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Abstract
We present a framework for designing scores to summarize performance metrics. Our design has two
multi-criteria objectives: (1) improving on scores should improve all performance metrics, and (2)
achieving pareto-optimal scores should achieve pareto-optimal metrics. We formulate our design
to minimize the dimensionality of scores while satisfying the objectives. We give algorithms to
design scores, which are provably minimal under mild assumptions on the structure of performance
metrics. This framework draws motivation from real-world practices in hospital rating systems,
where misaligned scores and performance metrics lead to unintended consequences.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory and mechanism
design; Theory of computation → Computational geometry

Keywords and phrases Multi-criteria incentives, Score-based incentives, Incentivizing improvement,
Computational geometry

Digital Object Identifier 10.4230/LIPIcs.FORC.2024.8

Funding Anmol Kabra: Supported in part through the NSF-TRIPODS Institute on Data, Economics,
Algorithms and Learning (IDEAL).
Tosca Lechner : Supported by a Vector Research Grant and a Apple Waterloo PhD fellowship for
machine learning and data science.

Acknowledgements Anmol Kabra thanks Naren Sarayu Manoj and Max Ovsiankin for pointers on
convex analysis and geometry.

1 Introduction

The use of numerical metrics to evaluate performance and guide decision-making is common
practice in healthcare, education, business, and public policy. It is common for agencies to
design surrogate scores that summarize performance metrics, in a way that aligns incentives
with performance metrics. Often the scored entities strategically optimize surrogates and
end up degrading on metrics, a phenomenon commonly known as unintended consequences
and pithily conveyed by Goodhart’s law [25, 46]:

“When a measure becomes a target, it ceases to be a good measure.”
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8:2 Score Design for Multi-Criteria Incentivization

Agencies thus aim to ensure that optimizing scores leads to improved metrics. As the number
of performance metrics can be large in practice [51, 40], agencies must design succinct
multi-dimensional surrogate scores. We present a framework to study this minimal design
problem, and propose score designs that prevent unintended consequences.

Our work is directly motivated by real-world examples in safety-critical domains such as
healthcare and education, where manifestations of Goodhart’s law exemplify the serious ram-
ifications of unintended consequences. When Pacificare, a healthcare provider, incentivized
hospitals in 2003 to perform certain medical procedures to improve quality of care, several
unrepresented metrics deteriorated [35]. Similar misalignment between performance metrics
and score-based hospital ratings, used by the Medicare agency (CMS), has been widely
critiqued [47, 11, 33, 1, 44, 3]. Even so, CMS uses these score-based ratings to incentivize
hospital policies [13, 18]. Hence, it aims to design scores so that improving on scores also
improves all performance metrics. This goal motivates the improvement objective in our
framework. In a similar vein, rating agencies such as USNews aim to incentivize efficient
use of hospital resources through published scores [49]. On multi-dimensional metrics, the
efficiency goal [41] naturally translates into the notion of pareto-efficiency, which motivates
the optimality objective in our framework.

We present a framework for designing scores to summarize performance metrics. We give
three natural design restrictions that align with real-world interpretability desiderata [15, 49],
and propose score designs that satisfy the multi-criteria objectives under these restrictions.
Striving for succinct scores, we formulate our design to minimize the dimensionality of scores.
We give polynomial-time algorithms to design these succinct scores, which are provably
minimal under mild assumptions on the structure of performance metrics. While existing
work on score design for incentivization studies scalar scores [34, 28, 43, 52], we design
scores of smallest dimensionality to satisfy the multi-criteria objectives. These objectives are
unsatisfiable with scalar scores in general.

1.1 Designing surrogate scores from performance metrics

In our model, the agency aims to design a surrogate score function S : F → S given a set of
performance metrics F of hospitals.

Hospitals report to agencies like CMS and USNews on hundreds of performance metrics
such as condition-specific death rates, readmission rates, and percentages of patients receiving
satisfactory care [15, 14, 49]. We can denote the values of d metrics of a hospital with a real-
valued vector f ∈ F ⊆ Rd. Since d is large and metrics can be related through confounding
variables [5, 37], the agency wants to summarize the d metrics as k scores with values S ⊆ Rk,
where k is small as possible. For instance, Example 3 suggests that, to summarize COVID
and pneumonia death rate metrics, the agency can choose either of the two metrics as the
score, so that k = 1. Whereas for pneumonia death rate and excess antibiotic use metrics,
Example 4 argues that selecting both metrics as scores is necessary, and so k = 2.

Surrogate design objectives

Anticipating that the hospital would target the incentives by optimizing the score function S,
the agency wants to design S in such a way that optimizing them ensures that the hospital
does well on the performance metrics. We formalize this goal with two design objectives,
which utilize an ordering on the sets F and S, denoted by ≻F and ≻S . The two objectives
are motivated from CMS and USNews hospital rating agencies [15, 49].
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1. Improvement objective. Improving on surrogate scores should result in improving on
performance metrics. In particular,

for f , f ′ ∈ F , if S(f ′) ⪰S S(f) then f ′ ⪰F f . (1)

2. Optimality objective. Pareto-optimal points of surrogate scores should be pareto-optimal
points of performance metrics. In particular,

ParetoOpt(S) ⊆ ParetoOpt(F). (2)

Throughout the paper, we analyze the setting F ⊆ Rd and S ⊆ Rk and use elementwise
order of vectors for ⪰F and ⪰S .

Surrogate design restrictions

Due to interpretability and public reporting obligations, rating agencies like CMS and
USNews design scores by selecting subsets of the list of performance metrics or by taking
weighted averages [14, 15, 16, 17, 49]. Moreover, monotonicity of scores in performance
metrics is a desirable property for CMS, as it ensures that a hospital striving to improve all
performance metrics sees improved score values [14, 17].

We formulate these requirements as three different restrictions on S. These restrictions
impose a linear form on S : f 7→ Af with A ∈ Rk×d satisfying certain structural constraints.

1. Coordinate Selection (Res-CS). Each of the k coordinates of scores are chosen from d

coordinates of performance metrics. That is, for all i ∈ [k] there exists j ∈ [d] such that
S(f)i = f j for all f ∈ F . Equivalently, S : f 7→ Af where rows of A are 1-hot vectors.

2. Linear and Monotone (Res-LM). The k coordinates of scores are linear combinations
of d coordinates of performance metrics, and improving on performance metrics should
result in improving on surrogate scores. That is, S : f 7→ Af where for f , f ′ ∈ F , if
f ′ ≥ f then Af ′ ≥ Af .

3. Linear (Res-L). The coordinates of surrogate scores are linear combinations of coordinates
of performance metrics. That is, S : f 7→ Af without any further constraints on A.

Minimal design problem

Since the number of performance metrics d can be large [14, 15, 49], a natural goal is to
succinctly summarize metrics with scores that are accessible to patients and policymakers.
This goal of succinctness translates into designing a multi-dimensional function S : Rd → Rk

with the smallest output dimension k. For a combination of design objective and design
restriction, the minimal design problem is determining the smallest dimensionality k and
providing an algorithm outputs a surrogate score function S with this k.

1.2 Our contributions
In this paper, we study the minimal design problem. Our key contributions are:
1. We formalize surrogate score design for incentivizing multiple criteria, motivated from

real-world practices of two hospital rating systems, CMS and USNews.
2. We fully determine the minimal design problems of all combinations of objectives and

restrictions introduced in Section 1.1, and propose efficient score design algorithms
(Algorithms 1 and 2). We summarize our results in Table 1.
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8:4 Score Design for Multi-Criteria Incentivization

a. We show that the smallest dimensionalities k are dictated by structural properties of
the affine hull of performance metrics F .

b. Identifying a relationship between improvement and optimality objectives (Theorem 13),
we determine the minimal design problem for simultaneously satisfying both objectives.

Table 1 We list smallest dimensionalities k for the minimal design problem of all combina-
tions of objectives and restrictions. Here columns of Z are an orthonormal basis of the lin-
ear subspace associated with r-dimensional affine hull of F . We define the three matrix ranks
ConeSubsetRank, ConeGeneratingRank, ConeRank in Theorem 2. For the improvement objective, the
listed dimensionalities are also necessary, when F has non-empty relative interior (Theorem 7).

Restriction Improvement (§2) Optimality (§3) Both (§4)

Res-CS ConeSubsetRank(Z) r ConeSubsetRank(Z)
Res-LM ConeGeneratingRank(Z) 1 ConeGeneratingRank(Z)
Res-L ConeRank(Z) 1 ConeGeneratingRank(Z)

1.3 Related work
Recent work has highlighted the plight of score-based incentivization when scores that do not
align with performance metrics. In healthcare, design objectives of hospital rating agencies
often vary across agencies. Two popular examples are the Medicare agency (CMS), which
incentivizes healthcare investment across care metrics through a five-star score [15, 18], and the
USNews agency, which promotes highly-specialized medical departments [49]. When hospitals
target these score-based ratings, they often degrade on a few performance metrics [35]. For
example, CMS’s score-based ratings have been found to encourage hospitals to selectively
treat patients for minimizing readmission rates [3, 20, 12], and have exacerbated unequal
access to healthcare [33, 1, 44]. Such unintended consequences are prevalent in fields that use
scores as an incentive mechanism [6], for instance, in standardized testing [35] and financial
credit ratings [31, 54, 7, 26].

Our framework extends recent work on score design in principal-agent theory [34, 28,
43, 52, 27, 38, 30, 29, 4, 2] by designing scores for multi-criteria objectives. Kleinberg and
Raghavan [34] compare linear with monotone scalar score design for incentivizing effort from
agents. On a similar front, Haghtalab et al. [28] study scalar score design with a linear
threshold restriction. Score design has also been studied through a causality lens to optimize
the average treated outcome [52, 27, 38]. Finally, Rolf et al. [43] use noisy score observations
to approximate the pareto-frontier of performance metrics. Our framework’s optimality
objective and design restrictions capture this line of work on scalar scores. However, our
improvement objective is a novel contribution, and this objective turns to be unsatisfiable with
scalar scores (Theorem 7). Hence, our score design problems are inherently multi-criteria.

Technically, our design algorithms utilize novel techniques to decompose and enclose
polyhedral cones, building on work in computational geometry on finding frames of polyhedral
cones [21, 39, 53] and enclosing convex hulls [22, 36, 42, 48]. Our definition of ConeRank
(Theorem 2) is similar to NonNegativeRank, which is extensively studied in the context of
non-negative matrix factorization [23, 24, 19, 50, 36].

1.4 Notation
We represent scalars as λ, c ∈ R, and vectors and matrices as w ∈ Rn, W ∈ Rm×n. We
denote the nonnegative orthant with Rn

+. We generally write matrices as a stack of rows,
W = [w1; . . . ; wm], often denoting the set of rows with W . We say that matrix W (or set
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W ) generates cone KW if KW = Cone(W ) =
{

x ∈ Rn | x = λW , λ ∈ Rm
+

}
. We denote a

vector of zeros (or ones) as 0n ∈ Rn (or 1n), and the n-by-n identity matrix as In, dropping
subscripts when unambiguous.

2 Minimal design problem for improvement objective

We propose a surrogate score design for satisfying the improvement objective under the three
design restrictions. Then we illustrate our design strategy on simple examples of performance
metrics F , highlighting relationships between the geometry of F and the succinctness of
scores. Finally, we show that our proposed design is minimal under a mild assumption on F ,
implying that score design for improvement objective is inherently multi-criteria.

We first simplify the improvement objective in Equation (1) to identify geometric objects
that represent movement and improvement directions. Score function S : f 7→ Af on domain
F satisfies improvement when for all f , f ′ ∈ F , if A(f ′ −f) ≥ 0 then (f ′ −f) ≥ 0. Denoting
the movement directions at center f with Ff =

{
g = f ′ − f ∈ Rd | for all f ′ ∈ F

}
, we can

rearrange terms to get

for all centers f ∈ F , movement directions g ∈ Ff , if Ag ≥ 0 then Ig ≥ 0 (3)

Here the set of score improvement directions is exactly K∗
A =

{
g ∈ Rd | Ag ≥ 0

}
, which

is the dual of polyhedral cone KA generated from rows of A. Similarly, the set of metric
improvement directions is K∗

I =
{

g ∈ Rd | Ig ≥ 0
}

= Rd
+, which is the dual of polyhedral

cone KI = Rd
+ generated from rows of I. So intuitively, score function S : f 7→ Af satisfies

improvement if and only if every movement direction (in Ff ) that is a score improvement
direction (in K∗

A) is also a metric improvement direction (in K∗
I ):

S satisfies improvement ⇐⇒ for all f ∈ F , Ff ∩ K∗
A ⊆ K∗

I . (4)

2.1 Design proposal for improvement objective
When performance metrics F ⊆ Rd is a full-dimensional set, score design is trivial where
the most succinct score design is S(f) = f . Note that while performance is measured in
many dimensions [51, 40], the number of confounding variables of performance metrics is
often smaller due to correlated metrics [5, 37]. This typically induces a low-dimensional
structure on F , observed in practice and assumed in theory [6, 8, 5, 37]. We do not assume
such low-dimensional structure of F , but the smallest dimensionality k of score function S is
impacted by the intrinsic dimension of F . The affine hull of F is a natural geometric choice
to capture its intrinsic dimension.

▶ Definition 1. Define the affine hull of F , aff(F), as the intersection of all affine subspaces
in Rd containing F . Let L be the linear subspace associated with aff(F), i.e. L is the
translation of aff(F) so that for all centers f ∈ F , movement directions Ff ⊆ L.

By utilizing this subspace L containing all possible movement directions Ff , we propose
a score design in Algorithm 1 with dimensionalities given in Theorem 2. We introduce three
matrix ranks – ConeSubsetRank (CSR), ConeGeneratingRank (CGR), and ConeRank (CR) – to
characterize the score design dimensionalities for the three respective design restrictions
– Coordinate Selection (Res-CS), Linear and Monotone (Res-LM), Linear (Res-L). These
three matrix ranks capture the geometric properties of performance metrics F that dictate
the dimensionality of optimal score design for the three restrictions.

FORC 2024
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▶ Theorem 2. Let columns of Z be an orthonormal basis of linear subspace L associated with
aff(F). For each design restriction, there exists S : F → Rk, designed using Algorithm 1,
that satisfies the improvement objective with the following dimensionalities.

Dimensionality k ≥

Res-CS ConeSubsetRank(Z) := minq {q | KZ = KV for some V ∈ Rq×r s.t. V ⊆ Z}
Res-LM ConeGeneratingRank(Z):= minq {q | KZ = KV for some V ∈ Rq×r}
Res-L ConeRank(Z) := minq {q | KZ ⊆ KV for some V ∈ Rq×r}

Algorithm 1 Design strategy for improvement objective.
1: Given: performance metrics F and a design restriction.
2: Find Z whose columns are an orthonormal basis of subspace L associated with aff(F).
3: Find V that attains2 the matrix rank corresponding to the design restriction.
4: Find A that satisfies V = AZ and design S : f 7→ Af .

Theorem 2 follows from the following key insight of Equation (4): “for S : f → Af

to satisfy the improvement objective, score improvement directions need to be metric
improvement directions only for movement directions Ff , which are contained in subspace L.”
In fact, satisfying the improvement objective boils down to ensuring that score improvement
directions are a subset of metric improvement directions in the coefficient space w.r.t. subspace
L. The respective improvement directions K∗

A and K∗
I are generated by rows of A and I,

which have coefficients that are rows of V = AZ and Z, where columns of Z are an
orthonormal basis of subspace L. It turns out that improvement directions in the coefficient
space are precisely the duals K∗

V and K∗
Z of polyhedral cones generated from rows of V and

Z. So to satisfy the improvement objective, we need to ensure K∗
V ⊆ K∗

Z , or KZ ⊆ KV .
With the three matrix ranks, we capture the additional structure on A imposed by the

three design restrictions (Section 1.1). Res-L restriction does not further impose structure
on A, and so we only need to enclose cone KZ with KV . Res-LM restriction further requires
function S to be monotone in F , which intuitively means that every metric improvement
direction needs to be a score improvement direction, i.e., K∗

Z ⊆ K∗
V . So to satisfy Res-LM,

we must generate cone KZ with KV . Finally, Res-CS restriction requires selecting the k

score function coordinates from d metrics. In the coefficient space, this requirement means
that rows of V are chosen from rows of Z and KV generates KZ . Hence, the three matrix
ranks precisely capture structure on A imposed by the improvement objective and the design
restrictions. We include the proof of Theorem 2 in Theorem A.1.

2.2 Geometry of metrics dictates succinctness of scores
We now illustrate Algorithm 1 with several examples of metrics F . We instantiate performance
metrics in our examples with familiar notions of hospital metrics, to intuitively bridge our
analysis and algorithm with practical score design. In doing so, we discuss how the geometry
of F dictates the shape of polyhedral cone KZ , influencing the dimensionality of minimal
score design for the three design restrictions. Finally, we provide high-level descriptions of
techniques to to implement Algorithm 1 efficiently.

2 For a matrix rank, e.g. CSR, we say that V “attains” it if V ⊆ Z (rows of V are chosen from rows of
Z), KZ = KV , and the number of rows of V equals CSR(Z).
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COVID deaths

Pneumonia deaths

F

L

(a) When the two metrics are correlated (Ex. 3), we
can choose either metric in S : F → R1.

Excess antibiotics

Pneumonia deaths

F

L

(b) When the two metrics are anti-correlated (Ex. 4),
we must choose both metrics in S : F → R2.

Figure 1 To design scores for two metrics (F ⊆ R2), we can inspect the correlation between
metrics – the correlation dictates the succinctness of S : F → Rk for satisfying improvement.

▶ Example 3 (Two correlated metrics =⇒ choose either for score design). CMS evaluates
hospitals on numerous performance metrics like condition-specific death rates, readmission
rates, and safety standards [15]. Often comorbidities of medical conditions can lead to
positive correlations between metrics. In the case of two perfectly positively correlated
metrics, Algorithm 1 suggests to choose either of the two metrics to design S : F → R1.

Consider two metrics – (i) pneumonia death rate and (ii) COVID-19 death rate – that
have a positive correlation due to comorbidities. Assume that for a hospital, these two
death rates take values F =

{
f ∈ R2 | −f1 + 2f2 = 1, −1 ≤ f1 ≤ 1

}
, lying in a 1-dimensional

affine subspace of R2 (Figure 1a, red). As the affine hull aff(F) = {f | −f1 + 2f2 = 1} is
1-dimensional, the associated linear subspace L = {f | −f1 + 2f2 = 0} (Figure 1a, blue)
containing all movement directions Ff is 1-dimensional. Per Line 2 of Algorithm 1, we arrange

an orthonormal basis for L as columns of Z ∝
[
2
1

]
, whose rows generate the polyhedral cone

KZ = {2λ1 + λ2 | λ1, λ2 ≥ 0} = R+. Note that the metric improvement directions in the
coefficient space are the dual cone K∗

Z = R+.
To satisfy improvement objective under a design restriction, we need to find matrix

V that attains the corresponding matrix rank. For all three matrix ranks, the cone KV

generated by rows of V needs to enclose cone KZ . Equivalently, in the coefficient space, score
improvement directions K∗

V need to be a subset of metric improvement directions K∗
Z . The

choice of V = [2] ∈ R1×1 yields the desired property KZ ⊆ KV . In fact, we get KZ = KV

and V ⊆ Z, and so all three matrix ranks have value 1.
Finally, we can recover A = [1, 0] such that V = AZ, and design S(f) = [1, 0] · f = f1.

It is easy to verify that this S satisfies the improvement objective (we could also have chosen
V = [1] previously to design S(f) = [0, 1] · f = f2). Hence, when the two metrics are
perfectly positively correlated, choosing one for score design suffices.

▶ Example 4 (Two anti-correlated metrics =⇒ must choose both for score design). Performance
metrics used by CMS can also be negatively correlated when a hospital must balance its
effort to simultaneously improve all metrics. In the case of two perfectly negative correlated
metrics, Algorithm 1 suggests to use both metrics to design S : F → R2, as no 1-dimensional
score function can satisfy improvement objective.

Consider two metrics – (i) pneumonia death rate and (ii) excessive antibiotic use –
that have a negative correlation as improving on one degrades the other. Assume that
these two metrics take values F =

{
f ∈ R2 | −f1 − 2f2 = 1, −1 ≤ f1 ≤ 1

}
, lying in a 1-

dimensional affine subspace of R2 (Figure 1b, red). Similar to Example 3, the subspace
L = {f | −f1 + 2f2 = 0} (Figure 1b, blue) associated to aff(F) is 1-dimensional. But the

FORC 2024
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rows of orthonormal basis Z ∝
[

2
−1

]
generate cone KZ = {2λ1 − λ2 | λ1, λ2 ≥ 0} = R, which

contains a linear subspace within. This means that the metric improvement directions in
the coefficient space are the dual cone K∗

Z = {0}, i.e., there are no non-trivial directions to
simultaneously improve both metrics.

To satisfy improvement objective, score improvement directions in the coefficient space K∗
V

need to be a subset of metric improvement directions K∗
Z = {0}, or equivalently KZ ⊆ KV .

Hence, we choose V =
[

2
−1

]
∝ Z with 2 rows. Note that V with just 1 row would generate

either cone R+ or cone −R+, and fail to enclose cone KZ = R. Hence, all three matrix ranks
have value 2 even though all movement directions Ff lie in a 1-dimensional subspace L.

Finally, we can recover A = I2 such that V = AZ and design the trivial S(f) = f . Due
to the perfect negative correlation in metrics, we must choose both in the score design.

▶ Example 5 (Restriction with monotonicity =⇒ higher dimensionality). When the number of
metrics is large, understanding correlations among them can be unintuitive. Hence, we rely on
structure of polyhedral cones for score design, specifically improvement directions of scores K∗

V

and metrics K∗
Z (in the coefficient space). We find that score function dimensionality k under

Res-CS and Res-LM restrictions can be much larger than under Res-L, as CSR, CGR ≫ CR.
Consider the case of four metrics where two of them balance the other two, i.e., a toy ex-

ample where performance metrics take values F = aff(F) =
{

f ∈ R4 | [1, −1, 1, −1] · f = 0
}

.
Here the four metrics lie in a 3-dimensional linear subspace of R4 and F = aff(F) = L.
Hence, three orthonormal vectors in R4 form a basis of L such that the rows of Z generate
the “square” cone KZ in R3 (Figure 2a, red):

Z = 1
2 ·


1 1 1
1 −1 1
1 −1 −1
1 1 −1

 ∈ R4×3.

For Res-CS and Res-LM restrictions, we need to find matrix V such that KV = KZ . As
all rows of Z are extreme rays of KZ , matrix V must have four rows V = I4Z (any V with
fewer rows would not generate the square cone). Hence, CSR(Z) = CGR(Z) = 4. But for
Res-L restriction that does not require monotonicity, rows of V need only ensure KZ ⊆ KV .
The following matrix V with three rows that generates a “triangular” cone KV (Figure 2a,
blue) enclosing the square cone KZ :

V = 1
2 ·

1 0 2
1 3 −1
1 −3 −1

 and so V = AZ with A = 1
4 ·

 3 3 −1 −1
3 −3 −1 5

−3 3 5 −1

 .

Generally, CSR and CGR can be much larger than CR (Figure 2b). Since these three
matrix ranks describe the dimensionality under the three restrictions (Theorem 2), restrictions
that require monotonicity (Res-CS, Res-LM) lead to higher dimensionality in score design
compared to Res-L. In other words, allowing negative values in matrix A can significantly
reduce dimensionality of score design.

▶ Remark 6 (Competing metric improvement directions =⇒ higher dimensionality under Res-CS).
When rows of Z generate cone KZ that is pointed3, we get CSR(Z) = CGR(Z). But when

3 A cone K is pointed if for all nonzero x ∈ K, we have −x /∈ K. It is called non-pointed otherwise.
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KV KZ

(a) Rows of Z are extreme rays of the generated
“square” cone KZ . The square cone can be enclosed
by a “triangular” cone KV .

KV KZ

(b) All rows of Z ∈ Rd×3 are extreme rays of the
generated “circular” cone KZ . The circular cone can
be enclosed by a “triangular” cone KV .

Figure 2 Side and top views of cones KZ (red) generated by rows of Z, whose columns are
orthonormal basis of 3-dimensional subspace L. As CSR and CGR require generating KZ with KV ,
the matrix ranks depend on the number of extreme rays of KZ , which can be much higher than
dim aff(F) = 3. On the other hand, CR only requires enclosing KZ with KV ; and so is independent
of the number of extreme rays.

cone KZ that is non-pointed , we get CSR(Z) > CGR(Z). KZ can be non-pointed when
improving one metric degrades another, i.e., when metric improvement directions compete
among themselves. In this setting, dimensionality under Res-CS is higher than that under
Res-LM (see Example A.2).

Efficiently implementing Algorithm 1

Our proposed design strategy in Algorithm 1 can be efficiently implemented with algorithms
that utilize the geometry of metrics F . Elementary linear algebra operations can implement
Lines 2 and 4 of Algorithm 1, i.e., finding orthonormal basis Z and recovering A from
V = AZ. It is also possible to efficiently implement Line 3, to find matrix V that attain the
matrix ranks – ConeSubsetRank, ConeGeneratingRank, and ConeRank [32]. We briefly discuss
algorithms for Line 3, thus ensuring that the full Algorithm 1 can be efficiently implemented.
These algorithms leverage a key property of polyhedral cones, pointedness.

When the cone KZ generated from rows of Z is pointed, we can easily find V that attains
the matrix ranks. For ConeSubsetRank, we can keep the rows of Z that are extreme rays of
the polyhedral cone KZ , as extreme rays minimally generate a pointed cone [9, Prop. 26.5.4].
ConeGeneratingRank turns out to be the same as ConeSubsetRank, as every extreme ray of
KZ is a row of matrix Z [9, Prop. 26.5.4]. For ConeRank, the matrix V attaining it must
generate KV that encloses KZ . An intuitive procedure can find this V : can scale rows of Z

to lie on a hyperplane, and find a simplex that encloses the convex hull of scaled rows [22].
When the cone KZ is non-pointed, the cone contains a linear subspace within. Here we

can utilize the unique Minkowski decomposition of polyhedral cones into two orthogonal com-
ponents: the maximal linear subspace within, and a pointed remnant [45, Sec. 8.2]. Then, for
all three matrix ranks, we can generate/enclose non-pointed cone KZ , by generating/enclosing
the two orthogonal components separately.

2.3 Proposed design is minimal
Theorem 2 states that dimensionalities determined by the three matrix ranks –
ConeSubsetRank, ConeGeneratingRank, and ConeRank – are sufficient for score design. It
turns out that these dimensionalities are also necessary under a mild assumption on F
(Theorem 7). Hence, Theorems 2 and 7 together imply that the three matrix ranks exactly
determine the minimal design problem for improvement objective.

FORC 2024
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▶ Theorem 7. Assume metrics F ⊆ Rd have non-empty relative interior with respect to
aff(F). Then the listed dimensionalities k in Theorem 2 are necessary.

We briefly discuss the implication of metrics F having non-empty relative interior on
satisying the improvement objective. Such a set F contains a center f∗ ∈ F where every
direction in subspace L is a positively-scaled movement direction from Ff∗ . Intuitively, all
score improvement directions are movement directions in the coefficient space. As a result, we
get an equivalence between satisfying improvement in the ambient space and the coefficient
space, i.e., satisfying improvement in Equation (4) is equivalent to satisfying KZ ⊆ KV . See
Theorem A.3 for the proof.
▶ Remark 8. In Figure 3 we illustrate examples of F and their relative interior. F having
non-empty relative interior is a reasonable condition in practice, as performance metrics used
by rating agencies are often correlated and not isolated points [6, 15, 49, 8, 37, 5]. For instance,
CMS uses percentage-rate-based metrics, such as condition-specific death rates, readmission
rates, and screening rates [15, 14]. This leads to real-valued metrics F = [0, 1]d, which has
non-empty relative interior. We note that, when the relative interior is empty, dimensionality
k significantly less than listed values in Theorem 2 can suffice (Proposition A.5).

Figure 3 Examples of F ⊆ R2. The left three have empty relative interior, whereas the right two
have non-empty relative interior with respect to aff(F), which is lightly shaded.

▶ Remark 9 (Choice of affine subspace and orthonormal basis). Our design strategy in Al-
gorithm 1 can use any orthonormal basis Z of the linear subspace LH associated with
any affine subspace H containing metrics F . To design the minimal S : F → Rk, we pick
any orthonormal basis of subspace L associated with affine hull H = aff(F). This follows
from Lemma A.4, which states that three matrix ranks are (1) invariant to the choice of
orthonormal basis for a fixed subspace LH, and (2) minimized with the choice of H = aff(F).

3 Minimal design problem for optimality objective

We propose a surrogate score design for satisfying the optimality objective and discuss the
minimality of our proposed design. We use the standard definition of pareto-optimality.

▶ Definition 10. Point f ∈ F is pareto-optimal for maximizing S if no other point in F
both improves S(f) in all coordinates and strictly improves S(f) in at least one coordinate.

ParetoOpt(S) :=
{

f ∈ F | for all f ′ ∈ F , either S(f ′) ̸≥ S(f) or S(f ′) = S(f)
}

.

We write ParetoOpt(F) to denote the pareto-optimal points in F w.r.t. the identity map.

We simplify the optimality objective in Equation (2) – ParetoOpt(S) ⊆ ParetoOpt(F) –
using movement directions Ff at center f , score improvement directions K∗

A, and metric
improvement directions K∗

I . Intuitively, score function S : f 7→ Af satisfies optimality if and
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only if movement directions Ff that are non-strict score improvement directions are also
non-strict metric improvement directions:

Optimality ⇐⇒
{

f ∈ F | Ff ⊆ (K∗
A)c ∪ ker A

}
⊆

{
f ∈ F | Ff ⊆ (K∗

I )c ∪ ker I
}

. (5)

3.1 Design proposal for optimality objective
We propose a score design in Algorithm 2 with dimensionalities given in Theorem 11. We note
that dimensionalities for score design are much smaller for the optimality objective than for
the improvement objective (Theorem 2). Specifically, for Res-LM and Res-L restrictions, a 1-
dimensional score function S : F → R suffices to satisfy optimality whereas multi-dimensional
function S is necessary for improvement (Theorem 7). This suggests that the optimality
objective is significantly weaker than the improvement objective.

▶ Theorem 11. For each design restriction, there exists S : F → Rk, designed using
Algorithm 2, that satisfies the optimality objective with the following dimensionalities.

Dimensionality k ≥

Res-CS dim aff(F)
Res-LM 1
Res-L 1

Algorithm 2 Design strategy for optimality objective.
1: Given: F and a design restriction.
2: if Design restriction is Res-LM or Res-L then
3: Design S(f) = a · f with any positive vector a.
4: else if Design restriction is Res-CS then
5: Find Z whose columns are an orthonormal basis of subspace L associated with aff(F).
6: Let V be linearly independent rows of Z.
7: Find A that satisfies V = AZ and design S : f 7→ Af .

For Res-LM and Res-L restrictions, the minimal design is straightforward: design S : f 7→
a · f using any vector a > 0 [55]. For Res-CS restriction, we utilize an isomorphism between
movement directions Ff and their coefficients Cf ⊆ Rr w.r.t. orthonormal basis Z ∈ Rd×r

of subspace L associated with r-dimensional aff(F). The columns of Z span subspace L
and its rows correspond to coordinates of movement directions Ff . Using this isomorphism,
choosing r linearly independent rows of Z as rows of V suffices to satisfy the optimality
objective. As V ⊆ Z, we can find A ∈ Rr×d with 1-hot rows such that V = AZ, and design
S : f 7→ Af that satisfies the Res-CS restriction. We include the proof in Theorem A.6.

3.2 Discussion of minimality of proposed design
While our proposed design for improvement objective is minimal when F has non-empty
relative interior (Theorem 7), our design for the optimality objective is not necessarily
minimal under the same condition on F . The challenge is that ParetoOpt(F), the optimal
trade-off surface [10], depends on the boundary of F . To demonstrate this, we give three
examples of d-dimensional F with non-empty relative interior – for one of the examples
dimensionality k = dim aff(F) is necessary for satisfying optimality under Res-CS, whereas
for the other two examples, a 1-dimensional S suffices. See Proposition A.7 for the proof.
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▶ Proposition 12. Consider designing S : F → Rk to satisfy optimality objective.
1. For F =

{
f ∈ Rd | ∥f∥1 ≤ 1

}
, k ≥ 1 is necessary and sufficient for all design restrictions.

2. For F =
{

f ∈ Rd | ∥f∥2 ≤ 1
}

, k ≥ 1 is necessary and sufficient for all design restrictions.
3. For F =

{
f ∈ Rd | ∥f∥∞ ≤ 1

}
, k ≥ d is necessary and sufficient for Res-CS. Moreover,

k ≥ 1 is necessary and sufficient for the Res-LM and Res-L restrictions.

4 Minimal design problem for both objectives simultaneously

So far we have separately analyzed the minimal design problems for improvement and
optimality objectives. We now give results for simultaneously satisfying both objectives.

First, we establish a relationship between the improvement and optimality objectives.
This result holds even for score functions S that are not linear in F .

▶ Theorem 13. Let S : F → Rk be monotone in F . If S satisfies improvement, then S

satisfies optimality.

Proof. Let score function S : F → Rk be monotone in F and satisfy improvement. Hence,
for all f , f ′ ∈ F we have S(f ′) ≥ S(f) ⇐⇒ f ′ ≥ f , i.e., the function S preserves the
ordering on set F . We prove by contradiction that such an S satisfies optimality. Assume
that f∗ ∈ ParetoOpt(S) but f∗ /∈ ParetoOpt(F). That is, there exists f ∈ F such that
f ≥ f∗ and f ̸= f∗. Because S preserves the ordering, it must be that S(f) ≥ S(f∗) and
S(f) ̸= S(f∗), which means that f∗ /∈ ParetoOpt(S) and contradicts our assumption. ◀

We utilize Theorem 13 to design S that simultaneously satisfies both objectives. As S is
monotone in F under Res-CS and Res-LM restrictions, it suffices to design S that satisfies
the improvement objective. We include the proof in Corollary A.8.

▶ Corollary 14. Let columns of Z be an orthonormal basis of linear subspace L associated with
aff(F). For each design restriction, there exists score function S : F → Rk that simultaneously
satisfies improvement and optimality objectives with following dimensionalities.

Dimensionality k ≥

Res-CS ConeSubsetRank(Z)
Res-LM ConeGeneratingRank(Z)
Res-L ConeGeneratingRank(Z)

Moreover, for Res-CS and Res-LM restrictions, the score design is minimal when F has
non-empty relative interior.

▶ Remark 15. For simultaneously satisfying both objectives under Res-L restriction, dimen-
sionality k = CR(Z) is necessary, when F has non-empty relative interior (Theorem 7).
Corollary 14 states that k = CGR(Z) is sufficient, and CGR ≫ CR in general (Example 5).
We leave to future work to close this gap between necessary and sufficient dimensionality.

5 Conclusion

We propose a framework to design succinct scores to summarize performance metrics F , and
give polynomial-time algorithms that design scores that are provably minimal under mild
assumptions on F . Two future directions are to design scores: (1) when metrics takes discrete
high-dimensional values, (2) using incomplete, noisy high data from historical samples of
metric values, and (3) when metrics have a non-linear structure. On a technical note, it
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remains to identify structural properties of F and corresponding minimal designs for the
optimality objective. Designing minimal scores for simultaneously satisfying both objectives
under linear restriction is also an open direction.
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A Omitted Proofs

A.1 Minimal design problem for improvement objective
▶ Theorem A.1 (Theorem 2). Let columns of Z be an orthonormal basis of linear subspace L
associated with aff(F). For each design restriction, there exists S : F → Rk, designed using
Algorithm 1, that satisfies the improvement objective with the following dimensionalities.

Dimensionality k ≥

Res-CS ConeSubsetRank(Z) := minq {q | KZ = KV for some V ∈ Rq×r s.t. V ⊆ Z}
Res-LM ConeGeneratingRank(Z):= minq {q | KZ = KV for some V ∈ Rq×r}
Res-L ConeRank(Z) := minq {q | KZ ⊆ KV for some V ∈ Rq×r}

Proof. We give a proof for the Res-CS restriction; proofs for the other two restrictions are
similar. We show that, if k ≥ CSR(Z), then there exists S(f) = Af satisfying improvement
and Res-CS.
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Let columns of Z ∈ Rd×r be an orthonormal basis of r-dimensional linear subspace L
associated with aff(F). The definition of CSR states that k ≥ CSR(Z) when there exists
V ∈ Rk×r such that (i) V ⊆ Z and (ii) KZ = KV . Property (i) means that V = AZ

for some A ∈ Rk×d with 1-hot rows, and so S(f) = Af satisfies the Res-CS restriction.
Property (ii) implies that KZ ⊆ KV , and so S satisfies improvement:

KZ ⊆ KV
Lem. B.2⇐=====⇒ L ∩ K∗

A ⊆ K∗
I

Def. 1====⇒ for all f ∈ F ,

Ff ∩ K∗
A ⊆ K∗

I

Eq. 4⇐===⇒ Improvement. (6)

The proof of Lemma B.2 uses V = AZ, and the projection of rows of A and Id in
subspace L using orthonormal basis Z. ◀

▶ Example A.2 (Competing metric improvement directions =⇒ dimensionality for Res-CS >

Res-LM). When cone KZ generated by rows of Z is non-pointed, we have CSR(Z) > CGR(Z),
implying that the score design dimensionality is higher under Res-CS restriction than under
Res-LM. The cone KZ can be non-pointed in the presence of competing metric improvement
directions, i.e., when improving on one metric degrades another. A non-pointed KZ results
in a gap between CSR(Z) and CGR(Z).

Consider 8 metrics lying in a 5-dimensional subspace, which has the following orthonormal
basis (arranged as columns of Z):

Z = 1
2 ·



1 1 0 0 0
−1 1 0 0 0
−1 −1 0 0 0
1 −1 0 0 0
0 0 1 1 1
0 0 1 −1 1
0 0 1 −1 −1
0 0 1 1 −1


∈ R8×5.

The rows generate a 5-dimensional cone KZ with two orthogonal parts: (i) a 2-dimensional
linear subspace due to the first 4 metrics, and (ii) a 3-dimensional “square” pointed cone
due to the last 4 metrics, as visualized in Figure 4. Since KZ contains a 2-dimensional linear
subspace within, it is a non-pointed cone.

A matrix V that attains CSR(Z) must have rows of V chosen from rows of Z and
KZ = KV . Excluding any row of Z shrinks the generated cone – excluding any row of the
first 4 generates a halfspace rather than the 2-dimensional subspace, and excluding any row
of the last 4 does not generate the “square” pointed cone. So CSR(Z) = 8. On the other
hand, a matrix V that attains CGR(Z) need not have rows of V chosen from rows of Z; V

must only satisfy KZ = KV . We need all last 4 rows to generate the “square” cone, but there
exists 3 points (the blue and two bottom black points) whose nonnegative combinations
generate the 2-dimensional linear subspace. So CGR(Z) = 7.

▶ Theorem A.3 (Theorem 7). Assume metrics F ⊆ Rd have non-empty relative interior
with respect to aff(F). Then the listed dimensionalities k in Theorem 2 are necessary.

Proof. We give a proof for the Res-CS restriction; proof for the other two restrictions are
similar. We show that, when F has non-empty relative interior, we get:

for all f ∈ F , Ff ∩ K∗
A ⊆ K∗

I =⇒ L ∩ K∗
A ⊆ K∗

I . (7)
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Figure 4 A 5-dimensional non-pointed cone KZ with two orthogonal components: a 2-dimensional
linear subspace, and a 3-dimensional “square” pointed cone.

By adding this implication to Equation (6), we prove that, when F has non-empty relative
interior, a score function S satisfies the improvement objective and Res-CS restriction if and
only if k ≥ CSR(Z).

We now prove the implication in Equation (7). Let x ∈ L ∩ K∗
A. Since F has non-

empty relative interior, there exists f∗ in the relative interior. Lemma B.3 states that, as
x ∈ L, there exists a > 0 such that ax ∈ Ff∗ . Since x is in cone K∗

A as well, we have
ax ∈ K∗

A. Hence, ax ∈ Ff∗ ∩ K∗
A. According to the premise of Equation (7), we know that

Ff∗ ∩ K∗
A ⊆ K∗

I , and so ax ∈ K∗
I . As a > 0, we get x ∈ K∗

I , completing the proof. ◀

▶ Lemma A.4. Given affine subspace H containing F , the matrix ranks are invariant to the
choice of orthonormal basis of LH. Moreover, among all affine subspaces containing F , the
matrix ranks are smallest for H = aff(F).

Proof. We give a proof for CSR, proofs for the other two matrix ranks are similar.

1. We first give a geometric interpretation for invariance to choice of orthonormal basis of
LH. Then we give an algebraic proof.

Geometric interpretation. For any matrix W , note that CSR(W ) is the minimum
cardinality of a subset V of W (set of rows of W ), such that cone KV encloses KW . By
rotating rows of W without altering the column span of W , although the row vectors W

change, the relative position of them with respect to each other is the same. So the cone
generated by the rotated vectors is just a rotation of cone KW . As a result, the minimum
cardinality of a subset of rotated vectors (to enclose the rotated cone) is unchanged, and
so CSR(W ) is unchanged.

Algebraic argument. Let columns of Z1 and Z2 be two sets of orthonormal basis of
rH-dimensional LH. We will show that CSR(Z1) = CSR(Z2). The two orthonormal bases
have the same column span, and are rotations/reflections of each other. So there exists
orthogonal matrix Q ∈ RrH×rH such that Z1 = Z2Q and Z1Q⊤ = Z2.
We prove that CSR(Z1) ≤ CSR(Z2). Let CSR(Z2) = k∗. Then there exists V 2 ∈ Rk∗×rH

such that V 2 ⊆ Z2 and KZ2 ⊆ KV2 . These two properties mean that V 2 = AZ2 for some
A with 1-hot rows, and Z2 = BV 2 for some nonnegative B. Multiplying with Q on the
right, we get V 2Q = AZ2Q and Z2Q = BV 2Q. Therefore, V 1 = V 2Q ∈ Rk∗×rH has
the properties V 1 ⊆ Z1 and KZ1 ⊆ KV1 . This proves that CSR(Z1) ≤ CSR(Z2). With a
symmetric argument, we also get CSR(Z1) ≥ CSR(Z2).

2. Let H1 and H2 be two non-empty affine subspaces containing F such that H1 ⊆ H2.
Let L1 and L2 be linear subspaces corresponding to H1 and H2 respectively. Since
H1 ⊆ H2 and for any f ∈ H1 we can write L1 = H1 − f and L2 = H2 − f , we find that
L1 ⊆ L2. According to statement (1), CSR is invariant to the choice of orthonormal basis
of linear subspace. Hence, pick columns of Z1 and Z2 as orthonormal basis of L1 and L2
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respectively, such that columns of Z2 are a superset of columns of Z1. In the definition
of CSR, adding vectors to Z1 only increases the number of constraints to satisfy, and so
CSR can only grow. Hence, CSR(Z1) ≤ CSR(Z2).
Since aff(F) is the unique intersection of all affine subspaces containing F , we have
aff(F) ⊆ H for every affine subspace H containing F . Thus, CSR(Z) ≤ CSR(ZH), where
columns of Z and ZH are orthonormal basis of linear subspaces corresponding to aff(F)
and H respectively. ◀

▶ Proposition A.5. For each design restriction, there exists F ⊆ Rd with dim aff(F) = d and
empty relative interior such that there exists function S : F → R that satisfies improvement
objective.

Proof. We first give an example of F ⊆ R2, and show that there exists S : F → R that
satisfies improvement and the Res-CS restriction. So S will also satisfy the other two design
restrictions.

Consider F = {(0, 0), (1, 1), (2, 3)} ⊆ R2 and let A = [1, 0] ∈ R1×2. We now argue that
S(f) = Af satisfies the improvement objective. For metric pairs

(f ′, f) ∈ {((1, 1), (0, 0)), ((2, 3), (1, 1)), ((2, 3), (0, 0))}

we have Af ′ ≥ Af and f ′ ≥ f . Hence, improvement objective holds for these pairs. Whereas
for metric pairs

(f ′, f) ∈ {((0, 0), (1, 1)), ((1, 1), (2, 3)), ((0, 0), (2, 3))}

the left-hand side of the implication (Af ′ ≥ Af) is not true. And so improvement objective
holds for these pairs vacuously. Thus for all f , f ′ ∈ F if Af ′ ≥ Af then f ′ ≥ f .

We now give a counterexample of d + 1 points in F ⊆ Rd. Let f (0) = 0d and f (1) = 1d.
For i = 2, . . . , d, construct f

(i)
j =

(
f

(i−1)
j

)2
+ j for each coordinate j ∈ [d]. For example, the

construction in R4 is:

F =




0
0
0
0

 ,


1
1
1
1

 ,


2
3
4
5

 ,


5
11
19
29

 ,


26
123
364
845




Points f (1), . . . , f (d) are linearly independent, and so dim span(F) = d. Let A =
[1, 0, . . . , 0] ∈ R1×d. Following a similar argument as the d = 2 case, we find that S(f) = Af

satisfies the improvement objective (with dimensionality k = 1). ◀

A.2 Minimal design problem for optimality objective
▶ Theorem A.6 (Theorem 11). For each design restriction, there exists S : F → Rk, designed
using Algorithm 2, that satisfies the optimality objective with the following dimensionalities.

Dimensionality k ≥

Res-CS dim aff(F)
Res-LM 1
Res-L 1

Proof. For the last two design restrictions, the minimal design is straightforward. Using
any vector a > 0 of positive entries, design S : f 7→ a · f [55]. Clearly, S is linear in f .
To see that S is also monotone, fix f , f ′ ∈ F such that f ≥ f ′. Taking inner product
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with positive vector a, we get a · f ≥ a · f ′. To see that optimality objective is satisfied,
fix f∗ ∈ ParetoOpt(S). Since S is 1-dimensional, by definition of ParetoOpt(S), we have
a · f∗ ≥ a · f for all f ∈ F . Since a only has positive elements, for any f ∈ F either f∗ = f

or there exists j ∈ [d] such that f∗
j > f j . Therefore, f∗ ∈ ParetoOpt(F).

Res-CS restriction. We now give a design for the Res-CS restriction. We first simplify
the optimality objective – ParetoOpt(S) ⊆ ParetoOpt(F) using movement directions Ff ={

g = f ′ − f ∈ Rd | for all f ′ ∈ F
}

, definitions of dual cones K∗
A and K∗

I , and ker A ={
x ∈ Rd | Ax = 0

}
. We rewrite ParetoOpt(S) as follows:

ParetoOpt(S) = {f ∈ F | for all g ∈ Ff , either Ag ̸≥ 0 or Ag = 0}
=

{
f ∈ F | Ff ⊆ (K∗

A)c ∪ ker A
}

.

Similarly, ParetoOpt(F) =
{

f ∈ F | Ff ⊆ (K∗
I )c ∪ ker I

}
. Thus we get:

Optimality ⇐⇒
{

f ∈ F | Ff ⊆ (K∗
A)c ∪ ker A

}
⊆

{
f ∈ F | Ff ⊆ (K∗

I )c ∪ ker I
}

.

(Eq. 5)

We now identify an isomorphism between movement directions Ff in the ambient space
and the coefficient space. Let columns of Z ∈ Rd×r be an orthonormal basis of r-dimensional
linear subspace L associated with aff(F). Fix any f ∈ F . Denote with Cf ∈ Rr the set
of coefficients of Ff w.r.t. orthonormal basis Z, i.e., Cf = Z⊤ (Ff ). This introduces an
isomorphism between the sets Ff and Cf , i.e., for every g ∈ Ff these exists unique d ∈ Cf

such that g = Zd. With V = AZ, we have four equivalences:

Ag ≥ 0 ⇐⇒ V d ≥ 0 and Ag = 0 ⇐⇒ V d = 0 ,

g ≥ 0 ⇐⇒ Zd ≥ 0 and g = 0 ⇐⇒ Zd = 0.

Lemma B.4 uses these equivalences to state that for any f ∈ F , we have

Ff ⊆ (K∗
A)c ∪ ker A ⇐⇒ Cf ⊆ (K∗

V )c ∪ ker V (8)
Ff ⊆ (K∗

I )c ∪ ker I ⇐⇒ Cf ⊆ (K∗
Z)c ∪ ker Z. (9)

We further simplify the optimality objective (Equation (5)):

Optimality ⇐⇒
{

f ∈ F | Ff ⊆ (K∗
A)c ∪ ker A

}
⊆

{
f ∈ F | Ff ⊆ (K∗

I )c ∪ ker I
}

(10)
⇐⇒

{
f ∈ F | Cf ⊆ (K∗

V )c ∪ ker V
}

⊆
{

f ∈ F | Cf ⊆ (K∗
Z)c ∪ ker Z

}
(11)

where Equation (11) follows from Lemma B.4.
Now, we choose r linear independent rows of Z to create V ∈ Rr×r. Since Z has

orthonormal columns, we have ker V = ker Z = {0}. Moreover, we have V ⊆ Z, implying
KV ⊆ KZ and K∗

Z ⊆ K∗
V (Lemma B.1). This shows that K∗

Z ∪ (ker Z)c ⊆ K∗
V ∪ (ker V )c. As

a result, (K∗
V )c ∪ker V ⊆ (K∗

Z)c ∪ker Z. Hence, for any f ∈ F for which Cf ⊆ (K∗
V )c ∪ker V ,

we also have Cf ⊆ (K∗
Z)c ∪ ker Z. This shows that Equation (11) holds with the proposed

choice of V . As V = AZ for A with 1-hot rows, this design satisfies optimality and Res-CS
restriction. ◀

▶ Proposition A.7 (Proposition 12). Consider designing S : F → Rk to satisfy optimality
objective.
1. For F =

{
f ∈ Rd | ∥f∥1 ≤ 1

}
, k ≥ 1 is necessary and sufficient for all design restrictions.

2. For F =
{

f ∈ Rd | ∥f∥2 ≤ 1
}

, k ≥ 1 is necessary and sufficient for all design restrictions.
3. For F =

{
f ∈ Rd | ∥f∥∞ ≤ 1

}
, k ≥ d is necessary and sufficient for Res-CS. Moreover,

k ≥ 1 is necessary and sufficient for the Res-LM and Res-L restrictions.
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Proof. Theorem 11 states k ≥ 1 is sufficient for Res-LM and Res-L restrictions for any F ;
trivially, k ≥ 1 is necessary. So, we prove the claims for the Res-CS restriction. For the
stated sets F , we determine ParetoOpt(F) and discuss choice of S to satisfy ParetoOpt(S) ⊆
ParetoOpt(F).

We denote the d coordinates of metric value f ∈ F with f1, . . . , fd. Let ej be
the jth canonical basis vector of Rd. We denote the unit ℓp-norm ball with Bd

p ={
f ∈ Rd | ∥f∥p ≤ 1

}
.

1. Let F = Bd
1, the unit ℓ1-norm ball centered at the origin. Note that the jth coordinate of

metric value f j is maximized when f = ej . So vectors e1, . . . , ed are pareto-optimal w.r.t.
F . In fact, all vectors on the surface of Bd

1 in the nonnegative orthant are pareto-optimal
w.r.t. F . That is, ParetoOpt(F) =

{
f ∈ Rd

+ | 1d · f = 1
}

.
We choose any coordinate j ∈ [d] and design 1-dimensional S(f) = f j . Since F is the
unit ℓ1-norm ball, ParetoOpt(S) = {ej}, which a subset of ParetoOpt(F) as 1d · ej = 1.
Hence, this design with dimensionality k = 1 satisfies the optimality objective under
Res-CS restriction.
Trivially, k ≥ 1 is necessary as well.

2. Let F = Bd
2, the unit L2-ball centered at the origin. Note that the jth coordinate of

metric value f j is maximized when f = ej . So vectors e1, . . . , ed are pareto-optimal w.r.t.
F . In fact, all vectors on the unit shell in the nonnegative orthant are pareto-optimal
w.r.t. F . That is, ParetoOpt(F) = Sd−1

2 ∩R+
d = Sd−1

2 ∩KI where I is the identity matrix.
We can similarly determine pareto-optimal points w.r.t. S(f) = Af . Let A have k

rows A = [a1; . . . ; ak] ∈ Rk×d. The ith coordinate of S is maximized when f = ai

∥ai∥2
.

So vectors a1
∥a1∥2

, . . . , ak

∥ak∥2
are pareto-optimal w.r.t. S. In fact, all vectors on the

unit shell and cone KA generated by rows of A are pareto-optimal w.r.t. S. That is,
ParetoOpt(S) = Sd−1

2 ∩ KA.
So S satisfies optimality if Sd−1

2 ∩ KA ⊆ Sd−1
2 ∩ KI . Any matrix A ⊆ Id implies KA ⊆ KI .

Hence, we can choose any coordinate j ∈ [d] and construct 1-dimensional S(f) = f j .
This design with dimensionality k = 1 satisfies the optimality objective under Res-CS
restriction.
Trivially, k ≥ 1 is necessary as well.

3. Let F = Bd
∞, the unit L∞-ball centered at the origin. It is easy to see that ParetoOpt(F) =

{1d}, a singleton set.
Under the Res-CS restriction, S : F → Rk is such that S(f) = [f i1 ; . . . ; f ik

] where the
every index ij ∈ [d]. Let I be the set of unique indices. We will now show that if k < d,
then there does not exist score function S that satisfies optimality. Since k < d, we have
|I| < d. The point f ∈ Bd

∞ is pareto-optimal w.r.t. S if f i = 1 for every i ∈ I. Precisely,
ParetoOpt(S) =

{
f ∈ [−1, 1]d | f i = 1 for all i ∈ I

}
. Since there exists j ∈ [d] that is

not in I, ParetoOpt(S) contains points with f j = −1. Hence, ParetoOpt(S) is not a
subset of ParetoOpt(F). Therefore, for F = Bd

∞ and k < d it is not possible to design
S : F → Rd that satisfies optimality objective under Res-CS restriction.
Trivially, k = d is sufficient to satisfy the optimality objective under Res-CS restriction:
design S(f) = f . Hence, k ≥ d is both necessary and sufficient when F = Bd

∞. ◀

A.3 Minimal design problem for both objectives simultaneously
▶ Corollary A.8. Let columns of Z be an orthonormal basis of linear subspace L associated
with aff(F). For each design restriction, there exists score function S : F → Rk that
simultaneously satisfies improvement and optimality objectives with following dimensionalities.
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Dimensionality k ≥

Res-CS ConeSubsetRank(Z)
Res-LM ConeGeneratingRank(Z)
Res-L ConeGeneratingRank(Z)

Moreover, for Res-CS and Res-LM restrictions, the score design is minimal when F has
non-empty relative interior.

Proof. For the first two restrictions (Res-CS and Res-LM), S is monotone in F . So, Theo-
rems 2 and 13 immediately give the design for simultaneously satisfying both objectives with
dimensionality k = CSR(Z) and CGR(Z) respectively. Theorem 7 proves the minimality of
this design. The design for Res-LM restriction also applies for the Res-L restriction. ◀

B Technical Lemmas

▶ Lemma B.1. For two polyhedral cones K1 and K2, we have K1 ⊆ K2 ⇐⇒ K∗
2 ⊆ K∗

1.

Proof. Since the two cones are polyhedral, they are closed and convex. For any closed and
convex cone K, the dual of its dual cone is the cone itself: K∗∗ = K. The result then follows
from the fact that for any two convex cones K1 ⊆ K2 =⇒ K∗

2 ⊆ K∗
1 [10, Sec. 2.6.1]. ◀

▶ Lemma B.2. Let L ⊆ Rd be an r-dimensional linear subspace, and let columns of Z ∈ Rd×r

be an orthonormal basis of L. Let KA1 and KA2 be cones in Rd generated by rows of matrices
A1 ∈ Rm1×d and A2 ∈ Rm2×d respectively. With V 1 = A1Z and V 2 = A2Z, we have,

L ∩ K∗
A1

⊆ K∗
A2

⇐⇒ K∗
V1

⊆ K∗
V2

⇐⇒ KV2 ⊆ KV1 .

Proof. We can simplify this condition L ∩ K∗
A1

⊆ K∗
A2

further by expressing vectors in the
basis Z.

First, every x ∈ L has a unique representation in the basis Z. That is, x = Zc for
some c ∈ Rr. Second, every d-dimensional row a of A1 and A2 can be written as a∥ + a⊥,
where a∥ = aZZ⊤ ∈ L and a⊥ = a(I − ZZ⊤) ∈ L⊥. Therefore, A1 = A

∥
1 + A⊥

1 where
A

∥
1 = A1ZZ⊤ + A1(I − ZZ⊤). Note that A⊥

1 Z = 0m1×r. Similarly we can decompose the
matrix A2 = A

∥
2 + A⊥

2 . Denote the coefficients as V 1 = A1Z and V 2 = A2Z. Using these
simplifications, we get:

L ∩ K∗
A1

⊆ K∗
A2

⇐⇒ for all x ∈ L, A1x ≥ 0 =⇒ A2x ≥ 0 (12)
⇐⇒ for all c ∈ Rr, A1Zc ≥ 0 =⇒ A2Zc ≥ 0 (13)

⇐⇒ for all c, (A∥
1 + A⊥

1 )Zc ≥ 0 =⇒ (A∥
2 + A⊥

2 )Zc ≥ 0 (14)
⇐⇒ for all c, V 1Z⊤Zc ≥ 0 =⇒ V 2Z⊤Zc ≥ 0 (15)
⇐⇒ for all c, V 1c ≥ 0 =⇒ V 2c ≥ 0 (16)
⇐⇒ K∗

V1
⊆ K∗

V2
(17)

⇐⇒ KV2 ⊆ KV1 . (18)

where the last equivalence follows from Lemma B.1. ◀

▶ Lemma B.3. Let L be the linear subspace corresponding to aff(X). For any x∗ in the
relative interior of X and any x ∈ L, there exists a > 0 such that ax ∈ Xx∗ .
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Proof. We use the definition of relative interior. Since x∗ is in relative interior of X, there
exists R > 0 such that (x∗ + R · Bd

2) ∩ aff(X) ⊆ X. Centering the sets at x∗, there exists
R > 0 such that R · Bd

2 ∩ aff(X)x∗ ⊆ Xx∗ . We note that L = aff(X)x∗ .
Let x ∈ L. If x = 0 then we are done as ax = 0 ∈ Xx∗ for any a > 0. If x is nonzero,

then we can normalize it so that x̃ = R · x
∥x∥ ∈ R · Bd

2 ∩ L. From the definition of relative
interior, we get that x̃ ∈ Xx∗ . Thus for any nonzero x ∈ L there exists a = R/ ∥x∥ such
that ax ∈ Xx∗ . ◀

▶ Lemma B.4. Let L be the linear subspace corresponding to r-dimensional aff(X) ⊆ Rd,
and let columns of Z ∈ Rd×r be an orthonormal basis of L. For any x ∈ X, denote with
Cx ⊆ Rr the preimage of Xx under the orthonormal basis Z. Let KA ⊆ Rd be generated by
rows of A ∈ Rm×d, and let V = AZ. Then for every f ∈ F ,

Xx ∩ K∗
A ∩ (ker A)c = ∅ ⇐⇒ Cx ∩ K∗

V ∩ (ker V )c = ∅.

Proof. Note that for every x ∈ X, the linear subspace spanned by the set Xx is L, and
columns of Z are an orthonormal basis of L. That is, for every y ∈ Xx these exists
unique d ∈ Cx such that y = Zd. Moreover, we can decompose rows of A in the linear
subspace L and its orthogonal complement L⊥, as in proof of Lemma B.2. We decompose
A = AZZ⊤ + A(Id − ZZ⊤).

We use these decomposition results to prove the desired result. We first prove the forward
direction by contradiction. Let x ∈ X and assume that Xx ∩ K∗

A ∩ (ker A)c = ∅. Now
assume that there exists d ∈ Cx ∩ K∗

V ∩ (ker V )c. So V d ≥ 0 and V d ̸= 0, implying
that AZd ≥ 0 and AZd ̸= 0. Hence, there exists y = Zd ∈ Xx such that y ∈ K∗

A and
y ∈ (ker A)c. This contradicts our assumption that Xx ∩ K∗

A ∩ (ker A)c = ∅, and so we must
have Cx ∩ K∗

V ∩ (ker V )c = ∅.
We also prove the backward direction by contradiction. Let x ∈ X and assume that

Cx ∩ K∗
V ∩ (ker V )c = ∅. Now assume that there exists y ∈ Xx ∩ K∗

A ∩ (ker A)c. So Ay ≥ 0
and Ay ̸= 0. Using decomposition of rows of A and y in the basis Z, we get that Ay = AZd

where y = Zd for d ∈ Cx. So there exists d ∈ Cx such that AZd ≥ 0 and AZd ̸= 0. Since
V = AZ, we get that there exists d ∈ Cx ∩ K∗

V ∩ (ker V )c. This contradicts our assumption
that Cx ∩ K∗

V ∩ (ker V )c = ∅, and so we must have Xx ∩ K∗
A ∩ (ker A)c = ∅. ◀
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