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Abstract
Social choice functions help aggregate individual preferences while differentially private mechanisms
provide formal privacy guarantees to release answers of queries operating on sensitive data. However,
preserving differential privacy requires introducing noise to the system, and therefore may lead to
undesired byproducts. Does an increase in the level of privacy for releasing the outputs of social
choice functions increase or decrease the level of influence and welfare, and at what rate? In this
paper, we mainly address this question in more precise terms in a referendum setting with two
candidates when the celebrated randomized response mechanism is used. We show that the level of
privacy is inversely proportional to society’s welfare and influence.
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1 Introduction

Differential privacy [6] provides a compelling privacy guarantee to ensure that the outcome of
a query over any dataset is substantially not influenced based on the presence or absence of
an individual’s record. This form of privacy has recently been studied in the context of social
choice theory [26, 15, 12]. A predominant strategy to achieve differential privacy in general
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1:2 Privacy-Welfare-Influence in Referendums

even outside the context of social choice theory is to introduce noise or randomization to the
system. One of the issues that has been widely studied in this context is the loss of accuracy
upon introducing noise and the trade-off between accuracy and increasing levels of privacy
preservation. This has been commonly referred to as the privacy-accuracy or privacy-utility
trade-off. Recent work has involved the formalization of other trade-offs such as the trade-off
between privacy and fairness [4]. In this work, we analyze two other trade-offs. We show
that introducing noise to privatize systems that aggregate the preferences of individuals may
affect several other fundamental phenomena such as influence and welfare.

Does an increase in the level of privacy for releasing the outputs of social choice functions,
increase or decrease the level of influence and welfare, and at what rate? In this paper, we
mainly address this question in more precise terms and affirmatively answer that this relation
is inversely-proportional and shares specific corresponding rates for the popular ρ-correlated
randomized response mechanism of privatization when used in a referendum setting with two
candidates.

The noisy mechanism that we propose and analyze in regards to influence and welfare in
this paper is based on a simple coin-flipping perturbation of the input as follows. Let ρ be
an exogenous constant in [0, 1] and let each original vote made in the ballot take a value of
either 1 or −1. The randomized response records each original vote in the ballot as it is with
a probability ρ while with probability 1− ρ, it ignores the original vote and instead records it
as either a 1 or −1 with a uniformly random pick. The resulting probability space is known
as ρ-correlated distribution or noisy distribution in the field of analysis of Boolean functions,
and it is referred to as the randomized response mechanism in the field of differential privacy.2
We show that this mechanism preserves ordinal relations between the influences of voters for
any social choice function. Therefore, if Alice had more influence before than Bob, she will
still continue to have more influence.

In the field of analysis of Boolean functions, the notion of the influence of a voter is used
to measure the power of an individual on the final result of a social choice function. We
extend this definition of influence to our probabilistic setting where noise is introduced for
privacy, and term this new notion of influence as probabilistic influence. Similarly, we define
welfare to address the second issue of capturing how ideal a voting rule is. First, we define it
for deterministic functions and then we extend this definition to any probabilistic mechanism.
We then show the effect of our privacy inducing randomized response on the welfare of the
system. In particular, we show that it preserves the ordinal relations between the welfare
of voting systems. That is, if a social choice function f had a greater welfare than g in the
deterministic setting after the randomized response Mρ is applied based on the exogenous
parameter ρ, the welfare of Mρf will continue to be greater than that of Mρg.

In this setting, we share precise statements connecting the noising probabilities ρ used
in the mechanism Mρ, their effect on level of privacy ϵ which in turn results in a specific
level of influence and welfare expressed in terms of ρ. We precisely show that as the level of
privacy increases, the welfare and influence happen to decrease at correspondingly specific
rates. Arguably, having a higher welfare in a voting system is desirable and therefore we
shine light on this new trade-off between privacy and welfare. In terms of influence, it is
questionable whether a decrease in influence with an increase in privacy is desirable or not.
We believe it depends on the context, and therefore in this case, we do not refer to it as a
trade-off but instead call it a scaling law. However, as we show in Section 5, welfare of the
society is equal to total influence of the society under the monotonicity assumption.

2 For a survey of the field of analysis of Boolean functions, see [22]. For a survey of the field of differential
privacy, see [7].
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1.1 Contributions
We contribute towards bridging differential privacy and social choice theory by deriving the
following results on the effect of randomized response over influence, welfare, and accuracy.
1. Privacy-Influence scaling law: A notion of influence is widely used in the analysis of

Boolean functions to study social choice functions. We extend the notion of influence to
the noisy setting, and call it probabilistic influence. We then show a result relating the
trade-off between ρ−correlated distribution based differential privacy and probabilistic
influence. We show that such privatization changes the influence of every single voter by
a factor of 1+ρ2

2 . Thus, the randomized response preserves the ordinal relations between
influences of agents while scaling them by a factor depending on ρ while still ensuring
their privacy is preserved.

2. Privacy-Welfare trade-off: We define welfare W (f) of a social choice function f and
extend the definition to probabilistic mechanisms. Then, we show that W (Mρf) = ρ·W (f),
i.e. the randomized response scales the welfare by a factor of ρ, whereby preserving the
ordinal relations between the welfare of social choice functions.

3. Accuracy analysis: We restrict the analysis of accuracy3 of our mechanism to social
choice functions, i.e. the functions with range {−1, 1}. We give the accuracy for
Dictatorship, Majority, AND, and OR functions. For dictatorship, AND, and OR
functions, we provide a theoretical analysis of accuracy. For the Majority function, we
give an asymptotic accuracy when n goes to ∞ based on the existing results in the
literature. We also give an exact analysis of accuracy for the Majority function for small
n by using a computational method that involves dynamic programming.

1.2 Organization
The rest of the paper is organized as follows. In Section 2, we provide further motivation and
background. In Section 3, we formally describe the differentially private randomized response
mechanism. In Section 4, we introduce the notion of probabilistic influence, and give one
of our main results that influence scales down by the same constant for every individual.
In Section 5, we introduce the concept of welfare for general probabilistic mechanisms, and
analyze it for randomized response. We shed light into the connection between influence and
welfare, and give our second main result that randomized response scales down welfare by the
same factor for any given social choice function. In Section 6, we provide an analysis of the
accuracy for the randomized response mechanism. In Section 7, we discuss the possible future
work and the limitations of this paper, and we conclude. Some preliminaries from social
choice theory are provided in Appendix B. All of the proofs are relegated to Appendix A.

2 Motivation

To intuitively expand on the potential relation between privacy and influence, consider an
instance where it might be the case that introduction of noise for the sake of obtaining
privacy results in undesired shifts of the power held by different individuals in deciding
society’s final outcome. For example, say that a voter Alice would have had more impact on
the outcome than Bob in a case where there is no privatization. It could as well be the case

3 It is common to refer to accuracy with the name utility in the differential privacy literature. However,
since this term is overloaded also in the economics and social choice theory literature with different
meanings, we will opt to call it accuracy throughout our analysis to prevent possible confusion.
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1:4 Privacy-Welfare-Influence in Referendums

that the power balance shifts to Bob having more impact than Alice after a privacy-inducing
noise is introduced. We conclusively show that this cannot be the case as the influence scales
down for every voter with the increasing level of privacy by the same constant in the case of
the popular randomized response privacy mechanism.

Second, regarding the potential relation between privacy and welfare, consider an instance
where it may be the case that upon introduction of noise, the chosen social choice function
that was originally used to aggregate the individual preferences into a final outcome ends up
not being ideal anymore. Hence, it may instead be desirable to switch to another social choice
function. For example, suppose that a system uses the majority function to decide which one
of the two candidates is elected in the deterministic case. However, the majority function
could be severely affected in some instances upon introduction of noise, and another function
could end up being a better choice. We show that as the privacy increases in the randomized
response mechanism, the welfare of each social choice function scales down proportionally
under our definition of welfare, which is similar to the notions used in mathematical social
choice theory. This implies that if a function is a welfare maximizer before introducing noise,
it still is a welfare maximizer after the introduction of the noisy mechanism. These two
results are especially useful, as they imply that the designers of the initial deterministic
social choice mechanism do not have to be concerned about whether their design is robust to
the introduction of noise in terms of influence and welfare.

We now discuss the work that has been done regarding influence and welfare in the
context of social choice theory. Influences have long been studied in discrete Fourier analysis
and theoretical computer science. The notion of influence was first introduced in [23] and it
was first systematically studied in [3]. Some other novel works related to influences in the
context of social choice theory include, but are not limited to, the KKL Theorem [14] and
the Majority is Stablest Theorem [20]. We extend the notion of influence to the noisy setting
and call it probabilistic influence, and prove a direct linear relation between deterministic
influence and probabilistic influence.

The question of the ideal voting rule has long been a matter of discussion in social choice
theory. When there are only two candidates, the answer is relatively simple as the majority
function seems to be the most ideal voting rule. It is known that majority is the only social
choice function that is anonymous and monotone among all two-candidate voting rules [19].
For more than two candidates, different objectives may result in different voting rules, or
even in impossibility results [1, 2, 11, 9, 10]. Various aspects of utilitarian voting is studied
in [13]. Finding the best function in computationally efficient ways has been studied in the
recent field of computational social choice theory. There is a line of work [16, 17] that aims
to maximize welfare given each voter’s utility for candidates in a “distortion framework” in
which there is a lack of information about voter’s utilities. In that framework, a typical
approach is to attempt to maximize the worst-case objective.

To the best of our knowledge, a definition of welfare that is closest to ours is the one
given by O’Donnell ([22], page 51). Although the author does not explicitly define welfare
of a social choice function, there is an affine relation between the expected value of their
objective function and the way we define welfare. However, our main conceptual contribution
is that our definitions are extended to hold for probabilistic mechanisms and we analyze the
effects of privacy on influence and welfare. O’Donnel proves that among all two-candidate
voting rules, majority is the unique maximizer of welfare, whose proof is essentially based on
[27]. Our main objective is not to find the function that maximizes the welfare; that is rather
a simple question. In fact, we show that majority is the unique welfare maximizer as well in
an almost identical way to [22]. The primary motivation of the paper is to show that if a
voting rule is better in the deterministic setting, it is still better after the privacy-inducing
noise is introduced.
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3 Model: Randomized Response and Privacy Guarantee

There are three main reasons as to why we chose the randomized response as the privacy-
preserving mechanism to focus our attention. First, it is simple, in addition to being one
of the earliest, and yet one of the most popularly used privacy-preserving mechanisms to
date, be it in the classic form or as a variant of it. As an example, RAPPOR [8] is a recent
popular real-world use-case of randomized response, otherwise classically used a few decades
ago [28, 18]. Second, the mechanism is based on perturbations of the input which allows it to
be applied to any social choice function. This enables us to talk about the ordinal relations
between the welfare of potential social choice functions before and after the mechanism is
applied. Third, ρ-correlated distributions are well studied in mathematical social choice
theory [22].

Our randomized mechanism is an input-perturbing mechanism. That is, the mechanism
introduces noise to the votes in the ballot so that one can use any social function afterward,
yet the same privacy guarantee will continue to hold due to the post-processing property of
differential privacy [5]. Randomized response introduces noise by utilizing a simple coin-flip
scheme that is based on the following distribution that is widely used in the analysis of
Boolean functions.

▶ Definition 1. Let ρ ∈ [0, 1] and x ∈ {−1, 1}n be fixed. y is called ρ-correlated with x if
for every i ∈ [n], yi = xi with probability ρ and uniformly distributed with probability 1− ρ,
and it is denoted by y ∼ Nρx.

Note the symmetry in the definition of ρ-correlation. We formalize this symmetry in the
following fact, which we will often use in the proofs of our results.

▶ Observation 2. x ∼ {−1, 1}n, y ∼ Nρx if and only if y ∼ {−1, 1}n, x ∼ Nρy. If
x ∼ {−1, 1}n, y ∼ Nρx, we say (x, y) is a ρ-correlated uniformly random pair.

In the literature, ρ-correlated distribution is sometimes referred to as noisy distribution.
A famous analogy for this definition is as follows. Suppose the votes are recorded by a noisy
machine. That is, the machine records each ballot correctly with probability ρ, and blurs the
ballot with probability 1− ρ and instead records it at uniform random. As a result, the vote
gets misrecorded with probability (1−ρ)/2. In fact, our mechanism corresponds to this noisy
machine. Hence, we will call it by the generic name randomized response, or ρ-correlated
randomized response when we need to specify ρ and denote a mechanism that applies it by
Mρ as defined below.4 It is worth noting that ρ-correlated randomized response is in essence
just like randomized response [28], a classic scheme that inspired several privacy mechanisms.

▶ Definition 3. Let f : {−1, 1}n → R be any function. For every x ∈ {−1, 1}n, the
randomized response Mρf(x) outputs f(y) where y ∼ Nρx.

Now that we formally defined the randomized response mechanism, we can give the
formal definition of differential privacy in our context.

▶ Definition 4 (ϵ-Differential Privacy [6]). A randomized voting mechanism A : {−1, 1}n →
{−1, 1} is ϵ-differentially private if for all pair of neighboring voting profiles x, x′ ∈ {−1, 1}n

that differ in exactly one bit and for all s ∈ {−1, 1},

Pr[A(x) = s] ≤ eϵ Pr[A(x′) = s]

4 Note the subtle distinction between Mρ and Nρ. The former is a randomized query function, i.e. a
random variable; whereas the latter denotes a probability distribution.

FORC 2024



1:6 Privacy-Welfare-Influence in Referendums

The above definition of differential privacy is specific to our context. For the general
definition of differential privacy and a broad survey of the field, see [7]. The randomized
response mechanism preserves ε-differential privacy. The following result holds for any
Boolean function f .

▶ Proposition 5. For any ρ ∈ [0, 1], randomized response Mρf preserves log( 1+ρ
1−ρ )-differential

privacy regardless of the function f : {−1, 1}n → R. (or, (ε,0)-differential privacy when
ρ ≤ 1− 2

exp(ε)+1 ).

Proof. Proof is relegated to Appendix A.1. ◀

▶ Remark 6. The equality case is satisfied if f is a dictatorship, which implies that the
bound log( 1+ρ

1−ρ ) is tight. That is, when f is a dictatorship, Mρf is not ε-differentially private
for any ε < log( 1+ρ

1−ρ ). In fact, it can be shown that a social choice function f satisfies the
equality case if and only if there is a triple (r, b, i) where r ∈ R, b ∈ {−1, 1}, i ∈ [n] such that
∅ ≠ {z ∈ {−1, 1}n|f(z) = r} ⊆ {z ∈ {−1, 1}n|zi = b}.

The reason our mechanism preserves differential privacy for any Boolean function f

is that the mechanism is input-perturbing. In this sense, we could instead present the
mechanism as Mρ : {−1, 1}n → {−1, 1}n and write f ◦Mρ instead of Mρf . Then we could
prove the analogous version of Proposition 5, and by using the post-processing property
of differential privacy, we would again obtain Proposition 5. In fact, one can see that in
the proof, we also re-prove the post-processing property, seemingly for no reason. However,
the reason we choose to give the mechanism altogether after post-processing with f is to
make the all equality cases in the above remark apparent. Once post-processing is applied
black-box, whether the privacy result is robust is not clear anymore. For example, consider
any constant function f , e.g. f(x) = 1 for any x ∈ {−1, 1}n. In this case, Mρf is not only
log( 1+ρ

1−ρ )-differentially private but 0-differentially private. On the other hand, as Remark 6
implies, the privacy guarantee in Proposition 5 is tight, which we would not be able to show
without an explicit proof.

4 Probabilistic Influence

Influence of a voter is a notion that is used to measure the power of an individual on a
deterministic social choice function. Influences of Boolean functions have long been studied
in computer science and the field of analysis of Boolean functions starting with [3]. The
influence of a voter in a voting system is defined to be the probability of the change in
outcome when the voter changes their vote ceteris paribus. For example, in the case of a
dictatorship, the dictator has influence 1 while every other voter has influence 0. In the
majority function with n = 2k + 1 voters, each voter’s influence is the same and equal to(2k

k

)
/22k.
We use xi→1 = (x1, · · · , xi−1, 1, xi+1, · · · , xn) to denote the case where the i-th voter

chooses to vote for 1, and every other voter follows x. Similarly, we denote the alternate
case where the i-th voter chooses to vote for −1 and every other voter follows x by xi→−1 =
(x1, · · · , xi−1,−1, xi+1, · · · , xn). Using this notation, influence in the deterministic setting is
defined as follows.

▶ Definition 7. For f : {−1, 1}n → {−1, 1}, the influence of elector i is defined as

Ii[f ] = Px∼{−1,1}n [f(xi→1) ̸= f(xi→−1)].

The total influence of the function f is defined to be

I[f ] =
n∑

i=1
Ii[f ].
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A similar notion can be introduced in the probabilistic setting where the randomized
response Mρf(x) is applied. To do so, we consider the case where everybody casts their
votes, following which Mρf(x) is applied and the voter i changes their vote. That is, we
leave all the noisy versions of the votes cast by everyone as is except for the elector i’s vote.
For this particular vote, we re-run the randomized response on coordinate i. The probability
of result being different is called the probabilistic influence of coordinate i. We now introduce
the formal definition of the proposed probabilistic influence, which applies not only to social
choice functions with range {−1, 1} but to all Boolean functions with range in R as follows.
In the notation of the following definition, yi ∼ Nρ(1) refers to the case where voter i chooses
to vote for 1 while zi ∼ Nρ(−1) refers to the case where voter i chooses to vote for −1.

▶ Definition 8. Let f : {−1, 1}n → R and the probabilistic influence of coordinate i in a
mechanism Mρf(x) is defined as

Ii[Mρf ] = Ex∼{−1,1}n,∀j ̸=i zj=yj=xj ,yi∼Nρ(1),zi∼Nρ(−1)

[(
f(y)− f(z)

2

)2
]

.

The total influence of the mechanism Mρf is defined to be

I[Mρf ] =
n∑

i=1
Ii[Mρf ].

We showed in Proposition 5 that our probabilistic voting mechanism preserves ε-differential
privacy. Inducing such privacy requires probabilistic mechanisms as opposed to using
deterministic functions. For example, in the majority voting with 2k + 1 voters, if the votes
are split k to k + 1, then changing only one bit in the input may change the outcome of the
voting mechanism. Thus, it is not differentially private. Similarly, no deterministic Boolean
function can preserve differential privacy unless it is a constant function.

On the other hand, introducing noise may cause several issues in the voting system, one
of which is the accuracy of the mechanism, which we will discuss in more detail in Section 6.
Another possible issue is that when noise is introduced, we might be altering the voting
system in favor of a particular voter. For example, voter A might have more influence relative
to voter B in the system now even if that was not the case before. For symmetric social
choice functions, it is natural to expect that the randomized response mechanism would have
the same effect for any voter since the noise is also symmetric. However, it is not as trivial
for arbitrary social choice functions. Yet, we show that each voter’s probabilistic influence is
proportional to her influence in the deterministic setting, which is one of our main results.

▶ Theorem 9. Let ρ ∈ [0, 1] be any real number and f : {−1, 1}n → R be any function. For
every i ∈ [n], Ii[Mρf ] = 1+ρ2

2 Ii[f ].

Proof. Proof is relegated to Appendix A.2. ◀

This result shows that the randomized response preserves the ordinal relations between
influences of the voters regardless of the original social choice function being used. In other
words, if voter A had greater influence than another voter B, she will still have a greater
influence on the system after the noise is introduced.

5 Welfare

In this section, we introduce a formal definition of welfare of social choice functions. Then
we extend this definition to probabilistic mechanisms, and we show that the randomized
response preserves the ordinal relations between the welfare of social choice functions.

FORC 2024
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5.1 Welfare of Deterministic Voting Systems
[24] argues in his Social Contract that an ideal voting rule should maximize the number
of votes that agree with the outcome. For a more comprehensive discussion on this, see
[25]. [22] proves that the majority function is the unique ideal function based on Rousseau’s
perception of the ideal voting rule without formally introducing welfare. Perhaps, when he
proved this result, he had some form of welfare in his mind, especially because he uses the
letter w to denote the number of votes that agrees with the outcome. In this section, we will
formally define welfare, which will be slightly different than what the w notation of O’Donnell
describes. In particular, we define welfare of a social choice function f : {−1, 1}n → {−1, 1}
as the average difference between the number of votes that agree with the outcome and the
number of votes that do not agree with the outcome under the impartial culture assumption.

▶ Definition 10. Let f : {−1, 1}n → {−1, 1} and x ∈ {−1, 1}n, and let wx(f) = |{i; xi =
f(x)}| − |{i; xi ̸= f(x)}|. Welfare of the social choice function f is defined to be

W (f) = Ex[wx(f)].

We can still prove that the majority function is the unique maximizer of welfare when n

is odd by using a similar method as in the proof of Theorem 2.33 in [22].

▶ Proposition 11. When n is odd, the unique maximizer of W (f) is the majority function.

Proof. Proof is relegated to A.3. ◀

Without further assessment, it is not possible to say whether we prefer total influence to
be larger or smaller for the welfare of society in a voting system. As we show in the following
result, if the social choice function is monotone – that is if a voter changes her vote in favor
of a candidate, then this candidate should be weakly better off – then these two notions
collide.

▶ Proposition 12. Let f be any monotone social choice function f : {−1, 1}n → {−1, 1}.
Then, W (f) = I[f ].

Proof. Proof is relegated to Appendix A.4. ◀

This result has implications beyond being a simple identity, making the case that if we
want to achieve a greater social welfare while adhering to monotone social choice functions,
we must choose a function with a greater total influence.

5.2 Welfare of Noisy Mechanisms
To capture the same notion for the probabilistic functions as well, we similarly define welfare
of a randomized mechanism applied on a social choice function as follows. Note that the
following definition is not only for the randomized response Mρ, but any mechanism defined
on social choice functions.

▶ Definition 13. Let f : {−1, 1}n → {−1, 1}, x ∈ {−1, 1}n, and M be any mechanism. Let
wx(Mf) = |{i; xi = Mf(x)}| − |{i; xi ̸= Mf(x)}|. Welfare of the mechanism M with the
social choice function f is defined to be

W (Mf) = Ex,M [wx(Mf)]

where the expectation is both over x and the mechanism M .
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We showed in Theorem 9 that although introducing ρ-correlated noise in a voting system
has negative effects on influences, it does not provide an unfair advantage to any agent.
Another possible undesired byproduct of a randomized mechanism could be that the effect of
randomization on the welfare of a particular voting system is more severe compared to the
other voting systems. For example, we showed in Proposition 11 that the majority function
is the unique welfare maximizer. It could be the case that after we introduce noise, it is
more likely in the majority function that the outcome will change. Within this context, the
following result implies that every voting system is equally affected by the input-perturbing
randomized response mechanism. Therefore the randomized response preserves the ordinal
relations between the welfare of two-candidate voting systems.

▶ Theorem 14. Let f be any social choice function f : {−1, 1}n → {−1, 1}. Then,
W (Mρf) = ρ ·W (f).

Proof. Proof is relegated to Appendix A.5 ◀

This result, together with Proposition 11, implies that the majority function is the unique
welfare maximizer also after the noise is introduced in applying the randomized response
mechanism.

6 Accuracy Analysis

There is one significant drawback of the randomized response privatization mechanism in
consideration. It is hard to analyze the accuracy of releasing the output of social choice
functions upon privatizing it with the randomized response. Although our main objective in
this work is not about the analysis of accuracy, we will dedicate a section to the analysis of
accuracy for the sake of completeness. As a first pass, we easily find a generic lower-bound on
accuracy of the randomized response, but it ends up to be so low that it makes it redundant.
Therefore, we restrict our analysis to specific social choice functions. We theoretically provide
results on accuracy for dictatorship, AND, and OR functions.5 In addition, we give a tight
lower bound as well as an upper bound for the accuracy of majority function. We also give an
algorithm to calculate exact accuracy of majority function by using dynamic programming
via memoization. The dynamic programming approach avoids the need to make calculations
over every entry in the power-set and instead is much more efficient, while still resulting
in an exact solution for computing the accuracy. Our definition of accuracy is in-fact the
average of accuracy under the impartial culture assumption. That is,

Acc(Mρf) = Px∼{−1,1}n

Mρ

[Mρf(x) = f(x)].

Now, we define the noise operator, also referred to as the noisy Markov operator, which
is a linear operator on the set of Boolean functions. This operator will be useful for accuracy
calculations.

▶ Definition 15. For any ρ ∈ [0, 1], the noise operator Tρ is the linear operator on the set of
functions f : {−1, 1} → R defined by

Tρf(x) = Ey∼Nρx[f(y)].

5 For formal definitions of these widely known social choice functions, see Appendix B.

FORC 2024
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Before we start our analysis, let us also give the definition of noise stability.

▶ Definition 16. For any ρ ∈ [0, 1] and f : {−1, 1}n → R, ρ-correlated noise stability of f is
given by

Stabρ(f) = Ex∼{−1,1}n

y∼Nρ(x)
[f(x) · f(y)]

There is a linear relation between the noise stability of a function and accuracy of the
randomized response on this function. Note that Mρf(x) · f(x) = 1 if Mρf(x) = f(x),
Mρf(x) · f(x) = −1 otherwise. Thus,

2 ·Acc(Mρf)−1 = 2 ·Px∼{−1,1}n

y∼Nρ(x)
[f(y) = f(x)]−1 = Ex∼{−1,1}n

y∼Nρ(x)
[f(y) ·f(x)] = Stabρ(f). (1)

Also, note that

Stabρ(f) = Ex∼{−1,1}n

y∼Nρ(x)
[f(x) · f(y)] = Ex∼{−1,1}n [f(x)Tρf(x)]. (2)

The reason we feel the need to write accuracy in terms of stability is that in the field of
Analysis of Boolean functions most results are given in terms of stability for convenience.
Yet, we use stability explicitly only when we analyze the accuracy of the majority function.

6.1 Majority
In this section, we will give the asymptotic accuracy for Majn function where n is an odd
number that goes to infinity.

▶ Lemma 17 (Proposition 10, [21]). For any ρ ∈ [0, 1), Stabρ[Majn] is a decreasing function
of n where n is an odd number, with

2
π

arcsin(ρ) ≤ Stabρ[Majn] ≤ 2
π

arcsin(ρ) + O( 1√
1− ρ2√n

).

By using the fact that accuracy is equal to 1
2 + 1

2 Stabρ(f) due to Equation (1), we get
that

1
2 + 1

π
arcsin(ρ) ≤ Acc[Mρ(Majn)] ≤ 1

2 + 1
π

arcsin(ρ) + O( 1√
1− ρ2√n

). (3)

Despite this fact being quite useful, there is no convenient way to calculate the exact
value of accuracy of the randomized response on Majority function. Hence, we compute it
using dynamic programming via memoization in the following section.

6.1.1 Algorithm to compute the exact accuracy for small n

We now provide a dynamic programming algorithm with memoization to compute the
accuracy of the randomized response. In particular, we give the algorithm to calculate the
accuracy of the threshold functions, that are of the form

fθ(x) =
{

1 if
∑

i∈[n] xi > θ

−1 if
∑

i∈[n] xi ≤ θ
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Note that Majn = f0(·) where it takes care of ties by considering them as if −1 is the winner.
In general, we work with the odd number of voters when we talk about the majority function.
But as a simple trick, we will compute it for any n based on the generic definition of the
threshold function we gave above since it makes the algorithm less involved.

We now state the noise operator Tρfθ0(x) as introduced in Definition 15 when applied to
threshold functions as a way to quantify the expected accuracy as

Tρfθ0(x) = Ey∼Nρx [1 (y1 + . . . yn > θ0)] .

Let x−n denote x without the last bit. In particular, if x = (x1, x2, · · · , xn−1, xn), then
x−n = (x1, x2, · · · , xn−1). Note that x−n ∈ {−1, 1}n−1 while x ∈ {−1, 1}n. Then, the
stability can be defined using two calls of recursion as follows

Tρfθ0(x) = 1 + ρ

2 Tρfθ0−xn
(x−n) + 1− ρ

2 Tρfθ0+xn
(x−n)

That is because

Ey∼Nρx [1 (y1 + · · ·+ yn > θ0)]
= Eyn∼Nρxn

[
Ey−n∼Nρx−n

[1 (y1 + · · ·+ yn−1 > θ0 − yn) | yn]
]

= 1 + ρ

2 E
y−n∼Nρ(x−n)

[1 (y1 + · · ·+ yn−1 > θ0 − xn)]

+ 1− ρ

2 E
y−n∼Nρ(x−n)

[1 (y1 + · · ·+ yn−1 > θ0 + xn)]

= 1 + ρ

2 Tρfθ0−xn
(x−n) + 1− ρ

2 Tρfθ0+xn
(x−n)

To summarize, this dynamic programming with memoization algorithm is as shown
in Algorithm 1 below. In terms of notation we denote a specific diction-
ary (in terms of popular programming terminology of dictionary data types) as
Dictionary: {(ρ, n, s, θ) = Tρfθ0(x) for some x s.t sum(x) = s}.

Our approach is to use this proposed recursive relation with an appropriate initial
condition to exactly compute the noise operator Tρf(x). Then, by using Equation (2),
we calculate the Stability of the function. Finally, by using the linear relation between
stability and accuracy from Equation (1), we compute the exact accuracy. This dynamic
programming approach avoids having to make 2n computations, given that x ∼ {−1, 1}n.
Note that, Tpfθ0(x) = Tpfθ0(z) if sum(x) = sum(z). Therefore we iterate over i from 1 to n

to represent vectors with i number of 1′s. Then as the rest of entries are −1, and since the
length of the array is n, this approach can model the exact sum of all possible vectors. Since
the calculation of the stability is one-to-one with respect to sums, we store the intermediate
results in a dictionary indexed by this sum. As there are

(
n
i

)
vectors that can be represented

this way, we just compute once per each i and multiply it by
(

n
i

)
. This enables us to model

all possible vectors efficiently but allows us to not have to compute the intermediate results
every time via our recursive approach.

In Figure 1, we plot the accuracy curves of the randomized response mechanism with
varying values of ρ applied to the majority function as the number of voters increases. Note
that as n goes to ∞, the accuracy asymptotically approaches to 1

2 + 1
π arcsin(ρ) as implied

by Equation (3).
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Algorithm 1 Proposed dynamic programming algorithm with memoization.
Result: Accuracy
Initialization;
Define Dictionary:{(ρ, n, s, θ) = Tρfθ0(x) for some x s.t sum(x) = s}
Def Tρfθ0(x) :
s = sum(x);
if (ρ, n, s, θ0) is in dictionary then

return dictionary [(ρ, n, s, θ0)];
else

Using 2 recursive calls in summands, compute:

α = 1 + ρ

2 Tρfθ0−xn
(x−n) + 1− ρ

2 Tρfθ0+xn
(x−n)

Save (ρ, n, s, θ0) = α to dictionary
end
Def Accρ (fθ) :
total = 0
for i← 1 to n + 1 do

total + =
(

n

i

)
· fθ0(x) · Tρfθ(x) for some x s.t. x has i different + 1 bits

end
return 1

2 + total /2n

2

Figure 1 The accuracy curves of the randomized response mechanism with varying values of ρ

applied to the majority function as the number of voters increases.

6.2 Dictatorship
Let f : {−1, 1}n → {−1, 1} be the dictatorship of voter-i, that is f(x) = 1 if and only if
xi = 1.
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Then, for any given x ∈ {−1, 1}n,

P[Mρf(x) = f(x)] = Py∼Nρ(x)[f(y) = f(x)] = Pyi∼Nρ(xi)[yi = xi] = 1 + ρ

2 .

Hence, the average accuracy is also equal to 1+ρ
2 .

6.3 ANDn and ORn

We will first make the calculations for ANDn and the results will be analogous due to
symmetry. We will make use of Fact 2 in the analysis.

First, we start with a generic calculation that holds for any social choice function f . In
the calculations in this section, our probability space is x ∼ {−1, 1}n, Mρf(x) ∼ f(y) where
y ∼ Nρx.

Note that by Fact 2,

Px,Mρ
[Mρf(x) = 1] = Px[f(x) = 1].

P [Mρf(x) = f(x)] = P [Mρf(x) = 1 ∧ f(x) = 1] + P [Mρf(x) = −1 ∧ f(x) = −1]

and

P [Mρf(x) = −1 ∧ f(x) = −1] = 1 − P [Mρf(x) = 1 ∨ f(x) = 1]
= 1 − P [Mρf(x) = 1] − P [f(x) = 1] + P [Mρf(x) = 1 ∧ f(x) = 1]
= 1 − 2 · P [f(x) = 1] + P [Mρf(x) = 1 ∧ f(x) = 1] .

Thus for any social choice function f ,

P [Mρf(x) = f(x)] = 1− 2 · P [f(x) = 1] + 2 · P [Mρf(x) = 1 ∧ f(x) = 1]

For f = ANDn,

P[f(x) = 1] =
∏

i∈[n]

P[xi = 1] = 2−n,

and

P [Mρf(x) = 1 ∧ f(x) = 1] = P[f(x) = 1] · P[Mρf(x) = 1|f(x) = 1] = 2−n · (1 + ρ

2 )−n.

Hence, the accuracy of Mρ for ANDn function is equal to 1 − 2−n+1(1 − ( 1+ρ
2 )n), whose

limit goes to 1 as n goes to ∞. Due to symmetry, accuracy analysis is the same for ORn

function.

7 Conclusion

The main objective in this work is to study the privacy-welfare trade-off and the relation
between privacy and probabilistic influence. The proposed definition of welfare happens
to hold for any mechanism while on the other hand, the defined probabilistic influence is
only specific to the randomized response mechanism. In fact, a more general definition of
influence could be coined and a similar property could potentially be observed. We leave out
this potential generalization of influence to future work. In terms of welfare, the analysis
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done in this paper can be replicated in a similar style to other popular privatization schemes
such as the Laplace and exponential mechanisms. The privacy-accuracy trade-off of the
current mechanism for the majority function may also be further improved. Note that
Dictatorship, AND, and OR functions satisfy the equality condition in Proposition 5 as
discussed in Remark 6. Thus, the accuracy-privacy analyses for these functions are tight.
On the other hand, for a given ρ, the asymptotic accuracy of majority is tight whereas the
privacy result is a possibly loose upper bound.

Also, our definitions of influence and welfare assume that the votes are unbiased, that is,
they consider everybody to be equally likely to vote for −1 or +1. In fact, these definitions
can be further generalized to cover the same concept, but for the case of biased voting. For
example, one can extend the definitions to be p-biased for a given p ∈ [−1, 1], that is the
expected value of each vote is p instead of 0. p-biased distribution is also well-studied in the
field of Analysis of Boolean functions.

Finally, our voting model in this paper is a classical referendum model with two candidates.
However, in most real-world applications, we generally have multiple candidates and we have
to aggregate the rankings. If there is a Condorcet winner in a voting system, then the results
regarding two-candidate elections can be directly applied in the multiple-candidate setting.
Yet, in many cases, there is no Condorcet winner. Restricting the number of candidates to
two has the primary advantage that both the definitions and analyses of welfare and influence
naturally follow. We believe that extending the definitions and the tools developed in this
paper to multiple-candidate settings would be interesting.

In a broader perspective, we study the effect of using privacy inducing randomized
responses in the voting process. We construct a relation between the level of privacy and
the resulting level of influence of voters involved in the voting system and the welfare of the
chosen social choice function. An insightful takeaway that we can deduce from the derived
relationships in this paper is that the ordering of voters’ influences and the ordering of welfare
amongst the considered social choice functions remain unchanged upon introducing noise via
the celebrated randomized response mechanism. Existing works have extensively studied
the relationship between privacy and the resulting accuracy in preserving the output of the
query that was privatized. At a high level we are the first to shed light on the relationship
between privacy and other important phenomena of influence and welfare. We hope that
this bridge we have proposed between the two important fields of differential privacy and
social choice theory will be further studied and extended as part of future works.
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A Proofs

A.1 Proof of Proposition 5
Proof. Let r be any element in the range of Mρf . Let Z = {z ∈ {−1, 1}n|f(z) = r}. Let x

and x′ differ only at xi for some i ∈ [n].

P[Mρf(x) = r]
P[Mρf(x′) = r] =

∑
z∈Z Py∼Nρx[y = z]∑
z∈Z Py∼Nρx′ [y = z] =

∑
z∈Z

∏
j∈[n] Pyj∼Nρxj [yj = zj ]∑

z∈Z

∏
j∈[n] Pyj∼Nρx′

j
[yj = zj ] .

The first equality is upon considering all cases of output of the randomized response resulting
in a z ∈ Z. Then by definition that would result in the function f evaluated on this output z

to be r. The second equality is due to the independence assumption across the voters choices.
Now, for any z ∈ Z,

Pyj∼Nρxj
[yj = zj ] =

{
1+ρ

2 if xj = zj

1−ρ
2 if xj ̸= zj

and Pyj∼Nρx′
j
[yj = zj ] =

{
1+ρ

2 if x′
j = zj

1−ρ
2 if x′

j ̸= zj

This is because 1−ρ
2 is the probability of a misrecorded vote and 1 − 1−ρ

2 = 1+ρ
2 is the

probability otherwise. More explicitly, with probability 1− ρ, it chooses to blur the ballot
and the blurring is then done by picking uniformly out of the two options of {−1, 1} with
probability 0.5 each, out of which one pick would result in no change to the vote and the
other would result in a misrecorded vote. Also, for any j ̸= i,

Pyj∼Nρxj
[yj = zj ] = Pyj∼Nρx′

j
[yj = zj ].

Thus,

1− ρ

1 + ρ
≤

∑
z∈Z

∏
j∈[n] Pyj∼Nρxj [yj = zj ]∑

z∈Z

∏
j∈[n] Pyj∼Nρx′

j
[yj = zj ] ≤

1 + ρ

1− ρ
,

which completes the proof. ◀

A.2 Proof of Theorem 9
Proof. Using conditional probability, we get that

Ii[Mρf ] = Ex∼{−1,1}n,∀j ̸=i zj=yj=xj ,yi∼Nρ(1),zi∼Nρ(−1)

[(
f(y)− f(z)

2

)2
]

= Pyi∼Nρ(1),zi∼Nρ(−1)[yi = 1, zi = −1] · Ex∼{−1,1}n

[(
f(xi→1)− f(xi→−1)

2

)2
]

+ Pyi∼Nρ(1),zi∼Nρ(−1)[yi = −1, zi = 1] · Ex∼{−1,1}n

[(
f(xi→1)− f(xi→−1)

2

)2
]

Noting that

Pyi∼Nρ(1),zi∼Nρ(−1) [yi = 1, zi = −1] =
(

1 + ρ

2

)2
,

Pyi∼Nρ(1),zi∼Nρ(−1) [yi = −1, zi = 1] =
(

1− ρ

2

)2
,
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and that

Ex∼{−1,1}n

[(
f(xi→1)− f(xi→−1)

2

)2
]

= Ii[f ],

we get that

Ii[Mρf ] = 1 + ρ2

2 Ii[f ]. ◀

A.3 Proof of Proposition 11
Proof. First, let us fix x. Note that

wx(f) = f(x) ·
∑
i∈[n]

xi.

Since f(x) ∈ {−1, 1}, f(x) ·
∑

i∈[n] xi is maximized when f(x) = sign(
∑

i∈[n] xi). Hence,
W (f) is maximized if ∀x ∈ {−1, 1}n, f(x) = sign(

∑
i∈[n] xi), which is exactly the definition

of the majority function. ◀

▶ Remark 18. Note that we used the condition that n is odd to ensure that sign function is
well-defined. If n was even, then the maximizers of W (f) are again the majority functions
where it does not matter who is elected if it is tied.

A.4 Proof of Proposition 12
In the proof of this result, we use discrete Fourier analysis. It is a well-known result from the
field of analysis of Boolean functions, that every function f : {−1, 1}n → R can be uniquely
expressed as a multilinear polynomial,

f(x) =
∑

S⊆[n]

f̂(S)χS(x)

where for any S ∈ [n]

χS(x) =
∏
i∈S

xi.

This expression is called the Fourier expansion of f , and the real number f̂(S) is called
the Fourier coefficient of f on S. Collectively, the coefficients are called the Fourier spectrum
of f . The following is an essential result from discrete Fourier Analysis.

▶ Lemma 19 (Plancherel’s Theorem). For any functions f, g : {−1, 1}n → R,

Ex∼{−1,1}n [f(x)g(x)] =
∑

S⊆[n]

f̂(S)ĝ(S).

It is possible to neatly calculate many features of f including the influences in terms of
Fourier coefficients.

▶ Lemma 20 (Proposition 2.21, [22]). Let f : {−1, 1}n → {−1, 1} be a monotone function
and let the Fourier spectrum of f be f(x) =

∑
S⊆[n] f̂(S)χS(x). Then, for any i ∈ [n],

Ii[f ] = f̂({i}).
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It is also possible to calculate the welfare in terms of the Fourier coefficients by taking
one step further from the proof of Proposition 11.

▶ Lemma 21. Let f be any social choice function f : {−1, 1}n → {−1, 1}. Then, W (f) =∑
i∈[n] f̂({i}).

Proof. By the definition of welfare,

W (f) = Ex[wx(f)] = Ex[f(x) ·
∑
i∈[n]

xi] =
∑
i∈[n]

f̂({i})

where the last equation follows from Lemma 19. ◀

We are ready to finish the proof.

Proof of Proposition 12. The proof follows immediately from Lemma 20 and Lemma 21. ◀

A.5 Proof of Theorem 14
Proof. We prove this identity by using a double-counting method and linearity of expectation.
Fix f . For any i ∈ [n], let 1i,x,ρ be the indicator random variable defined as follows:

1i,x,ρ =
{

1 if Mρf(x) = xi

−1 if Mρf(x) ̸= xi

where the randomization is due to the randomized response. Note then when x is given and
ρ = 1, there is no randomization because Mρf(x) = f(x) with probability 1. Therefore, 1i,x,1
is a deterministic function. For the sake of simplicity, we will abuse the notation and write
1i,x instead of 1i,x,1 in the deterministic case. Then,

wx(Mρf) =
∑
i∈[n]

1i,x,ρ and wx(f) =
∑
i∈[n]

1i,x.

Thus,

W (Mρf) = EMρ,x[wx(f)] = Ex,Mρ
[
∑
i∈[n]

1i,x,ρ] =
∑
i∈[n]

Ex,Mρ
[1i,x,ρ]

and so

W (f) =
∑
i∈[n]

Ex[1i,x].

Now, we will show that for any i ∈ [n],

Ex,Mρ
[1i,x,ρ] = ρ · Ex[1i,x].

First, note that

Ex,Mρ [1i,x,ρ] = Px∼{−1,1}n

y∼Nρx

[f(y) = xi]− Px∼{−1,1}n

y∼Nρx

[f(y) ̸= xi].

By using

Px∼{−1,1}n

y∼Nρx

[f(y) = xi] + Px∼{−1,1}n

y∼Nρx

[f(y) ̸= xi] = 1,
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we get that

Ex,Mρ
[1i,x,ρ] = 2 · Px∼{−1,1}n

y∼Nρx

[f(y) = xi]− 1.

By Fact 2, we can replace x ∼ {−1, 1}n, y ∼ Nρx with y ∼ {−1, 1}n, x ∼ Nρy. Thus, by
using conditional probability,

Ex,Mρ [1i,x,ρ] = 2 · Py∼{−1,1}n

x∼Nρy

[f(y) = xi]− 1

= 2(Px∼Nρy[xi = yi] · Py∼{−1,1}n [f(y) = yi]
+ Px∼Nρy[xi = −yi] · Py∼{−1,1}n [f(y) = −yi])− 1

= (1 + ρ) · Py∼{−1,1}n [f(y) = yi] + (1− ρ) · Py∼{−1,1}n [f(y) ̸= yi]− 1
= ρ · (Py∼{−1,1}n [f(y) = yi]− Py∼{−1,1}n [f(y) ̸= yi])
= ρ · Ex[1i,x]

which completes the proof. ◀

B Social Choice Functions

In this paper, we exclusively focus on social choice functions with two alternatives. There
are many ways to interpret these functions. It can be considered as a two-candidate election
or as a referendum in the context of political science. It can also be interpreted as a classifier
in the context of Machine Learning. In this paper, we will generally give the interpretations
in the context of two-candidate elections.

In general, we work with the Boolean functions defined as f : {−1, 1}n → R, and we
denote the bit i of the input x by xi for any i ∈ [n]. However, we define welfare only for
social choice functions, that is the Boolean functions whose ranges are {−1, 1}. We analyze
accuracy only for the following specific social choice functions.

Majority: Suppose that n is an odd number. The majority function of n agents/voters
is denoted by Majn and defined as

f(x) = sign(
∑
i∈[n]

xi)

for any x ∈ {−1, 1}n where sign : R→ {−1, 0, 1} is the function such that

sign(a) = a

|a|

for any a ∈ R, a ̸= 0 and sign(0)=0.
Dictatorship: For a given number n and i ∈ [n], the dictatorship of voter-i is defined as

f(x) = xi

for any x ∈ {−1, 1}n.
ANDn: The ANDn function outputs 1 if there is unanimity on 1, outputs −1 otherwise.
Namely,

f(x) =
{

1 if ∀i ∈ [n], xi = 1
−1 otherwise
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ORn: The ORn function outputs 1 if at least one voter votes for 1, and outputs −1
otherwise. In other words, it outputs −1 if there is unanimity on −1, outputs 1 otherwise.
Namely,

f(x) =
{
−1 if ∀i ∈ [n], xi = −1
1 otherwise

Note that, in this paper, we assume the impartial culture assumption, that is the voters
are not affected by each other and they vote independently uniform at random between two
candidates.
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