Neil Gershenfeld. Reversibly assembled cellular composite materials.
Science, 341(6151):1219–1221, 2013.

15 Chih-Jung Chiang and Gregory S. Chirikjian. Modular robot motion planning using similarity
metrics. Autonomous Robots, 10:91–106, 2001. doi:10.1023/A:1026552720914.

16 Adrian Dumitrescu and János Pach. Pushing squares around. Graphs and Combinatorics,
22:37–50, 2006. doi:10.1007/s00373-005-0640-1.

17 Daniel Feshbach and Cynthia Sung. Reconfiguring non-convex holes in pivoting modular
cube robots. IEEE Robotics and Automation Letters, 6(4):6701–6708, 2021. doi:10.1109/
LRA.2021.3095030.

18 Robert Fitch, Zack Butler, and Daniela Rus. Reconfiguration planning for heterogeneous
self-reconfiguring robots. In Proc. IEEE/RSJ International Conference on Intelligent Robots
and System (IROS), pages 2460–2467, 2003. doi:10.1109/IROS.2003.1249239.

19 Christine E. Gregg, Damiana Catanoso, Olivia Irene B. Formoso, Irina Kostitsyna, Megan E.
Ochalek, Taiwo J. Olatunde, In Won Park, Frank M. Sebastianelli, Elizabeth M. Taylor,
Greenfield T. Trinh, and Kenneth C. Cheung. Ultralight, strong, and self-reprogrammable
mechanical metamaterials. Science Robotics, 9(86):eadi2746, 2024. doi:10.1126/scirobotics.
adi2746.

20 Christine E. Gregg, Joseph H. Kim, and Kenneth C. Cheung. Ultra-light and scalable composite
lattice materials. Advanced Engineering Materials, 20(9):1800213, 2018.

21 Kazuo Hosokawa, Takehito Tsujimori, Teruo Fujii, Hayato Kaetsu, Hajime Asama, Yoji
Kuroda, and Isao Endo. Self-organizing collective robots with morphogenesis in a vertical
plane. In Proc. IEEE International Conference on Robotics and Automation (ICRA), pages
2858–2863, 1998. doi:10.1109/ROBOT.1998.680616.

SWAT 2024

https://doi.org/10.1017/S026357471000072X
https://doi.org/10.1109/ROBOT.2008.4543690
https://doi.org/10.1115/DETC2008-49535
https://doi.org/10.1023/A:1026552720914
https://doi.org/10.1007/s00373-005-0640-1
https://doi.org/10.1109/LRA.2021.3095030
https://doi.org/10.1109/LRA.2021.3095030
https://doi.org/10.1109/IROS.2003.1249239
https://doi.org/10.1126/scirobotics.adi2746
https://doi.org/10.1126/scirobotics.adi2746
https://doi.org/10.1109/ROBOT.1998.680616

34:18 Reconfiguration Algorithms for Cubic Modular Robots

22 Benjamin Jenett, Amira Abdel-Rahman, Kenneth Cheung, and Neil Gershenfeld. Mater-
ial–Robot System for Assembly of Discrete Cellular Structures. IEEE Robotics and Automation
Letters, 4(4):4019–4026, October 2019. doi:10.1109/LRA.2019.2930486.

23 Irina Kostitsyna, Tim Ophelders, Irene Parada, Tom Peters, Willem Sonke, and Bettina
Speckmann. Optimal in-place compaction of sliding cubes. Submission to SWAT, 2024.

24 Lloyd E. Lo-Wong. Reconfiguration of pivoting modular robots. MSc thesis, Technical
University Eindhoven, 2021.

25 Othon Michail, George Skretas, and Paul G. Spirakis. On the transformation capability of
feasible mechanisms for programmable matter. Journal of Computer and System Sciences,
102:18–39, 2019. doi:10.1016/j.jcss.2018.12.001.

26 Tillmann Miltzow, Irene Parada, Willem Sonke, Bettina Speckmann, and Jules Wulms. Hiding
sliding cubes: Why reconfiguring modular robots is not easy. In Proc. 36th International
Symposium on Computational Geometry (SoCG), volume LIPIcs 164, pages 78:1–78:5, 2020.
doi:10.4230/LIPIcs.SoCG.2020.78.

27 Joel Moreno. In-place reconfiguration of lattice-based modular robots. Bachelor’s thesis,
Universitat Politècnica de Catalunya, 2019.

28 Joel Moreno and Vera Sacristán. Reconfiguring sliding squares in-place by flooding. In Proc.
36th European Workshop on Computational Geometry (EuroCG), pages 32:1–32:7, 2020.

29 Irene Parada, Vera Sacristán, and Rodrigo I. Silveira. A new meta-module design for efficient
reconfiguration of modular robots. Autonomous Robots, 45(4):457–472, 2021. doi:10.1007/
s10514-021-09977-6.

30 In-Won Park, Damiana Catanoso, Olivia Formoso, Christine Gregg, Megan Ochalek, Taiwo
Olatunde, Frank Sebastianelli, Pascal Spino, Elizabeth Taylor, Greenfield Trinh, and Kenneth
Cheung. Soll-e: A module transport and placement robot for autonomous assembly of discrete
lattice structures. In 2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2023.

31 John Romanishin, Kyle Gilpin, and Daniela Rus. M-blocks: Momentum-driven, magnetic
modular robots. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2013), pages 4288–4295, Tokyo, Japan, November 2013. IEEE.
doi:10.1109/IROS.2013.6696971.

32 Daniela Rus and Marsette Vona. A physical implementation of the self-reconfiguring crystalline
robot. In Proc. IEEE International Conference on Robotics and Automation (ICRA), pages
1726–1733, 2000. doi:10.1109/ROBOT.2000.844845.

33 John W. Suh, Samuel B. Homans, and Mark Yim. Telecubes: mechanical design of a module
for self-reconfigurable robotics. In Proc. 2002 IEEE International Conference on Robotics and
Automation (ICRA), pages 4095–4101, 2002. doi:10.1109/ROBOT.2002.1014385.

34 Cynthia Sung, James Bern, John Romanishin, and Daniela Rus. Reconfiguration planning for
pivoting cube modular robots. In Proc. 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 1933–1940, 2015. doi:10.1109/ICRA.2015.7139451.

35 Yuzuru Terada and Satoshi Murata. Automatic Assembly System for Modular Structure. In
Proceedings of the 22nd International Symposium on Automation and Robotics in Construction,
Ferrara, Italy, September 2005. doi:10.22260/ISARC2005/0028.

36 Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod Lipson, Eric Klavins,
and Gregory S. Chirikjian. Modular self-reconfigurable robot systems. IEEE Robotics &
Automation Magazine, 14(1):43–52, 2007. doi:10.1109/MRA.2007.339623.

https://doi.org/10.1109/LRA.2019.2930486
https://doi.org/10.1016/j.jcss.2018.12.001
https://doi.org/10.4230/LIPIcs.SoCG.2020.78
https://doi.org/10.1007/s10514-021-09977-6
https://doi.org/10.1007/s10514-021-09977-6
https://doi.org/10.1109/IROS.2013.6696971
https://doi.org/10.1109/ROBOT.2000.844845
https://doi.org/10.1109/ROBOT.2002.1014385
https://doi.org/10.1109/ICRA.2015.7139451
https://doi.org/10.22260/ISARC2005/0028
https://doi.org/10.1109/MRA.2007.339623

Solving a Family Of
Multivariate Optimization and Decision Problems
on Classes of Bounded Expansion
Daniel Mock #

RWTH Aachen University, Germany

Peter Rossmanith #

RWTH Aachen University, Germany

Abstract
For some time, it has been known that the model checking problem for first-order formulas is fixed-
parameter tractable on nowhere dense graph classes, so we shall ask in which direction there is space
for improvements. One of the possible directions is to go beyond first-order formulas: Augmenting
first-order logic with general counting quantifiers increases the expressiveness by far, but makes the
model checking problem hard even on graphs of bounded tree-depth. The picture is different if we
allow only “simple” – but arbitrarily nested – counting terms of the form #y φ(x̄, y) > N . Even
then, only approximate model checking is possible on graph classes of bounded expansion. Here,
the largest known logic fragment, on which exact model checking is still fpt, consists of formulas of
the form ∃x1 . . . ∃xk#y φ(x̄, y) > N , where φ(x̄, y) is a first-order formula without counting terms.
An example of a problem that can be expressed in this way is partial dominating set: Are there
k vertices that dominate at least a given number of vertices in the graph? The complexity of the
same problem is open if you replace at least with exactly. Likewise, the complexity of “are there k
vertices that dominate at least half of the blue and half of the red vertices?” is also open. We answer
both questions by providing an fpt algorithm that solves the model checking problem for formulas
of the more general form ψ ≡ ∃x1 . . . ∃xk P (#y φ1(x̄, y), . . . ,#y φℓ(x̄, y)), where P is an arbitrary
polynomially computable predicate on numbers. The running time is f(|ψ|)nℓ+1 polylog(n) on graph
classes of bounded expansion. Under SETH, this running time is tight up to almost linear factor.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Logic; Mathematics of computing → Graph algorithms

Keywords and phrases bounded expansion, parameterized algorithms, sparsity, counting logic,
dominating set, model checking, multivariate optimization

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.35

Funding Funded by the Deutsche Forschungsgemeinschaft (DFG, German Science Foundation) –
RO 927/15-2.

1 Introduction

Many problems on finite structures, in particular on graphs, can be expressed by logical
formulas and then solved by meta-algorithms for the model checking problem. One of the
best known meta-algorithms is due to Courcelle that solves all problems that can be expressed
in monadic second order logic on graph classes with bounded tree-width in linear fpt when
parameterized by length of the formula [3], that is, in time f(|φ|)n where n is the size of the
input graph for some function f . Taking a less expressive logic, for example MSO1 instead
of full MSO, you can solve the model checking problem on larger classes of graphs, i.e., on
bounded clique width [4]. Unfortunately, there is some evidence that it is unlikely we can
extend these results beyond bounded tree-width, resp. bounded clique-width [20, 14].

© Daniel Mock and Peter Rossmanith;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 35; pp. 35:1–35:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mock@cs.rwth-aachen.de
https://orcid.org/0000-0002-0011-6754
mailto:rossmani@cs.rwth-aachen.de
https://orcid.org/0000-0003-0177-8028
https://doi.org/10.4230/LIPIcs.SWAT.2024.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Multivariate Optimization and Decision Problems

First-order logic (FO) is still less expressive, but powerful enough to model many decision
problems. For example, the dominating set problem can be expressed by the FO-formula

ψ ≡ ∃x1 . . . ∃xk∀y
k∨
i=1

(y = xi ∨ y ∼ xi),

which says “are there vertices x1, . . . , xk such that every vertex y is one of them or adjacent
to one of them?” Viewing the dominating set problem as parameterized problem, where the
solution size k is the parameter, the parameter for for the model checking problem beocomes
the length of the fomula |φ|. Many other problems like this, for example independent set or
chordal deletion, can be modeled in FO-logic, making FO model checking a powerful tool to
solve parameterized problems. As FO is less expressive than MSO, it is not surprising that
efficient model checking algorithms exist beyond bounded tree-width. There is a series of
results proving fpt running times on bounded degree graphs, planar graphs, minor-closed
classes, topological minor-closed classes, locally bounded tree-width and many more [26,
13, 6, 18]. All these graph classes are generalized by bounded expansion or nowhere dense
classes which are part of the beautiful sparsity theory introduced by Nešetřil and Ossona de
Mendez [24]. Dvořák, Král’, and Thomas [11] showed that FO model checking is linear fpt
on bounded expansion and Grohe, Kreutzer, and Siebertz [16] showed an almost linear fpt
run time on nowhere dense graph classes (the run time is f(|φ|)n1+o(1) for some function f

depending on the graph class). The latter result is in some sense final for sparse graph classes:
If a graph class is monotone, that is, closed under taking subgraphs, then FO model checking
is fpt on this class iff the class is nowhere dense. One recent development that reaches beyond
sparsity is the result by Dreier, Mählmann, and Siebertz who look at structurally sparse
graph classes [7].

If we turn from decision problems to optimization problems, the picture changes again. In
some cases an optimization problem can be solved by using the underlying decision problem
as a subroutine. For example, we can easily find the smallest dominating set for a graph by
trying all k’s. On the other hand if we fix k and ask what is the best partial dominating
set with k vertices, i.e., how many vertices can be dominated by k vertices, a self-reduction
seems to be impossible. For such questions, we need a more expressive logic. Kuske and
Schweikardt introduced the logic FOC(P), which is FO with powerful counting extensions [21]
and showed that its model checking problem is fpt on classes of bounded degree. However,
FOC(P) is so expressive that its model checking problem becomes hard on trees of bounded
depth. This stays true even for the fragment FO({>0}), which is still very expressive, but
at least allows for an approximative model checking algorithm in fpt time [10] on classes
of bounded expansion; the algorithms gives the correct answer or responds with “I do not
know”. The latter answer is allowed only if small pertubations in the number symbols of the
formula make it both satisfied and unsatisfied.

The most general type of counting formulas known so far that can efficiently and exactly
be evaluated on graph classes of bounded expansion are of the form

∃x1 . . . ∃xk #y φ(y, x1, . . . , xk) > N, (1)

where N is a number that can depend on the order of the graph [8]. The semantics
of the counting term #y φ(y, u1, . . . , uk) for ui ∈ V (G) is the number of vertices v ∈
V (G) with G |= φ(v, u1, . . . , uk). In this way, partial dominating set can be expressed as
∃x1 . . . ∃xk #y

∨
i=1,...,k(y = xi ∨ y ∼ xi) > N , where u∼ v denotes adjacency in the graph.

Instead of graphs we consider colored graphs, where nodes can have colors. In a formula
we talk about colors by using a unary predicate for each color. In that way we can express
questions like “are there k nodes dominating at least N of the blue nodes?” A corresponding
formula might look like

D. Mock and P. Rossmanith 35:3

∃x1 . . . ∃xk #y
k∨
i=1

(
blue(y) ∧ (y = xi ∨ y ∼ xi)

)
> N. (2)

While we know that formulas like that can be evaluated efficiently on classes of bounded
expansion, as it is of the form of (1), not much is known how much further we can extend the
fragment of counting formulas beyond (1) without losing fixed parameter tractability. One
might expect that changing “> N” into “= N” in (2) should not make the problem W -hard,
yet neither is such a result known, nor does it follow from a simple self-reducibility argument
such as using (2) and binary search. Similarly, asking for k vertices that simultaneously
dominate at least N blue and N red vertices seems not fundamentally harder than the same
problem with only one color class, but cannot be expressed in the form of (1) either.

For the sake of completeness, we mention two other fragments, which are orthogonal
to the ones discussed before. The fragment FOC1(P) of FOC(P) introduced by Grohe
and Schweikardt extends FO by allowing to formulate cardinality constraints on counting
terms that have at most one free variable. The model checking problem for FOC1(P) is
fpt on nowhere dense classes [17]. For bounded expansion classes, Toruńczyk introduced a
stronger query language (also orthogonal to ours) extending FO logic by aggregation over
semirings [27].

Algorithmic Results and Techniques. The main result (Theorem 6) of this paper is to
answer these questions affirmatively and to go significantly further. We develop an algorithm
that evaluates formulas of the form

ψ ≡ ∃x1 . . . ∃xk P
(
#y φ1(x1, . . . , xk, y), . . . ,#y φℓ(x1, . . . , xk, y)

)
, (3)

where P is an arbitrary polynomially computable predicate on numbers and the φi’s are FO
formulas. If P can be evaluated in constant or at least in g(ℓ) time1 (in the uniform cost
model for some function g) then evaluating ψ can be done in time f(|ψ|)nℓ+1 polylog(n) for
some function f on graph classes of bounded expansion. If P is a boolean combination of
≥- or ≤-comparisons to constants, then the running time of the model checking problem
improves to f(|ψ|)nℓ polylog(n) (see Lemma 11). This subsumes the result of [10, Theorem
1.2] up to polylogarithmic factors. Later, we will extend the result to counting tuples with
the counting quantifier, which means that #y can be replaced by #(y1, . . . , yp) in formula 3.

Note that formulas of the form (3) are quite expressive. They capture many multivariate
optimization problems where you look for k vertices that optimize a possibly quite complicated
target function. For example, you might want to find a set of k vertices U such that every
other vertex is reachable from U by a path of length at most ten. You pay a penalty for each
vertex v proportional to the distance of v to U . Finding the k vertices with the lowest penalty
is fpt on every graph class of bounded expansion because the problem can be expressed by a
formula of the form (3). Moreover, the algorithm will not depend on the graph class (but
its running time will). In a multivariate optimization problem we can also find witnesses
for each Pareto-optimal solution size. For example, if we look for k vertices that dominate
as many red and as many blue vertices as possible, there might exist Ω(n) many different
Pareto-optimal ways.

1 Technically it is sufficient that there is a pseudo-polynomial fpt algorithm that evaluates P (n1, . . . , nℓ)
in time f(ℓ)(n1 + · · · + nℓ)O(1) in order to achieve an fpt running time for evaluating ψ.

SWAT 2024

35:4 Multivariate Optimization and Decision Problems

In a nutshell, the results about formulas of the form (1) were proved as follows (see [10] for
more details): First, the innermost existential and universal quantifiers of the input formula
are treated with quantifier-elimination, resulting in a simpler formula. In this process, the
graph is augmented with additional colored edges while still being part of (another) class
of bounded expansion. Then, a counting term #y φ(yx̄), where φ is now quantifier-free, is
replaced in a sequence of transformations by a sum of simpler counting terms. These are
simple enough to be directly evaluated, and the evaluation is represented as a family of vertex
weight functions. Then, the original task is reduced to finding a certain kind of induced
subgraph of maximal weight (which is described by one of the quantifier-free formulas). Then
one can use low treedepth colorings to reduce the problem to the case of bounded treedepth
and use LinEMSOL optimization [4] as a black box to find the result.

This approach breaks down at several places if we want to evaluate a formula of the
more complicated form (3). For example, LinEMSOL optimization always finds the biggest
weighted solution and cannot be used to establish the existence of a given weight. Moreover,
it can handle only univariate weights. In order to prove our main result, we use dynamic
programming on the treedepth decomposition using vectors of weights. This is achieved by
formulating the problem of finding a subgraph described by a quantifier-free formula with
constraints on the multivariate weights as an MSO-evaluation problem. This means that the
problem can be expressed as a homomorphism that maps the satisfying assignments of the
MSO-formula into a semiring. After applying treedepth colorings as in [10] those problems
can be evaluated quickly on graphs of bounded treedepth by the result of Courcelle and
Mosbah [2].

Lower Bounds. The second result is a conditional lower bound for formulas of the form (3)
(Theorem 18). Under SETH we cannot evaluate formulas of the restricted form

∃x1 . . . ∃xk
ℓ∧
i=1

#y φi(x1, . . . , xk, y) = Ni,

on star forests2 where the φi’s are quantifier-free formulas and the Ni’s are numbers, in time
f(k + ℓ)nℓ−ε for any ε > 0 and function f . We reduce from the k-Sum problem, using a
tight conditional lower bound on dense k-Sum instances under SETH [1]. The upper and
lower bounds given by Theorems 6 and 18 are tight up to an almost linear factor in n.

In Theorem 20 we show that introducing an additional universal quantifier between the
existential quantifiers and the counting quantifier makes evaluating those formulas on forests
of depth 2 W[1]-hard. The same holds if one has two nested counting quantifiers.

2 Preliminaries

We write Z and N for the integers and natural numbers (including 0), [k] = {1, . . . , k}.

Graphs. We consider labeled graphs G = (V,E, P1, . . . , Pm) where V is the vertex set,
E the edge set and P1, . . . , Pm ⊆ V the labels of G. The order |G| of G equals |V |. The
size ∥G∥ of G is |V | + |E| + |P1| + · · · + |Pm|. We often write V (G) and E(G) for the vertex
and edge sets of G. Unless stated otherwise, graphs are undirected. An expansion G′ of a
graph G is a graph on the same vertex set as G and its edges form a superset of E(G).

2 A star forest is a disjoint union of stars.

D. Mock and P. Rossmanith 35:5

Sparse graph classes. A treedepth decomposition of a graph G is a rooted forest F on the
same vertices as G, such that for every edge uv ∈ E(G) either u is an ancestor of v in F or
vice versa. The treedepth of a graph G is the minimum depth any treedepth decomposition
of G.

A graph G is a topological depth-r minor of another graph H if an ≤r-subdivision of G is
isomorphic to a subgraph of H [24, 5].

▶ Definition 1 ([24]). A graph class C has bounded expansion if for all r ∈ N there exists
t = t(r) ∈ N such that for all G ∈ C, and all topological depth-r minors H of G, ∥H∥/|H| ≤ t.

It is nowhere dense if for all r ∈ N there exists a t ∈ N such that no G ∈ C contains Kt

as a topological depth-r minor. If a graph class is not nowhere dense it is somewhere dense.

▶ Remark 2. Following [16], a class has effectively bounded expansion if t(r) is computable.
If the class C in Lemmas 3 and 5 and Theorem 18 has effectively bounded expansion, then
the algorithms in those statements are uniform and their running times are computable.

Logic. The notation x̄ stands for x1 . . . x|x̄|. Usually |x̄| is denoted by k. We write φ(x̄) if
φ has x̄ as free variables. Let G be a structure and β be the assignment with β(xi) = ui for
i ∈ [k]. For simplicity, we write G |= φ(ū) instead of the satisfaction relation (G, β) |= φ(x̄)
and Jφ(ū)KG instead of the interpretation Jφ(x̄)K(G,β) which can be a number if φ is a counting
term from FOC(P). A formula is quantifier-free if it contains no ∃, ∀ or # quantifiers. A
conjunctive clause is a conjunction over (possibly negated) predicates. The length of a formula
φ is denoted by |φ| and is the number of symbols in φ. In particular, the length of any
number-symbol N ∈ Z is one (and should not be confused with the length of the binary
encoding of N). Adjacency between two variables x, y is denoted by x∼y. For two signatures
we write σ ⊆ ρ to indicate that ρ extends σ. All signatures are finite and the cardinality |σ|
of a signature equals its number of symbols.

We interpret a labeled graph G = (V,E, P1, . . . , Pm) as a logical structure with universe
V (G) := V , binary relation E(G) := E and unary relations P1, . . . , Pm.

Counting Logic. We are interested in fragments of the counting logic FO(P), introduced by
Kuske and Schweikardt [21], which is a fragment of FOC(P). Compared to traditional first-
order logic, it introduces counting over one variable and comparing the number of witnesses
using numerical predicates from a set P. We give an informal definition. Given a FO(P)
formula φ and a variable y, #y φ(yx̄) is a counting term. The semantics of J#y φ(yū)KG

are the number of vertices v satisfying Jφ(vū)KG. Multiple counting terms t1, . . . , tm with
a predicate P ∈ P yield an FO(P) formula P (t1, . . . , tm). The semantics of this formula is
true iff the evaluation of the counting terms is in JP K. This is generalized by FOC(P), which
allows counting tuples #ȳ φ(ȳx̄) and allows addition and multiplication of counting terms.
For more details, we refer the reader to [21]. The logic FO({>0}) [10] is a special case of
FO(P) where the unary predicates are of the form ≥ t for t ∈ N. That is, counting terms
can be used only in the form #y φ(yx̄) ≥ t. This logic is also known as FO(C) [12].

Computational model. We use the RAM model with a uniform cost measure.
If a function f : Zℓ → Z is part of the output of an algorithm, it is represented by a list

of its non-zero entries. Thus, even if the domain has infinite size, the representation is finite
if f ’s support is. In most of our cases, the support of f will be {−N, . . . , N}ℓ for some N ,
which usually is linear in the input.

SWAT 2024

35:6 Multivariate Optimization and Decision Problems

3 Applications

Before we get into the main part of this work, we want to illustrate in detail its possible
applications with a few examples. Let us consider a variation of the partial dominating set
problem, the Exactly t-Dominating Set Problem [19]. We are interested in set D of
size k that dominates exactly t vertices in a graph G. By deciding G |= ψ using Theorem 6
for the formula

ψ ≡ ∃x1 . . . ∃xk#y
(k∨
i=1

y = xi ∨ y ∼ xi
)
= t

we can solve the Exactly t-Dominating Set Problem on classes of bounded expansion
in time f(k)n2 polylog n. As a byproduct we get a list of all t such that there exists such a
set of size k. Hence, one could also solve the problem of finding a partial dominating set
of size k where the number of dominated vertices t has to satisfy some (easily computable)
numerical predicate P , e.g., that t has to be prime.

Another variation: Given a graph where the vertices are colored red or blue, we want
to find a set D of k vertices that dominates at least t1 many red and at least t2 many blue
vertices. This can be expressed by the following formula:

∃x1 . . . ∃xk(#y
(
blue(y)∧

k∨
i=1

(y = xi∨y∼xi)
)

≥ t1 ∧#y
(
red(y)∧

k∨
i=1

(y = xi∨y∼xi)
)

≥ t2)

Thus, we can evaluate this problem in f(k)n2 polylog n time on classes of bounded expansion
by Lemma 11. If “≥” is replaced by “=” in the formula above, by Theorem 6 we can even
compute all pairs (t1, t2) where the adjusted formula holds, but in time f(k)n3 polylog n.
Additionally, it is also possible to express that the vertices x1, . . . , xk are, e.g., connected or
independent. This increases the run time only in the function f(k).

4 Algorithms

In this section we show the algorithmic results, most importantly Theorem 6 in Sec-
tions 4.1 and 4.2. Namely, that both the query evaluation and query counting problem
for formulas of the form ψ ≡ ∃x1 . . . ∃xk P (#y φ1(x̄, y), . . . ,#y φℓ(x̄, y)) can be solved in
f(|ψ|)nℓ+1 polylog n time on graph classes of bounded expansion. This is followed by an
improvement in the running time by a factor n for the special case of Lemma 11 that deals
with ≤-constraints in Section 4.3. In a nutshell, we put the information needed to evaluate
general counting terms depending on multiple variables into vertex weights that depend
on only one variable. The resulting combinatorial problem is then reduced to the case
of bounded treedepth. Solving this problem on bounded treedepth is then deferred to its
own Section 4.2 as it is the main technical contribution of this paper. There, we introduce
Mosbah’s and Courcelle’s concept of MSO-evaluation problems. Then we show that our
problem can indeed be modeled as an MSO-evaluation problem and that we get the desired
running time. In Section 4.3 we consider the special case of ≤-constraints, which can be
handled more efficiently. At last, in Section 4.4 we show that the previous results also hold if
the counting quantifier can count tuples instead of single variables.

D. Mock and P. Rossmanith 35:7

4.1 Reduction to Weighted Sets
We build upon the tools used in [10]3 as there a similar but weaker fragment of FO({>0})
was considered, namely formulas of the form ∃x1 . . . ∃xk #y φ(y, x1, . . . , xk) > N, (see (1)).
However, we need to adapt them to the multivariate case, i.e., where we consider multiple
counting terms #y φ(yx̄) at once.

The result of the following lemma is similar to [9, Theorem 4]. The only difference is that
equality between J#y φ(yū)KG⃗ and

∑|x̄|
i=1 cω,i(ui) is generalized to the ℓ formulas φ1, . . . , φℓ

and ℓ sums over “families” of weight functions c(j)
ω,i. Note that the set Ω is the same for

every φj and that the running time does not change compared to [9, Theorem 4].
The following lemma allows us to represent counting terms that depend on k + 1 vertices

as a sum of vertex weights which depend only on one variable. This procedure works even
for multiple counting terms at once.

▶ Lemma 3. Let C be a class of bounded expansion with signature σ. One can compute for
first-order formulas φ1(yx̄), . . . , φℓ(yx̄) with signature σ a set of conjunctive clauses Ω with
free variables x̄, and signature ρ ⊇ σ that satisfies the following property:

There exists a class C′ of bounded expansion with signature ρ. such that for every G⃗ ∈ C
one can compute in time O(∥G⃗∥) an expansion G⃗′ ∈ C′ of G⃗ and functions c(j)

ω,i(v) : V (G⃗) → Z
for ω ∈ Ω, i ∈ [|x̄|], and j ∈ [ℓ] with c(j)

ω,i(v) = O(|G⃗|) such that for every ū ∈ V (G⃗)|x̄| there
exists exactly one formula ω ∈ Ω with G⃗′ |= ω(ū). For this formula

(
J#y φ1(yū)KG⃗, , J#y φℓ(yū)KG⃗

)
=

(|x̄|∑
i=1

c
(1)
ω,i(ui), ,

|x̄|∑
i=1

c
(ℓ)
ω,i(ui)

)
.

Proof. When we look into the proof of [9, Theorem 4], we see that the expansion G⃗′ of G⃗
does not depend on any formula, but only on G. Moreover, the set of conjunctive clauses Ω
depends only on the signature ρ. Thus, when applying [9, Theorem 4] to the formulas
φ1, . . . , φℓ sequentially both the graph extension G⃗′ and the set of clauses Ω are identical
for each application. Only the weight functions depend on φ1, . . . , φℓ. Thus, we get our
result. ◀

For simplicity, let us define C(j)
ω (ū) :=

∑|x̄|
i=1 c

(j)
ω,i(ui) and abbreviate it as C(j)(ū) if ω is clear

from context.
With Lemma 3, the original task boils down to finding a vertex tuple ū that satisfies

a simple quantifier-free formula ω and has “correct” vertex weights, i.e., C(j)(ū) = wj for
all j ∈ ℓ. Let us give a formal definition.

▶ Definition 4.

Counting ℓ-Weighted k-Set Problem
Input: k, ℓ ∈ N, a graph G, a quantifier-free FO-formula ω with variables x1 . . . xk and
weight functions c(j)

i : V (G) → Z for i ∈ [k], j ∈ [ℓ]
Output: a partial function a : Zℓ → N where a(w) is the number of ū ∈ V (G)k
satisfying
1. G |= ω(ū)
2. C(j)(ū) =

∑
i∈[k] c

(j)
i (ui) = wj for all j ∈ [ℓ]

3 The relevant results for our approach can be found in more detail in the full version on arXiv [9].

SWAT 2024

35:8 Multivariate Optimization and Decision Problems

To solve the Counting ℓ-Weighted k-Set Problem, we follow the approach in [9,
Theorem 2] and reduce the case for graphs of bounded expansion to graphs of bounded
treedepth. These graphs are structurally much simpler and have a rich landscape of meta-
theorems. The reduction is achieved by a so-called low treedepth coloring [24].

For now, let us assume we can solve the problem above in time f(|ω|, d)nℓ+1 polylog n on
graphs of tree-depth d, as stated in the following lemma. We give the proof in Section 4.2.

▶ Lemma 5. Assume we are given k, ℓ ∈ N, a quantifier-free first-order formula ω(x1 . . . xk),
a treedepth-decomposition of a graph G of depth d and weight functions c(j)

i : V (G) → Z
with |C(j)(v1, . . . , vk)| ≤ N for j ∈ [ℓ] and i ∈ [k]. Then, we can solve the Counting
ℓ-Weighted k-Set Problem with G, ω and c(j)

i as input in time f(|ω|, d)nN ℓ logN for
some function f .

With this result at hand, we use a similar technique as in the proof of [9, Theorem 2].

▶ Theorem 6. Let C be a class of bounded expansion. There exists a function f such
that for all graphs G ∈ C and first-order formulas φ1(yx̄), . . . , φℓ(yx̄), one can compute a
function a : Zℓ → N where a(w1, . . . , wℓ) is the number of solutions ū ∈ V (G)k with

G |= ψ(ū) where ψ(x̄) ≡
∧
j∈[ℓ]

#y φj(yx̄) = wj

in time f(|ψ|)nℓ+1 polylog(n).

Proof. We apply Lemma 3 to G and φ1, . . . , φℓ yielding a functional graph G⃗′ from a class
of bounded expansion, a set of conjunctive clauses Ω over an extended signature, and weight
functions c(j)

ω,i : V (G) → Z for ω ∈ Ω, i ∈ [k], j ∈ [ℓ]. Then

G |=
∧
j∈[l]

#y φj(yū) = wj

iff there exists an ω ∈ Ω such that both

G⃗′ |= ω(ū) and C(j)
ω (ū) = wj for all j ∈ [ℓ].

The latter is an instance of the Counting ℓ-Weighted k-Set Problem. Using the
techniques from the proof of [9, Theorem 2] we reduce this problem from graphs of bounded
expansion to graphs of bounded treedepth with the help of low treedepth colorings.

Before we continue, it will be easier to transform G⃗′ into a relational structure G′: Every
function f is replaced by a binary relation Ef with Ef (G′) = {(v, f G⃗′(v)) | v ∈ V (G⃗′)}, and
we keep unary predicates. For every (functional) conjunctive clause ω(x̄) we construct a
relational conjunctive clause ω′(x̄z̄) with G⃗′ |= ω(ū) iff G′ |= ∃z̄ω′(x̄z̄) for every ū ∈ V (G⃗′)|x̄|.

There exists a vertex coloring χ of G, so called k-treedepth colorings, such that each
subgraph of G induced by at most k colors has at most treedepth k. Denote the set of all
such subgraphs with H. As G is from a class of bounded expansion C, one can compute in
fC(k)n time a k-treedepth coloring that uses at most fC(k) colors [24]. Hence, if we want to
“find” a fixed k-vertex tuple ū ∈ V (G)k, there must exist k colors such that ū is contained in
the subgraph induced by those k colors. So, we need to consider only

(
f(k)
k

)
such subgraphs

when looking for a solution to the ℓ-Weighted k-Set Problem and solve the problem on
such a subgraph which has treedepth k. For more details, see the proof of [9, Theorem 2].

Thus, for every ω ∈ Ω, possible colorings of ū with colors from χ and H ∈ H we apply
Lemma 5 to solve the counting problem. Then, for every weight tuple (w1, . . . , wℓ) ∈
{−N, . . . ,+N}ℓ we add up the counts over all subgraphs H ∈ H, possible colorings of
ū, and ω ∈ Ω, and output this sum for (w1, . . . , wℓ). In total, the computation time is
O

(
|Ω|

(
f(k)
k

)
knN ℓ poly(ℓ) polylog(N) + f ′(|ψ|)n

)
= O

(
g(|ψ|)nℓ+1 polylog(n)

)
. ◀

D. Mock and P. Rossmanith 35:9

By using Theorem 6 and looking for a tuple (w1, . . . , wℓ) which is contained in P and
has strictly positive output we get the following corollary.

▶ Corollary 7. Let C be a class of bounded expansion. There exists a function f such that
for all graphs G ∈ C, first-order formulas φ1(yx̄), . . . , φℓ(yx̄), and all computable relations
P ⊆ Nℓ one can decide

G |= ∃x1 . . . ∃xkP (#y φ1(yx̄), . . . ,#y φℓ(yx̄))

in time O
(
f(|φ1| + · · · + |φℓ|)nℓ+1 polylog(n) + rnℓ

)
where r is the time needed to decide

membership in P .

4.2 Solving the ℓ-Weighted k-Set Problem on bounded treedepth
In order to construct an algorithm satisfying Lemma 5 (that is, solving the ℓ-Weighted
k-Set Problem on bounded treedepth graphs), we will use the machinery of monadic
second-order evaluations on graphs of bounded treewidth (on bounded treedepth even),
introduced by Courcelle and Mosbah [2]. (This should not be confused with Courcelle’s
theorem for MSO model checking on graphs of bounded treewidth [3]). Monadic second order
evaluations can be used to compute a function of an optimal solution if the function can be
computed iteratively on a tree decomposition. In the case of a join node the values of the
children have to be combined in some way and in the case of introduce and forget nodes the
values have to be updated in the right way. When you use this machinery, and typically in
other DP algorithms as well, the values you use carry more information than is needed in the
end. Therefore, the needed information has to be extracted by an homomorphism. Updating
the values is done by operations on a semiring. For example, if you want to find a vertex cover
of minimal size in a node-weighted graph, your semiring would be (N ∪ {∞},min,+,∞, 0)
and the homomorphism would map a (partial) solution to its weight, which is the sum of the
weights of each contained vertex.

We have to show that Counting ℓ-Weighted k-Set Problem is an MSO-evaluation
problem. We refer the reader to [22, Section 3.3.3] for definitions of semirings, weak
homomorphism, MSO logic, assignments and the semiring of assignments. We also follow
their notation.

Let us very briefly mention the most relevant definitions. Let G be a graph and φ a
first-order formula.4 Then, sat(φ,G) denotes the set of assignments to variables of φ over G,
and assignring(φ,G) = (2assignments(φ,G),∪, ∪̂, ∅, ∅̂) denotes the semiring over the power set
of assignments where ∪̂ is the Cartesian product of assignments and ∅̂ the set containing
only the empty assignment. The operation ∪̂ combines assignments from G1 and G2 when a
graph G can be “decomposed” into two graphs G1 and G2, e.g., as in tree-decompositions.

▶ Definition 8. A graph problem P is an MSO-evaluation problem if there is an MSO-formula
φ and a semiring R = (UR,⊕,⊗, 0̂, 1̂) such that P can be stated as computing h(sat(φ,G)),
where G = (V,E) and the weak semiring homomorphism h between assignring(φ,G) and R

are part of the input.

The following fact follows from Proposition 3.1 and Theorem 2.10 from [2].

▶ Proposition 9. Let P be an MSO-evaluation problem, expressed by a weak homomorphism h

into a semiring R. Then, P can be computed on a graph G given a tree decomposition T of
width w in time O(fP (w)|T |η) where η is the time complexity of evaluating the homomorphism
and performing the semiring operations.

4 The formula can also be from MSO in general. For our needs, FO suffices.

SWAT 2024

35:10 Multivariate Optimization and Decision Problems

To express the Counting ℓ-Weighted k-Set Problem as an MSO-evaluation problem,
we define the semiring ℓ-WeightedSolCount := (U,⊕,⊗, 0̂, 1̂) where elements of U = NW

are infinite sequence of natural numbers indexed by ℓ-tuples in W = Zℓ. An entry a ∈ U

means that, for a tuple w ∈ W , there are aw many assignments ū ∈ V (G)k with multivariate
weight w.

More formally, given a graph G with weight functions c(j)
i and a first-order formula φ, we

define a weak homomorphism h : assignring(φ,G) → ℓ-WeightedSolCount by

h(A) := a and for w ∈ W with aw :=
∣∣{ ū ∈ A | C(j)(ū) = wj for all j ∈ [ℓ] }

∣∣
where A is some set of assignments5 ū ∈ V (G)k to φ.

Hence, this problem is an MSO-evaluation problem by Definition 8. Equivalently, instead
of a being a vector indexed by ℓ-tuples, we can imagine a being a function mapping an
ℓ-tuple w to the number a(w) of solutions with multivariate weight w.

But first, we need to complete the definition of ℓ-WeightedSolCount by defining the
operations and constants. The addition ⊕ is the element-wise addition defined as

(a⊕ b)w := aw + bw for w ∈ W

with the neutral element 0̂ := (0)W , the all-zero vector indexed by W . The multiplication ⊗
is defined by the convolution

(a⊗ b)w :=
∑

r+s=w
ar · bs for w ∈ W

with neutral element 1̂, where 1̂(0,...,0) = 1 and 1̂w = 0 for w ̸= (0, . . . , 0).
The weak homomorphism h is then defined by

h({ū}) = (aw)w∈W with aw =
{

1 if C(j)(ū) = wj for all j ∈ [ℓ]
0 otherwise

where ū is an assignment from V (G)k. The image of h for other sets of assignments is derived
from the singleton sets and semiring properties.

One can easily verify that ℓ-WeightedSolCount is a semiring. Indeed, ℓ-WeightedSolCount
is similar to the CardCounting semiring in [22, Example 28.4]. However, we are not interested
in the number of solutions of some cardinality but of some certain weight. Moreover, the
weight is multivariate and not univariate. Also, it should not be confused with the evaluation
problem described in [2, Section 4.8]. There, a linear combination of multiple weight functions
is considered, which is fundamentally different from our approach.

▶ Example 10. To show the Counting ℓ-Weighted k-Set Problem and ℓ-
WeightedSolCount in action, let us consider the problem of finding an independent set
of certain weight on a graph with two vertex weight functions, c(v) and c′(v). Let us say we
are interested in an independent set with weights 24 and 96 w.r.t to c and c′ respectively,

This problem can be easily modeled as Counting ℓ-Weighted k-Set Problem with
ℓ = 2 and ω(x̄) =

∧
i<j xi ≁ xj . The output function a(24, 96) tells us the number of

(ordered) independent sets ū with weight
∑
i c(ui) = 24 and

∑
i c

′(ui) = 96.

5 Here, we only consider assignments of k vertex variables as φ is constrained to have only those as free
variables. For MSO formulas, we would need to consider set variables, but this is out of scope for our
work.

D. Mock and P. Rossmanith 35:11

The weak homomorphism h maps a set A ⊆ V (G)k of independent sets to a vector
a ∈ ZNℓ . The entry h(A)(24,96) tells us the number of independent sets in A that have weight
24 and 96 w.r.t. c and c′.

Before we apply the result about MSO-evaluation problems, discuss the complexity of the
operations on ℓ-WeightedSolCount. Even though elements of U have a priori infinite size,
in our application their size will be bounded. The weights in the graph are finite, even
bounded by O(n) by Lemma 3. Thus, the highest weight possible of a k-vertex tuple is
O(kn) which we will denote by N . So let us assume we are given two elements a, b from
ℓ-WeightedSolCount, which are N -bounded. That is, aw = 0 if ∥w∥∞ > N . Such vectors can
be represented naturally in O(N ℓ) space. Then the addition a⊕ b trivially needs time O(N ℓ).
As a⊗ b is a convolution, it can be computed in time O(ℓN ℓ logN) using DFT [28].

The following lemma follows from Counting ℓ-Weighted k-Set Problem being an
MSO-evaluation problem and applying the result of Courcelle and Mosbah.

▶ Lemma 5. Assume we are given k, ℓ ∈ N, a quantifier-free first-order formula ω(x1 . . . xk),
a treedepth-decomposition of a graph G of depth d and weight functions c(j)

i : V (G) → Z
with |C(j)(v1, . . . , vk)| ≤ N for j ∈ [ℓ] and i ∈ [k]. Then, we can solve the Counting
ℓ-Weighted k-Set Problem with G, ω and c(j)

i as input in time f(|ω|, d)nN ℓ logN for
some function f .

Proof. First, from a treedepth decomposition T of depth d we can easily construct a tree
decomposition of width d. Also, we know the ℓ-Weighted k-Set Problem is an MSO-
evaluation problem, which can be expressed by evaluating h(sat(φ,G)) as described above
in the definition of ℓ-WeightedSolCount. Hence, we can apply Proposition 9 on G, φ and the
weight functions c(j)

i for this problem. This yields us an algorithm solving the given problem
in time O(f(d)|T | · η) = O(f(d)nℓN ℓ logN) where η is the complexity of the operations
in the semiring ℓ-WeightedSolCount. Indeed, η is bounded by O(ℓN ℓ logN) as the vectors
appearing during the computation are N -bounded and the image of C(j) is bounded by N
as well. ◀

4.3 Run Time Improvements for ≤-Relations
For the special case, where P consists of boolean combinations of ℓ ≤-relations, i.e.,
#y φ(yx̄) ≥ t for constant t ∈ N , we shave of a factor of n in the running time.

This case can easily be reduced to a bounded number of conjunctions of counting terms
#y φ(yx̄) ≥ t of length at most ℓ, by transforming the boolean combination into disjunctive
normal form (DNF). Then each conjunctive clause is regarded separately by pushing the
existential quantifier into the disjunction.

▶ Lemma 11. Let C be a graph class of bounded expansion. There exists a function f such
that for all graphs G ∈ C, first-order formulas φ1(yx̄), . . . , φℓ(yx̄), and numbers t1, . . . , tℓ ∈ N
one can decide in time O(f(|φ1| + · · · + |φℓ|)nℓ polylog(n)) whether

G |= ∃x1 . . . ∃xk(#y φ1(yx̄) ≥ t1 ∧ · · · ∧ #y φℓ(yx̄) ≥ tℓ).

Proof. In the proof of Theorem 6, the subroutine of Lemma 5 computes semiring operations
O(n) times which determines the overall run time. The run time of such operations is
almost linear in the table size of the dynamic program. There, the number of tuples was
assumed to be the worst-case, namely O(N ℓ), resulting in a running time for the semiring

SWAT 2024

35:12 Multivariate Optimization and Decision Problems

operations of O(poly(ℓ)N ℓ polylog(N)). In our case, we do not need all tuples, only the
Pareto-optimal ones. That is, for any (partial) solutions ū, v̄ ∈ V (G)k if ū dominates v̄, that
is, J#y φi(yū)KG ≥ J#y φi(yv̄)KG for all i ∈ [ℓ], then v̄ can be disregarded further on.

The number of Pareto-optimal solutions in the domain {−N, . . . ,+N}ℓ is bounded
by O(N ℓ−1). (Fix values for the first ℓ − 1 dimensions, then there can be at most one
Pareto-optimal tuple agreeing with the first ℓ− 1 values.)

Thus, the application of the semiring operations in Lemma 5 takes only O(ℓN ℓ−1 logN)
time instead of O(ℓN ℓ logN). Continuing the run time analysis as in Lemma 5 and Theorem 6,
we get the desired result. ◀

Note that this only improves the run time for the decision problem for this fragment. This
approach does not work for the counting problem.

We can achieve the same run time improvement for modulo counting. If the predicate is a
boolean combination of modulo counting terms, that is, the predicate checks if #y φ(yx̄) ≡ a

(mod b) then both the decision and even the counting problem is in time O(f(|φ1| + · · · +
|φℓ|)nℓ polylog(n)) for classes of bounded expansion. However, Nešetřil, Ossona de Mendez
and Siebertz [25] showed recently an even stronger result; they achieve a linear fpt time
algorithm for the model checking problem of the logic FO+Mod which contains arbirarily
nested modulo counting quantifiers.

4.4 Lifting to Counting Tuples #(y1, . . . , yp)
The algorithmic results (Theorem 6, Corollary 7, and Lemma 11) can be lifted to counting
tuples, that is, to counting quantifiers #ȳ φ(ȳx̄) that are also part of FOC(P) (where ȳ is
tuple of variables (y1, y2, . . . , yp)).6 This comes at a cost: The polynomial factor of the run
time increases to n(ℓ+1)p.

▶ Corollary 12. Let C be a class of bounded expansion. There exists a function f such that
for a given graph G ∈ C, first-order formulas φ1(ȳx̄), . . . , φℓ(ȳx̄) and all computable relations
P ⊆ Nℓ one can decide

G |= ∃x1 . . . ∃xkP (#ȳ φ1(ȳx̄), . . . ,#ȳ φℓ(ȳx̄))

in time O
(
f(|φ1| + · · · + |φℓ|)n(ℓ+1)|ȳ| polylog(n) + rnℓ

)
where r is time needed to decide

membership in P .

We achieve this result by adapting both the statements made in this paper and their
dependencies, which originate from [10]. This adaptation is quite straightforward; it suffices
to replace every occurrence of #y with the more general counting quantifier #ȳ . Additionally,
the monovariate weight functions c(j)

i must be extended to c
(j)
I : V (G)p → Z, where I ∈

V (G)p.
In the statements [9, Lemma 2, 3, 6, 15, and Theorem 2, 4], we apply the same changes.

Furthermore, if, for some i ∈ [|x̄|], clauses are restricted to the form τ(y) ∧ ψ(x̄) ∧ f(y) =
g(xi) ∧ ∆ ̸=(yx̄) (with non-empty or empty ∆ ̸=) in the statements or proofs, we extend
them to the form τ(ȳ) ∧ ψ(x̄) ∧ f1(y1) = g1(xi1) ∧ · · · ∧ fp(yp) = gp(xip) ∧ ∆ ̸=(yx̄) for some
I = (i1, . . . , ip) ∈ [k]p. Note that the runtime increase in adapting [9] mostly occurs in [9,
Lemma 6], where its running time increases to ∥G∥p.

6 We want to thank Michał Pilipczuk as he brought to our attention that this approach may likely extend
to counting tuples which we formerly thought to be impossible.

D. Mock and P. Rossmanith 35:13

The same applies to Definition 4 and Lemmas 3 and 5 in Section 4.1. It’s worth mentioning
that the N in Theorem 6 is now O(np) instead of being linear in n, which explains the
increase in time complexity.

As these changes are rather trivial and clutter the presentation of the results, we decided
to omit explicit proofs here.

5 Hardness

We have seen that formulas ψ of the form ∃x1 . . . ∃xk P (#y φ1(x̄, y), . . . ,#y φℓ(x̄, y)) can be
evaluated in time O(f(|ψ|)nℓ+1 polylog(n)) on graph classes of bounded expansion. We now
show that this cannot be improved by more than an almost linear factor in n under SETH.

For this, let us recall the Subset Sum Problem, which is often used as a starting point
in fine-grained complexity theorem. Here, we need a recent conditional lower bound for this
problem.

▶ Definition 13 (k-Sum). Given n integers x1, . . . , xn ∈ N and a target value T , the task in
the SubsetSum problem is to decide whether there is a subset of the numbers above which
sums to T . For the k-Sum problem, the task for the same instance is to decide where there
are k numbers which add up to T .

▶ Proposition 14 ([1]). Assuming SETH, for any ε > 0 there exists a δ > 0 such that
Subset Sum is not in time O(T 1−ε2δn), and k-Sum is not in time O(T 1−εnδk).

Note that δ does not depend on k, only on ε.
We will show a conditional lower bound of the following problem on star forests. Note

that those graphs have treedepth 2.

▶ Definition 15 (ℓ-Variate k-Satisfaction). Given a graph G, quantifier-free FO formulas
φ1(x1, . . . , xk, y), . . . , φℓ(x1, . . . , xk, y) and integers w1, . . . , wℓ the problem ℓ-Variate k-
Satisfaction asks whether

G |= ∃x1 . . . ∃xk
ℓ∧
i=1

φi(x1, . . . , xk, y) = wi.

First, we make a simple observation that any number can be uniquely represented in any
(natural) base. The following is tailored to our use case.

▶ Observation 16. Observe, that for every ℓ, T ∈ N, every number 0 ≤ x ≤ T can be
uniquely expressed as x =

∑ℓ
j=1 aj · τ j−1 for some aj ∈ {0, . . . , τ − 1} and where τ = ⌈ ℓ

√
T ⌉.

Now, we relax the conditions on the base and allow an “overlap”. As an example, consider
the number 35 in base-10. If we allowed the digits to range from 0 to 15 (represented by
0, . . . , 9, A, . . . , F), 35 can then be expressed also by 2F (= 2 · 101 + 15 · 100 in “base-10 with
A-F”). The representation is then of course not unique, but the number of such representations
is small.

▶ Lemma 17. Consider Observation 16 but where the aj are allowed to range from 0 to
kτ − 1 instead. Then the number of such representations of x is bounded by kℓ.

Proof. We prove the claim by induction over ℓ. First, let us notice that
∑ℓ
j=1 aj · τ j−1 < kτ ℓ

for aj ∈ {0, . . . , kτ − 1}.
For the induction, let x ∈ {0, . . . , kτ ℓ}. Consider a representation of x with x =∑ℓ
j=1 aj · τ j−1 and aj ∈ {0, . . . , kτ − 1} for all j ∈ [ℓ].

SWAT 2024

35:14 Multivariate Optimization and Decision Problems

For ℓ = 1, x = a1 holds. Hence, there is only one representation.
For ℓ > 1, let us consider furthermore y = x − aℓτ

ℓ−1. Then, by our first note y =∑ℓ−1
j=1 aj · τ j−1 < kτ ℓ−1. By the induction hypothesis there are at most kℓ−1 representations

of y in this form (where j ranges from 1 to ℓ− 1). There are at most k valid choices for aℓ,
as x − aℓτ

ℓ−1 has to fall into the range {0, . . . , kτ ℓ−1 − 1}. Thus, there are k · kℓ−1 = kℓ

possibilities to represent x as described. ◀

▶ Theorem 18. Assuming SETH, for any ε > 0 and ℓ ∈ N the ℓ-Variate k-Satisfaction
on star forests is not in time f(ℓ, k) · |G|ℓ−ε for all k ∈ N and functions f .

A few words about the implications of the theorem are in order: The result does not rule
out that there exists a pair of ℓ and k and an ε > 0 such that ℓ-Variate k-Satisfaction
can be solved in time f(k, ℓ)|G|ℓ−ε. It only says that (for any fixed ℓ) there cannot be a
(family of) algorithms which achieves this “form” of running time. Indeed, if one looks closer
into the proof, one can show that for every fixed ℓ there can be at most finitely many k

where a faster running time can be achieved. Note especially that for k < ℓ, one can achieve
a running time of f(k, ℓ)nk < f(k, ℓ)nℓ+1 by essentially brute-forcing all solution candidates.

Before we come to the proof, let us consider the (hopefully easier) case of ℓ being 1 or 2.
We can express a given k-Sum instance as a graph where every number x is expressed as a
star with x endpoints. Now a set of k numbers from the k-sum instance adds up to T iff
there are k stars with T endpoints in total.

Generalizing this to ℓ = 2, we change the construction such that a star does not have x
endpoints but ⌊x/

√
T ⌋ blue endpoints and x− ⌊x/

√
T ⌋ red endpoints, which represent the

most significant bits (MSB) and least significant bits (LSB) of x respectively. Now, a set of
k numbers add up to T iff the k corresponding stars have ⌊T/

√
T ⌋ blue and T − ⌊T/

√
T ⌋

red neighbors in total, where the numbers are the MSB and the LSB of T respectively. Due
to carryovers the above statement does not hold technically. This issue can be fixed with a
small overhead by guessing the form of the carryovers. The number of possible carryovers is
small.

In the proof, the technique is generalized to all ℓ ∈ N and the technicalities concerning
carryovers are addressed as well.

Proof. Let k, ℓ ∈ N. Consider a k-Sum instance with n numbers x1, . . . , xn and a target
value T . We reduce this to a ℓ-Variate k-Satisfaction instance, where |G| = Θ(nℓ ℓ

√
T)

and where G is a star forest with n components. The reduction represents the numbers of the
k-Sum instance as a graph G with colors [ℓ] and each number xi as a star in G with ai,j many
endpoints of color j ∈ [ℓ] where xi =

∑ℓ
j=1 ai,j · τ j−1, τ = ⌈ ℓ

√
T ⌉ and ai,j ∈ {0, . . . , τ − 1}

(see Observation 16). Then, there exist k numbers in the k-Sum instance which add up to T
if and only if there are k vertices v1, . . . , vk in G with (in total) Bj many neighbors of color j
for every j ∈ [ℓ] such that T =

∑ℓ
j=1 Bjτ

j−1.
After having constructed the graph, let us look at the formula. Each number Bj ranges

from 0 to k(τ−1) as each vertex vi has at most τ−1 neighbors of a given color. Let T be sets
of ℓ-tuples (w1, . . . , wℓ) ∈ {0, . . . , k(τ − 1)}ℓ with T =

∑ℓ
j=1 wj · τ j−1. By Lemma 17 the size

of T is bounded in a function of k and ℓ. Let (w1, . . . , wℓ) ∈ T . Then, the following formula
expresses that there are k (central) vertices whose neighbors of color j ∈ [ℓ] (expressed by
the predicate Cj) add up to wj

ψ(w1,...,wℓ) ≡ ∃x1 . . . ∃xk
ℓ∧
j=1

(
#y

(
Cj(y) ∧

k∨
i′=1

y ∼ xi′
)

= wj

)
.

Thus, G together with the formula above and (w1, . . . , wℓ) is the instance of ℓ-Variate
k-Satisfaction constructed above.

D. Mock and P. Rossmanith 35:15

Hence, for each tuple (w1, . . . , wℓ) ∈ T we check whether G satisfies ψ(w1,...,wℓ). If this is
the case for some tuple, the k-Sum instance is accepted, otherwise it is not.

The size of the resulting graph G is nℓ⌈ ℓ
√
T ⌉, the size of each ψ(w1,...,wℓ) is O(kℓ), the

construction of a single instance takes linear time in |G| and |ψ|. This construction is repeated
|T | = f(k, ℓ) times for each ψ(w1,...,wℓ).

To show the theorem statement, assume for contradiction that there exist ℓ ∈ N and ε > 0
such that for every K ∈ N there exists k ≥ K such that the ℓ-Variate k-Satisfaction
on star forests can be solved in time O(|G|ℓ(1−ε)f(l, k)) some function f . We consider any
k-Sum instance for k. It has n numbers and a target value T . As we have seen above, it can
be reduced to |T | instances of ℓ-Variate k-Satisfaction on star forests of size nℓ ℓ

√
T .

Then, k-Sum could be solved in time

Θ(|G| + |φ|) + |T |O(|G|ℓ(1−ε)f(k, ℓ))=O((nℓ ℓ
√
T)ℓ(1−ε)f(k, ℓ))=O(T 1−εnℓ(1−ε)f(k, ℓ)).

Recall Proposition 14 and let us assume that SETH holds. The above run time contradicts
the non-existence of an algorithm for k-Sum with run time T 1−εnδk if ℓ(1 − ε) < δk. As δ
depends only on ε, the inequality can be satisfied by “big enough” k. To be more precise,
it holds for k ≥ ℓ(1 − ε)/δ. Thus, we get that the existence of an algorithm for ℓ-Variate
k-Satisfaction in time O(|G|ℓ(1−ε)f(l, k)) contradicts SETH. ◀

From this result, we get directly a lower bound for model checking of formulas with
inequality, that is, ∃x1 . . . ∃xk

∧ℓ
i=1 #y φi(yx̄) ≥ Ni. Note that by Lemma 11 we have an

algorithm with a running time of f(k, ℓ)nℓ polylog n.

▶ Corollary 19. Assuming SETH, for any ε > 0 and ℓ ∈ N the ℓ-Variate k-Satisfaction
with inequalities on star forests is not in time O(f(ℓ, k)|G|1/2ℓ−ε) for all k and functions f .

Proof. Note that an equality #y φ(yx̄) = N can be expressed by two inequalities #y φ(yx̄) ≤
N ∧ #y φ(yx̄) ≥ N , and equivalently by #y ¬φ(yx̄) ≥ |G| −N ∧ #y φ(yx̄) ≥ N . A formula
∃x1 . . . ∃xk

∧
i∈[ℓ] #y φi(yx̄) = Ni from ℓ-Variate k-Satisfaction with ℓ counting terms is

then equivalent to the formula ∃x1 . . . ∃xk
∧
i∈[ℓ] #y φi(yx̄) ≤ Ni ∧ #y ¬φi(yx̄) ≤ |G| − Ni

with 2ℓ counting terms using inequalities. The result is weaker in the degree of the polynomial
by a factor of 1/2, as the number ℓ of counting terms doubles when going from equalities to
inequalities as discussed above. ◀

Lower Bounds for Other Fragments
In the following we show that our algorithmic results cannot be generalized to slightly more
general fragments. Firstly, consider the existential fragment with nested counting, that is, we
add another counter formula inside the counting formulas considered in Section 4. Secondly,
we show that one cannot add even one universal quantifier between the existential quantifiers
and the counting quantifier.

Here, we regard the equality predicate = t only (where t is a constant which depends on
the graph). This can easily be extended to inequality predicates by replacing #y φ = t with
both #y φ ≥ t ∧ #y φ ≤ t. Also note that the constant t depends on the graph. It is also
possible to construct a formula which is independent of the graph. However, this formula
needs a comparison between two counting terms instead.

The reduction is based on the reduction from [17, Theorem 4.1] and [9, Lemma 16]. The
proof is omitted and can be found in the appendix.

SWAT 2024

35:16 Multivariate Optimization and Decision Problems

▶ Theorem 20. The model checking problem on forests of depth 2 is W[1]-hard for FO({=})-
formulas ψ of the form
1. ∃x1 . . . ∃xk∀z#y φ(x̄yz) = t

2. ∃x1 . . . ∃xk#z [#y φ(x̄yz) = t] = s

3. ∃x1 . . . ∃xk∀z∀z′#y φ(x̄yzz′) = t

where φ is a quantifier-free FO-formula.
Moreover, under ETH there is no algorithm with a running time of no(

√
|ψ|) for formulas

of the form 1 and 2, and no(|ψ|) for formulas of form 3.

6 Concluding Remarks

We have shown that on classes of bounded expansion, we can solve the query evaluation and
query counting problem of formulas of the form ∃x1 . . . ∃xk P (#y φ1(x̄, y), . . . ,#y φℓ(x̄, y))
in time f(|ψ|)nℓ+1 polylog n, and it cannot be improved to f(|ψ|)nℓ−ε for any ε > 0. For the
case of ≤-constraints we improved the running time for the query evaluation problem to
f(|ψ|)nℓ polylog n.

It would be interesting to close the gap between the lower bound of Theorem 18 and the
upper bound of Theorem 6. One approach could be improving the algorithm of Lemma 5.
For such approaches it is certainly needed to maintain a table of size Õ(nℓ) in the worst
case. However, it could be possible that in many nodes of the treedepth decomposition, the
maintained tables have considerably smaller size, e.g., at the leaves and that together with
output sensitive FFT algorithms, e.g., ones that have almost linear run time in the size of
the output [23], one could achieve a better run time amortized across all n nodes of the
treedepth decomposition. But we do not know if the table size during the dynamic program
on the treedepth decomposition permits an improved run time analysis.

Also, for the case that P consists of a boolean combination of constraints lower bounding
the counting terms by a constant, the gap between lower and upper bound is quite large.
As the Pareto-front for those should have size Θ(nℓ−1) it seems that the lower bound could
be improved. However, the numerical problems known to us which have strong conditional
lower bounds as subset sum are not based on such inequalities.

Moreover, extending our results to the class of nowhere dense graphs would be certainly
interesting. The results of [10] for FO({>0}) are already partially lifted to such classes [8].
They used very different techniques, however. Especially, they did not use (or show) an
equivalent result to Lemma 3. On top of that , recently the non-existence of quantifier
elimination for FO on nowhere dense classes was shown [15] which implies that different
techniques are needed.

References
1 Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-based lower

bounds for subset sum and bicriteria path. ACM Trans. Algorithms, 18(1):6:1–6:22, 2022.
doi:10.1145/3450524.

2 B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-decomposable graphs.
Theoretical Computer Science, 109(1):49–82, 1993. doi:10.1016/0304-3975(93)90064-Z.

3 Bruno Courcelle. The monadic second-order logic of graphs I. Recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

4 Bruno Courcelle, Johann A Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150,
2000.

https://doi.org/10.1145/3450524
https://doi.org/10.1016/0304-3975(93)90064-Z
https://doi.org/10.1016/0890-5401(90)90043-H

D. Mock and P. Rossmanith 35:17

5 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

6 Anuj Dawar, Martin Grohe, and Stephan Kreutzer. Locally excluding a minor. In 22nd IEEE
Symposium on Logic in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw, Poland,
Proceedings, pages 270–279. IEEE Computer Society, 2007. doi:10.1109/LICS.2007.31.

7 Jan Dreier, Nikolas Mählmann, and Sebastian Siebertz. First-order model checking on
structurally sparse graph classes. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 567–580.
ACM, 2023. doi:10.1145/3564246.3585186.

8 Jan Dreier, Daniel Mock, and Peter Rossmanith. Evaluating restricted first-order counting
properties on nowhere dense classes and beyond. In 31st Annual European Symposium on
Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands, volume 274 of
LIPIcs, pages 43:1–43:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPIcs.ESA.2023.43.

9 Jan Dreier and Peter Rossmanith. Approximate evaluation of first-order counting queries.
CoRR, abs/2010.14814, 2020. doi:10.48550/arXiv.2010.14814.

10 Jan Dreier and Peter Rossmanith. Approximate evaluation of first-order counting queries.
In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021,
Virtual Conference, January 10 - 13, 2021, pages 1720–1739. SIAM, 2021. doi:10.1137/1.
9781611976465.104.

11 Zdeněk Dvořák, Daniel Kráľ, and Robin Thomas. Deciding first-order properties for sparse
graphs. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010,
October 23-26, 2010, Las Vegas, Nevada, USA, pages 133–142. IEEE Computer Society, 2010.
doi:10.1109/FOCS.2010.20.

12 Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Perspectives in Mathematical
Logic. Springer, 1995.

13 Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-decomposable
structures. J. ACM, 48(6):1184–1206, 2001. doi:10.1145/504794.504798.

14 Robert Ganian, Petr Hliněný, Alexander Langer, Jan Obdržálek, Peter Rossmanith, and
Somnath Sikdar. Lower bounds on the complexity of MSO1 model-checking. J. Comput. Syst.
Sci., 80(1):180–194, 2014. doi:10.1016/j.jcss.2013.07.005.

15 Mario Grobler, Yiting Jiang, Patrice Ossona de Mendez, Sebastian Siebertz, and Alexandre
Vigny. Discrepancy and sparsity, 2021. doi:10.48550/arXiv.2105.03693.

16 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. J. ACM, 64(3):17:1–17:32, 2017. doi:10.1145/3051095.

17 Martin Grohe and Nicole Schweikardt. First-order query evaluation with cardinality conditions.
In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, Houston, TX, USA, June 10-15, 2018, pages 253–266. ACM, 2018. doi:
10.1145/3196959.3196970.

18 Wojciech Kazana and Luc Segoufin. First-order queries on classes of structures with bounded
expansion. Log. Methods Comput. Sci., 16(1), 2020. doi:10.23638/LMCS-16(1:25)2020.

19 Joachim Kneis, Daniel Mölle, and Peter Rossmanith. Partial vs. complete domination: t-
dominating set. In SOFSEM 2007: Theory and Practice of Computer Science, 33rd Conference
on Current Trends in Theory and Practice of Computer Science, Harrachov, Czech Republic,
January 20-26, 2007, Proceedings, volume 4362 of Lecture Notes in Computer Science, pages
367–376. Springer, 2007. doi:10.1007/978-3-540-69507-3_31.

20 Stephan Kreutzer and Siamak Tazari. Lower bounds for the complexity of monadic second-
order logic. In Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science,
LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom, pages 189–198. IEEE Computer
Society, 2010. doi:10.1109/LICS.2010.39.

SWAT 2024

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1109/LICS.2007.31
https://doi.org/10.1145/3564246.3585186
https://doi.org/10.4230/LIPIcs.ESA.2023.43
https://doi.org/10.4230/LIPIcs.ESA.2023.43
https://doi.org/10.48550/arXiv.2010.14814
https://doi.org/10.1137/1.9781611976465.104
https://doi.org/10.1137/1.9781611976465.104
https://doi.org/10.1109/FOCS.2010.20
https://doi.org/10.1145/504794.504798
https://doi.org/10.1016/j.jcss.2013.07.005
https://doi.org/10.48550/arXiv.2105.03693
https://doi.org/10.1145/3051095
https://doi.org/10.1145/3196959.3196970
https://doi.org/10.1145/3196959.3196970
https://doi.org/10.23638/LMCS-16(1:25)2020
https://doi.org/10.1007/978-3-540-69507-3_31
https://doi.org/10.1109/LICS.2010.39

35:18 Multivariate Optimization and Decision Problems

21 Dietrich Kuske and Nicole Schweikardt. First-order logic with counting. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20-23, 2017, pages 1–12. IEEE Computer Society, 2017. doi:10.1109/LICS.2017.8005133.

22 Alexander Langer, Felix Reidl, Peter Rossmanith, and Somnath Sikdar. Practical algorithms
for MSO model-checking on tree-decomposable graphs. Comput. Sci. Rev., 13-14:39–74, 2014.
doi:10.1016/j.cosrev.2014.08.001.

23 Vasileios Nakos. Nearly optimal sparse polynomial multiplication. IEEE Trans. Inf. Theory,
66(11):7231–7236, 2020. doi:10.1109/TIT.2020.2989385.

24 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

25 Jaroslav Nešetřil, Patrice Ossona de Mendez, and Sebastian Siebertz. Modulo-counting
first-order logic on bounded expansion classes. Discrete Mathematics, page 113700, 2023.
doi:10.1016/j.disc.2023.113700.

26 Detlef Seese. Linear time computable problems and first-order descriptions. Math. Struct.
Comput. Sci., 6(6):505–526, 1996. doi:10.1017/s0960129500070079.

27 Szymon Toruńczyk. Aggregate queries on sparse databases. In Dan Suciu, Yufei Tao, and
Zhewei Wei, editors, Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS 2020, Portland, OR, USA, June 14-19, 2020, pages
427–443. ACM, 2020. doi:10.1145/3375395.3387660.

28 Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra (3. ed.). Cambridge
University Press, 2013.

https://doi.org/10.1109/LICS.2017.8005133
https://doi.org/10.1016/j.cosrev.2014.08.001
https://doi.org/10.1109/TIT.2020.2989385
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1016/j.disc.2023.113700
https://doi.org/10.1017/s0960129500070079
https://doi.org/10.1145/3375395.3387660

Path-Reporting Distance Oracles with Linear Size
Ofer Neiman #

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Idan Shabat #

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract
Given an undirected weighted graph, an (approximate) distance oracle is a data structure that
can (approximately) answer distance queries. A Path-Reporting Distance Oracle, or PRDO, is a
distance oracle that must also return a path between the queried vertices. Given a graph on n

vertices and an integer parameter k ≥ 1, Thorup and Zwick [22] showed a PRDO with stretch 2k − 1,
size O(k · n1+1/k) and query time O(k) (for the query time of PRDOs, we omit the time needed to
report the path itself). Subsequent works [20, 7, 8] improved the size to O(n1+1/k) and the query
time to O(1). However, these improvements produce distance oracles which are not path-reporting.
Several other works [12, 13] focused on small size PRDO for general graphs, but all known results
on distance oracles with linear size suffer from polynomial stretch, polynomial query time, or not
being path-reporting.

In this paper we devise the first linear size PRDO with poly-logarithmic stretch and low query
time O(log log n). More generally, for any integer k ≥ 1, we obtain a PRDO with stretch at most
O(k4.82), size O(n1+1/k), and query time O(log k). In addition, we can make the size of our PRDO
as small as n + o(n), at the cost of increasing the query time to poly-logarithmic. For unweighted
graphs, we improve the stretch to O(k2).

We also consider pairwise PRDO, which is a PRDO that is only required to answer queries from
a given set of pairs P. An exact PRDO of size O(n + |P|2) and constant query time was provided in
[13]. In this work we dramatically improve the size, at the cost of slightly increasing the stretch.
Specifically, given any ϵ > 0, we devise a pairwise PRDO with stretch 1 + ϵ, constant query time,
and near optimal size no(1) · (n + |P|).

2012 ACM Subject Classification Theory of computation → Shortest paths

Keywords and phrases Graph Algorithms, Shortest Paths, Distance Oracles

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.36

Related Version Full Version: https://arxiv.org/abs/2405.14254

Funding Partially supported by the Lynn and William Frankel Center for Computer Sciences and
ISF grant 970/21.

Acknowledgements The second-name author would like to thank Michael Elkin, who also suggested
to the second-name author that the pairwise spanner of [19] might be extended to a pairwise PRDO,
and that a PRDO for unweighted graphs with size O

(
n1+ 1

k

)
and stretch O(k2) can be achieved.

1 Introduction

Given an undirected weighted graph G = (V, E) with n vertices and positive weights on the
edges w : E → R+, the distance dG(u, v) between two vertices u, v ∈ V is the minimal weight
of a path between them in G. For a parameter α ≥ 1, a distance oracle with stretch α is a
data structure, that given a query for a pair of vertices (u, v), returns an estimated distance
d̂(u, v) such that

dG(u, v) ≤ d̂(u, v) ≤ α · dG(u, v) .

A Path-Reporting Distance Oracle, or PRDO, is a distance oracle that must also return a
path in G of weight d̂(u, v) between the queried vertices u, v.

© Ofer Neiman and Idan Shabat;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 36; pp. 36:1–36:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:neimano@cs.bgu.ac.il
mailto:shabati@post.bgu.ac.il
https://doi.org/10.4230/LIPIcs.SWAT.2024.36
https://arxiv.org/abs/2405.14254
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Path-Reporting Distance Oracles with Linear Size

Distance oracles have been the subject of extensive research in the last few decades. They
are fundamental objects in Graph Algorithms, due to their both practical and theoretical
usefulness. The main interest is in the triple tradeoff between the stretch of a distance oracle,
its size, and its query time. In some cases, the preprocessing time, (that is, the time needed
to construct the distance oracle) is also considered. Note that for every query, a PRDO must
return a path P , thus the running time of the query algorithm is always in the general form
of O(q + |P |). We usually omit the term1 |P | from the query time and write only O(q).

This work focuses on path-reporting distance oracles for general graphs. The path-
reporting property is more appealing for certain applications that require navigation or
routing [17, 11, 24]. See the survey [21] and the references therein for additional applications
of distance oracles.

1.1 Linear Size Path-Reporting Distance Oracles
In [22], a PRDO with stretch 2k − 1, size O(kn1+1/k) and query time O(k) was shown.
Assuming the girth conjecture of Erdős [15], this result is best possible, up to the factor of
k in the size and query time.2 The query time was improved to O(log k) by [23]. Observe
that kn1/k ≥ log n for any k ≥ 1, so the PRDO of [22, 23] cannot be sparser than Θ(n log n).
Subsequent works [20, 7, 8] obtained distance oracles with stretch 2k − 1, improved size
O(n1+1/k) and constant query time. However, these distance oracles are not path-reporting.

Of particular interest is trying to achieve a PRDO of linear size. The first such result [12]
obtained a PRDO with size O(tn), for any parameter t ≥ 1, and O(log t) query time, but
had a polynomial stretch O(tn2/

√
t), and required that the aspect ratio of the weights is

polynomially bounded. This result was improved by [13], who showed a PRDO with stretch
O(k) and size O(n1+1/k), but at the cost of increasing the query time to O(n1/k+ϵ), where
ϵ > 0 is a constant. Note that the query time O(n1/k+ϵ) is prohibitively large - this term
dominates the length of many of the output paths, so the PRDO suffers from large query time
for these paths. For this reason, it is of special interest to construct linear size PRDOs with
query time that is far less than polynomial in n, say polylogarithmic in n. Another variant
of [13] does achieve a PRDO with query time O(log log n) and stretch logO(1) n, however its
size O(n log log n) is no longer linear.

We conclude that in all previous results, every linear size distance oracle suffers from a
polynomial stretch [12], has polynomial query time [13], or simply cannot report paths [8].

1.1.1 Our Results
In this work we devise the first linear size PRDO for general graphs with polylogarithmic
stretch and low query time. Specifically, for any integer k ≥ 1 our PRDO has stretch O(k4.82),
size O(n1+1/k), and query time O(log k). Indeed, setting k = log n yields linear size, logO(1) n

stretch and O(log log n) query time. Our main result is for the case k = log n, where we get
a linear size PRDO with low query time. In fact, for any k > log n

log log log n , our new PRDO
improves all previous bounds.

Note that since the query time is low, in most cases it is dominated by the length of the
reported path. Therefore, the strength of this result is not in the precise expression for the
query time, but in the fact that the query time is far less than polynomial in n.

1 Throughout this paper, |P | denotes the number of edges in a path P .
2 In fact, Erdős girth conjecture only implies that to achieve stretch 2k − 1, any distance oracle must use

Ω(n1+ 1
k) bits. However, in [8] a lower bound of Ω(n1+ 1

k) words (each of size log n bits) for PRDOs is
proved.

O. Neiman and I. Shabat 36:3

We can refine our result to obtain an ultra-compact PRDO, whose size is as small as
n + o(n) (we measure the size by words, that is, the oracle uses storage of n log n + o(n log n)
bits), at the cost of increasing the query time to logO(1) n. In view of the lower bound of [8],
this space usage is optimal, up to additive lower order terms. If the graph is unweighted, we
offer a simpler construction with improved stretch O(k2).

1.2 Pairwise Path-Reporting Distance Oracles
A pairwise distance oracle is a distance oracle that is also given as input a set of pairs P,
and is required to answer queries only for pairs in P . The problem of designing such oracles
is related to the extensive research on distance preservers: these are subgraphs that preserve
exactly all distances between pairs in P. When allowing some stretch, these are sometimes
called pairwise spanners.3 Distance preservers were introduced in [9], and pairwise spanners
have been studied in [10, 18, 4, 3, 6, 19].

In [13], an exact pairwise PRDO was shown with constant query time and size O(n+ |P|2).
For distance preservers, [9] showed a lower bound of Ω(n2/3|P|2/3). Note that for |P| = n2−δ,
the lower bound implies that any distance preserver must have size Ω(|P| · nδ/3), so there
are no distance preservers with near-linear size (except for the trivial case when P contains
a constant fraction of all pairs). In [5], it was proved that exact pairwise PRDOs suffer
from the same lower bounds of exact preservers (see Theorem 14 in [5]). Thus, it is very
natural to ask if the size of a pairwise PRDO can be reduced when allowing a small stretch.
Specifically, we would like to obtain a very small stretch (e.g., 1 + ϵ for any ϵ > 0), and size
that is proportional to |P| + n (which is the basic lower bound).

1.2.1 Our Results
In this work we devise a pairwise PRDO with near optimal size no(1) · (|P| + n), constant
query time, and stretch 1 + ϵ, for any ϵ > 0 (the o(1) term in the size depends logarithmically
on ϵ). This result uses the techniques of [19] on hopsets and spanners, and extends them for
pairwise path-reporting distance oracles.

1.3 Our Techniques
Our main result on linear size (and ultra-compact) PRDO uses a conceptually simple idea:
we partition the graph into O(n/k) clusters, and define the cluster-graph by contracting every
cluster to a single vertex (keeping the lightest edge among parallel edges). Next, we apply
the [22] distance oracle on this cluster-graph. In addition, we store a certain spanning tree
for every cluster. Given a query (u, v), the algorithm first finds a path in the cluster-graph
between the clusters containing u, v, and for each cluster in this path, it finds an inner-cluster
path between the entry vertex and the exit vertex of the cluster, using the spanning tree.

In order to implement this framework, it is required to find a clustering so that the
overhead created by going through the spanning tree of every cluster is small enough. For
unweighted graphs, we apply a simple clustering with radius O(k), and maintain a BFS
tree for each cluster. However, for weighted graphs a more intricate clustering is required.
Note that we cannot enforce a small diameter bound on all clusters, since by only restricting
the diameter, each cluster can be very small, and we need to have at most O(n/k) clusters.
Instead, we use a variant of Borůvka clustering [1].

3 In [19] pairwise spanners with small 1 + ϵ stretch are called near-exact preservers.

SWAT 2024

36:4 Path-Reporting Distance Oracles with Linear Size

In Borůvka’s algorithm for minimum spanning tree, in each phase, every vertex adds its
adjacent edge of minimal weight to a forest F (breaking ties consistently), and the connected
components of F are contracted to yield the vertices of the next phase. If we truncate this
process after t phases, we get a clustering, analyzed in [1]. Unfortunately, any phase in
this clustering may produce long chains, in which case the stretch cannot be controlled. To
rectify this, we delete certain edges in F , so that every cluster is a star, while ensuring that
the number of non-singleton clusters is large enough. These stars are also the basis for the
spanning tree of each cluster. The main technical part is analyzing the stretch induced by
this clustering on the paths returned by calling the distance oracle on the cluster-graph.

1.4 Organization
After some preliminaries in Section 2, we show our PRDO for unweighted graph is in Section 3,
and for weighted graphs in Section 4. Our result for pairwise PRDO appears in Section 5.

1.5 Bibliographic Note
Following this work, [14] showed (among other results) a PRDO of linear size with stretch
Õ(log n) and query time O(log log log n).

2 Preliminaries

Let G = (V, E) be an undirected weighted graph. In all that follows we assume that G is
connected.

Spanners. For a parameter α ≥ 1, an α-spanner is a subgraph S of G, such that for every
two vertices u, v ∈ V ,

dS(u, v) ≤ α · dG(u, v) . (1)

The spanner is called a pairwise spanner, if for a given a set of pairs P, we only require (1)
to hold for all (u, v) ∈ P .

Trees. Let x, y be two vertices in a rooted tree. We denote by p(x) the parent of x, which
is the unique neighbor of x that lies on the path from x to the root, and by h(x) its height,
which is the number of edges on the path from x to the root. Denote by lca(x, y) the lowest
common ancestor of x, y, which is a vertex z such that x, y are both in its sub-tree, but not
both in the sub-tree of any child of z. Note that the unique path between x, y in the tree is
the concatenation of the unique paths from x to lca(x, y), and from lca(x, y) to y.

The following lemma let us easily find paths within a tree T .

▶ Lemma 1. Let T be a rooted tree, and assume we are given h(x) and p(x) for every vertex
x in T . There is an algorithm that given two distinct vertices a, b in a tree T , finds the
unique path between a, b in T . The running time of this algorithm is proportional to the
number of edges in the output path (or O(1) if the path is empty).

Proof. First, if a = b, then the desired path is empty and we return it in O(1) time.
Otherwise, if h(a) > h(b), recursively find the unique path Pp(a),b in T between p(a) and b,
and return {a, p(a)} ◦ Pp(a),b. Symmetrically, if h(b) ≥ h(a), return {b, p(b)} ◦ Pp(b),a.

The correctness of this algorithm follows from the fact that if, for example, h(a) ≥ h(b),
and a ̸= b, then b cannot be in the sub-tree of a in T , hence the unique path between a, b

must pass through p(a). In each recursive call we reduce the sum h(a) + h(b) by 1, and

O. Neiman and I. Shabat 36:5

therefore the algorithm ends when a = b = lca(a, b). Therefore the running time of this
algorithm is proportional to the length of the unique paths from a to lca(a, b) and from b to
lca(a, b). The concatenation of these paths is exactly the returned path by our algorithm,
which is the unique path in T between a, b. Hence, the running time is proportional to the
number of edges in the output path, as desired. ◀

2.1 Thorup-Zwick PRDO
A main component of our new PRDO relies on a well-known construction by Thorup and
Zwick [22]. Given a weighted graph G with n vertices and an integer parameter k ≥ 1, they
constructed a PRDO with stretch 2k − 1, query time O(k) and size O(kn1+1/k).

A useful property of the Thorup-Zwick (TZ) PRDO is that for every query, it returns a
path that is contained in a sub-graph S of G, such that |S| = O(kn1+1/k). Notice that since
the stretch of this PRDO is 2k − 1, then S must be a (2k − 1)-spanner of G. We call S the
underlying spanner of the PRDO. One can compute the underlying spanner S either during
the PRDO construction, or after its construction by querying the PRDO on every pair of
vertices, and computing the union of the resulting paths.

A result of [23] improved the query time of the TZ PRDO to O(log k) instead of O(k),
while returning the same path that the TZ PRDO returns. Indeed, when we use here the
TZ PRDO, we consider its query time to be O(log k). The following theorem concludes this
discussion.

▶ Theorem 2 (By [22] and [23]). Let G be an undirected weighted graph with n vertices, and
let k ≥ 1 be an integer parameter. There is a PRDO for G with stretch 2k − 1, query time
O(log k) and size O(kn1+1/k), with an underlying spanner of the same size.

3 Path-Reporting Distance Oracle for Unweighted Graphs

In this section we introduce a simple variant of our construction, tailored for unweighted
graphs. We first apply a simple clustering, and store a BFS (Breadth First Search) tree for
each cluster. We next apply the TZ PRDO on the resulting cluster-graph. Finally, each query
(u, v) is answered by taking the path in the cluster-graph between the clusters containing u

and v, and completing it to a path in G using the BFS trees.

3.1 Clustering
We start by dividing the graph into clusters, using the following lemma.

▶ Lemma 3. Let G = (V, E) be an undirected unweighted graph with n vertices. Let k ∈ [1, n]
be some integer. There is an algorithm that finds a partition V =

⋃q
i=1 Ci, such that every

Ci has a spanning tree Ti = (Ci, Ei) with root ri, where Ei ⊆ E and for every v ∈ Ci,
dTi

(v, ri) ≤ k. In addition, the number of sets in this partition, q, is at most n
k .

Proof. Fix some r ∈ V , and let T = (V, ET) be the BFS tree with r as a root. The tree T is
actually the shortest paths tree from r in G, and so the path from every v ∈ V to r in T is of
length exactly dG(v, r), i.e., dT (v, r) = dG(v, r). If every vertex v ∈ V satisfies dG(v, r) ≤ k,
then we can return the trivial partition {V }, with the spanning tree T and root r.

Otherwise, let v be the furthest leaf of T from r, that is, v maximizes the length dT (v, r).
We know that dT (v, r) > k, and since G is unweighted, there is a vertex r′ on the path in T

from v to r, with dT (v, r′) = k. Denote by T ′ the sub-tree of T rooted at r′.

SWAT 2024

36:6 Path-Reporting Distance Oracles with Linear Size

Let u ∈ V be a vertex in T ′. Since r′ is on the path from u to r, and on the path from v

to r, we have

dT ′(u, r′) = dT (u, r) − dT (r′, r) ≤ dT (v, r) − dT (r′, r) = dT (v, r′) = k .

Therefore, if C is the set of vertices of T ′, we can return C as one of the sets in the desired
partition, where its spanning tree is T ′ and its root is r′. We then delete C from G and
continue recursively.

Note that the tree T ′ contains the path from v to r′, which is of length k. Since G is
unweighted, that means that T ′ contains at least k vertices, and so does C. Hence, the
number of vertices in the graph, after the deletion of C, is at most n − k. Notice also that
the tree T is still a tree, after the removal of T ′, thus the remaining graph is still connected.
As a result, we can assume that our algorithm recursively partitions the remaining graph
into at most n−k

k = n
k − 1 sets, with spanning trees and roots as desired. Together with the

last set C, we obtain a partition into at most n
k parts, with the wanted properties. ◀

Given the unweighted graph G = (V, E) and the integer k, let C be a partition as in
Lemma 3. For every C ∈ C, let T [C] and r[C] be the spanning tree of C and its root. We
define a new graph H = (C, E) as follows.

▶ Definition 4. The graph H = (C, E) is defined as follows. The set E consists of all the
pairs {C, C ′}, where C, C ′ ∈ C, such that there is an edge in G between C, C ′.

Given an edge {C, C ′} ∈ E, we denote by e(C, C ′) the edge {x, y} of G, where {x, y} is
some choice of an edge that satisfies x ∈ C, y ∈ C ′.

We denote by F the forest that consists of the disjoint union of the trees T [C], for every
C ∈ C. For a vertex x ∈ V , define h(x) to be the height of x in the tree T [C] such that
x ∈ C, and p(x) its parent in this tree.

3.2 Stretch Analysis
Fix any cluster C, let T = T [C] be its spanning tree with root r = r[C]. For any two vertices
a, b ∈ T , the unique path between them is a sub-path of the union between the two paths
from a to r and from b to r. Both of these paths are of length at most k. Hence, the resulting
path is of length at most 2k, and this path is exactly the one that the algorithm from Lemma
1 returns.

▶ Lemma 5. There is an algorithm that given two vertices u, v ∈ V , and a simple path
Q = (C1, C2, ..., Ct) in the graph H, such that u is in C1 and v is in Ct, returns a path P in
G between u and v, with number of edges

|P | ≤ t · (2k + 1) .

The running time of the algorithm is proportional to the number of edges in the output
path. The required information for the algorithm is the set {h(x), p(x)}x∈V , and the set
{e(Cj , Cj+1)}t−1

j=1.

Proof. Given the edges {Cj , Cj+1}, the set {e(Cj , Cj+1)}t−1
j=1 can be used to find xj , yj ∈ V

(vertices of the original graph G = (V, E)), such that xj ∈ Cj , yj ∈ Cj+1 and {xj , yj} ∈ E.
Define also y0 = u, xt = v. For every j ∈ [1, t], using the set {h(x), p(x)}x∈V , we can use
Lemma 1 to find a path Pj in G between yj−1 and xj , with length at most 2k. Finding all
of these paths takes time that is proportional to the sum of lengths of these paths.

O. Neiman and I. Shabat 36:7

The returned path by this algorithm is

P = P1 ◦ {x1, y1} ◦ P2 ◦ {x2, y2} ◦ · · · ◦ {xt−1, yt−1} ◦ Pt .

The time needed to report this path is O(
∑t

j=1 |Pj |) = O(|P |). The length of this path is

t − 1 +
t∑

j=1
|Pj | ≤ t − 1 + t · 2k < t · (2k + 1) .

This concludes the proof of the lemma. ◀

3.3 A PRDO for Unweighted Graphs
We are now ready to introduce the construction of our small size PRDO.

▶ Theorem 6. Let G = (V, E) be an undirected unweighted graph with n vertices, and let
k ∈ [1, log n] be some integer parameter. There is a path-reporting distance oracle for G with
stretch 2k(2k + 1) = O(k2), query time O(log k) and size O(n1+ 1

k).

Proof. Denote by TZ the PRDO from Theorem 2 with the parameter k, when constructed
over the graph H = (C, E) (the clustering C is constructed with k as the radius4). Let
ST Z ⊆ E be the set of the edges of the underlying spanner of TZ. In addition, for a given
vertex x ∈ V , denote by C(x) the vertex of H (i.e., cluster) that contains x. Recall also that
h(x) is the height of x in the tree spanning C(x) and p(x) denotes the parent of x in this
tree.

We define our new PRDO for the undirected unweighted graph G = (V, E). This PRDO
contains the following information.
1. The TZ PRDO.
2. The set {e(C, C ′) | {C, C ′} ∈ ST Z}.
3. The variables {h(x), p(x)}x∈V .
4. The variables {C(x)}x∈V .

Given a query (u, v) ∈ V 2, our PRDO queries TZ on the vertices C(u), C(v) of H.
Let Q = (C(u) = C1, C2, ..., Ct = C(v)) be the resulting path, and note that all of its
edges are in ST Z . Then, using the sets {e(Cj , Cj+1)}t−1

j=1 ⊆ {e(C, C ′) | {C, C ′} ∈ ST Z} and
{h(x), p(x)}x∈V , we find a path P in G between u, v using the algorithm from Lemma 5.
The resulting path P has length of

|P | ≤ (|Q| + 1)(2k + 1) = t · (2k + 1) ,

and it is returned as an output to the query.
Note that the path Q that TZ returned satisfies |Q| = t − 1 ≤ (2k − 1)|R|, where R is

the shortest path in H between C(u) and C(v). Let Pu,v be the actual shortest path in G

between u and v. Suppose that the vertices of H that Pu,v passes through, by the order that
it passes through them, are (T1, T2, ...Tq). By the definition of H, there must be an edge
{Tj , Tj+1} in H for every j ∈ [1, q − 1]. Hence, R′ = (T1, T2, ..., Tq) is a path in H, between
T1 = C(u) and Tq = C(v), with length of at most |Pu,v| = dG(u, v). Since R is the shortest
path in H between C(u) and C(v), we have |R| ≤ dG(u, v).

4 Actually, by constructing the clustering C with radius k
8 instead of k, the stretch of our new PRDO

decreases from 4k2 to k2. In the same way, one can achieve an arbitrarily small leading constant in the
stretch.

SWAT 2024

36:8 Path-Reporting Distance Oracles with Linear Size

As a result,

|P | ≤ t · (2k + 1)
≤ ((2k − 1)|R| + 1)(2k + 1)
≤ ((2k − 1)dG(u, v) + 1)(2k + 1)
= (4k2 − 1)dG(u, v) + 2k + 1
≤ (4k2 + 2k)dG(u, v) = 2k(2k + 1)dG(u, v) .

Thus, the stretch of our PRDO is at most 2k(2k + 1).
The query time of our oracle consists of the time required for running a query of TZ,

and of the time required for finding the path P . By Theorem 2 and Lemma 5, the total time
for these two computations is O(log k + |P |) which is O(log k) by our conventional PRDO
notations.

As for the size of our PRDO, note that the variables {h(x), p(x)}x∈V (item 3 in the
description of the oracle) can be stored using only O(n) space. The size of the set
{e(C, C ′) | {C, C ′} ∈ ST Z} equals to the size of ST Z . Therefore, by Theorem 2, the
size of TZ, as well as the size of this set (items 1 and 2), is

O(k|C|1+ 1
k) .

Recall that by Lemma 3, the size of C is at most n
k . We conclude that the total size of our

new PRDO is

O(n + k · (n

k
)1+ 1

k) = O(n1+ 1
k) . ◀

An Ultra-Compact PRDO for Unweighted Graphs. We can modify our PRDO for un-
weighted graphs, and get a PRDO of size n + o(n). Here, the required storage for our PRDO
is measured by words - each of size at most log n bits. Decreasing the size of our PRDO
is done at the cost of increasing the query time and (slightly) the stretch. The details are
deferred to the full version of this paper.

4 Path-Reporting Distance Oracle for Weighted Graphs

In this section we devise our PRDO for weighted graphs. The basic framework is similar to
the unweighted case: create a clustering of the graph, select a spanning tree for each cluster,
and then apply the TZ PRDO over the cluster-graph. To answer a query (u, v), we use the
path in the cluster-graph between the clusters containing u, v, and complete it inside each
cluster via the spanning trees edges.

The main differences from the unweighted setting are: 1) we use a more intricate clustering,
Borůvka’s clustering, and 2) the trees spanning each cluster are not BFS trees, but are a
subset of the MST (Minimum Spanning Tree) of the graph. These changes are needed in
order to achieve the desired properties - that the number of clusters is small enough, while
the stretch caused by going through the spanning trees of the clusters is controlled.

4.1 Clustering via Borůvka Forests
In this section we construct a clustering via a spanning forest of a graph. This construction
is based on the well-known algorithm by Borůvka for finding a minimum spanning tree in a
graph. Similar constructions can be found in [16, 1, 2].

O. Neiman and I. Shabat 36:9

▶ Definition 7. Given an undirected weighted graph G = (V, E), and a vertex v ∈ V , we
denote by ev the minimum-weight edge among the adjacent edges to v in the graph G. If
there is more than one edge with this minimum weight, ev is chosen to be the one that is the
smallest lexicographically.

▶ Definition 8. Given an undirected weighted graph G = (V, E), the Borůvka Forest of G is
the sub-graph G′ = (V, E′) of G, where

E′ = {ev | v ∈ V } .

Each connected component T of G′ is called a Borůvka Tree. The root of T is chosen to
be one of the adjacent vertices to the minimum-weight edge in T (if there are several such
minimum-weight edges, we pick the smallest one lexicographically, and the choice between its
two adjacent vertices is arbitrary).

To justify the use of the words “forest” and “tree”, we prove the following lemma.

▶ Lemma 9. The graph G′ is a forest. Moreover, if T is a tree in G′, x is a vertex of T ,
and p(x) is x’s parent in T (that is, the next vertex on the unique path from x to the root of
T), then {x, p(x)} = ex.

Proof. First, we prove that G′ is a forest. Seeking contradiction, assume that G′ contains a
cycle C, and let {u, v} be the heaviest edge in C (if there are several edges with the largest
weight, choose the one that is largest lexicographically). Note that since u has at least one
adjacent edge in C, that is lighter than {u, v}, then it cannot be that eu = {u, v} (recall that
eu is the lightest edge adjacent to u). Similarly, it cannot be that ev = {u, v}. Hence, we get
a contradiction to the fact that {u, v} is an edge of G′ - since every such edge must be the
edge ev of one of its endpoints v.

Next, Let T be a tree in G′, denote its root by v, and let x ≠ v be a vertex of T . We
prove by induction over the height of x, h(x), which is the number of edges in the unique
path between x and v in T .

When h(x) = 1, we have p(x) = v. We consider two cases. If {x, v} is the minimum-weight
edge in T , then by definition ex must be this edge, i.e., ex = {x, p(x)}. If {x, v} is not the
minimum-weight edge in T , then ev must be some other adjacent edge to v, thus ev ̸= {x, v}.
But then, the reason that {x, v} is in E′ must be that {x, p(x)} = {x, v} = ex.

For h(x) > 1, notice that h(p(x)) = h(x) − 1, and therefore by the induction hypothesis,
{p(x), p(p(x))} = ep(x). But then, the edge {x, p(x)} cannot be equal to ep(x), so it must be
equal to ex. ◀

The following lemma bounds the number of connected components (i.e., trees) in G′.

▶ Lemma 10. The number of connected components in G′ is at most 1
2 |V |.

Proof. Let C = (VC , E′
C) be a connected component of G′, and let x ∈ VC . The edge

ex = {x, y} is in C, hence y is also a vertex of C. In particular, |VC | ≥ 2. Hence, if {Ci}t
i=1

are the connected components of G′, then |VCi
| ≥ 2 for every i ∈ [1, t]. Thus,

1
2 |V | = 1

2

t∑
i=1

|VCi
| ≥ 1

2 · 2t = t . ◀

Next, we trim the trees in the Borůvka forest so that each of them will be a star, instead
of a general tree. For this purpose, we will need the following definitions.

SWAT 2024

36:10 Path-Reporting Distance Oracles with Linear Size

▶ Definition 11. Let G′ be the Borůvka forest of G. For a vertex x ∈ V , denote by h(x) the
height of x in the Borůvka tree containing it. Define

E′
0 = {{a, b} ∈ E′ | min{h(a), h(b)} = 0 mod 2} ,

E′
1 = {{a, b} ∈ E′ | min{h(a), h(b)} = 1 mod 2} .

We denote by E′′ the largest set among these two.
Given an undirected weighted graph G = (V, E), the Partial Borůvka Forest of G is the

graph G′′ = (V, E′′).

▶ Definition 12. A Star is a rooted tree S = (VS , ES) with root v such that for every
x ∈ VS \ {v}, {x, v} ∈ ES.

▶ Lemma 13. The partial Borůvka forest G′′ = (V, E′′) is a forest, where every tree is a
star. In addition, if S is a star in G′′, x is its root and z ≠ x is some other vertex of S, then
{z, x} = ez.

Proof. Notice that G′′ is a sub-graph of the Borůvka forest G′, hence G′′ is also a forest.
We assume that E′′ = E′

0, and the proof for the case where E′′ = E′
1 is symmetric.

Let T be a tree in G′, with root r. Note that for any vertex x ̸= r we always have
h(x) = h(p(x)) + 1, and thus min{h(x), h(p(x))} = h(p(x)) = h(x) − 1. We conclude that if
h(x) is even, then {x, p(x)} /∈ E′′, and if h(x) is odd, then {x, p(x)} ∈ E′′.

Now let S be a tree in G′′, and let x be the vertex in S that has minimal h(x). It cannot
be that h(x) is odd, otherwise p(x) is connected to x in E′′, thus p(x) is also in S and has a
smaller value of h(p(x)) = h(x) − 1. Therefore, h(x) is even. By the discussion above we
know that all of the children of x in T (y’s that satisfy p(y) = x) have an edge in E′′ to x,
but their children have no such edge. That is, S is a star with x as a root, where all the
other vertices in S are the children of x.

The last part of the lemma follows from the fact that we just proved, that the only other
vertices in a star S with a root x, are the children of x. By Lemma 9, for every such child z,
the edge {z, x} = {z, p(z)} = ez. ◀

The following lemma bounds the number of trees in the partial Borůvka forest of a graph.

▶ Lemma 14. The number of stars in G′′ is at most 3
4 |V |.

Proof. Recall the Borůvka forest G′ = (V, E′). In every spanning forest (V, F) of a graph
G = (V, E), the number of trees is exactly |V | − |F |. Thus, by Lemma 10, we get

|V | − |E′| ≤ 1
2 |V | ,

and therefore |E′| ≥ 1
2 |V |. By the definition of E′′, it contains at least half of these edges

(since it equals to the larger set among two sets that cover the entire set E′). We conclude
that |E′′| ≥ 1

4 |V |, and the number of trees in G′′, which are stars, is

|V | − |E′′| ≤ |V | − 1
4 |V | = 3

4 |V | . ◀

4.1.1 A Hierarchy of Forests
Given an undirected weighted graph G = (V, E), we construct a sequence of forests {Fi =
(V, Ei)}l

i=0, where the integer parameter l ≥ 0 will be determined later. For i = 0, define
E0 = ∅. Then, for every i ∈ [0, l], define the cluster-graph Hi = (Ci, Ei) as follows.

O. Neiman and I. Shabat 36:11

The set Ci is defined to be the set of the disjoint trees of the forest Fi. For every T, T ′ ∈ Ci,
denote by e(T, T ′) the minimum-weight edge in E among the edges between T and T ′. If
there is no such edge, denote e(T, T ′) = ⊥. Then define

Ei = {{T, T ′} | e(T, T ′) ̸= ⊥} .

The weight of an edge {T, T ′} ∈ Ei is defined to be the same as the weight of the edge
e(T, T ′) ∈ E.

For any i ∈ [0, l], given the graph Hi, let H′′
i = (Ci, E ′′

i) be the partial Borůvka forest of
Hi. The graph H′′

i is a disjoint union of stars. Let S be such star and let T0 be its root.
Define the tree Z in G to be the tree that is formed by the union of the trees in S and

the edges e(T, T0), for every T ̸= T0 in S. The root of the tree Z is defined to be the root
of T0. Finally, for any i ∈ [0, l − 1], the forest Fi+1 = (V, Ei+1) is defined to be the disjoint
union of the rooted trees Z that are formed as was described, for all stars in H′′

i .

▶ Lemma 15. For every i ∈ [0, l], the forest Fi has at most (3
4)i|V | trees.

Proof. We prove the lemma by induction over i ∈ [0, l]. For i = 0, F0 is defined to be the
graph (V, ∅), so the number of trees in F0 is |V | and the claim holds.

For i > 0, recall the graphs Hi−1 and H′′
i−1 that were used in the definition of Fi. By

the induction hypothesis, Fi−1 consists of at most (3
4)i−1|V | trees, which are exactly the

vertices of Hi−1. Then, by Lemma 14, the graph H′′
i−1 has at most 3

4 · (3
4)i−1|V | = (3

4)i|V |
stars. The forest Fi consists of a single tree Z for every star S in H′′

i−1, thus the number of
trees in Fi is at most (3

4)i|V |, as desired. ◀

4.2 Stretch Analysis
Due to space considerations, we only state here the main lemma that will be used for
bounding the stretch of our PRDO, without proof. The proof of this lemma, as well as some
other lemmata , appears in the full version of this paper.

In the next lemma, we use the notations pi(x) and hi(x) to denote the parent and the
height of x in the tree of Fi that contains x.

▶ Lemma 16. There is an algorithm that given two vertices u, v ∈ V , and a simple path
Q = (S1, S2, ..., St) in the graph Hi, such that u is in S1 and v is in St, returns a path P in
G between u and v, with

w(P) ≤ 3i+1(dG(u, v) + w(Q)) .

The running time of the algorithm is proportional to the number of edges in the output
path P . The required information for the algorithm is the set {hi(x), pi(x)}x∈V , and the set
{e(Sj , Sj+1)}t−1

j=1.

4.3 A PRDO for Weighted Graphs
We are now ready to introduce our small size path-reporting distance oracle.

▶ Theorem 17. Let G = (V, E) be an undirected weighted graph with n vertices, and let
k ≥ 1 be an integer parameter. There is a path-reporting distance oracle for G with stretch
klog4/3 4 < k4.82, query time O(log k) and size O(n1+ 1

k).

SWAT 2024

36:12 Path-Reporting Distance Oracles with Linear Size

Proof. Given the graph G = (V, E), we construct the hierarchy of forests {Fi}l
i=0 from

Section 4.1.1, where l = ⌊log4/3 k⌋ − 2. Consider the graph Hl = (Cl, El) that is defined in
Section 4.1.1. For every x ∈ V , denote by hl(x) the number of edges in the unique path from
x to the root of the tree of Fl that x belongs to. Let pl(x) be the parent of x in that tree.
Lastly, let S(x) be the vertex of Hl (i.e., tree) that contains x.

Denote by TZ the PRDO from Theorem 2 with the parameter k, when constructed over
the graph Hl. Let ST Z ⊆ El be the set of edges of the underlying spanner of TZ.

Our new PRDO D stores the following information.
1. The oracle TZ.
2. The set {e(T, T ′) | {T, T ′} ∈ ST Z}.
3. The variables {hl(x), pl(x)}x∈V .
4. The variables {S(x)}x∈V .

Given a query (u, v) ∈ V 2, the oracle D queries TZ on the vertices S(u), S(v) of Hl.
Let Q = (S(u) = S1, S2, ..., St = S(v)) be the resulting path, and note that all of its
edges are in ST Z . Then, using the sets {e(Sj , Sj+1)}t−1

j=1 ⊆ {e(T, T ′) | {T, T ′} ∈ ST Z} and
{hl(x), pl(x)}x∈V , the oracle D uses the algorithm from Lemma 16 to find a path P in G

between u, v with

w(P) ≤ 3l+1(dG(u, v) + w(Q)) .

The path P is returned as an output to the query. Note that the path Q that TZ returned
satisfies

w(Q) ≤ (2k − 1)w(R) ,

where R is the shortest path in Hl between S(u) and S(v). Similarly to the proof of Theorem
17, it is easy to verify that w(R) ≤ dG(u, v).

As a result,

w(P) ≤ 3l+1(dG(u, v) + w(Q))
≤ 3l+1(dG(u, v) + (2k − 1)w(R))
≤ 3l+1(dG(u, v) + (2k − 1)dG(u, v))
= 2k · 3l+1dG(u, v)
≤ 2k · 3log4/3 k−1dG(u, v)
< k1+log4/3 3dG(u, v) = klog4/3 4dG(u, v) .

Thus the stretch of our PRDO is smaller than klog4/3 4.
The query time of our oracle consists of the time required for running a query of TZ, and

of the time required for computing the resulting path P by Lemma 16. By Theorem 2 and
Lemma 16, the total time for these two computations is O(log k + |P |), which is O(log k) by
our conventional PRDO notations.

As for the size of the PRDO D, note that the variables {hl(x), pl(x), S(x)}x∈V (items
3 and 4 in the description of D) can be stored using only O(n) space. The size of the set
{e(T, T ′) | {T, T ′} ∈ ST Z} equals to the size of ST Z . Therefore, by Theorem 2, the size of
TZ, as well as the size of this set (items 1 and 2 in the description of D), is

O(k|Cl|1+ 1
k) .

O. Neiman and I. Shabat 36:13

Recall that Cl is the set of vertices of Hl. This set consists of the trees in the forest Fl. By
Lemma 15, the number of these trees is at most

(3
4)l|V | = (3

4)⌊log4/3 k⌋−2n ≤ (3
4)log4/3 k−3n = 64n

27k
.

Hence, the total size of our PRDO is

O(n + k · (64n

27k
)1+ 1

k) = O(n + n1+ 1
k) = O(n1+ 1

k) . ◀

An Ultra-Compact PRDO for Weighted Graphs. As in the unweighted version, the PRDO
presented above can be fine-tuned into an ultra-compact PRDO (with size n + o(n)), at the
cost of increasing the stretch and the query time. The details are deferred to the full version
of this paper.

5 Pairwise Path-Reporting Distance Oracle

Our construction of a pairwise PRDO relies on the pairwise spanner of Kogan and Parter,
from their recent paper [19] (in which the pairwise spanner is called a “near-exact preserver”).
One of their useful results, that they also relied on for constructing their pairwise spanners,
is the following lemma on hopsets. We first recall the definition of hopsets.

Let G = (V, E) be a weighted undirected graph. For vertices u, v ∈ V and some positive
integer β, d

(β)
G (u, v), denotes the weight of the lightest path between u and v in G, among

the paths that have at most β edges. An (α, β)-hopset is a set H ⊆
(

V
2
)
, such that for every

two vertices u, v ∈ V ,

dG(u, v) ≤ d
(β)
G∪H(u, v) ≤ α · dG(u, v) ,

where the weight of an edge (x, y) ∈ H is defined to be dG(x, y).
The proof of the following lemma can be found in [19].

▶ Lemma 18 (Lemma 4.4 from [19]). Let G = (V, E) be an undirected weighted graph on
n vertices, and let k, D ≥ 1 be integer parameters. For every 0 < ϵ < 1, there exists a
(1 + ϵ, β)-hopset H for G, where β = O(log k

ϵ)log k · D and

|H| = O

((
n log n

D

)1+ 1
k

)
.

Similarly to the constructions in [19], we now show how a pairwise PRDO can be produced,
using the hopsets from Lemma 18. We will use the notation β(ϵ, k) = O(log k

ϵ)log k for brevity.

▶ Theorem 19. Let G = (V, E) be an undirected weighted graph on n vertices and let P ⊆ V 2

be a set of pairs of vertices. For every ϵ ∈ (0, 1), there exists a pairwise path-reporting distance
oracle with stretch 1 + ϵ, query time O(1) and size

O

(
log n · (log log n)2

ϵ

)log log n

· Õ
(
|P| + n

)
= noϵ(1) · O(n + |P|) .

Proof. Let n = D0 > D1 > · · · > Dl = 2 be some sequence of integer parameters that
will be determined later. Denote k = log n, and for a given ϵ ∈ (0, 1), denote ϵ′ = ϵ

2(l+1) .
Let H0, H1, ..., Hl be the resulting hopsets when applying Lemma 18 on ϵ′, k = log n and
D0, D1, ..., Dl respectively. That is, Hi is a (1+ϵ′, βi)-hopset with size O((n log n

Di
)1+ 1

k), where
βi = β(ϵ′, k) · Di. For i = 0, note that βi ≥ n, thus we can simply assume that H0 = ∅ (if it
is not the case, we define H0 to be ∅, which is a (1, n)-hopset).

SWAT 2024

36:14 Path-Reporting Distance Oracles with Linear Size

We now define our oracle D to contain the following information. For every i ∈ [1, l] and
for every (x, y) ∈ Hi, let Qx,y be the shortest path in G ∪ Hi−1 between x, y, among the
paths that contain at most βi−1 edges. In addition, for every (x, y) ∈ P, let Px,y be the
shortest path in G ∪ Hl between x, y, among the paths with at most βl edges. Our oracle D

stores all of these paths:
⋃l

i=1{Qx,y}(x,y)∈Hi
∪ {Px,y}(x,y)∈P .

Given a query (u, v) ∈ P, we find the path Pl = Pu,v ⊆ G ∪ Hl that is stored in D.
Then, we replace every edge (x, y) ∈ Hl on Pl by the corresponding path Qx,y ⊆ G ∪ Hl−1.
The result is a path Pl−1 between u, v in G ∪ Hl−1. Every edge (x, y) ∈ Hl−1 on Pl−1 is
then replaced by the path Qx,y ⊆ G ∪ Hl−2, to get a path Pl−2 between u, v in G ∪ Hl−2.
We continue in the same way, until finally reaching to a path P0 between u, v in the graph
G ∪ H0 = G. We return P0 as an output to the query.

By the hopset property, we know that

w(Pl) = w(Pu,v) = d
(βl)
G∪Hl

(u, v) ≤ (1 + ϵ′)dG(u, v) .

Similarly, every (x, y) ∈ Pl that is also in Hl, is replaced with the path Qx,y, that has a
weight of

w(Qx,y) = d
(βl−1)
G∪Hl−1

(x, y) ≤ (1 + ϵ′)dG(x, y) = (1 + ϵ′)w(x, y) .

Thus, the resulting path Pl−1 has a weight of at most 1 + ϵ′ times the weight of Pl, that is

w(Pl−1) ≤ (1 + ϵ′)w(Pl) ≤ (1 + ϵ′)2dG(u, v) .

Proceeding in the same way, we conclude that w(P0) ≤ (1+ϵ′)l+1dG(u, v). Hence, the stretch
of our distance oracle is

(1 + ϵ′)l+1 = (1 + ϵ

2(l + 1))l+1 ≤ e
ϵ
2 ≤ 1 + ϵ .

For analysing the query time of our distance oracle, we can think of the query algorithm
as a single pass on the path Pl, where every time that an edge of Hl is reached, we replace
it with the appropriate path Qx,y, and continue inside Qx,y recursively. Since every step
produces an edge that will appear in the output path, the query time is proportional to
this output path. Observe, however, that the resulting path is actually a walk, and not
necessarily a simple path. By our convention of writing the query time of PRDOs, this query
time is O(1).

Lastly, we analyse the size of our pairwise PRDO. Note that by their definitions, the
paths Px,y, for every (x, y) ∈ P are of length at most βl. Similarly, the length of Qx,y, for
(x, y) ∈ Hi is at most βi−1. Therefore, the total space required for storing these paths is at
most

|P| · βl +
l∑

i=1
|Hi| · βi−1 = |P| · β(ϵ′, k) · Dl +

l∑
i=1

O

((
n log n

Di

)1+ 1
k

)
· β(ϵ′, k) · Di−1

= β(ϵ′, k) ·

(
|P| · 2 +

l∑
i=1

O

((
n log n

Di

)1+ 1
k

)
· Di−1

)

= β(ϵ′, k) · O
(
|P| + (n log n)1+ 1

k

l∑
i=1

Di−1

D
1+ 1

k
i

)
= O

(
log k

ϵ/2l

)log k

· O
(
|P| + (n log n)1+ 1

log n

l∑
i=1

Di−1

D
1+ 1

k
i

)

O. Neiman and I. Shabat 36:15

= O

(
l · log k

ϵ

)log k

· O
(
|P| + n log n ·

l∑
i=1

Di−1

D
1+ 1

k
i

)
= O

(
l · log k

ϵ

)log k

· Õ
(
|P| + n ·

l∑
i=1

Di−1

D
1+ 1

k
i

)
.

For making the last term small, we choose Di =
⌈
n(k

k+1)i
⌉
, and thus

Di−1

D
1+ 1

k
i

≤ n
(k

k+1)i−1
+1

n
(k

k+1)i·(1+ 1
k

)
= n

(k
k+1)i−1

+1
n

(k
k+1)i−1 ≤ 2 . For this choice of Di, since we want Dl to be 2,

we must have n(k
k+1)l

≤ 2, that is, l ≥ log k+1
k

(log n). Notice that log k+1
k

(log n) = log log n
log(1+ 1

k) ≤
log log n

log(2
1
k)

= k log log n , thus we can choose l = ⌈k log log n⌉ = ⌈log n · log log n⌉.
In conclusion, the size of our pairwise PRDO is at most

O

(
l · log k

ϵ

)log k

· Õ
(
|P| + n ·

l∑
i=1

Di−1

D
1+ 1

k
i

)
= O

(
l · log k

ϵ

)log k

· Õ
(
|P| + n ·

l∑
i=1

2
)

= O

(
l · log k

ϵ

)log k

· Õ
(
|P| + l · n

)
= O

(
log n · (log log n)2

ϵ

)log log n

· Õ
(
|P| + n

)
= noϵ(1) · O

(
|P| + n

)
◀

References
1 MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi

Hajiaghayi, Raimondas Kiveris, Silvio Lattanzi, and Vahab S. Mirrokni. Affinity clus-
tering: Hierarchical clustering at scale. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pages 6864–6874, 2017. URL: https://proceedings.neurips.cc/paper/2017/hash/
2e1b24a664f5e9c18f407b2f9c73e821-Abstract.html.

2 Amartya Shankha Biswas, Michal Dory, Mohsen Ghaffari, Slobodan Mitrović, and Yasamin
Nazari. Massively parallel algorithms for distance approximation and spanners. In Proceedings
of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures, pages 118–128,
2021.

3 Greg Bodwin. New results on linear size distance preservers. SIAM J. Comput., 50(2):662–673,
2021. doi:10.1137/19M123662X.

4 Greg Bodwin, Keerti Choudhary, Merav Parter, and Noa Shahar. New fault tolerant subset
preservers. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020,
Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 15:1–15:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.15.

5 Greg Bodwin, Gary Hoppenworth, and Ohad Trabelsi. Bridge girth: A unifying notion in
network design. arXiv preprint, 2022. arXiv:2212.11944.

6 Greg Bodwin and Virginia Vassilevska Williams. Better distance preservers and additive
spanners. ACM Trans. Algorithms, 17(4):36:1–36:24, 2021. doi:10.1145/3490147.

7 Shiri Chechik. Approximate distance oracles with constant query time. In David B. Shmoys,
editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 –
June 03, 2014, pages 654–663. ACM, 2014. doi:10.1145/2591796.2591801.

SWAT 2024

https://proceedings.neurips.cc/paper/2017/hash/2e1b24a664f5e9c18f407b2f9c73e821-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2e1b24a664f5e9c18f407b2f9c73e821-Abstract.html
https://doi.org/10.1137/19M123662X
https://doi.org/10.4230/LIPIcs.ICALP.2020.15
https://arxiv.org/abs/2212.11944
https://doi.org/10.1145/3490147
https://doi.org/10.1145/2591796.2591801

36:16 Path-Reporting Distance Oracles with Linear Size

8 Shiri Chechik. Approximate distance oracles with improved bounds. In Rocco A. Servedio
and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 1–10.
ACM, 2015. doi:10.1145/2746539.2746562.

9 D. Coppersmith and M. Elkin. Sparse source-wise and pair-wise distance preservers. In SODA:
ACM-SIAM Symposium on Discrete Algorithms, pages 660–669, 2005.

10 Marek Cygan, Fabrizio Grandoni, and Telikepalli Kavitha. On pairwise spanners. In Natacha
Portier and Thomas Wilke, editors, 30th International Symposium on Theoretical Aspects of
Computer Science, STACS 2013, February 27 – March 2, 2013, Kiel, Germany, volume 20
of LIPIcs, pages 209–220. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2013. doi:
10.4230/LIPIcs.STACS.2013.209.

11 Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engineering route
planning algorithms. In Jürgen Lerner, Dorothea Wagner, and Katharina Anna Zweig, editors,
Algorithmics of Large and Complex Networks – Design, Analysis, and Simulation [DFG priority
program 1126], volume 5515 of Lecture Notes in Computer Science, pages 117–139. Springer,
2009. doi:10.1007/978-3-642-02094-0_7.

12 Michael Elkin, Ofer Neiman, and Christian Wulff-Nilsen. Space-efficient path-reporting
approximate distance oracles. Theor. Comput. Sci., 651:1–10, 2016. doi:10.1016/j.tcs.2016.
07.038.

13 Michael Elkin and Seth Pettie. A linear-size logarithmic stretch path-reporting distance oracle
for general graphs. ACM Trans. Algorithms, 12(4):50:1–50:31, 2016. doi:10.1145/2888397.

14 Michael Elkin and Idan Shabat. Path-reporting distance oracles with near-logarithmic stretch
and linear size. CoRR, abs/2304.04445, 2023. doi:10.48550/arXiv.2304.04445.

15 P. Erdős. Extremal problems in graph theory. In Theory of Graphs and Applications (Proc.
Sympos. Smolenice), pages 29–36, 1964.

16 Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks ii:
Low-congestion shortcuts, mst, and min-cut. In Proceedings of the twenty-seventh annual
ACM-SIAM symposium on Discrete algorithms, pages 202–219. SIAM, 2016.

17 Ning Jing, Yun-Wu Huang, and Elke A. Rundensteiner. Hierarchical optimization of optimal
path finding for transportation applications. In CIKM ’96, Proceedings of the Fifth International
Conference on Information and Knowledge Management, November 12–16, 1996, Rockville,
Maryland, USA, pages 261–268. ACM, 1996. doi:10.1145/238355.238550.

18 Telikepalli Kavitha. New pairwise spanners. Theory Comput. Syst., 61(4):1011–1036, 2017.
doi:10.1007/s00224-016-9736-7.

19 Shimon Kogan and Merav Parter. Having hope in hops: New spanners, preservers and lower
bounds for hopsets. In 63rd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2022, Denver, CO, USA, October 31 – November 3, 2022, pages 766–777. IEEE, 2022.
doi:10.1109/FOCS54457.2022.00078.

20 Manor Mendel and Assaf Naor. Ramsey partitions and proximity data structures. Journal of
the European Mathematical Society, 9(2):253–275, 2007.

21 Christian Sommer. Shortest-path queries in static networks. ACM Computing Surveys,
46:45:1–31, 2014. doi:10.1145/2530531.

22 M. Thorup and U. Zwick. Approximate distance oracles. In Proc. of the 33rd ACM Symp. on
Theory of Computing, pages 183–192, 2001.

23 Christian Wulff-Nilsen. Approximate distance oracles with improved query time. In Proceedings
of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pages 539–549.
SIAM, 2013.

24 Christos D. Zaroliagis. Engineering algorithms for large network applications. In Ming-
Yang Kao, editor, Encyclopedia of Algorithms – 2008 Edition. Springer, 2008. doi:10.1007/
978-0-387-30162-4_125.

https://doi.org/10.1145/2746539.2746562
https://doi.org/10.4230/LIPIcs.STACS.2013.209
https://doi.org/10.4230/LIPIcs.STACS.2013.209
https://doi.org/10.1007/978-3-642-02094-0_7
https://doi.org/10.1016/j.tcs.2016.07.038
https://doi.org/10.1016/j.tcs.2016.07.038
https://doi.org/10.1145/2888397
https://doi.org/10.48550/arXiv.2304.04445
https://doi.org/10.1145/238355.238550
https://doi.org/10.1007/s00224-016-9736-7
https://doi.org/10.1109/FOCS54457.2022.00078
https://doi.org/10.1145/2530531
https://doi.org/10.1007/978-0-387-30162-4_125
https://doi.org/10.1007/978-0-387-30162-4_125

Toward Grünbaum’s Conjecture
Christian Ortlieb
Institute of Computer Science, University of Rostock, Germany

Jens M. Schmidt
Institute of Computer Science, University of Rostock, Germany

Abstract
Given a spanning tree T of a planar graph G, the co-tree of T is the spanning tree of the dual graph
G∗ with edge set (E(G) − E(T))∗. Grünbaum conjectured in 1970 that every planar 3-connected
graph G contains a spanning tree T such that both T and its co-tree have maximum degree at
most 3.

While Grünbaum’s conjecture remains open, Biedl proved that there is a spanning tree T such
that T and its co-tree have maximum degree at most 5. By using new structural insights into
Schnyder woods, we prove that there is a spanning tree T such that T and its co-tree have maximum
degree at most 4. This tree can be computed in linear time.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases Planar graph, spanning tree, maximum degree, Schnyder wood

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.37

Funding This research is supported by the grant SCHM 3186/2-1 (401348462) from the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation).

1 Introduction

Let a k-tree be a spanning tree whose maximum degree is at most k. In 1966, Barnette
proved the fundamental theorem that every planar 3-connected graph contains a 3-tree [3].
Both assumptions in this theorem are essential in the sense that the statement fails for
arbitrary non-planar graphs (as the arbitrarily high degree in any spanning tree of the
complete bipartite graphs K3,n−3 show) as well as for graphs that are not 3-connected (as
the planar graphs K2,n−2 show).

Since then, Barnette’s theorem has been extended and generalized in several directions.
First, one may try to relax the 3-connectedness assumption: Indeed, Barnette’s original proof
holds for the slightly more general class of circuit graphs1, and may also be extended to
arbitrary planar graphs G in form of a local version that guarantees for every 3-connected2

vertex set X of G a (not necessarily spanning) tree of G that has maximum degree at
most 3 and contains X [6]. Alternatively, one may relax the planarity assumption. Ota
and Ozeki [22] proved that for every k ≥ 3, every 3-connected graph with no K3,k-minor
contains a (k − 1)-tree if k is even and a k-tree if k is odd. Further sufficient conditions for
the existence of k-trees may be found in the survey [23].

Second, one may see spanning trees as 1-connected spanning subgraphs and generalize
these to k-connected spanning subgraphs for any k > 1. In this direction, Barnette [4] proved
that every planar 3-connected planar graph contains a 2-connected spanning subgraph whose
maximum degree is at most 15, and Gao [17] improved this result subsequently to the tight
bound of maximum degree at most 6. Interestingly, Gao showed that his result holds as well
for the 3-connected graphs that are embeddable on the projective plane, the torus or the
Klein bottle.

1 that is, planar internally 3-connected graphs with a designated outer face
2 X ⊆ V (G) such that G contains three internally vertex-disjoint paths between every two vertices of X

© Christian Ortlieb and Jens M. Schmidt;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 37; pp. 37:1–37:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3032-4834
https://doi.org/10.4230/LIPIcs.SWAT.2024.37
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Toward Grünbaum’s Conjecture

Third, one may try to strengthen the 3-tree in question. A recent alternative proof of
Barnette’s theorem based on canonical orderings by Biedl [5, Corollary 1] (which was also
mentioned by Chrobak and Kant) reveals that further degree constraints may be imposed on
the 3-tree for prescribed vertices (for example, two vertices of a common face may be forced
to be leaves of the tree). To strengthen this further, Barnette’s theorem can be seen as a
side-result of a structure obtained in Hamiltonicity studies from generalizing the theory of
Tutte paths and Tutte cycles: Gao and Richter [18] proved that every planar 3-connected
graph contains a 2-walk, which is a walk that visits every vertex exactly once or twice. By
going along such 2-walks and omitting the last edge whenever a vertex is revisited, these
2-walks imply the existence of 3-trees. Here, planar 3-connected graphs may again be replaced
with circuit graphs, and all results have been successfully lifted to higher surfaces. Even
more, the surfaces on which every embedded 3-connected graph contains a 2-walk have been
classified [7].

Perhaps one of the most severe strengthenings of the 3-tree in question is a long-standing
and to the best of our knowledge still open conjecture made by Grünbaum in 1970. Since the
planar dual G∗ = (V ∗, E∗) of every (simple) planar 3-connected graph G is again planar and
3-connected, G∗ contains a 3-tree as well. By the well-known cut-cycle duality, any spanning
tree T of G implies that also ¬T ∗ := (V ∗, (E(G) − E(T))∗) is a spanning tree of G∗; we call
¬T ∗ the co-tree of T . Taking the best of these two worlds, Grünbaum made the following
conjecture.

▶ Conjecture (Grünbaum [19, p. 1148], 1970). Every planar 3-connected graph G contains a
3-tree T whose co-tree ¬T ∗ is also a 3-tree.

While Grünbaum’s conjecture is to the best of our knowledge still unsolved, progress has
been made by Biedl [5], who proved the existence of a 5-tree, whose co-tree is a 5-tree. We
prove the existence of a 4-tree, whose co-tree is a 4-tree. Our methods exploit insights into
the structure of Schnyder woods. We discuss Schnyder woods, their lattice structure and
ordered path partitions in Section 2, our main result in Section 3 and computational aspects
of this main result in Section 5.

2 Schnyder Woods and Ordered Path Partitions

We only consider simple undirected graphs. A graph is plane if it is planar and embedded
into the Euclidean plane without intersecting edges. The neighborhood of a vertex set A is
the union of the neighborhoods of vertices in A. Although parts of this paper use orientation
on edges, we will always let vw denote the undirected edge {v, w}.

2.1 Schnyder Woods
Let σ := {r1, r2, r3} be a set of three vertices of the outer face boundary of a plane graph
G in clockwise order (but not necessarily consecutive). We call r1, r2 and r3 roots. The
suspension Gσ of G is the graph obtained from G by adding at each root of σ a half-edge
pointing into the outer face. With a little abuse of notation, we define a half-edge as an arc
that has a startvertex but no endvertex. A plane graph G is σ-internally 3-connected if the
graph obtained from the suspension Gσ of G by making the three half-edges incident to a
common new vertex inside the outer face is 3-connected. Note that the class of σ-internally
3-connected plane graphs properly contains all 3-connected plane graphs.

C. Ortlieb and J. M. Schmidt 37:3

▶ Definition 1 (Felsner [11]). Let σ = {r1, r2, r3} and Gσ be the suspension of a σ-internally
3-connected plane graph G. A Schnyder wood of Gσ is an orientation and coloring of the
edges of Gσ (including the half-edges) with the colors 1,2,3 (red, green, blue) such that
(a) Every edge e is oriented in one direction (we say e is unidirected) or in two opposite

directions (we say e is bidirected). Every direction of an edge is colored with one of the
three colors 1,2,3 (we say an edge is i-colored if one of its directions has color i) such
that the two colors i and j of every bidirected edge are distinct (we call such an edge
i-j-colored). Similarly, a unidirected edge whose direction has color i is called i-colored.
Throughout the paper, we assume modular arithmetic on the colors 1,2,3 in such a way
that i + 1 and i − 1 for a color i are defined as (i mod 3) + 1 and (i + 1 mod 3) + 1.
For a vertex v, a uni- or bidirected edge is incoming (i-colored) in v if it has a direction
(of color i) that is directed toward v, and outgoing (i-colored) of v if it has a direction
(of color i) that is directed away from v.

(b) For every color i, the half-edge at ri is unidirected, outgoing and i-colored.
(c) Every vertex v has exactly one outgoing edge of every color. The outgoing 1-, 2-, 3-colored

edges e1, e2, e3 of v occur in clockwise order around v. For every color i, every incoming
i-colored edge of v is contained in the clockwise sector around v from ei+1 to ei−1 (see
Figure 1).

(d) No inner face boundary contains a directed cycle (disregarding possible opposite edge
directions) in one color.

1

23
1

1
1

2

2

2
3

3

Figure 1 Properties of Schnyder woods. Condition 1c at a vertex.

For a Schnyder wood and color i, let Ti be the directed graph that is induced by the
directed edges of color i. The following result justifies the name of Schnyder woods.

▶ Lemma 2 ([12,24]). For every color i of a Schnyder wood of Gσ, Ti is a directed spanning
tree of G in which all edges are oriented to the root ri.

For a directed graph H, we denote by H−1 the graph obtained from H by reversing the
direction of all its edges.

▶ Lemma 3 (Felsner [14]). For every i ∈ {1, . . . , 3}, T −1
i ∪ T −1

i+1 ∪ Ti+2 is acyclic.

2.2 Dual Schnyder Woods
Let G be a σ-internally 3-connected plane graph. Any Schnyder wood of Gσ induces
a Schnyder wood of a slightly modified planar dual of Gσ in the following way [9, 13]
(see [21, p. 30] for an earlier variant of this result given without proof). As common for plane
duality, we will use the plane dual operator ∗ to switch between primal and dual objects
(also on sets of objects).

SWAT 2024

37:4 Toward Grünbaum’s Conjecture

Extend the three half-edges of Gσ to non-crossing infinite rays and consider the planar
dual of this plane graph. Since the infinite rays partition the outer face f of G into three
parts, this dual contains a triangle with vertices b1, b2 and b3 instead of the outer face vertex
f∗ such that b∗

i is not incident to ri for every i (see Figure 2). Let the suspended dual Gσ∗ of
Gσ be the graph obtained from this dual by adding at each vertex of {b1, b2, b3} a half-edge
pointing into the outer face.

r1

r2r3

b1

b2 b3

Figure 2 The completion of G obtained by superimposing Gσ and its suspended dual Gσ∗
(the

latter depicted with dotted edges). The primal Schnyder wood is not the minimal element of the
lattice of Schnyder woods of G, as this completion contains a clockwise directed cycle (marked in
yellow).

Consider the superposition of Gσ and its suspended dual Gσ∗ such that exactly the primal
dual pairs of edges cross (here, for every 1 ≤ i ≤ 3, the half-edge at ri crosses the dual edge
bi−1bi+1).

▶ Definition 4. For any Schnyder wood S of Gσ, define the orientation and coloring S∗ of
the suspended dual Gσ∗ as follows (see Figure 2):
(a) For every unidirected (i − 1)-colored edge or half-edge e of Gσ, color e∗ with the two

colors i and i + 1 such that e points to the right of the i-colored direction.
(b) Vice versa, for every i-(i + 1)-colored edge e of Gσ, (i − 1)-color e∗ unidirected such that

e∗ points to the right of the i-colored direction.
(c) For every color i, make the half-edge at bi unidirected, outgoing and i-colored.

The following lemma states that S∗ is indeed a Schnyder wood of the suspended dual.
The vertices b1, b2 and b3 are called the roots of S∗.

▶ Lemma 5 ([20], [13, Prop. 3]). For every Schnyder wood S of Gσ, S∗ is a Schnyder wood
of Gσ∗ .

Since S∗∗ = S, Lemma 5 gives a bijection between the Schnyder woods of Gσ and the
ones of Gσ∗ . Let the completion G̃ of G be the plane graph obtained from the superposition
of Gσ and Gσ∗ by subdividing each pair of crossing (half-)edges with a new vertex, which
we call a crossing vertex (see Figure 2). The completion has six half-edges pointing into its
outer face.

C. Ortlieb and J. M. Schmidt 37:5

Any Schyder wood S of Gσ implies the following natural orientation and coloring G̃S of
its completion G̃: For any edge vw ∈ E(Gσ) ∪ E(Gσ∗), let z be the crossing vertex of Gσ

that subdivides vw and consider the coloring of vw in either S or S∗. If vw is outgoing of v

and i-colored, we direct vz ∈ E(G̃) toward z and i-color it; analogously, if vw is outgoing
of w and j-colored, we direct wz ∈ E(G̃) toward z and j-color it. In the case that vw is
unidirected, say without loss of generality incoming at v and i-colored, we direct zv ∈ E(G̃)
toward v and i-color it. The three half-edges of Gσ∗ inherit the orientation and coloring of S∗

for G̃S . By Definition 4, the construction of G̃S implies immediately the following corollary.

▶ Corollary 6. Every crossing vertex of G̃S has one outgoing edge and three incoming edges
and the latter are colored 1, 2 and 3 in counterclockwise direction.

Using results on orientations with prescribed outdegrees on the respective completions,
Felsner and Mendez [8,12] showed that the set of Schnyder woods of a planar suspension Gσ

forms a distributive lattice. The order relation of this lattice relates a Schnyder wood of Gσ

to a second Schnyder wood if the former can be obtained from the latter by reversing the
orientation of a directed clockwise cycle in the completion. This gives the following lemma,
of which the computational part is due to Fusy [15].

▶ Lemma 7 ([8, 12,15]). For the minimal element S of the lattice of all Schnyder woods of
Gσ, G̃S contains no clockwise directed cycle. Also, S and G̃S can be computed in linear time.

We call the minimal element of the lattice of all Schnyder woods of Gσ the minimal
Schnyder wood of Gσ.

2.3 Ordered Path Partitions
▶ Definition 8. For any j ∈ {1, 2, 3} and any {r1, r2, r3}-internally 3-connected plane graph
G, an ordered path partition P = (P0, . . . , Ps) of G with base-pair (rj , rj+1) is an ordered
partition of V (G) into the vertex sets of induced paths such that the following holds for every
i ∈ {0, . . . , s − 1}, where Vi :=

⋃i
q=0 Pq and the contour Ci is the clockwise walk from rj+1

to rj on the outer face of G[Vi].
(a) P0 is the vertex set of the clockwise path from rj to rj+1 on the outer face boundary of

G, and Ps = {rj+2}.
(b) Every vertex in Pi has a neighbor in V (G) \ Vi.
(c) Ci is a path.
(d) Every vertex in Ci has at most one neighbor in Pi+1.
For the ease of notation we often refer to vertex sets of paths as paths.
▶ Remark 9. Our definition of an ordered path partition P = (P0, . . . , Ps) is essentially the
definition of Badent et al. [2], in which the vertex sets Pi have to induce paths (this is not
explicitly stated in [2], but used in the proof of their Theorem 5). Because a part of the
proof of Theorem 5 in [2] (correspondence of ordered path partitions and Schnyder woods)
was incomplete, Alam et al. [1, Lemma 1] corrected the result, but unfortunately outsourced
the corrected proof into the extended abstract [1, arXiv version, Section 2.2] only. In this
correction however, Alam et al. [1] give an incomplete definition3 of ordered path partitions
that misses Condition b. This incompleteness does however not affect the proof of their
Lemma 4 [1, arXiv version], as this only gives a correction of [2, Theorem 5] regarding the
order of the paths. In this paper, we only use Lemma 4 of [1, arXiv version] which is identical
to [1, Lemma 1].

3 Confirmed by personal communication with the authors of [1].

SWAT 2024

37:6 Toward Grünbaum’s Conjecture

By Definition 8a and 8b, G contains for every i and every vertex v ∈ Pi a path from v to
rj+2 that intersects Vi only in v. Since G is plane, we conclude the following.

▶ Lemma 10. Every path Pi of an ordered path partition is embedded into the outer face of
G[Vi−1] for every 1 ≤ i ≤ s.

Compatible Ordered Path Partitions
We describe a connection between Schnyder woods and ordered path partitions that was first
given by Badent et al. [2, Theorem 5] and then revisited by Alam et al. [1, Lemma 1].

▶ Definition 11. Let j ∈ {1, 2, 3} and S be any Schnyder wood of the suspension Gσ of G.
As proven in [1, arXiv version, Section 2.2], the vertex sets of the inclusion-wise maximal
j-(j + 1)-colored paths of S then form an ordered path partition of G with base pair (rj , rj+1),
whose order is a linear extension of the partial order given by reachability in the acyclic graph
T −1

j ∪ T −1
j+1 ∪ Tj+2; we call this special ordered path partition compatible with S and denote

it by Pj,j+1.

For example, for the Schnyder wood given in Figure 2, P2,3 consists of the vertex sets
of six maximal 2-3-colored paths, of which four are single vertices. We denote each path
Pi ∈ Pj,j+1 by Pi := {vi

1, . . . , vi
k} such that vi

1vi
2 is outgoing j-colored at vi

1 and, for every
l ∈ {1, . . . , k − 1}, vi

lv
i
l+1 is a j-(j + 1)-colored edge.

Let Ci be as in Definition 8. By Definition 8c and Lemma 10, every path Pi = {vi
1, . . . , vi

k}
of an ordered path partition satisfying i ∈ {1, . . . , s} has a neighbor vi

0 ∈ Ci−1 that is closest
to rj+1 and a different neighbor vi

k+1 ∈ Ci−1 that is closest to rj (see Figure 3). We call
vi

0 the left neighbor of Pi, vi
k+1 the right neighbor of Pi and P e

i := {vi
0} ∪ Pi ∪ {vi

k+1} the
extension of Pi; we omit superscripts if these are clear from the context. For 0 < i ≤ s,
let the path Pi cover an edge e or a vertex x if e or x is contained in Ci−1, but not in Ci,
respectively.

▶ Lemma 12. Every path Pi ̸= P0 of a compatible ordered path partition Pj,j+1 satisfies the
following (see Figure 3):
(a) Every neighbor of Pi that is in Vi−1 is contained in the path of Ci−1 between vi

0 and
vi

k+1.
(b) vi

0vi
1 and vi

kvi
k+1 are edges of G[Vi].

(c) vi
0vi

1 is (j + 1)-colored outgoing at vi
1 and vi

kvi
k+1 is j-colored outgoing at vi

k.
(d) Every edge vi

lx incident to Pi and Vi−1 except for vi
0vi

1 and vi
kvi

k+1 is unidirected toward
Pi, (j + 2)-colored and satisfies x /∈ {vi

0, vi
k+1}.

Proof. The statement a follows directly from Lemma 10 and the definition of left and right
neighbor of Pi.

Now, we prove statements b and c. According to Definition 11, the order of Pj,j+1 on
the vertex sets of paths is a linear extension of the partial order given by reachability in the
acyclic graph T −1

j ∪ T −1
j+1 ∪ Tj+2. This allows us to characterize the color of the edges that

join Pi with vertices of Vi−1 and V − Vi, respectively. Edges that join Pi with vertices of
Vi−1 are incoming (j + 2)-colored, unidirected outgoing j-colored or unidirected outgoing
(j + 1)-colored at a vertex of Pi. Edges that join Pi with vertices of V − Vi are outgoing
(j + 2)-colored, unidirected incoming j-colored or unidirected incoming (j + 1)-colored at a
vertex of Pi.

Recall that all edges of G[Pi] are j-(j +1)-colored. Let wvi
1 be the outgoing (j +1)-colored

edge at vi
1 and vi

ku be the outgoing j-colored edge at vi
k. If k > 1, vi

1vi
2 is outgoing j-colored

by definition. Thus, as G[Pi] is induced, w /∈ Pi. If k = 1, Pi consists of only one vertex and

C. Ortlieb and J. M. Schmidt 37:7

hence w /∈ Pi. Thus, as G[Pi] is a maximal j-(j + 1)-colored path, wvi
1 is either unidirected

(j + 1)-colored or (j + 1)-(j + 2)-colored. As observed above, this implies w ∈ Vi−1 and by a
w ∈ Ci−1. Similarly, we obtain u ∈ Ci−1.

Assume to the contrary that u is closer to rj+1 on Ci−1 than w is. By definition of Pi,
for every vertex of Pi, the outgoing j-colored edge is directed toward u and the outgoing
(j + 1)-colored edge points toward w on G[Pi] ∪ {wvi

1, vi
ku}. By Definition 1c, the outgoing

(j +2)-colored edge e of a vertex of Pi occurs in the counterclockwise sector from the outgoing
j-colored to the outgoing (j + 1)-colored edge excluding both. As we assumed that u is
closer to rj+1 on Ci−1 than w is, this sector is in the interior of the region bounded by
G[Pi] ∪ {wvi

1, vi
ku} and the path from u to w on Ci−1. Hence, by planarity, e joins Pi with a

vertex of Ci−1 ⊆ Vi−1, contradicting our above characterization of edges that join Pi with
vertices of Vi−1. Thus, w is closer to rj+1 on Ci−1 than u is or we have w = u. If u = w,
then Lemma 3 is violated by the cycle formed by Pi ∪ u in Tj ∪ T −1

j+1 ∪ T −1
j+2, which is a

contradiction. Thus, w is closer to rj+1 on Ci−1 than u.
Since Pi is a maximal j-(j+1)-colored path, the outgoing j-colored and (j+1)-colored edges

at every of its vertices are either in Pi or in {wvi
1, vi

ku}. Hence, by our above characterization,
the edges that join Pi with vertices of Ci−1 ⊆ Vi−1 are exactly vi

ku, vi
1w and the unidirected

incoming (j + 2)-colored edges at vertices of Pi. Let vx be such an unidirected incoming
(j + 2)-colored edge with v ∈ Pi. By Definition 1c, vx occurs in the clockwise sector from
the outgoing j-colored edge to the outgoing (j + 1)-colored edge around v excluding both.
By planarity and the fact that w is closer to rj+1 on Ci−1 than u, x is contained in the path
of Ci−1 between w and u. By definition of the left and right neighbor vi

0 and vi
k+1 of Pi, we

thus have vi
0 = w and vi

k+1 = u, which proves b and c.
For d, let vi

lx /∈ {vi
kvi

k+1, vi
1vi

0} be an edge that joins Pi with a vertex x of Vi−1. By
a, x ∈ Ci−1. In the last paragraph, we observed that vi

lx is incoming (j + 2)-colored at a
vertex of Pi. We showed also that the outgoing j-colored and the outgoing (j + 1)-edge of
any vertex in Pi is either in Pi or vi

1vi
0 or vi

kvi
k+1. Thus, we obtain that vi

lx is unidirected
incoming (j + 2)-colored at a vertex of Pi. Assume, for the sake of contradiction, that x = vi

0.
Then the path from vi

l to vi
1 on Pi, vi

0vi
1 and vi

lv
i
0 form an oriented cycle in Tj ∪ T −1

j+1 ∪ T −1
j+2,

which contradicts Lemma 3. A similar argument shows x ̸= vi
k+1. ◀

3 Spanning Trees with Maximum Degree at Most 4

In this section, we prove our main result. The following new lemma on the structure of
minimal Schnyder woods and their compatible ordered path partitions is crucial for this
proof. For 0 < i ≤ s, let the path Pi cover an edge e or a vertex x if e or x is contained in
Ci−1, but not in Ci, respectively.

▶ Lemma 13. Let G be a σ-internally 3-connected plane graph, S be the minimal Schnyder
wood of Gσ and P2,3 = (P0, . . . , Ps) be the ordered path partition that is compatible with S.
Let Pi := {v1, . . . , vk} ̸= P0 be a path of P2,3 and v0 and vk+1 be its left and right neighbor.
Then every edge vlw /∈ {v0v1, vkvk+1} with vl ∈ Pi and w ∈ Vi−1 is unidirected, 1-colored
and incoming at vk and w /∈ {v0, vk+1}.

Proof. Consider any edge vlw /∈ {v0v1, vkvk+1} that is incident to vl ∈ Pi and w ∈ Vi−1
(see Figure 3). By Lemma 12a, w is either v0, vk+1 or a vertex that is covered by Pi. As
vlw /∈ {v0v1, vkvk+1}, vlw must be 1-colored incoming at vl such that w /∈ {v0, vk+1} by
Lemma 12d. It thus remains to show that l = k.

Assume to the contrary that l ̸= k. Observe that, by Definition 1c, all edges in the
clockwise sector from vlvl+1 to vlvl−1 are incoming 1-colored. Choose w such that vlw is
the clockwise first incoming 1-colored edge at vl (see Figure 3). By Corollary 6, the dual

SWAT 2024

37:8 Toward Grünbaum’s Conjecture

edge of vlvl+1 is unidirected 1-colored in the completion G̃S of G and the dual edge of vlw is
2-3-colored. Hence, G̃S contains the clockwise cycle shown in Figure 3, which contradicts
the assumption that S is the minimal Schnyder wood. ◀

G[Vi−1]

Pi

e

Ci−1

P0

r3 r2

v0

v1 vl vk ̸= v1

vk+1

w

Figure 3 The clockwise cycle of G̃S of the proof of Lemma 13, depicted in yellow.

For a spanning subgraph T of a plane graph G, let the co-graph ¬T ∗ be the spanning
subgraph (V ∗, (E(G) − E(T))∗) of G∗. As stated in the introduction, ¬T ∗ is a spanning tree
if T is one and in that case called a co-tree.

▶ Theorem 14. Every {r1, r2, r3}-internally 3-connected plane graph G contains a 4-tree T

whose co-tree ¬T ∗ is a 4-tree.

Proof. We first sketch the general idea of the proof: First, we identify a spanning candidate
graph H ⊆ G such that ¬H∗ is a subgraph of G∗ that has the same structural properties as
H. We then define a subset D of the edges of H such that H − D is acyclic and ¬H∗ + D∗

has maximum degree 4. We use the same arguments to define a similar subset D′ for ¬H∗.
In the end, we need to show that D′∗ and D∗ do not create new cycles in ¬H∗ and H,
respectively. That way we obtain that the co-graph of H − D + D′∗ is ¬H∗ − D′ + D∗,
and both graphs are acyclic and of maximum degree 4. Since a spanning subgraph G′ of
G is connected if and only if G − E(G′) does not contain any edge cut of G, the cut-cycle
duality [10, Prop. 4.6.1] proves that those two graphs are both connected, which gives the
claim.

Let S be the minimal Schnyder wood of Gσ. By Lemma 7, the completion G̃S of G

contains no clockwise directed cycle. Since G̃S contains the completion of the suspended
dual Gσ∗ except for its three outer vertices (which do not affect clockwise cycles), S∗ is a
minimal Schnyder wood of Gσ∗ .

Let H be the spanning subgraph of G whose edge set consists of the bidirected edges of S.
Recall that an edge e ∈ E(G) is not in H if and only if e∗ is in ¬H∗. By Definition 4, ¬H∗

contains therefore exactly the bidirected edges of S∗, except for the three bidirected edges on
the outer face boundary of Gσ∗ , as these are not dual edges of G (in fact, these three edges
appear only in the suspended dual Gσ∗ and were necessary to define dual Schnyder woods).

Since every vertex is incident to at most three bidirected edges by Definition 1c for S and
as well for S∗, both H and ¬H∗ have maximum degree at most three. However, H and ¬H∗

may neither be connected nor acyclic. In fact, H contains always the outer face boundary of
G as a cycle, as all edges are bidirected by the definition of the first paths of the compatible
ordered path partitions P1,2, P2,3 and P3,1.

C. Ortlieb and J. M. Schmidt 37:9

We will therefore iteratively identify edges of cycles of H such that ¬H∗ still has maximum
degree at most four when those cycles are deleted in H. In order to do this, we iteratively
define edge sets D and D′ that are deleted from H and ¬H∗, starting with D := D′ := ∅.

Let C be a cycle of H and let (P0, . . . , Ps) be the paths of the compatible ordered path
partition P2,3 of S. Let P be the path of maximal length in C such that P ⊆ PM with
M := max{i | Pi ∩ V (C) ̸= ∅}; we call P the index maximal subpath of C, as it is the fraction
of C highest up in the order of P2,3. Since C has only bidirected edges, the statement of
Lemma 13 about e being unidirected implies that P = PM and that C contains the extension
of P ; in particular, P ∈ P2,3.

Denote by Pmax the set of index maximal subpaths of all cycles of H. For a path
P ∈ Pmax \ {Ps}, let PL with L := min{i | Pi covers an edge of the extension of P} be the
minimal-covering path of P (recall that this extension is part of the cycle and the minimal-
covering path exists, as Ps is excluded). Denote by Pcover the set of the minimal-covering
paths of all index maximal subpaths in Pmax \ {Ps}. In particular, Ps = r1 is the index
maximal subpath of the outer face boundary of G, which is a bidirected cycle, as shown
before. Since no edge of the extension of Ps is covered by another path of P2,3, we add the
outgoing 2-colored edge of r1 to D in order to destroy the outer face cycle.

Next, we process the paths of Pcover in reverse order of P2,3, i.e., from highest to lowest
index. Let Pc = {v1, . . . , vk} ∈ Pcover for some c ∈ {1, . . . , s} be the path under consideration.
Let P ′

1, . . . , P ′
l be the index maximal paths for which Pc is the minimal-covering path, ordered

clockwise around the outer face of G[Vc−1] (see Figure 4); note that there may also be other
paths covered by Pc that are not index maximal. Let f1, . . . , fa be the faces incident to vk

in counterclockwise order from the outgoing 3-colored edge to the outgoing 2-colored edge;
we say that f1, . . . , fa are below Pc. For every path of {P ′

1, . . . , P ′
l }, we will add an edge to

D that is on the extension of that path. Thus, after having processed every path in Pcover

in this way, a cycle in H does not exist in H − D anymore.

Pc

P ′
1

P ′
2

P ′
3

f1

f2
f3 f4

v0

v1 vk

vk+1

Figure 4 Illustration for some of the definitions used in the proof of Theorem 14. If Case 1
applies to Pc, we add the edges marked in yellow to D.

Consider the case that vk+1 = w1 for a path P ′
l = {w1, . . . , wt}. Assume for the sake of

contradiction that then vkvk+1 is not 1-2-colored. Since P ′
l is an index maximal subpath,

w0w1 is 1-3-colored. By Lemma 12c, then vkvk+1 is unidirected 2-colored. By Corollary 6,

SWAT 2024

37:10 Toward Grünbaum’s Conjecture

Pc

P ′
l

v0

v1 vk

vk+1 = w1

w0

f∗
a

Figure 5 If vkvk+1 is unidirected 2-colored, then G̃S contains the clockwise cycle depicted in
yellow.

this implies that (vkvk+1)∗ is 1-3-colored. Hence, G̃S contains the clockwise cycle in Figure 5,
which contradicts the assumption that S is the minimal Schnyder wood. We conclude that
vkvk+1 is 1-2-colored in that case.

We will now select one edge from each of the extensions of the paths P ′
1, . . . , P ′

l and add
it to D. We generally aim for selecting those edges that have smallest possible impact on the
maximum degree of the dual graph: we prefer always edges of the paths P ′

1, . . . , P ′
l that are

covered by Pc. For example, for P ′
2 in Figure 4, adding its edge to D causes a higher degree

at the dual vertex f∗
2 while connecting the dual to it; this is fine, as f2 is a triangle by the

mandatory outgoing 1-colored edges and thus the degree of f∗
2 never exceeds 3 anyway. In

detail, we distinguish the following two cases.

Augmentation procedure of D for the path Pc

Case 1: Pc is not an index maximal subpath (see Figure 4).
For every i ∈ {1, . . . , l}, if Pc covers an edge of G[P ′

i], then we add one such edge to
D. If for P ′

l = {w1, . . . , wt}, we have w1 = vk+1 (note that this excludes the previous
condition), then we add w0w1 to D. For all remaining i ∈ {1, . . . , l} for which none of
the above conditions apply, we set P ′

i = {u1, . . . , ut} and add the edge utut+1 to D.
Case 2: Pc is an index maximal subpath.

Since the minimal-covering path of Pc has higher index than Pc itself, there already is
either an edge of G[Pc], v0v1 or vkvk+1 in D.
Case 2.1: An edge of G[Pc] or v0v1 is in D (see Figure 6a).

We proceed as in Case 1.
Case 2.2: vkvk+1 ∈ D (see Figure 6b)

For every i ∈ {1, . . . , l}, if Pc covers an edge of G[P ′
i], then we add one such edge to

D. If for P ′
1 = {p1, . . . , pb}, we have pb = v0 (note that this excludes the previous

condition), then we add pbpb+1 to D. For all remaining i ∈ {1, . . . , l} for which none
of the above conditions apply, we set P ′

i = {u1, . . . , ut} and add the edge u0u1 to D.

We now need to show that the maximum degree of ¬H∗ + D∗ does not exceed 4. We
prove that, after having processed Pc, no further boundary edge of any f ∈ {f1, . . . , fa} is
added to D: Assume to the contrary that there is a face f ∈ {f1, . . . , fa} and an edge e

C. Ortlieb and J. M. Schmidt 37:11

Pc

v0

v1 v2 v3 v4

v5

(a) The situation in Case 2.1. Here the edge v2v3 is marked in orange and in D before we
consider Pc. The edges that we add to D are marked in yellow.

Pc

v0

v1

v2

(b) The situation in Case 2.2. The edge v1v2 is marked in orange and in D before we consider
Pc. The edges that we then add to D are marked in yellow.

Figure 6 Subcases for which Pc is an index maximal subpath in Theorem 14.

on the boundary of f such that e is not in D after having processed Pc but will be added
later. Let Pi ∈ P2,3 be the path whose extension contains e. Then the minimal-covering
path Pc′ ∈ P2,3 of Pi needs to have lower index than Pc, i.e., c′ < c. As e is covered by Pc,
it is not covered by the minimal-covering path of Pi. Hence e will not be added to D, which
is a contradiction.

First, consider the case a > 1, in which there at least two faces below Pc. By Definition 8b,
the boundary of every fj with j ∈ {1, . . . , a} contains at most two edges that are in the
union of the extensions of paths in {P ′

1, . . . , P ′
l }. For j ∈ {2, . . . , a − 1}, the augmentation

procedure adds at most one of those edges to D, which implies that deg¬H∗+D∗(f∗
j) ≤ 4 for

every j ∈ {2, . . . , a − 1} (see Figure 6).
Now, consider j = 1, i.e., the face f1 in the case a > 1. Let P ′

1 = {p1, . . . , pb}. In Case 1
of the augmentation procedure, we add at most one edge of the boundary of f1 to D, hence
deg¬H∗+D∗(f∗

1) ≤ 4. In Case 2, v0v1 is 1-3-colored, since Pc is an index maximal subpath
(see Figure 6). By Corollary 6, (v0v1)∗ is unidirected 2-colored and outgoing at f∗

1 . This

SWAT 2024

37:12 Toward Grünbaum’s Conjecture

implies deg¬H∗(f∗
1) ≤ 2, as f∗

1 is incident to at most two bidirected edges. In Case 2.1, there
is an edge of Pc or v0v1 in D. And if pb = v0, the edge pbpb+1 is in D. Those are the only
edges of the boundary of f1 in D in Case 2.1 and hence deg¬H∗+D∗(f∗

1) ≤ 4. In Case 2.2,
there is neither an edge of Pc nor v0v1 in D. As above, if pb = v0, the edge pbpb+1 is in D.
And if the left neighbor of P ′

2 is no the boundary of f1, then also the edge from P ′
2 to its

left neighbor is in D. Thus, also in Case 2.2, the augmentation procedure adds at most two
edges of the boundary of f1 to D and hence deg¬H∗+D∗(f∗

1) ≤ 4.
Now consider j = a, i.e., the face fa in the case a > 1. Let P ′

l = {w1, . . . , wt}. If vkvk+1
is 1-2-colored, then (vkvk+1)∗ is unidirected 3-colored and outgoing at f∗

a by Corollary 6
and hence deg¬H∗(f∗

a) ≤ 2. The augmentation procedure adds at most two edges of the
boundary of fa to D and hence deg¬H∗+D∗(f∗

a) ≤ 4. Assume now that vkvk+1 is unidirected
2-colored. Then Pc is not an index maximal subpath and we are in Case 1. As we observed
above, then w1 ≠ vk+1. The augmentation procedure adds at most one edge of the boundary
of fa to D and we have deg¬H∗+D∗(f∗

a) ≤ 4.
In the remaining case a = 1, there is exactly one face below Pc. If Pc is not an

index maximal subpath, we use exactly the same arguments as we used to show that
deg¬H∗+D∗(f∗

a) ≤ 4 for a ̸= 1. If Pc is an index maximal subpath, then, by the same
arguments as above, we know that (vkvk+1)∗ and (v1v0)∗ are unidirected and outgoing at
f∗

1 . This implies deg¬H∗(f∗
1) ≤ 1. There are at most three edges of the boundary of f1 in D.

Those potential edges are an edge of the extension of Pc, the outgoing 2-colored edge of v0
and the outgoing 3-colored edge of vk+1.

In addition, there are faces that are never below a path of Pcover. Those faces have at
most one edge of their boundary in D. Thus, their dual vertices in ¬H∗ + D∗ have degree at
most 4 (see Figure 6).

The clockwise path from r2 to r3 on the outer face boundary is not an index maximal
subpath. Hence, the augmentation procedure does not add any edge of the clockwise path
from r2 to r3 on the outer face boundary to D. However, by our assumption, D includes the
outgoing 2-colored edge at r1, which is the only edge of D that is on the boundary of the
outer face of G.

So far we showed that H −D is acyclic and ¬H∗ +D∗ has maximum degree at most 4. We
now apply the same arguments that we used for H to ¬H∗ ∪ {b1b2, b2b3, b3b1} and obtain D′.
Hence, we have that ¬H∗ ∪ {b1b2, b2b3, b3b1} − D′ is acyclic and H + D′∗ \ {b1b2, b2b3, b3b1}∗

has maximum degree at most 4.
The edges b1b2, b2b3 and b3b1 are not in G∗ and there is only one edge on the boundary of

the outer face of G that is also in D. We may thus ignore b1b2, b2b3 and b3b1 in the following
and freely switch from ¬H∗ ∪ {b1b2, b2b3, b3b1} to ¬H∗. Hence, we also remove any of the
edges b1b2, b2b3, b3b1 from D′.

Then the graphs H − D + D′∗ and ¬H∗ − D′ + D∗ have maximum degree at most 4 and
by construction ¬(H − D + D′∗)∗ = ¬H∗ − D′ + D∗. An edge set E ⊆ E(G) is the edge set
of a cycle in G if and only if the edge set E∗ is a minimal edge cut in G∗ [10, Prop. 4.6.1].
So in order to show that ¬H∗ − D′ + D∗ and H − D + D′∗ are both trees it suffices to show
that they are both acyclic. We show that ¬H∗ − D′ + D∗ is acyclic. Applying the same
arguments then shows that H − D + D′∗ is acyclic.

Assume to the contrary that there is a cycle C in ¬H∗ − D′ + D∗. Remember that for
each index maximal subpath in Pmax we pick exactly one edge of the extension and add it
to D. This will finally lead to a contradiction. By construction, every cycle in ¬H∗ has at
least one edge that is also in D′. Hence, C has at least one edge of D∗. Since every edge of
D is in a cycle of H , by [10, Prop. 4.6.1], every edge in D∗ joins two vertices of two different
connected components of ¬H∗.

C. Ortlieb and J. M. Schmidt 37:13

For a connected component K of ¬H∗, let EK ⊆ E(G∗) be the minimal edge cut separating
K and G∗ − K. Let CK be the cycle of G with E(CK) = E∗

K and let P CK = Pi ∈ P2,3 be
the index maximal subpath of CK (see Figure 7). Choose K such that K shares a vertex
with C and P CK = Pi has smallest index. Since C is a cycle and intersects at least two
connected components of ¬H∗, there are two edges e, e′ ∈ EK that are also in C. Observe
that these edges need to be in D∗.

K

CK

e′

e′∗

C e

G∗ − K

Figure 7 Illustration for the proof of Theorem 14. The extension of the path P CK is highlighted
in yellow.

Then either e∗ or e′∗ is not in the extension of the index maximal subpath P CK . Assume
w.l.o.g. that e∗ is not in the extension of P CK . Let P ′ = Pj ∈ P2,3 for some j ∈ {1, . . . , s}
be the path such that e∗ is in the extension of P ′. Since P CK is the index maximal subpath
of CK , we have j < i. So there exists a connected component K ′ of ¬H∗ such that K ′ and
C have a vertex in common and P ′ is the index maximal subpath of the cycle CK′ with
(E(CK′))∗ being the minimal cut separating K ′ and G∗ − K ′. This contradicts the definition
of K. So ¬H∗ − D′ + D∗ and H − D + D′∗ are our desired trees. ◀

▶ Corollary 15. Every 3-connected planar graph G contains a 4-tree T whose co-tree ¬T ∗ is
also a 4-tree.

▶ Corollary 16. The root r1 is a leaf in H−D+D′∗ and all edges on the outer face of G except
for the outgoing 2-colored edge at r1 are in H − D + D′∗. We have degH−D+D′∗(r3) = 2 and
degH−D+D′∗(r2) ≤ 3. Also, the dual vertex of the outer face of G is a leaf in ¬H∗ − D′ + D∗.

Proof. The proof of Theorem 14 yields that all edges on the outer face of G except for the
outgoing 2-colored edge at r1 are in H − D + D′∗. In Gσ∗, the path P1 ∈ P2,3 is given by the
duals of the unidirected incoming 1-colored edges at r1 (see Figure 2). Since the outgoing
2-colored and the outgoing 3-colored edge at r1 are bidirected, P1 is not an index maximal
subpath and hence none of the duals of the unidirected incoming 1-colored edges at r1 is
added to D′. Thus, r1 is a leaf in H − D + D′∗.

SWAT 2024

37:14 Toward Grünbaum’s Conjecture

The dual edges of the incoming unidirected edges at r2 and r3 are all covered by the
last singleton b1 of P2,3 of ¬H∗ ∪ {b1b2, b2b3, b3b1} (see Figure 2). Let e2 be the dual of
the clockwise first unidirected 2-colored incoming edge at r2 and e3 be the dual of the
counterclockwise first unidirected 3-colored incoming edge at r3. Let Ii be the set of the
duals of the unidirected i-colored incoming edges at ri, i = 2, 3. For e ∈ Ii, i = 2, 3 let
Pe ∈ P2,3 be the path such that e belongs to the extension of Pe. Observe that, for all edges
e ∈ (I2 \ {e2}) ∪ (I3 \ {e3}), b1 is not the minimal-covering path of Pe. Hence, those edges are
not added to D′. On the other hand b1 might be the minimal-covering path of Pe2 and/or
Pe3 . Since we added b1b2 to D′, we do not add e3 to D′ but might do so for e2 (compare
Case 2.2 in the proof of Theorem 14). Hence, degH−D+D′∗(r3) = 2 and degH−D+D′∗(r2) ≤ 3.

Since the outgoing 2-colored edge at r1 is the only edge on the boundary of the outer face
f that is not in H − D + D′∗, we know that the vertex f∗ is a leaf in ¬H∗ − D′ + D∗. ◀

4 Relaxing Connectivity Assumptions

In this section, we relax the connectivity condition. A common relaxation of σ-internal
3-connectedness is internal 3-connectedness. A plane graph G is internally 3-connected if
adding a vertex, the apex vertex, in the outer face and connecting this new vertex with
all the vertices on the outer face of G results in a 3-connected graph. Observe that every
σ-internally 3-connected graph is also internally 3-connected.
▶ Remark 17. The statement of Theorem 14 does not hold for internally 3-connected graphs.
There exist internally 3-connected plane graphs Gk on 2k vertices such that every spanning
tree of the dual graph has maximum degree at least ⌈k/2⌉.

Proof. In order to define Gk, fix an embedding of the cycle Ck on k vertices. Let w0, . . . , wk−1
be the vertices of this cycle in clockwise order. For every i = 0, . . . , k − 1, add a vertex pi

in the outer face and add edges piwi and piwi+1 (indices taken modulo k) such that the
resulting graph Gk is still plane (see Figure 8). Clearly, Gk is internally 3-connected. The
dual of Gk contains parallel edges. Its underlying graph, in which all those vertex pairs
joined by parallel edges are only joined by one edge, is the complete bipartite graph K2,k.
By pigeonhole principle, every spanning tree of K2,k has maximum degree at least ⌈k/2⌉. ◀

f1

f2

Figure 8 The graph G11 of Remark 17. In every spanning tree of the dual graph, f∗
1 or f∗

2 has
degree at least 6.

However, we can apply Theorem 14 to G + x for an internally 3-connected graph G with
an apex vertex x. Then, we obtain after small modifications a 4-tree of G and a tree of
G∗ such that all vertices except for the dual of the outer face have degree at most 4. This

C. Ortlieb and J. M. Schmidt 37:15

motivates the notion of k-internally 3-connected graphs. G is k-internally 3-connected if
there are k vertices w1, . . . , wk on the outer face of G such that adding an apex vertex x in
the outer face and the edges xwi for all i ∈ {1, . . . , k} yields a 3-connected graph. Observe
that every σ-internally 3-connected graph is k-internally 3-connected for k ≥ 3 and every
k-internally 3-connected graph is also internally 3-connected.

▶ Lemma 18. For every k-internally 3-connected plane graph G there exists a 4-tree such
that all vertices of its co-tree except for the dual of the outer face have degree at most 4. The
dual of the outer face has degree at most 2k − 2.

Proof. Let Gx be the plane graph obtained by adding and connecting the apex vertex
as described in the statement. Define r1 := x and r2 and r3 to be its clockwise and
counterclockwise neighbor on the outer face of Gx, respectively. Let w1, . . . , wk be ordered
clockwise around the outer face of G such that w1 = r3, wk = r2 and wix ∈ E(Gx) for all
i ∈ {1, . . . , k} (Figure 9). We now apply Theorem 14 to Gx with this choice of roots. We
obtain a 4-tree T of Gx such that ¬T ∗ is a 4-tree of Gx∗. Observe that by Corollary 16 all
edges on the outer face of Gx except for r1r2 are in T , degT (r1) = 1 and degT (r3) = 2 (see
Figure 9). Thus, we have that w1x ∈ E(T) and wix /∈ E(T) for all i ∈ {2, . . . , k}. Hence,
T − w1x is a 4-tree of G. We consider the dual graph. As T − w1x is a 4-tree of G, its co-tree
is also a spanning tree of G∗. As ¬T ∗ is a 4-tree of Gx∗, we obtain that in the co-tree of
T − w1x every vertex except for the dual of the outer face has degree at most 4.

We consider the outer face. Take a Schnyder wood as in the proof of Theorem 14. Let
di be the dual vertex of the face incident to wix and wi+1x for i ∈ {1, . . . , k − 1} in Gx. In
¬T ∗, those vertices have degree at most 4. Consider d1. The dual edge (r1r3)∗ is outgoing
at d1. The edge e preceding r1r3 on the face d∗

1 in clockwise order is unidirected 3-colored
and incoming at r3. Thus, there is no index maximal subpath that contains e. And hence,
in the algorithm of the proof of Theorem 14, we add at most one edge to D that is incident
to d1. Furthermore, (xw2)∗ is incident to d1 and in E(¬T ∗). Therefore, there are at most
two edges on the clockwise path from r3 to w2 on the outer face of G that are not in T .

As (wix)∗ and (wi+1x)∗ are incident to di and (wix)∗, (wi+1x)∗ ∈ E(¬T ∗) for all i ∈
{2, . . . , k − 1}, we obtain, that there are at most two edges on the clockwise path from wi to
wi+1 on the outer face of G that are not in T . And hence, the dual vertex of the outer face
of G has degree at most 2k − 2 in the co-tree of T − w1x. ◀

5 Computational Aspects

Let Gσ be the suspension of a σ-internally 3-connected plane graph and let S be the minimal
Schnyder wood of Gσ. Badent et al. showed that an ordered path partition P2,3 that is
compatible to S can be computed in time O(n) [2, Theorem 7]. This P2,3 can also be used
to compute S itself in the same time [2, Theorem 5], which in turn allows to compute the
dual S∗ and thus also the candidate graphs H and ¬H∗in linear time.

For i := 1, . . . , s, we detect whether H ∩ G[Vi] has a cycle that contains the extension
of Pi by maintaining the connected components of the previous graph H ∩ G[Vi−1] and
querying whether the left and right neighbor of Pi are in the same connected component
of H ∩ G[Vi−1]. This can be done in amortized constant time per step using the special
union-find data structure in [16], since the structure of possible union operations is a tree.
This gives the set Pmax of all index maximal subpaths in P2,3 and their minimial-covering
paths.

SWAT 2024

37:16 Toward Grünbaum’s Conjecture

r2 = w5

w4

w3
w2

r3 = w1

r1 = x

G

d1
d2 d3

d4

Figure 9 Situation as in Lemma 18. A 5-internally 3-connected graph G with its apex vertex x.
Some edges of the 4-tree T of Gx and its co-tree are highlighted in yellow.

Since the case distinction and every step of the augmentation procedure for every minimal-
covering path Pc can be computed in constant time per index-maximal subpath, we obtain
an algorithm with running time O(n) to compute a 4-tree of G whose co-tree is also a 4-tree.

6 Conclusion

We used Schnyder woods in order to prove that every (σ-)internally 3-connected graph has
a 4-tree such that its co-tree is also a 4-tree. Also, we showed that there is a linear time
algorithm computing such a tree. If we further relax the connectivity condition to (k-)internal
3-connectedness, then we cannot expect a 4-tree on the dual anymore. However, we always
manage to find a tree such that at most one vertex of its co-tree has degree larger than 4.

Grünbaum’s conjecture still remains open. We believe that it could prove worthwhile to
assume further restrictions on the graph in order to decrease the maximum degree in both
the tree and its co-tree or only one of them.

References
1 Md. J. Alam, W. Evans, S. G. Kobourov, S. Pupyrev, J. Toeniskoetter, and T. Ueckerdt.

Contact representations of graphs in 3D. In Proceedings of the 14th International Symposium
on Algorithms and Data Structures (WADS ’15), volume 9214 of Lecture Notes in Computer
Science, pages 14–27, 2015. Technical Report accessible on arXiv: arXiv:1501.00304. doi:
10.1007/978-3-319-21840-3_2.

2 M. Badent, U. Brandes, and S. Cornelsen. More canonical ordering. Journal of Graph
Algorithms and Applications, 15(1):97–126, 2011. doi:10.7155/JGAA.00219.

3 D. Barnette. Trees in polyhedral graphs. Canadian Journal of Mathematics, 18:731–736, 1966.
doi:10.4153/CJM-1966-073-4.

4 D. W. Barnette. 2-Connected spanning subgraphs of planar 3-connected graphs. Journal of
Combinatorial Theory, Series B, 61:210–216, 1994. doi:10.1006/jctb.1994.1045.

https://arxiv.org/abs/1501.00304
https://doi.org/10.1007/978-3-319-21840-3_2
https://doi.org/10.1007/978-3-319-21840-3_2
https://doi.org/10.7155/JGAA.00219
https://doi.org/10.4153/CJM-1966-073-4
https://doi.org/10.1006/jctb.1994.1045

C. Ortlieb and J. M. Schmidt 37:17

5 T. Biedl. Trees and co-trees with bounded degrees in planar 3-connected graphs. In 14th
Scandinavian Symposium and Workshops on Algorithm Theory (SWAT’14), pages 62–73, 2014.
doi:10.1007/978-3-319-08404-6_6.

6 T. Böhme, J. Harant, M. Kriesell, S. Mohr, and J. M. Schmidt. Rooted minors and locally
spanning subgraphs. Journal of Graph Theory, 105(2):209–229, 2024. doi:10.1002/jgt.23012.

7 R. Brunet, M. N. Ellingham, Z. Gao, A. Metzlar, and R. B. Richter. Spanning planar subgraphs
of graphs in the torus and Klein bottle. Journal of Combinatorial Theory, Series B, 65(1):7–22,
1995. doi:10.1006/jctb.1995.1041.

8 P. O. de Mendez. Orientations bipolaires. PhD thesis, École des Hautes Études en Sciences
Sociales, Paris, 1994.

9 G. Di Battista, R. Tamassia, and L. Vismara. Output-sensitive reporting of disjoint paths.
Algorithmica, 23(4):302–340, 1999. doi:10.1007/PL00009264.

10 R. Diestel. Graph theory. Graduate texts in mathematics 173. Springer, Berlin, 4th edition
edition, 2012. URL: http://swbplus.bsz-bw.de/bsz377230375cov.htm.

11 S. Felsner. Geodesic embeddings and planar graphs. Order, 20:135–150, 2003.
12 S. Felsner. Geometric Graphs and Arrangements. Advanced Lectures in Mathematics.

Vieweg+Teubner, Wiesbaden, 2004. doi:10.1007/978-3-322-80303-0.
13 S. Felsner. Lattice structures from planar graphs. Electronic Journal of Combinatorics,

11(1):R15, 1–24, 2004. doi:10.37236/1768.
14 Stefan Felsner. Convex drawings of planar graphs and the order dimension of 3-polytopes.

Order, 18(1):19–37, 2001. doi:10.1023/A:1010604726900.
15 É. Fusy. Combinatorics of planar maps and algorithmic applications (Combinatoire des cartes

planaires et applications algorithmiques). PhD thesis, École Polytechnique, Palaiseau, France,
2007. URL: https://tel.archives-ouvertes.fr/pastel-00002931.

16 H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set union.
Journal of Computer and System Sciences, 30(2):209–221, 1985.

17 Z. Gao. 2-Connected coverings of bounded degree in 3-connected graphs. Journal of Graph
Theory, 20(3):327–338, 1995. doi:10.1002/JGT.3190200309.

18 Z. Gao and R. B. Richter. 2-Walks in circuit graphs. Journal of Combinatorial Theory, Series
B, 62(2):259–267, 1994. doi:10.1006/JCTB.1994.1068.

19 B. Grünbaum. Polytopes, graphs, and complexes. Bulletin of the American Mathematical
Society, 76(6):1131–1201, 1970. doi:10.1090/S0002-9904-1970-12601-5.

20 G. Kant. Drawing planar graphs using the lmc-ordering. In Proceedings of the 33rd Annual
Symposium on Foundations of Computer Science (FOCS’92), pages 101–110, 1992. doi:
10.1109/SFCS.1992.267814.

21 G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16(1):4–32, 1996.
doi:10.1007/BF02086606.

22 K. Ota and K. Ozeki. Spanning trees in 3-connected K3,t-minor-free graphs. Journal of
Combinatorial Theory, Series B, 102:1179–1188, 2012. doi:10.1016/J.JCTB.2012.07.002.

23 K. Ozeki and T. Yamashita. Spanning trees: A survey. Graphs and Combinatorics, 27:1–26,
2011. doi:10.1007/S00373-010-0973-2.

24 W. Schnyder. Embedding planar graphs on the grid. In Proceedings of the 1st Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 138–148, 1990. URL: http://dl.acm.org/
citation.cfm?id=320176.320191.

SWAT 2024

https://doi.org/10.1007/978-3-319-08404-6_6
https://doi.org/10.1002/jgt.23012
https://doi.org/10.1006/jctb.1995.1041
https://doi.org/10.1007/PL00009264
http://swbplus.bsz-bw.de/bsz377230375cov.htm
https://doi.org/10.1007/978-3-322-80303-0
https://doi.org/10.37236/1768
https://doi.org/10.1023/A:1010604726900
https://tel.archives-ouvertes.fr/pastel-00002931
https://doi.org/10.1002/JGT.3190200309
https://doi.org/10.1006/JCTB.1994.1068
https://doi.org/10.1090/S0002-9904-1970-12601-5
https://doi.org/10.1109/SFCS.1992.267814
https://doi.org/10.1109/SFCS.1992.267814
https://doi.org/10.1007/BF02086606
https://doi.org/10.1016/J.JCTB.2012.07.002
https://doi.org/10.1007/S00373-010-0973-2
http://dl.acm.org/citation.cfm?id=320176.320191
http://dl.acm.org/citation.cfm?id=320176.320191

Finding Induced Subgraphs from Graphs with
Small Mim-Width
Yota Otachi # Ñ

Graduate School of Informatics, Nagoya University, Japan

Akira Suzuki # Ñ

Graduate School of Information Sciences, Tohoku University, Sendai, Japan

Yuma Tamura #

Graduate School of Information Sciences, Tohoku University, Sendai, Japan

Abstract
In the last decade, algorithmic frameworks based on a structural graph parameter called mim-
width have been developed to solve generally NP-hard problems. However, it is known that the
frameworks cannot be applied to the Clique problem, and the complexity status of many problems
of finding dense induced subgraphs remains open when parameterized by mim-width. In this
paper, we investigate the complexity of the problem of finding a maximum induced subgraph
that satisfies prescribed properties from a given graph with small mim-width. We first give a
meta-theorem implying that various induced subgraph problems are NP-hard for bounded mim-
width graphs. Moreover, we show that some problems, including Clique and Induced Cluster
Subgraph, remain NP-hard even for graphs with (linear) mim-width at most 2. In contrast to
the intractability, we provide an algorithm that, given a graph and its branch decomposition with
mim-width at most 1, solves Induced Cluster Subgraph in polynomial time. We emphasize
that our algorithmic technique is applicable to other problems such as Induced Polar Subgraph
and Induced Split Subgraph. Since a branch decomposition with mim-width at most 1 can be
constructed in polynomial time for block graphs, interval graphs, permutation graphs, cographs,
distance-hereditary graphs, convex graphs, and their complement graphs, our positive results reveal
the polynomial-time solvability of various problems for these graph classes.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases mim-width, graph algorithm, NP-hardness, induced subgraph problem,
cluster vertex deletion

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.38

Related Version Full Version: https://arxiv.org/abs/2405.15492

Funding Yota Otachi: JSPS KAKENHI Grant Numbers JP18H04091, JP20H05793, JP21K11752,
JP22H00513.
Akira Suzuki: JSPS KAKENHI Grant Numbers JP20K11666, JP20H05794.
Yuma Tamura: JSPS KAKENHI Grant Number JP21K21278.

1 Introduction

Efficiently solving intractable graph problems by using structural graph parameters has
been extensively studied over the past few decades. Tree-width is arguably one of the most
successful parameters in this research direction. Courcelle’s celebrated result indicates that
every problem expressible in MSO2 logic is solvable in linear time for bounded tree-width
graphs [12]. Various graph problems, including Independent Set, Clique, Dominating
Set, Independent Dominating Set, k-Coloring for a fixed k, Feedback Vertex Set,
and Hamiltonian Cycle, can be written in MSO2 logic, and hence Courcelle’s theorem
covers a wide range of problems. Later, Courcelle et al. also gave an analogous result for a

© Yota Otachi, Akira Suzuki, and Yuma Tamura;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 38; pp. 38:1–38:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:otachi@nagoya-u.jp
https://www.math.mi.i.nagoya-u.ac.jp/~otachi/
https://orcid.org/0000-0002-0087-853X
mailto:akira@tohoku.ac.jp
https://www.ecei.tohoku.ac.jp/alg/suzuki/
https://orcid.org/0000-0002-5212-0202
mailto:tamura@tohoku.ac.jp
https://orcid.org/0009-0001-5479-7006
https://doi.org/10.4230/LIPIcs.SWAT.2024.38
https://arxiv.org/abs/2405.15492
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Finding Induced Subgraphs from Graphs with Small Mim-Width

more general parameter than tree-width, namely, clique-width: every problem expressible in
MSO1 logic is solvable in linear time for bounded clique-width graphs (under the assumption
that a k-expression for a fixed k of an input graph is given) [13]. However, these results
are not applicable directly to problems on interval graphs and permutation graphs, because
these graph classes have unbounded clique-width (and thus unbounded tree-width).

In 2012, Vatshelle introduced mim-width [33], and recently, algorithms based on mim-
width have been widely developed [1, 2, 3, 4, 5, 7, 8, 9, 15, 16, 21, 23, 24]. Roughly speaking,
mim-width is an upper bound on the size of maximum induced matching along a branch
decomposition of a graph. (In Section 2, its formal definition will be given.) Mim-width
is a more general structural parameter than clique-width in the sense that the class of
bounded mim-width graphs properly contains the class of bounded clique-width graphs.
Furthermore, many graph classes of unbounded clique-width have bounded mim-width: for
example, interval graphs, permutation graphs, convex graphs, k-polygon graphs for a fixed
k, circular k-trapezoid graphs for a fixed k, and H-graphs for a fixed graph H. (See [1, 14]
for more details.) Bergougnoux et al. gave an algorithmic meta-theorem [2], which states
that every problem expressible in A&C DN logic is solvable in polynomial time for bounded
mim-width graphs (under the assumption that a suitable branch decomposition of an input
graph is given). Independent Set, Dominating Set, Independent Dominating Set,
k-Coloring for a fixed k, Feedback Vertex Set etc. can be expressed in A&C DN logic.
Thus, Bergougnoux et al. showed that many problems are solvable in polynomial time for a
much wider range of graph classes than the class of bounded clique-width graphs.

Unfortunately, A&C DN logic does not cover all problems expressible in MSO2 logic.
Clique and Hamiltonian Cycle cannot be written in A&C DN logic, whereas they can be
expressed in MSO1 logic and MSO2 logic, respectively. This means that the meta-theorem
by Bergougnoux et al. is not applicable to these problems. In fact, it is known that Clique
is NP-hard for graphs with linear mim-width1 at most 6 [33] and Hamiltonian Cycle is
NP-hard for graphs with linear mim-width 1 [23]. Note that by combining some known facts,
we can show that Clique on graphs with mim-width at most 1 can be solved in polynomial
time (see the discussion in the second paragraph of Section 4). These results lead us to ask
the following questions:

What kind of problems expressible in MSO2 logic are NP-hard for bounded mim-width
graphs?
Is Clique NP-hard for graphs with mim-width less than 6?
Given a graph with mim-width at most 1, which MSO2-expressible problems are poly-
nomial-time solvable?

1.1 Our contributions
To answer the questions above, in this paper, we systematically study the complexity of
the Induced Π Subgraph problems and their complementary problems, called the Π
Vertex Deletion problems, on bounded (linear) mim-width graphs. We first show that
for any nontrivial hereditary graph property Π that admits all cliques, there is a constant
w such that Induced Π Subgraph and Π Vertex Deletion are NP-hard for graphs
with (linear) mim-width at most w. For example, Clique, Induced Cluster Subgraph,
Induced Polar Subgraph, and Induced Split Subgraph satisfy the aforementioned
conditions, and hence all of them are NP-hard for bounded (linear) mim-width graphs. As a

1 The linear mim-width of a graph G is the mim-width when a branch decomposition of G is restricted to
a caterpillar. The formal definition will be given in Section 2.

Y. Otachi, A. Suzuki, and Y. Tamura 38:3

byproduct, we also show that connected and dominating variants of them are NP-hard for
bounded (linear) mim-width graphs. Moreover, we give sufficient conditions for Induced Π
Subgraph and Π Vertex Deletion to be NP-hard for graphs with (linear) mim-width
at most 2. Clique, Induced Cluster Subgraph, Induced Polar Subgraph, and
Induced Split Subgraph are proven to be in fact NP-hard even for graphs with (linear)
mim-width at most 2. We thus reveal that there are various NP-hard problems for bounded
mim-width graphs, although they can be expressed in MSO2 logic. Especially, our result for
Clique strengthens the known result that Clique is NP-hard for graphs with mim-width at
most 6 [33].

To complement the intractability, we next seek polynomial-time solvable cases for graphs
with mim-width at most 1. Here we focus on Induced Cluster Subgraph, also known
as Cluster Vertex Deletion. Induced Cluster Subgraph is known to be NP-hard
for bipartite graphs [19, 34], while it is solvable in polynomial time for split graphs, block
graphs, interval graphs [10], cographs [27], bounded clique-width graphs [13], and convex
graphs2. Surprisingly, the complexity status of Induced Cluster Subgraph on chordal
graphs is still open. We show that, given a graph G with mim-width at most 1 accompanied
by its branch decomposition with mim-width at most 1, Induced Cluster Subgraph is
solvable in polynomial time. Although the complexity of computing a branch decomposition
with mim-width at most 1 of a given graph is still open in general, our result yields a
unified polynomial-time algorithm for Induced Cluster Subgraph that works on block
graphs, interval graphs, permutation graphs, cographs, distance-hereditary graphs, convex
graphs, and their complement graphs because all these graphs have mim-width at most 1
and their branch decompositions of mim-width at most 1 can be obtained in polynomial
time [1, 20, 33]3. Consequently, we give independent proofs for some of the results in [10, 27]
via mim-width. Moreover, to the best of our knowledge, this is the first polynomial-time
algorithm for Induced Cluster Subgraph on permutation graphs. We also emphasize
that our algorithmic technique can be applied to other problems such as Induced Polar
Subgraph, Induced Split Subgraph, and so on. Combining our results, we give the
complexity dichotomy of the above problems with respect to mim-width.

Due to the space limitation, the proofs of claims marked ♠ are omitted in this paper,
which can be found in the full version.

1.2 Previous work on mim-width

Mim-width is a relatively new graph structural parameter introduced by Vatshelle [33] and
it has attracted much attention in recent years to design efficient algorithms of problems
on graph classes that have unbounded tree-width and clique-width. Combined with the
result of Belmonte and Vatshelle [1], Bui-Xuan et al. provided XP algorithms of Locally
Checkable Vertex Subset and Vertex Partitioning problems (LC-VSVP for short)
parameterized by mim-width w, assuming that a branch decomposition with mim-width
w of a given graph can be computed in polynomial time [9]. Many problems, including
Independent Set, Dominating Set, Independent Dominating Set, and k-Coloring,
are expressible in the form of LC-VSVP. Jaffke et al. later generalized the result to the

2 If a given graph is convex (more generally K3-free), Induced Cluster Subgraph is equivalent to
Induced Π Subgraph such that Π is the class of graphs with maximum degree at most 1, which is
solvable in polynomial time for convex graphs [9].

3 As far as we know, it was not explicitly stated in any literature that block graphs and distance-hereditary
graphs have mim-width at most 1. This follows from the facts that a graph is distance-hereditary if and
only if its rank-width is at most 1 [20], and block graphs are distance-hereditary graphs.

SWAT 2024

38:4 Finding Induced Subgraphs from Graphs with Small Mim-Width

distance versions of LC-VSVP [21]. As the name suggests, LC-VSVP can capture problems
whose solutions are defined only by local constraints. Longest Induced Path [23] and
Feedback Vertex Set [24] are the first problems with global constraints for which it
was shown that there exist XP algorithms parameterized by mim-width. Bergougnoux and
Kanté designed a framework to deal with problems with global constraints for bounded
mim-width graphs [3]. The remarkable meta-theorem given by Bergougnoux et al. is not
only a generalization of all the above results in this section, but also a powerful tool for
solving more complicated problems on bounded mim-width graphs [2]. Subset Feedback
Vertex Set is one of the few examples where there exists an XP algorithm parameterized
by mim-width [4] although the meta-theorem does not work for it.

Unfortunately, computing the mim-width of a given graph is W[1]-hard, and there is
no polynomial-time approximation algorithm within constant factor unless NP = ZPP [32].
Even the complexity of determining whether a given graph has mim-width at most 1 is a
long-standing open problem. Fortunately, it is known that various graph classes have constant
mim-width and their branch decompositions with constant mim-width are computable in
polynomial time [1, 7, 8, 14, 26, 30]. In particular, some famous graphs, such as block
graphs, interval graphs, permutation graphs, cographs, distance-hereditary graphs, and
convex graphs, have mim-width at most 1 and their branch decomposition with mim-width
at most 1 can be obtained in polynomial time [1, 20]. The class of leaf power graphs, which
is the more general class than interval graphs and block graphs, also have mim-width at
most 1 [22], although it is not known whether an optimal branch decomposition of a given
leaf power graph can be obtained in polynomial time. On the other hand, the following graph
classes have unbounded mim-width: strongly chordal split graphs [29], co-comparability
graphs [26, 29], circle graphs [29], and chordal bipartite graphs [6].

In contrast to a wealth of research on developing XP algorithms parameterized by mim-
width and establishing lower and upper bounds on mim-width for specific graph classes, there
has been limited research on the NP-hardness of problems for graph classes with constant
mim-width [23, 25, 33].

2 Preliminaries

Let G = (V, E) be a graph. We assume that all the graphs in this paper are simple,
undirected, and unweighted. We denote by V (G) and E(G) the vertex set and the edge set
of G, respectively. For a vertex v of G, we denote by N(G; v) the (open) neighborhood of v in
G, that is, N(G; v) = {w ∈ V | vw ∈ E}. The degree of a vertex v of G is the size of N(G; v).
For a vertex subset V ′ ⊆ V , we denote by G[V ′] the subgraph induced by V ′. We use the
shorthand G − V ′ for G[V \ V ′]. For positive integers i and j with i ≤ j, we write [i, j] as
the shorthand for the set {i, i + 1, . . . , j} of integers. In particular, we write [1, j] = [j].

For two graphs G1 = (V1, E1) and G2 = (V2, E2) with V1 ∩ V2 = ∅, the disjoint union
of G1 and G2 is the graph whose vertex set is V1 ∪ V2 and edge set is E1 ∪ E2. For a
graph H and a positive integer ℓ, ℓH means the disjoint union of ℓ copies of H. The
complement of G, denoted by G, is the graph on the same vertex set V (G) with the edge set
{uv | u, v ∈ V (G), uv /∈ E(G)}. An independent set I of G is a vertex subset of G such that
any two vertices in I are non-adjacent. A clique K of G is a vertex subset of G such that
any two vertices in K are adjacent. Obviously, an independent set of G forms a clique of G,
and vice versa. A dominating set D of G is a vertex subset of G such that N(G; v) ∩ D ̸= ∅
for every vertex v ∈ V (G) \ D. A graph G is said to be connected if there is a path between
any two vertices of G. A maximal connected subgraph of G is called a connected component
of G. A cut vertex of G is a vertex whose removal from G increases the number of connected
components.

Y. Otachi, A. Suzuki, and Y. Tamura 38:5

2.1 Graph classes

A graph is bipartite if its vertex set can be partitioned into two independent sets. For disjoint
vertex sets A and B of a graph G, we denote by G[A, B] the bipartite subgraph with the vertex
set A ∪ B and the edge set {ab ∈ E(G) | a ∈ A, b ∈ B}. A bipartite graph G = (A ∪ B, E)
consisting of disjoint independent sets A and B is called a chain graph if there is an ordering
a1, a2, . . . , a|A| of vertices in A such that N(G; a1) ⊆ N(G; a2) ⊆ · · · ⊆ N(G; a|A|). Note
that, if A has such an ordering, then B also has an ordering b1, b2, . . . , b|B| of vertices in B

such that N(G; b1) ⊆ N(G; b2) ⊆ · · · ⊆ N(G; b|B|).
A tree is a connected acyclic graph. A vertex of a tree is called a leaf if it has degree 1;

otherwise, it is an internal vertex. A rooted tree T is a tree with a specific vertex r called the
root of T . For a rooted tree T and two adjacent vertices x and y of T , we say that x is the
parent of y, and conversely, y is a child of x if x lies on a path from y to r. A full binary
tree is a rooted tree such that each vertex has zero or exactly two children. A tree T is a
caterpillar if it contains a path P called a spine such that every leaf of T is adjacent to a
vertex of P . In this paper, we assume that the spine P is maximum, that is, there is no path
longer than P . The vertices of degree at most 1 in P are called the endpoints of P . A tree T

is called subcubic if every internal vertex of T has degree exactly 3.
We denote by Kn and Pn the complete graph and the path graph with n vertices,

respectively. We say that a graph G is H-free if G does not contain a graph isomorphic to
H as an induced subgraph.

2.2 Mim-width

For an edge subset E′ of a graph G, we denote V (E′) = {v, w ∈ V (G) | vw ∈ E′}. An
edge subset M ⊆ E(G) is an induced matching of G if every vertex of G[V (M)] has degree
exactly 1. For a vertex subset A ⊆ V (G), let mim(A) be the maximum size of an induced
matching in the bipartite subgraph G[A, A], where A = V (G) \ A.

A branch decomposition of a graph G is a pair (T, L), where T is a subcubic tree with
|V (G)| leaves and L is a bijection from V (G) to the leaves of T . In particular, a branch
decomposition (T, L) is called linear if T is a caterpillar. To distinguish vertices of T from
those of the original graph G, we call the vertices of T nodes. For each edge e of T , as
T is acyclic, removing e from T results in two trees T e

1 and T e
2 . Let (Ae

1, Ae
2) be a vertex

bipartition of G, where Ae
i = {L−1(ℓ) | ℓ is a leaf of T e

i } for each i ∈ {1, 2}. The mim-width
mimw(T, L) of a branch decomposition (T, L) of G is defined as maxe∈E(T) mim(Ae

1). The
mim-width mimw(G) of G is the minimum mim-width over all branch decompositions of G.
Similarly, the linear mim-width lmimw(G) of G is the minimum mim-width over all linear
branch decompositions of G. Note that mimw(G) ≤ lmimw(G) holds for any graph G.

In this paper, to make a branch decomposition easier to handle, we often consider its
rooted variant. A rooted layout of a graph G is a pair (T ′, L), where T ′ is a rooted full binary
tree with |V (G)| leaves and L is a bijection from V (G) to the leaves of T ′. The mim-width
of a rooted layout (T ′, L) is defined in the same way as a branch decomposition. A rooted
layout of G is obtained from a branch decomposition (T, L) of G with the same mim-width
by inserting a root r to an arbitrary edge of T . (If |V (T)| = 1, we regard the unique node of
T as the root r of T ′.)

Here we note propositions concerning mim-width. Vatshelle showed that for a graph G

and a vertex v ∈ V (G), it holds that mimw(G − v) ≤ mimw(G) [33]. One can see that the
proof given by Vatshelle suggests the next proposition.

SWAT 2024

38:6 Finding Induced Subgraphs from Graphs with Small Mim-Width

▶ Proposition 1. For a graph G and an induced subgraph G′ of G, it holds that mimw(G′) ≤
mimw(G) and lmimw(G′) ≤ lmimw(G).

We here focus on graphs with mim-width at most 1. It is known that a graph G is a
chain graph if and only if G is a bipartite graph with a maximum induced matching of size
at most 1 [18]. Thus, we obtain the following proposition.

▶ Proposition 2. Let (T, L) be a branch decomposition of a graph G. Then, mimw(T, L) ≤ 1
if and only if for any edge e of T , the bipartite subgraph G[Ae

1, Ae
2] of G is a chain graph.

Moreover, for a graph G and a vertex subset A ⊂ V (G), it is not hard to see that
mim(A) ≤ 1 on G if and only if mim(A) ≤ 1 on G from the definition of a chain graph. This
implies the following proposition.

▶ Proposition 3 ([33]). Suppose that a graph G has mim-width at most 1. Then, any branch
decomposition (T, L) of G with mimw(T, L) ≤ 1 is also the branch decomposition of G with
mimw(T, L) ≤ 1. Consequently, mimw(G) ≤ 1 if and only if mimw(G) ≤ 1.

Combined with the observation that any cycle of length at least 5 has mim-width 2 and
the strong perfect graph theorem [11], Proposition 3 leads to the following proposition.

▶ Proposition 4 ([33]). All graphs with mim-width at most 1 are perfect graphs.

2.3 Graph properties and problems
Let Π be a fixed graph property. We often regard Π as a collection of graphs satisfying
the graph property. A graph property Π is nontrivial if there exist infinitely many graphs
satisfying Π and there exist infinitely many graphs that do not satisfy Π. A graph property
Π is said to be hereditary if for any graph G satisfying Π, every induced subgraph of G also
satisfies Π. We denote by Π the complementary property of Π, that is, Π = {G : G ∈ Π}.

For a graph G, a vertex subset S ⊆ V (G) is called a Π-set of G if G[S] satisfies Π. The
Induced Π Subgraph problem asks for a Π-set S of maximum size for a given graph G. If
G[S] is also required to be connected, then the problem is called the Connected Induced
Π Subgraph problem. For example, Independent Set is equivalent to Induced K2-free
Subgraph, and Clique is equivalent to Induced 2K1-free Subgraph and Connected
Induced P3-free Subgraph. Note that a vertex set S of G is a Π-set if and only if S is a
Π-set of G. In Induced Π Subgraph, if the Π-set S is also required to be a dominating set
of G, then the problem is called the Dominating Induced Π Subgraph problem.

Under the polynomial-time solvability, Induced Π Subgraph is equivalent to the Π
Vertex Deletion problem, which asks for a minimum vertex subset S′ of G such that
G − S′ satisfies Π. The vertex subset S′ is called a Π-deletion set of G. The Vertex
Cover problem is equivalent to K2-free Vertex Deletion. If G[S′] is also required to
be connected, then the problem is called the Connected Π Vertex Deletion problem.
In Π Vertex Deletion, if the Π-deletion set S′ is also required to be a dominating set of
G, then the problem is called the Dominating Π Vertex Deletion problem.

3 NP-hardness

In this section, we show the NP-hardness of Induced Π Subgraph and Π Vertex Deletion
on graphs with linear mim-width at most w, where w is some constant.

Y. Otachi, A. Suzuki, and Y. Tamura 38:7

▶ Theorem 5. Let Π be a fixed nontrivial hereditary graph property that admits all cliques.
Then there is a constant w such that Induced Π Subgraph and Π Vertex Deletion, as
well as their connected variants and their dominating variants, are NP-hard for graphs with
linear mim-width at most w, even if a branch decomposition with mim-width at most w of an
input graph is given.

Since Induced Π Subgraph is the complementary problem of Π Vertex Deletion,
we only prove the hardness of Π Vertex Deletion.

The girth of a graph G is the length of a shortest cycle in G. We reduce Vertex Cover
on graphs with girth at least 7, which is known to be NP-complete [31], to Π Vertex
Deletion by following the classical reduction technique of Lewis and Yannakakis [28].

First, we define a sequence on a graph. Consider a graph H with p connected components
H1, H2, . . . , Hp. Suppose that Hi for i ∈ [p] has a cut vertex c and the removal of c from
Hi results in q connected components Ci,1, Ci,2, . . . , Ci,q with |V (Ci,1)| ≥ |V (Ci,2)| ≥ · · · ≥
|V (Ci,q)|. For each j ∈ [q], we denote by Hi,j the subgraph induced by V (Ci,j) ∪ {c} and
ni,j = |V (Hi,j)|. The cut vertex c gives a non-increasing sequence αc = ⟨ni,1, ni,2, . . . , ni,q⟩.
For two sequences αc and αc′ according to cut vertices c and c′ of Hi, we write αc′ <L αc if
αc′ is smaller than αc in the sense of lexicographic order. Let αi be the lexicographically
smallest sequence among all sequences according to the cut vertices of Hi. If Hi has no
cut vertex, we let αi = ⟨|V (Hi)|⟩. Define βH = ⟨α1, α2, . . . , αp⟩, where we assume that
α1 ≥L α2 ≥L · · · ≥L αp. For example, for the graph H depicted in Figure 1(a), we have
βH = ⟨⟨4, 2⟩, ⟨2, 2⟩⟩. For two graphs H with p connected components and H ′ with q connected
components, we write βH′ <R βH if βH′ is smaller than βH in the sense of lexicographic
order: more precisely, assuming that βH = ⟨α1, α2, . . . , αp⟩ and βH′ = ⟨α′

1, α′
2, . . . , α′

q⟩, there
exists an integer i ∈ [min{p, q}] such that α′

j = αj for every j ∈ [i − 1] and α′
i <L αi; or

q < p and α′
i = αi for every i ∈ [q].

Consider the complementary property Π of Π. Note that, since all cliques satisfy Π, all
independent sets satisfy Π. Let F be a graph satisfying the following two conditions:
1. there is an integer ℓ ≥ 1 such that ℓF violates Π, whereas (ℓ − 1)F satisfies Π; and
2. for any integer ℓ′ ≥ 1 and any graph F ′ with βF ′ <R βF , ℓ′F ′ satisfies Π.
We call F the base of Π-forbidden subgraphs. Notice that the existence of F is guaranteed
because Π is nontrivial. Moreover, F and ℓ depend on Π solely and are independent of an
instance of Vertex Cover, that is, F and ℓ are fixed.

Let F1, F2, . . . , Fp be p connected components of F , where α1 ≥L α2 ≥L · · · ≥L αp. We
denote by c1 the cut vertex of F1 that realizes α1 (see Figure 1(a)) and by F1,1 the induced
subgraph of F1 corresponding to n1,1 (see Figure 1(b)). If F1 has no cut vertex, then c1
is any vertex of F1. We then arbitrarily choose a vertex from N(F1,1; c1) and label it as d.
Notice that N(F1,1; c1) ̸= ∅; otherwise, since α1, α2, . . . , αp are lexicographically sorted, ℓF

is an independent set and violates Π, which contradicts that all independent sets satisfy Π.
Let F ′ be the graph obtained by removing V (F1,1) \ {c1} from F (see Figure 1(c)).

We now construct an input graph G for Π Vertex Deletion from an input graph H

with girth at least 7 for Vertex Cover. Let n = |V (H)| and H∗ be the disjoint union of
ℓn copies of H. We assume that n ≥ 2, k < n − 1, and H has at least one edge; otherwise,
Vertex Cover is trivially solvable. For each vertex u of H∗, make a copy of F ′ and identify
c1 with u. For each edge uv of H∗, make a copy of F1,1 and identify c1 and d with u and v,
respectively. (See Figure 2.) Let H ′ be the graph resulting from the above transformation.
Finally, we let G = H ′. Since ℓ, F ′, and F1,1 are fixed, G can be constructed in polynomial
time in the size of H.

SWAT 2024

38:8 Finding Induced Subgraphs from Graphs with Small Mim-Width

c1 c2
c1

d

c1

(a) (b) (c)

Figure 1 Let F be the graph depicted in (a). The cut vertex c1 of the left connected component
F1 of F gives α1 = ⟨4, 2⟩ and the cut vertex c2 of the right connected component F2 of F gives
α2 = ⟨2, 2⟩, where α1 >L α2. Thus, if F is selected as the base of Π-forbidden subgraphs, F1,1 and
F ′ are defined as the graphs depicted in (b) and (c), respectively.

u v u v

Figure 2 A transformation of an edge uv with F1,1 and F ′, which are the graphs depicted in
Figure 1(b) and (c), respectively.

In [28], it is shown that H has a vertex cover of size at most k if and only if H ′ has
a Π-deletion set S of size at most kℓn. Notice that H ′ has ℓn ≥ 2 connected components
because H ′ is obtained from H∗, which is the disjoint union of ℓn copies of H . Moreover, we
have the following lemma.

▶ Lemma 6. Suppose that H ′ has a Π-deletion set S of size at most kℓn. Then the following
two claims (a) and (b) are true:
(a) there are two connected components C1 and C2 of H ′ such that V (C1) \ S ̸= ∅ and

V (C2) \ S ̸= ∅; and
(b) there are two connected components C ′

1 and C ′
2 of H ′ such that V (C ′

1) ∩ S ̸= ∅ and
V (C ′

2) ∩ S ̸= ∅.

Proof. In the claim (a), assume for a contradiction that there is at most one connected
component C of H ′ such that V (C)\S ≠ ∅. In other words, V (H ′ −C) ⊆ S holds. Recall that
k < n − 1 and H ′ has ℓn ≥ 2 connected components. Moreover, each connected component
of H ′ − C has at least n vertices from the construction of H ′. Thus, we have

|S| ≥ |V (H ′ − C)| ≥ n(ℓn − 1) > (k + 1)(ℓn − 1) = kℓn + ℓn − k − 1 > kℓn,

a contradiction.
To prove the claim (b), assume for a contradiction that there is at most one connected

component C ′ of H ′ such that V (C ′) ∩ S ̸= ∅. In other words, there are at least ℓn − 1 (≥ ℓ

because n ≥ 2) connected components of H ′ − C ′ that contain no vertex in S. Consider ℓ

connected components of H ′ − C ′. Since each of them contains F as an induced subgraph,
H ′ − C ′ contains ℓF as an induced subgraph. However, ℓF violates Π because F is the base
of Π-forbidden subgraphs. This contradicts that S is a Π-deletion set of H ′. ◀

Observe that S is a Π-deletion set of H ′ of size at most kℓn if and only if S is a Π-deletion
set of G = H ′ of size at most kℓn. Combined with Lemma 6, this implies that H has a
vertex cover of size at most k if and only if G has a Π-deletion set S of size at most kℓn such
that the induced subgraphs G[S] and G − S are both connected, and S and V (G) \ S are
dominating sets of G.

Y. Otachi, A. Suzuki, and Y. Tamura 38:9

Our remaining task is to show that G has linear mim-width at most w for some constant
w. To this end, we consider a sequence of subgraphs of H ′. Let V (H∗) = {v1, v2, . . . , vn}
and E(H∗) = {e1, e2, . . . , em}, where n and m are the numbers of vertices and edges of H∗,
respectively. We make a sequence H = ⟨H∗ = H0, H1, . . . , Hn+m = H ′⟩ such that Hi for
i ∈ [n] is obtained from Hi−1 by attaching a copy of F ′ to vi, and Hi for i ∈ [n + 1, n + m]
is obtained from Hi−1 by attaching a copy of F1,1 to ei−n. Since G = H ′, the following
lemma completes the proof of Theorem 5. (Recall that F is fixed and hence lmimw(F) is a
constant.)

▶ Lemma 7. For any graph Hi in the sequence H = ⟨H∗ = H0, H1, . . . , Hn+m = H ′⟩, a
linear branch decomposition of Hi with mim-width at most lmimw(F) + 2 can be obtained in
polynomial time in the size of H∗.

Proof. We prove the lemma by induction, where the base case is H0 = H∗. Note that H∗

has girth at least 7 because H∗ consists of copies of H whose girth is at least 7. Consider a
linear branch decomposition (T0, L0) of H0, where L0 is an arbitrary bijection from V (H0) to
the leaves of T0. To show that mimw(T0, L0) ≤ 2 ≤ lmimw(F) + 2, assume for a contradiction
that there is an edge e of T0 such that mim(Ae

1) ≥ 3 for the bipartition (Ae
1, Ae

2). Let
x1x2, y1y2, z1z2 be edges that form an induced matching in G[Ae

1, Ae
2], where x1, y1, z1 ∈ Ae

1
and x2, y2, z2 ∈ Ae

2. Then, x1y2, y2z1, z1x2, x2y1, y1z2, z2x1 /∈ E(H) and hence they form a
cycle of length 6 in H0. This contradicts that the girth of H0 is at least 7.

Consider the case of i > 0. We here define a concatenation of two linear branch
decompositions. Let G1 and G2 be vertex-disjoint induced subgraphs of a graph G such that
V (G1) ∪ V (G2) = V (G), and let (T1, L1) and (T2, L2) be linear branch decompositions of G1
and G2, respectively. A concatenation of (T1, L1) and (T2, L2) is to construct a new linear
branch decomposition (T, L) of G as follows. For each i ∈ {1, 2}, let ei be an edge incident
to an endpoint of the spine of Ti. Insert nodes t1 and t2 into e1 and e2, respectively, and
then connect t1 and t2 by an edge. (If |V (Ti)| = 1 for i ∈ {1, 2}, we define ti as the unique
node of Ti.) Observe that T is a subcubic caterpillar. Finally, set a bijection L from V (G)
to the leaves of T such that L(v) = L1(v) if v ∈ V (G1) and L(v) = L2(v) if v ∈ V (G2).

By the induction hypothesis, there exists a linear branch decomposition (Ti−1, Li−1)
of Hi−1 such that mimw(Ti−1, Li−1) ≤ lmimw(F) + 2. Recall that Hi is constructed by
attaching a copy of F ′ to vi or a copy of F1,1 to ei−n. We denote by Fi the subgraph
of Hi obtained by removing all vertices in V (Hi−1). We may assume that |V (Fi)| ≥ 1;
otherwise, Hi = Hi−1 and thus we immediately conclude that lmimw(Hi) ≤ lmimw(F) + 2.
Let (T ′

i , L′
i) be a linear branch decomposition of Fi such that mimw(T ′

i , L′
i) ≤ lmimw(F).

Notice that, since Fi is an induced subgraph of F , such a linear branch decomposition exists
by Proposition 1. Moreover, it can be constructed in constant time because F is fixed. We
define (Ti, Li) as a linear branch decomposition obtained by a concatenation of (Ti−1, Li−1)
and (T ′

i , L′
i). Clearly, the construction of (Ti, Li) can be done in polynomial time in the size

of H∗.
To show that mimw(Ti, Li) ≤ lmimw(F) + 2, assume for a contradiction that there is

an edge e of Ti such that the bipartite subgraph G[Ae
1, Ae

2] of Hi has an induced matching
M of size lmimw(F) + 3, where (Ae

1, Ae
2) is the bipartition of V (Hi) given by e. From the

construction of (Ti, Li), the following two cases are considered: (I) Ae
1 ⊆ V (Hi−1) and

V (Fi) ⊆ Ae
2; and (II) Ae

1 ⊆ V (Fi) and V (Hi−1) ⊆ Ae
2.

Case (I). Let e′ be an edge of Ti−1 such that Ae′

1 = Ae
1 and Ae′

2 = Ae
2 \ V (Fi). If V (M) ⊆

V (Hi−1), then M is also an induced matching of the bipartite subgraph G[Ae′

1 , Ae′

2] defined
by the linear branch decomposition (Ti−1, Li−1). This implies that mimw(Ti−1, Li−1) ≥
|M | = lmimw(F) + 3, which contradicts that mimw(Ti−1, Li−1) ≤ lmimw(F) + 2.

SWAT 2024

38:10 Finding Induced Subgraphs from Graphs with Small Mim-Width

Without loss of generality, we assume that M has three distinct edges x1x2, y1y2, z1z2
such that x1, y1, z1 ∈ Ae

1 ⊆ V (Hi−1), x2 ∈ Ae
2 ∩ V (Fi), and y2, z2 ∈ Ae

2. Then, the sequence
⟨x2, y1, z2, x1, y2, z1, x2⟩ of vertices forms a cycle C of length 6 of Hi. If i ∈ [n], as x2 ∈ V (Fi)
is adjacent to at most one vertex in V (Hi−1) from the construction of Hi, then we have
y1 = z1, a contradiction. Suppose that i ∈ [n + 1, n + m]. Recall that, from the construction
of Hi, each vertex of Fi is not adjacent to vertices in V (Hi−1) except for the endpoints
of ei−n. Since x2 ∈ V (Fi) is adjacent to the distinct vertices y1, z1 ∈ V (Hi−1), we have
ei−n = y1z1. Furthermore, x1 ∈ V (Hi−1) is not adjacent to any vertex in V (Fi) and hence
we have y2, z2 ∈ V (Hi−1). Therefore, we obtain the cycle C1 = ⟨y1, z2, x1, y2, z1, y1⟩ with
smaller length than that of C, where the vertices of C1 are in V (Hi−1). Similarly, if C1
contains vertices of Fj for j ∈ [n + 1, i], there exists a smaller cycle of Hi−1 that contains no
vertices of Fj . We eventually obtain a cycle C ′ of H of length less than 6, which contradicts
that H has girth at least 7.

Case (II). Recall that at most two vertices in V (Hi−1), say u and w, are adjacent to some
vertex in V (Fi) on Hi and thus no vertex in V (Hi−1) \ {u, w} is adjacent to any vertex in
V (Fi) on Hi. If some vertex in V (M) is in V (Hi−1) \ {u, w}, then we can take three distinct
edges x1x2, y1y2, z1z2 ∈ M such that x1, y1, z1 ∈ Ae

1 ⊆ V (Fi), x2 ∈ V (Hi−1) \ {u, w} ⊆ Ae
2,

and y2, z2 ∈ Ae
2. However, this implies that x2 is adjacent to y1 and z1 on Hi, which

contradicts that no vertex in V (Hi−1) \ {u, w} is adjacent to any vertex in V (Fi) on Hi.
If there is no vertex in V (M) is in V (Hi−1) \ {u, w}, then there is an induced matching

M ′ ⊆ M of G[Ae
1, Ae

2] such that V (M ′) ⊆ V (Fi) and |M ′| ≥ |M | − |V (M) ∩ {u, w}| ≥
lmimw(F) + 1. For an edge e′ of T ′

i such that Ae′

1 = Ae
1 and Ae′

2 = Ae
2 \ V (Hi−1), M ′ is

also an induced matching of G[Ae′

1 Ae′

2] defined by the linear branch decomposition (T ′
i , L′

i).
This implies that mimw(T ′

i , L′
i) ≥ lmimw(F) + 1, which contradicts that mimw(T ′

i , L′
i) ≤

lmimw(F). ◀

Refining the proof of Lemma 7 yields stronger claims for some problems. (See the full
version of this paper.)

▶ Theorem 8 (♠). All the following problems, as well as their connected variants and their
dominating variants, are NP-hard for graphs with linear mim-width 2: (i) Clique; (ii)
Induced Cluster Subgraph; (iii) Induced Polar Subgraph (iv) Induced P3-free
Subgraph; (v) Induced K3-free Subgraph; and (vi) Induced Split Subgraph. The
NP-hardness for these problems holds even if a linear branch decomposition with mim-width
at most 2 of an input graph is given.

Theorem 8 strongly suggests that the complements of graphs with linear mim-width 2
have unbounded mim-width, because Independent Set, the complementary problem of
Clique, is solvable in polynomial time for bounded mim-width graphs.

4 Polynomial-time algorithms for graphs with mim-width at most 1

A graph G is called a cluster if every connected component of G is a complete graph. Induced
Cluster Subgraph is equivalent to Induced P3-free Subgraph and Cluster Vertex
Deletion (in terms of polynomial-time solvability). From Theorem 8, Induced Cluster
Subgraph is NP-hard for graphs with linear mim-width at most 2.

Recall that all graphs with mim-width at most 1 are perfect graphs by Proposition 4. It
is known that Clique is solvable in polynomial time for perfect graphs [17] and hence also
for graphs with mim-width at most 1. In contrast, Induced Cluster Subgraph remains

Y. Otachi, A. Suzuki, and Y. Tamura 38:11

NP-hard for bipartite graphs [19, 34], which are perfect graphs. Thus, the same argument
as Clique is not applicable to Induced Cluster Subgraph. Nevertheless, assuming
that a rooted layout (T, L) of an input graph with mimw(T, L) = 1 is given, we design a
polynomial-time algorithm for Induced Cluster Subgraph.

▶ Theorem 9. Given a graph and its rooted layout of mim-width at most 1, Induced
Cluster Subgraph is solvable in polynomial time.

It is known that all interval graphs, permutation graphs, distance-hereditary graphs, and
convex graphs have mim-width at most 1 and their rooted layout of mim-width at most 1
can be obtained in polynomial time [1, 20]. Moreover, by Proposition 3, rooted layouts with
mim-width at most 1 for the complement of these graphs can also be obtained in polynomial
time. Thus, our algorithm directly indicates the following corollary.

▶ Corollary 10. There is an algorithm that solves Induced Cluster Subgraph in polyno-
mial time for interval graphs, permutation graphs, distance-hereditary graphs, convex graphs,
and their complements.

Here we give an idea of our algorithm. For a rooted layout (T, L) of a given graph with
mim-width at most 1, we compute an optimal solution by means of dynamic programming
from the leaves to the root of T . To complete the computation in polynomial time, for each
node t of T , we discard redundant partial solutions and store essential ones of polynomial
size. This approach was also employed in the previous algorithmic work of mim-width [2, 3,
4, 9, 21, 23, 24]. Especially, an equivalence relation called the d-neighbor equivalence plays
a key role in compressing partial solutions and designing XP algorithms parameterized by
mim-width [2, 3, 4, 9, 21]. However, Theorem 8 suggests that the d-neighbor equivalence
does not work for designing an algorithm for Induced Cluster Subgraph; otherwise,
we would obtain an XP algorithm parameterized by mim-width, which is quite unlikely
by Theorem 8. A rooted layout with mim-width at most 1 resolves the difficulty. Recall
that mimw(T, L) ≤ 1 if and only if G[Ae

1, Ae
2] for any edge e of T is a chain graph as in

Proposition 2. This property allows us to give strict total orderings of vertices in Ae
1 and

Ae
2 with respect to neighbors of vertices. We define new equivalence relations over the strict

total orderings, which enables the dynamic programming to run in polynomial time.
Let G be a graph and <A be a strict total order on A ⊆ V (G). For a vertex subset

C ⊆ A, we denote by head(C, <A) and tail(C, <A) the largest and smallest vertices in C

with respect to <A, respectively. More precisely, for a vertex u ∈ C, u = head(C, <A) if
and only if v <A u for any vertex v ∈ C \ {u}, and u = tail(C, <A) if and only if u <A w

for any vertex w ∈ C \ {u}, respectively. (For the sake of convenience, we allow C = ∅ and
in this case we let head(C, <A) = ∅ and tail(C, <A) = ∅.) For a subset S ⊆ A, a partition
(C1, C2, . . . , Cp) of S into p disjoint subsets C1, C2, . . . , Cp is called a component partition of
S over G if for every i ∈ [p], the subgraph of G induced by Ci is a connected component of
G[S]. We say that a partition (C1, C2, . . . , Cp) of S ⊆ A is indexed by <A if it holds that
head(Cj , <A) <A head(Ci, <A) for any pair of integers i, j with 1 ≤ i < j ≤ p.

For a non-empty vertex subset A of G such that mim(A) ≤ 1, a strict total order <A

of A is called a chain order if for any two distinct vertices v, w in A, v <A w means
N(G; v) \ A ⊆ N(G; w) \ A. (If |A| = 1, we define that the trivial strict total order of A is
also a chain order.) By Proposition 2 and the definition of chain graphs, there is a chain
order of A if and only if mim(A) ≤ 1. Note that mim(A) ≤ 1 also holds and thus there is a
chain order <A of A.

For subsets SA and S′
A of A, let (C1, C2, . . . , Cp) denote the component partition of SA

over G and let (C ′
1, C ′

2, . . . , C ′
q) denote the component partition of S′

A over G, where p and
q are positive integers and both the component partitions are indexed by a chain order

SWAT 2024

38:12 Finding Induced Subgraphs from Graphs with Small Mim-Width

<A. We write SA ≡cl
G,<A

S′
A if head(C1, <A) = head(C ′

1, <A), tail(C1, <A) = tail(C ′
1, <A),

and head(C2, <A) = head(C ′
2, <A). If the graph G and the chain order <A involved in the

component partitions of SA and S′
A are clear from the context, then we use the shorthand ≡cl

A.
It is not hard to see that ≡cl

A is an equivalence relation over subsets of A. A representative
of SA, denoted by repA(SA), is the set R = {head(C1, <A), tail(C1, <A), head(C2, <A)}. In
the same way, we define an equivalence relation ≡cl

<
A

over subsets of A according to a chain
order <A and a representative repA(SA) of SA ⊆ A.

Consider two subsets SA, S′
A ⊆ A with |SA| ≥ |S′

A|. Assume that for any subset SA ⊆ A,
SA ∪ SA is a cluster set of G if and only if S′

A ∪ SA is a cluster set of G. This suggests that
there is no need to store S′

A during dynamic programming over T . Formally, we give the
following lemma.

▶ Lemma 11 (♠). For a vertex subset A of a graph G such that mim(A) ≤ 1, let SA, S′
A ⊆ A

be cluster sets of G with SA ≡cl
A S′

A and let SA be any subset of A. Then, SA ∪ SA is a
cluster set of G if and only if S′

A ∪ SA is a cluster set of G.

Lemma 11 asserts that the equivalence relation ≡cl
A allows us to determine vertex sets to

be stored. However, Lemma 11 is not enough to construct a dynamic programming algorithm.
If a chain order is arbitrarily given for each node t of T , then the ordering of the stored
sets may change, which causes the algorithm to output an incorrect solution. To avoid the
inconsistency, we need to define chain orders with additional constraints.

Let (T, L) be a rooted layout of a graph G = (V, E). For a node t of T , we denote by
Tt the subtree of T rooted at t. We define Vt = {L−1(ℓ) | ℓ is a leaf of Tt}, Vt = V \ Vt,
Gt = G[Vt], and Gt = G[Vt]. We use the shorthand notations Gt,t for the bipartite subgraph
G[Vt, Vt] and rept for the representative repVt

. We define a strict total order <t on vertices
in Vt, called a lower chain order, that satisfies the two conditions below:
(ℓ-1) <t is a chain order of Vt; and
(ℓ-2) if t has a child c, then for any pair of distinct vertices v, w in Vc, it holds that v <c w

if and only if v <t w.

We also define an upper chain order <t as a strict total order on vertices in Vt that holds
the following three conditions:
(u-1) <t is a chain order of Vt;
(u-2) if t has a child c, then for any pair of distinct vertices v, w in Vt, it holds that v <t w

if and only if v <c w; and
(u-3) if t has the parent p, then for any pair of distinct vertices v, w in Vt ∩ Vp, it holds that

v <t w if and only if v <p w, where <p is a lower chain order on Vp.

Lemma 12 asserts that the above strict total orders can be found in polynomial time.

▶ Lemma 12 (♠). Let (T, L) be a rooted layout of a graph G with mimw(T, L) ≤ 1. For
every node t of T , a lower chain order <t and an upper chain order <t exist and can be
obtained in polynomial time.

We here give the following two lemmas, which are keys to show the correctness of our
algorithm given later.

▶ Lemma 13 (♠). Let (T, L) be a rooted layout of a graph G with mimw(T, L) ≤ 1 and
t be an internal node of T with a child c. For any subset S ⊆ Vc ∩ Vt of G, it holds that
repc(S) = rept(S).

Y. Otachi, A. Suzuki, and Y. Tamura 38:13

▶ Lemma 14 (♠). Let (T, L) be a rooted layout of a graph G with mimw(T, L) ≤ 1 and
let t be an internal node of T with children a and b. For disjoint cluster sets X ⊆ Va and
Y ⊆ Vb, if X ∪ Y is a cluster set of G, then rept(X ∪ Y) = rept(rept(X) ∪ rept(Y)) holds.
Moreover, for a cluster set Z ⊆ Vt of G, if X ∪ Z (resp. Y ∪ Z) is a cluster set of G, then
repb(X ∪ Z) = repb(repb(X) ∪ repb(Z)) (resp. repa(Y ∪ Z) = repa(repa(Y) ∪ repa(Z))) holds.

We now provide a polynomial-time algorithm for Induced Cluster Subgraph. Suppose
that (T, L) is a rooted layout of a graph G with mimw(T, L) ≤ 1 and t is a node of T . We let
Rt = {rept(St) : St ⊆ Vt} and Rt = {rept(St) : St ⊆ Vt}. For two sets Rt ∈ Rt and Rt ∈ Rt,
we define ft(Rt, Rt) as the function that returns the largest size of a subset St ⊆ Vt such that
1. rept(St) = Rt; and
2. St ∪ Rt is a cluster set of G.

We let ft(Rt, Rt) = −∞ if there is no subset satisfying the above conditions. For each
triple of t ∈ V (T), Rt ∈ Rt, and Rt ∈ Rt, we compute ft(Rt, Rt) by means of dynamic
programming from the leaves to the root r of T . As G = Gr, we obtain the maximum size of
cluster sets of G by computing min{fr(Rr, ∅) : Rr ∈ Rr}. Notice that, for simplicity, our
algorithm computes the size of an optimal solution. One can easily modify our algorithm so
that it finds the largest cluster set in the same time complexity.

The case where t is a leaf of T . Denote by v the unique vertex in Vt. Then, Rt = {∅, {v}}.
If Rt = ∅, only St = ∅ satisfies the prescribed conditions for any Rt ∈ Rt. If Rt = {v}, then
St = {v} and we have to check that {v} ∪ Rt is a cluster set of G. In summary, we have

ft(Rt, Rt) =

0 if Rt = ∅ and Rt is a cluster set of G,
1 if Rt = {v} and {v} ∪ Rt is a cluster set of G,
−∞ otherwise.

The case where t is an internal node of T . Suppose that t has children a and b, and
fa(Ra, Ra) and fb(Rb, Rb) have already been computed for any Ra ∈ Ra, Ra ∈ Ra, Rb ∈ Rb,
and Rb ∈ Rb. For the largest subset St ⊆ Vt that satisfies the prescribed conditions, St

can be partitioned into two cluster sets St ∩ Va and St ∩ Vb. In addition, (St ∩ Vb) ∪ Rt

and (St ∩ Va) ∪ Rt form cluster sets of G[Va] and G[Vb], respectively. We guess that
rept(St ∩ Va) = repa(St ∩ Va) = Ra ∈ Ra and rept(St ∩ Vb) = repb(St ∩ Vb) = Rb ∈ Rb. By
Lemma 14, Rt can be represented as follows:

Rt = rept(St)
= rept((St ∩ Va) ∪ (St ∩ Vb))
= rept(rept(St ∩ Va) ∪ rept(St ∩ Vb))
= rept(Ra ∪ Rb).

To obtain the value ft(Rt, Rt), we calculate the sum of fa(Ra, repa((St ∩ Vb) ∪ Rt)) and
fb(Rb, repb((St ∩ Va) ∪ Rt)) for each pair (Ra, Rb) such that Ra ∈ Ra, Rb ∈ Rb, and
Rt = rept(Ra ∪ Rb). Combining Lemmas 13 and 14 with repa(Rt) = rept(Rt), which is
observed from the condition (u-2) for an upper chain order, it holds that

repa((St ∩ Vb) ∪ Rt) = repa(repa(St ∩ Vb) ∪ repa(Rt))
= repa(rept(St ∩ Vb) ∪ rept(Rt))
= repa(Rb ∪ Rt).

SWAT 2024

38:14 Finding Induced Subgraphs from Graphs with Small Mim-Width

Similarly, we have repb((St ∩ Va) ∪ Rt) = repb(Ra ∪ Rt). We conclude that

ft(Rt, Rt) = max
Ra∈Ra∧Rb∈Rb

{fa(Ra, repa(Rb ∪ Rt))

+ fb(Rb, repb(Ra ∪ Rt)) : Rt = rept(Ra ∪ Rb)}.

Since Rt and Rt are of polynomial size for every t of T , our algorithm runs in polynomial
time. This completes the proof of Theorem 9.

We can extend the above algorithm to other several problems. (For more details, see the
full version of this paper.) Combined with Theorem 8, we obtain the following dichotomy
theorem.

▶ Theorem 15 (♠). All the following problems, as well as their connected variants and their
dominating variants, are NP-hard for graphs with mim-width at most 2: (i) Clique; (ii)
Induced Cluster Subgraph; (iii) Induced Polar Subgraph; (iv) Induced P3-free
Subgraph; (v) Induced Split Subgraph; and (vi) Induced K3-free Subgraph. On
the other hand, given a graph and its branch decomposition of mim-width at most 1, all
the above problems, as well as their connected variants and their dominating variants, are
solvable in polynomial time.

5 Concluding remarks

We discuss future work here. Our proof of Theorem 5 relies on the assumption that all cliques
satisfy a fixed property Π, and hence Theorem 5 is not applicable to Induced Π Subgraph
such that Π excludes some clique. Such problems include Independent Set, Induced
Matching, Longest Induced Path, and Feedback Vertex Set. In fact, there exist
XP algorithms of the problems listed above when parameterized by mim-width [1, 9, 23, 24].
This motivates us to seek Π such that Induced Π Subgraph is NP-hard for bounded
mim-width graphs although Π excludes some clique. As the first step, it would be interesting
to consider Induced K3-free Subgraph.

In [2], Bergougnoux et al. showed that Clique is expressible in A&C DN + ∀, which is
A&C DN logic that allows to use a single universal quantifier ∀, and hence their meta-theorem
cannot be extended to A&C DN + ∀. Our results in this paper suggest that the barrier could
be broken down for graphs with mim-width at most 1. The next goal is to obtain a more
general logic than A&C DN such that all problems expressible in the logic are solvable in
polynomial time for graphs with mim-width at most 1.

Finally, we end this paper by leaving the biggest open problem concerning mim-width:
Given a graph G, is there a polynomial-time algorithm that computes a branch decomposition
with mim-width 1, or concludes that G has mim-width more than 1?

References
1 Rémy Belmonte and Martin Vatshelle. Graph classes with structured neighborhoods and

algorithmic applications. Theoretical Computer Science, 511:54–65, 2013. doi:10.1016/j.tcs.
2013.01.011.

2 Benjamin Bergougnoux, Jan Dreier, and Lars Jaffke. A logic-based algorithmic meta-theorem
for mim-width. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the
2023 ACM-SIAM Symposium on Discrete Algorithms (SODA 2023), pages 3282–3304, 2023.
doi:10.1137/1.9781611977554.ch125.

3 Benjamin Bergougnoux and M. Moustapha Kanté. More applications of the d-neighbor
equivalence: Acyclicity and connectivity constraints. SIAM Journal on Discrete Mathematics,
35(3):1881–1926, 2021. doi:10.1137/20m1350571.

https://doi.org/10.1016/j.tcs.2013.01.011
https://doi.org/10.1016/j.tcs.2013.01.011
https://doi.org/10.1137/1.9781611977554.ch125
https://doi.org/10.1137/20m1350571

Y. Otachi, A. Suzuki, and Y. Tamura 38:15

4 Benjamin Bergougnoux, Charis Papadopoulos, and Jan Arne Telle. Node multiway cut and
subset feedback vertex set on graphs of bounded mim-width. Algorithmica, 84(5):1385–1417,
2022. doi:10.1007/s00453-022-00936-w.

5 Flavia Bonomo-Braberman, Nick Brettell, Andrea Munaro, and Daniël Paulusma. Solving
problems on generalized convex graphs via mim-width. J. Comput. Syst. Sci., 140:103493,
2024. doi:10.1016/J.JCSS.2023.103493.

6 Johann Brault-Baron, Florent Capelli, and Stefan Mengel. Understanding model counting for
beta-acyclic CNF-formulas. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International
Symposium on Theoretical Aspects of Computer Science, STACS 2015, volume 30 of LIPIcs,
pages 143–156. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:10.4230/
LIPIcs.STACS.2015.143.

7 Nick Brettell, Jake Horsfield, Andrea Munaro, Giacomo Paesani, and Daniël Paulusma.
Bounding the mim-width of hereditary graph classes. Journal of Graph Theory, 99(1):117–151,
2022. doi:10.1002/jgt.22730.

8 Nick Brettell, Jake Horsfield, Andrea Munaro, and Daniël Paulusma. List k-colouring Pt-
free graphs: A mim-width perspective. Information Processing Letters, 173:106168, 2022.
doi:10.1016/j.ipl.2021.106168.

9 Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Fast dynamic programming
for locally checkable vertex subset and vertex partitioning problems. Theoretical Computer
Science, 511:66–76, 2013. doi:10.1016/j.tcs.2013.01.009.

10 Yixin Cao, Yuping Ke, Yota Otachi, and Jie You. Vertex deletion problems on chordal graphs.
Theoretical Computer Science, 745:75–86, 2018. doi:10.1016/j.tcs.2018.05.039.

11 Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong perfect
graph theorem. Annals of Mathematics, 164(1):51–229, 2006. doi:10.4007/annals.2006.164.
51.

12 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

13 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150,
2000. doi:10.1007/s002249910009.

14 Fedor V. Fomin, Petr A. Golovach, and Jean-Florent Raymond. On the tractability of
optimization problems on H-graphs. Algorithmica, 82(9):2432–2473, 2020. doi:10.1007/
s00453-020-00692-9.

15 Esther Galby, Paloma T. Lima, and Bernard Ries. Reducing the domination number of
graphs via edge contractions and vertex deletions. Discrete Mathematics, 344(1):112169, 2021.
doi:10.1016/j.disc.2020.112169.

16 Esther Galby, Andrea Munaro, and Bernard Ries. Semitotal domination: New hardness results
and a polynomial-time algorithm for graphs of bounded mim-width. Theoretical Computer
Science, 814:28–48, 2020. doi:10.1016/j.tcs.2020.01.007.

17 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer, 1988.
doi:10.1007/978-3-642-97881-4.

18 Peter L. Hammer, Uri N. Peled, and Xiaorong Sun. Difference graphs. Discrete Applied
Mathematics, 28(1):35–44, 1990. doi:10.1016/0166-218X(90)90092-Q.

19 Sun-Yuan Hsieh, Hoàng-Oanh Le, Van Bang Le, and Sheng-Lung Peng. On the d-claw vertex
deletion problem. Algorithmica, 86(2):505–525, 2024. doi:10.1007/S00453-023-01144-W.

20 Sang il Oum. Rank-width and vertex-minors. Journal of Combinatorial Theory, Series B,
95(1):79–100, 2005. doi:10.1016/j.jctb.2005.03.003.

21 Lars Jaffke, O-joung Kwon, Torstein J. F. Strømme, and Jan Arne Telle. Mim-width III.
Graph powers and generalized distance domination problems. Theoretical Computer Science,
796:216–236, 2019. doi:10.1016/j.tcs.2019.09.012.

SWAT 2024

https://doi.org/10.1007/s00453-022-00936-w
https://doi.org/10.1016/J.JCSS.2023.103493
https://doi.org/10.4230/LIPIcs.STACS.2015.143
https://doi.org/10.4230/LIPIcs.STACS.2015.143
https://doi.org/10.1002/jgt.22730
https://doi.org/10.1016/j.ipl.2021.106168
https://doi.org/10.1016/j.tcs.2013.01.009
https://doi.org/10.1016/j.tcs.2018.05.039
https://doi.org/10.4007/annals.2006.164.51
https://doi.org/10.4007/annals.2006.164.51
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/s002249910009
https://doi.org/10.1007/s00453-020-00692-9
https://doi.org/10.1007/s00453-020-00692-9
https://doi.org/10.1016/j.disc.2020.112169
https://doi.org/10.1016/j.tcs.2020.01.007
https://doi.org/10.1007/978-3-642-97881-4
https://doi.org/10.1016/0166-218X(90)90092-Q
https://doi.org/10.1007/S00453-023-01144-W
https://doi.org/10.1016/j.jctb.2005.03.003
https://doi.org/10.1016/j.tcs.2019.09.012

38:16 Finding Induced Subgraphs from Graphs with Small Mim-Width

22 Lars Jaffke, O-joung Kwon, and Jan Arne Telle. A unified polynomial-time algorithm for
feedback vertex set on graphs of bounded mim-width. In Rolf Niedermeier and Brigitte
Vallée, editors, 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018),
volume 96 of Leibniz International Proceedings in Informatics (LIPIcs), pages 42:1–42:14,
Dagstuhl, Germany, 2018. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.STACS.2018.42.

23 Lars Jaffke, O-joung Kwon, and Jan Arne Telle. Mim-width I. Induced path problems. Discrete
Applied Mathematics, 278:153–168, 2020. doi:10.1016/j.dam.2019.06.026.

24 Lars Jaffke, O-joung Kwon, and Jan Arne Telle. Mim-width II. The feedback vertex set
problem. Algorithmica, 82(1):118–145, 2020. doi:10.1007/s00453-019-00607-3.

25 Lars Jaffke, Paloma T. Lima, and Roohani Sharma. Structural parameterizations of b-coloring.
In Satoru Iwata and Naonori Kakimura, editors, 34th International Symposium on Algorithms
and Computation (ISAAC 2023), volume 283 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 40:1–40:14, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.ISAAC.2023.40.

26 Dong Yeap Kang, O-joung Kwon, Torstein J.F. Strømme, and Jan Arne Telle. A width
parameter useful for chordal and co-comparability graphs. Theoretical Computer Science,
704:1–17, 2017. doi:10.1016/j.tcs.2017.09.006.

27 Hoang-Oanh Le and Van Bang Le. Complexity of the cluster vertex deletion problem on H-free
graphs. In Stefan Szeider, Robert Ganian, and Alexandra Silva, editors, 47th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2022), volume 241 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 68:1–68:10. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.MFCS.2022.68.

28 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980. doi:
10.1016/0022-0000(80)90060-4.

29 Stefan Mengel. Lower bounds on the mim-width of some graph classes. Discrete Applied
Mathematics, 248:28–32, 2018. doi:10.1016/j.dam.2017.04.043.

30 Andrea Munaro and Shizhou Yang. On algorithmic applications of sim-width and mim-width
of (H1, H2)-free graphs. Theoretical Computer Science, 955:113825, 2023. doi:10.1016/j.
tcs.2023.113825.

31 Svatopluk Poljak. A note on stable sets and colorings of graphs. Commentationes Mathematicae
Universitatis Carolinae, 15(2):307–309, 1974.

32 Sigve Hortemo Sæther and Martin Vatshelle. Hardness of computing width parameters based
on branch decompositions over the vertex set. Theoretical Computer Science, 615:120–125,
2016. doi:10.1016/j.tcs.2015.11.039.

33 Martin Vatshelle. New Width Parameters of Graphs. PhD thesis, University of Bergen, 2012.
34 Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM Journal on Computing,

10(2):310–327, 1981. doi:10.1137/0210022.

https://doi.org/10.4230/LIPIcs.STACS.2018.42
https://doi.org/10.4230/LIPIcs.STACS.2018.42
https://doi.org/10.1016/j.dam.2019.06.026
https://doi.org/10.1007/s00453-019-00607-3
https://doi.org/10.4230/LIPIcs.ISAAC.2023.40
https://doi.org/10.1016/j.tcs.2017.09.006
https://doi.org/10.4230/LIPIcs.MFCS.2022.68
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/j.dam.2017.04.043
https://doi.org/10.1016/j.tcs.2023.113825
https://doi.org/10.1016/j.tcs.2023.113825
https://doi.org/10.1016/j.tcs.2015.11.039
https://doi.org/10.1137/0210022

A Fast 3-Approximation for the Capacitated Tree
Cover Problem with Edge Loads
Benjamin Rockel-Wolff
Research Institute for Discrete Mathematics, University of Bonn, Germany

Abstract
The capacitated tree cover problem with edge loads is a variant of the tree cover problem, where we
are given facility opening costs, edge costs and loads, as well as vertex loads. We try to find a tree
cover of minimum cost such that the total edge and vertex load of each tree does not exceed a given
bound. We present an O(m log n) time 3-approximation algorithm for this problem.

This is achieved by starting with a certain LP formulation. We give a combinatorial algorithm
that solves the LP optimally in time O(m log n). Then, we show that a linear time rounding and
splitting technique leads to an integral solution that costs at most 3 times as much as the LP solution.
Finally, we prove that the integrality gap of the LP is 3, which shows that we can not improve the
rounding step in general.

2012 ACM Subject Classification Mathematics of computing → Approximation algorithms; Math-
ematics of computing → Trees

Keywords and phrases Approximation Algorithms, Tree Cover, LP

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.39

Related Version Full Version: https://arxiv.org/abs/2404.10638 [11]

1 Introduction

Graph cover problems deal with the following base problem. Given a graph G, the task is to
find a set of (connected) subgraphs of G, the cover, such that each vertex of G is contained
in at least one of the subgraphs. Usually, the subgraphs are restricted to some class of
graphs, like paths, cycles or trees. Different restrictions can be imposed on the subgraphs,
like a maximum number of edges, or a total weight of the nodes for some given node weights.
Recently, Schwartz [12] published an overview of the literature on different covering and
partitioning problems.

We consider the capacitated tree cover problem with edge loads. It is a variation of the
tree cover problem that has not been studied so far to the best of our knowledge.

In the capacitated tree cover problem with edge loads, we are given a complete graph
G = (V, E), metric edge costs c : E → R+, vertex loads b : V → [0, 1), metric edge loads
u : E → R≥0 with u(e) < u(f) ⇒ c(e) ≤ c(f), and a facility opening cost γ ≥ 0. The task is
to find a number of components k ∈ N≥1 and a forest F in G consisting of k trees minimizing∑

e∈E(F)

c(e) + γk,

such that each tree Ti has total load

u(Ti) :=
∑

e∈E(Ti)

u(e) +
∑

v∈V (Ti)

b(v) ≤ 1.

For simplicity of presentation, we additionally require that u > 0. This is not necessary
in general and the extended proofs for u ≥ 0 are covered in the full paper [11].

© Benjamin Rockel-Wolff;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 39; pp. 39:1–39:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0009-0008-5562-6920
https://doi.org/10.4230/LIPIcs.SWAT.2024.39
https://arxiv.org/abs/2404.10638
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 A Fast 3-Approximation for the Capacitated Tree Cover Problem with Edge Loads

The capacitated tree cover problem with edge loads is closely related to the facility location
problem with service capacities discussed by Maßberg and Vygen in [10]. Their problem uses
Steiner trees to connect the nodes, not spanning trees. Furthermore, in their case edge cost
and edge load are the same. They make use of this fact to prove a lower bound on the value
of an optimum solution. Both problems have important practical applications in chip design.
In [4] they are called the sink clustering problem and used for clock tree construction. In
[2] they are used for repeater tree construction. In these applications terminals and edges
have an electrical capacitance. A source can drive only a limited capacitance. Edge cost and
capacitance usually are proportional to the length of an edge. As the edge length is given by
the l1-distance between its endpoints, this naturally matches our problem.

Our problem is also related to other facility location and clustering problems, like the
(capacitated) k-center problem ([5, 8]) or the k-means problem ([6, 9]).

Other tree cover problems include the k-min-max tree cover problem and the bounded
tree cover problem ([1, 3, 7]). In the k-min-max tree cover problem, we are given edge weights
and want to find k trees such that the maximum of the total weights of the trees is minimized.
In the bounded tree cover problem, we are given a bound on the maximum weight of a tree
in the cover and try to minimize the number of trees that are required. For these problems
Khani and Salavatipour [7] gave a 3- and 2.5-approximation respectively. They improve
over the previously best known results by Arkin et al. [1], who presented a 4-approximation
algorithm for the min-max tree cover problem and a 3-approximation algorithm for the
bounded tree cover problem. Even et al. [3] independently gave a 4-approximation algorithm
for the min-max tree cover problem. Furthermore, a rooted version of these problems has
been studied. The best known approximation ratio for the capacitated tree case is 7 and was
developed by Yu and Liu [15].

Many algorithms for cycle cover problems are also based on tree cover algorithms ([3,
13, 14]). An example is the capacitated cycle covering problem, where the cover consists of
cycles (and singletons) and are given an upper bound on the total nodeweight of the cycles.
The task is to minimize the total weight of the cycles plus the facility opening costs. Traub
and Tröbst [13] presented a 2 + 2

7 -approximation for this problem. They use an algorithm for
the capacitated tree cover problem as a basis for their 2 + 2

7 -approximation. In particular,
they present a 2-approximation for the capacitated tree cover problem without edge loads.

2 Our contribution

In Section 3, we present an LP formulation of the capacitated tree cover problem with edge
loads that is based on the formulation in [13].

Then, we will present a combinatorial algorithm that can optimally solve the LP in time
O(m log n) in Section 4, where n is the number of vertices and m is the number of edges of
the graph.

Next, we show how to round the solution to an integral solution in Section 5, employing
a splitting technique that runs in linear time from [10], and show that the resulting integral
solution costs at most 3 times as much as the LP-solution. This proves our main theorem:

▶ Theorem 1. There is a 3-approximation algorithm for the capacitated tree cover problem
with edge loads that runs in time O(m log n).

While the overall approach is similar to the one used in [13], edges with load require
a different algorithm for solving the LP. Furthermore, we need to be more careful in the
analysis of our rounding step.

Finally, in Section 6, we will give an example proving that the integrality gap of our LP
is at least 3.

B. Rockel-Wolff 39:3

3 The LP-formulation

We may assume that γ ≥ c(e) for all e ∈ E, as an edge with c(e) > γ will never be used
in an optimum solution (and could be removed from the solution of the algorithm without
increasing the cost).

For simplicity, we will introduce some notation here: For any function f : A → B ⊆ R
from a finite set A into a set B ⊆ R and X ⊆ A we write f(X) :=

∑
x∈X f(x).

Given a solution F to our problem with k components {T1, . . . , Tk}, we know that each
tree Ti contains exactly |V (Ti)|−1 edges and hence k = |V |−|E(F)|. Each induced subgraph
of F is a forest. So we know

|E(F [A])| ≤ |A| − 1 for each A ⊆ V.

Let us now consider the load on the subgraph of F , induced by A ⊆ V . Each connected
component in F [A] can have load at most 1. So there must be at least b(A) + u(E(F [A]))
components in F [A]. As each of the components is a tree, the inequality

|E(F [A])| ≤ |A| − (b(A) + u(E(F [A])))

must be fulfilled. Using these properties, we can formulate the following LP relaxation of
this problem:

min ctx + γ(|V | − x(E)) (1)

s.t. x(E(G[A])) ≤ |A| − 1 for each A ⊆ V (2)∑
e∈E(G[A])

(1 + u(e))x(e) ≤ |A| − b(A) for each A ⊆ V (3)

0 ≤ x(e) ≤ 1 for each e ∈ E (4)

Here x(e) denotes the fractional usage of the edge e. We will call an edge e active if x(e) > 0.
The LP can be reformulated by using variables y(e) := x(e)(1 + u(e)):

min
∑
e∈E

c(e)
1 + u(e)y(e) + γ

(
|V | −

∑
e∈E

y(e)
1 + u(e)

)
(5)

s.t.
∑

e∈E(A)

y(e)
1 + u(e) ≤ |A| − 1 for each A ⊆ V (6)

y(E(G[A])) ≤ |A| − b(A) for each A ⊆ V (7)
0 ≤ y(e) ≤ 1 + u(e) for each e ∈ E (8)

For simplicity, we will always consider solutions x, y of both LPs at once. In the following,
we will denote by ux(e) := x(e) · u(e) the fractional load of edge e.

▶ Definition 2. For a solution x, y to the LP, we define the support graph Gx := (V, {e ∈
E | x(e) > 0}), i.e. the graph consisting of the vertices V and all active edges.

We call an edge tight if y(e) = 1 + u(e), and we call a set A ⊆ V of vertices tight if
inequality (7) is tight.

SWAT 2024

39:4 A Fast 3-Approximation for the Capacitated Tree Cover Problem with Edge Loads

Our goal will be to solve the LP exactly and then round to a forest that may violate the
capacity constraints. This increases the edge cost by at most a factor of 2. In a final step
each tree T in the forest with a load b(V (T)) + u(E(T)) > 1 can be split into at most
2 · (b(V (T)) + u(E(T))) trees. This may decrease the edge cost, but loses a factor of 3 in the
number of components, compared to the LP solution.

4 Solving the LP

Altough the LP has an exponential number of inequalities, we can solve it using a simple
greedy algorithm, shown in Algorithm 1. We will focus on solving the second LP (5) – (8).

As a first step, we sort the edges {e1, . . . , em} = E(G) such that

c(e1) − γ

1 + u(e1) ≤ . . . ≤ c(em) − γ

1 + u(em) .

In each iteration, we compute a partition Ai ⊂ 2V (G) of the vertices of G, based on the
previous partition Ai−1. We initialize y to 0 and start with A0 := {{v}|v ∈ V (G)}. Then
we iterate through the edges from e1 to em. For each edge ei, we do the following:

If ei has endpoints in two different sets of the partition A1
i , A2

i ∈ Ai−1, we increase y(ei)
to the maximum possible value. This maximum value is the sum of the slacks of inequalities
(7) for the sets A1

i and A2
i : |A1

i |−b(A1
i)−y(E(G[A1

i]))+ |A2
i |−b(A2

i)−y(E(G[A2
i])). However,

we assign at most 1+u(ei), such that we do not violate inequality (8). Finally, if we increased
y(ei) by a positive amount, we create the new partition Ai that arises from Ai−1 by removing
A1

i and A2
i and adding their union.

We set A :=
⋃

i=1,...,m Ai. Observe that A is a laminar family. This guarantees that the
support graph is always a forest and inequality (6) is automatically fulfilled.

Algorithm 1 Algorithm for solving the LP (5) – (8).

Input : G, c, u.
Output : y optimum solution of the LP (5) – (8).

1 Sort edges such that c(e1)−γ
1+u(e1) ≤ . . . ≤ c(em)−γ

1+u(em) ;
2 Set A0 := {{v}|v ∈ V (G)} and y := 0;
3 for i = 1 . . . m do
4 if there are sets A1

i , A2
i ∈ Ai−1 with ei ∩ A1

i ̸= ∅, ei ∩ A2
i ̸= ∅ and A1

i ̸= A2
i then

5 y(ei) := min{1 + u(ei), |A1
i | − b(A1

i) − y(E(A1
i)) + |A2

i | − b(A2
i) − y(E(A2

i))};
6 if y(ei) > 0 then
7 Ai := (Ai−1 \ {A1

i , A2
i }) ∪ {A1

i ∪ A2
i };

8 else
9 Ai := Ai−1

▶ Lemma 3. Let x, y be the solution computed by Algorithm 1. If a set A ∈ A from the
algorithm is not tight, then all the edges in its induced subgraph Gx[A] of the support graph
are tight.

Proof. Assume this were false. Take a minimal counterexample A. As the claim certainly
holds for sets consisting only of one vertex (Gx[A] has no edges if |A| = 1), we know that
|A| ≥ 2. We can write A = A1

i ∪ A2
i with their associated edge ei (for some i). We know

B. Rockel-Wolff 39:5

that ei has to be tight by line 5, as A is not tight. Otherwise, the algorithm could have
increased y(ei) further. At least one of the subsets A1

i and A2
i of A is not tight, otherwise, A

were tight. W.l.o.g we may assume that A1
i is not tight. Then all of its edges are tight, by

minimality of A. However, then we know that x(E(G[A1
i])) = |A1

i | − 1. Thus,

|A1
i | − b(A1

i) − y(E(G[A1
i])) = |A1

i | − b(A1
i) − x(E(G[A1

i])) − ux(E(G[A1
i]))

= |A1
i | − b(A1

i) − (|A1
i | − 1) − ux(E(G[A1

i])) = 1 − (ux(E(G[A1
i]) + b(A1

i)) < 1 + u(ei).

This implies that A1
i does not have enough slack to make ei tight. Thus A2

i cannot be tight.
As A contains an edge that is not tight in its support graph, this edge must be contained in
A2

i . We can conclude that A2
i is a smaller counterexample. This contradicts the minimality

of A. ◀

▶ Corollary 4. Let ei ∈ E, A1
i and A2

i fulfill the conditions in line 4 of Algorithm 1. If ei is
tight then neither A1

i , nor A2
i are tight.

▶ Theorem 5. Algorithm 1 works correctly and has running time O(m log n).

Proof. The running time is dominated by sorting. Due to space constraints, we will only
give the ideas of the correctness proof. The details are contained in the full version [11] of
this paper.

We first check that the algorithm outputs a solution to our LP. The minimum in line 5
guarantees that inequality (8) is fulfilled. We have already seen that the support graph of our
solution is a forest, which means that inequality (6) is also satisfied. It remains to check that
inequality (7) holds. Each A ∈ A fulfills the inequality, when it is introduced by line 5. Since
A is a laminar family, we never change the value of y(E(G[A])) after A has been introduced,
so we already know that all A ∈ A satisfy inequality (7) when the algorithm is finished.

We define the slack of a set A ⊆ V as the slack of inequality 7 for that set and denote it
by σ(A) := |A| − b(A) − y(E(G[A])).

Then we can prove that when the algorithm introduces a new set A, it has no more slack
than each of the joined subsets.

▷ Claim 6. Let A1
i , A2

i , A ∈ A such that A = A1
i ∪ A2

i . We claim that σ(A) ≤ σ(Aj
i) for

j = 1, 2.

The idea to prove this, is to show that σ(A) = σ(A1
i) + σ(A2

i) − y(ei). Then we use Corollary
4 and Lemma 3 to derive that max{σ(A1

i), σ(A2
i)} ≤ y(ei), which proves the claim. As a

next step, we extend Claim 6 to all subsets of A.

▷ Claim 7. Let A ∈ A. We claim that each subset B ⊆ A has slack σ(B) ≥ σ(A).

We prove this by induction on the number of iterations. The main idea here is to first split
B into subsets B1, B2 of the two sets A1

i , A2
i that have been merged to form A. We show

that σ(B) ≥ σ(B1) + σ(B2) − y(ei). Then we apply our induction hypothesis to both sets
and use the equality from Claim 6 to prove Claim 7.

Finally, we observe that for B1 ⊆ V and B2 ⊆ V from different connected components
of Gx, we have σ(B1 ∪ B2) = σ(B1) + σ(B2). This means that we can split any subset of
the vertices B ⊆ V into subsets of the toplevel sets of A, which are exactly the connected
components of Gx. Then we can use Claim 7 on each of the subsets to see that they have
nonnegative slack. The observation implies that also B has nonnegative slack. So inequality 7
is always satisfied.

SWAT 2024

39:6 A Fast 3-Approximation for the Capacitated Tree Cover Problem with Edge Loads

Next we want to prove optimality. Assume that y were not optimum. Let y∗ be an
optimum solution that fulfills the following: It maximizes the index of the first edge in the
order of the algorithm in which y and y∗ differ. Among those it minimizes the difference in
this edge. Let this index be denoted by k. As the algorithm always sets the values to the
maximum that is possible without violating an inequality, we know that y∗(ek) < y(ek).

By the ordering of the algorithm, we know that

c(ek) − γ

1 + u(ek) ≤ c(ei) − γ

1 + u(ei)

for all i > k. Our goal will be, to find an edge ei with i > k such that we can increase y∗(ek)
and avoid violating constraints or increasing the objective by decreasing y∗(ei) in x∗, y∗.

Let Gk be the connected component of ek in the subgraph of G that contains only ek

and the active edges with index less than k. Define

Γ := {ei ∈ E(Gx∗) | i > k and ei incident to v ∈ V (Gk)}.

Note that Γ ̸= ∅, because otherwise, we could increase y∗(ek) to y(ek) without violating any
constraints. Since c(e) ≤ γ, this would not increase the objective value.

We will prove that all tight sets containing the vertices of Gk must have a common edge
in Γ.

▷ Claim 8. Let T := {B ⊆ V | V (Gk) ⊆ B and B tight} be the family of tight sets of x∗, y∗

containing the vertices of Gk. We claim that

Γ ∩
⋂

B∈T
E(Gx∗ [B]) ̸= ∅.

If there is an edge in Γ between vertices of Gk, then this certainly holds. Otherwise, we
know that V (Gk) is not tight, because the algorithm was able to set y(ek) > y∗(ek).

Let S := {S1, . . . , Sp} ⊆ T be a set of p ≥ 2 tight sets containing the vertices of Gk

and set Z :=
⋃

Si∈S Si. First, we observe that Z is tight as well. Then, we will prove our
claim by induction on p. The key idea is to use the tightness of Z and the Si to decompose
y∗(E(G[Z])) into an alternating sum of y∗ on intersections of the Si and then reassemble
y∗(E(G[Z])) from the parts (see [11]). Then, we see that there must be slack on the cut
defined by Gk in the intersection of all Si. Thus there must be an edge in the cut, which
proves our claim.

Finally, we can pick an edge f ∈ Γ that is contained in all tight sets that contain the
vertices of Gk. If u(f) ≤ u(ek), we know that 1

1+u(f) ≥ 1
1+u(ek) . So we can decrease y∗(f)

and increase y∗(ek) by the same amount without violating any constraints. By the ordering
of our algorithm, this can not increase the objective value. This would contradict our choice
of y∗. Hence u(f) > u(ek). But then c(f) ≥ c(ek) and we could decrease x∗(f) and increase
x∗(ek) without increasing the objective value. Furthermore, we also do not create a violation
this way, because ϵ · (1 + u(f)) > ϵ · (1 + u(ek)) for ϵ > 0. This contradicts our choice of y∗

and concludes the proof. ◀

The support graph of the LP solution computed by Algorithm 1 is always a forest. Thus,
Theorem 5 implies the following:

▶ Corollary 9. There is always a solution x, y to both LPs, such that the support graph Gx

is a forest.

B. Rockel-Wolff 39:7

5 The Rounding Strategy

Now we want to round the LP solution, computed by Algorithm 1, to get an integral solution.
We do so by rounding up edges e with x(e) ≥ α, for some 0 ≤ α ≤ 1 to be determined
later. All other edges are rounded down. The forest arising from this rounding step may
contain components T with b(V (T)) + u(E(T)) > 1. These large components will be split
into at most 2 · (b(V (T)) + u(E(T))) legal components. We achieve this by using a splitting
technique that is often used for these cases, for example in [10] and also in [13]. During
splitting, we need to shortcut some paths. This is possible, because G is a complete graph
and u and c are metric.

The splitting technique traverses the trees in a bottom up fashion (for an arbitrary root).
At each node, it approximately solves a bin packing problem to split off components that are
too heavy. However, for the analysis, we only require the result that it is possible to split the
trees into 2 · (b(V (T)) + u(E(T))) legal components.

▶ Lemma 10 (Maßberg and Vygen 2008 [10]). If G is a complete graph and u and c are
metric, there is a linear time algorithm that splits a tree with total load b(V (T))+u(E(T)) > 1
into at most 2 · (b(V (T)) + u(E(T))) legal trees and does not increase the total edge cost.

In Section 5.1, we will study the LP solution, that we get from Algorithm 1. We will
exploit the structure of this solution in our analysis. Then we will bound the number of
components that we get after rounding and splitting in Section 5. We do this by providing an
upper bound on the value of each edge after rounding and splitting. Finally, in Section 5.2.4,
we show that α := 2

3 will lead to an approximation factor of 3 independent of the edge loads.

5.1 The general structure of the LP solution
Let x, y be a solution found by the algorithm. Recall that for edges e ∈ E(G), ux(e) :=
x(e) · u(e) was the fractional load of the edge e in our solution. Note that then it holds for
each set A ⊆ V (G) and edge e ∈ E(G) that

y(E(G[A])) = x(E(G[A])) + ux(E(G[A])) and y(e) = x(e) + x(e)u(e).

Without loss of generality, we can assume that 0 < x(e) < 1 for all edges and Gx does
not contain singletons. We simply remove all edges with x(e) = 0. Then we contract all
inclusionwise maximal sets A ∈ A such that all edges in their respective induced support
graph are tight and set the load of the new vertex to b(A) + ux(E(G[A])). Corollary 4 implies
that we contracted all tight edges this way. These operations only make the approximation
guarantee worse, because these components will have the same value in the rounded solution
as in the LP-solution. In the remaining graph the following assertions hold:
1. |{v}| − b({v}) − y(E(G[{v}])) = 1 − b(v) ≤ 1 for all v ∈ V .
2. All A ∈ A containing more than 1 vertex are tight, by Lemma 3.
Now, we will take a closer look at the sets Aj

i for i = 1, . . . , m and j = 1, 2. In the following
analysis, we will assume without loss of generality that |A1

i | ≤ |A2
i |. By the above assertions,

we have for an edge ei and the two associated sets A1
i , A2

i , either
(i) both A1

i and A2
i contain only one vertex and one of them is not tight, or

(ii) A1
i contains only one vertex and is not tight and A2

i contains more vertices and is tight
To make the following easier to read, we add the following definitions

▶ Definition 11. Edges that fulfill condition (i) are called seed edges and edges that fulfill
condition (ii) are called extension edges. For each edge ei we denote by vei the unique vertex
in set A1

i .

SWAT 2024

39:8 A Fast 3-Approximation for the Capacitated Tree Cover Problem with Edge Loads

Note that every edge ei is either a seed edge or an extension edge, but this only holds after
contracting the sets of tight edges as described above.

Thus, whenever ei is a seed edge, the algorithm sets

y(ei) := |A1
i | − b(A1

i) − y(E(G[A1
i])) + |A2

i | − b(A2
i) − y(E(G[A2

i])) = 1 − b(A1
i) + 1 − b(A2

i),

where we use the fact that E(G[Aj
i]) = ∅ for j = 1, 2. Since both A1

i and A2
i were singletons,

we can conclude

x(ei) + u(ei)x(ei) = y(ei) = 2 − b(A1
i ∪ A2

i).

Similarly, for extension edges, we get

x(ei) + u(ei)x(ei) = 1 − b(A1
i).

In the analysis of the rounding step, we need some further observations:

▶ Observation 12. Let T be a connected component in Gx. Then
T is a tree.
If |V (T)| > 1, then T contains exactly one seed edge and all other edges are extension
edges.
If T contains a seed edge ei, then i = min

ej∈E(T)
j or in other words, ei was the first edge of

T considered in the algorithm.
A proof of these observations is not difficult, but deferred to the full version of this paper for
space reasons.

5.2 Analyzing the rounding step
First note that by our rounding procedure, the sum of the edge-weights can increase by
at most 1

α . So for the edge-weights it is sufficient to make sure that α ≥ 1
2 and the main

difficulty is to bound the number of components.
Before we choose α, let us estimate how many components we get after rounding and

splitting. To do this, we take a look at the connected components after rounding. Let T be
such a component. We denote by comp(T) the number of connected components we need to
split T into.

Let C∗ be the set of components before splitting and C be the set of components after
splitting. Our goal here is to estimate |C| by a contribution est(e) of each edge e ∈ E(G),
such that the number of components after splitting is

|C| =
∑

T ∈C∗

comp(T) ≤
∑

T ∈C∗

|V (T)| −
∑

e∈E(G)

est(e) = |V (G)| −
∑

e∈E(G)

est(e)

There are three cases:
1. singletons: T consists of only one vertex.
2. good trees: T consists of more than one vertex and u(E(T)) + b(V (T)) ≤ 1
3. large trees: T consists of more than one vertex and u(E(T)) + b(V (T)) > 1

Case 1. T is a singleton. Its number of components is

comp(T) := 1 = |V (T)| − 0.

B. Rockel-Wolff 39:9

Case 2. T is a good tree. So we can keep this component for a solution to the problem.
The number of components is

comp(T) := 1 = |V (T)| − (|V (T)| − 1) ≤ |V (T)| −
∑

e∈E(T)

[1 − 2b(ve) − 2u(e)] .

For all e ∈ E(T), we set est(e) := 1 − 2b(ve) − 2u(e).

Case 3. T is a large tree. So we have to split this component to get a feasible solution.
Denote by e′ the edge in T with the lowest index according to the sorting of the algorithm.
Let v̄ ̸= ve′ be incident to e′. Note that this does not have to be a seed edge, as the
components after rounding do not necessarily contain a seed edge. We rewrite the number of
components:

comp(T) ≤ 2 · (u(E(T)) + b(V (T))) = |V (T)| − [2 − 2b(ve′) − 2u(e′) − 2b(v̄)]

−
∑

e′ ̸=e∈E(T)

[1 − 2b(ve) − 2u(e)] .

If T contains a seed edge, then this edge is e′. This means that the number of components
can be estimated by edges in T . We set est(e′) := 2 − 2b(ve′) − 2u(e′) − 2b(v̄) and est(e) :=
1 − 2b(ve) − 2u(e) for all e ∈ E(T) \ {e′}.

Otherwise T only consists of extension edges. In this case, we write

[2 − 2b(ve′) − 2u(e′) − 2b(v̄)] +
∑

e′ ̸=e∈E(T)

[1 − 2b(ve) − 2u(e)]

= [1 − 2b(v̄)] +
∑

e∈E(T)

[1 − 2b(ve) − 2u(e)] .

Then, we set est(e) := 1 − 2b(ve) − 2u(e) for all e ∈ E(T). However, in this case we need
to account for the additional 1 − 2b(v̄). To do so, we call the edge incident to v̄ that is not
contained in T a filler edge. For all filler edges {v, w} = e ∈ E(G), we w.l.o.g. assume that e

is a filler edge for the component that contains v and set

est(e) :=
{

2 − (b(v) + b(w)), if e is the filler edge of two components
1 − b(v), otherwise.

For all edges not considered before, we set est(e) := 0.
Now we have that

|C| ≤ |V (G)| −
∑

e∈E(G)

est(e)

Our next goal is to find a lower bound on
∑

e∈E(G)
est(e). Here we will leave out most of the

computations, due to space restrictions, but they are contained in the full version [11] of this
paper.

5.2.1 Lower bounds for the extension edges
We start with the simpler case of extension edges. An overview over the cases in which they
can appear is shown in Figure 1. Let e be an extension edge. If it appears inside a good tree
or a large tree. Then

est(e) = 2x(e) − 1 − 2u(e)(1 − x(e)).

SWAT 2024

39:10 A Fast 3-Approximation for the Capacitated Tree Cover Problem with Edge Loads

(a) Inside a (good or large) tree. (b) Leading towards a good tree
or a singleton.

(c) As a filler edge leading to a
large tree.

Figure 1 The cases in which extension edges can occur. Dashed edges have been rounded down,
while solid ones have been rounded up. Thick edges belong to a large tree. For each edge e the
arrowhead points towards ve.

If it is incident to a singleton or a good tree, we can estimate

est(e) = 0 ≥ 2x(e) − 1 − (2x(e) − 1).

If it is a filler edge, we can estimate

est(e) = 1 − 2b(ve) = 1 − 2(1 − x(e) − x(e)u(e)) = 2x(e) − 1 + x(e)u(e) ≥ 2x(e) − 1.

5.2.2 Lower bounds for the seed edges

Next we consider seed edges. An overview over the cases in which they can appear is shown
in Figure 2. Let e be a seed edge. e = {ve, v̄} can not be contained in a singleton. It can
also not be contained in a good tree, as we have

1 + u(e) > y(e) = 1 − b(ve) + 1 − b(v̄) ⇔ b(ve) + b(v̄) + u(e) > 1.

So if it is contained in a connected component, then this component is a large tree and it
was the first edge considered in this component. We estimate

est(e) = 2x(e) − 2 − 2u(e)(1 − x(e)).

Otherwise both endpoints are incident to different components. This means that it was
rounded down. If these components are singletons or good trees, we can estimate

est(e) = 0 ≥ 2x(e) − 2.

If both are large trees, then e is a filler edge for both and we have

est(e) = 2−2(b(ve)+b(v̄)) = 2−2(2−x(e)−x(e)u(e)) = 2x(e)−2+2u(e)x(e) ≥ 2x(e)−2.

The last case is that e is incident to one large tree and a good tree or a singleton. This
means it is a filler edge for only one endpoint. W.l.o.g. let this endpoint be ve. We set
y1 := (1 + u(e)), x1 := 1 − b(ve) and y2 := (1 + u(e)), x2 := 1 − b(v̄). For a later estimate
note that then x2 ≤ α as x(e) ≤ α. We can estimate

est(e) ≥ 2x(e) − 2 − (2x2 − 1).

Now almost all estimates are of the same form.

B. Rockel-Wolff 39:11

(a) Inside a large tree. (b) Incident only to
good trees or single-
tons.

(c) As a filler edge for
two large trees.

(d) As a filler edge for
one large tree and incid-
ent to a good tree or a
singleton.

Figure 2 The cases in which seed edges can occur. Dashed edges have been rounded down, while
solid ones have been rounded up. Thick edges belong to a large tree. For each extension edge e the
arrowhead points towards ve. Seed edges have arrowheads on both ends.

5.2.3 Summary of the estimates
Before we choose α and derive the approximation guarantee, let us summarize the derived
estimates.

est(e) ≥
seed edges

2x(e) − 2 − 0 incident to good trees or singletons, filler for both ends
2x(e) − 2 − (2x2 − 1) filler for one end
2x(e) − 2 − 2u(e)(1 − x(e)) in a large tree

extension edges
2x(e) − 1 − 0 filler edge
2x(e) − 1 − (2x(e) − 1) incident to good tree or singleton
2x(e) − 1 − 2u(e)(1 − x(e)) inside a component

The base part, which is left in black, now sums up to at most 2x(E(G))−|V (G)|, because there
is exactly one seed edge for every component that is not a singleton. So it remains to estimate
the parts marked in blue. Our goal will be to estimate this part in terms of |V (G)|−x(E(G)).
That is, find a β, such that we have “sum of blue parts” ≤ β(|V (G)| − x(E(G)). We will
achieve this by first estimating for each {ve, w} ∈ E(Gx∗) that

“blue part” ≤

{
β(b(ve) + b(w) + x(e)u(e)) for seed edges
β(b(ve) + x(e)u(e)) for extension edges.

Then, we can use that to sum up the estimates of the differences

“sum of blue parts” ≤ β(b(V (G)) + u(x(E(G)))) ≤ β(|V (G)| − x(E(G))),

where the last inequality follows directly from the LP-inequalities.
In total, we are left with

|C| ≤ |V (G)| −
∑

e∈E(G)

est(e)

≤ |V (G)| − (2x(E(G)) − |V (G)| − β(|V (G)| − x(E(G)))) = (2 + β)(|V (G)| − x(E(G)))

SWAT 2024

39:12 A Fast 3-Approximation for the Capacitated Tree Cover Problem with Edge Loads

For some special instances, we can get approximation ratios that are better than 3, but
in general we can not be better than a factor 3 with this technique. We will show this in the
last section.

5.2.4 A general approximation guarantee
For a general approximation guarantee, we will choose α := 2

3 to achieve a 3-approximation
(so β = 1).

We start with the edges {ve, w} = e with a “blue part” of 0: Seed edges that are incident
to good trees or singletons, filler edges for both ends or extension edges that are filler edges.
Here, we directly see that

0 ≤ b(ve) + b(w) + x(e)u(e) for seed or 0 ≤ b(ve) + x(e)u(e) for extension edges.

Next, we cover extension edges that are incident to good trees or singletons. They have been
rounded down as well, so we have x(e) ≤ 2

3 . This implies

2x(e) − 1 ≤ 1
3 ≤ 1 − x(e) = b(ve) + x(e)u(e).

Analogously, for seed edges that are filler edges for one end, we get

2x2 − 1 ≤ b(ve) + b(w) + x(e)u(e).

Finally, we cover the edges that have been rounded up. These are seed edges in a large tree
or extension edges inside a component. Here we have x(e) ≥ 2

3 ≥ 2(1 − x(e)). So we can get

2u(e)(1 − x(e)) ≤ x(e)u(e)

and again from this 2u(e)(1−x(e)) ≤ b(ve)+b(w)+x(e)u(e) for seed edges or 2u(e)(1−x(e)) ≤
b(ve) + x(e)u(e) for extension edges.

6 The integrality gap of the LP

We will now prove that the integrality gap of the LP is 3. This means that using the approach
discussed here, we can not achieve a better approximation guarantee.

▶ Theorem 13. The integrality gap of the LP-relaxation given in Section 3 is at least 3.

Proof. For an instance I denote by OPT(I) the value of an optimum (integral) solution
and by OPTLP(I) the value of an optimum LP-solution. We will provide a sequence Ik of
instances, such that lim

k→∞
OPT(Ik)

OPTLP(Ik) = 3.
Let 0 < ϵ < 1

2 . For some k ≥ 3, let G be a k-star. That is a graph with k + 1 vertices
{C} ∪ {v1, . . . , vk} and edges {{C, vi} | i = 1, . . . , k}. We set c ≡ 0 and γ := 1. For all edges
e ∈ E(G), we set u(e) := 1

2 . Finally, we set b(C) := 1 − ϵ and b(vi) := ϵ for i = 1, . . . , k.
In order to get to a complete graph, we extend G, by adding edges between all pairs vi, vj

for i < j and set c({vi, vj}) = 0 and u({vi, vj}) := 1 − ϵ. Clearly, the resulting u and c are
metric. We will denote this instance by Ik,ϵ. A depiction of Ik,ϵ is shown in Figure 3.

In an optimum integral solution to this instance, no edge can be used. This means that
OPT(Ik,ϵ) = k + 1. Now we solve the LP using the algorithm from section 2, showing that

OPTLP(Ik,ϵ) = |V | −
∑

i=1,...,k

x(ei) = k + 1 − 2
3 − (k − 1)

(
2
3 − ϵ

3

)
= k

3 + (k − 1)ϵ
3 + 1.

B. Rockel-Wolff 39:13

v1
ϵ

v2ϵ

v3
ϵ

v4

ϵ

v5
ϵ

v6 ϵ

vk

ϵ

· ·
· C

1 − ϵ

1
2 1

2

1
2

1
2

1
2

1
2

1
2

1 − ϵ

Figure 3 A picture showing the instance described in the proof of Theorem 13. The solid edges
belong to the k-star. Edge loads are marked in blue and node loads are marked in green. The
dashed edge is an example for the edges added to complete the graph.

Setting Ik := I
k,

1
k2

, we get

lim
k→∞

OPT(Ik)
OPTLP(Ik) = lim

k→∞

k + 1
k
3 + (k−1)

3k2 + 1
= 3. ◀

Together with the upper bound of 3 given by the analysis of the algorithm, we can conclude:

▶ Corollary 14. The integrality gap of the LP is 3.

References
1 Esther M Arkin, Refael Hassin, and Asaf Levin. Approximations for minimum and min-max

vehicle routing problems. Journal of Algorithms, 59(1):1–18, 2006. doi:10.1016/J.JALGOR.
2005.01.007.

2 Christoph Bartoschek. Fast Repeater Tree Construction. PhD thesis, Rheinische Friedrich-
Wilhelms-Universität Bonn, 2014.

3 Guy Even, Naveen Garg, Jochen Könemann, Ramamoorthi Ravi, and Amitabh Sinha. Min–
max tree covers of graphs. Operations Research Letters, 32(4):309–315, 2004. doi:10.1016/J.
ORL.2003.11.010.

4 Stephan Held, Bernhard Korte, Dieter Rautenbach, and Jens Vygen. Combinatorial optimiza-
tion in vlsi design. Combinatorial Optimization – Methods and Applications, 31:33–96, 2011.
doi:10.3233/978-1-60750-718-5-33.

5 Dorit S Hochbaum and David B Shmoys. A best possible heuristic for the k-center problem.
Mathematics of operations research, 10(2):180–184, 1985. doi:10.1287/MOOR.10.2.180.

6 Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman,
and Angela Y Wu. A local search approximation algorithm for k-means clustering. In
Proceedings of the 18th annual symposium on Computational geometry, pages 10–18. ACM,
2002. doi:10.1145/513400.513402.

7 M. Reza Khani and Mohammad R. Salavatipour. Improved approximation algorithms for
the min-max tree cover and bounded tree cover problems. Algorithmica, 69(2):443–460, 2014.
doi:10.1007/S00453-012-9740-5.

8 Samir Khuller and Yoram J Sussmann. The capacitated k-center problem. SIAM Journal on
Discrete Mathematics, 13(3):403–418, 2000. doi:10.1137/S0895480197329776.

9 Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,
28(2):129–137, 1982. doi:10.1109/TIT.1982.1056489.

SWAT 2024

https://doi.org/10.1016/J.JALGOR.2005.01.007
https://doi.org/10.1016/J.JALGOR.2005.01.007
https://doi.org/10.1016/J.ORL.2003.11.010
https://doi.org/10.1016/J.ORL.2003.11.010
https://doi.org/10.3233/978-1-60750-718-5-33
https://doi.org/10.1287/MOOR.10.2.180
https://doi.org/10.1145/513400.513402
https://doi.org/10.1007/S00453-012-9740-5
https://doi.org/10.1137/S0895480197329776
https://doi.org/10.1109/TIT.1982.1056489

39:14 A Fast 3-Approximation for the Capacitated Tree Cover Problem with Edge Loads

10 Jens Maßberg and Jens Vygen. Approximation algorithms for a facility location problem with
service capacities. ACM Transactions of Algorithms, 4(4):50:1–50:15, 2008. doi:10.1145/
1383369.1383381.

11 Benjamin Rockel-Wolff. A fast 3-approximation for the capacitated tree cover problem with
edge loads, 2024. arXiv:2404.10638.

12 Stephan Schwartz. An overview of graph covering and partitioning. Discrete Mathematics,
345(8):112884–112900, 2022. doi:10.1016/J.DISC.2022.112884.

13 Vera Traub and Thorben Tröbst. A fast (2 + 2
7)-approximation algorithm for capacit-

ated cycle covering. Mathematical Programming, 192(1):497–518, 2022. doi:10.1007/
S10107-021-01678-3.

14 Zhou Xu, Dongsheng Xu, and Wenbin Zhu. Approximation results for a min–max location-
routing problem. Discrete Applied Mathematics, 160(3):306–320, 2012. doi:10.1016/J.DAM.
2011.09.014.

15 Wei Yu and Zhaohui Liu. Better approximability results for min–max tree/cycle/path
cover problems. Journal of Combinatorial Optimization, 37(2):563–578, 2019. doi:10.1007/
S10878-018-0268-8.

https://doi.org/10.1145/1383369.1383381
https://doi.org/10.1145/1383369.1383381
https://arxiv.org/abs/2404.10638
https://doi.org/10.1016/J.DISC.2022.112884
https://doi.org/10.1007/S10107-021-01678-3
https://doi.org/10.1007/S10107-021-01678-3
https://doi.org/10.1016/J.DAM.2011.09.014
https://doi.org/10.1016/J.DAM.2011.09.014
https://doi.org/10.1007/S10878-018-0268-8
https://doi.org/10.1007/S10878-018-0268-8

Approximation Algorithms for the Airport and
Railway Problem
Mohammad R. Salavatipour # Ñ

Department of Computer Science, University of Alberta, Edmonton, Canada

Lijiangnan Tian # Ñ

Department of Computer Science, University of Alberta, Edmonton, Canada

Abstract
In this paper, we present approximation algorithms for the airport and railway problem (AR) on
several classes of graphs. The AR problem, introduced by [2], is a combination of the Capacitated
Facility Location problem (CFL) and the network design problem. An AR instance consists of a
set of points (cities) V in a metric d(., .), each of which is associated with a non-negative cost fv

and a number k, which represent respectively the cost of establishing an airport (facility) in the
corresponding point, and the universal airport capacity. A feasible solution is a network of airports
and railways providing services to all cities without violating any capacity, where railways are
edges connecting pairs of points, with their costs equivalent to the distance between the respective
points. The objective is to find such a network with the least cost. In other words, find a forest,
each component having at most k points and one open facility, minimizing the total cost of edges
and airport opening costs. Adamaszek et al. [2] presented a PTAS for AR in the two-dimensional
Euclidean metric R2 with a uniform opening cost. In subsequent work [1] presented a bicriteria
4
3

(
2 + 1

α

)
-approximation algorithm for AR with non-uniform opening costs but violating the airport

capacity by a factor of 1 +α, i.e. (1 +α)k capacity where 0 < α ≤ 1, a
(
2 + k

k−1 + ε
)
-approximation

algorithm and a bicriteria Quasi-Polynomial Time Approximation Scheme (QPTAS) for the same
problem in the Euclidean plane R2. In this work, we give a 2-approximation for AR with a uniform
opening cost for general metrics and an O(log n)-approximation for non-uniform opening costs. We
also give a QPTAS for AR with a uniform opening cost in graphs of bounded treewidth and a QPTAS
for a slightly relaxed version in the non-uniform setting. The latter implies O(1)-approximation on
graphs of bounded doubling dimensions, graphs of bounded highway dimensions and planar graphs
in quasi-polynomial time.

2012 ACM Subject Classification Theory of computation; Theory of computation → Design and
analysis of algorithms

Keywords and phrases Facility Location, Approximation Algorithms, Dynamic Programming

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.40

Funding Mohammad R. Salavatipour : Supported by NSERC DG.
Lijiangnan Tian: Supported by first authors NSERC.

Acknowledgements We want to thank Zachary Friggstad for his comments that improved and
simplified Theorem 1. We also talked to Mohsen Rezapour for some initial discussions.

1 Introduction

We study a problem that integrates capacitated facility location and network design problems.
The problem referred to as Airport and Railway problem denoted as AR (introduced by [2]
and studied further in [1]) is the following. Suppose we are given a complete weighted graph
G = (V,E) embedded in some metric space (for instance the Euclidean plane), with two
cost functions f : V → R≥0 for opening facilities (also known as airports) at vertices (also
known as cities) and c : E → R≥0 for installing railways on the edges in order to connect
cities to airports. We are also given a positive integer k ∈ Z+ as the capacity of each airport.

© Mohammad R. Salavatipour and Lijiangnan Tian;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 40; pp. 40:1–40:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mrs@ualberta.ca
https://webdocs.cs.ualberta.ca/~mreza/
https://orcid.org/0000-0002-7650-2045
mailto:lijiangn@ualberta.ca
https://webdocs.cs.ualberta.ca/~lijiangn/
https://orcid.org/0009-0002-8143-8938
https://doi.org/10.4230/LIPIcs.SWAT.2024.40
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Approximation Algorithms for the Airport and Railway Problem

u

u1 u2

v

v1 v2

(a)

u

u1 u2

v

v1 v2

(b)

u

u1 u2

v

v1 v2

2 2

3

1 1

(c)

Figure 1 a) An example tree where we assume the airport capacity is 3 and u1 and u2 have an
opening cost of zero while other vertices have cost infinity; b) The solution to ÃR. Pink vertices
represent cities with an airport. Each edge is coloured to indicate its cluster. The dashed edge is
used by both clusters; c) The solution to AR′. Each directed edge is labelled with its flow value.

The goal is to partition the vertices into a set of clusters each of size at most k, find a set of
vertices A ⊆ V at which we open facilities (airports) so that each cluster has exactly one
airport, and a set of edges R ⊆ E, such that the edges on each cluster induce a connected
graph, while minimising the total cost of the edges plus the opening of selected facilities.

Clearly, the graph induced by each cluster must be a tree. So we have a collection of
trees, each of size at most k and each having an open facility. The idea is each open facility
serves as an airport that will serve all the cities in the cluster it belongs to (including the
city at that vertex). The goal is to minimise the total cost

C =
∑
v∈A

fv +
∑
e∈R

ce.

To be more precise, a cluster is an airport and the set of all the cities served by it, together
with the set of railways connecting the cities to the airport that forms a tree. Adamaszek et
al. [1] also defined a relaxed version of AR (they called AR′) where in a feasible solution a
component of the forest might have multiple airports and multiple copies of any edge and
each component allows routing one unit of flow from all its cities to the airports so that each
airport receives at most k flows and each copy of an edge has capacity k. Note that in this
version of the problem, the cities belonging to different airports can share the edges of the
network. So an edge might be used by cities from different clusters but no more than k in
total; in this case, the cost of the edge occurs only once in the objective.

When considering special metrics (e.g. shortest path metrics induced by trees or other
special graph classes) we may not have a feasible solution to AR in the strict setting that
clusters need to be disjoint. For this reason, we consider a slightly relaxed version of AR,
denoted by ÃR where the clusters do not need to be edge-disjoint but each cluster will pay
for the edges it uses separately. In other words, each edge is allowed to be used by multiple
clusters but each of them needs to pay the cost of the edges they use separately. Considering
this relaxed version becomes useful when we are working on specific metrics e.g. shortest
path metrics of certain graph classes such as trees (e.g. see Figure 1). Note that in ÃR, each
connected component in a feasible solution may contain multiple clusters and the total cost
that we want to minimise is

∑
v∈A fv +

∑
e∈R ce · ϕ(e) where ϕ(e) is the number of clusters

using the edge e. We highlight that AR′ is a strictly more relaxed setting vs. ÃR. In AR′

the cities sending flows to different airports can share the edges of the network and if the
flow over an edge is ≤ k (even if used to send flow to different airports) the cost of the edge
is paid for only once. This is not the case in ÃR. For instance, a feasible solution to ÃR in
this Figure 1 has two clusters, one u1, u, v and the other u2, v1, v2 and has a total cost of 6
whereas a feasible solution to AR′ has one component with cost 5.

The AR problem has some characteristics of the Capacitated Facility Location (CFL)
problem and network design problem. The instance of AR is the same as CFL with uniform
capacities. However, in CFL one has to open a number of facilities and assign each client/city

M. R. Salavatipour and L. Tian 40:3

to an open facility (by a direct edge) so that each facility is assigned at most k clients and
we minimise the total opening cost and connection cost. The main difference is that in CFL
each cluster forms a star (with the facility being the centre) while in AR each cluster is a tree,
whose cost might be much cheaper than the star. In AR, the clients might share the same
path to be connected to the facility and hence reduce the total cost of forming the railroad
network. AR has also similarities to the Capacitated Vehicle Routing Problem (CVRP)
and Capacitated Minimum Spanning Tree (CMST). In CMST, the goal is to construct a
minimum-cost collection of trees covering all the input vertices, each tree spanning at most k
vertices, connected to a single root node. As discussed in [1], AR can be modelled as CMST
in general weighted (non-metric) graphs.

The following variants of AR have been studied [1, 2]. For some constant β > 1, ARβ

refers to the bicriteria version of AR, where airport capacity is allowed to be violated by
a factor of β (also known as resource augmentation). AR∞ is a relaxed version where the
airport capacity is dropped, or equivalently, set to infinity: k = +∞. When airport opening
costs are uniform we refer to it by 1AR. Another special case is ARP where each component
is a path with both endpoints having an airport. ARP is a relaxation of the capacitated
vehicle routing problem (CVRP) since not all the paths need to have a common endpoint
(the centralised dépôt in CVRP). The original problem is sometimes denoted as ARF (or
simply AR) where we have a general forest.

1.1 Related Work

As mentioned above, [1, 2] have studied AR and some variants of it defined above. No true
(non-trivial) approximation is known for AR in general setting. For the case of uniform
airport opening cost, for both 1AR and 1ARP , [2] show that the problems are NP-hard in
Euclidean metrics and present PTAS’s for them.

In [1] the authors consider bicriteria approximations. They present a 4
3 ·(2+ 1

p)-approximate
for AR1+p, p ∈ (0, 1] for general metrics. For Euclidean R2 they present a QPTAS for AR1+µ,
for arbitrary µ > 0 (i.e. violating the capacities by 1 + µ) and a (2 + k

k−1 + ε)-approximation
in polynomial time. To obtain the latter result they obtain a PTAS for AR′ on Euclidean
metrics and show that a solution to AR′ implies a solution for AR at a loss of factor 2 + k

k−1 .
In CFL, we are given a weighted (metric) graph G = (V,E), a facility opening cost

function f : V → R≥0, and edge costs c : E → R≥0, and a capacity uv. The goal is to
open a set of facilities F ⊆ V , and assign each point v ∈ V to an open facility so that each
open facility v has at most uv points assigned to it while minimizing the total opening costs
plus the assignment costs of points to open facilities. The only difference between CFL
and AR is that in CFL the assignment edges in each cluster form a star whereas in AR it
forms a minimum tree spanning the nodes of that cluster. There are constant approximation
algorithms for CFL in general as well as uniform settings [12, 16].

For CVRP and its variants there are constant-factor approximations in general settings
and QPTAS for special metrics such as Euclidean and doubling metrics and minor-free graphs
[3, 6, 9, 10]. Another related problem is the capacitated cycle cover problem (CCCP) studied
in [20]. In this problem, we are given a weighted graph G and parameters k and γ. The goal
is to find a spanning collection of cycles of size at most k while minimizing the cost of the
edges of the cycles plus γ times the number of cycles. This problem is related to Min-Max
Tree Cover and Bounded Tree Cover studied earlier [13, 21]. In [20] the authors present a
(2 + 2

7)-approximation for CCCP. This also implies a (4 + 4
7)-approximation for uniform AR.

SWAT 2024

40:4 Approximation Algorithms for the Airport and Railway Problem

For CMST, Jothi and Raghavachari [11] give a 3.15-approximation algorithm for Euclidean
CMST and a (2 + γ)-approximation for metric CMST, where γ ≤ 2 is the ratio of minimum-
cost Steiner tree and minimum spanning tree. As pointed out by [1], AR can be reduced to
CMST in non-metric setting.

We refer to [1] for discussion of other related works such as capacitated-cable facility
location problem (CCFLP) [17] and sink clustering problem [14].

1.2 Contributions
Although AR (and ÃR) are similar to both CFL and CVRP, the mix of capacitated facility
location and network design components appears to make it significantly more difficult
than both. The approximability of AR for general metrics remains uncertain. Even for
more restricted settings such as special metrics (e.g. trees) or uniform opening costs, the
approximability of the problem is open.

In this paper, we make progress on some special cases. First, we consider AR with
uniform opening cost (i.e. 1AR) on various metrics. For general metrics, we present a simple
2-approximation algorithm for this.

▶ Theorem 1. There is a 2-approximation for uniform AR on general metrics.

We also consider graphs of bounded treewidth and present a QPTAS for ÃR on such
metrics.

▶ Theorem 2. There is a QPTAS for uniform ÃR on graphs of bounded treewidth which
runs in time nO(ωω·log3 n/(ε2 logω ω)). where ω is the treewidth of the input graph.

Next, we consider AR′ in the general setting (i.e. with non-uniform facility opening costs).
We propose an exact algorithm for trees and graphs of bounded treewidth.

▶ Theorem 3. AR′ can be solved in polynomial time on graphs with bounded treewidth.

Using embedding results for general metrics into tree metrics with O(log n) distortion as
well as embedding of graphs of bounded doubling dimension, graphs of bounded highway
dimension, and minor-free graphs into graphs with polylogarithmic treewidth as well as
O(1)-reduction from AR to AR′ ([1]) we obtain the following corollary.

▶ Corollary 4. There is a polynomial time O(log n)-approximation for AR on general graphs,
a QPTAS for AR′ and therefore a quasi-polynomial O(1)-approximation for AR for graphs
with bounded doubling dimension, graphs of bounded highway dimension, and minor-free
graphs.

We also show that at a factor 2 loss, we can reduce the general AR problem to the case
that facilities have cost 0 or +∞, we denote this case by 0/+∞ AR. In other words, the
special case of the problem that all facilities (to be opened) are given to us and we simply
have to build clusters of size at most k each of which has one of the open facilities. Even for
this special case, a good approximation remains elusive.

▶ Theorem 5. Given an instance G for AR, we can build an instance G′ for 0/+∞ AR
such that any α-approximate solution to 0/+∞ AR implies a 2α-approximate solution for
AR on G.

In the next section, we prove Theorem 1. Then in Section 3 we prove Theorem 2 and in
Section 4 we prove Theorem 3 and Corollary 4. We defer the proof of Theorem 5 to the full
version.

M. R. Salavatipour and L. Tian 40:5

2 Algorithm for Uniform AR in General Metric

In this section, we prove Theorem 1. Since each facility (airport) is trivially serving its own
city, we refer to the remaining capacity k − 1 (to serve other clients) as k for simplicity.
We assume opening a facility at each vertex costs a uniform value f . Given an instance G
we first define a modified instance G̃ for each input graph G. The graph G̃ is obtained by
adding a dummy node r to G and connecting r to all the vertices v ∈ V with an edge of cost
cvr = f . We first define the MSTσ

r problem and prove the following lower bound.

▶ Definition 6. In the MSTσ
r problem, we are given a graph G = (V,E) with a vertex r ∈ V .

The task is to find the minimal cost of the spanning tree of the input graph, while ensuring
that the degree of vertex r in the solution is at most σ.

▶ Lemma 7. If σ is the number of components in an optimum solution to AR on G then
the cost of an optimal solution to the MSTσ

r problem on G̃ is a lower bound on the optimal
solution to AR on G.

Proof. Consider an optimal solution ξ to AR on G. Say there are σ components in ξ. After
adding into ξ a dummy node r and connecting r to the vertices that are open facilities with
an edge of cost f , we obtain a spanning tree T for G̃ of the same cost, where the vertex r has
a degree of σ. Namely, this is a feasible solution to MSTσ

r . Therefore, an optimal solution
to MSTσ

r on G̃ cannot cost more than the optimal solution to AR on G. ◀

Our algorithm first guesses the number of components in the optimal solution. We do
this by enumerating all possibilities. Say there are σ components in the optimal solution for
some integer σ ≤ n. Note that we know σ ≥

⌈
n
k

⌉
for certain, as otherwise there must exist

some cities that are not getting served. Our algorithm is as follows.
Construct the instance G̃. Solve the MSTσ

r problem on instance G̃. After removing the
dummy vertex r, we obtain a set T = {T1, T2, . . . Tσ} of σ connected components (i.e. trees).
Note that we can solve the MSTσ

r problem using the technique of matroid intersection [7].
Let M1 = (Ẽ, I1) represent the graphic matroid of G̃ (also known as the cycle matroid or

polygon matroid), where the ground set Ẽ is the set of edges in G̃, and the set of independent
sets I1 consists of acyclic subgraphs of G̃. That is to say, each independent set corresponds
to the edges of a forest in the underlying graph G̃. Let M2 = (Ẽ, I2) denote the partition
matroid, where the set of independent sets I2 is defined as follows, where N(r) represents all
the edges incident to the vertex r and Ṽ is the vertex set of G̃,

I2 =
{
S ⊆ Ẽ

∣∣∣ |S ∩N(r)| ≤ σ, |S ∩ (Ẽ \N(r))| ≤ |Ṽ | − 1 − σ
}
.

In other words, each independent set of this partitional matroid corresponds to the edge set
of a subgraph of G̃ with at most |Ṽ | − 1 edges, where there are at most σ edges incident to
the vertex r and at most |Ṽ | − 1 − σ edges not incident to r.

Note that a feasible solution to MSTσ
r is an independent set of both matroids. The

underlying graph must form a spanning tree, so it is an independent set of M1. The set of
edges must satisfy the degree requirement for vertex r, so it is an independent set of M2.
For each connected component Ti ∈ T , we obtain a cycle Ci in the following way: double
the edges of Ti and trace them while short-cutting whenever we encounter a vertex that
has been visited. We cut each cycle Ci into a set of disjoint subpaths of fixed length k,
except for at most one subpath per cycle that is strictly shorter than k. Essentially, we have
transformed the trees in T into a set of paths. Let Pk denote the set of paths with length
exactly k. For each path in Pk, we simply open one of its cities as an airport. Note that

SWAT 2024

40:6 Approximation Algorithms for the Airport and Railway Problem

|Pk| ≤
⌊
n
k

⌋
since there are at most n vertices (other than the vertex r) in the graph. In

addition, as we know σ ≥
⌈
n
k

⌉
, we have |Pk| ≤

⌊
n
k

⌋
≤

⌈
n
k

⌉
≤ σ. Consequently, the cost of

opening these |Pk| airports is |Pk| · f ≤ σ · f . For those subpaths of length less than k, we
simply open one of its vertices as the facility. Note that since there are |T | = σ trees Ti
(hence there are σ corresponding cycles Ci), we have at most σ such short subpaths. The
current cost is bounded by twice the edge cost of all the trees in T , as well as the facility
cost of all these subpaths, which is at most f · σ + |Pk| · f ≤ 2σ · f . Meanwhile, the cost of
the MSTσ

r solution is the edge cost of all the trees in T , plus the cost of incident edges of r
in the solution, which is f · σ. Thus, it is obvious that the cost is no more than twice the
cost of the MSTσ

r solution.
From the analysis above, it should be easy to see that Theorem 1 follows.

3 QPTAS for Uniform Case in Graphs of Bounded Treewidth

In this section, our goal is to prove Theorem 2. First, recall the definition of graphs with
bounded treewidth.

▶ Definition 8. A tree decomposition of a graph G = (V,E) is a tree T = (V ′, E′) and a
mapping Ξ : V ′ → 2V where each vertex β ∈ V ′ (also known as a bag) corresponds to a set
of vertices of G, such that

For each vertex v in G, it must be included in at least one bag of T .
For each edge uv in G, the pair of vertices u, v ∈ V must be included in at least one bag
of T .
For each vertex v in G, consider the set of all the bags in T that include v. These bags
induce a connected component in T .

The width of a tree decomposition is defined as the cardinality of its largest bag minus
one. The treewidth of a graph G is the smallest w such that G has a tree decomposition
with width w. Given a graph G = (V,E) of treewidth ω, there is a tree decomposition
T = (V ′, E′) of G where T is binary, with depth h ∈ O(log n) (where n = |V |) and treewidth
not exceeding ω′ = 3ω + 2, according to [4]. For simplicity, denote ω′ as ω instead. We
assume the tree height h = δ log n for some constant δ > 0.

Our algorithm for uniform ÃR on bounded treewidth graph relies on the technique
developed in [10] for designing QPTAS for CVRP on such metrics. First, we ignore the
concept of facilities/airports, we simply pay an extra f for each cluster in our solution (later
we designate one vertex in each cluster as the facility to be opened). For that, we define a
new version of the problem which we call UAR (meaning AR with undetermined airports).

▶ Definition 9. (UAR) The goal is to find a set F of (not necessarily disjoint) clusters
(i.e. trees) using edges in the graph. The size of each cluster must not exceed the capacity
constraint k. Each cluster γ ∈ F has a cost of f and we want to minimise the total cost,
which is defined as

|F| · f +
∑
γ∈F

cost(γ)

where cost(γ) denotes the railway cost of the cluster γ.

Since this is a relaxed version of the original problem (as we do not specify the location of
the facilities), its cost is a lower bound of that of the original problem. We can think of each
vertex in V to have one unit of demand which needs to be sent to an airport to be served. We
may add dummy demands to a vertex during the algorithm, so a vertex may end up having

M. R. Salavatipour and L. Tian 40:7

more than one unit of demand. The size of a cluster is defined to be the sum of demands
on all its vertices, instead of just the number of vertices. Note that a component may not
include every vertex that it passes through, as a component may be simply using the edges
of a vertex to get to somewhere else, which can also be seen as not picking up the demand of
the vertex. Be mindful that, from the perspective of demands, the size of a component is the
number of demands it includes, instead of the number of vertices. Therefore the clusters
in the solution are not necessarily edge-disjoint or vertex-disjoint, but the total number of
demands in each cluster obeys the capacity constraint.

For clarity, we refer to the vertices in T as bags, to differentiate them from the vertices
in G. For the notation β, we refer to it as the name of the bag β ∈ V (T) as well as the
corresponding set of vertices β ⊆ V (G). For each bag β, denote the union of vertices in all
of the bags in the subtree Tβ as Cβ . Note that Cβ also denotes the set of all bags in Tβ .

Each vertex of G may appear in multiple bags of T as tree decomposition generates
duplicates. In order to make sure the demand of a vertex does not get duplicated in T , for
every vertex v ∈ V (G), we assume that the copy/instance of v in the bag β̃ that is the closest
to the root bag (we know there is a unique one and we denote this copy of v as ṽ) has a
demand of one, and the rest of the copies of v (which resides in other bags) have demand
zero.

Given an optimal solution denoted as OPT, we will demonstrate a process for transforming
it into a near-optimal solution for UAR and thereby show the existence of such a near-optimal
solution. This transformation occurs incrementally on T , moving from the bottom to the
top, one level at a time. The solution before modifying level ℓ is denoted as OPTℓ, and after
the modification as OPTℓ−1.

Overview of the approach and relation to [10]. Our goal is to show the existence of a
near-optimum solution with certain structures. Suppose OPT is an optimum solution for
UAR and opt is its value. We aim to find a near-optimal solution, of cost (1 +O(ε))opt,
where each vertex has at least one unit of demand, and the size of partial clusters in any
subtree Tβ can only be one of polylogarithmically many values. Two concepts are required to
describe the following data structures, namely, the notions of partial and complete clusters.
We consider a non-root bag β ∈ V (T) and the subtree rooted at β, Tβ . A complete cluster in
Tβ is a cluster that is entirely in the graph Cβ , and a partial cluster is one that uses vertices
both inside Cβ and outside. Similar to [10], we first assume that the number of clusters in
OPT is sufficiently large, that is, at least λ log n for some large number λ. Otherwise, if the
number of clusters in OPT is upper-bounded by Σ = λ log n then a simple DP can solve the
problem exactly (see [19]). Given an optimal solution OPT, we will demonstrate a process
for transforming it into a near-optimal solution with certain structural properties that help
us find one using dynamic programming. This transformation occurs incrementally on T ,
moving from the bottom to the top, one level at a time. The solution before modifying level
ℓ is denoted as OPTℓ, and after the modification as OPTℓ−1. Looking at how OPTℓ looks
like, we would like to “approximately” keep the sizes of partial clusters that extend below β

in Tβ . A standard approach is to “bucket” the sizes of partial clusters into buckets where
each bucket contains all those sizes that are within (1 + ε) of each other (e.g. bucket i being
values in (1 + ε)i . . . [(1 + ε)i+1 − 1]. This will reduce the complexity of the DP table to
quasi-polynomial: we keep the number of partial clusters of each bucket and try to fill in the
DP table bottom-up. The problem is that then when we are combining solutions in the DP
table, since we are keeping the sizes approximately (and sacrificing precision), we may violate
the capacities unknowingly. The idea developed in [10] was to modify OPT by reducing the

SWAT 2024

40:8 Approximation Algorithms for the Airport and Railway Problem

sizes of the clusters (at a small increase in the number of clusters) so that even if we scale
the sizes of the new clusters by a small number, they are still capacity-respecting. They
used a technique that was used later in [15], called adaptive rounding that we also use here
to round the sizes of partial clusters in Tβ for any bag β ∈ T . At each bag β, for clusters
that are in the same “bucket” we swap parts of them with a net effect of reducing their sizes
while having only a poly-logarithmic many possible bucket sizes at the end. We formalize
this in the following.

▶ Definition 10. Define the threshold values {σ1, . . . , στ} where

σi =
{
i 1 ≤ i ≤ ⌈1/ε⌉
⌈σi−1 · (1 + ε)⌉ i > ⌈1/ε⌉

in such a way that the last threshold στ = k. So τ ∈ O(log k/ε).

We adapted the definitions from [10]. Consider a bag β that is situated at level ℓ. We
consider partial clusters that cross β and based on their size in Cβ we bucket them. Bucket i
contains those partial clusters whose size is in the range [σi, σi+1). Now let’s focus on all
(partial) clusters that are in bucket i of bag β. Each of these clusters has some vertices in Cβ
and some vertices outside. For a set S ⊂ β consider all the partial clusters in bucket i that
their intersection with β is S. So each of them will form a number of connected components
in Cβ where each component contains some part of S; this defines a partition of S. We
consider all those partial clusters that have the same partition of S together (defined below).

▶ Definition 11. For a bag β at level ℓ in T , for each set S ⊆ β and partition ℘S of S,
consider the set b℘S

S which contains the clusters that use exactly the set of vertices S ⊆ β

to span into Cβ, where ℘S denotes a partition of the set S based on connectivity of the of
those clusters in Cβ. Define the i-th bucket of b℘S

S , denoted as bi, to store clusters in OPTℓ

that have a size between [σi, σi+1) inside Cβ, where σi is the i-th threshold value. Denote
this bucket by a tuple (β, bi, S, ℘S). Denote the number of clusters in bucket (β, bi, S, ℘S) as
nS,℘S

β,i .

Essentially, the set S represents the interface that the clusters in the bucket (β, bi, S, ℘S)
use to attach to the rest of their parts in Cβ , and ℘S is a set that describes the connectivity
between the vertices of S in Cβ . That is, each part in the partition ℘S specifies a subset
of vertices of S that need to be connected below. So if u, v ∈ S and there is some set
P ∈ ℘S such that P ⊇ {u, v}, then u and v need to be connected in Cβ by some cluster. For
simplicity, we just write ℘S as ℘.

▶ Definition 12. A bucket b is said to be small if it contains no more than α log2 n/ε clusters
and is otherwise said to be big, for some constant α ≥ max{1, 20δ}.

▶ Definition 13. For a big bucket (β, bi, S, ℘), define g groups where g = 2δ logn
ε , denoted as

Gβ,S,℘i,1 , Gβ,S,℘i,2 , . . . , Gβ,S,℘i,g in the following way (for simplicity assume the size of this bucket
is a multiple of g, if not add some empty clusters to achieve this). Sort the clusters in
the (padded) bucket in non-decreasing order, and put the first nS,℘

β,i

g clusters into Gβ,S,℘i,1 , the

second nS,℘
β,i

g into Gβ,S,℘i,2 , etc. For each group Gβ,S,℘i,j , denote the size of its smallest cluster as
hβ,S,℘,min
i,j and the size of its biggest cluster as hβ,S,℘,max

i,j .

Suppose we are considering a big bucket of β and a partial cluster Γ is in the group j > 1
of the big bucket. We find its top (that is, the part of the cluster that is outside of Tβ)
and reassign it to another partial cluster (that is no bigger than Γ) with the same order in

M. R. Salavatipour and L. Tian 40:9

the previous group (i.e., group j − 1) as the order of Γ in group j. The vertices that were
originally covered by the partial clusters in the last group are referred to as orphans. This is
essentially the rounding between groups of a big bucket that was done in [10] for the CVRP
on bounded treewidth graphs. The idea is that by this operation, the size of each cluster
goes down enough such that if we “approximate” the sizes by the size of the biggest cluster
in each group, we are still satisfying the capacity constraints. However, some vertices that
were covered by the partial clusters of the last group are now left “uncovered” (or orphan).
We will use some extra clusters to pick up (serve) the now orphan vertices.

We come up with a structure theorem that shows the existence of a near-optimal solution
with certain structures, and then provide a dynamic programming algorithm for the UAR
problem.

3.1 Structure Theorem for Graphs with Bounded Treewidth
The steps of modifying OPT to a near-optimal solution (denoted as OPT′) are largely the
same as the ones in [10]. Let’s assume we randomly choose clusters from OPT, denoted as
C, with a probability of ε. After selecting these clusters, we duplicate each chosen one and
assign both duplicates of each chosen cluster to one of the levels ℓ that it visits1, with equal
probability. These duplicated clusters are referred to as the extra clusters. We will bound
their total cost. The proof is very similar to the one in [10] and we only need to show the
part concerning the facility costs.

Recall f is the (uniform) facility opening cost, ε is the probability each cluster γ in OPT
is selected as the extra cluster, k is the capacity of each cluster, and ω is the treewidth of G.

▶ Lemma 14. The expected cost of the extra clusters sampled is 2ε · opt.

We make use of the following modified definitions and lemmata from [10]. They apply to
our problem as the proofs of the lemmata are almost identical.

Denote the bags in level ℓ of T as Bℓ. Define the set Xℓ to comprise the extra clusters
assigned to bags at level ℓ. For every bag β ∈ Bℓ and its bucket (β, bi, S, ℘), let XS,℘

β,i

represent the extra clusters (using vertices in S to span into Cβ , with ℘ depicting connectivity
downwards) in Xℓ whose partial clusters inside Cβ has a size that falls within the range
defined by bucket bi. For an extra cluster γ ∈ XS,℘

β,i , it covers some partial cluster ζ ∈ Gβ,S,℘i,g

(which is without its top). That is, the extra cluster γ only picks up demands at the levels
≥ ℓ and acts as the top of ζ, in particular, this combined cluster picks up only those demands
of ζ’s vertices (which are all orphans).

▶ Lemma 15. At any level ℓ, each bag β ∈ Bℓ and its big buckets (β, bi, S, ℘) satisfy, w.h.p.∣∣∣XS,℘
β,i

∣∣∣ ≥ ε2

δ log n · nS,℘β,i .

▶ Lemma 16. For all bags β at level ℓ in T , their big buckets (β, bi, S, ℘) and partial clusters
in Gβ,S,℘i,g ⊆ bi, we can make adjustments to the extra clusters present in XS,℘

β,i without
incurring any additional cost, and introduce some dummy demands within β when necessary,
so that:
1. The partial clusters in Gβ,S,℘i,g are now incorporated into some clusters in XS,℘

β,i . (That
is, all the demands that were covered by some partial cluster in Gβ,S,℘i,g are picked up by
some cluster in XS,℘

β,i .)

1 If a cluster γ passes crosses bag of level ℓ, we say γ visits or crosses level ℓ.

SWAT 2024

40:10 Approximation Algorithms for the Airport and Railway Problem

2. The modified partial clusters that cover the orphans (i.e., vertices in Gβ,S,℘i,g) have precisely
the size of hβ,S,℘,max

i,g and all clusters remain underneath the size limit of k units of
demand.

3. For each modified partial cluster in the set XS,℘
β,i , its partial clusters at a bag β′ ∈ Bℓ′ is

also of one of O(log k log2 n/ε2) many sizes, where ℓ′ is any lower levels > ℓ.

Note that when we add dummy demands for some cluster γ in some bucket (β, bi, S, ℘),
we simply add these dummy demands onto the vertices in S. Using these lemmata and a very
similar proof to the one in [10], we can obtain a Structure Theorem for our UAR problem in
the case of graphs with bounded treewidth.

▶ Theorem 17. (Structure Theorem) Consider an instance I for the UAR problem. Denote its
optimal solution as OPT, with cost opt. We can transform OPT to another solution OPT′

so that, with high probability, OPT′ is a near-optimal solution of cost at most (1 + 2ε)opt.
Additionally, at every β in OPT′, all the clusters in Cβ have one of O(log k log2 n/ε2)
possible sizes. Consider a bucket (β, bi, S, ℘) in OPT′. We must have

If bi is small, the number of partial clusters in Cβ whose size falls within bi is at most
α log2 n/ε.
If bi is big, it has exactly g = 2δ log n/ε group sizes which are denoted as

σi ≤ hβ,S,℘,max
i,1 ≤ hβ,S,℘,max

i,2 ≤ · · · ≤ hβ,S,℘,max
i,g < σi+1

Each cluster in bi has a size of one of the h-values above.

Having this structure theorem one can design a (relatively complex) DP to compute a
near-optimum solution as guaranteed by this structure theorem. This DP builds upon ideas
of the DP in [10] but has more complexity as the clusters here do not necessarily have a
common point (like the dépôt in the CVRP problem). This will show that we can compute
a solution such as OPT′ in Theorem 17 in time nO(ωω·log3 n/(ε2 logω ω)).

We can transform the approximate solution obtained for the UAR problem into a solution
to the ÃR problem, without any increase in the cost. All we need to do is to pick a node in
each cluster to open a facility at (since we are already paying f for each cluster, this cost is
accounted for in the solution to UAR). This can be easily done since in a solution to UAR
each vertex is “covered” by a unique cluster.

4 Constant Approximation for Nonuniform-AR

In this section, we prove Theorem 3. For ease of exposition, we present the proof for the
case of trees (the extension to graphs with bounded treewidth appears in the full version).
Recall that in the relaxation AR′, we are given a graph G = (V,E) where each vertex v ∈ V

has a non-negative opening cost av and each edge e ∈ E has a non-negative weight ce. Every
edge and vertex has capacity k ∈ N+. Find a subset of vertices Φ ⊆ V as facilities (also
known as airports), and a multiset Ξ of edges from E to get a transportation network that
ensures one unit of flow from each vertex in V can be sent to facilities in Φ, without violating
the capacity constraint on any edge or facility. The goal is to find such a network while
minimising the total cost

∑
v∈Φ

av +
∑
e∈Ξ

ce. First, we prove some properties in an optimum

solution to AR′.

▶ Lemma 18. In an optimum solution, we can assume there are not any flows of opposite
directions on the same edge, as we can uncross them by redirecting each flow and attain a
lower cost.

M. R. Salavatipour and L. Tian 40:11

α1

vι

vj

α2

Figure 2 A simplest example of crossing flows in AR′. The red vertices are open facilities.

Note that it is allowed for multiple clients to use the same edge to send their demands in the
same direction.

v′ u w υ

α1

α2

path

pa
th

pa
th

path

Figure 3 The crossing flow is at the edge uw.

Proof. Without loss of generality, assume the vertices v′ and υ caused crossing flow at edge
uw. That is, the demand of v′ travels from v′ to u, crosses the edge uw from u to w, and
from w to a facility α2; and the demand of υ travels from υ to w, crosses the edge uw from
w to u, and from u to a facility α1. We can reroute so that the demand of v′ travels from v′

to u, and then from u to the facility α1; and similarly, the demand of υ travels from υ to w,
and then from w to the facility α2. It is easy to see such a rerouting makes the total cost
decrease, for the demands of both vertices v′ and υ now take a shorter path to be served. ◀

Consider a tree T as the input graph. A subproblem here is defined on the subtree Tv for
each vertex v. Since we aim to obtain a flow network in T , each vertex v, as the root of the
subtree Tv, will be considered a portal in the corresponding subproblem. There is thus a DP
cell for each vertex v in T . Note that at each vertex v, the portal configuration ψv simplifies
to the direction and value of the flow at v

ψv = ±fv

where we use − (minus sign) to signify the flow is leaving Tv, and + (plus sign) to signify the
flow is entering Tv. fv is the absolute value of the signed integer ψv and denotes the value
of the unidirectional (integral) flow passing through the vertex v and satisfies 0 ≤ fv ≤ n,
where n is the number of vertices in T . Note that in AR′, if an edge needs to carry a flow
fv, then we need to install

⌈
fv

k

⌉
parallel edges in the solution. At each vertex v, we also

consider both of the scenarios where v is an airport or it is not. We use a Boolean variable
πυ = True (or πυ = 1) to indicate that the portal υ is opened as an airport.

We define the DP table D as follows, for each v in T , let the entry D[v, πv, ψv] store
the cost of the optimal solution to AR′ on Tv with the amount of flow going in/out of Tv
conforming to ψv, with portal v opened as an airport if and only if πv.

SWAT 2024

40:12 Approximation Algorithms for the Airport and Railway Problem

At each node, we also consider its parent edge and see it as part of the subtree Tv. For the
root node ϑ, we assume its parent edge has cost 0. The result will be minπϑ

{D[ϑ, πϑ, ψϑ = 0]}
as there will be no flow entering or leaving T at the root.

Base cases: At a leaf node v, denote the parent edge of v as e. Recall fv = |ψv|.

D[v, πv, ψv] = av · πv +

ce if ψv = −1

ce ·
⌈
fv
k

⌉
if 0 ≤ ψv < +k and πv = 1

+∞ otherwise

Here ψv = −1 means there is one unit of flow going out of the leaf v (actually does not need
to open a facility at v). If 0 ≤ ψv < +k, it means v does not emit any flow or it is absorbing
flows, then we have to make sure πv = True. Note that in this case,

⌈
fv

k

⌉
= 1 when

0 < ψv < +k, and
⌈
fv

k

⌉
= 0 when ψv = 0. If ψv ≥ +k then we know it is not achievable,

since a facility has capacity k and cannot absorb more flows. If ψv < −1 then it is simply
impossible, as a vertex only has one unit of demand and cannot emit more than that. For
these cases, we set the entry to +∞.

For a node v with z children w1, w2, . . . , wz, similar to the case of uniform facility cost
on trees in the previous chapter, we define an inner DP table B. Assume we have computed
D[wj , πwj

, ψwj
] for all possible πwj

and ψwj
, for all 1 ≤ j ≤ z. Let B[v, πjv, ψjv, j] store the

cost of the optimal solution to AR′ on Tv as if the portal v only has children w1, w2, . . . , wj .
Lastly, we define D[v, πv, ψv] = B[v, πv, ψv, z].

Case 1: j = 1. Only consider the first child of v.

B[v, π1
v , ψ

1
v , 1] = min

ψw1

{
D[w1, πw1 , ψw1] + av · π1

v + ce ·
⌈
f1
v

k

⌉ ∣∣∣∣∣ η(π1
v , ψ

1
v , ψw1) = True

}

where η(π1
v , ψ

1
v , ψw1) is a Boolean indicator function that takes into account the flow on v’s

parent edge and the edge vw1, as well as the decision about whether or not to open the
portal v as an airport. It is true if and only if all these parameters are compatible. Recall
that fv is the absolute value of ψv.

η(π1
v , ψ

1
v , ψw1) =

True if 0 ≤ ψ1

v − ψw1 < k ∧ π1
v = True,

or if ψw1 − ψ1
v = 1

False otherwise

The case ψw1 − ψ1
v = 1 means that v does not act like an airport as it is not absorbing any

flow, and is sending its own demand elsewhere (hence unnecessary to open an airport there).
The case 0 ≤ ψ1

v − ψw1 < k means the portal v is absorbing flows and v must be opened
as an airport. The other cases are impossible, either because v is absorbing too much flow
which violates its capacity limit, or because v is sending out more than one unit of flow.

Case 2: For 2 ≤ j ≤ z. Assume all entries of the form B[v, πj−1
v , ψj−1

v , j − 1] have been
computed. We define

B[v, πjv, ψjv, j] = min
πwj

,πj−1
v ,ψwj

,ψj−1
v :

πjv ≥ πj−1
v ,

η
(
πjv, ψ

j
v, ψ

j−1
v , ψwj

)
= True

(Ω)

M. R. Salavatipour and L. Tian 40:13

v

w1

−µ

−(µ+ 1)

(a) Portal v is sending its demand outside Tv.

v

w1

+(ζ + 1)

+ζ

(b) Portal v is sending its demand into Tw1 .

Figure 4 Here µ and ζ are non-negative integers. The label on edge vw1 represents ψw1 and the
label above v stands for ψ1

v.

The expression Ω should be{
D[wj , πwj

, ψwj
] + B[v, πj−1

v , ψj−1
v , j − 1] + av ·

(
πjv − πj−1

v

)
+ ce ·

⌈
f jv − f j−1

v

k

⌉}
where we define the indicator function η as follows:

η(πjv, ψjv, ψj−1
v , ψwj) =

True if 0 < ψjv − (ψj−1

v + ψwj) ≤ k ∧ πjv = True,
or if ψj−1

v + ψwj
= ψjv

False otherwise

Let e denote v’s parent edge. The case ψj−1
v +ψwj

= ψjv means that after taking wj (the j-th
child of v) into consideration, the flow on e whilst only considering the first j − 1 children
(which is ψj−1

v), and the flow on the edge vwj adds up to the flow on e while considering all
the j children (which is ψjv). This means the portal v is not absorbing any of the flow from
Twj

, and thus there is no need to open it as an airport if it has not been opened. The case
0 < ψjv− (ψj−1

v +ψwj
) ≤ k means after taking wj into consideration, the portal v is absorbing

flows and needs to be opened, if it has not been opened. Note that
⌈
fj

v −fj−1
v

k

⌉
can be negative

if f jv < f j−1
v , which means the “load” on the parent edge of v has decreased and we pay less

on the edge cost. This exact algorithm on trees suggests we have an O(log n)-approximation
algorithm for the general metric (using metric approximation, also known as embeddings by
tree metrics).

4.1 Algorithm Efficiency
We will use a bottom-up approach, assuming that the relevant entries for subproblems have
already been pre-computed. At any step, checking the value for the indicator function η takes
O(1) time. To compute B[v, πjv, ψjv, j], we need to consider all possible ψwj

and ψj−1
v , which

is in total O(n2) possibilities. Since there are n nodes in the tree, the time for computing
the table D is in O(n4).

4.2 Generalisation for AR with Steiner Vertices
In this section, we describe how the algorithm above can be generalised for AR′ with Steiner
vertices with a few modifications. More generally, this algorithm can apply to the case where
the set of facilities or the set of clients is not the same as the entire vertex set of the input

SWAT 2024

40:14 Approximation Algorithms for the Airport and Railway Problem

graph. If a vertex v is not part of the set of facilities, it should not be opened as a facility
(after all, no facility cost has been defined for it). So the Π-vector should not allow any copy
of v to be opened. If a vertex v is not part of the set of clients, it carries no demand, and so
does any of its copies in the tree decomposition.

Note that this will be useful when we try to embed a graph into a graph with bounded
treewidth where the host graph of the input graph (via graph embedding) may have Steiner
vertices. If ∆ is the aspect ratio of G (ratio of largest to smallest edge cost) then by standard
scaling (see for e.g. [10]) one can assume that ∆ is bounded by polynomial in n at a loss of
(1 + ϵ) on optimum solution.

We use the following lemma by [18] about embedding graphs of doubling dimension D

into a graph with treewidth ω ≤ 2O(D)
⌈(

4D log ∆
ε

)D⌉
.

▶ Lemma 19 (Theorem 9 in [18]). Let (X, d) be a metric with doubling dimension D and
aspect ratio ∆. Given any ε > 0, the metric (X, d) can be (1+ε) probabilistically approximated
by a family of treewidth ω-metrics for

ω ≤ 2O(D)

⌈(
4D log ∆

ε

)D
⌉
.

We adapt Theorem 8 and its proof from [10] to get the following result.

▶ Theorem 20. For any ε > 0 and D > 0, given an input graph G of the AR′ problem
where G has doubling dimension D, there is an algorithm that finds a (1 + ε)-approximate
solution in time nO(DD logD n/εD).

We introduce the following lemma proposed by [8] about embedding graphs of highway
dimension W into a graph with treewidth ω ∈ (log ∆)O(log2(W

ελ)/λ).

▶ Lemma 21 (Theorem 1.3 in [8]). Let G be a graph with highway dimension W of violation
λ > 0, and aspect ratio ∆. For any ϵ > 0, there is a polynomial-time computable probabilistic
embedding H of G with expected distortion 1 + ε and treewidth ω where

ω ∈ (log ∆)O(log2(W
ελ)/λ).

We adapt Theorem 9 and its proof from [10] to get the following result.

▶ Theorem 22. For any ε > 0, λ > 0 and W > 0, given an input graph G of the AR′

problem where G has highway dimension W and violation λ, there is an algorithm that finds

a (1 + ε)-approximate solution in time n
O

(
loglog2(W

ελ)· 1
λ n

)
.

We introduce the following lemma proposed by [5] about embedding minor-free graphs
(including planar graphs, which is a kind of K-minor-free graphs) into a graph with treewidth
OK

(
(ℓ+ lnn)6/ε · ln2 n · (lnn+ ln ℓ+ ln(1/ε))5)

where ℓ is the logarithm of the aspect ratio
of the input graph.

▶ Lemma 23 (Theorem 1.1 in [5]). For every fixed graph K, there exists a randomised
polynomial-time algorithm that, given an edge-weighted K-minor-free graph G = (V,E) and
an accuracy parameter ε > 0, constructs a probabilistic metric embedding of G with expected
distortion (1 + ε) into a graph of treedepth (the treedepth of a graph is an upper bound on its
treewidth)

OK
(
(ℓ+ lnn)6/ε · ln2 n · (lnn+ ln ℓ+ ln(1/ε))5)

where n = |V | and ℓ = log ∆ is the logarithm of the aspect ratio ∆ of the metric induced
by G.

M. R. Salavatipour and L. Tian 40:15

▶ Theorem 24. For any ε > 0, given an input graph G of the AR′ problem where G is a
minor-free graph, there exists an algorithm that finds a (1 + ε)-approximate solution in time
nOK(log8 n·(logn+log(1/ε))5/ε).

Theorems 20, 22, and 24 imply Corollary 4.

5 Concluding Remarks

The special case of 0/+∞ AR (at a factor 2 loss) is equivalent to the following variant of
CCCP: given a collection R of dépôts in a metric, find a collection of cycles of size ≤ k each
containing a unique dépôt that together covers all the non-dépôt nodes. Although there are
constant-factor approximations for CVRP, we do not know of a good approximation for this
version.

References
1 Anna Adamaszek, Antonios Antoniadis, Amit Kumar, and Tobias Mömke. Approximating

Airports and Railways. In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium
on Theoretical Aspects of Computer Science (STACS 2018), volume 96 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 5:1–5:13, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.STACS.2018.5.

2 Anna Adamaszek, Antonios Antoniadis, and Tobias Mömke. Airports and Railways: Facility
Location Meets Network Design. In Nicolas Ollinger and Heribert Vollmer, editors, 33rd
Symposium on Theoretical Aspects of Computer Science (STACS 2016), volume 47 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 6:1–6:14, Dagstuhl, Germany, 2016.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.STACS.2016.6.

3 Jannis Blauth, Vera Traub, and Jens Vygen. Improving the approximation ratio for capa-
citated vehicle routing. Mathematical Programming, 197(2):451–497, 2023. doi:10.1007/
S10107-022-01841-4.

4 Hans L. Bodlaender and Torben Hagerup. Parallel Algorithms with Optimal Speedup for
Bounded Treewidth. SIAM Journal on Computing, 27(6):1725–1746, 1998. doi:10.1137/
S0097539795289859.

5 Vincent Cohen-Addad, Hung Le, Marcin Pilipczuk, and Michał Pilipczuk. Planar and Minor-
Free Metrics Embed into Metrics of Polylogarithmic Treewidth with Expected Multiplicative
Distortion Arbitrarily Close to 1, 2023. arXiv:2304.07268.

6 Aparna Das and Claire Mathieu. A Quasi-polynomial Time Approximation Scheme for
Euclidean Capacitated Vehicle Routing. In Moses Charikar, editor, Proceedings of the Twenty-
First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas,
USA, January 17-19, 2010, pages 390–403. SIAM, 2010. doi:10.1137/1.9781611973075.33.

7 Jack Edmonds. Matroid Intersection. In P.L. Hammer, E.L. Johnson, and B.H. Korte, editors,
Discrete Optimization I, volume 4 of Annals of Discrete Mathematics, pages 39–49. Elsevier,
1979. doi:10.1016/S0167-5060(08)70817-3.

8 Andreas Emil Feldmann, Wai Shing Fung, Jochen Könemann, and Ian Post. A (1 + ϵ)-
Embedding of Low Highway Dimension Graphs into Bounded Treewidth Graphs. SIAM
Journal on Computing, 47(4):1667–1704, January 2018. doi:10.1137/16m1067196.

9 Zachary Friggstad, Ramin Mousavi, Mirmahdi Rahgoshay, and Mohammad R. Salavatipour.
Improved Approximations for Capacitated Vehicle Routing with Unsplittable Client Demands.
In Karen I. Aardal and Laura Sanità, editors, Integer Programming and Combinatorial
Optimization - 23rd International Conference, IPCO 2022, Eindhoven, The Netherlands, June
27-29, 2022, Proceedings, volume 13265 of Lecture Notes in Computer Science, pages 251–261.
Springer, 2022. doi:10.1007/978-3-031-06901-7_19.

SWAT 2024

https://doi.org/10.4230/LIPIcs.STACS.2018.5
https://doi.org/10.4230/LIPIcs.STACS.2016.6
https://doi.org/10.1007/S10107-022-01841-4
https://doi.org/10.1007/S10107-022-01841-4
https://doi.org/10.1137/S0097539795289859
https://doi.org/10.1137/S0097539795289859
https://arxiv.org/abs/2304.07268
https://doi.org/10.1137/1.9781611973075.33
https://doi.org/10.1016/S0167-5060(08)70817-3
https://doi.org/10.1137/16m1067196
https://doi.org/10.1007/978-3-031-06901-7_19

40:16 Approximation Algorithms for the Airport and Railway Problem

10 Aditya Jayaprakash and Mohammad R. Salavatipour. Approximation Schemes for Capacitated
Vehicle Routing on Graphs of Bounded Treewidth, Bounded Doubling, or Highway Dimension.
ACM Transactions on Algorithms, 19(2), March 2023. doi:10.1145/3582500.

11 Raja Jothi and Balaji Raghavachari. Approximation Algorithms for the Capacitated Minimum
Spanning Tree Problem and Its Variants in Network Design. ACM Transactions on Algorithms,
1(2):265–282, October 2005. doi:10.1145/1103963.1103967.

12 Mong-Jen Kao. Improved LP-based approximation algorithms for facility location with hard
capacities. arXiv preprint, 2021. arXiv:2102.06613.

13 M. Reza Khani and Mohammad R. Salavatipour. Improved Approximation Algorithms for
the Min-max Tree Cover and Bounded Tree Cover Problems. Algorithmica, 69(2):443–460,
2014. doi:10.1007/S00453-012-9740-5.

14 Jens Maßberg and Jens Vygen. Approximation Algorithms for a Facility Location Problem
with Service Capacities. ACM Transactions on Algorithms, 4(4), August 2008. doi:10.1145/
1383369.1383381.

15 Claire Mathieu and Hang Zhou. A PTAS for Capacitated Vehicle Routing on Trees. ACM
Transactions on Algorithms, 19(2):17:1–17:28, 2023. doi:10.1145/3575799.

16 Runjie Miao and Jinjiang Yuan. A note on LP-based approximation algorithms for capacitated
facility location problem. Theoretical Computer Science, 932:31–40, 2022. doi:10.1016/j.
tcs.2022.08.002.

17 R. Ravi and Amitabh Sinha. Approximation Algorithms for Problems Combining Facility
Location and Network Design. Operations Research, 54(1):73–81, 2006. URL: https://
EconPapers.repec.org/RePEc:inm:oropre:v:54:y:2006:i:1:p:73-81.

18 Kunal Talwar. Bypassing the Embedding: Algorithms for Low Dimensional Metrics. In
Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, STOC
’04, pages 281–290, New York, NY, USA, 2004. Association for Computing Machinery. doi:
10.1145/1007352.1007399.

19 Lijiangnan Tian. Approximation Schemes for the Airport and Railway Problem. Master’s
thesis, Department of Computing Science, Faculty of Science, University of Alberta, 2023.

20 Vera Traub and Thorben Tröbst. A Fast (2 + 2
7)-Approximation Algorithm for Capacit-

ated Cycle Covering. Mathematical Programming, 192(1):497–518, 2022. doi:10.1007/
S10107-021-01678-3.

21 Wei Yu, Zhaohui Liu, and Xiaoguang Bao. New Approximation Algorithms for the Minimum
Cycle Cover Problem. Theoretical Computer Science, 793:44–58, 2019. doi:10.1016/J.TCS.
2019.04.009.

https://doi.org/10.1145/3582500
https://doi.org/10.1145/1103963.1103967
https://arxiv.org/abs/2102.06613
https://doi.org/10.1007/S00453-012-9740-5
https://doi.org/10.1145/1383369.1383381
https://doi.org/10.1145/1383369.1383381
https://doi.org/10.1145/3575799
https://doi.org/10.1016/j.tcs.2022.08.002
https://doi.org/10.1016/j.tcs.2022.08.002
https://EconPapers.repec.org/RePEc:inm:oropre:v:54:y:2006:i:1:p:73-81
https://EconPapers.repec.org/RePEc:inm:oropre:v:54:y:2006:i:1:p:73-81
https://doi.org/10.1145/1007352.1007399
https://doi.org/10.1145/1007352.1007399
https://doi.org/10.1007/S10107-021-01678-3
https://doi.org/10.1007/S10107-021-01678-3
https://doi.org/10.1016/J.TCS.2019.04.009
https://doi.org/10.1016/J.TCS.2019.04.009

	p000-Frontmatter
	Preface

	p001-Agrawal
	1 Introduction
	2 Computing the Fixed-Vertex-Order Page Number
	3 Edge Deletion to 1-Page d-Planar
	3.1 Branching
	3.2 Balanced Separators in the Conflict Graph
	3.3 Proof of Theorem 6

	4 Edge Deletion to p-Page Planar
	5 Multiple-Track Crossing Minimization
	6 Open Problems

	p002-Ashur
	1 Introduction
	2 Preliminaries
	2.1 On various pair decompositions
	2.2 Weak local spanners for fat convex regions

	3 Local spanners of homothets of convex region
	3.1 Delaunay triangulation for homothets
	3.2 The generic construction
	3.2.1 Analysis

	3.3 Lower bounds
	3.3.1 A lower bound for local spanner for disks
	3.3.2 A lower bound for triangles

	3.4 Local spanners for fat triangles
	3.4.1 Construction

	3.5 A local spanner for nice polygons
	3.5.1 A good jump for narrow trapezoids
	3.5.2 Breaking a nice polygon into narrow trapezoids
	3.5.3 Constructing the local spanner for nice polygons

	4 Weak local spanners for axis-parallel rectangles
	4.1 Orthant separated pair decomposition
	4.2 Weak local spanner for axis-parallel rectangles
	4.2.1 Construction for a single orthant separated pair
	4.2.2 The spanner construction algorithm
	4.2.3 Correctness

	p003-Bailey
	1 Introduction
	2 Preliminaries
	3 Combinatorics of Genome Rearrangement
	4 Fixed-Parameter Tractability of Pairwise Rearrangement
	5 Conclusion

	p004-Balakrishnan
	1 Introduction
	2 Preliminaries
	3 Class of k-Vertex Leafage Chordal Graphs and its Lower Bound
	4 Succinct Data Structure
	4.1 Transforming (T,{T_1,...,T_n}) to (T,P'_1 cup ... cup P'_n)
	4.2 Construction
	4.3 Adjacency and Neighbourhood Queries

	5 Conclusion

	p005-Barish
	1 Introduction
	2 Elaboration concerning motivation
	3 Preliminaries & clarifications
	3.1 Graph theoretic terminology
	3.2 Exponential Time Hypothesis (ETH)
	3.3 Linear time orthogonal integer lattice embeddings of graphs

	4 Recognition and proper coloring of UNIT-PURE-k-DIR graphs
	5 Concluding remarks

	p006-Bazgan
	1 Introduction
	2 Preliminaries
	3 Bounded-Density Edge Deletion
	3.1 Polynomial-time solvable cases
	3.2 NP-Hardness for special graph classes
	3.3 Parameterized Complexity Results

	4 Bounded-Density Vertex Deletion
	4.1 Polynomial-time algorithm for trees
	4.2 NP-hardness results
	4.3 Parameterized complexity results

	5 Conclusion

	p007-Beisegel
	1 Introduction
	2 Simultaneous Representations and Simultaneous Interval Number
	3 Placing si(G) in the Zoo of Graph Width Parameters
	3.1 Lower Bounds
	3.2 Upper Bounds

	4 Complexity of Computing the Simultaneous Interval Number
	5 Cliques
	6 Coloring
	7 Domination and Independent Sets
	8 Conclusion

	p008-Bentert
	1 Introduction
	2 Preliminaries
	3 Incomplete Information
	4 Complete Information
	4.1 NP-hardness
	4.2 Polynomial Kernel
	4.3 Constant-Factor Approximation

	5 Conclusion

	p009-Bercea
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Paper Organization

	2 Preliminaries
	3 The Lower Bound
	4 Space-Efficient Filter
	4.1 Construction
	4.2 Analysis
	4.3 Remarks

	5 The Daisy Bloom Filter Analysis

	p010-Berg
	1 Introduction
	1.1 Previous Work
	1.2 Contribution

	2 Preliminaries
	2.1 Online Discrete Bin Covering
	2.2 Performance Measures

	3 Predictions Setting
	3.1 A Consistency-Robustness Trade-Off for {DBC_{k}^{F}}
	3.2 A Near-Optimally Consistent Algorithm for {DBC_{S}^{F}}
	3.3 Robustifying {GC_{{epsilon}}}

	4 Stochastic Setting
	4.1 Analysis of {POGC_{{epsilon}}^{{delta}}}

	5 Concluding Remarks

	p011-Berthe
	1 Introduction
	1.1 Our contribution

	2 Preliminaries
	2.1 Basics
	2.2 Graph classes
	2.3 Preliminary branching steps

	3 Positive results via ASQGM
	3.1 From ASQGM(ω,μ*) to subexponential algorithms
	3.2 From ASQGM(ω,lr) to ASQGM(ω,μ*)
	3.3 Upper bounding the local radius for square graphs

	4 ETH based hardness results
	5 Discussion

	p012-Bhattacharya
	1 Introduction
	1.1 Our Contribution
	1.2 Our Techniques
	1.2.1 Handling the scenario where Delta and alpha change over time

	1.3 Roadmap

	2 Preliminaries
	2.1 The Dynamic Setting
	2.2 Notation
	2.3 Graph Decompositions
	2.4 Graph Decomposition Systems

	3 A Warmup Dynamic Algorithm (for Fixed alpha)
	3.1 Algorithm Description
	3.2 Analysis of the Warmup Algorithm

	4 The Dynamic Algorithm
	4.1 Algorithm Description
	4.2 Analysis of the Dynamic Algorithm

	p013-Biedl
	1 Introduction
	2 Preliminaries
	3 1-planar graphs with large independent sets
	3.1 1-planar graphs with large independent sets for 3456
	3.2 1-planar graphs with large independent sets for 7

	4 Upper bounds on the independence number
	4.1 Upper bounds on the independence number for 34
	4.2 Upper bounds on the independence number for 6
	4.3 Upper bounds on the independence number for 7

	5 Optimal 1-planar graphs
	6 Further thoughts

	p014-Bille
	1 Introduction
	2 Preliminaries
	3 Constant-time Queries using Space
	3.1 Heavy-path Decomposition
	3.2 Data Structure
	3.3 Queries

	4 Constant-time Queries using Space
	4.1 ART Decomposition
	4.2 Data Structure
	4.3 Queries

	5 String-processing Applications
	5.1 Internal Longest Frequent Prefix
	5.2 Longest Frequent Substring
	5.3 Frequency-constrained Substring Complexity

	p015-Blank
	1 Introduction
	2 Problem Definition
	3 Data Structure Techniques
	4 Lower Bounds
	5 Predicates for Evaluating the Fréchet distance
	6 Simplification of the Predicates
	7 Data Structure
	8 Conclusions

	p016-Boyar
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Deterministic Algorithms for Restricted OWNM
	4.1 Point Classification
	4.2 Negative Result
	4.3 Positive Result: The Wait-and-Match Algorithm

	5 Randomized Algorithms
	5.1 Negative Result
	5.2 Positive Result: Tree-Guided-Matching Algorithm

	6 Revocable Acceptances
	6.1 Negative Result
	6.2 Positive Result: Big-Improvement-Match

	7 Algorithms with Advice
	8 Conclusion
	A Omitted Pseudocode

	p017-Brodal
	1 Introduction
	1.1 Model of computation and previous work
	1.2 Result

	2 Preliminaries
	3 Deterministic multiple-selection
	4 Analysis
	5 Conclusion

	p018-Buchin
	1 Introduction
	2 Simplification
	3 Static L-budget clustering
	4 Dynamic (k,l)-clustering
	5 Dynamic L-budget clustering
	6 Experiments
	7 Conclusion

	p019-Bumpus
	1 Introduction
	2 Preliminaries
	3 Applications of Theorem 1.7
	4 Proving Theorem 1.7
	4.1 Definitions for Theorem 1.7
	4.2 Proof of Theorem 1.7
	4.2.1 The algorithm
	4.2.2 Running time
	4.2.3 Proof of correctness

	5 Discussion

	p020-Christiansen
	1 Introduction and related work
	1.1 Notations
	1.2 Palettes
	1.3 Roadmap

	2 Static colouring
	3 Dynamic colouring
	3.1 Data structure
	3.2 Recolouring an edge
	3.3 Updating the hierarchical partition and full algorithm

	4 Dynamic colouring
	4.1 Data Structure
	4.2 Updating the hierarchical partition and full algorithm

	5 Conclusion

	p021-Darbouy
	1 Introduction
	1.1 Related Work
	1.2 Organization
	1.3 Challenges

	2 Approximating MSCB in Perfect Graphs
	2.1 Rounding Algorithm
	2.2 Analysis
	2.3 Extensions

	3 MSCB with Task Concurrencies
	4 MSCB-TC in Perfect Graphs – A Barrier
	5 Conclusion
	A Greedy Coloring in Trees

	p022-Fomin
	1 Introduction
	2 Preliminaries
	3 Unconditional computational lower bound
	4 Independent Stable Set on sparse frameworks
	5 Independent Stable Set on chordal graphs
	6 Conclusion

	p023-Friggstad
	1 Introduction
	1.1 Linear Programming Relaxations and Previous Work
	1.2 Our Results

	2 Preliminaries
	2.1 Representative Terminals for Partial Solutions
	2.2 Tracking Progress

	3 The Rounding Algorithm
	3.1 Analysis of the Formation of the Sets F_3^t
	3.2 Success Probability

	A Proof of Lemma 3
	B Proof of Lemma 11

	p024-Gartner
	1 Introduction
	2 Preliminaries
	3 Squares stabbed by a point
	3.1 Reasonable layouts
	3.2 Computing staircases with gap arbitrarily close to the supremum

	4 Squares stabbed by a vertical line
	5 Conclusion

	p025-Gezalyan
	1 Introduction
	2 Preliminaries
	2.1 The Hilbert Metric and Hilbert Balls
	2.2 The Hilbert Voronoi Diagram
	2.3 The Hilbert Delaunay Triangulation

	3 Hilbert Bisectors
	4 Hilbert Circumcircles
	4.1 Balls at infinity

	5 Computing Circumcircles
	6 Building the Triangulation
	6.1 Orienting and Augmenting the Triangulation
	6.2 Local and Global Delaunay
	6.3 Incremental Construction

	7 The Hilbert Hull
	8 Concluding Remarks

	p026-Har-Peled
	1 Introduction
	2 Approximate Tverberg partition via mean sampling
	2.1 Proximity of centroid of a sample
	2.2 Approximate Tverberg theorem
	2.3 Tverberg halving

	3 Applications
	3.1 No-dimensional centerball
	3.2 No-dimensional weak eps-net theorem

	4 Derandomization
	4.1 Derandomizing mean sampling
	4.2 Derandomizing the halving scheme
	4.3 A deterministic approximate Tverberg partition

	5 Conclusions

	p027-Huynh
	1 Introduction
	2 The QWRP in a Simple Polygon
	2.1 Preliminaries and Hardness Results
	2.2 Structural Lemma
	2.3 Dual approximation algorithm for anchored QWRP

	3 The BWRP in a Simple Polygon
	3.1 Approximation algorithm for anchored BWRP
	3.2 From anchored BWRP to an FPTAS for anchored QWRP

	4 Floating QWRP and BWRP
	5 Domains that are a Union of Lines
	6 The QWRP and BWRP in a Polygon With Holes
	6.1 Hardness of approximation
	6.2 Approximation algorithm for the BWRP in a polygon with holes

	7 Optimal Visibility-based Search for a Randomly Distributed Target

	p028-Jansen
	1 Introduction
	2 Preliminaries
	3 Essential vertices for Vertex Hitting Set problems
	4 Positive results
	4.1 Vertex Multicut
	4.2 Cograph Deletion

	5 Hardness results
	6 Conclusion and discussion

	p029-Johnson
	1 Introduction
	1.1 Our Results
	1.2 Consequences

	2 The Proof of Theorem 1.1
	3 Proofs of Theorems 1.2 and 1.3
	4 Conclusions

	p030-Kakimura
	1 Introduction
	1.1 Our Contributions and Techniques
	1.2 Related Work

	2 Preliminaries
	3 Algorithms for Robust Submodular Minimizer
	3.1 Polynomial-time algorithms
	3.2 FPT algorithm for k at least 3
	3.3 Polynomially many minimizers: FPT algorithm parameterized by d

	4 Hardness Results
	4.1 NP-hardness for d=1
	4.2 NP-hardness for k=3

	5 Conclusion

	p031-Kostitsyna
	1 Introduction
	2 Preliminaries
	3 Algorithm
	4 Conclusion

	p032-Levet
	1 Introduction
	2 Preliminaries
	2.1 Weisfeiler–Leman
	2.2 Pebbling Game
	2.3 Logics
	2.4 Rank-Width

	3 Weisfeiler–Leman for Graphs of Bounded Rank-Width
	3.1 Split Pairs and Flip Functions
	3.2 WL for Graphs of Bounded Rank-Width

	4 Canonical Forms in Parallel
	5 Logarithmic Weisfeiler–Leman and Treewidth

	p033-Louis
	1 Introduction
	1.1 Additional Related Works
	1.2 Preliminaries
	1.2.1 Simplicial Complexes
	1.2.2 Walks on a Simplicial Complex
	1.2.3 Notations

	2 Computing Sparse Cut in Hypergraphs
	3 An expanding hypergraph with walks having small spectral gap
	3.1 Splittability of a Hypergraph
	3.2 The main results

	4 An expanding hypergraph with low link expansion
	A Additional Preliminaries

	p034-MIT-NASASpaceRobotsTeam
	1 Introduction
	1.1 Our Model
	1.2 Our Results

	2 Universality with Extra Modules: 3D Printing
	2.1 2D
	2.2 3D
	2.3 Impossibility of 3-loose algorithm

	3 Universality without Extra Modules
	4 Open Problems

	p035-Mock
	1 Introduction
	2 Preliminaries
	3 Applications
	4 Algorithms
	4.1 Reduction to Weighted Sets
	4.2 Solving the l-Weighted k-Set Problem on bounded treedepth
	4.3 Run Time Improvements for < =-Relations
	4.4 Lifting to Counting Tuples #{(y_1,...,y_p)}

	5 Hardness
	6 Concluding Remarks

	p036-Neiman
	1 Introduction
	1.1 Linear Size Path-Reporting Distance Oracles
	1.1.1 Our Results

	1.2 Pairwise Path-Reporting Distance Oracles
	1.2.1 Our Results

	1.3 Our Techniques
	1.4 Organization
	1.5 Bibliographic Note

	2 Preliminaries
	2.1 Thorup-Zwick PRDO

	3 Path-Reporting Distance Oracle for Unweighted Graphs
	3.1 Clustering
	3.2 Stretch Analysis
	3.3 A PRDO for Unweighted Graphs

	4 Path-Reporting Distance Oracle for Weighted Graphs
	4.1 Clustering via Borůvka Forests
	4.1.1 A Hierarchy of Forests

	4.2 Stretch Analysis
	4.3 A PRDO for Weighted Graphs

	5 Pairwise Path-Reporting Distance Oracle

	p037-Ortlieb
	1 Introduction
	2 Schnyder Woods and Ordered Path Partitions
	2.1 Schnyder Woods
	2.2 Dual Schnyder Woods
	2.3 Ordered Path Partitions

	3 Spanning Trees with Maximum Degree at Most 4
	4 Relaxing Connectivity Assumptions
	5 Computational Aspects
	6 Conclusion

	p038-Otachi
	1 Introduction
	1.1 Our contributions
	1.2 Previous work on mim-width

	2 Preliminaries
	2.1 Graph classes
	2.2 Mim-width
	2.3 Graph properties and problems

	3 NP-hardness
	4 Polynomial-time algorithms for graphs with mim-width at most 1
	5 Concluding remarks

	p039-Rockel-Wolff
	1 Introduction
	2 Our contribution
	3 The LP-formulation
	4 Solving the LP
	5 The Rounding Strategy
	5.1 The general structure of the LP solution
	5.2 Analyzing the rounding step
	5.2.1 Lower bounds for the extension edges
	5.2.2 Lower bounds for the seed edges
	5.2.3 Summary of the estimates
	5.2.4 A general approximation guarantee

	6 The integrality gap of the LP

	p040-Salavatipour
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Algorithm for Uniform AR in General Metric
	3 QPTAS for Uniform Case in Graphs of Bounded Treewidth
	3.1 Structure Theorem for Graphs with Bounded Treewidth

	4 Constant Approximation for Nonuniform-AR
	4.1 Algorithm Efficiency
	4.2 Generalisation for AR with Steiner Vertices

	5 Concluding Remarks

