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Abstract
In the process of redistricting, one important metric is the number of competitive districts, that is,
districts where both parties have a reasonable chance of winning a majority of votes. Competitive
districts are important for achieving proportionality, responsiveness, and other desirable qualities;
some states even directly list competitiveness in their legally-codified districting requirements. In
this work, we discuss the problem of drawing plans with at least a fixed number of competitive
districts. In addition to the standard, “vote-band” measure of competitivenesss (i.e., how close was
the last election?), we propose a measure that explicitly considers “swing voters” - the segment
of the population that may choose to vote either way, or not vote at all, in a given election. We
present two main, contrasting results. First, from a computational complexity perspective, we show
that the task of drawing plans with competitive districts is NP-hard, even on very natural instances
where the districting task itself is easy (e.g., small rectangular grids of population-balanced cells).
Second, however, we show that a simple hill-climbing procedure can in practice find districtings
on real states in which all the districts are competitive. We present the results of the latter on
the precinct-level graphs of the U.S. states of North Carolina and Arizona, and discuss trade-offs
between competitiveness and other desirable qualities.
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1 Introduction

In the United States, redistricting is the task of geographically dividing a state into a fixed
number of regions called districts, each of which elects one representative to a legislative
body (such as the U.S. House of Representatives or a state legislature). The process is prone
to various types of manipulation, collectively known as gerrymandering, in which parties
draw districting maps that are optimized for particular outcomes. For example, a party may
wish to maximize seats in which their preferred voters constitute a majority, protect their
party’s incumbents, or force opposition-party incumbents to run against each other. This
process often results in many districts that are uncompetitive, i.e., districts in which one
party’s voters constitute such a large majority that voters are denied any meaningful choice
and the winning party is effectively pre-determined.
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7:2 Drawing Competitive Districts in Redistricting

To combat gerrymandering, many quantitative and qualitative measures capturing vari-
ous normative criteria have been proposed. These include notions of proportionality [18],
responsiveness [26], partisan symmetry [30], typicality [15], stability under perturbation [17],
and many others (e.g., [9], [10]; see [31] for a comparison of several partisan-based measures).

In this work, we focus on competitive districts: those where one expects elections to be
close and highly contested, i.e., where the outcomes of future elections are not pre-determined
by the geography of the district. There are three reasons we consider competitiveness to be
of particular importance:
1. Several jurisdictions in the United States explicitly require competitiveness as a quality

that their districting plans must satisfy. Colorado, for example, has a requirement that
plans must “maximize the number of politically competitive districts,” where competitive
is defined as “having a reasonable potential for the party affiliation of the district’s
representative to change at least once between federal decennial censuses” [14]. See [15]
for an overview.

2. Having competitive districts is key for the responsiveness of the plan. Responsiveness is
a measure of how much a given change in popular vote translates into a change in the
proportion of seats held by a particular party. For example, the 14-district Congresional
map enacted in North Carolina in 2023 is highly non-responsive: the state could swing
5 points more Democratic and result in zero more Democratic-held seats, or 17 points
more Republican and result in only one Republican pickup. This lack of responsiveness
is a direct consequence of there being only one competitive seat of the fourteen.

3. Competitive elections are generally seen as promoting various positive civic qualities,
such as voter engagement, high turnout, close attention to local issues, and others.

The number of competitive districts in the country has been shrinking rapidly. In 2020,
only 45 of 435 districts have a Cook Partisan Voting Index between R+3 and D+3, down
from 107 in 1999 [32]; Wasserman estimates that around half of the lost swing seats are
due to changes to district boundaries, rather than “true” changes in electoral behavior (e.g.
changing voter preferences, geographic polarization, etc.).

1.1 Contributions
Motivated by the desirable qualities of competitive districts, we study a version of the
districting problem where the goal is to draw maps with at least some fixed number of
competitive districts. In addition to the intuitive notion of competitiveness, where a district
is considered competitive if recent elections have been decided by close margins (e.g., by
5% or less), we consider a characterization that relies on separately counting “swing voters”
– that is, voters who have a reasonable chance of voting for either party, a formulation
that aligns with the Colorado requirement of having districts with a “reasonable chance
of being won by either party”. We show that the problem of maximizing swing districts is
NP-hard for both our characterization and the standard model, even on instances where
the underlying districting problem is polynomial-time solvable: that is, the hardness comes
from the competitive-districts requirement, rather than the inherent hardness of balanced
graph partitioning. Despite this, we show that a simple hill-climbing procedure can achieve a
very high number of competitive districts without significantly sacrificing compactness, equal
population, and other desirable qualities. We demonstrate the results on data from North
Carolina and Arizona, showing that it is possible to make every district competitive (although
we do not necessarily advocate for doing so). We also complement the NP-completeness
results by giving restrictions that make the problem of maximizing swing districts more
tractable.
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2 Related Work

2.1 Competitiveness of districting plans
Among the plethora of proposed evaluation metrics for districting plans, Deford et al. [15] take
a comprehensive look at various criteria that aim to operationalize competitiveness, including
“evenness” (how close is the vote share to 50%?), “typicality” (how close is the vote share to
the national or statewide average?), and “vote-band” metrics (does the vote fall within a
fixed percentage of 50%, or the statewide average?). They observe that “there is no guarantee
that it is even possible to construct a plan with a large number of ... districts [that fall within
a given vote-band] while adhering to reasonable compactness and boundary preservation
norms,” an idea we will expand on in this work. We will adopt the vote-band metric, because
its binary nature allows us to easily express the problem of drawing competitive districts as
a decision problem. In addition, we will propose another metric based on swing voters.

In the same work, Deford et al. [15] also conduct an extensive ensemble analysis of
how many competitive districts arise in “typical” districtings, and present two hill-climbing
algorithms for optimizing directly for competitive districts. We conduct similar experiments
for both vote-band and swing-voter metrics, but use a randomized weighted scheme that
incorporates compactness directly via the isoperimetric score.

Other works that explore the competitiveness of enacted and proposed plans largely use
margins in recent elections as their measurement for competitiveness, including [14], which
investigates plans for Colorado, and [20], which studies whether independent commissions
tend to draw more competitive plans.

2.2 Computational complexity of redistricting
There has also been work exploring hardness of the districting problem in a computational
complexity sense, including work on auditing for local deviating groups [24], on minimizing
the margin of victory in non-geographically-bounded districts [29], and on describing classes
of graphs for which various redistricting tasks are NP-hard [21]. Notably, even the balanced
graph partition problem (i.e., drawing population-balanced districts, without any other
restrictions) is NP-hard, even for planar graphs [5]. Given this, [25] show that the problem
of drawing districts where each party wins at least c seats is NP-hard even on instances
where valid (contiguous and population-balanced) maps can be found in polynomial time, by
showing a reduction from Var-Linked Planar 3-SAT. We will adopt this structure for our
hardness results: we will show reductions that create instances where population-balanced
districts can be drawn in polynomial time but drawing competitive districts (both vote-band
competitive and swing) is hard.

3 Preliminaries and Problem Formulation

3.1 Voting setting
Our setting consists of a set of voters distributed over a given geographic area (such as a U.S.
state), represented by a (typically planar) graph G with n cells (nodes). The cells are some
fixed geographic units (such as counties, precincts, etc.) and edges represent adjacency1.

1 Depending on the jurisdiction, legal requirements may mandate either rook adjacency or queen adjacency.
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7:4 Drawing Competitive Districts in Redistricting

We assume that there are only two parties in consideration, Party A and Party B; every
voter may be either a partisan voter or a swing voter. Specifically, each cell ci : i ∈ {1, · · · , n}
has the following four quantities, all non-negative integers:

Popi ≥ 0 indicating the total population of the cell, which we abbreviate Popi;
ai, the number of voters that vote for Party A;
bi, the number of voters that vote for Party B;
optionally, si, the number of swing voters (who may vote either way).

3.2 Districtings and Competitive Districts
For a fixed d ∈ {2, . . . , n − 1}, a d-districting is a partition of the cells of G into d disjoint
subgraphs D1, · · · , Dd, which we call districts. For any district Dj , we have:

PartyA(Dj) = Aj =
∑

ci∈Dj

ai, PartyB(Dj) = Bj =
∑

ci∈Dj

bi, Swing(Dj) = Sj =
∑

ci∈Dj

si.

Since every voter is either A, B, or swing, we have Pop(Dj) = Popj = Aj + Bj + Sj .
In general, a d-districting of a graph G is ε-valid if it satisfies the following constraints:

1. Contiguity, i.e., the subgraph induced by Dj must be connected for each j = 1, · · · , d.
Thus, each district is contiguous, which is typically required by law.

2. ε-Population-balance, i.e. (1 − ε)
(

P op(G)
d

)
≤ Pop(Dj) ≤ (1 + ε)

(
P op(G)

d

)
for each

j = 1, · · · , d, which ensures that each district has approximately the same population,
which is required under the “One Person, One Vote” rule [28]. We only consider ε < 1

6 ,
as ε ≥ 1

6 allows one district to have double the population of another district. Different
jurisdictions may require different values of ε.

3.2.1 Competitiveness
We consider two notions that aim to capture the competitiveness of a given district.

First, we consider the intuitive notion that a district is competitive if the most recent
election was decided by a very close margin - for example, 51% of votes cast for Party A and
49% cast for Party B. Deford et al. [15] call this “vote-band” competitiveness, named for the
“band” of outcomes (for example, 45-55%) that the vote share should fall into in order for
the election to be considered competitive2. This notion does not depend on counting swing
voters separately, so, in this context, si = 0 for all cells ci.

▶ Definition 1. A district Dj is δ-Vote-Band Competitive (δ-VBC) iff Aj

P opj
,

Bj

P opj
∈[ 1

2 − δ, 1
2 + δ

]
.

An alternative notion is that a district is competitive if the outcome depends on how the
swing voters vote. In particular, elections can be both close and uncompetitive. For example,
a district comprised of 40% Party A voters, 40% Party B voters, and 20% swing voters (who
may vote either way) is likely to be highly competitive, whereas a district with 52% Party A
voters, 47% Party B voters, and 1% swing voters is less likely to be competitive.

▶ Definition 2. A district Dj is Swing if Sj ≥ |Aj − Bj |.

2 Deford et al. consider both centering the vote band around 50% and centering it around the statewide
or nationwide average. For simplicity, we only discuss the former.



G. Chuang, O. Hanguir, and C. Stein 7:5

This formulation more directly captures the notion that districts are competitive if there
is a reasonable chance for either party to win. However, evaluation of this metric depends
on having a reasonable estimate of the number of such voters; we discuss using statistical
methods of Ecological Inference for this task in Section 5.1.2. In particular, while polling data
is valuable for estimating voter transitions, we need this information at a precinct-by-precinct
level to do redistricting analysis, and polls are mostly conducted at a national or statewide
level.

This formulation also allows us to capture the fact that, due to partisan polarization,
elections in the US are often determined by turnout, rather than vote-switching [19]. For
example, we can count “unreliable partisan voters” (those who will either vote for Party A
or stay home) as half of a “true” swing voter (those who may vote for Party A or Party B),
as their decision will affect the eventual vote margin in their precinct, district, or state by
half as much.

3.3 Maximizing Competitive Districts
▶ Definition 3 (δ-VBC-Max). Given a graph G with n cells c1, . . . , cn, d ∈ [2, n − 1], ε > 0,
and δ > 0, the δ-VBC District Maximization Problem is to compute a ε-valid d-districting
that maximizes the number of δ-VBC districts.

▶ Definition 4 (Swing-Max). Given a graph G with n cells c1, . . . , cn, d ∈ [2, n − 1] and
ε > 0, the Swing District Maximization Problem is to compute a ε-valid d-districting that
maximizes the number of swing districts.

4 Hardness results

Our main results in this section are to show that the δ-VBC District Maximization Problem
and the Swing District Maximization Problem are both NP-hard. On its own, deciding the
existence of any ε-valid d-districting for a graph G is NP-hard, regardless of competitive
districts. Therefore, we show that both δ-VBC-Max and Swing-Max are hard, even on
instances where:

the underlying graph G is a grid,
the number of districts d is 2, and
there exists a polynomial-time computable ε-valid d-districting.

This setup is similar that of Kueng et al. [25], who show that drawing districtings where both
parties have at least c seats is hard even on instances where balanced-population districting
is easy.

▶ Theorem 1 (Vote-Band Hardness). For all positive ε < 1
6 , δ < 1

2 , the δ-VBC ε-valid District
Maximization Problem (δ-VBC-Max(ε)) is NP-hard, even on instaces where G is a grid,
d = 2, and ε-valid districtings (that are not δ-VBC-maximal) are poly-time computable.

▶ Theorem 2 (Swing Hardness). For all positive ε < 1
6 , the Swing ε-valid District Maximiza-

tion Problem (Swing-Max(ε)) is NP-hard, even on instaces where G is a grid, d = 2, and
ε-valid districtings (that are not Swing-maximal) are poly-time computable.3

3 This constraint of ε < 1
6 is extremely lenient: in practice, most districtings have population balance

under 1%, and ε = 1
6 would allow one district to have double the population of another - which is

certainly illegal.
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7:6 Drawing Competitive Districts in Redistricting

Figure 1 The chain of reductions from Subset Sum to FPSP to δ-VBC-Max, for δ = 0.1, ε = 1
6 .

Given the Subset Sum instance T (left), we construct an instance of FPSP (center) where bin i has
6 + ti type-A units and 4 − ti type-B units. This induces a districting instance (right), where the
central row has Party A and Party B voters corresponding to type-A and type-B units. The green
and orange districts (where each district has population in ( 1

2 ± ε)poptotal and exactly 60% Party A
voters) correspond to a FPSP partition (where each partition has exactly 60% type-A units), which
in turn corresponds to a solution to the original Subset Sum instance.

We will prove both of these via a reduction from Subset Sum [22]. Specifically, we will
reduce through an intermediate problem, the Fixed-Proportion Subset Problem.

4.1 The Fixed-Proportion Subset Problem
▶ Definition 5 (FPSP(δ)). For any fixed positive δ < 1

2 , the Fixed-Proportion Subset Problem
(FPSP) takes a list of tuples S = [(a1, b1) · · · (an, bn)], where:

n∑
i=1

ai =
(

1
2 + δ

) n∑
i=1

(ai + bi) and a1 + b1 = a2 + b2 = · · · = an + bn

The task is to find nonempty proper subsets S1, S2 ⊊ [n] that partition [n], such that∑
i∈S1

ai =
(

1
2 + δ

)∑
i∈S1

(ai + bi) and
∑
i∈S2

ai =
(

1
2 + δ

)∑
i∈S2

(ai + bi).4

Intuitively, the Fixed-Proportion Subset Problem asks to partition a population of units
with ( 1

2 + δ) type-a units and ( 1
2 − δ) type-b units, which are grouped into equal-size bins,

into two subsets, where each subset is also exactly ( 1
2 + δ) type-a and ( 1

2 − δ) type-b.

▶ Theorem 3 (FPSP Hardness). The Fixed-Proportion Subset Problem is NP-hard for all
δ ∈ [0, 1

2 ).

Proof. Fix any δ ∈ [0, 1
2 ). Given an instance of Subset Sum T = [t1, · · · tn−1] with desired

sum 0, let T ′ = [t1, · · · tn−1, tn], where tn = −
∑n−1

i=1 ti, so that
∑

T ′ = 0.

4 The existence of any S1 satisfying the first condition is sufficient to have S2 = [n] \ S1 satisfy the second
condition, but we explicitly write both for clarity.
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We construct an instance of FPSP(δ) as follows. Let c = − min ti
1
2 +δ

. Our instance of FPSP
will be

S = [(a1, b1) · · · (an+1, bn+1)] where ai = ti +
(

1
2 + δ

)
c and bi = c − ai .

Each “bin” will have c units total, satisfying the second condition of FPSP. We can verify
the first condition holds, using the fact that

∑
ti = 0:

n∑
i=1

ai =
n∑

i=1

(
ti +

(
1
2 + δ

)
c

)
=

n∑
i=1

ti +
(

1
2 + δ

) n∑
i=1

c = 0 +
(

1
2 + δ

) n∑
i=1

(ai + bi) .

Now, suppose that S1, S2 ⊊ [n] is a solution to FPSP(δ) for this instance S. Without
loss of generality, suppose n ̸∈ S1. We claim that {ti : i ∈ S1} is a solution to the original
Subset Sum instance T :∑

i∈S1

ai =
(1

2 + δ
)∑

i∈S1

(ai + bi) =⇒
∑
i∈S1

(
ti +

(1
2 + δ

)
c
)

=
(1

2 + δ
)∑

i∈S1

c =⇒
∑
i∈S1

ti = 0

◀

4.2 Reduction from FPSP to Competitive Districts

We prove Theorem 1 via a reduction from FPSP(δ) to δ-VBC-Max.

Proof. Fix ε and δ. Let S = [(a1, b1) · · · (an, bn)] be an instance of FPSP(δ), and let
Z =

∑n
i=1(ai + bi). Our redistricting instance (“state”) for δ-VBC-Max(ε) will be a 3 × n

grid of cells Ci,j , where:
The top left and bottom left cells C ∈ {C1,1, C3,1} will each have

pop(C) = 1
2P, PartyA(C) =

(
1
2 + δ

)
1
2P, PartyB(C) =

(
1
2 − δ

)
1
2P ,

where P =
1
2 +ε
1
2 −ε

Z.
All other cells in the first and third row have zero population5: pop(C1,·) = pop(C3,·) = 0.
For each cell C2,i in the second row (for i = 1, 2, · · · n),

pop(C2,i) = (ai + bi) PartyA(C2,i) = ai PartyB(C2,i) = bi .

The total population of the state is poptotal = Z + P =
1
2 −ε+ 1

2 +ε

( 1
2 −ε) Z = 1

1
2 −ε

Z .

Observation 0. Since all cells C2,1···n have the same population, it is trivial to draw an
ε-valid districting: one can assign the first row and half of the second row to D1, and the
rest to D2. That is, one can district this instance in polynomial time, if competitiveness is
not considered.

5 One can easily modify the reduction to have all cells have nonzero population by multiplying all other cells
by 2(n+2)+1 and having the first- and third-row cells have pop(C) = 2, P artyA(C) = 1, P artyB(C) = 1.

FORC 2024



7:8 Drawing Competitive Districts in Redistricting

Observation 1. The two left “corner” cells C1,1 and C3,1 must be assigned to different
districts. If they were assigned the same district Di (along with at least one center-row cell
cj , required for connectivity), that district’s population would exceed

( 1
2 + ε

)
poptotal:

pop(C1,1) + pop(C3,1) + pop(C2,j) = P + (aj + bj) > P =
1
2 + ε
1
2 − ε

Z =
(

1
2 + ε

)
poptotal.

Observation 2. Each district must contain at least one of the center-row cells C2,i; a “corner”
cell alone is under the population bounds.

Besides these two cells, the structure of the state allows all other second-row cells to be
assigned to either district while respecting contiguity. For example, one can assign all cells
in the first row to district 1 and all cells in the third row to district 2.

Observation 3. 1
2 + δ of the overall population is Party A voters:

total P artyA =
n∑

i=1

ai +
(1

2 + δ
) 1

2 + ε
1
2 − ε

Z =
(1

2 + δ
)

Z +
(1

2 + δ
) 1

2 + ε
1
2 − ε

Z =
(1

2 + δ
)

poptotal,

where the last equality holds because poptotal = 1
1
2 −ε

Z.
Let {D1, D2} be a ϵ-valid δ-Vote-Band-Competitive districting on this state. We claim

that S1 = {i : C2,i ∈ D1}, S2 = {i : C2,i ∈ D2} is a valid solution to the FPSP(ε) instance.
For S1, S2 to be a solution to FPSP(ε), we must show (a) both are nonempty (which

follows from Observation 2 above), and (b)
∑

i∈S1
ai =

( 1
2 + δ

)∑
i∈S1

(ai + bi).
Since both districts’ margins fall in the 1

2 ± δ vote band, each one must have exactly 1
2 + δ

Party A voters; if (for example) D1 had < 1
2 + δ Party A voters, then D2 would end up with

> 1
2 + δ Party A voters, falling outside the vote band. So,

1
2 + δ = PartyA(D1)

PartyA(D1) + PartyB(D1) =
( 1

2 + δ
) 1

2 P +
∑

i∈S1
ai

1
2 P +

∑
i∈S1

(ai + bi)
.

Solving this equation for
∑

i∈S1
ai, yields

∑
i∈S1

ai =
( 1

2 + δ
)∑

i∈S1
(ai + bi) as required.

Thus, S1, S2 are a valid solution to the FPSP instance. ◀

The chain of reductions, using the Subset Sum instance T = {1, −1, −6, 2, 4} as an
example, is shown in Fig. 1.

The proof for Swing district maximization is nearly identical. We present it in Ap-
pendix A.1.

▶ Corollary 4 (Hardness for more than two districts). For any k, d with 2 ≤ k ≤ d, it is
NP-hard to generate an ε-valid d-districting plan where at least k districts are competitive
(for either δ-VBC or SWING).

The proof for Corollary 4 is given in Appendix A.2.

4.3 Algorithms for Special Cases
In Appendix B, we present some special cases of graphs which admit polynomial time
algorithms. Although these cases are somewhat artificial if expressed as standard redistricting
instances, they may be of interest to those interested in districting-flavored problems on
constrained structures, such as road networks or low-population grids.
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Figure 2 Precinct-level voting data for Arizona and North Carolina. Nodes are colored according
to the margin in the 2020 presidential election.

4.4 Discussion of Complexity Results
First, we re-emphasize that we have shown that the hardness is a result of the competitive
district maximization, not the intrinsic hardness of the balanced partition problem, because
the instances we construct can be partitioned to population balance ε = 0 trivially.

There are reasons to see this reduction as somewhat more “natural” than previous
hardness results, which often construct instances with strange features (for example, [25]
constructs instances with that have long, tendril-like geography with many holes; [29] deals
with a setting without geographic contiguity requirements; [24] creates instances where half
of the nodes are connected to only one other node (i.e., there are many “donut” precincts,
where one precinct entirely surrounds another)). In contrast, we construct instances where
the underlying graph is a rectangular grid; many states (especially in the Midwest) have
precinct graphs that have this approximate structure.

On the other hand, our reduction relies heavily on the hard cutoff at the edge of a desired
“vote band” – that is, the hardness comes from distinguishing, in a binary way, between a
district that is 59.99% Party A and one that is 60.01% Party A. In practice, the difference is
likely to be negligible. Therefore, one may hope that we can, in practice, draw maps that
significantly increase the number of competitive districts. We explain our approach to doing
so in the subsequent section.

5 Algorithms, Heuristics, and Experiment Setup

Given the hardness of drawing competitive districting plans (as measured both in vote-band
and swing-voter flavors), even on fairly constrained and natural varieties of graphs, one
may wonder whether it is tractable to draw such districtings on real-world graphs. In this
section, we argue that the answer is a definitive yes. In particular, we find that very simple
hill-climbing procedure can yield reasonable districting plans that are highly competitive.

We propose a heuristic hill-climbing procedure based on making local moves called
“single node flips”, and run several experiments on the U.S. states of North Carolina and
Arizona: one set seeking to maximize δ-Vote-Band-Competitive districts for δ = 0.1, 0.05
(corresponding to the thresholds used by the Center for Voting and Democracy for “landslides”
(margin difference above 20%) and “competitive” (margin under 10%) [4]), and one seeking
to maximize swing districts. In all cases, we fixed the allowable population deviation at
ε = 5% and required all districts to be contiguous.

5.1 Data
We used precinct-level shapefiles and election data of the U.S. states of Arizona and North
Carolina, two medium-sized states that have been highly competitive in recent elections. The

FORC 2024



7:10 Drawing Competitive Districts in Redistricting

geographic data was collected and processed by the Metric Geometry and Gerrymandering
Group [2], and the election data was obtained from the Redistricting Data Hub [3]. Specifically,
the data includes the area, perimeter, and population of each precinct; voting history for the
last several elections, and adjacency information. North Carolina has 2,650 precincts and
fourteen Congressional districts. Arizona has 1489 precincts and nine Congressional districts.
We chose these two states due to their extremely close statewide margins in recent elections,
and their moderate size (for reasonable computational burden). They are shown in Figure 2.

5.1.1 Previous Election Votes for Vote-Band Competitiveness
Evaluating the vote-band competitiveness of a given districting plan depends on the votes
cast in a past election. For these experiments, we used the results of the 2020 Presidential
election, shown in Fig. 2.

5.1.2 Ecological Inference for Estimating Swing Voters
Evaluating whether a given district is swing or not depends on having estimates for the
number of reliable voters of each party, and the number of swing voters. The task of estimating
voter transitions from election data is a well-studied problem in Ecological Inference (EI).
Given only top-level voting information (i.e., the number of votes cast for each candidate
in two subsequent elections), the task of finding the number of voters who switched their
vote from one election to the next (or who voted in one election and not the other) is highly
underdetermined. As a result, EI techniques have no worst-case guarantees; however, they
have been shown to perform well in practice. For an overview, see [23].

The task is made easier by the fact that we have the marginals (i.e., total votes cast) for
each precinct in the state. nslphom is a multi-iteration Linear Programming technique that
takes advantage of this fact, using statewide homogeneity assumptions, developed by Pavia
et al. [27]. It is available as an R package, which we used to estimate the inner cell values of
the 3 × 3 tables of the form shown in Fig. 3 (one table per precinct). For example, 71.30 is
the estimate for the number of voters who voted for the Democratic candidate in 2012 but
did not vote in 2016.

2016 votes
Democratic Republican Nonvote/Other Total

2012
votes

Democratic 407.45 9.24 71.30 488
Republican 3.55 1583.69 73.76 1660

Nonvote/Other 0.00 272.07 2713.93 2986
Total 410 1864 2859

Figure 3 The EI table for votes cast in Alamance County, North Carolina, Precinct 01. The inner
cell values are estimated using the R package nslphom, using the known marginal values. In this
case, the estimated number of swing voters is 3.55 + 9.24 + 1

2 (71.30 + 73.76 + 0.0 + 272.07) = 221.36.

We use the election results of the 2012 and 2016 elections to estimate swing voter counts
and the results of the 2020 election to evaluate the final redistricting maps in order to keep
estimation and evaluation metrics separate. For each precinct, we compute the final estimate
for “swing voters” by summing the off-diagonal elements of the EI table, with the entries in
a “Nonvote/Other” row or column halved. Intuitively, compared to a voter who switches
their vote from Party A to Party B, a voter who merely goes from abstaining to voting (or
from voting to abstaining) only changes the top-level margin by half as much.
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5.2 Heuristic-based optimization procedure
In order to find districtings that maximize the number of competitive districts, we use a
simple randomized greedy hill-climbing procedure based on repeatedly making “single node
flips” (also called spin flips) that incrementally improve the plan when measured against some
objective(s). These methods are extensively used in ensemble-based analyses of redistricting;
see, for example, [13, 12].6

A single-node-flip is a step that flips a node that is on the boundary of two districts from
one district to another, subject to some constraints. Specifically, a node u ∈ Dj is eligible
to be flipped to district Di (where i ̸= j) if (a) u is adjacent to some v ∈ Di, (b) Dj \ {u}
remains connected and within population bounds; and (c) Di ∪ {u} is within population
bounds.

In each step, we randomly choose a single-node-flip (u, D1, D2) from the set of all valid
flips, proportional to a score function Ji, which quantifies the “desirability” of the resulting
districts (D1 \ {u}, D2 ∪ {u}), compared to the original districts (D1, D2), for particular
objectives of interest:

J(u, D1, D2) = exp

 ∑
objectives i

−wi

(
Ji(D1 \ {u}) + Ji(D2 ∪ {u}) − (Ji(D1) + Ji(D2))

) .

Here, low values for Ji are preferred; this weight function weights a flip more heavily
the more it decreases the Ji values.7 In this work, our weight includes two score functions:
compactness and competitiveness (via swing districts or δ-VBC districts).

We employ the widely-used measure of compactness, the isoperimetric ratio [8], defined
as the perimeter squared divided by area. The more compact a district, the lower its
isoperimetric ratio, and we define Jiso(D) = perimeter(D)2

area(D) .

The vote-band competitiveness term in the score function prioritizes districts that are
close to even (i.e., 50-50 margin), and further prioritizes districts where the margin is in the
range 1

2 ± δ:

JV BC(D) =


(

P artyA(D)
P op(D) − 1

2

)2
if P artyA(D)

P op(D) ̸∈ 1
2 ± δ ,

1
16

(
P artyA(D)

P op(D) − 1
2

)2
if P artyA(D)

P op(D) ∈ 1
2 ± δ .

The swing term in the score function prioritizes having districts where the number of
Party A voters plus half the swing voters are close to half of the total population, and
further prioritizes districts where neither party’s reliable voters comprise more than half of
the overall population:

Jsw(D) =


(

1
2 −

(
1
2

Swing(D)
P op(D) + P artyA(D)

P op(D)

))2
if P artyA(D)

P op(D) > 1
2 or P artyB(D)

P op(D) > 1
2 ,(

1
2 −

(
1
2

Swing(D)
P op(D) + P artyA(D)

P op(D)

))2
· 0.82 if P artyA(D)

P op(D) < 1
2 and P artyB(D)

P op(D) < 1
2 .

6 However, we are not doing an ensemble analysis; we will not attempt to sample from a measure or use
the Metropolis-Hastings algorithm, as these works do. Rather, we are simply investigating the degree to
which a direct optimization can achieve competitive districtings.

7 This type of score function can be considered to be a “tempered choice” according to the measure
π(D) = exp

(∑
i
−wiJ(Di)

)
. This form of measure is commonly used in ensemble methods, e.g., in

[7, 6].
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(a) Vote shares of the enacted
plan in North Carolina.

(b) Vote share range of a sample
of compact plans.

(c) Vote shares of the 5%-vote-
band competitive districting.

Figure 4 Explicitly considering competitiveness allows us to draw plans with significantly fewer
safe districts than both the enacted plan and a sample of compact plans.

5.3 Run Parameters
We ran the hill-climbing procedure for 36,000 steps, restarting from a random initial state
every 3,000 steps and taking the most compact plan with the maximal number of competitive
districts. We used weights of wiso = 3, wV BC = 105, for VBC runs and wiso = 3, wsw = 105

for the Swing runs. We implemented the procedure in Python using the gerrychain package
[1]. With unoptimized, single-threaded Python code, the procedure takes about three hours
to run on Intel Xeon Gold 6226 2.9 Ghz machines.

As a basis for comparison, we also ran the hill-climbing procedure for 40,000 steps,
restarting every 200 steps, with wiso = 3, wV BC = 0, wsw = 0, i.e., prioritizing only
compactness. We logged the most-compact plan found in each 200-step interval. We will
refer to this set of plans as the compact sample below.

6 Experimental Results

We find that the heuristics are extremely effective for constructing districting plans with a
significant proportion of swing districts. In fact, we obtain districtings on North Carolina
and Arizona where every single district is competitive (for 10%-vote-band, 5%-vote-band,
and swing metrics).

In Fig. 5, we display the most compact plan for each of δ = 0.1, 0.05, and Swing,
alongside the current enacted plan, for North Carolina. We also display the vote share of
each district: that is, the percentage of Democratic and Republican (and Swing, for the last
plot) voters in each district, based on votes cast in the 2020 presidential election. In Fig. 4,
we compare the vote share distribution of the 5%-VBC plan to that of the enacted plan and
of the compact sample.

We display the same results for Arizona in Fig. 6.
Notably, the VBC plans exhibit signficantly improved responsiveness: the median district

is extremely competitive (49.9% D-voting) and a small statewide swing in vote share would
correspond to a larger change in number of seats won.

7 Discussion

We explicitly do not present these plans as examples of ideal districting plans. Rather,
we present them in contrast to the hardness results presented above, and to explore the
consequences of fully prioritizing competitiveness as an objective. Although both swing
district and vote-band-competitive district maximization is NP-hard (even if only seeking to
make two out of d districts competitive), we explicitly show that it is tractable in practice,
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(a) The currently-enacted plan. Despite winning just over half of the two-party vote, Trump would have
carried ten of the fourteen Congressional districts.

(b) In this plan, all districts are δ-Vote-Band competitive for δ = 10%. That is, all districts have a Biden
vote share between 40% and 60%. Note that Biden and Trump would have each carried seven of the
fourteen districts: a result that is significantly more reflective of the fact that they won nearly the same
number of votes.

(c) In this plan, all districts are δ-Vote-Band competitive for δ = 5%: all districts have a Biden vote share
between 45% and 55%. Again, Biden and Trump would have each carried seven districts. However, the
districts are noticeably less compact, with significantly contorted boundary shapes; the heavily Democratic
areas of Charlotte and Raleigh-Durham are visibly “cracked” among many districts.

(d) In this plan, all districts are swing. The range of outcomes (ranging from all swing voters voting for
Trump to all swing voters voting for Biden) is shown for each district.

Figure 5 Our simple hill-climbing procedure successfully finds plans for North Carolina where all
fourteen districts are competitive.
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(a) The current enacted plan.

(b) A 0.1-Vote-Band-Competitive districting: all districts have a Biden vote share between 40% and 60%.

(c) A 0.05-Vote-Band-Competitive districting: all districts have a Biden vote share between 45% and 55%.
Unlike in North Carolina, this appears to be achievable without significant loss of compactness.

(d) In this plan, all districts are swing. The range of outcomes (ranging from all swing voters voting for
Trump to all swing voters voting for Biden) is shown for each district.

Figure 6 Our hill-climbing procedure successfully finds plans for Arizona where all nine districts
are competitive. Unlike in North Carolina, there is no significant sacrifice in compactness to achieve
a δ = 5%-vote-band-competitive districting.
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even achieving plans that make all d districts competitive. Thus, the point is to dissuade
the reader from drawing the conclusion that “because drawing swing districts is NP-hard,
attempting to do so is a lost cause”, or that “policymakers are exempt from drawing
competitive districts because of computational intractibility.” Instead, drawing competitive
districts is very tractable in practice.

Notably, whereas the enacted plan “packs” the heavily-Democratic areas of Charlotte
and Raleigh-Durham into as few districts as possible, maximizing competitive districts
entails “cracking” those areas up into multiple districts. We observe this among all plans
that achieved 14 competitive districts; in some sense, this is likely unavoidable given the
political geography of the state (in which Democratic voters are heavily concentrated in
small geographic areas).

Indeed, the ideal number of competitive districts is almost certainly not the maximal
number. We leave the question of exactly how many districts should be competitive as a
normative question (for discussion of the relationship between proportionality and competitive
districts, see [18]); we simply present the result that it is tractable to achieve anywhere from
0 to d competitive districts on some real-world graphs.

In particular, while having every district in a state be competitive makes the makeup of
the state’s Congressional delegation highly responsive (that is, small changes in vote share
can result in large changes in topline number-of-seats-won), taking this to an extreme (for
example, by enacting the plan in Fig. 5(c)) can result in a sharp decline in the proportionality
of the results. For example, under the plan in Fig. 5(c), if one party won 55% of the
votes statewide, they would sweep all of the congressional districts - certainly sending an
unrepresentative delegation to represent the state.

We do not expect all states to admit fully-competitive districtings; indeed, states with
remarkably homogeneously distributed electorates (such as Massachusetts) have been observed
to be impossible to draw competitive districts on [16]. On the other extreme, some states
may have voters that are so geographically polarized that drawing competitive districts may
require splitting uban areas into unacceptably many districts. For example, Democratic
voters in Pennsylvania and Illinois are so heavily concentrated in cities like Philadelphia
and Chicago that maximizing competitive districts likely involves splitting them into over a
dozen districts - likely an unacceptable result. We leave detailed investigation of these cases
for future work.

8 Conclusion

We observe a very large gap between the theoretical intractibility of drawing competitive
districts (even on fairly natural instances) and the high performance of empirical heuristics
on real instances. This is consistent with the literature on optimizing various metrics in
redistricting, as well as with the fact that population-balanced districting itself is clearly
achievable in reality while being complexity-wise infeasible in the worst case. We attribute the
tractability on real instances to the fact that “close to optimal” is an acceptable substitute for
“truly optimal” in the context of elections, where a large amount of variation and uncertainty
is to be expected.
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A Further Proofs

A.1 Hardness of Swing Competitiveness
In this section, we prove Theorem 2, which we restate here for convenience:

▶ Theorem 2 (Swing Hardness). For all positive ε < 1
6 , the Swing ε-valid District Maximiza-

tion Problem (Swing-Max(ε)) is NP-hard, even on instaces where G is a grid, d = 2, and
ε-valid districtings (that are not Swing-maximal) are poly-time computable.8

The proof is nearly identical the the proof of Theorem 1.

Proof. Fix ε and let δ = 0. Let S = [(a1, b1) · · · (an, bn)] be an instance of FPSP(0), and let
Z =

∑n
i=1(ai + bi). Our redistricting instance (“state”) for Swing-Max(ε) will be a 3× (n+2)

grid of cells Ci,j , where:
All cells in the first and third row have zero population: pop(C1,·) = pop(C3,·) = 0.
For second-row cells C2,i for i = 1, 2, · · · n,

pop(C2,i) = (ai + bi) PartyA(C2,i) = ai Swing(C2,i) = bi

8 This constraint of ε < 1
6 is extremely lenient: in practice, most districtings have population balance

under 1%, and ε = 1
6 would allow one district to have double the population of another - which is

certainly illegal.
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Finally, for second-row cells C2,j for j = n + 1, n + 2,

pop(C2,j) = 1
2P, where P =

1
2 + ε
1
2 − ε

(1 + Z)

PartyA(C2,j) = 1
4P Swing(C2,j) = 1

4P

The total population of the state is

Poptotal = 0 + Z + 2
(

1
2P

)
= Z + P =

1
2 − ε + 1

2 + ε( 1
2 − ε

) Z +
1
2 + ε( 1
2 − ε

) = 1
1
2 − ε

Z +
1
2 + ε
1
2 − ε

Let {D1, D2} be a ϵ-valid Swing districting on this state.
The following observations still hold, from the proof of Theorem 1:

Observation 0. One can district this instance in polynomial time.

Observation 1. Cells C2,n+1 and C2,n+2 must be assigned to different districts. Without
loss of generality, let C2,n+1 ∈ D1.

Observation 2. Each district must contain at least one of C2,i for i ∈ [n].
Claim: S1 = {i : C2,i ∈ D1}, S2 = {i : C2,i ∈ D2} is a valid solution to the FPSP(ε)

instance.
For S1, S2 to be a solution to FPSP(ε), we must show (a) both are nonempty (which

follows from Observation 2 above), and (b)
∑

i∈S1
ai =

( 1
2 + δ

)∑
i∈S1

(ai + bi).
1
2 of the overall population is Party A voters:

total PartyA

total population =

∑n
i=1 ai +

( 1
2
) 1

2 +ε
1
2 −ε

(1 + Z)∑n
i=1(ai + bi) +

1
2 +ε
1
2 −ε

(1 + Z)

=
( 1

2 )
(∑n

i=1(ai + bi) +
1
2 +ε
1
2 −ε

(1 + Z)
)

∑n
i=1(ai + bi) +

1
2 +ε
1
2 −ε

(1 + Z)
= 1

2

Since both districts’ margins are exactly 1
2 , each one must have exactly 1

2 Party A voters.
So,

1
2 = PartyA(D1)

PartyA(D1) + PartyB(D1)

=
( 1

2
) 1

2 P +
∑

i∈S1
ai

1
2 P +

∑
i∈S1

(ai + bi)(
1
2

)(
1
2P +

∑
i∈S1

(ai + bi)
)

=
(

1
2

)
1
2P +

∑
i∈S1

ai(
1
2

)
1
2P +

(
1
2

)∑
i∈S1

(ai + bi) =
(

1
2

)
1
2P +

∑
i∈S1

ai

∑
i∈S1

ai =
(

1
2

)∑
i∈S1

(ai + bi)

as required. Thus, S1, S2 are a valid solution to the FPSP instance. ◀
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A.2 Hardness for an arbitrary number of districts
In this section, we prove Corollary 4:

▶ Corollary 4 (Hardness for more than two districts). For any k, d with 2 ≤ k ≤ d, it is
NP-hard to generate an ε-valid d-districting plan where at least k districts are competitive
(for either δ-VBC or SWING).

Proof. We reduce from an instance with d = 2. Fix d′, k with 2 ≤ k ≤ d′. We simply add
d′ − 2 cells to the instance. Each cell will have the maximal allowable district population.
k − 2 of the districts will have half Party A voters and half Party B voters (which makes that
singleton district competitive under either Swing or δ-VBC definitions), and the remainder
will be entirely Party A voters (i.e., uncompetitive).

Any valid districting with k competitive districts must have the added cells as singleton
districts, of which k − 2 will be competitive. The other two districts must be a competitive
districting of the original instance. ◀

B Polynomial Algorithms and Approximations

In this section, we consider special cases of the Swing District Maximization problem in which
either the graph G has a special structure (line, bounded degree tree, etc), the population
constraint is relaxed, or the districts satisfy an additional structure.

B.1 Line
We start by considering the case where G is the line graph on n vertices c1, . . . , cn, such
that there is an edge between ci and ci+1 for 1 ≤ i ≤ n − 1. Satisfying the connectivity
constraint in this case is easy; simply make sure that every districts has only consecutive
cells cj , cj+1, . . . , ci. A district is feasible if it’s connected and satisfies the population
constraints. We can find the optimal d-districting by solving a dynamic program. For fixed d,
i ∈ {1, . . . , n} and k ≤ d, let M(i, k) denote the maximum number of swing districts among
all valid d-districtings of the subgraph induced by c1, . . . , ci. We show that

M(i, k) = max
1≤j<i

(cj+1,...,ci) feasible

{
M(j, k − 1) + 1{(cj+1, . . . , ci) is swing}

}
, (1)

and

M(i, 0) = −∞ ∀ i ∈ {1, . . . , n}
M(i, 1) = 1{(c1, . . . , ci) is swing} if (c1, . . . , ci) feasible, ∀ i ∈ {1, . . . , n}
M(i, 1) = −∞ if (c1, . . . , ci) is not feasible, ∀ i ∈ {1, . . . , n}

Equation (1) holds since to get the maximum number of swing districts in a k-districting
of c1, . . . , ci, we need to decide on the cell cj+1 that limits the last district from the left.
Once the last district {(cj+1, . . . , ci)} is fixed, we need to pick the remaining k − 1 districts
from c1, . . . , cj . Checking if a subset of cells satisfies population constraints and induces a
swing district can be done in O(n) time. Therefore, we can fill the n × d entries of the matrix
M(i, k) top down from left to right. The optimal solution is stored in M(n, d). We have the
following lemma.

▶ Lemma 6. If G is a line on n cells, we can compute the optimal d-districting in O(n2d)
time.
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B.2 Bounded-Degree Trees with Districts of Bounded Depth
In this subsection, we consider bounded-degree trees with the additional assumptions that
districts need to have bounded depth, that is, the distance between every two cells in the
same district must be less than a parameter d > 0. Consider the graph G to be a tree with
n vertices and a maximum degree ∆. Let ε be the population tolerance. We require that in
a valid districting, all districts must run for a depth of at most d (i.e., the diameter of every
district is less than d).

Let D(v, ε, d) be the set of ε-valid districts with depth at most d that are rooted at v.

▷ Claim 7.

|D(v, ε, d)| ≤ 2∆d

Proof. The number of vertices at a distance less or equal than d from the root v is less than
∆d. For every one of these vertices and every D ∈ D(v, ε, d), D can either contain the vertex
or not. ◁

When d = O(1) and ∆ = O(1), we propose a polynomial time dynamic program to solve
the swing district maximization problem. For a fixed d and k ≤ d, let M(v, k) denote the
maximum number of swing districts in a ε-valid k-districting for the subtree of G that is
rooted at v. To get the optimal districting, we need to first fix the district that v will belong
to in D(v, ε, d). Because of the depth constraint on districts, the number of possible choices is
bounded by 2∆d . After we fix the district of v, we need to choose the roots of the remaining
k − 1 districts.

Let G(v) be the subtree of G that is rooted at v. Let D ∈ D(v, ε, d), and let R(D) be
the roots of the subtrees of G(v) \ D. If |R(D)| > k − 1, then clearly we cannot assign all
the remaining cells to districts. Therefore we need 0 < |R(D)| ≤ k − 1. Furthermore, to
compute the remaining k − 1 districts, we need to start from the roots in R(D) such that,
every vertex in R(D) will give rise to at least one district. To decide how many district every
tree rooted at a vertex in R(D) needs to have, we assign a number ℓ(u) ∈ {1, . . . , k − 1} for
every u ∈ R(D), such that

∑
u∈R(D)

ℓ(u) = k − 1, and the subtree rooted at u contains l(u)

out of the remaining k − 1 districts. This gives rise to the following dynamic program

M(v, k) = max
D∈D(v,ε,d)
|R(D)|≤k−1∑

u∈R(D)

ℓ(u)=k−1

{
1{D is swing} +

∑
u∈R(D)

M(u, ℓ(u))
}

If r is the root of G, the M(r, d) will contain the optimal number of swing districts. In
order to get M(r, d), we need to top-down fill O(nk) entries of M . To fill an entry M(v, k),
we have to choose a district D ∈ D(v, ε, d) and an assignment u 7→ ℓ(u) for u ∈ R(D) such
that

∑
u∈R(D)

ℓ(u) = k − 1.

▷ Claim 8. Once a district D ∈ D(v, ε, d) is fixed, the number of possible assignments
u 7→ ℓ(u) for u ∈ R(D) such that

∑
u∈R(D)

ℓ(u) = k − 1 is less than k2∆d

.

Proof. Similarly to the proof of Claim 7, we can show that |R(D)| ≤ 2∆d

. The number of
positive assignments u 7→ ℓ(u) such that 1 ≤ ℓ(u) ≤ k − 1 is less than k2∆d

. ◁
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The combination of Claim 7 and 8 show that every entry M(v, k) can be computed in
O(2∆d

k2∆d

) time given that we already know the previous entries. We therefore have the
following lemma.

▶ Lemma 9. If G is a tree with a maximum degree ∆, and districts can have at most a
depth of d, we can compute the optimal d-districting in O(n2∆d

k1+2∆d

) time.

B.3 Convex Districtings of Grid Graphs
In this subsection, we assume that the graph G is an m × n grid. If we require all the
districts to be x-convex, that is, if two cells c1 and c2 of the same row are assigned to the
same district, then all the cells between c1 and c2 of that same row are also assigned to that
district. This case encompasses a compactness constraint since convexity has been used in
gerrymandering studies as a measure of compactness to examine how redistricting reshapes
the geography of congressional districts [11].

▶ Theorem 5. et G be an m × n grid, and let P = Pop(G) be the total population on P .
There exists an algorithm for computing an x-convex valid d-districting of G with maximum
swing districts, with running time (Pm)O(d). In particular, the running time is polynomial
when the total population is polynomial and the total number of partitions is a constant.

Proof. Let D1, . . . , Dk be an x-convex d-districting of G. For any i ∈ {1, . . . , n}, let Ci be
the i-th column of G. We observe that for all i ∈ {1, . . . , n}, and for all j ∈ {1, . . . , d}, we
have that Dj ∩ Ci is either empty, or consists of a single rectangle of width 1. Let Ci be the
set of all contiguous partitions of Ci into exactly d (possibly empty) segments, each labeled
with a unique integer in {1, . . . , d}. We further define

αi,j = PartyA
(
D∗

j ∩ (C1 ∪ . . . ∪ Ci)
)

βi,j = PartyB
(
D∗

j ∩ (C1 ∪ . . . ∪ Ci)
)

γi,j = Swing
(
D∗

j ∩ (C1 ∪ . . . ∪ Ci)
)
,

For each column i ∈ [n], and each district j ∈ [d], αi,j (resp. βi,j , γi,j) denote the number of
Party A (resp. Party B, swing) voters in district Dj between column 1 and column i.

We can enumerate all the possible solutions starting from the first column and moving to
the right as follows. For each i ∈ {1, . . . , n}, let Ii = N3d × Ci × [m]d. Let

Xi = (αi,1, βi,1, γi,1, . . . , αi,d, βi,d, γi,d, Zi,i ) ∈ Ii,

where Zi is a d-partition of the column Ci and i = {Fi,1, . . . , Fi,d} is a collection of the
forbidden indices for every district in the next column Ci+1, to ensure the connectivity of
the districts as well as the x-convexity constraints.

If i = 1, we say that Xi is feasible if 1 = {∅, . . . ∅} and, for all j ∈ {1, . . . , d}, the set
Z1 = {Z1, . . . , Zd} satisfies

αi,j = PartyA
(
Zi,j

)
, βi,j = PartyB

(
Zi,j

)
, and γi,j = Swing

(
Zi,j

)
If i > 1, we say that Xi with Zi = {Zi,1, . . . , Zi,d} is feasible if the following holds,

there exists some Xi−1 = (αi−1,1, βi−1,1, γi−1,1, . . . , αi−1,d, βi−1,d, γi−1,d, Zi−1,i−1 ) ∈ Ii−1
such that
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αi,j = αi−1,j + PartyA
(
Zi,j

)
, βi,j = βi−1,j + PartyB

(
Zi,j

)
, and γi,j = γi−1,j + Swing

(
Zi,j

)
,

(2)
Zi,j∩i−1,j = ∅, (3)
If Zi,j ̸⊂ Zi−1,j then Fi,j = (Zi−1,j \ Zi,j)∪i−1,j , else Fi,j =i−1,j (4)

The constraint (2) simply states that the voter populations in columns 1, . . . , i are equal to
the the voter populations in columns 1, . . . , i−1 plus the voters from partition Zi. Constraint
(3) ensure that the partition of the i-th column has to respect x-convexity and not include any
of the forbidden cells from i−1. The last constraint (4) shows how to update the forbidden
cells for the next column i + 1. If for a district Dj , the indices of the rows added from column
i to Dj is included in the set of rows of Dj from column i − 1, then there is no need to add
any other forbidden row for the next column. If however, Zi,j ̸⊂ Zi−1,j , that means that
the column i does not “transfer” the rows of Dj from column i − 1 to column i, then the
“non-transfered” rows have to be forbidden in the next column.

For each i ∈ {1, . . . , n} we inductively compute the set of all feasible Xi ∈ Ii. This can
be done in time (Pm)O(d) where P is the total population of the map. ◀
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