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—— Abstract

We study the problem of auditing classifiers for statistical subgroup fairness. Kearns et al. [20]
showed that the problem of auditing combinatorial subgroups fairness is as hard as agnostic learning.
Essentially all work on remedying statistical measures of discrimination against subgroups assumes
access to an oracle for this problem, despite the fact that no efficient algorithms are known for it. If
we assume the data distribution is Gaussian, or even merely log-concave, then a recent line of work
has discovered efficient agnostic learning algorithms for halfspaces. Unfortunately, the reduction
of Kearns et al. was formulated in terms of weak, “distribution-free” learning, and thus did not
establish a connection for families such as log-concave distributions. In this work, we give positive
and negative results on auditing for Gaussian distributions: On the positive side, we present an
alternative approach to leverage these advances in agnostic learning and thereby obtain the first
polynomial-time approximation scheme (PTAS) for auditing nontrivial combinatorial subgroup
fairness: we show how to audit statistical notions of fairness over homogeneous halfspace subgroups
when the features are Gaussian. On the negative side, we find that under cryptographic assumptions,
no polynomial-time algorithm can guarantee any nontrivial auditing, even under Gaussian feature
distributions, for general halfspace subgroups.
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1 Introduction

The deployment of decision rules obtained using machine learning has raised the risk that the
rules may exhibit biases against historically marginalized communities. In particular, Kearns
et al. [20] raised the concern that these decision rules may be biased against sub-groups
characterized by a combination of “protected” attributes. Since there are an exponential
number of such subgroups, even detecting such statistical patterns of discrimination is a
nontrivial computational problem; indeed, Kearns et al. [20] showed that the problem of
finding disadvantaged subgroups is equivalent to the problem of agnostic learning, which
is believed to be intractable in general for all but the simplest classes of sets. Essentially
all work [20, 23, 18] on remedying statistical measures of discrimination against subgroups
assumes access to an oracle for this problem, despite the fact that no efficient algorithms
are known for it. In this work we are proposing a solution for a variant of the fairness
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auditing problem with provable guarantees of efficiency and correctness, as well as some
strong limitations on the extent to which these solutions can be extended to richer families
of subgroups.

1.1 Background and Motivation

Fairness learning has received massive attention in recent years. It turns out learning a fair
classifier, in most cases, is equivalent to auditing [20, 23, 18]. In particular, if auditing is
possible, learning a fair classifier is easy. There are many successful examples of fairness
learning with auditing over a relatively small number of predetermined subgroups [1, 29].
However, a small number of predetermined subgroups, in many cases, is not enough to cover
all the natural subgroups.

» Example 1. In the court case “DeGraffenreid v General Motors” [6], five Black women
brought suit against General Motors for its discrimination against the group of Black women.
Although no sex discrimination was revealed, the evidence showed that Black women hired
after 1970 were discriminated against by the company’s seniority system. Such discrimination
can be better illustrated by an example shown in Table 1. In particular, the hiring rate of a
company could seemingly be fair in terms of gender or race alone, but clearly discriminates
against the subgroups of white men and black women. The court rejected the plaintiffs’
attempt to bring a suit not on behalf of Blacks or women, but specifically on behalf of Black
women. In the ruling, in favor of the defendant, the judge was specifically concerned about
the proliferation of protected classes.

Table 1 an example of discrimination against subgroups.

men | women | total
black 50 0 50
white 0 50 50
total 50 50 100

More generally, a classifier may appear to be fair on each individual attribute, e.g., gender,
race, age, incomes, etc., and yet perform unfairly on subgroups defined on multiple attributes,
i.e., the conjunction of such attributes. In the case of DeGraffenreid v General Motors, it is
the conjunction of race and gender being discriminated against. The possible number of the
conjunctions grows exponentially as the number of the “protected” attributes increases.

Thereafter, [20] proposed more general notions of statistical fairness that require auditing
over subgroups defined on simple combinations of data features. Specifically, such combin-
ations of features can be any simple representations, such as conjunctions and halfspaces,
which, however, can generate exponentially many subgroups. They also showed that the
problem of auditing subgroups defined by such simple representation is as hard as “weak
agnostic learning” in the standard “distribution-free” setting [17, 22]. While the problem of
distribution-free weak agnostic learning is widely believed to be computationally intractable
[22, 12], its hardness does not necessarily hold for specific distribution families. Thus, it
is natural to consider auditing using distribution-specific agnostic learning approaches as
agnostic learning is a much more extensively studied problem. However, it turns out there
are still obstacles remaining for doing so.
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1.2 Challenges of Auditing through Agnostic Learning

The main challenge that prevents us from applying existing agnostic learning techniques to
perform auditing based on the reduction by [20] is that it is formulated in terms of weak
agnostic learning, that is, finding classifiers with error rates that are nonnegligibly better than
guessing, and correspondingly weak auditing guarantees. In particular, the approximation
guarantees we obtain for distribution-specific agnostic learning yield vacuous guarantees for
weak learning. When we have guarantees for arbitrary distributions, “boosting” [28] enables
us to obtain high accuracy from such weak learners. Unfortunately, these techniques require
re-weighting the data examples after which the distribution-specific properties may no longer
hold.

One might hope to dodge this issue by casting the problem of finding a harmed subgroup
as a Mixed-Integer Program and using solvers that, though they lack polynomial-time
guarantees, obtain adequate performance in practice. In such an approach, the failure of the
solver to find a feasible solution to the optimization problem is taken as the proof that the
classifier is fair. Unfortunately, these solvers owe their speed in part to a lack of soundness,
both due to numerical issues [5] and the complexity of the heuristics used to prune the
search [2, 14], and it remains a current research challenge to obtain acceptable performance
(using the various advanced techniques employed by commercial solvers) while retaining the
guarantee that the solver correctly reports infeasibility [4]. In any case, the works by [20, 21]
and [24] that empirically studied these approaches to obtaining fair classifiers used linear
regression as a proxy for the agnostic learning or cost-sensitive classification subroutines.
Unfortunately, these heuristics do not even provide in-principle guarantees.

In this paper, we will show auditing general halfspace subgroups is hard even for data
with a Gaussian distribution, and present an alternative auditing approach for subgroups
determined by homogeneous halfspaces with provable guarantees.

1.3 QOur Contribution

Our first contribution is a more careful analysis of the relationship between auditing and
agnostic learning: Given a fixed positive classification rate, the harm (w.r.t. statistical parity)
suffered by a subgroup is affinely related to the error rate of the subgroup indicator. Thus,
a solution to the agnostic learning problem directly gives a harmed subgroup. Note that
whereas the fairness objective refers to conditioning on a group, which generally doesn’t
preserve a distributional assumption, agnostic learning instead refers to the accuracy under
that “nice” distribution, and hence is easier to analyze. Also note that under a standard
normal distribution, the subclass of halfspaces with a fixed positive classification rate is given
by the halfspaces with unit normal vectors and the same threshold.

» Remark 2. Our reduction to learning halfspaces with fixed positive classification rates can
achieve arbitrarily high precision auditing and does not rely on re-weighting data examples
or make any assumptions on the potentially unfair classifiers. This enables the use of the
existing distribution-specific agnostic learning methods for auditing.

Based on the reduction and a inspiration from Diakonikolas et al. [7], our second major
contribution is a lower bound on the unfairness detectable when auditing for halfspace
subgroups under Gaussian distributions by reducing the problem of continuous Learning
With Errors (cLWE) to auditing. Our hardness results include both multiplicative and
additive forms. More interestingly, we can further show that even “nonconstructive auditing”
is hard, where we do not need to exhibit a discriminated subgroup for a failed audit.
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For our algorithmic results, we will present a general auditing framework given an oracle
for (distribution-specific) agnostic learning. Also, we give a randomized PTAS auditing
algorithm for subgroups determined by homogeneous halfspaces under Gaussian data by
applying the method from Diakonikolas et al. [8].

» Remark 3. We stress that a PTAS for auditing subgroups defined by homogeneous halfspaces
for Gaussian distributions is, in fact, the best guarantee we know so far, hence, not trivial.

At first blush, the reliance on a (prima facie unverifiable) distributional assumption for
the analysis of our auditing algorithm may seem to be at odds with our desire to certify the
fairness of a classifier. Nevertheless, a line of recent works by Rubinfeld and Vasilyan [27]
and Gollakota et al. [15] have shown that the properties of the data that are crucial to these
algorithms for distribution-specific learning of halfspaces can be verified. Thus, these methods
give a way of certifying fairness for families of nice distributions: so long as the data passes
these tests and the audit reveals no subgroup that is significantly harmed, we may guarantee
that the classifier is fair.

This paper will be organized as follows. Some necessary background for our arguments
are given in Section 2. We will present the main reduction from auditing to agnostic learning
in Section 3. Then, we will show the hardness results in Section 4. Section 5 will present
our auditing framework as well as the distribution-specific PTAS algorithm. Finally, we will
discuss the limitations of our approach and suggest directions for future work.

1.4 Related Work

Many authors have considered the problem of ensuring fairness in classification, and Barocas
et al. [3] give a good overview of the broader area. In particular, there are alternatives to the
statistical, group-fairness notions we are considering, for example individual-level fairness
as proposed by Dwork et al. [11], or based on causal modeling, such as the “counterfactual”
fairness notion proposed by Kusner et al. [25]. We cannot do justice to the breadth of
literature and philosophical issues here, and we strongly encourage the interested reader to
consult Barocas et al. The group-fairness notions we consider have their roots in the game-
theory-based approach of Kearns et al. [20] for learning representations with subgroup fairness
by assuming there exists an efficient oracle for auditing. A follow-up study [21] evaluated their
algorithm on real-world datasets. Hébert-Johnson et al. [18] showed a method of obtaining
“multi-accurate” representations by assuming the existence of an efficient auditing oracle.
Further, Kim et al. [23] proposed a variant of statistical fairness called “multi-fairness,” which
allows them to efficiently learn a multi-fair classifier with querying “relative fairness” of data
pairs. As we discussed previously, the auditing oracles in these works were provided by using
linear regression as a heuristic for the optimal halfspace, which does not provide guarantees.
They also did not consider auditing for specific families of distributions. On the other hand,
the works on agnostic learning for specific families of distributions, e.g., [19, 9, 8, 10, 13] do
not consider how their techniques may be applied to the subgroup fairness auditing problem.

2 Preliminaries

We use lowercase bold font characters to represent real vectors and subscripts to index the
coordinates of each vector, e.g., x, represents the i-th coordinate of vector x. We denote the
lp-norm by ||x[|, = (3, xf)l/p, and X = x/||x||2. We model each individual as a vector of

protected attributes, i.e., x € X.
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Further, the probability of an event under a distribution D is denoted by Pryx.p{-}.
N(0,1) denotes a standard normal distribution, where I represents the identity matrix. For
simplicity of notation, we may use N, N, instead of N'(0,1), N'(0,02I) or even drop D and
N from the subscript when it is clear from the context.

» Fact 4 (Rotational Invariance). For any real vector u, if x ~ N(0,1), then a'x ~ N(0,1).

To understand the problem of fairness auditing, it is necessary to define fairness or
unfairness precisely. In this work, we focus on the notion of Statistical Parity Subgroup
Fairness (SPSF). Formally, we have the following definition.

» Definition 5 (Statistical Parity Subgroup Fairness). Fiz any binary classifier ¢ € C such that
c: R — {—1,+1}, data distribution D, collection of subgroups G, and parameter v € [0, 1].
Define

dn(c,g) = Pt {c(x) =1} — Pr{e(x) =1 x € g} 1)

We say that ¢ does not satisfy y-statistical parity fairness (or is y-unfair) with respect to D
and G, if 3g € G such that

Pr{xeg}ldple.g) =9 @

Equation (1) is a straightforward way to quantify how much the positive classification rate
within a subgroup deviates from that of the overall population. The weighting by the size
of the group (i.e., Prx~p{x € g}) is a concession to address the statistical issues that arise
with estimating d on small groups: we cannot escape that our empirical estimates are less
accurate as the size shrinks. Our approach makes no assumptions on the form of the function
c¢; note therefore, that by replacing ¢ with other functions of x, such as whether a given
classifier agrees with a given label, or whether the classifier makes a false-positive error, our
results will immediately extend to other standard notions of statistical subgroup fairness.
The goal of fairness auditing is to develop an “auditing algorithm” to efficiently find such a
certificate g € G for any ¢ € C with sample access to D, formalized as follows.

» Definition 6 (Constructive Auditing [20]). Fiz a collection of group indicators G over the
protected features, and any 0,7,~" € (0,1) such that v/ <. A constructive (v,~)-auditing
algorithm for G with respect to distribution D is an algorithm A such that for any classifier
h, when given access the joint distribution (D, h(D)), A runs in time poly(1/4',1og(1/6)),
and with probability 1 — &, outputs a v -unfair certificate for h whenever h is y-unfair with
respect to D and G. If h is v -fair, A will output “fair”.

Moreover, we will consider a more general type of auditing task, called “non-constructive
auditing”, where the algorithms are only required to tell if a discriminated subgroup exists.

» Definition 7 (Non-constructive Auditing). Under the same setting as Definition 6, a non-
constructive (v,~')-auditing algorithm for G with respect to distribution D is an algorithm
A such that for any classifier h, when given access the joint distribution (D, h(D)), A runs
in time poly(1/+',1og(1/8)), and with probability 1 — 6, claims h is v -unfair whenever h is
~v-unfair with respect to D and G. If h is v'-fair, A will output “fair”.

In this work, we will mainly focus on subgroups defined on halfspaces, a.k.a. linear
threshold functions (LTF) over a d-dimensional real domain. Formally:

5:5
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» Definition 8 (Halfspaces). The class of halfspaces over R? is defined as H? := {x
1 >0

—1 otherwise ’ In particular, the class

sen(vix —t) | x,v € Rt € R} where sgn(z) = {
of homogeneous halfspaces can be defined as {x — sgn(v'x) | x,v € R%}.

Since our reduction involves the subclass of halfspace subgroups of a fixed size, we give
the formal definition of it as follows.

» Definition 9 (Fixed-size Halfspaces). We use H® to represent the collection of all halfspaces
in RY. Then, for any arbitrary distribution D over R%, we define the collection of all
halfspaces with the same (relative) density u as

D._ d _ 11—

M = {heH' | Pr{h(x)=1}=p} (3)
Inj\%)articular, the class of homogeneous halfspaces for a mean-0 Gaussian distribution is
iy,

/2

For conciseness, we may abbreviate Pr{f(x) = 1} and Pr{f(x) = —1} to simply Pr{f} and
Pr{—f} for any binary output functions f : X — {—1,+1} in the rest of the paper.

To state the hardness results, we denote S¥~! := {x € R? | ||x|2 = 1}, Z, := {0,1,...,q—
1}, R, := [0,q), and mod, : R? — R, for the unique translation of the input by ¢Z< to R,
for ¢ € N. The hardness of distribution-specific auditing is based on the assumption that
the problem of “Learning With Errors” (LWE) is computationally intractable. Informally
speaking, in the problem of LWE, we are given labelled examples from two hypothesis cases.
In one case, the labels are biased by some secret vector, while, in another case, the labels are
generated uniformly at random. We wish to distinguish between these cases. We formally
define the problem of LWE [26], following [7]:

» Definition 10 (Learning With Errors). For m,d € N, ¢ € Ry, let Dggmple; Psecrets Pnoise
be distributions on R? R R respectively. In the LWE(m, Dsample; Dsecrets Dnoise, mody)
problem, with m independent samples (x,y), we want to distinguish between the following
two cases:
Alternative hypothesis: (x,y) is generated as y = mod,(s'x + 2), where x ~
Dsampl67 8 ~ Dgecrets 2 ~ Dnoise-
Null hypothesis: y is sampled uniformly at random on the support of its marginal
distribution in the alternative hypothesis, independent of x ~ Dyample.
An algorithm is said to be able to solve the LWE problem with A advantage if the probability
that the algorithm outputs “alternative hypothesis” is A larger than the probability that it
outputs “null hypothesis” when the given data is sampled from the alternative hypothesis
distribution.

This problem is widely believed to be computationally hard, formalized as follows.

» Assumption 11 (Sub-exponential LWE Assumption). For ¢,x € N,a € (0,1) and C > 0
being a sufficiently large constant, the problem LWE(2O(””),Zg,Zg,Ng, mod,) with ¢ < d*
and ¢ = C\/d cannot be solved in 2°(4%) time with 2°(=4") advantage.

3 From Auditing To Agnostic Learning

In this section, we describe our reduction from auditing to agnostic learning. In addition, we
give a lower bound for fairness auditing under Gaussian distributions.
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We are considering the auditing problem w.r.t. SPSF as in Definition 5, which naturally
rules out the statistically small subgroups. Indeed, if the probability of accessing the data of
certain sub-population is exponentially small, it is statistically hard to even estimate their
deviation. Therefore, it makes sense to just consider the collection of subgroups G that are
statistically large enough, e.g., Pr{x € g} = O(1) for x € R%.

Based on the observation, the following optimization program, PP, (G), can capture the
most unfair subgroup which is also statistically significant enough. That is

P € dp(c,
max  Pr{x € g}ldp(c,9)]

2. < <
s.t aixl:;rp{xeg}fb (4)

for some constants 0 < a <b < 1.

Furthermore, if we only consider the subgroups represented by halfspaces, i.e., G = H¢,
there exists a simple reduction from 775 b(?—[d) to agnostic learning that, in particular, preserves
the properties of the data distribution. We show our reduction as the following theorem.

» Theorem 12 (Main Reduction). Given any binary classifier ¢ : R? — {—1,+1}, and a
data distribution D over R? whose 1-dimensional marginals have continuous cumulative
distribution functions, if there exists an efficient algorithm for learning ’HE in the agnostic
model on distribution D, then there is an efficient auditing algorithm for ¢ on subgroups
represented by H? over distribution D.

We delay the proof of the above theorem to the end of this section, and show two fundamental
hurdles we need to overcome in order to prove Theorem 12.

» Remark 13. While learning from a representation class like HE may seems to be hard at
a first glance, there are actually examples [10] of learning ’HE in an agnostic setting under
Gaussian data.

Instead of starting from the optimization problem (4), it turns out that solving a sequence
of simpler optimization problems suffices to certify the y-unfairness as stated in Definition 5.
We state the equivalence in the following proposition. Its proof is deferred to the appendix.

» Proposition 14. Consider any binary classifier ¢ : R* — {—1,+1}, any data distribution
D over R? whose 1-dimensional marginals have continuous cumulative distribution functions,
and any 0 < a < b < 1. For each pair of non-negative integers k < n, let Pgb(k,n) denote
the optimization program

max  Pr {h(x) = 1}|dp(c, )l

k(b—a)
t. Pr{h(x)=1}= e
st Pr{he) =1} =a+=
Let h* be a global optimizer of PP (1Y), as defined in (4), and let v* = Pr{h*} |dp(c, h*)|.
For each k =0,...,n, let hj, be a global optimizer of P(fb(kz, n). Then

2(b—a)

max Pr{hi } dp (e, hf)| = 7" — =

The reason why this proposition is so crucial is that it allows us to solve a simpler

optimization problem without compromising the guarantee. Being able to fix Pr{h(x) = 1}
as a constant will significantly simplify the overall optimization as it reduces the degree of

FORC 2024
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the optimization objective. In fact, it is because we can optimize Pr{h(x) = 1} |dp(c, h)|
over ”HZ? instead of H? that we can conduct the reduction from auditing to agnostic learning.

The following lemma shows a direct relationship between the unfairness level and the
classification error.

» Lemma 15. Given any binary classifier ¢ : X — {—1,+1}, a data distribution D over X
and a collection of subgroups g € G such that g : X — {—1,4+1}, we have

2Pr{g}dp(c,g) = Pr{—c} Pr{~g} + Pr{c} Pr{g} — Pr{c(x) = g(x)}
forx ~D.

Proof. By the law of total probability, we have

Pr{cng} =Pr{g} — (Pr{—c} — Pr{=c N —g}).

which along with Definition 5 gives

dp(c,g) =Pr{c} — Pr{c| g}
:Pr{c} Pr{g} — Pr{cng}
Pr{g}
_ Pr{=c} Pr{-g} — Pr{=cn g}
a Pr{g} '

Summing up the two different forms of dp(c, g) results to
2 (e, g) :Pr{—\c} Pr{—-g} — Pr{-cn g} . Pr{c} Pr{g} — Pr{cng}
Pr{g} Pr{g}
_ Pr{—c} Pr{—g} + Pr{c} Pr{g} — (Pr{-cn g} + Pr{cNg})
B Pr{g}

Notice that, because ¢ N g and —¢ N —g are two disjoint events, we have

Pric(x) = g(x)} =Pr{(cng)U(mcN—g)}
=Pr{cNg}+ Pr{-cn-g}

Plugging it back in to Equation (6) produces the desired result. |
This immediately implies a duality between SPSF auditing and agnostic learning as follows.

» Corollary 16. Given any binary classifier ¢ : R — {—1,4+1}, a data distribution D and a
collection of halfspaces ’HE over R%, we have the following two properties

(1) dp(c,h*) > dp(c,h),Vh € Hf if and only if h* = argming, ¢4 Prx~p{c(x) = h(x)}
(2) dp(c,h*) < dp(c,h),Vh € 1Y if and only if h* = Argmaxy, s » Pryp{c(x) = h(x)}

Proof. Because Pr{c} is a constant and Pr{h} = u,Vh € ’HE by Definition 9, dp(c, h) is
simply an affine transformation of Pr{c(x) = h(x)} for a fixed x by Lemma 15, which implies
the desired results. <

Proposition 14 tells us that solving be(k‘,n) for k = 0,...,n would give us a good
enough approximation to the maximum unfairness level, of course, with a large enough n.
Therefore, we just need to further show that solving each Pgb(k, n) is equivalent to learning
’HE to complete the reduction.
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Formally, because 775 ,(k,n) can be equivalently written as

P Pr{h(x) =1} |dp(c, h)| (7)

for some p = a + k(b — a)/n, it suffices to prove the following theorem.

» Lemma 17. Given any binary classifier ¢ : R — {1, 41}, a data distribution D and a
collection of halfspaces "HE over R? such that

Optmin S xPNI‘D{C(X) = h(X)} S Optmax

Jor all h € HY, if hy,hy € M} satisfy that Pr{c(x) = hy(x)} < opt

I
Pr{c(x) = hu(x)} > opt, . — 2€, we have either

+ 2¢ as well as

min

Pr (e (x) = 1} |dp(e hy)] 2 4" — ¢ (®)
or

Pr {hu(x) = 1} [dp(c, hu)] 27" — ¢ (9)

where v* = maxpey» Prxp{h(x) = 1} [dp(c, h)|.
Proof. By the proof of Lemma 15, we have

2Pr{h}|dp(c, h)| = | Pr{—-c} Pr{=h} — Pr{-cN =h} +Pr{c} Pr{h} — Pr{cNh}|

I Iy

Let h* € H}) be such that Pr{h*} |dp(c, h*)| = v*. Then for I, we have

I, =(Pr{c} — Pr{c | K"} + Pr{c | h*}) Pr{h} — Pr{cNh}
=Pr{h*}dp(c,h*) + Pr{cnh*} —Pr{cNh}

where the last equation is because h* € Y, then Pr{h} = Pr{h*} = p by Definition 9.
Similarly, for I, we can write

I =Pr{-h*}(Pr{—c} — Pr{—c | =h*}) 4+ Pr{-c N -h*} — Pr{-cN —-h}
=Pr{h*}dp(c,h") + Pr{-cN=h*} — Pr{—c N -h}
where the last equation follows because we have shown in the proof of Lemma 15 that

dp (e, h*) = Pr{-h*}(Pr{—c} — Pr{-c | =h*})/ Pr{h*}.
Combining I; and I, will result to

| Pr{h*Ydp (e, ") + Pr{c(x) = h*(x)}; Pr{c(x) = h(x)}

«_ [Prie(x) = P*(x)} - Pric(x) = h(x)}|
2

Pr{h}|dp(c, h)

2

by triangle inequality. Further, since h* maximizes |dp (¢, h)|, it either maximizes or minimizes
dp(e,h). Then, by Corollary 16, we know

P%{C(X) = h* (X)} € {Optminvoptmax}

5:9
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which implies either

|Pr{c(x) = h*(x)} — Pr{c(x) = hy(x)}| < 2¢

or
|Pr{c(x) =h*(x)} — Pr{c(x) = hu(x)}| < 2e
Therefore, the proof is completed. |

» Remark 18. We emphasize that it is necessary for us to consider the guarantee of agnostic
learning in a additive form rather than multiplicative form. Although Corollary 16 shows
that the classification error, Pr{c(x) # h(x)}, and the unfairness level, Pr{h} |dp(c, h)|,
are dual to each other over ’HE,

guarantee on the unfairness from a multiplicative error. This also explains why the guarantee
provided by [10] does not fit in our analysis.

the affine relationship between them prohibits obtaining a

Now we are ready to prove Theorem 12.

Proof of Theorem 12. To solve the auditing problem, we just need to solve the sequence of
optimization problems, {Pa?b(k, n) | k=0,...,n} as described in Proposition 14. We can
solve each be(k, n) with an additive error € by calling the given oracle of learning halfspaces
with the same strategy specified in Lemma 17. Eventually, we solve all of these optimization
problems with an 2(b — a)/n + € additive error and a running time of O(n) factor overhead
compared with that of the oracle. |

4 Intractability Of Auditing Under Gaussian Data

In this section, we will show that the problem of auditing halfspaces subgroups under a
Gaussian distribution is computationally hard in two forms: the multiplicative form and
additive form. To do so, we first show that distinguishing between fair and unfair cases with
respect to halfspace subgroups for Gaussian data is hard. Then, the hardness of auditing
will follow as corollaries.

4.1 Indistinguishability Of Unfairness

We claim it is computationally hard to distinguish between halfspace subgroups that are
evenly fair and halfspace subgroups among which there exists a slightly unfair subgroup with
significant advantage.

» Theorem 19. Under Assumption 11, for any d € N, any constants « € (0,1),6 € Ry, and
any 1ogB d < k < cd where ¢ is a sufficiently small constant, there is no algorithm that runs
in time d°*%) and distinguishes between the following two cases of a joint distribution D of
(x,¢(x)) supported on RY x {—1,4+1} with marginal Dy = N(0,1), with d-°*") advantage:
(i) Alternative Hypothesis: There exist non-negligibly unfair halfspace subgroups, spe-
cifically 3h € H, Prp{h(x) = 1}|dp(c, h)| = Q(1/klogd).
(ii) Null Hypothesis: All halfspace subgroups are perfectly fair, i.e., Prp{h(x) =
1}dp(c,h)| =0,Vh € H?.

The above theorem simply states that the closer the unfairness level of the alternative
hypothesis is to zero (klogd is large), the harder it is to distinguish between these two cases,
where the hardness is reflected on the running time d°*“). Hence, if we restrict the running
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time to a certain order, there is a limitation on how large klogd can be for someone to be
able to distinguish between them with a significant enough advantage. It is this observation
that allows us to prove the hardness of auditing in the next section.

The idea behind the proof of this theorem is to observe that the data generated in the
two hypotheses in certain LWE instances can be reduced to binary labelled ones through
rounding. With such a reduction, the distribution from the null hypothesis case of LWE
will produce perfectly fair data, while the distribution from alternative hypothesis will yield
slightly biased labels where a unfair halfspace subgroup therefore exists. Thus, if we can
distinguish between the fair case from the unfair case with some marginal error, we can solve
the LWE problem. We defer the formal proof to the appendix.

4.2 Auditing With Small Error Is Hard

We now show that the hardness of distinguishability implies the hardness of auditing with
both multiplicative error and additive error.

Suppose an auditing algorithm is guaranteed to return us a ~+'-unfair certificate (a
halfspace) given a ~-unfair classifier ¢, where 4/ <« < 1. The following corollaries show that
~" can never be close to 7.

» Corollary 20 (multiplicative form). Given Assumption 11, there is no polynomial-time
1/poly(d)-approzimation algorithm for constructive auditing for halfspace subgroups under
Gaussian marginals in R%.

Proof. Suppose there exists an auditing algorithm that guarantees to return a Jy-unfair
certificate given a y-unfair collection of halfspace subgroup and access to data with a Gaussian
marginal, where § € (0,1).

For the alternative hypothesis case as described in Theorem 19, given a 1/y/k log d-unfair
collection of halfspace subgroups, we run such an algorithm to obtain a ¢/1/k log d-unfair
certificate, i.e., a halfspace h such that Prypn{h(x) = 1}|dn(c, h)| > §/v/klogd. By the
Hoeffding Bound, we can verify that the empirical estimation of Pryx - {h(x) = 1}|da(c, h)|
is e1-close to 6/v/klogd with high probability by drawing O(1/e?) examples from the
distribution constructed in the alternative hypothesis case.

For the null hypothesis case, with the same argument, we can verify there is no es-unfair
subgroup with high probability given O(1/£3) examples from the distribution in the null
hypothesis case.

Suppose § = Q(1/poly(d)), notice that we only need £1,e2 to be O(1/poly(d)) to ensure
8/vklogd — &1 > e5. However, this implies that our auditing algorithm can distinguish
between the two cases in Theorem 19 with high probability and only runs in polynomial
time, which contradicts to the hardness assumption. |

» Corollary 21 (additive form). Given Assumption 11, for any constants o € (0,1), 8 € Ry,
and any C/y/dlogd < € < c’/log(1+ﬂ)/2 d where C is a sufficiently large constant and ¢
1s a sufficiently small constant, no auditing algorithm can return a unfair certificate for

halfspace subgroups in R with an additive error ¢ under Gaussian marginals and runs in
time dO(1/(*logd)*)

Proof. Suppose there exists an auditing algorithm that guarantees to return a v — e-unfair
certificate given a vy-unfair collection of halfspace subgroups and access to data with a
Gaussian marginal, where € € (0, 1).

Similar to the proof of Corollary 20, given a 1/y/klogd-unfair collection of halfspace
subgroups, we run such an algorithm to obtain a (1/v/klogd — €)-unfair certificate. Observe
that, if € = ¢’ /+/k log d for some sufficiently small constant ¢/, we can solve the testing problem
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in Theorem 19 within time d°*) by running this algorithm as well as drawing enough

examples to estimate the unfairness of the returned certificates from the two cases respectively.

On the other hand, given € = ¢/ //klogd, we can rewrite d°*") = dO(/ (€ logd)*)
However, Theorem 19 tells that the above case is impossible for any C/v/dlogd < € <

¢ /logt+? )/2 4, where C is a sufficiently large constant. <

Besides the general general auditing problem, we also consider the “non-constructive
auditing” problem as in Definition 7, where the algorithm is only required to tell if there
exists an unfair subgroup without returning the unfair certificate. Actually, it turns out any
non-constructive auditing algorithm can distinguish the two cases in Theorem 19.

» Corollary 22 (non-constructive auditing is hard). Given Assumption 11, for any constants
a € (0,1),3 € Ry, and any C/+/dlogd < e < c’/log(:“rﬂ)/2 d where C is a sufficiently large
constant and ¢’ is a sufficiently small constant, no auditing algorithm can tell if there exists
a unfair certificate for halfspace subgroups in R¢ with

an additive error € under Gaussian marginals and running in time dO1/(*logd)*)

or a multiplicative approzimation factor of 1/poly(d) and running in polynomial time.

Proof. Suppose there exists an auditing algorithm that can either tell if a éy-unfair certificate
or a y — e-unfair certificate exists given a y-unfair collection of halfspace subgroup and access
to data with a Gaussian marginal, where 0,¢ € (0,1). With the same argument as that of
Corollary 20 and 21, we can achieve the desired results. |

To the best of our knowledge, there does not exist any PTAS for properly learning general
halfspaces in the agnostic model with guarantees of additive error close to O(1/y/logd).
However, in the next section, we will show that if we restrict out attention to just homogeneous
halfspaces under a standard normal distribution, it is possible to achieve additive error of
O(l/logl/c d) for some constant C' > 2.

5 Auditing Via Agnostic Learning Under Gaussian Distribution

In this section, we present our algorithmic results. Our approach is based on Theorem 12:
auditing over subgroups determined by halfspaces can be accomplished by solving a sequence
of simpler tasks of learning halfspaces. As a result, we are able to take advantage of existing
agnostic learning methods to solve the auditing problem.

Meanwhile, we will discuss the testability of Gaussian distributions and show that existing
distribution testing methods [15, 27] for learning halfspaces will not increase the running time
significantly for our task. In fact, the running time of the testing method is asymptotically
no greater than that of our auditing algorithm.

5.1 Auditing Algorithm for Homogeneous Halfspaces

Assuming there exists an efficient oracle for agnostic learning, Algorithm 1 will eventually
return a halfspace h’ as a certificate of the subgroup that has the highest unfairness level.

Notice, we create a negatively labelled data sets at Line 3 because maximizing (minim-
izing) the unfairness Pr{h} |dp(c, h)| for the ¢(x) = 1 labelling is equivalent to minimizing
(maximizing) Pr{h} |dp(c, h)| for ¢(x) = —1. Thus, by reversing the labels, we can use the
oracle to solve both the maximization and minimization directions.

In the loop, we simply follow our previous reduction by dividing the population constraint
into multiple approximately-fixed-size constraints at Line 11. Then, we solve each sub-task
with a fixed population size by calling the oracle on both data sets at Lines 7 and 8.
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Algorithm 1 Fairness Auditing.

Input:n,a,b, e, 0, D, classifier ¢, oracle O
Result: p/,h’
X « draw N(d,e,6) ii.d. samples from D;
Dt {X, (X))
D« {‘)27 _C(‘/‘?)};
[ a;
(', 1) < (1,0);
while ¢ < b do
hib < O(e,d/?n,u,D});
h, < O(e,0/2n, 1, D~);
if |dp(c,hf)| <|dp(c,h;)| then hf < h ;
10 if y/ |dp(c,h)| < pldp(c, h/‘j)f then (u/,h') < (u,h}) ;
11 w p+(b—a)/n;
12 end

[y

N

© 0w N O ook~ W

We give the guarantees of our algorithm below and defer the proof to the appendix.

» Theorem 23 (Auditing Framework). Given any binary classifier ¢ : R4 — {—1,+1}, a
data distribution D whose 1-dimensional marginals have continuous cumulative distribution
functions, and collections of halfspaces {’HE | u > 0} over RY, if there exists an oracle O
that takes €,6,u € (0,1) and N(d,€,d) labelled i.i.d. samples from D in the form of (x,c(x)),
runs in time T(d,€,d), and returns a halfspace h, such that, with at least 1 — & probability

Pr{hu(x) # e(x)} < hrgqlgj Pr{n(x) # c(x)} +

then there exists an algorithm that takes n € ZT, 0 < a < b < 1, ¢,d € (0,1) and

b
O(N(d,e,d/n)) labeled i.i.d samples from D, runs in time O(nT(d,€,d/n)) and returns a
halfspace h' as a certificate such that a < Pryp{h'} <b and

!/ /
Pr {0} dp(e,W)| = max Pr {1} ldo(e, )] - O)

with at least 1 — § probability.

While our framework heavily relies on the methods of agnostic learning with small additive
error, unfortunately, there are no known methods for learning general halfspaces that can
achieve additive error better than a constant, even under distributions as nice as standard
normal ones.

However, if we restrict our audit to the class of homogeneous halfspaces, Diakonikolas et
al. [8] proposed an agnostic learning PTAS for homogeneous halfspaces under Gaussian data.
That is, we only audit for subgroups with probability mass 1/2.

» Lemma 24 (Learning Homogeneous Halfspaces [8]). Let D be a distribution on labeled
ezamples (x,y) € R? x {—1,+1} whose x-marginal is N'(0,1). There exists an algorithm that,
given 76,8 > 0, and N = dP°Y/Tpoly(1/e)log(1/6) i.i.d. samples from D, the algorithm
runs in time poly(N,d), and computes a halfspace hy such that, with probability at least
1 — 4, it holds that Prp{y # hy(x)} < (1 +7) ming ey, Prp{y # h(x)} +e.
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Now, notice that Lemma 24 gives us an oracle for auditing halfspace subgroups with
population size 1/2 under Gaussian distributions, since by Lemma 15, we know that agnostic
learning with fixed threshold will have constant population size under a Gaussian distribution
and, hence, is equivalent to auditing with fixed population size. Therefore, we can use
this oracle in Algorithm 1 to audit the subgroup class Hf /2 for D = N(0,1). We show our
algorithmic guarantee of a PTAS in the following corollary.

» Corollary 25 (Auditing Under Gaussian). Given any binary classifier ¢ : R? — {—1,+1}, a
data distribution N(0,1) and a collection of halfspaces 7{’1\;2 over R, there exists an auditing
algorithm that takes €,8 > 0 and N = dP°Y(/)poly(1/¢)log(1/5) labeled i.i.d. examples from
N(0,1) in the form of (x,c(x)), runs in time poly(N,d), and returns a halfspace h' as a
certificate such that Prap{h’'} =1/2 and

|dN(Ca h/)| 2 max ‘dN(Ca h)| — 2
heHy,

1/2
with at least 1 — § probability.

Proof. We can simply run Algorithm 1 for just one iteration with the same set of parameters
except that D = N(0,1), n =1, a = b = 1/2 and the oracle being as described by Lemma
24 for 7 = e. Notice that Lemma 24 guarantees us that the requirement on the oracle in
Theorem 23 is satisfied. Thus, we can refer to the proof of Theorem 23 to establish that
running Algorithm 1 for just one iteration suffices. Also, since we only run the algorithm for
one iteration, we have T' = 1, hence, the running time is dominated by the running time of
the oracle, which is poly(V, d). <

5.2 Testability Of Gaussian Distribution

Given the assumption that our algorithm only works under Gaussian distributions, one might
ask if a set of data examples can be tested to be Gaussian without increasing the running
time guarantee in Corollary 25 asymptotically. We will show that this kind of testing can be
accomplished within the same running time as our auditing algorithm.

A recent work by Rubinfeld and Vasilyan [27] has proposed a moment matching method for
testing Gaussian assumptions specifically for agnostic learning. Their method is based on the
observation that linear threshold functions have degree poly(1/€¢) polynomial approximations
with additive error of € [19, 8]. Abstractly, this moment matching testing method estimates
the moments of the data samples up to degree O(1/e*) and check if the element-wise difference
between the estimated moments and the actual Gaussian moments are small. They proved
that running their testing method along with the agnostic learning algorithm proposed by
Kalai et al. [19] will not increase the running asymptotically, i.e., doa/eh.

To see why the testing method in [27] will not increase the asymptotic running time of
our auditing algorithm, we need to dig deeper into the algorithm described by Lemma 24
from [8]. First, they run the learning algorithm of Kalai et al. [19] to get an approximating
polynomial of degree O(1/e*). Then, they estimate the moments of the outer product of
the derivatives of the learned polynomial. Finally, they estimate the classification error of a
collection of halfspaces in a subspace of degree O(1/€*). See [8] for further details.

The most important observation is that every step in the algorithm stated in Lemma 24
only requires estimating the moments of the data up to degree O(1/e*). Thus, running the
moment matching testing method of [27] will only require an additional doa/eh running
time, which will not increase the asymptotic running time of the agnostic learning algorithm
in Lemma 24 or our auditing algorithm.
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6 Future Work

The major drawback of our result is still the lack of approaches of learning halfspaces with a
sub-constant error guarantee for more general distributions. Therefore, a major direction
for fairness auditing remains to develop an agnostic learning method with additive error
guarantees for broader classes, such as log-concave distributions — subject to the constraints
of Corollary 21 /Diakonikolas et al. [7]. Even a computationally efficient learning algorithm
for general halfspaces that can achieve additive error close to O(1/y/logd) under Gaussian
distributions would be an interesting improvement.

An alternative direction is to seek stronger guarantees for conjunctions on such families
of distributions. Conjunctions are more natural in the context of auditing, and their relative
lack of expressive power might enable a better guarantee.
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Proof of Proposition 14. For conciseness of the proof, we define

ak) =a+ Lb —a)
n
Since a < Pr{h*(x) = 1} < b by definition, there must exists a k € {0,...,n — 1} such that
a(k) <Pr{h*(x) =1} < a(k+1)

Then, since we assumed that D has a continuous CDF w.r.t. the normal of h*, we can
construct another halfspace h’' by either increasing or decreasing the threshold of h* until
Pr{x € b’} hits either a(k) or a(k + 1). We thus obtain

Pr{h'(x) # h*(x)} = Pr{h"} — Pr{R'}|
<a(k+1) — a(k)
(b—a)

== (10)

Let dom := {x | h/(x) # h*(x)}. Then, by the triangle inequality and the fact that
Pr{c(x) = 1} < 1, we have

[Pr{h*}dp(c,h*)| — |Pr{h'}dp(c, )

<|Pr{n*} — Pr{h'}| + |Pr{h' Nnc} — Pr{h* Nc}|

g(b%‘) +|Pr{k N ecndom} — Pr{h* NN dom}|

(b—a)

< + | Pr{x € dom}|
2(b—a)

<2 (1)

where the second inequality is obtained by expanding Pr{h N ¢} on the event x € dom using
the law of total probability and exploiting the fact that h’ always agrees with h* on the
complement of dom, i.e., Pr{h’NcNdom*} = Pr{h* NcNdom®}; the third inequality holds
because at most one of h*(x) = 1 and h/(x) = 1 holds for any x € dom by definition; and
the last inequality is due to equation (10).

Finally, due to the optimality of A}, we have

Pr{hj}ldp(c, hi)| = Pr{h'} |dp(c, )| = v+
2(b—a)

n

by inequality (11) with Pr{h*(x) = 1} |dp(c, h*)| = v*. <

>y —

B Proof Of Hardness

We will need the following proposition from [16, 7] in the proof of theorem 19.

» Proposition 26 ([16, 7] Hardness of cLWE). Given Assumption 11, for any d € N, any
constants k € Nya € (0,1),8 € Ry and any logﬁ d < k < Cd where C > 0 is a sufficiently
small universal constant, the problem LWE(dO(kQ),N, S N, modr) over R* with o > k™"
and T = 1/C'\/klogd, where C' > 0 is a sufficiently large universal constant, cannot be
solved in time d°*%) with d=°*") advantage

The problem of continuous Learning With Error (cLWE) under Gaussian distribution is
known to be as hard as LWE. Now we are ready to prove the main theorem.
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Proof of Theorem 19. We give an efficient method taking as input samples from a dis-
tribution D’, that is either from the alternative hypothesis or the null hypothesis of
LWE(d°**) A7(0,1), 84", N'(0, o), modr) from Proposition 26, and generate samples from
another distribution D with the following properties: if D’ is from the alternative (resp. null)
hypothesis of the LWE problem, then the resulting distribution D will satisfy the alternative
(resp. null) hypothesis requirement of the theorem for the halfspace auditing problem.

The reduction process can be formulated as follow: for a sample (x,y) from a instance D’
of the problem TWE(d?*") A7(0,1),S% ', N(0,0), modz) from Proposition 26, we simply
output (x,c(x)) ~ D, where

+1, ify<T/2
co(x) =
—1, otherwise

We argue that D satisfies the desired requirement stated above.

For the alternative hypothesis case, let D’ be from the alternative hypothesis case of
the LWE. Let s be the secret vector in the LWE problem. We consider the following two
halfspaces:

hi(x) =sgn(s'x — T/6)
ha(x) =sgn(—s'x + T/3)

If we can show ‘Pr,wpx {h1(x) = 1}dp(c, h1) + Prxp, {h2(x) = 1}dp(c, hg)‘ = Q(T), then
either h = hy or h = hy satisfies Pryp, {h(x) = 1} |dp(c, h)| = Q(T), which implies the
desired property of the alternative hypothesis we would like to prove. By Lemma 15, we have

2 Pr {hl(X) = 1}dD(C, hl) + 2xféx{h2(x) = 1}dp((3, hg)

x~Dy

=Pr{-c}(Pr{-h1} + Pr{-ho}) + Pr{c}(Pr{h1} + Pr{ha})

— (Pr{e(x) = hi(x)} + Pr{c(x) = ha(x)})

Iy

To bound I, I5, we first examine the subset of domain where hy and hy agree, namely

B :={x € R | hy(x) = ha(x)}
={x € R [ hy(x) =1 N ha(x) =1}
={xeR?|s"x €[1/6,7/3]}

Then, for I, by the law of total probability, we have
I =Pr{c(x) = —1}(Pr{hi(x) = —1} + Pr{ha(x) = —1} + Pr{x € B} — Pr{x € B})
+ Pr{c(x) = 1}(Pr{hi(x) = 1} + Pr{ha(x) = 1 N x ¢ B} + Pr{ha(x) =1 N x € B})
D pr{e(x) = —1}(1 — Pr{x € B}) + Pr{c(x) = 1}(1 + Pr{x € B})
—1+ Pr{x € B}(Pr{c(x) = 1} — Pr{c(x) = —1})

=1+ Pr{x € B}(2Pr{c(x) =1} — 1)
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where (i) is because {x € R? | hy(x) = —1},{x € R? | ha(x) = —1},{x € B} are pairwise
disjoint and their union equals to R?, {x € R? | hy(x) = 1},{x € R? | ha(x) =1 N x ¢ B}
are disjoint and their union equals to R¢; and since {x € B} C {x € R? | hy(x) = 1} by
definition, {x € B} = {x € B | ha(x) = 1}.
For I, because for any x € B, hj(x) = ha(x) = 1 by construction, and by the law of
total probability, we have
I =Pr{c(x) = hi(x) N x ¢ B} +Pr{c(x) =ha(x) N x ¢ B} +2Pr{c(x)=1 N x € B}
=Pr{x ¢ B} +2Pr{c(x)=1 N x € B}
—1+Pr{e(x)=1 N x € B} — Pr{e(x) = -1 N x € B}
—1 - Pr{x € B}(1 — 2Pr{e(x) =1 | x € B}
By the definition of ¢ as well as the Alternative case distribution of the LWE problem,
{x € R? | ¢(x) = 1} is equivalent to {x € R? | mod r(s"x + 2) < T/2} for some
z ~ N(0,0?). Furthermore, we have

{x € R? | mody(s'x +2) < T/2} = U{STX +z e (KT, kT +1T/2]}
kEZ

Notice that s 'x + z is a one dimensional Gaussian random variable, which, by symmetry of

Gaussian distribution, implies Pr{c(x) = 1} = Pr{ U rez{s 'x +2 € (KT, kT +T/2]}} = 1/2.

Therefore, combining I; and I gives
I — I =2Pr{x € B}(Pr{c(x) =1} — Pr{c(x) =1 | x € B})
=Q(T)(1/2 —Pr{c(x) =1 | x € B}) (12)

where the last equation is because s'x ~ AN(0,1), hence, Pr{x € B} = Pr{s'x €
[T/6,T/3]} = Q(T). Since we were only concerned with showing |I; — I| is large, it
suffices to show Pr{c(x)=1|x € B} —1/2 =Q(1).

For x € B, we have s'x € [T/6,7/3], therefore ¢(x) = —1 only if |2| > T//6. Notice
that 2 ~ N(0,02) and Proposition 26 states that the LWE problem is hard for any fixed
constant kK € N and o > k™%, Given the constant § € R, in this theorem, we can take
k=[1/28+1/2+ 1], which is a fixed constant. Then, by Proposition 26, the LWE problem
is hard for 0 = k=% < 1/(k%/2\/Togd) = o(T). Therefore, by a Gaussian tail bound, we have

Pr {¢(x)=-1|xeB}< z~/\E(r)702){‘Z| >T/6} =o(1)

x~Dy
Plugging the above back into Equation (12), we can conclude that

xrl\?%x{hl(x) = l}dD(C, hl) + xféx{hg(x) = 1}dD(C, hg) = Q(T)

Thus, either h = hy or h = hy must satisfy Prep, {h(x) = 1}|dp(c, h)| = QT'), which
completes the proof for the alternative hypothesis case.

For the null hypothesis, we can immediately see that Pryepn{h}dar(c,h) = 0,Yh € H?
because c(x) is independent from each h € H.

It remains to verify the time lower bound and the distinguishing advantage for auditing
halfspace subgroups. From Proposition 26, we know that under Assumption 11, for the
problem LWE(d°®*), A/(0,1),S% 1, N(0,02), modz) with any ¢ > k=% (where x € N is a
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constant) and T' = 1/c’/klogd, where ¢’ > 0 is a sufficiently large universal constant, the
problem cannot be solved in d°*”) time with d~°*") advantage. Therefore, under the same
assumption, there is no algorithm that can solve the decision version of auditing problem
w.r.t. halfspace subgroups in d®**) time with d~°*") advantage. <

C Analysis Of Algorithm

We prove the correctness, time and sample complexity of Algorithm 1.

Proof of Theorem 23. Let’s notice that, although each iteration of the loop in Algorithm 1
solves miny ey Pr{c(x) # h(x)} and max,eqp Pr{c(x) # h(x)}, it is essentially equivalent
to solving maxyey o |dp (e, h)| according to Lemma 17. As the oracle returns a halfspace
with additive error smaller than e with probability at least 1 — ¢, we have that

_ €
max(|dp(c, h;)‘ ) |dD(Ca hu)’) > 5161%},% |dD(Ca h:)| - ;

with probability at least 1 — d/n because of Lemma 17 as well as a union bound.

Across all iterations, the algorithm maximizes p ’dp (¢, h;‘)| over HE for p increase from
a to b with step size (b — a)/n. With a union bound over all n iterations, we obtain the same
additive error € in every iteration, with probability at least 1 — §. As a result, the algorithm
equivalently solves

max  Pr {h(x) =1} |dp(c, )l

2. < =1} <
s.t aixfé%{h(x) 1} <b

with probability at least 1 — ¢ for an additive error at most 2(b — a)/n + € according to
Proposition 14, which completes the proof. |
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