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Abstract
Increasing diversity in a community or an organization requires paying attention to many different
aspects, including recruitment, hiring, retention, climate, and more. In this paper, we focus on
how climate, captured through network interactions, can affect the growth or decay of minority
populations within that community. Building on previous work, we develop a dynamic stochastic
block model that grows according to a weighted version of preferential attachment, while having some
memory of previous edges as well. This models how interactions between nodes in the network can
influence the recruitment of new nodes to the network. We derive a deterministic approximation of
this random system and prove its convergence is determined by the network parameters. Additionally,
we show how the memory of the network affects convergence under different parameter regimes,
and we validate this model by assessing the growth of women scientists in the American Physics
Society’s co-authorship network.
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1 Introduction

While efforts have been made since the 1920s to desegregate and diversify the workplace,
modern notions of diversity primarily originate from policies in the 1960s during the Civil
Rights Era [21]. The Civil Rights Act of 1964 put an end to the “de facto” policies that
discriminated against classes of workers [16]. The benefits of diverse organizations are
well-documented; studies and computational experiments show that diverse organizations
have increased feelings of belonging and satisfaction amongst workers, and increased problem-
solving ability [17, 23].

There has been a large body of work in recent years that has focused on how hiring
practices can be amended to be more inclusive and support diversity [33, 40, 45, 29, 37, 48].
However, real-world experience shows that many times so-called “inclusive hiring” programs
can mask deeply entrenched social biases that still privilege the status quo [27, 11].
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In addition to hiring, growing diversity in an organization also requires focusing on what
happens after someone is hired. Harvard Business Review reports that U.S. companies
invest a total of 8 billion dollars on Diversity, Equity, and Inclusion (DEI) trainings per
year [26]. However, studies show that there remains a large problem with diversity in these
organizations [5, 38, 27].

Culture is a huge part of an individual’s experience in a community. An institution that
does a good job of recruiting under-represented people but does not have a climate that
encourages their retention will ultimately revert to the status quo [6]. In this paper, we
explore the connection between the growth of diversity in a community and the connections
and collaborations among the people in the community.

Network analysis allows a way to link “micro-scale” interactions to “macro-scale” or-
ganizational structure and dynamics [19, 35, 28]. In this sense, the key micro-scale insight
about organizational networks is that in recruiting, people tend to favor candidates similar
to them, or those who fit the dominant culture of the organization [43, 11]. The employee
referral system, hiring bias, and the infamous “culture fit” qualification are all examples
of this phenomenon [43, 44]. As an organization’s network grows in this way, it tends to
reproduce the demographics already present in the network. This is known as homophily, a
term developed to capture how interpersonal networks tend to self-cluster around shared
characteristics [35]. In the context of networks, this can be captured through the notion of
preferential attachment [9], a weighted version of which we use in this paper.

It has been shown that social ties and networks can impact employment [14, 49] and
education outcomes [15]. This property is important to consider for diversity because
networks with strong homophily tend to become less diverse over time [2, 44]. We wish
to create a model that can capture this phenomenon, and demonstrate how under certain
network conditions, it can be prevented. Analysis like this creates an opening for researchers
to go beyond assessing inclusive policies from a purely qualitative standpoint and towards
a mathematical characterization of organizational “climate”. Additionally, to validate this
model in real-world settings we look towards the coauthorship network of the American
Physical Society (APS) from 1980 to 2009, to assess how the collaboration structure has
impacted the proportion of women authors in APS.

2 Background and Related Work

Many works try to mathematically assess the dynamics of organizations and their impact on
diversity. Some works propose ecological models, particularly ecological theories of affiliation
to understand how organizational networks grow over time [34]. Others use agent-based
modeling approaches, where agents of different communities will have different access to
information and algorithms to solve problems [23, 18]. We will focus on network-oriented
approaches.

The classic preferential attachment algorithm for network growth was introduced in [9].
The growth of scientific collaboration networks has been specifically studied in [10, 24].
Strategic perspectives on these collaborations have also been studied in [25]. How network
growth relates to the communities formed is studied in [8]. [41] provides a formulation of
“social capital” in networks, which defines how value can be generated based on one’s position
in a social network, through useful information, personal relationships, or the ability to
organize groups. In heterogeneous networks, it has been shown that “broker” nodes with ties
that connect clusters and span the “structural holes” of the network have greater access to
social capital due to their unique access to diverse information [13]. To this end, measures
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of “betweenness” in networks have been used as a way to identify which nodes tend to
span structural holes [33]. Research has also been done on the strength of weak ties, or
connections that are accessed less frequently, in networks. Due to the nature of strong ties
being connections that are accessed frequently, much of the information shared in networks
of strong ties becomes redundant, and through weak ties, more novel information can be
accessed [19].

Recently, [12] utilized the Stochastic Block Model to show how diversity in a heterogeneous
network evolves under homophily and preferential attachment. The model in [12] is very
similar to the model in [47], which also tries to capture biased network growth through
homophily. This model was able to mathematically prove threshold effects under which
minority populations would proportionally vanish or reach parity in the network, showing
that low cross-community collaboration rates will always lead to the minority vanishing [12].
However, one of the main oversights of this model was its lack of long-term memory. In
particular, it was assumed that the network was renewed at every time step. In time-evolving
networks, memory is crucial in the understanding of complex temporal systems and can have
great influence on emergent properties of the network [42, 36]. Works such as [20] have also
explored how memory of social connections influences network communities. Without any
encoding of memory, the model dynamics in [12] were essentially a sequence of independent
static graphs with new nodes added. This paper’s model seeks to build on [12] with the
addition of a “memory” parameter which influences how long edges persist over time steps.

3 Main Contributions

In our paper, we contribute the following:
(1) Develop a model that builds on [12] that captures how homophily can affect diversity

in collaboration networks while accounting for memory in the collaborations (edges) of
the graph. We show that certain network conditions can lead to a decline in minority
populations (Section 4).

(2) Characterize the effect memory has on the rate of growth of the minority population
and provide parameter regimes where memory can change the fixed point of the system,
using a deterministic approximation to the stochastic system (Sections 5 and 6).

(3) Validate this model on gender diversity in scientific collaborations using the American
Physics Society’s citation network dataset [1]. In particular, we see in Figure 1 that the
best-fit model we propose can roughly predict the growth of the minority population
(women) in this dataset. We discuss this figure in more detail in Section 7.

4 Model Overview

Our basic model here replicates many of the features of [12]. We consider a Stochastic
Block Model with two communities as the underlying structure. Nodes have weights that
correspond to their “success” (which is the weighted sum of the collaborations (edges) of the
node). Successful nodes are more influential in the recruitment of new nodes to the network
(preferential attachment). Homophily plays a key role in recruitment since nodes only recruit
members of their own community. The combination of homophily and preferential attachment
leads to a rich-get-richer phenomenon, and we are interested in how the minority community
evolves over time. We summarize key model features here:

(i) Community Structure: We use a two-community (Red/Blue) Stochastic Block Model to
account for differential interactions between different communities.

FORC 2024



6:4 Modeling Diversity Dynamics in Time-Evolving Collaboration Networks

Figure 1 Plot of the proportion of women in the APS co-authorship network from 1980-2009.
The best-fit model identified, with memory parameter q = 0.265 is shown in orange, and the model
from [12], with memory parameter q = 0 (i.e. no memory) is shown in green.

(ii) Collaborations: In this network model, nodes represent people, and edges between nodes
represent collaborations between two people. These edges will be weighted to account
for how “successful” a collaboration is.

(iii) Node Influence: The weight of a node is the sum of the weights of all its edges. Nodes
with higher weight can recruit more new nodes.

(iv) Homophily: A node will always recruit new nodes of the same color (sub-community).
This leads to a rich-get-richer phenomenon since nodes with higher weight tend to
recruit more nodes (weighted preferential attachment). The total number of nodes from
a community (say red nodes) arriving at a particular time depends on the total weight
of red nodes in the graph at the preceding time.

(v) Memory: Given a collaboration network, people who have collaborated in one timestep
are more likely to collaborate again in the next timestep. This is the key point of
divergence from the model in [12]. While [12] assumed that brand-new collaborations
were created at every time step, here we allow collaborations to persist over multiple
time steps.

4.1 Weighted Stochastic Block Model

The Stochastic Block Model (SBM) [22] is a generalization of the Erdös-Rényi G(n, p)
random graph, which supports the interactions of multiple communities within the graph [31].
Weighted SBMs have been studied in [3, 4, 39]. In this paper, we consider two communities,
Red and Blue. Without loss of generality, assume Red is the minority community. To
maintain consistency with [12], we mirror much of the notation below.

▶ Definition 1 (Weighted Stochastic Block Model). Let [n] = {1, ..., n} be a set of nodes,

where each node i ∈ [n] has color c[i] ∈ {R, B}. Define interaction matrix P =
[
µRR µRB

µBR µBB

]
and weight matrix W =

[
wRR wRB

wBR wBB

]
where P, W > 0. Generate a weighted random graph

on [n], so that for every pair of nodes i, j ∈ [n]2, the edge’s weight wi,j = wc[i],c[j] with
probability µc[i],c[j]/n, and otherwise wi,j = 0.
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For this paper, we assume our matrices P, W are such that µRR = µBB , wRR = wBB and
µRB = µBR, wRB = wBR. Also note that the entries µc[i],c[j] of matrix P are not themselves
probabilities. The probability of an edge existing between two nodes is µc[i],c[j]/n. One can
think of µc[i],c[j] as the expected number of edges a node of color c[i] will form with nodes of
color c[j] in the network without any memory.

4.2 Stochastic Block Model Dynamics

We assume that the recruitment of new nodes to the network happens in discrete time steps,
and a constant fraction of new nodes join the network at each time step.

▶ Definition 2 (Stochastic Block Model Dynamics). Let Gt = (Vt, Et) be our graph at time t.
Assume this graph contains nt nodes, with nR

t Red nodes and nB
t Blue nodes. At each time

step, ⌈λnt⌉, λ > 0 new nodes are added to the network. Additionally, define edge holdover
probability q ∈ [0, 1]. Our procedure for generating the subsequent graph Gt+1 is as follows:
(1) Calculate the total weight of Red nodes and Blue nodes in Gt, defined as

Rt =
∑

c[i]=R

∑
j∈[nt] wij, and Bt =

∑
c[i]=B

∑
j∈[nt] wij.

(2) Define intermediate graph G+
t = (Vt, E+

t ) where for every edge (i, j) ∈ Et, with probability
q let (i, j) ∈ E+

t , otherwise remove it.
(3) Add mt+1 := ⌈λnt⌉ new nodes to graph G+

t . Each incoming node is Red with probability
Rt

Rt+Bt
, or Blue with probability Bt

Rt+Bt
.

(4) Initialize Gt+1 = G+
t , and for all potential edges (i, j) /∈ E+

t , generate them according
the Weighted Stochastic Block Model with parameters P and W.

(a) Create Gt accord-
ing to the Weighted
SBM. Calculate Rt =
10, Bt = 4.

(b) Create intermedi-
ate graph G+

t , where
an edge stays with
probability q and de-
letes otherwise (de-
leted edges denoted
by gray dashed lines).

(c) Add ⌈λnt⌉ new nodes
to the graph. These nodes
are Red with probability

Rt

Rt+Bt
= 5

7 and Blue with
probability Bt

Rt+Bt
= 2

7 .

(d) Create graph Gt+1 by
re-drawing edges according
to the Weighted SBM. Cal-
culate Rt+1 = 10, Bt+1 =
10.

Figure 2 Visualization of the Stochastic Block Model Dynamics described in Definition 2 for

P =
[

0.7 1
1 0.7

]
, W =

[
3 2
2 3

]
, q = 0.5, λ = 0.5. Figure 2a shows initialization of Gt. Figure 2b

shows the intermediate graph G+
t with some edges persisting according to the q parameter. Figure

2c shows new nodes being added to the network according to preferential attachment, and Figure 2d
shows the creation of Gt+1 according to the Weighted SBM from Definition 1.

The recruitment dynamics in step (3) of Definition 2 come from our assumption of
homophily and preferential attachment. New Red nodes are recruited by existing Red nodes
and arrive proportional to the total weight of Red nodes in the network. The same is true
for Blue nodes. Let wi =

∑
j∈[nt] wi,j be the weight of a node i, and w =

∑
i∈[nt] wi be the

total weight of all nodes. Then our recruitment dynamics in step (3) are equivalent to every
node i recruiting on average mt+1 · wi

w nodes of the same color.

FORC 2024
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5 Deterministic Approximation

To understand the stochastic system, we will construct a deterministic approximation that
follows the mean of the system. We will show that the stochastic system does not deviate too
far from the deterministic system. For this, we first compute the probability that an edge
exists at a given time. Because the graph has memory, the probability of an edge existing at
time t is dependent on all previous graphs {Gk|k ≤ t}. We define the event Eij(t) on each
edge (i, j) ∈ Et, where Eij(t) :=

{
edge (i, j) exists at time t

}
.

▶ Lemma 3. Let ΠRR(t) := Pr(Eij(t)|c[i] = c[j] = R). Then:

ΠRR(t) = µRR

nt
+

t−1∑
k=0

µRR

nk

t∏
j=k+1

q

(
1 − µRR

nj

)
. (1)

Proof. Fix edge (i, j) ∈ Et. Without loss of generality, assume c[i] = c[j] = R. We derive
the probability of event Eij(t) by conditioning on the previous timestep Eij(t − 1) with our
edge holdover probability q.

Pr(Eij(t)) = Pr
(
Eij(t)|Eij(t − 1)

)
Pr(Eij(t − 1)) + Pr

(
Eij(t)|Ec

ij(t − 1)
)
Pr(Ec

ij(t − 1))

(2)

=
(

q + (1 − q)µRR

nt

)
Pr(Eij(t − 1)) +

(
µRR

nt

)(
1 − Pr(Eij(t − 1))

)
(3)

= µRR

nt
+ q

(
1 − µRR

nt

)
Pr
(
Eij(t − 1)

)
. (4)

This produces a recursive relationship with initial condition Pr(Eij(0)) = µRR

n0
. We solve this

inductively, yielding

ΠRR(t) := Pr(Eij(t)|c[i] = c[j] = R) = µRR

nt
+

t−1∑
k=0

µRR

nk

t∏
j=k+1

q

(
1 − µRR

nj

)
. (5)

completing the proof. ◀

We can similarly define and compute probabilities ΠRB(t) and ΠBB(t). Define the minority
fraction in the network as

(ϕt)t≥0 := nR
t

nt
= nR

t

nR
t + nB

t

. (6)

Where nR
t , nB

t are the number of Red and Blue nodes in the network at time t, respectively.

▶ Lemma 4. Assume ∃ε ∈
(
0, 1

2
)

such that
(

1
nt

) 1
2 −ε

≤ ϕt ≤ 1
2 . Let Ft be a filtration until

time t. Let

Γq(xt) := x2
t wRRΠRR(t) + xt(1 − xt)wRBΠRB(t)

(x2
t + (1 − xt)2)wRRΠRR(t) + 2xt(1 − xt)wRBΠRB(t) . (7)

Then, we can bound the conditional expectation of our process E[ϕt+1|Ft] as follows:

ϕt + ⌊λnt⌋
nt

·
(

1 − 1
n

ε/5
t

)
Γq(ϕt)

1 + ⌊λnt⌋
nt

≤ E[ϕt+1|Ft] ≤
ϕt + ⌈λnt⌉

nt
·
(

1 + 1
n

ε/5
t

)
Γq(ϕt)

1 + ⌈λnt⌉
nt

, (8)

with probability at least 1 − 8
exp(C1nε

t ) , where C1 = min
{

µRR

24 , µRB

12
}

and ε ∈ (0, 1
2 ).
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The proof of Lemma 4 is given in the Appendix A.1. We notice that the limit as t → ∞ of
the lower and upper bounds in Lemma 4 goes to ϕt+λ·Γq(ϕt)

1+λ . This motivates the consideration
of the following deterministic system, Φt, to approximate the stochastic system behavior.

▶ Definition 5 (Deterministic System). We define the deterministic system Φt as:

Φt+1 = Φt + λ · Γq(Φt)
1 + λ

, Φ0 = nR
0

n0
, (9)

where Γq(xt) is as before:

Γq(xt) = x2
t wRRΠRR(t) + xt(1 − xt)wRBΠRB(t)

(x2
t + (1 − xt)2)wRRΠRR(t) + 2xt(1 − xt)wRBΠRB(t) . (10)

We derive this expression in more detail in Appendix Sec. A.2.

6 Analysis & Discussion of Deterministic System

In this section, we prove the existence of parameter regimes that will dictate the convergence
of the deterministic system. Define ρt := ΠRR(t)wRR

ΠRB(t)wRB
. This will be a key parameter in our

analysis of the system’s behavior.

▶ Lemma 6. For q > 0, the limit limt→∞ ρt := ρ = µRRwRRSq
RR

µRBwRBSq
RB

exists, where we define Sq
RR

as:

Sq
RR = lim

t→∞
(1 + λ)−t +

t−1∑
k=0

(1 + λ)−k
t∏

j=k+1
q

(
1 − µRR

n0
(1 + λ)−j

)
, (11)

Sq
RB = lim

t→∞
(1 + λ)−t +

t−1∑
k=0

(1 + λ)−k
t∏

j=k+1
q

(
1 − µRB

n0
(1 + λ)−j

)
. (12)

For q = 0, we have ρt = ρ0 = µRRwRR

µRBwRB
.

The proof is in Appendix Section A.3. Now, consider the function ft : [0, 1] → [0, 1], such
that

ft(x) = x + λΓq(x)
1 + λ

=
x + λ

(
x2wRRΠRR(t)+x(1−x)wRBΠRB(t)

(x2+(1−x)2)wRRΠRR(t)+2x(1−x)wRBΠRB(t)

)
1 + λ

(13)

= 2x3(ρt − 1) − x2(ρt − 1)(2 − λ) + x(ρt + λ)
(1 + λ)(2x2(ρt − 1) − 2x(ρt − 1) + ρt)

. (14)

The simplifications above follow from algebra. ft(x) captures the update function for the
deterministic system in Def. 5. We establish the following properties of ft.

▶ Lemma 7. ft(x) converges uniformly to f(x) as t → ∞, where

f(x) = 2x3(ρ − 1) − x2(ρ − 1)(2 − λ) + x(ρ + λ)
(1 + λ)(2x2(ρ − 1) − 2x(ρ − 1) + ρ) .

Proof. The denominator of ft(x) is (1 + λ)
(
2x2(ρt − 1) − 2x(ρt − 1) + ρt

)
. This denominator

is quadratic, with discriminant

D = 4(1 + λ)2(ρt − 1)2 − 4(2)(1 + λ)2(ρt − 1)ρt = −4(1 + λ)2(ρ2
t − 1). (15)

FORC 2024
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In the case of ρt > 1, we have D < 0, meaning ft(x) is strictly bounded away from 0 for all
x ∈ R. For ρt = 1, our denominator is simply (1 + λ)ρt, and we have ρt > 0 by assumption.
However, in the case of ρt ∈ (0, 1), we see that the discriminant D > 0 and the denominator
of ft(x) has real roots. We show that these roots must lie outside the domain of ft(x), and
thus do not impact its convergence.

To prove this, assume ρt ∈ (0, 1). By the quadratic formula the denominator of ft(x) has
roots x1, x2, defined as

x1, x2 = 2(ρt − 1) ±
√

−4(ρ2
t − 1)

4(ρt − 1) . (16)

We first show that x1 := 2(ρt−1)+
√

−4(ρ2
t −1)

4(ρt−1) < 0. This is equivalent to proving 2(ρt − 1) +√
−4(ρ2

t − 1) > 0. We construct the following chain of implications

2(ρt − 1) +
√

−4(ρ2
t − 1) > 0 (17)

⇐⇒ −2(ρt − 1) <
√

−4(ρ2
t − 1) (18)

⇐⇒ 2(1 − ρt) < 2
√

1 − ρ2
t . (19)

Since ρt ∈ (0, 1), we know both 1 − ρt < 1 − ρ2
t , and 1 − ρ2

t <
√

1 − ρ2
t , thus proving the

claim. To show that x2 := 2(ρt−1)−
√

−4(ρ2
t −1)

4(ρt−1) > 1, we aim to prove the equivalent statement
2(ρt − 1) −

√
−4(ρ2

t − 1) < 4(ρt − 1). Again we construct a chain of implications.

2(ρt − 1) −
√

−4(ρ2
t − 1) < 4(ρt − 1) (20)

⇐⇒
√

−4(ρ2
t − 1) > −2(ρt − 1). (21)

Inequality (21) is identical to (18), thus proving the claim. Since we have shown that no
roots can exist in the denominator of ft(x) for x ∈ [0, 1], we can express the limit as follows:

lim
t→∞

ft(x) = limt→∞ 2x3(ρt − 1) − x2(ρt − 1)(2 − λ) + x(ρt + λ)
limt→∞(1 + λ)(2x2(ρt − 1) − 2x(ρt − 1) + ρt)

(22)

= 2x3(ρ − 1) − x2(ρ − 1)(2 − λ) + x(ρ + λ)
(1 + λ)(2x2(ρ − 1) − 2x(ρ − 1) + ρ) . (23)

which gives the desired result. ◀

▶ Lemma 8. For any fixed t, if 0 < x < 1/2:
(1) If ρt > 1, then ft(x) < x.
(2) If ρt < 1, then ft(x) > x.
(3) If ρt = 1, ft(x) = x.
Similarly, if 0 < x < 1/2
(1) If ρ > 1, then f(x) < x.
(2) If ρ < 1, then f(x) > x.
(3) If ρ = 1, f(x) = x.
The proof of this follows similarly to [12] and is omitted.

▶ Lemma 9. f(x) has fixed points at x = {0, 1
2 , 1} if ρ ̸= 1. If ρ = 1, then f(x) = x ∀x.

Furthermore, for x ∈ (0, 1/2) the function f(x) monotonically converges to 0 when ρ > 1,
monotonically converges to 1/2 when ρ < 1, and remains constant if ρ = 1.



C. Archer and G. Ranade 6:9

The proof follows directly from [12] and is omitted.

▶ Theorem 10.
If ρ > 1, the deterministic system Φt will converge to 0.
If ρ < 1, the deterministic system Φt will converge to 1

2 .

Proof. If ρ > 1, then there exists T0 where we have ρt > 1 for t ≥ T0. Thus for t > T0
Lemma 8 implies that Φt+1 < Φt. Since Φt ∈ [0, 1/2] is monotonically strictly decreasing, it
must converge to a limit. We claim that this limit must be 0.

For contradiction, let Φt converge to α > 0. Since Φt is decreasing it must converge from
the right and there exists T1 such that for t > T1, we have Φt > α.

Let f(α) = β < α, by Lemma 8. By the continuity of f , we have a neighborhood of α

such that for all x in that neighborhood, f(x) is arbitrarily close to β. Hence, there exists δ

such that

f(α + δ1) < α − α − β

2 (24)

for all δ1 ∈ (0, δ).
Lemma 7 implies that ft converges uniformly to f , and there exists T2 such that for

t > T2, we have |ft(x) − f(x)| < α−β
4 for all x. Note that ft(Φt) = Φt+1 by definition of the

update function ft(x), so we have

|ft(Φt) − f(Φt)| = |Φt+1 − f(Φt)| <
α − β

4 . (25)

Consider Φt ∈ (α, α + δ) for t > max{T0, T1, T2}. We combine equations (24) and (25) to
get:

Φt+1 < f(Φt) + α − β

4 < α − α − β

2 + α − β

4 < α. (26)

But this is a contradiction, and therefore Φt must converge to 0. A similar argument holds
in the case of ρ < 1. ◀

6.1 The Role of Memory in the Deterministic Approximation
This paper considers a memory parameter q, which is the probability that an edge from
one time step persists to the next time step, and this is the primary extension to the model
in [12]. Define ρ0 := µRRwRR

µRBwRB
, which is the threshold parameter of the model in [12] with

q = 0, as well as the value of ρt at t = 0.
In the case that ρ0 ≠ 1, we empirically observe that the value of q only changes the

convergence rate of the system to a particular fixed point, and does not change the fixed
point itself (Figure 3). In Figure 3a, we see that since µRR < µRB and ρ0 < 1, increasing q

causes our process to converge to 1
2 at a slower rate. In Figure 3b, we see that µRR > µRB

and ρ0 > 1, therefore increasing q causes the process to converge to 0 slower. Additionally,
we see that for q ∈ {0, 0.5, 0.75}, the approximation trajectories are all roughly the same. It
is only once q ∈ {0.95, 1.0} that the approximation starts to noticeably differ in its trajectory.

In the case where ρ0 = 1, in the absence of any memory the fraction of the minority will
remain constant. However, we see that the inclusion of memory propels the system towards
a fixed point (i.e. reaching parity or vanishing). In Figure 4, we see with µRR > µRB and
ρ0 = 1, that increasing q causes the once stationary process to converge to 1

2 . Figure 4b
plots the limit point of the deterministic process Φ∞ over different values of our memory
parameter q. Φ1000 is used as an approximation for Φ∞. We see that a phase transition
happens soon after q crosses 0.9. We summarize these observations in Table 1.
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Figure 3 Plot of two different deterministic approximations Φ1
t , Φ2

t with different P, W parameters
over q ∈ {0, 0.5, 0.75, 0.95, 1} with λ = 0.1, N0 = 100. In Figure 3a, we see µRR < µRB and ρ0 < 1,
so as q increases to 1, our process Φ1

t converges to 1
2 at a slower rate. In Figure 3b, we have

µRR > µRB , and ρ0 > 1, so increasing q to 1 has the effect of Φ2
t decreasing the rate of convergence

to 0.

Table 1 The convergence of the system with memory in comparison with the memoryless baselines
model from [12].

Baseline
model [12]

µRR < µRB µRR > µRB µRR = µRB

ρ0 > 1 Converges to 0 Faster to 0 Slower to 0 No change
ρ0 < 1 Converges to 1

2 Slower to 1
2 Faster to 1

2 No change
ρ0 = 1 Constant Converges to 0 Converges to 1

2 No change

7 APS Dataset & Model Validation

To validate this model, we assess gender diversity in scientific collaboration networks. We
use the co-authorship network from the American Physical Society (APS) [1], a database of
Physics publications that has been used on a variety of meta-analyses of research collaborations
[32, 46]. In particular, we use a filtered version of the data set as in [46]. We join this with
the citation data from [1]. We use this network to find how often a paper is cited within the
APS community, which serves as a proxy for edge weight in our model.

7.1 APS Dataset Information

7.1.1 Data Processing

We largely follow the procedure used in [32]. First, we used data provided in [46] which de-
duplicates author names. We also restrict all publications to those that have been published
between 1980 and 2009. The primary reason for this is because [46] provides a supplementary
dataset of publications with the de-duplicated author names from 1893 until 2010, and to
control for large political changes, we only selected the final three decades. We also exclude
the year 2010 because the supplementary data in [46] did not provide data for the full
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Figure 4 Plot of our deterministic approximation Φt and threshold parameter ρt for P =
[

10 8
8 10

]
and W =

[
1 1.25

1.25 1

]
over q ∈ {0, 0.5, 0.75, 0.95, 1}. Here we see µRR > µRB and ρ0 = 1, so as q

increases, we see our process change from stationary to convergent towards 1
2 . Additionally we plot

Φ1000 over different values of q. We empirically observe that there is a threshold q∗ ≈ 0.915 where
the Φ1000 values quickly jump from 0 towards converging to 1

2 .

year of 2010. We also only include active authors, defined as authors who have, since their
first publication, published at least once every five years until the most recent year 2009.
Additionally, we filtered the data by removing all publications with 0 authors.

To predict the gender of authors, we used the pre-trained gender classifier GenderPer-
formr [50]. We let GenderPerformr predict gender for our authors in the dataset and only
kept the authors whose gender could be predicted with > 80% confidence. We note that this
model could potentially be biased towards Western-sounding names, which could reduce the
relevance of our analysis as applied to diversity in Physics collaborations. We also note that
this model classifies gender on a Male/Female binary, which does not accurately reflect all
authors’ gender identities.

This left us with a set of 14,793 authors, which formed our collaboration network. We
consider our collaboration network as a sequence of graphs over time, Gt = (Vt, Et) where
t ∈ {1980, ..., 2009}. For time t, our nodes Vt are the set of authors whose first publication
was at or before time t. This formulation ensures that our network will constantly grow
over time. A pair of nodes is connected with an edge if the two nodes co-authored a paper
together. In the case of a paper having more than two authors, we default to connecting the
first and last authors of the paper, following the procedure in [32]. However, in the case that
the first or last co-author is either a non-active author or their gender couldn’t be predicted
by GenderPerformr, we choose the authors nearest to the first/last position (i.e if the first
author isn’t available, choose the second author, same with last and second to last authors
and so on). This procedure alters the data by removing all author-publication pairs if the
author was not nearest to the first or last (i.e. if Author A wrote one paper in 1980 where
they were the third author out of seven, they would not appear in the graph for 1980, but
instead would appear whenever they were nearest to first/last author of a paper). We allow
for self-edges if the author published a paper with no co-authors. Each edge is given weight
according to the number of citations received five years after the paper has been published.
The best-fit model to the data according to this edge generation is shown in Figure 1.
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An alternate strategy for creating a collaboration network is to connect all pairs of
coauthors on a paper. However, this leads to an over-representation of papers with large
numbers of co-authors in our weight computation, and reduces our model’s predictive accuracy,
as seen in Figure 5.

Figure 5 Plot of the proportion of women in the APS co-authorship network from 1980-2009 for
data created with no restriction on coauthorship (every pair of coauthors is connected in the graph)
in red, and data created where only the first and last authors connected (approximately, see text for
exact procedure) in blue. The deterministic model’s predictions are overlaid in the dashed lines.

7.2 Estimating Model Parameters
To fit our model to the data, we perform the following procedure to estimate model
parameters. We assume our probability and weight matrices at time t are of the form

Pt =
[
µMM (t) µMF (t)
µMF (t) µMM (t)

]
, Wt =

[
wMM (t) wMF (t)
wMF (t) wMM (t)

]
, meaning subscripts MM and MF

represent in-community and cross-community parameters respectively. To estimate our
in-community probability parameter µ̂MM (t), we counted all in-community edges (both
M − M and F − F ) and divided them by the total number of possible in-community edges
in our Graph. Let nMM (t), nMF (t), nF F (t) be the number of Male-Male, Male-Female,
and Female-Female edges present in our collaboration network Gt, respectively. Then our
estimated parameter can be defined as

µ̂MM (t) = nt

(
nMM (t) + nF F (t)

(nM
t )2 + (nF

t )2

)
. (27)

µ̂MF (t) is computed similarly. To derive our in-community weight parameter ŵMM (t) (or
similarly ŵMF (t)), we averaged the weights over all in-community edges at time t.

ŵMM (t) =
∑

c[i],c[j]∈(M,M),(F,F ) (wij)t

nMM (t) + nF F (t) . (28)

To derive the probability of an edge persisting from time t to time t + 1, we consider the set
Et ∩ Et+1, which is the set of edges present in both Gt and Gt+1 and find their ratio with
respect the number of edges in Gt as

q̂t = |Et ∩ Et+1|
|Et|

. (29)
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Finally, to estimate the network growth parameters, we perform an exponential curve-fitting
on the size of the network over time. Namely, choose approximation f(t) := N̂0(1 + λ̂)t which
minimizes L2 error over our network size |Vt|. Formally, we have

λ̂, N̂0 = arg min
λ,N0

2009∑
t=1980

(
N0(1 + λ)t − |Vt|

)2
. (30)

In order to find the overall estimates P̂, Ŵ, q̂, we simply average over times t, which results

in P̂ =
[
0.359 0.468
0.468 0.359

]
, Ŵ =

[
14.337 18.026
18.026 14.337

]
, q̂ = 0.265, λ̂ = 0.115, N̂0 = 466.2 being the

estimated parameters for our model with coauthor restriction. For the model in Figure 5

with no coauthor restriction, these estimated parameters were P̂ =
[
0.511 0.718
0.718 0.511

]
, Ŵ =[

54.71 47.17
47.17 54.71

]
, q̂ = 0.309, λ̂ = 0.116, N̂0 = 473.0. Note that we do not use N̂0 in generating

any of the plots. Instead, we use the true value of N0 = 251.

7.3 Results & Discussion
With the optimal estimated parameter values from Section 7.2, we fit the model to our
dataset and assessed how accurately the model predicts the growth of women authors in the
scientific collaboration network, as in Figure 1. In the data, we see that from 1980-2009,
the proportion of active women researchers grew from around 1% to 6%. This is roughly
captured by our model when fitted to the dataset, predicting slightly over 6% active women
researchers in 2009. We also observe that the addition of memory did not significantly change
the model’s predicted trajectory. The estimated parameters from Section 7.2 suggest that
increasing q will cause a slower rate of convergence to 1

2 . However, we empirically observe
that the estimated memory parameter q̂ = 0.265 does not meaningfully alter the trajectory
when compared to the no memory case of q = 0. This was suggested by Figures 3 & 4, since
in those figures large shifts away from the baseline trajectory occurred only after q was close
to 1.

These results show that a combination of node influence (through preferential attachment)
and homophily can partially explain the growth of the minority population in a scientific
collaboration network. This result offers a powerful tool for understanding the impact of
network dynamics on diversity in scientific communities, though some finer-tuned analysis is
necessary to make it more accurate for prediction.

8 Conclusion

The above model is a simple abstraction that captures the effect of homophily in networks
on long-term diversity, which matches sociological observations of workplace diversity and
networks with preferential attachment [44, 28, 43]. Many other factors must be considered
before we can have an end-to-end model, from pre-recruitment to promotion, and this is
a clear limitation of our work. To expand the model, we could also consider more subtle
versions of preferential attachment (e.g. a red node recruits α fraction red and 1 − α fraction
blue nodes). We could also look at node creation mechanisms beyond preferential attachment,
such as a constant number of new nodes joining each timestep, or a time-inhomogenous rate
parameter λt, to model seasonality trends in the recruitment step.

Mathematically, we have not derived an explicit definition for our threshold parameter
ρ. With more knowledge of this parameter, we could precisely determine when memory
significantly affects convergence. This model is also hindered by the fact that it only has fixed
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points of {0, 1
2 , 1} when in actuality, diversity isn’t usually judged by equivalent parity, but

rather representative parity. Finding ways to mathematically extend the model to arbitrary
fixed points would be an important future step. Additionally, in our model, the network
grows infinitely large as t → ∞. Allowing for node departures and finite population size may
make the model more applicable to real-world collaboration networks.

With this in mind, our model and our findings about its threshold property could point
towards a network analysis of institutions to establish whether cross-community collaborations
are frequent enough or weighted highly enough to encourage lasting diversity. This is a
powerful tool because an organization can look at how a network is at one point in time,
and use it to extrapolate into the future, as well as develop interventions for the present (e.g.
incentives to encourage more cross-community collaborations).
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A Appendix

A.1 Proof of Lemma 4:
Before we prove the bounds on the ϕt process itself, we first must prove bounds on E

[
Rt

Rt+Bt

]
,

as defined in the following Lemma.

▶ Lemma 11. Assume ∃ε ∈
(
0, 1

2
)

such that
(

1
nt

) 1
2 −ε

≤ ϕt ≤ 1
2 . Then there exists N0 such

that for nt ≥ N0 the following holds(
1 − 1

n
ε/4
t−1

)
E[Rt]

E[Rt + Bt]
<

Rt

Rt + Bt
<

(
1 + 1

n
ε/4
t−1

)
E[Rt]

E[Rt + Bt]
. (31)

With probability at least 1 − 8
exp(C1nε

t−1) , where C1 = min
{

µRR

24 , µRB

12
}

and ε ∈ (0, 1
2 ). Addi-

tionally, we have(
1 − 1

n
ε/5
t−1

)
E[Rt]

E[Rt + Bt]
≤ E

[
Rt

Rt + Bt

]
≤

(
1 + 1

n
ε/5
t−1

)
E[Rt]

E[Rt + Bt]
. (32)

Prerequisite (Chernoff Bound). We define a Chernoff Bound [30] on a random variable X:

Pr(X ≥ δ) ≤ E[esX ]e−sδ. (33)

For all s > 0. A corollary of this is also

Pr(|X − E[X]| ≥ δE[X]) ≤ 2e−δ2E[X]/3. (34)

◀

Proof of Lemma 11. Consider random variables RR, RB, BB, representing the total weight
of Red-Red, Red-Blue, and Blue-Blue edges respectively. We can bound the number of these
edges (RR/wRR), (RB/wRB) using the Chernoff BoundPr

(∣∣∣ RR
wRR

− E[RR]
wRR

∣∣∣ ≥ δ E[RR]
wRR

)
≤ 2 exp

(
− δ2

6 (nR
t )2ΠRR(t)

)
Pr
(∣∣∣ RB

wRB
− E[RB]

wRB

∣∣∣ ≥ δ E[RB]
wRB

)
≤ 2 exp

(
− δ2

6 (nR
t nB

t )ΠRB(t)
) . (35)

From our assumption, we find that nR
t ≥ n

1
2 +ε
t where ε ∈

(
0, 1

2
)
, and nB

t ≥ nt

2 . Define
constant C1 = min{ µRR

24 , µRB

12 }. Letting δ = 1
nε/2 , we can establish the following probability

bounds on edge weights RR, RB, BB:

Pr

(
|RR − E[RR]| ≥ E[RR]

n
ε/2
t

)
≤ 2 exp

(
−ntΠRR(t)

6 nε
t

)
≤ 2 exp (−C1nε

t ) . (36)

Pr

(
|RB − E[RB]| ≥ E[RB]

n
ε/2
t

)
≤ 2 exp

(
−ntΠRB(t)

12 n
1
2
t

)
≤ 2 exp (−C1nε

t ) . (37)

Pr

(
|BB − E[BB]| ≥ E[BB]

n
ε/2
t

)
≤ 2 exp

(
−ntΠBB(t)

24 n1−ε
t

)
≤ 2 exp(−C1nε

t ). (38)
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See that Rt = RRt + RBt, so we can establish bounds on the total weight of red R by union
bound

Pr

(
|R − E[R]| ≥ E[R]

n
ε/2
t

)
≤ 4 exp(−C1nε

t ). (39)

Likewise for the total blue weight B

Pr

(
|B − E[B]| ≥ E[B]

n
ε/2
t

)
≤ 4 exp(−C1nε

t ). (40)

We see that the event |R − E[R]| < E[R]
n

ε/2
t

implies
(

1 − 1
n

ε/2
t

)
E[R] < R <

(
1 + 1

n
ε/2
t

)
E[R],

so we use this to bound our ratio R
R+B


(

1 − 1
n

ε/2
t

)
(

1 + 1
n

ε/2
t

)
 E[R]

E[R + B] <
R

R + B
<


(

1 + 1
n

ε/2
t

)
(

1 − 1
n

ε/2
t

)
 E[R]

E[R + B] (41)

(
1 − 1

n
ε/4
t

)
E[R]

E[R + B] <
R

R + B
<

(
1 + 1

n
ε/4
t

)
E[R]

E[R + B] . (42)

Define event G as the event of this inequality holding. By union bound on the values from
(39) and (40), we see that Pr(GC) ≤ 8 exp(−C1nε

t ). Therefore our inequality holds with
probability at least 1 − 8

exp(C1nε
t ) , concluding the proof for inequality (31).

To prove the second inequality (32) , we extend our bound to the expected value E
[

Rt

Rt+Bt

]
.

Notice our ratio 0 < Rt

Rt+Bt
< 1, so to upper bound our expectation we condition on our

inequality G from (42).

E
[

Rt

Rt + Bt

]
≤

((
1 + 1

n
ε/4
t

)
E[R]

E[R + B]

)
Pr(G) + 1 · (1 − Pr(G)) (43)

≤
(

1 − 8
exp(C1nε

t )

)(
1 + 1

n
ε/4
t

)
E[R]

E[R + B] + 8
exp(C1nε

t ) (44)

≤

(
1 + 1

n
ε/4
t

)
E[R]

E[R + B] + 8
exp(C1nε

t ) (45)

≤

(
1 + 1

n
ε/5
t

)
E[R]

E[R + B] . (46)

This above inequality only holds when nt ≥ N0. Therefore, defining constants N1, N2

N1: When nt ≥ N1 = exp
( 20 ln 2

ε

)
then 1

n
ε/5
t

− 1
n

ε/4
t

≥ 1
n

ε/4
t

N2: nε
t ≥ ln(nt)

(
2−3ε
4C1

)
+ ln 2

4C1
− 1

C ln
(

µRBwRB

5µRRwRR+4µRBwRB

)
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Thus, let N0 = max{N1, N2} so that for nt ≥ N0 both bounds hold, completing the proof
for the upper bound. Now to prove the lower bound, we condition again

E
[

Rt

Rt + Bt

]
≥

((
1 − 1

n
ε/4
t

)
E[R]

E[R + B]

)
Pr(G) + 0 · (1 − Pr(G)) (47)

≥
(

1 − 8
exp(C1nε

t )

)(
1 − 1

n
ε/4
t

)
E[R]

E[R + B] (48)

≥N3

(
1 − 1

n
ε/5
t

)
E[R]

E[R + B] . (49)

There exists N3 such that inequality (49) holds for nt ≥ N3(
1 − 8

exp(8C1nε
t )

)(
1 − 1

n
ε/4
t

)
≥ 1 − 1

n
ε/5
t

. (50)

Thus let N0 ≥ max{N1, N2, N3} such that all our bounds hold for nt ≥ N0 and we have(
1 − 1

n
ε/5
t−1

)
E[Rt]

E[Rt + Bt]
≤ E

[
Rt

Rt + Bt

]
≤

(
1 + 1

n
ε/5
t−1

)
E[Rt]

E[Rt + Bt]
. (51)

Concluding the proof of (32). ◀

Now with Lemma 11, we can prove Lemma 4.

Proof of Lemma 4. Consider the expected number of new red nodes arriving at time t + 1,
denoted E[mR

t+1], we can bound this quantity by rounding our total expected new nodes λnt

⌊λnt⌋E
[

Rt

Rt + Bt

]
≤ E[mR

t+1|Ft] ≤ ⌈λnt⌉E
[

Rt

Rt + Bt

]
. (52)

Additionally, we can use inequality (32) from Theorem 1 to bound E
[

Rt

Rt+Bt

]
⌊λnt⌋

(
1 − 1

n
ε/5
t

)
E[Rt]

E[Rt + Bt]
≤ E[mR

t+1|Ft] ≤ ⌈λnt⌉

(
1 + 1

n
ε/5
t

)
E[Rt]

E[Rt + Bt]
. (53)

Also note that we define Γq(ϕt) := E[Rt]
E[Rt+Bt]

E[Rt]
E[Rt + Bt]

= (nR
t )2wRRΠRR(t) + (nR

t nB
t )wRBΠRB(t)

((nR
t )2 + (nB

t )2)wRRΠRR(t) + 2(nR
t nB

t )wRBΠRB(t)
(54)

= ϕtwRRΠRR(t) + ϕt(1 − ϕt)wRBΠRB(t)
(ϕ2

t + (1 − ϕt)2)wRRΠRR(t) + 2ϕt(1 − ϕt)wRBΠRB(t) (55)

= Γq(ϕt). (56)

Using this to bound our original equation for E[ϕt+1|Ft] = nR
t +E[mR

t+1|Ft]
(1+λ)nt

ϕt + ⌊λnt⌋
nt

(
1 − 1

n
ε/5
t

)
· Γq(ϕt)

1 + ⌈λnt⌉
nt

≤ E[ϕt+1|Ft] ≤
ϕt + ⌈λnt⌉

nt

(
1 + 1

n
ε/5
t

)
· Γq(ϕt)

1 + ⌊λnt⌋
nt

. (57)

As t → ∞, our bounds converge to the following expression

E[ϕt+1|Ft] = ϕt + λ · Γq(ϕt)
1 + λ

. (58)

Which is our deterministic approximation, concluding the proof. ◀
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A.2 Derivation of Deterministic Approximation
Using Theorem 3, we define ΠRR(t), ΠRB(t), ΠBB(t), where for Red-Blue edges:

ΠRB(t) = µRB

nt
+

t−1∑
k=0

µRB

nk

t∏
j=k+1

q

(
1 − µRB

nj

)
. (59)

And for Blue-Blue edges:

ΠBB(t) = µBB

nt
+

t−1∑
k=0

µBB

nk

t∏
j=k+1

q

(
1 − µBB

nj

)
. (60)

In our graph, the existence of an edge is not dependent on the existence of any other edges,
so our probability is independent across edges. As such, we define the expected weight of Red
and Blue nodes at time t as the expected weight of all Red-Red, Red-Blue, and Blue-Blue
edges in our graph.

E[Rt] = nR
t ΠRR(t)wRR + (nR

t )(nR
t − 1)

2 2wRRΠRR(t) + nR
t nB

t wRBΠRB(t) (61)

= (nR
t )2ΠRR(t)wRR + (nR

t + nB
t )ΠRB(t)wRB (62)

E[Bt] = nB
t ΠBB(t)wBB + (nB

t )(nB
t − 1)

2 2wBBΠBB(t) + nR
t nB

t wRBΠRB(t) (63)

= (nB
t )2wBBΠBB(t) + nRnBwBBΠBB(t). (64)

Assume P =
[
µRR µRB

µRB µRR

]
, W =

[
wRR wRB

wRB wRR

]
. With this, we calculate E[Rt]

E[Rt+Bt]

E[Rt]
E[Rt + Bt]

= (nR
t )2wRRΠRR(t) + (nR

t nB
t )wRBΠRB(t)

((nR
t )2 + (nB

t )2)wRRΠRR(t) + 2(nR
t nB

t )wRBΠRB(t)
. (65)

Let ϕt be the fraction of red nodes and mt be the new nodes joining the graph at time t.
From our growth dynamics we know ϕt = nR

t−1+mR
t

nt−1+mt
. Note that while nR

t and mR
t are random

variables, nt and mt are deterministic. We can approximate this expectation

E[ϕt+1|Ft] =
nR

t + λntE
[

Rt

Rt+Bt

]
(1 + λ)nt

≈
nR

t + λnt
E[Rt]

E[Rt+Bt]

(1 + λ)nt
≈ ϕt + λ · Γq(ϕt)

1 + λ
. (66)

Where

Γq(xt) = x2
t wRRΠRR(t) + xt(1 − xt)wRBΠRB(t)

(x2
t + (1 − xt)2)wRRΠRR(t) + 2xt(1 − xt)wRBΠRB(t) . (67)

A.3 Proof of Lemma 6:
Proof. Consider ρt = wRRΠRR(t)

wRBΠRB(t) . Note that if q = 0, then ρt = ρ0 = wRRµRR

wRBµRB
for all t. Hence

we restrict our attention to the case where q > 0. We expand the definition of ρt using the
explicit definitions of ΠRR(t), ΠRB(t) from (5),(59), yielding

ρt = wRRntΠRR(t)
wRBntΠRB(t) =

wRR

(
µRR + nt

∑t−1
k=0

µRR

nk

∏t
j=k+1 q

(
1 − µRR

nj

))
wRB

(
µRB + nt

∑t−1
k=0

µRB

nk

∏t
j=k+1 q

(
1 − µRB

nj

)) . (68)
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Additionally, let r := 1 + λ, we have

ρt =
wRR

(
µRR + µRRrt

∑t−1
k=0 r−k

∏t
j=k+1 q

(
1 − µRR

n0
r−j
))

wRB

(
µRB + µRBrt

∑t−1
k=0 r−k

∏t
j=k+1 q

(
1 − µRB

n0
r−j
)) (69)

=
wRR

(
µRRrt

∑t
k=0 r−k

∏t
j=k+1 q

(
1 − µRR

n0
r−j
))

wRB

(
µRBrt

∑t
k=0 r−k

∏t
j=k+1 q

(
1 − µRB

n0
r−j
)) (70)

=
wRRµRR

(
r−t +

∑t−1
k=0 r−k

∏t
j=k+1 q

(
1 − µRR

n0
r−j
))

wRBµRB

(
r−t +

∑t−1
k=0 r−k

∏t
j=k+1 q

(
1 − µRB

n0
r−j
)) . (71)

Define the series Sq
RR(t) := r−t +

∑t−1
k=0 r−k

∏t
j=k+1 q

(
1 − µRR

n0
r−j
)

and define Sq
RB(t)

similarly. Additionally, note both Sq
RR(t) and Sq

RB(t) must converge because they are the
partial series of a geometric series. Namely,

Sq
RR(t) = r−t +

t−1∑
k=0

r−k
t∏

j=k+1
q

(
1 − µRR

n0
r−j

)
≤

t∑
k=0

r−k, (72)

Sq
RB(t) = r−t +

t−1∑
k=0

r−k
t∏

j=k+1
q

(
1 − µRB

n0
r−j

)
≤

t∑
k=0

r−k. (73)

Therefore we have limt→∞ Sq
RR(t) ≤ 1

1−r−1 = 1+λ
λ and limt→∞ Sq

RB(t) ≤ 1+λ
λ . Define these

limits as Sq
RR and Sq

RB respectively. Also, we observe that these quantifies are bounded
away from 0 for q > 0. Observing Sq

RR(0) = Sq
RB(0) = 1 > 0. Since Sq

RR(t), Sq
RB(t) are both

positive series, this inequality then holds for all t ≥ 0 and thus holds for the limits Sq
RR, Sq

RB

as well. This allows us to express the limit of the overall ratio ρt:

ρ = lim
t→∞

ρt = lim
t→∞

wRRµRRSq
RR(t)

wRBµRBSq
RB(t) (74)

= limt→∞ wRRµRRSq
RR(t)

limt→∞ wRBµRBSq
RB(t)) (75)

= wRRµRRSq
RR

wRBµRBSq
RB

. (76)

Note that because Sq
RR(0) = Sq

RB(0) = 1, and also for q = 0 we have S0
RR(t) = S0

RB(t) = r−t

for all t ≥ 0, we know that the baseline threshold parameter ρ0 = wRRµRR

wRBµRB
is consistent with

the threshold parameter in [12]. As far as we know, there is no explicit expression for Sq
RR

or Sq
RB . ◀
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