
Incentivized Collaboration in Active Learning
Lee Cohen1 #

Stanford University, CA, USA

Han Shao #

Toyota Technological Institute of Chicago, IL, USA

Abstract
In collaborative active learning, where multiple agents try to learn labels from a common hypothesis,
we introduce an innovative framework for incentivized collaboration. Here, rational agents aim
to obtain labels for their data sets while keeping label complexity at a minimum. We focus on
designing (strict) individually rational (IR) collaboration protocols, ensuring that agents cannot
reduce their expected label complexity by acting individually. We first show that given any optimal
active learning algorithm, the collaboration protocol that runs the algorithm as is over the entire
data is already IR. However, computing the optimal algorithm is NP-hard. We therefore provide
collaboration protocols that achieve (strict) IR and are comparable with the best known tractable
approximation algorithm in terms of label complexity.
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1 Introduction

Active learning has emerged as a powerful paradigm in which labels of selected data points
are sequentially queried from a large pool of unlabeled data, referred to as the unlabeled
pool. The primary objective is to minimize labeling effort to find a classifier that exhibits
low error on fresh data points from the same data source, known as generalization error.
Typically, if the pool is large enough, a classifier that performs well on the pool can also
achieve low generalization error through uniform convergence.

Active learning has also been studied in the distributed setting, where the unlabeled pool
is scattered across multiple machines (called agents), (e.g., [45, 2]). While active learning has
demonstrated promising results, traditional approaches often operate in isolation, neglecting
the potential benefits of collaboration among agents should they agree to collaborate. In this
paper, we propose a novel framework for incentivized collaboration active learning, where
agents can collaboratively explore their data pools to discover a common target function.

1 This work was done when the author was at Toyota Technological Institute of Chicago.
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2:2 Incentivized Collaboration in Active Learning

The motivation for collaboration in active learning stems from real-life scenarios where
collaboration and collective intelligence yield improved outcomes, e.g., when agents collect
data from the same distribution, and can easily end up labeling the same or very similar
points. This redundancy leads to unnecessary and inefficient utilization of resources, as the
labeling is often done by experts. Additionally, more data can be translated to improved
accuracy, prompting agents to pool their resources and employ a more powerful model.

The incentive-driven nature of our framework aligns with the reality of collaboration in
the real world. When agents are incentivized to collaborate only when their expected labeling
complexity decreases, it reflects the real-life scenario where individuals are motivated to
engage in cooperative endeavors if they perceive a clear benefit, such as reduced effort, faster,
and better outcomes. In this work, we focus on a specific notion of incentives, where agents
already have access to a baseline algorithm and they are motivated to join the collaboration
if their label complexity is smaller than running the baseline algorithm on their own.

Consider, for example, the case of a new drug (e.g., Paxlovid for Covid-19[40], that has
different efficacy on patients with different features. While individual hospitals can test the
drug on their patients in an active learning fashion by executing their preferred baseline
algorithm, collaborating efficiently with other hospitals, each with their own patients, often
leads to a better prognosis.

However, if the incentives of the hospitals are not maintained, i.e., the effort of some
hospitals is increased, the collaboration may be compromised. By emulating this collaboration
within the active learning framework, we unlock the potential of collective intelligence to
enhance the learning process. Besides, imagine that several data labeling companies have to
recover the labels of unlabeled images assigned to them. Each data labeling company would
like to collaborate with other companies to recover the labels of all images while minimizing
the query complexity and not increasing their burden.

Our basic model is as follows: there are k agents, each with their own set of unlabeled
data points, and a single hypothesis class with a prior on the hypotheses, which all agents
are aware of. We assume realizability, meaning that there exists an underlying ground
truth labeling function called the target function, labeling all the data points, and that the
hypothesis class encompasses such a target function. We refer readers to the discussion for
more information about this assumption in the context of active learning.

The agents reach a consensus on an arbitrary baseline algorithm for pool-based active
learning (e.g., the best tractable approximation algorithm). To select whether or not to join
the collaboration, the agents need to evaluate their utility from joining the collaboration.
Since the goal of each individual agent (regardless of the collaboration) is to minimize their
expected query complexity, the most natural cost function is the expected query complexity.
To ensure each individual benefits from their collaboration, we establish a collaboration
protocol that guarantees that each agent cannot reduce their expected label complexity
by running the baseline algorithm individually. This concept is referred to as individual
rationality (IR). Our objective is to design an IR collaboration protocol that minimizes the
overall labeling queries.

There are cases in which collaboration is not necessarily beneficial. For example, each
agent has non-zero points on a different axis and the hypothesis class contains every possible
halfspace. If the prior distribution is uniform over all labelings, then no agent can reduce
their label complexity by joining the collaboration.

Clearly, if each agent has the same set of points, the label complexity of each agent can
decrease to 1/k of its original label complexity if the collaboration protocol equally splits the
labeling burden. Even if agents do not share the same set of points, they can still benefit
from collaboration, as we show in the next example.
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What is the 0.5’s label?

What is the 0.7’s label?

1[x ≥ 0.8] 1[x ≥ 0.6]

What is the 0.3’s label?

1[x ≥ 0.4] 1[x ≥ 0.2]

0 1

0 1 0 1

Figure 1 The query tree of binary search for thresholds.

▶ Example 1. Consider the scenario with 1-dimensional thresholds H = {1[x ≥ α]|α =
0.2, 0.4, 0.6, 0.8} and a uniform prior distribution over H. Suppose agent 1 has points
{0.25, 0.5, 0.75} and agent 2 has points {0.3, 0.45, 0.55, 0.7}. When running binary search
collaboratively, each agent only performs one labeling query, as illustrated as a search tree in
Fig 1. On the other hand, if they were to run binary search independently, each agent would
need to query 2 labels. Thus, collaboration can effectively reduce the label complexity for
each agent by 1.

Bayesian Assumption. The reason why we have a Bayesian assumption regarding the
hypothesis class is that without it, querying all the labels to discover the target hypothesis
can be inevitable, even for a simple class of linear separators in R2 (see, e.g., Claim 1 in [21]).
It is worth noting that as in [21], we do not require the prior distribution to align with nature.
Instead, the prior distribution serves as a measure for average case analysis. Having a prior
belief in our model has the following clear assumption. If the algorithm reaches a point where
the remaining consistent hypotheses largely agree on the unlabeled data, it is reasonable to
stop and output one of these remaining hypotheses [28]. In a non-Bayesian setting, it does
not make sense to operate this way.

Game Theory Interpretation. The agreed-upon baseline algorithm induces a sort of (not
private) values for agents- each agent has its (negative) individual labeling complexity as value.
The collaboration protocol can be then interpreted as a mechanism: Initially, the collaboration
protocol (principal) is introduced to the agents, and each agent can understand it and have
confidence in the principal’s commitment to implementing it faithfully. Subsequently, the
agents either rely on their trust in the algorithm’s IR property or have the ability to verify it
autonomously. Lastly, the agents behave rationally by joining the collaboration only if it
is IR.

We remark that there is an interesting parallelism between our IR collaboration algorithms
and truthful mechanisms. It is well known that Vickrey–Clarke–Groves (VCG) mechanism
is a truthful mechanism that maximizes social welfare, but since it is hard to compute
and to approximate [15], the optimal outcome is replaced by a sub-optimal outcome of an
approximation algorithm, and the resulting mechanism is not necessarily truthful. The goal
is therefore relaxed to design an efficient approximation algorithm that returns a truthful
mechanism.

Contributions and Organization. We formalize the model in Section 2. In Section 3, we
demonstrate that any optimal algorithm is individually rational when the baseline is itself.
This implies that optimizing for optimality ensures individual rationality for all baseline
algorithms.

FORC 2024



2:4 Incentivized Collaboration in Active Learning

However, computing (or even approximating) the optimal algorithm is known to be
NP-hard. To address this, we then show that the best available tractable approximation
algorithm, the greedy algorithm [34, 21], is not individually rational when the baseline
is itself. We demonstrate this by presenting an example where joining the collaboration
increases the labeling complexity of an agent from O(1) to Ω(n). In response, we introduce a
general approach that can transform any arbitrary baseline algorithm into an IR collaborative
algorithm. This conversion ensures that the total label complexity remains competitive with
running the baseline algorithm on the entire data set. Furthermore, in Section 4 we present
a scheme that converts any IR collaborative algorithm into a strict IR one, guaranteeing the
label complexity is strictly lower by joining the collaboration under mild assumptions. When
the baseline algorithm is both efficient and approximately optimal, our (strict) IR algorithms
efficiently achieve label complexity that is approximately optimal.

1.1 Related Work

The most related work is the recent work of [51], which studies individual rationality in
collaborative active learning in a Gaussian Process. While their notion of IR is similar to ours,
we focus on query complexity in binary classification. [27] studied incentive compatibility in
active learning, where there is a single agent that responds to a learner’s query strategically.
Our work is situated at the junction of Learning in the presence of strategic behavior and
active learning.

Learning in the presence of strategic behavior

encompasses a vast body of research, including [8, 52, 31]. We are particularly driven by
prior research in this area, and how to create learning algorithms that incentivize agents to
participate while maximizing the overall welfare. For example, incentivized exploration in
Multi Arm Bandits [35, 37, 38, 39, 20, 19, 5, 4, 6, 32, 33, 42, 7, 48, 47] or MDPs [46], where
the principal recommends actions to the agents (in order to explore different alternatives),
but the agents ultimately decide whether to follow the given recommendation. This raises the
issue of incentives in addition to the exploration-exploitation trade-off. In particular,[3] study
this problem in the context of fairness with a group-based regret notion. They show that
regret-optimal bandit algorithms can be unfair and design a nearly optimal fair algorithm.
Incentivizing agents to share their data has been studied by [50] in federated bandits.

Federated learning

has gained popularity as a method to foster collaboration among large populations of learning
agents among else for incentivizing participation and fairness purposes [11, 36, 24, 23, 26,
25, 49]. Our work also addresses fairness, in the sense that if a collaborative algorithm is
individually rational, it is fair for all the participating agents. Another related line of research
is kidney exchange [41, 1, 9, 10, 14, 22], where the goal is to find a maximum match in a
directed graph (representing transplant compatibilities between patient–donor pairs). In this
problem, incentives arise in the form of individual rationallity when different hospitals have
different subsets of patient–donor pairs, and will not join the collaboration if the number of
pairs matched by the collaboration is lower than the number of pairs matched they could
pair on their own.
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Active learning

There are two basic models in active learning– stream-based [28] (where the learner has to
determine immediately whether to query the label of the current instance or discard it), and
pool-based, which is the basis for our model. Pool-based active learning investigates scenarios
in which a learner is confronted with an array of unlabeled data points and the goal is to
recover a target function by querying the labels of these points (see [30] for a survey). Active
learning has been studied in the context of other societal desiderata such as fairness [44, 16],
and safety [17].

To our knowledge, no research has amalgamated these fields to explore strategic constraints
in the context of active learning. This is where our work makes a valuable contribution.

2 Preliminaries and Model

Throughout the work, we consider the binary classification problem. Let X denote the input
space, Y = {0, 1} denote the label space, and H ⊂ YX denote the hypothesis class.2 We
focus on the realizable setting in this work, namely, there exists a target hypothesis h∗ ∈ H
correctly labels every point. In the pool-based active learning setting [30], given a collected
unlabeled data set X = {x1, . . . , xm}, the learning goal is to recover the labels of X. Now
just suppose the pool of unlabeled data x1, . . . , xm is available. The possible labelings of
these points form a subset of {0, 1}m, called the effective hypothesis class, which is

Ĥ = {h(X)|h ∈ H} ,

where h(X) = (h(x1), . . . , h(xm)) is the labeling of X by h. Note that |Ĥ| ≤ 2m and
|Ĥ| = O(md) if the VC dimension of H is d.

In this work, we focus on the Bayesian setting [21], where the target hypothesis is chosen in
advance from some prior distribution π over Ĥ. Namely, without any additional information,
for any labeling h ∈ Ĥ, the probability that h is the correct labeling of X is π(h). Since we
can eliminate any hypothesis h with π(h) = 0 before starting to query for labels, we assume
w.l.o.g. that π(h) > 0 for all effective hypotheses in Ĥ.

We remark that assuming that the unlabeled data X is collected from some distribution
Dx, which is essentially a distribution D projected onto its input space, and that this
distribution Dx can be accurately classified by a hypothesis in H with VC dimension d,
standard generalization guarantees apply when the prior π over H is uniform (see [21] for
more details).

Standard active learning model. In the standard pool-based active learning setting, a
single agent owns the pool of unlabeled data X. The agent, who knows both Ĥ and π, can
query the labels of points in X, and her goal is to recover the labeling of X (or to find the
target hypothesis) by querying as few points as possible.

A standard query algorithm receives as input the prior distribution π and unlabeled data
set, X. In each iteration t = 1, 2, . . ., given the history up to time t,

Ft = ((x1, y1), . . . , (xt−1, yt−1)) ∈ (X × {0, 1})t−1,

2 Results in this work can be directly extended to any active learning problem that can be formalized
using a hypothesis class, e.g., multiclass classification.

FORC 2024



2:6 Incentivized Collaboration in Active Learning

it selects a point xt to query and observes its label, yt. The algorithm stops when all the
labels of X are recovered. Alternatively, the algorithm stops when for every two hypotheses
h1, h2 ∈ Ĥ consistent with Ft (meaning that h1(xτ ) = h2(xτ ) = yτ for all τ = 1, . . . , t− 1),
h1(X) = h2(X).

Collaborative active learning model. In the collaborative setting, we assume there is more
than one agent. Formally, there are k agents and each agent i has an individual unlabeled
data set Xi such that they together compose the pool, i.e., ∪i∈[k]Xi = X, and each can query
points from their own set Xi (but cannot query points which are not in their set). The goal
of each agent is to recover the true labeling of their own set while performing as few queries
as possible. The collaboration protocol, also called principal, who knows {X1, . . . , Xk}, Ĥ

and π, decides which point should be queried at each iteration, and her goal is to recover all
the labels of X using as few queries as possible. We remark that since data points belong
to agents, queries of any point x ∈ X can only be performed by agents whose data set
contains x.

The query algorithm in the collaborative setting is similar to that in the standard setting,
except that the algorithm needs to coordinate among the agents and decide which agent
will query each point as some data points might belong to more than one agent. In this
setting, agents can decide to join the collaboration or learn individually at the beginning
of the learning. But if they join the collaboration, they commit to follow the instructions
of the query algorithm. Therefore, given a prior distribution π over Ĥ and a set of agents
who would join the collaboration, w.l.o.g. denoted as {X1, . . . , Xκ} for some κ ∈ [k], at time
t = 1, 2, . . ., a collaborative query algorithm asks agent it ∈ [κ] such that xt ∈ Xit to query
point xt, and observes its label, yt; the algorithm stops when the labels of points in ∪i∈[κ]Xi

are completely recovered.
It is straightforward to check that standard query algorithms are a special case of

collaborative query algorithms when there is a single agent, i.e., k = 1. Additionally, a
standard algorithm can also be run over multiple agents by considering the union of their
data ∪i∈[κ]Xi as a single agent. Hence, we omit “standard” or “collaborative” in a query
algorithm when it is clear from the context how many agents are involved.

For any collaborative algorithm A, given an input π and any collection of unlabeled
data sets X1, . . . , Xκ ⊆ X of size κ ≥ 1, we denote by Q(A, π, {X1, . . . , Xκ}, h) the label
complexity (number of label queries) of A(π, {X1, . . . , Xκ}) when the target hypothesis is h.
For randomized algorithms, the label complexity is taken expectation over the randomness
of the algorithm. We define the label complexity as follows.

▶ Definition 2 (Label complexity). Given any fixed unlabeled pool and effective hypothesis
class (X, Ĥ), for any algorithm A, prior distribution π over Ĥ and any collection of unlabeled
data sets X1, . . . , Xκ ⊆ X of size κ ≥ 1, the label complexity of A with (π, {X1, . . . , Xκ}) as
input, denoted by Q(A, π, {X1, . . . , Xκ}), is the expected number of label queries when h is
drawn from the prior π, i.e.,

Q(A, π, {X1, . . . , Xκ}) = Eh∼π [Q(A, h, {X1, . . . , Xκ})] .

For each agent i ∈ [κ] in the collaboration, we let Qi(A, π, {X1, . . . , Xκ}) denote the expected
number of queries performed by agent i.

For any (π, {X1, . . . , Xκ}), let Q∗(π, {X1, . . . , Xκ}) = minA Q(A, π, {X1, . . . , Xκ}) de-
note the optimal query complexity. An algorithm A is said to be optimal if
Q(A, π, {X1, . . . , Xκ}) = Q∗(π, {X1, . . . , Xκ}) for any prior distribution π and X1, . . . , Xκ.
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Rational agents. We assume that agents have access to a baseline algorithm and are able
to run it on their own local data. Agents can decide to join the collaboration or run the
baseline individually at the beginning of the learning. If they join the collaboration, they
commit to follow the instructions of the query algorithm. Each agent is incentivized to join
the collaboration if she could perform fewer label queries (assuming that all others join the
collaboration) by pulling out and running the baseline A individually. Formally,

▶ Definition 3 (Individual rationality). In a collaborative learning problem with prior distribu-
tion π and k agents {X1, . . . , Xk}, given a baseline algorithm A, a collaborative algorithm
A′ is individually rational (IR) if

Qi(A′, π, {X1, . . . , Xk}) ≤ Q(A, π, {Xi}),∀i ∈ [k] . (1)

We say A′ is strictly individually rational (henceforth, SIR) if

Qi(A′, π, {X1, . . . , Xk}) < Q(A, π, {Xi}),∀i ∈ [k] .

We remark that in addition to their own sets, each agent knows all the unlabeled data sets,
{X1, . . . , Xk}, and the prior distribution π, otherwise, they will not be able to compute
Qi(A′, π, {X1, . . . , Xk}). The principal also has access to {X1, . . . , Xk} and π, and can
therefore make sure these constraints are satisfied.

It is worth noting that our model can also accommodate different individual baseline
algorithms. We briefly discuss this in Section 5.

An alternative interpretation of the problem in a game theoretic framework is as follows:
each agent has a strategy space of two strategies, joining the collaboration and not. The
utility of an agent that performs Q queries is −Q. If the algorithm A is IR, then the case of
all agents joining the collaboration is a Nash equilibrium (since switching to not joining will
not increase their utility). If A is SIR, then all agents joining the collaboration is a strict
Nash equilibrium.

3 Construction of IR Collaborative Algorithms

When agents are limited to a poor baseline algorithm, e.g., randomly selecting points to query,
the principal can simply incentivize agents to collaborate by using a superior algorithm that
requires fewer labeling efforts. We therefore start by considering optimal baseline algorithms
in Section 3.1. If we are able to find an IR collaborative algorithm for an optimal baseline
algorithm, OPT, then it must be IR w.r.t. all baseline algorithms. We demonstrate that,
surprisingly, the optimal algorithm OPT is IR given that the baseline algorithm is OPT itself.
Since computing an optimal algorithm is known to be NP-hard, we continue by considering
the best-known approximation algorithm, the greedy algorithm. In Section 3.2, we show
that given the greedy algorithm as baseline, the collaboration protocol that runs the greedy
algorithm is not IR. Then in Section 3.3, we provide a general scheme that transforms any
baseline algorithm into an IR algorithm while maintaining a comparable label complexity.

3.1 Optimality Implies Universal Individual Rationality
Incorporating individual rationality as an additional constraint to optimality usually requires
additional effort in certain settings, e.g., in online learning by [13]. However, in our specific
setting, optimality does not contradict the individual rationality property. That is, an
optimal algorithm will not increase any agent’s label complexity to benefit other agents.
In fact, optimizing for optimality implies achieving individual rationality for all baseline
algorithms.

FORC 2024



2:8 Incentivized Collaboration in Active Learning

▶ Theorem 4. For any optimal collaborative algorithm OPT, we have

Qi(OPT, π, {X1, . . . , Xk}) ≤ Q(OPT, π, {Xi}) = Q∗(π, {Xi}),∀i ∈ [k].

Therefore, OPT is IR w.r.t. any baseline algorithm.

We prove the theorem by contradiction. If OPT is not IR for the baseline being OPT,
then there exists an agent i such that Q(OPT, π, {Xi}) < Qi(OPT, π, {X1, . . . , Xk}). In this
case, we can construct a new algorithm by first running OPT over {Xi} (to recover the labels
of Xi) and then running OPT(π, {X1, . . . , Xk}}) and replacing agent i’s queries with the
recovered the labels of Xi. This new algorithm incurs a strictly smaller label complexity than
OPT, which is a contradiction to the optimality of OPT. The formal proof is deferred to
Appendix A. Unfortunately, computing an optimal query algorithm is not just NP-hard, but
also hard to approximate within a factor of Ω(log(|Ĥ|)) [29, 18]. One of the most popular
heuristics to find an approximated solution is greedy.

3.2 The Greedy Algorithm is Not Individually Rational
For standard Bayesian active learning, [34, 21] presented a simple greedy algorithm called
generalized binary search (GBS), which chooses a point leading to the most balanced partition
of the set of hypotheses consistent with the history. More specifically, at time step t, given
the history Ft = ((x1, i1, y1), . . . , (xt−1, it−1, yt−1)), let VS(Ft) = {h ∈ Ĥ|h(xτ ) = yτ ,∀τ ∈
[t− 1]} denote the set of hypotheses consistent with the history Ft (often called the version
space associated with Ft). Given Ft and (π, {X1, . . . , Xκ}) as input, GBS will query

xt = arg max
x∈∪i∈[κ]Xi

min(π({h ∈ VS(Ft)|h(x) = 1}), π({h ∈ VS(Ft)|h(x) = 0}))

at time t. When referring to GBS as a collaborative algorithm, we complement it with an
arbitrary tie-breaking rule for selecting it, as GBS itself does not specify how to choose which
agent to query. GBS is guaranteed to achieve competitive label complexity with the optimal
label complexity.

▶ Lemma 5 (Optimality of GBS, Theorem 3 of [21]). For any prior distribution π over Ĥ

and k agents {X1, . . . , Xk}, the label complexity of GBS satisfies that

Q(GBS, π, {X1, . . . , Xk}) ≤ 4Q∗(π, {X1, . . . , Xk}) ln( 1
min

h∈Ĥ
π(h) ) .

The greedy algorithm GBS not only achieves approximately optimal label complexity, but it
is also computationally efficient, with a running time of O(m2|Ĥ|). As GBS is the best-known
efficient approximation algorithm, it is natural to think that agents would adopt GBS as a
baseline.

As we have shown that the optimal algorithm is IR w.r.t. itself, the next natural question
is: Is GBS (as collaboration protocol) individually rational w.r.t. GBS itself?

We answer this question negatively, even in the case of two agents. Even worse, we
present an example in which an agent’s label complexity is Ω(n) when participating in the
collaboration, but only O(1) when not participating.

▶ Theorem 6. For the algorithm of GBS, there exists an instance of (X1, X2, π) with |X1| = n,
in which agent 1 incurs a label complexity of Q1(GBS, π, {X1, X2}) = Ω(n) when participating
the collaboration and can achieve Q(GBS, π, {X1}) = O(1) when not participating.
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Intuitively, at each time step, GBS only searches for an xt which leads to the most
balanced partition of the version space, which does not necessarily lead to the optimal point
to query. Given additional label information from the other agent, GBS possibly choose a
worse point to query. In addition, the label complexity of GBS is upper bounded by the
optimal label complexity multiplied by a logarithmic factor. It is possible that the agent
achieves a smaller multiplicative factor by running GBS individually and a larger factor in
the collaboration. To prove the theorem, we construct an instance in which there exists
a hypothesis with a prior probability of 1/4, such that if GBS runs on {X1, X2} and this
hypothesis is the target, GBS will query almost all the points in X1 (in a particular order)
before returning this hypothesis. We show this part by induction. Additionally, we compute
the query tree by running GBS solely on X1 and use it to show that in this case, GBS has
an expected query complexity of O(1). The full construction of the instance and the proof of
Theorem 6 is deferred to Appendix B.

3.3 A Scheme of Converting Algorithms to IR Algorithms
Given that the greedy algorithm has been proven to be not individually rational w.r.t. itself,
we raise the following question: Is it possible to develop a general scheme that can generate
an IR algorithm given any baseline algorithm? In this section, we propose such a scheme that
addresses this question. Moreover, given a baseline algorithm A, the resulting IR algorithm
can achieve a label complexity comparable to implementing the baseline algorithm over all
agents, i.e., A(π, {X1, . . . , Xk}). It is important to note that we aim for the label complexity
to be comparable to Q(A, π, {X1, . . . , Xk}) rather than

∑
i∈[k] Q(A, π, Xi), as the latter

holds true by individual rationality. Given an efficient approximately optimal algorithm
as baseline (e.g., GBS), our scheme can provide an algorithm that simultaneously exhibits
individual rationality, efficiency, and approximately optimal label complexity.

For any baseline algorithm A, we define a new algorithm B2IR(A), which runs A as
a subroutine. Basically, we first calculate the label complexity of agent i both when she
is in collaboration with all the other agents, i.e., Qi(A, π, {X1, . . . , Xk}), and when she is
not in collaboration, i.e., Q(A, π, {Xi}), for all i ∈ [k]. By doing so, we can distinguish
which agents can benefit from collaboration when running A and which cannot. We denote
the set of agents who cannot benefit from collaboration with all others when running A
as S = {i|Qi(A, π, {X1, . . . , Xk}) > Q(A, π, {Xi})}. For those who do not benefit from the
collaboration, we just run A on their own data. For those who benefit from collaborating
with the others together, we run A over all agents [k]– Only whenever A(π, {X1, . . . , Xk})
asks to query the label of a point belonging to some i ∈ S, since we already recovered the
labels of Xi, we just feed A(π, {X1, . . . , Xk}) with this label without actually asking agent i

to query. The detailed algorithm is described in Algorithm 1.

▶ Theorem 7. For any baseline algorithm A, the algorithm B2IR(A) satisfies the following
properties:

IR property: B2IR(A) is individually rational w.r.t. the baseline algorithm A.
Efficiency: B2IR(A) runs in O(kTA,Q + mTA,0) time, where TA,0 is the time of
computing (it, xt) at each time t for A and TA,Q is the maximum time of comput-
ing Qi(A, π, {X1, . . . , Xκ}) for an agent i, unlabeled data {X1, . . . , Xκ}, and algorithm
A.
Label complexity: Q(B2IR(A), π, {X1, . . . , Xk}) ≤ Q(A, π, {X1, . . . , Xk}).

FORC 2024



2:10 Incentivized Collaboration in Active Learning

Algorithm 1 B2IR.

1: input: A query algorithm A, set {X1, . . . , Xk} and prior π over Ĥ

2: For each i ∈ [k], calculate Qi(A, π, {X1, . . . , Xk}) and Q(A, π, {Xi}).
3: Let S ← {i|Qi(A, π, {X1, . . . , Xk}) > Q(A, π, {Xi})} and XS ← ∪i∈SXi // the agents

who do not benefit from collaboration
4: for each i ∈ S do Yi ← Run A over {Xi} // recover the labels for agent i

5: for t = 1, . . . do
6: (it, xt)← the querying agent and the query point from A(π, {X1, . . . , Xk})
7: if it ∈ S then Feed the label of xt from Yit// we already recovered the labels of XS

8: else Ask agent it to query the label of xt

9: end for

The proof follows the algorithm description immediately. Note that when the baseline is
GBS, we have TGBS,0 = O(m). We can compute Qi(A, π, {X1, . . . , Xκ}) by simulating over
all effective hypotheses h ∈ Ĥ. For each h, we will query at most m rounds. Therefore, we
have TGBS,Q = O(m2|Ĥ|) and we can run B2IR(GBS) in O(km2|Ĥ|) time. Using GBS as
the baseline, we derive the following corollary.

▶ Corollary 8. Given GBS as the baseline, B2IR(GBS) is IR; runs in O(km2|Ĥ|) time; and
satisfies that Q(B2IR(GBS), π, {X1, . . . , Xk}) ≤ 4Q∗(π, {X1, . . . , Xk}) ln( 1

min
h∈Ĥ

π(h) ).

4 Converting Algorithms to SIR Algorithms

In Section 3, we provided a generic scheme for constructing an IR algorithm given any baseline
algorithm. In this section, we focus on constructing SIR algorithms given IR algorithms.
Since strict individual rationality requires that agents strictly benefit from collaboration, this
is impossible without further assumptions. For example, consider a set of agents who only
have one single independent point in their own sets and a prior distribution that is uniform
over all labelings. In this case, each agent, regardless of whether she collaborates or not, has
a label complexity of 1 and cannot strictly benefit from collaboration as the other agents
cannot obtain information about her data.

Now, let us consider a notion weaker than SIR, called i-partially SIR, in which only agent
i strictly benefits from the collaboration, and any other agent j ≠ i does not get worse by
joining the collaboration. More formally,

▶ Definition 9 (Partially SIR algorithms). For any baseline algorithm A, for all i ∈ [k], an
algorithm Oi is i-partially SIR, if Oi satisfies that

Qi(Oi, π, {X1, . . . , Xk}) < Q(A, π, {Xi}) ,

and

Qj(Oi, π, {X1, . . . , Xk}) ≤ Q(A, π, {Xj}),∀j ∈ [k] \ {i} .

If we are given an i-partially SIR algorithm Oi for each i, then we can construct a SIR
algorithm by running a mixture of an IR algorithm A′ (e.g., B2IR(A) in Algorithm 1) and
{Oi|i ∈ [k]} with the label complexity a little (arbitrarily small) higher than that of A′.

▶ Lemma 10. For any baseline algorithm A, given an IR algorithm A′ and partially SIR
algorithms {Oi|i ∈ [k]}, for any ε > 0, let A′′

ε be the algorithm of running A′ with probability
(1− ε

n ) and running Oi with probability ε
kn . Then A′′

ε satisfies the following properties.
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SIR property: A′′
ε is SIR with respect to the baseline algorithm A.

Label complexity: Q(A′′
ε , π, {X1, . . . , Xk}) ≤ Q(A′, π, {X1, . . . , Xk}) + ε.

The proof is straightforward from the definition, and we include it in Appendix C for
completeness. Since a SIR algorithm is also i-partially SIR for all i ∈ [k], constructing a
SIR algorithm is equivalent to constructing a set of partially SIR algorithms {Oi|i ∈ [k]}.
Therefore, the problem of constructing a SIR algorithm is reduced to constructing partially
SIR algorithms {Oi|i ∈ [k]}.

For the remainder of this section, we will present the SIR results for an optimal baseline
algorithm in Section 4.1, where we propose a sufficient and necessary assumption for the
existence of SIR algorithms and then provide a SIR algorithm. This algorithm is SIR w.r.t.
any baseline algorithm but again, computationally inefficient. In Section 4.2, we provide a
general scheme that transforms any baseline algorithm into a SIR algorithm.

4.1 A Universal SIR Algorithm for Any Baseline Algorithm
Constructing a universal SIR algorithm w.r.t. any baseline is equivalent to constructing a
SIR algorithm for an optimal baseline. For the existence of SIR algorithms given any optimal
baseline algorithm, we propose the following assumption, which is sufficient and necessary.
We include the proof for the necessity of this assumption in Appendix D. The sufficiency of
this assumption will be verified immediately after we construct a SIR algorithm.

▶ Assumption 1. We assume that for any i ∈ [k], the optimal label complexity of agent i

given the information regarding the labels of all other agents is strictly smaller than that
without this additional information, i.e., Q∗(π, {Xi})− Eh∼π [Q∗(πh,−i, {Xi})] > 0 , where
πh,−i is the posterior distribution of π after observing {(x, h(x))|x ∈ ∪j ̸=iXj}.

According to Lemma 10, we can construct a SIR algorithm by constructing a set of
partially SIR algorithms {Oi|i ∈ [k]}.

Let Oi be the algorithm of running an optimal algorithm OPT over (π, {Xj |j ̸= i}) first,
then given the query-label history of {(x, h(x))|x ∈ ∪j ̸=iXj} for some h ∈ Ĥ, run OPT over
(πh,−i, {Xi}). Then it immediately follows that Oi is i-partially SIR from Assumption 1. Let
OPT′′

ε denote the algorithm of of running OPT with probability (1 − ε
n ) and running Oi

with probability ε
kn for all i ∈ [k]. By Lemma 10, we have

▶ Corollary 11. Under Assumption 1, for any ε > 0, OPT′′
ε is SIR w.r.t. OPT and satisfies

Q(OPT′′
ε , π, {X1, . . . , Xk}) ≤ Q∗(π, {X1, . . . , Xk}) + ε.

In addition, OPT′′
ε is SIR w.r.t. any baseline algorithm A as

Qi(OPT′′
ε , π, {X1, . . . , Xk}) < Q∗(π, {Xi}) ≤ Q(A, π, {Xi}).

4.2 A Scheme of Converting Algorithms to SIR Algorithms
As mentioned before, computing an optimal algorithm is NP-hard. Assumption 1 assumes
that collaboration can strictly benefit agents when the collaboration protocol can compute
the optimal algorithm given πh,−i. Hence, the assumption does not take the computational
issue into consideration and thus might not be enough for the existence of an efficient SIR
algorithm w.r.t. an efficient approximation algorithm like GBS.

Instead, we propose prior-independent assumption that is sufficient for the existence of
efficient SIR algorithms when we are given an efficient baseline and an efficient IR algorithm
w.r.t. the baseline. Basically, we assume that, there exists an effective hypothesis h ∈ Ĥ,
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given the information that all other agents are labeled by h, the number of labelings of Xi

consistent with the label information is strictly smaller than the total number of labelings of
Xi by Ĥ. Formally, for any i ∈ [k], let X−i = ∪j ̸=iXj denote the union of all agents’ data
except agent i. Let H(Xi) = {h′(Xi)|h′ ∈ Ĥ} denote the effective hypothesis class of Xi,
i.e., all labelings of Xi. For any h ∈ Ĥ, let H(X|h) = {h′(Xi)|h′(X−i) = h(X−i), h′ ∈ Ĥ}
denote the subset which are consistent with all other agents being labeled by h.

▶ Assumption 2. For all i ∈ [k], there exists an h ∈ Ĥ s.t. the number of labelings of Xi

consistent with (X−i, h(X−i)) is strictly smaller than the number of labelings by Ĥ, i.e.,
|H(Xi|h)| < |H(Xi)|.

Intuitively, Assumption 2 means that for every agent i, there exists an hypothesis h such
that when h∗ = h, the cardinality of the set of hypotheses consistent with (X−i, h(X−i)) is
strictly smaller than |Ĥ|. We will show that this assumption is sufficient for the existence of
algorithms satisfying SIR property. Without it, it is unclear if there exist SIR algorithms.
The assumption can be easily verified by iterating each h ∈ Ĥ (this is polynomial in |Ĥ| and
m).

Notice that each deterministic query algorithm A can be represented as a binary tree,
TA whose internal nodes at level t are queries (“what is the xt’s label?”), and whose leaves
are labelings as illustrated in Figure 1. Under Assumption 2, we can prune the query tree
of A(π, {Xi}) by removing all subtrees whose leaves are all in H(Xi) \ H(Xi|h). We do
not need to construct this pruned tree when we implement the algorithm. At time t, we
just need to generate an xt from A(π, {Xi}), then check if this node should be pruned by
checking if all the hypotheses H(Xi|h) agree on the label of xt. If this is true, it means
that we have already recovered the label of xt and thus we just need to feed the label to
the algorithm without actually querying xt again. Then we can construct a i-partially SIR
algorithm Oi by running B2IR(A) over (π, {Xj |j ̸= i}) to recover the labeling of X−i first,
then running pruned version of A(π, {Xi}). Note that the implementation also works when
A is randomized.

Consider Example 1, where the hypothesis class H = {x ≥ α|α = 0.2, 0.4, 0.5, 0.6, 0.8}
with a uniform prior, agent 1 with points X1 = {0.25, 0.5, 0.75} and agent 2 with points
X2 = {0.3, 0.45, 0.55, 0.7}. When agent 1 runs a binary search, the query tree has 0.5 as a
root, then if 0.25 if h∗(0.5) = 1, and 0.75 otherwise. Now, algorithm O1 runs a binary search
on X2 and obtains all the labels of the points in X2. The hypothesis h = 1(x ≥ 0.5) holds
|H(X1|h)| = 1 < |Ĥ(X1)| = 4. When h is the labeling function, 0.3 and 0.45 are labeled as
negative, and 0.55 and 0.7 are labeled as positive. Then, O1 will only need agent 1 to query
0.5 as the labels of 0.25 and 0.75 can be inferred and they are pruned in the query tree.

▶ Lemma 12. Under Assumption 2, the algorithm Oi constructed above is i-partially SIR
and runs in time O(TB2IR(A) + m(|Ĥ|+ TA,0)) time, where TB2IR(A) is the running time of
B2IR(A) and TA,0 is the time of computing (it, xt) at each time t for A.

The proof of Lemma 12 is deferred to Appendix E.
We can then construct an algorithm A′′

ε by running B2IR(A) with probability with
probability (1− ε

n ) and running Oi constructed in the above way with probability ε
kn for all

i ∈ [k]. By combining Lemmas 10 and 12, we derive the following theorem. Then, combining
it with Corollary 8, we derive a SIR algorithm for GBS as baseline GBS.

▶ Theorem 13. Under Assumption 2, for any baseline algorithm A, for any ε > 0, A′′
ε is

SIR and satisfies

Q(A′′
ε , π, {X1, . . . , Xk}) ≤ Q(B2IR(A), π, {X1, . . . , Xk}) + ε.

In addition, Algorithm A′′
ε runs in O(TB2IR(A) + m(|Ĥ|+ TA,0)) time.
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▶ Corollary 14. Given GBS as the baseline, Algorithm GBS′′
ε is SIR; runs in O(km2|Ĥ|)

time; and satisfies that

Q(GBS′′
ε , π, {X1, . . . , Xk}) ≤ 4Q∗(π, {X1, . . . , Xk}) ln

(
1

minh∈H π(h)

)
+ ε.

5 Discussion

In this paper, we have initiated the study of collaboration in active learning in the presence
of incentivized agents. We first show that an optimal collaborative algorithm is IR w.r.t. any
baseline algorithm while approximate algorithms are not. Then we provide meta-algorithms
capable of producing IR/SIR algorithms given any baseline algorithm as input.

Our model and algorithms can also allow different agents to have different baseline
algorithms – Whenever the principal plans to run an algorithm on a union of datasets, she
can simply check which baseline algorithm has the lowest expected query complexity on this
union, and run it. When she needs to run an algorithm on a dataset of an individual, she
can simply run their baseline. This way the (S)IR is preserved.

There are a few problems we leave open. First, relaxing the assumption that each
agent i has full knowledge of X−i (e.g., due to privacy concerns). Second, relaxing the
assumption that agents provide reliable labels. Third, deriving results in non-realizable
settings. Realizability is a standard assumption in learning theory at large and particularly
within active learning as highlighted in the classical machine learning theory textbook by [43]
and the active learning theory survey by [30]. Moreover, realizability has also been adopted
in the collaborative learning setting (e.g., [12]). The reason is that without realizability,
additional complications might arise in collaboration such as why collaboration would yield
benefits. In general, we believe that additional assumptions would be required to relax this
assumption. Forth, towards a more game theory orientation, it would be interesting to design
collaborative algorithms in a setting where agents can form coalitions. Finally, finding a
necessary and sufficient assumption(s) for the existence of efficient SIR algorithms will be an
interesting direction (and we have found a sufficient one in this work).
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since we already know the labeling of Xi, we can just feed OPT(π, {X1, . . . , Xk}) with these
labels without actually asking agent i to query them.

Thus, the label complexity of A′ is

Q(A′, π, {X1, . . . , Xk}) = Q(OPT, π, {Xi}) +
∑

j:j ̸=i

Qj(OPT, π, {X1, . . . , Xk})

< Qi(OPT, π, {X1, . . . , Xk}) +
∑

j:j ̸=i

Qj(OPT, π, {X1, . . . , Xk})

= Q(OPT, π, {X1, . . . , Xk}) = Q∗(π, {X1, . . . , Xk}) ,

where the first inequality holds due to that OPT is not IR and the last equality holds since
OPT is optimal. Since Q∗(π, {X1, . . . , Xk}) ≤ Q(A′, π, {X1, . . . , Xk}) by definition, there is
a contradiction. ◀

B Proof of Theorem 6

Proof. The construction is inspired by [21]. Consider k = 2 and let the unlabeled data set
of agent 1 be

X1 = {(0, 1, 0), (0, 2, 0), (0, 0, 1), (0, 0, 2), . . . , (0, 0, n)}

for some n ∈ N+.
Let the unlabeled data set of agent 2 be

X2 = {(1, 0, 0)} .

Let the unlabeled pool X = X1 ∪ X2. Let hi,j,l denote the hypothesis which labels
(i, 0, 0), (0, j, 0), (0, 0, l) as 1 and the rest as 0.

Let the hypothesis class be H = {hi,j,l|i ∈ {0, 1}, j ∈ [2], l ∈ [n]}.
Let the prior distribution π0 = π be defined as follows:

π(h0,0,0) = 1
4

π(h0,j,l) = 1
4·3l for j = 1, 2, l = 1, . . . , n− 1

π(h0,j,n) = 1
8·3n−1 for j = 1, 2

π(h1,1,l) = 1
3l for l = 1, . . . , n− 1

π(h1,1,n) = 1
2·3n−1 .

Now we show that the label complexity of agent 1 in the collaboration is
Q1(GBS, π, {X1, X2}) = Ω(n). While the label complexity of running GBS itself is
Q(GBS, π, {X1}) = O(1).

Label complexity of agent 1 in the collaboration

Let VS denote the version space. And for any point x, let VS+
x = {h ∈ VS|h(x) = 1} denote

the subset of the version space which labels x by 1. Similarly, let VS−
x = {h ∈ VS|h(x) = 0}.

Now let us consider the length of the path in the query tree when the target hypothesis
is h0,0,0.

A-priori (before starting to query), for point (1, 0, 0), we have

π(VS+
(1,0,0)) =

n∑
l=1

π(h1,1,l) = 1
3 + 1

32 + . . . + 1
3n−1 + 1

2 · 3n−1 = 1
2 .
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For point (0, 1, 0), we have

π(VS+
(0,1,0)) =

n∑
l=1

(π(h0,1,l) + π(h1,1,l)) =
n∑

l=1
π(h0,1,l) + π(VS+

(1,0,0)) >
1
2 .

For point (0, 2, 0), we have

π(VS+
(0,2,0)) =

n∑
l=1

π(h0,2,l) = 1
4 · 3 + 1

4 · 32 + . . . + 1
4 · 3n−1 + 1

8 · 3n−1 = 1
8 .

For other points (0, 0, l) for l ∈ [n− 1], we have π(VS+
(0,0,l)) = 1

4·3l + 1
3l = 5

4·3l < 1
2 and for

(0, 0, n), we have π(VS+
(0,0,n)) < π(VS+

(0,0,n−1)) < 1
2 .

Therefore, the algorithm GBS(π, {X1, X2}) will query (1, 0, 0) at time 1. Suppose the
label of (1, 0, 0) is 0 since we consider the path corresponding to h0,0,0 as the target hypothesis.

Now we show that GBS(π, {X1, X2}) will query points (0, 0, 1), (0, 0, 2), . . . , (0, 0, n) se-
quentially by induction.

At time 1, the version space is VS = {h0,0,0} ∪ {hi,j,l ∈ Ĥ|i = 0}. We list π(h0,j,l) for
j ∈ {1, 2} and l ∈ [n] in Table 1 for illustration.

Table 1 Table of π(h0,j,l) for j ∈ {1, 2} and l ∈ [n].

(0, 1, 0) (0, 2, 0)
(0, 0, 1) 1

4·3
1

4·3

(0, 0, 2) 1
4·32

1
4·32

· · · · · · · · ·
(0, 0, n) 1

8·3n−1
1

8·3n−1

Then we can compute that

π(S+
(0,1,0)) = π(S+

(0,2,0)) = 1
4 · 3 + 1

4 · 32 + . . . + 1
4 · 3n−1 + 1

8 · 3n−1 = 1
8 ,

π(S+
(0,0,1)) = 1

6 > π(S+
(0,0,l)) ,

π(S+
(0,0,l)) ≤ π(S+

(0,0,2)) = 1
18 ,

for all l ≥ 2.
Thus, the algorithm GBS(π, {X1, X2}) will choose (0, 0, 1) at time 2.
Suppose that at time t = 2, 3, . . . , l, GBS(π, {X1, X2}) has picked (0, 0, 1), . . . , (0, 0, l− 1)

and all are labeled 0.
Now we show that GBS(π, {X1, X2}) will pick (0, 0, l) at time t = l + 1. The version

space at the beginning of time l + 1 is VS = {h0,0,0} ∪ {hi,j,p ∈ Ĥ|p ≥ l}. We can compute
that

π(S+
(0,0,l)) = 1

2 · 3l
> π(S+

(0,0,p))

for all p > l, and that

π(S+
(0,1,0)) = π(S+

(0,2,0)) = 1
4 · 3l

+ 1
4 · 3l+1 + . . . + 1

4 · 3n−1 + 1
8 · 3n−1 = 1

8 · 3l−1 .

Hence, GBS(π, {X1, X2}) will pick (0, 0, l).
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Therefore, we proved that when the target hypothesis is h0,0,0, GBS(π, {X1, X2}) will
query
(1, 0, 0), (0, 0, 1), (0, 0, 2), . . . , (0, 0, n) sequentially.

Thus, we have that Q1(GBS, π, {X1, X2}, h0,0,0) = n + 1, and Q1(GBS, π, {X1, X2}) ≥
n+1

4 as π(h0,0,0) = 1
4 .

Label complexity of agent 1 when she runs the (GBS) baseline individually

Now we show that Q(GBS, π, {X1}) = O(1). Since X1 does not contain (1, 0, 0), both h0,j,l

and h1,j,l label X1 identically. Every effective hypothesis over X1 can be written as h∗,j,l

with π(h∗,j,l) = π(h0,j,l) + π(h1,j,l), which is listed in Table 2.

Table 2 Table of π(h∗,j,l) for j ∈ {1, 2} and l ∈ [n].

(0, 1, 0) (0, 2, 0)
(0, 0, 1) 1

4·3 + 1
3

1
4·3

(0, 0, 2) 1
4·32 + 1

32
1

4·32

· · · · · · · · ·
(0, 0, n) 1

8·3n−1 + 1
2·3n−1

1
8·3n−1

Notice that if we know that the label of (0, 0, l) is positive for some l, then the version space
has at most 2 effective hypotheses, h∗,1,l and h∗,2,l. In this case, the algorithm needs at most
2 more queries.

At time t = 1, we have

π(S+
(0,0,1)) = 1

4 · 3 + 1
3 + 1

4 · 3 = 1
2 ,

π(S+
(0,0,l)) < π(S+

(0,0,1)) ,∀l ≥ 2 ,

π(S+
(0,2,0)) = 1

4 · 3 + 1
4 · 32 + . . . + 1

4 · 3n−1 + 1
8 · 3n−1 = 1

8 ,

π(S+
(0,1,0)) = π(S+

(0,2,0)) · 5 = 5
8 .

Therefore, GBS(π, {X1}) will query (0, 0, 1) at t = 1.
We complete the proof by exhaustion. If (0, 0, 1) is labeled as 1, then the algorithm needs

at most two more queries as aforementioned.
If (0, 0, 1) is labeled as 0, then h∗,1,1 and h∗,2,1 will be removed from the version space

and GBS(π, {X1}) will query (0, 1, 0) at t = 2 then.
If the label is 1, the version space is reduced to {h∗,1,l|l = 2, . . . , n} and GBS(π, {X1})

will query (0, 0, 2), (0, 0, 3), . . . sequentially until receiving a positive label.
If the label of (0, 1, 0) is 0, GBS(π, {X1}) will query (0, 2, 0) at time t = 3. If the label of

(0, 2, 0) is 1, then it is similar to the case of (0, 1, 0) being labeled 1 and the algorithm will
query (0, 0, 2), (0, 0, 3), . . . sequentially.

If the label of (0, 2, 0) is 0, we know the target hypothesis is h0,0,0 and we are done.
Hence we have Q(GBS, π, {X1}) ≤

∑n
l=1(π(h∗,1,l) + π(h∗,2,l)) · (3 + l) + π(h0,0,0) · 3 =∑n−1

l=1
1

2·3l−1 · (3 + l) + 1
4 · 3 = O(1). ◀
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C Proof of Lemma 10

Proof. SIR property: Since A′ and {Oi|i ∈ [k]} are IR and agent i can strictly benefit
from Oi, we have Qi(A′′

ε , π, {X1, . . . , Xk}) < Q(A, π, {Xi}) for all i ∈ [k].
Label complexity: The label complexity of A′′

ε is

Q(A′′
ε , π, {X1, . . . , Xk}) =(1 − ε

n
)Q(A′, π, {X1, . . . , Xk}) + ε

kn

k∑
i=1

Q(Oi, π, {X1, . . . , Xk})

≤(1 − ε

n
)Q(A′, π, {X1, . . . , Xk}) + ε .

Then we are done. ◀

D Proof of necessity of Assumption 1

Proof of necessity. Suppose that there exists an SIR algorithm A′′ when the baseline
algorithm is optimal. We therefore have Qi(A′′, π, {X1, . . . , Xk}) < Q∗(π, {Xi}) by definition.
We claim that A′′ must satisfy Qi(A′′, π, {X1, . . . , Xk}) ≥ Eh∼π [Q∗(πh,−i, {Xi})]. This is
because we can construct another algorithm B by running A′′ over all other agents except
agent i, i.e., running A′′ over (π, X−i) with X−i = {Xj |j ̸= i} first to recover the labels of all
other agents X−i. Then, B simulates A′′ over (π, {X1, . . . , Xk}) without actually querying
any point in X−i (similarly to Algorithm 1). In this case, the label complexities of agent i are
identical for algorithms B and A′′, i.e., Qi(B, π, {X1, . . . , Xk}) = Qi(A′′, π, {X1, . . . , Xk}).
Since Q∗(πh,−i, {Xi}) is the optimal label complexity of agent i given the label information of
X−i, we have Qi(B, π, {X1, . . . , Xk}) ≥ Q∗(πh,−i, {Xi}). Therefore, we have Q∗(π, {Xi}) >

Qi(A′′, π, {X1, . . . , Xk}) ≥ Q∗(πh,−i, {Xi}). ◀

E Proof of Lemma 12

Proof. First, note that Oi is IR as B2IR(A) is IR, and pruning the query tree does not
increase label complexity. For any i ∈ [k], suppose that there exists an hypothesis h ∈ Ĥ s.t.
|H(Xi|h)| < |H(Xi)|. Then in the query tree of A(π, {Xi}), either all leaves are inconsistent
with h(X−i) or there exists one internal node v who has exactly one subtree with all leaves
inconsistent with h(X−i). This node v as well as the corresponding subtree are pruned
in Oi and thus the leaves in the other subtree rooted at v have their depth reduced by
at least 1. Now, there exists an hypothesis h′′ ∈ Ĥ such that h′′(Xi) ∈ H(Xi|h) and
h′′(Xi) is in the other subtree. Since h′′(X−i) = h(X−i), when the underlying hypothesis
is h′′, the pruned tree given h′′(X−i) is the same as that given h(X−i). Hence, we have
Qi(Oi, π, {X1, . . . , Xk}, h′′) ≤ Qi(A, π, {X1, . . . , Xk}, h′′)− 1.

Then we have

Qi(Oi, π, {X1, . . . , Xk}) = Eh∼π [Qi(Oi, π, {X1, . . . , Xk}, h)]
=π(h′′)Qi(Oi, π, {X1, . . . , Xk}, h′′) + (1 − π(h′′))Eh∼π|h ̸=h′′ [Qi(Oi, π, {X1, . . . , Xk}, h)]
≤π(h′′)(Qi(A, π, {X1, . . . , Xk}, h′′) − 1) + (1 − π(h′′))Eh∼π|h ̸=h′′ [Qi(A, π, {X1, . . . , Xk}, h)]
<Qi(A, π, {X1, . . . , Xk}) ,

where the last inequality holds due to π(h′′) > 0 since w.l.o.g., we assumed π(h) > 0 for all
h ∈ Ĥ in Section 2. ◀
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