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Abstract
We study price-discrimination games between buyers and a seller where privacy arises endogenously
– that is, utility maximization yields equilibrium strategies where privacy occurs naturally. In this
game, buyers with a high valuation for a good have an incentive to keep their valuation private,
lest the seller charge them a higher price. This yields an equilibrium where some buyers will send a
signal that misrepresents their type with some probability; we refer to this as buyer-induced privacy.
When the seller is able to publicly commit to providing a certain privacy level, we find that their
equilibrium response is to commit to ignore buyers’ signals with some positive probability; we refer
to this as seller-induced privacy. We then turn our attention to a repeated interaction setting where
the game parameters are unknown and the seller cannot credibly commit to a level of seller-induced
privacy. In this setting, players must learn strategies based on information revealed in past rounds.
We find that, even without commitment ability, seller-induced privacy arises as a result of reputation
building. We characterize the resulting seller-induced privacy and seller’s utility under no-regret and
no-policy-regret learning algorithms and verify these results through simulations.
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1 Introduction

The question of how to define and preserve privacy in the age of machine learning has been
a topic of ongoing debate in the computer science and policy communities [11]. The widely
accepted theoretical framework of differential privacy [8] formalizes privacy as the ability to
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9:2 Privacy Can Arise Endogenously

withstand membership inference attacks. That is, differential privacy ensures that the output
of a computation obfuscates whether a particular data point was present in the input.

However, the practical implementations of differential privacy has been fraught with
challenges. There has been significant debate around how to interpret the key privacy
parameter ε and how to choose it [21]. This is especially true when data is continuously
collected from users (what does it mean to have a guarantee of ε = 1 per data point when a
user’s data is continuously collected?) This has also led to controversies where companies
have claimed their algorithms are private, when in fact the chosen ε value confers negligible
protection [24]. Further complicating matters, there are multiple variants and extensions of
differential privacy – e.g. (ε, δ)-DP [8], Reyni-DP [19], Gaussian-DP [7], etc. – each with
different parameters and interpretations.

Perhaps more fundamentally, a growing body of work argues that the public’s under-
standing of privacy is drastically different from differential privacy [23, 18]. While differential
privacy focuses on membership inference, privacy is more commonly understood to mean the
prevention of the platform using one’s data in ways that are misaligned with the individual’s
interests, such as price discrimination or other exploitative practices.

This work seeks to provide a new perspective on privacy that bridges the gap between
the theoretical computer science view and the public’s intuitive understanding. We develop
a game-theoretic model of privacy that allows us to analyze the effect of privacy choices
on all the stakeholders. Additionally, the framework shows how to derive optimal privacy
mechanisms that balance the gain in privacy with loss of accuracy in order to maximize
net utility. In our model, a “principal” (e.g., a platform or seller) can observe signals from
“agents” (e.g., users or buyers) and use this information to maximize its own profit, while
the agents have an incentive to obfuscate their data to prevent exploitation. We focus on a
price-discrimination setting involving interactions between buyers and sellers.

We show that “buyer-induced privacy” behavior, which resembles randomized response,
arises endogenously as an equilibrium strategy. Furthermore, we find that the seller is often
better off committing to not observing the agents’ data at all (“seller-induced privacy”),
as the revenue loss from buyer-induced privacy can be substantial. Finally, we extend our
analysis to a dynamic setting where the seller is a learning agent who interacts with multiple
buyers over time. We demonstrate how a simple external auditing mechanism can implement
the sellers’s commitment to privacy and lead to an equilibrium with endogenously arising
privacy-preserving behavior.

Our results provide a new framework for understanding privacy that encompasses both
the theoretical guarantees of differential privacy and the practical, user-centric notion of
privacy. By modeling privacy as an emergent property of an economic system, we hope to
offer insights that can inform the design of privacy-preserving platforms and policies.

Motivating example. In the absence of regulation, online retailers may price discriminate
based on information they have collected about past purchases of the customers. Some
customers may be willing to pay more for a good than others, perhaps due to innate
preferences for certain types of good or because they have more disposable income. The
retailer wants to identify customers with higher valuations and charge them higher prices in
order to maximize their revenue.

Since customers are aware of the potential for price discrimination, they may engage in
evasive action to protect their privacy. Customers may avoid choosing goods that signal
their true preferences for less consequential purchases, e.g., a high-income customer choosing
between an expensive water bottle that is slightly better than a cheaper option may opt to
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buy the cheaper bottle in an attempt to obscure their income status. This evasive action
imposes a cost on the customer, who misses out on buying their truly preferred product, and
also on the retailer, who would have preferred to sell the more expensive product.

What are the behaviors that arise at equilibrium? What if the seller can credibly commit
to not price discriminate? How do these behaviors change in more realistic settings where
game parameters are not known and strategies must be learned based on past interactions?
These are questions we answer in this paper.

1.1 Preview of contributions

We introduce a price-discrimination game in Definition 1 that involves buyers of two types –
one with a high valuation and one with a low valuation of an item. A seller may potentially
track buyers’ signals that reveal their valuations. We characterize the perfect Bayes Nash
equilibrium of this game in Theorem 2 and show that a buyer-induced privacy mechanism
emerges in the equilibrium. That is, the buyer with a high valuation, with some probability,
chooses an evasive action to appear to have a low valuation.

We then introduce commitment ability for the seller wherein a seller can commit to
not track buyers’ signals with some probability. In the price-discrimination game with
commitment, the equilibrium response (Corollary 5) results in seller-induced privacy, which
obviates the need for buyer-induced privacy. That is, with some probability, the seller chooses
to commit to respect privacy and voluntarily does not track signals. Due to this privacy
commitment from the seller, it is optimal for buyers to truthfully report their type. We call
this seller-induced privacy the “commitment strategy” and denote the resulting utility U∗

1.
In Section 3, we remove the seller’s commitment ability but give buyers access to the

seller’s historical pricing. We model this as a repeated interaction between a seller and
buyers with each buyer participating in only one round. The pricing history is used by
buyers to construct the seller’s “reputation” (i.e., an estimate of the probability of price
discrimination), which buyers then use to inform their signaling strategy. We model the
buyers as using a reputation construction procedure that satisfies a consistency condition
given in Definition 8, which requires that the reputation is able to differentiate between
sellers employing price-discriminating strategies and non-price-discriminating strategies. In
Proposition 10, we show the existence of such a reputation mechanism using the available
history. We show that consistent reputation can yield seller-induced privacy (i.e., ignoring
signals), depending on the model of the seller; we consider no-regret and no-policy-regret
sellers. Our findings are:
1. With a no-regret seller, there could be no seller-induced privacy. That is, the seller can

use signals and price discriminate in every round and still be no-regret (Proposition 13).
2. Regret minimization achieves strictly less average utility (asymptotically) than U∗

1 (Propo-
sition 14).

3. Employing the commitment strategy in every round is a no-policy-regret algorithm for
the seller (Proposition 20).

4. Employing the commitment strategy in every round ensures the seller (asymptotically) an
average utility of U∗

1. This the highest possible average utility achievable (asymptotically)
in the repeated interaction (Proposition 21).

1.2 Related work

Our work sits at the intersection of many areas, ranging from classical economics to online
learning.

FORC 2024



9:4 Privacy Can Arise Endogenously

There is a vast literature on privacy in computer science studying mechanisms for notions
of privacy such as differential privacy [8]. The mechanisms arising in our setting resemble
mechanisms in these works. We observe local privacy (buyer-induced privacy) where users
add noise to their data. We also observe central privacy (seller-induced privacy) where the
platform ensures similar outcomes for different user data.

Literature in economics studies the economic implications of enacting privacy mechanisms
(see [1] for a survey). Within this body of work, there is a literature on privacy and price
discrimination (e.g., [2, 5, 20, 12]). We build on this work and extend to a setting that
relaxes common-prior assumptions for buyers and sellers so that players must now devise
strategies based on what they learn from repeated interactions.

In these repeated interactions, we observe the emergence of a reputation-based privacy
mechanism. This reputation, learned by buyers based on previous interactions, takes the
place of the prior that is used in the single-interaction game. There are numerous papers
in economics on reputation focusing on sellers’ reputations for the quality of the proffered
good [15, 22, 9]. We focus on seller’s reputation for enacting price discrimination and analyze
how this arises in an online learning framework.

We also study the differences in behavior that arise from seller commitment, which has
been studied in [14], [2], [12] and [16]. We show that even without commitment, similar
behavior can arise through repeated interactions where reputation substitutes for the role of
commitment.

Finally, we draw upon work on online learning and repeated games. There are a number
of papers [4, 6, 13, 10] on repeated interactions between a principal and an agent where the
agent chooses actions based on evolving beliefs about the principal’s actions. In our setting,
we interpret the evolving beliefs as the reputation of the principal. Our setting differs in
two ways. The first is that the principal’s actions are not revealed at the end of the round.
Instead partial information about the action, depending on the agent’s response, is revealed.
The second is that our results hold for weaker conditions on the agent’s beliefs compared to
previous work.

2 A Price-Discrimination Game

We formulate price discrimination as a sequential, incomplete-information game between n

buyers and a seller.

▶ Definition 1 (PD game). The price-discrimination game with parameters n, α, µ, θ, θ, cB , cS,
denoted the (n, α, µ, θ, θ, cB , cS)-PD game, has the following extensive-form representation.
1. Nature’s move. The game begins with Nature assigning types to each participant

according to random draws. For i ∈ [n], the type for buyer i is θi ∈ {θ, θ}, representing
their valuation of the item being sold, with θ < θ. A buyer is type θ with probability µ

and type θ with probability 1 − µ. The seller’s type χ is either signal aware (χ = 1) or
signal blind (χ = 0). The seller is signal aware with probability α and signal blind with
probability 1 − α.

2. Signaling stage. Based on their assigned type θi, each buyer signals si ∈ {s, s}.
Signaling one’s true type (s for type θ and s for type θ) incurs no cost, whereas signaling
a mismatched type, referred to as “evasion,” imposes a cost cB on the buyer and a cost
cS on the seller.1

1 We can more generally allow for each type of buyer impose a different evasion cost (e.g., if a θ-buyer
evades, the costs are c̄B , c̄S ∈ R, and if a θ-buyer evades, the costs are cB , cS ∈ R. However, as we later
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3. Pricing decision. The seller chooses a price pi to set for buyer i. The information the
seller can use to set the prices depends on the type of seller. A signal-aware seller can set
prices depending on the signals sent by the buyers, that is, they can set one price for all
buyers that signaled s and a different price for all buyers that signaled s. A signal-blind
seller must set the same price for all buyers since they have no information to distinguish
buyers.

4. Purchase decisions. Each buyer, based on the price pi set for them and their valuation
θi, makes a choice bi ∈ {0, 1}, to purchase the item (bi = 1) or not (bi = 0).

5. Utilities. All players receive their respective utilities. Each buyer’s positive utility is zero
if they do not buy the item and the difference between their valuation and price otherwise.
If they took evasive action in the signaling stage, their negative utility is equal to their
cost of evasion cB. That is, buyer i’s utility is

uB(θi, si, pi, bi) = (θi − pi)bi − cBe(θi, si)

where e(θi, si) = 1{(θi = θ ∧ si = s) ∨ (θi = θ ∧ si = s)} indicates evasion or not. The
seller’s overall utility is the sum of utilities uS(θi, si, pi, bi) from their interactions with
each buyer. The positive utility due to buyer i is the revenue pi if buyer i buys and zero
otherwise. If the buyer took evasive action in the signaling stage, the seller incurs negative
utility cS. That is, the seller’s utility is

uS ((θi, si, pi, bi)n
i=1) =

n∑
i=1

uS(θi, si, pi, bi) =
n∑

i=1
pibi − cSe(θi, si).

Mixed strategies. For simplicity of presentation, our game definition is stated in terms of
pure strategies (i.e., players take deterministic actions). However, we can more generally
allow players to employ mixed strategies. A mixed strategy for a player is a distribution over
allowed actions conditioned on the information available when taking the action: buyer i’s
mixed signaling strategy induces a conditional distribution over signals πs

i (·|θi) ∈ ∆({s, s});
the seller’s mixed pricing strategy induces conditional distributions πp(·|s, χ), πp(·|s, χ) over
positive reals with the constraint πp(·|s = s, χ = 0) = πp(·|s = s, χ = 0); finally, each buyer
i’s mixed buying strategy induces conditional distribution πb

i (·|θi, pi) ∈ ∆({0, 1}).
Let π = (πs, πp, πb) denote a mixed strategy profile. π, along with the probability of

player types described in Step 1 of Definition 1 (which we will denote p(χ) and p(θi)) induce
a distribution over action profiles with the probability of an action profile (χ, (θi, si, pi, bi)n

i=1)
given by

P (χ, (θi, si, pi, bi)n
i=1) = p(χ)

n∏
i=1

p(θi)πs
i (si|θi)πp(pi|θi, χ)πb

i (bi|θi, pi). (1)

Given a mixed strategy profile π, we will denote the expected utility for the seller and buyer
i by

US(π) = E [uS ((θi, si, pi, bi)n
i=1)] and U i

B(π) = E [uB (θi, si, pi, bi)] ,

where the expectation is over the joint distribution in (1).

show, the only costs that are relevant are the evasion costs associated with the θ-seller, because the θ
seller will never choose to evade, so we can think of cB = c̄B and cS = c̄S .

FORC 2024



9:6 Privacy Can Arise Endogenously

Solution concept. We study the perfect Bayes Nash equilibrium (PBNE). Mixed
strategies of players constitute a PBNE if the following conditions hold: (1) sequential
rationality, meaning that each player’s strategy constitutes a best response to their beliefs
about the other players’ types and strategies, given the history of the game up to the point
of choosing the action and (2) consistency of beliefs, meaning that players’ beliefs about
other players’ types are updated following Bayes’ rule.

The following theorem characterizes the PBNE of the price-discrimination game described
in Definition 1.

▶ Theorem 2. An (n, α, µ, θ, θ, cB , cS)-PD game has the following unique perfect Bayes Nash
equilibrium. Define ∆θ = θ − θ.
(a) Buyers with type θi = θ will signal si = s.
(b) Buyers with type θi = θ will signal

si =

s w.p. q∗ if α > cB/∆θ where q∗ = min
{

1,
(1−µ)θ

µ∆θ

}
s otherwise.

(c) The signal-aware seller sets price

p∗
signalaware(s) =

{
θ if signal s = s is observed
θ if signal s = s is observed.

(d) The signal-blind seller sets price

p∗
signalblind =

{
θ if θ ≥ µθ

θ otherwise.

(e) Buyer i buys the good if and only if their price pi is at most their value, so

bi = 1{θi ≤ pi}.

The proof is given in Appendix A.1.
▶ Remark 3 (Buyer-induced privacy). The θ-buyers’ equilibrium response can be interpreted
as a privacy-protecting mechanism. This type of buyer is vulnerable to price discrimination,
so rather than always signaling their true type, they may choose to randomize their signal.
More specifically, if the cost of evasion is very high, the θ-buyer will tell the truth, but if the
evasion cost is low enough, the θ-buyer can receive a reduction in price that is higher than
their evasion cost. In the latter case, the θ-buyer must then choose the maximum evasion
probability q∗ such that it is still in the seller’s best interest to take the the buyer’s signal at
face value. We call this randomization “buyer-induced privacy.”

Theorem 2 tells us that strategic behavior can only happen if cB < ∆θ (otherwise, we
can never have α > cB/∆θ, so buyers will always signal truthfully). For the rest of the paper,
we will focus on this setting.

▶ Assumption 1. In all following results, we assume cB < ∆θ.

A natural next question is how each player’s utility is affected by the game parameters.
In particular, we focus on the effect of α, due to its connection to privacy. In Figure 1,
we visualize the utilities of the seller and θ-buyers as α varies from 0 to 1. Observe that
the seller’s utility increases for α less than some threshold value α∗, whose exact value we
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Figure 1 Plots of the θ-buyer and seller utilities as a function of α in the θ ≥ µθ setting (left)
and the θ < µθ setting (right).

give in the corollary below. This corresponds to the set of PD-games where the buyer’s
equilibrium response is truthful. Beyond α∗, the θ-buyers’ equilibrium response changes to
being strategic and the seller’s utility drops. We formalize the ordering of utilities in the
following corollary.

▶ Corollary 4. (Order of utilities) Fix n, µ, θ, θ, cB , cS and let uS(α), uB(α) denote the seller’s
and θ-buyers’ equilibrium utilities of the (n, α, µ, θ, θ, cB , cS)-PD game. uS(·) is maximized
at α∗ = cB/∆θ, and the equilibrium utilities for the settings where the seller is always signal
blind (α = 0), is always signal aware (α = 1), and is signal aware with probability α∗ (α = α∗)
have the following orderings:
(a) When θ ≥ µθ,

uS(α∗) > uS(0) > uS(1) and uB(0) > uB(1) = uB(α∗).

(b) When θ < µθ,

uS(α∗) > uS(0) > uS(1) and uB(1) > uB(0) = uB(α∗).

θ-buyers always receive a utility of zero, regardless of the value of α.

2.1 Price discrimination with seller commitment
A key takeaway from Corollary 4 is that the seller’s utilities are dependent on the value of α,
and if the seller could choose a value of α, they would want to choose α = α∗ to maximize
their utility. Suppose we are now in a setting where the seller is able to choose and publicly
commit to an α. As a motivating example, suppose that the seller must go through a data
broker to access signals, and the data broker publishes trusted summaries of what fraction of
buyers the seller requests data on. In such a setting, where α is chosen by the seller instead
of treated as given, we arrive at the following equilibrium.

▶ Corollary 5. (Equilibrium of price-discrimination game with commitment) When the seller
has commitment power (i.e., is able to credibly communicate to sellers that they will not
price discriminate with some probability), the perfect Bayes Nash equilibrium of the PD-game
consists of the following strategies:
(a) The seller commits to not price-discriminating (by playing p∗

signalblind from Theorem 2)
with probability 1 − α∗, where α∗ = cB/∆θ.

(b) All buyers always signal truthfully.
The buyers’ buying decisions are the same as in Theorem 2.

FORC 2024



9:8 Privacy Can Arise Endogenously

Proof. (a) follows directly from Corollary 4, which tells us that the seller’s utility is maximized
at α∗, and (b) comes from applying Theorem 2 with α = α∗. ◀

▶ Remark 6. Commitment ability allows the seller to achieve a higher utility by providing
seller-induced privacy. This seller-induced privacy obviates the need for buyers to take evasion
action to create buyer-induced privacy, which benefits the seller. We use U∗

1 to refer to the
seller’s maximum achievable equilibrium utility in the single interaction price discrimination
game with commitment. This utility is achieved when the seller plays the strategy given in
Corollary 5.

3 Repeated Interactions

In the previous section, we saw the emergence of seller-induced privacy when the seller
has commitment ability. If possible, the seller would commit to providing seller-induced
privacy (by ignoring signals with probability 1 − α∗, as in Corollary 5), thereby limiting the
extent of price discrimination performed by the seller. However, these results hinge on the
buyer believing that the α stated by the seller truly corresponds to the probability of price
discrimination. Without this credible commitment from the seller, the story becomes more
complicated.

In this section, we study whether seller-induced privacy can still arise in the absence
of such commitment ability, through the development of a reputation based on the seller’s
historical pricing. We ask the question of how the extent of privacy and resulting utilities
differ under reputation-based privacy versus commitment-based privacy. We model the seller
as making pricing decisions using an online learning algorithm and show how different models
such as no-regret and no-policy-regret lead to different answers to this question.

In the repeated interaction setting, we also relax the assumptions that the distribution µ

over agent types and the probability α that the seller looks at the agent’s signal are publicly
known. Rather than playing the single-interaction equilibrium strategies, which require full
knowledge of game parameters, the players now have to learn strategies online based on past
interactions.

3.1 Setup

We consider repeated interactions between a seller and buyers where a new batch of buyers
is drawn at each round. We call this as the repeated PD protocol. Each round is similar
to the one-shot PD-game from Definition 1 but with the following differences: (1) There is
one fixed seller throughout all rounds. (2) When players choose actions, they not only have
access to information from the current round (as was the case in the one-shot PD game) but
also some information from previous rounds. Specifically, at round t, the seller has access to
((sτ

i , pτ
i )n

i=1)t−1
τ=1, the signals they observed and the prices they set in previous rounds, and

each buyer i has access to (((θτ
i , sτ

i , pτ
i )n

i=1)t−1
τ=1), the buyer types, signals, and prices of all

buyers from previous rounds. This modeling of the buyers’ access is appropriate in settings
where buyer information is pooled either through crowd-sourcing or by an auditing entity
and made available to buyers. (3) The parameter µ (the probability of a type-θ buyer) is
not known to the seller. (4) The probability that the seller will price discriminate is not
known to buyers, as was assumed in the one-shot PD game; rather, buyers must estimate
this probability based on past rounds. We write out the repeated interaction protocol in
detail in Appendix B.
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3.2 Model of the buyers
Since each buyer participates in only one round of the repeated PD protocol, the equilibrium
response is still appropriate to model the buyer’s response. However, in the repeated
interaction setting, we no longer assume the buyers hold a static, prior belief about the
probability of a signal-aware seller. Instead, buyers have evolving beliefs based on the seller’s
interactions with past buyers.

Some specific buyer strategies we will refer to are πs
truthful, which corresponds to always

signaling truthfully, and πs
strategic, which corresponds to signaling s with probability q∗ (as

defined in Theorem 2) and signaling s with probability 1 − q∗. We consider the following
model of buyer behavior.

▶ Definition 7 (Consistent belief based equilibrium responding (CBER) buyers). Consistent
belief based equilibrium responding buyers (or CBER-buyers) form a sequence of beliefs (α̂t)T

t=1
satisfying a consistency property defined below and at round t, choose the corresponding
equilibrium strategy (from Theorem 2) of the PD-game with α = α̂t. That is, θ-buyers always
signal truthfully, and θ-buyers signal truthfully (play πs

truthful) if α̂t ≤ α∗ and signal the
opposite type with probability q∗ otherwise (play πs

strategic).

We now explain the consistency property. Given a sequence of seller mixed strategies
action profiles that induce the sequences of distributions (πp

t (·|s = s))T
t=1 and (πp

t (·|s = s))T
t=1

indicating price distributions at each round for signals s, s respectively, define αt to be

αt = PP ∼πp
t (·|s=s),P ∼πp

t (·|s=s)
[
P ̸= P

]
.

That is, αt denotes the probability of a different price for s compared to s at round t. The
probability here is over the randomness due to the seller’s mixed strategy at round t. αt is a
measure of extent of price discrimination by the seller at round t.

▶ Definition 8 (Consistent sequence). Let ᾱT = (1/T )
∑T

t=1 αt. We say a sequence of
estimators (α̂t)T

t=1 is consistent if limT →∞ |E[α̂T ] − ᾱT | = 0, where the expectation is taken
over the randomness of the history HT = ((θt

i , st
i, pt

i)n
i=1)T −1

t=1 used to construct α̂T .

A useful implication of consistency is that α̂T converges pointwise to ᾱT .

▶ Lemma 9. If (α̂t)T
t=1 is a consistent sequence of beliefs, then for any ϵ < 0 and δ > 0,

there exists some positive integer N such that for all T > N , we have P [|α̂T − ᾱT | ≥ ϵ] ≤ δ.

Proof. Due to consistency and the definition of limits, there exists N such that for all T > N ,
we have |E[α̂T ] − ᾱT | ≤ δϵ. Thus, for T > N , we can apply Markov’s inequality to get
P(|α̂T − ᾱT | ≥ ϵ) ≤ (|E[α̂T ] − ᾱT |)/ϵ ≤ δϵ/ϵ = δ. ◀

The following proposition and associated proof provide an algorithm to construct a
consistent sequence of estimators (α̂t)T

t=1.

▶ Proposition 10 (Existence of consistent sequence). Assume that buyers equilibrium-respond
to α̂t at each round t. Then, for any sequence of seller actions, there exists a sequence of
estimators (α̂t)T

t=1 that is consistent.

Proof sketch: Since there are multiple buyers at each round, we can infer whether
the seller is price discriminating or not by comparing the prices charged to a buyer who
signals s and a buyer who signals s. However, only some rounds are informative about
price discrimination; in rounds where all buyers send the same signal, we are not able

FORC 2024



9:10 Privacy Can Arise Endogenously

to determine if the seller had a price discriminatory pricing policy in place. The consis-
tent estimator α̂t we consider is the fraction of past rounds where price discrimination is
observed, normalized to account for the probability that a round is likely to be informa-
tive about price discrimination. We show that E[α̂t] = (1/t)

∑t−1
τ=1 ατ , which implies that

limT →∞ |E[α̂T ] − ᾱT | = limT →∞

∣∣∣(1/T )
∑T −1

t=1 αt − (1/T )
∑T

t=1 αt

∣∣∣ = limT →∞ αT /T = 0.
See Appendix C.1 for the full proof.

3.3 Model of the seller
Since the seller does not a priori know the distribution over buyer types and is engaged
in multiple rounds of the repeated interaction, modeling the seller’s response by the one-
shot equilibrium from Theorem 2 is not reasonable. Instead, we consider the seller as
optimizing various common objectives of repeated interactions such as regret minimization
and policy-regret minimization.

The seller’s mixed strategy at a given round is a pair of probability distributions πp
t =

(πp
t (·|s), πp

t (·|s)). Let Π denote the set of possible mixed strategies. For rational sellers,
we can focus on distributions supported only on {θ, θ} without loss of generality. Prices
supported on {θ, θ} maximize seller revenue in each round. The seller’s effect on future
rounds is also not affected by limiting the support. This is because the parameters αt that
the buyers’ consistent estimator estimates treats any difference in prices as indicating price
discrimination, so all price differences are treated the same.

Some specific seller strategies we will refer to are πp
PD and πp

noPD. The former is the
“always-price-discriminating strategy,” with πp

PD(θ|s) = πp
PD(θ|s) = 1. The latter is the

“never-price-discriminating strategy,” with πp
noPD(θ|s) = πp

noPD(θ|s) = 1 if θ ≥ µθ and
πp

noPD(θ|s) = πp
noPD(θ|s) = 1 otherwise.

3.3.1 Regret-minimizing seller
The first seller model we consider is a regret-minimizing seller.

▶ Definition 11 (Seller’s regret). Given a sequence of mixed strategy profiles {πt} =
{(πs

t , πp
t , πb

t )}T
t=1, the seller’s average regret is

RS
T ({πt}T

t=1) = 1
T

[
max

πp∗∈Π

T∑
t=1

US(πs
t , πp∗

t , πb
t ) −

T∑
t=1

US(πs
t , πp

t , πb
t )

]
.

▶ Definition 12 (No-regret algorithm). Let AB be an algorithm employed by the buyer in
the repeated PD protocol. A seller algorithm AS in the repeated PD protocol is a no-regret
algorithm for the seller given AB if the sequence of mixed strategies (πt)T

t=1 generated by the
interaction between AB and AS has seller’s average regret that is sublinear in the number of
rounds. That is, RS

T ((πt)T
t=1) ∈ o(1).

We will denote by (πt)T
t=1 the sequence of random variables denoting the players’ mixed

strategies in each round. Our results analyze the asymptotic convergence of average seller
utility. We say that the average seller utility asymptotically converges to some value v if
limT →∞ E

[
(1/T )

∑T
t=1 US(πt)

]
= v. We write US(πp) and US(πs, πp) when it is clear what

the other arguments are.
If the seller employs a no-regret algorithm, then the seller could end up always price-

discriminating i.e., no seller-induced privacy. This is stated below.
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▶ Proposition 13. (Always price-discriminating is regret minimizing) Given CBER-buyers,
the seller algorithm that always employs the price-discrimination strategy i.e., πp

t = πp
PD for

all timesteps t is a no-regret algorithm for the seller. The seller’s average utility asymptotically
converges to a value at most uS(1), where uS(1) is the seller’s equilibrium utility in the
single-interaction PD-game with α = 1.

Proof sketch. The strategy of CBER-buyers in each round is either πs
truthful or πs

strategic.
For both these buyer responses, the seller’s optimal strategy is to always price discriminate,
as shown in the computation of the seller’s equilibrium response in the proof of Theorem 2.
In other words, the seller incurs zero regret in each round by always price-discriminating.

Next, we analyze the seller’s average utility. Note that when πp
t = πp

PD, the probability
of seeing different prices for different signals is αt = 1, so ᾱt = 1 for all t. By Lemma
9, α̂t becomes greater than α∗ eventually (where α∗ is as defined in Corollary 5), which
causes θ-buyers to play πs

strategic. In other words, eventually the seller and buyers will all be
playing their equilibrium strategies for the PD-game with α = 1, so their average utilities will
converge to the corresponding equilibrium utilities. See Appendix C.2 for the full proof. ◀

The next proposition tells us that regret minimization necessarily causes the seller to
achieve a worse expected average utility that the optimal utility they can achieve in the
single interaction setting.

▶ Proposition 14 (Regret minimization is inherently at odds with achieving U∗
1). Given CBER-

buyers, for any no-regret seller algorithm, the seller’s average utility asymptotically converges
to strictly less than U∗

1.

Proof sketch. Define T = {t ∈ [T ] : α̂t ≤ α∗} to be the set of rounds where θ-buyers’
signaling strategy is πs

truthful. In all other rounds, their signaling strategy is πs
strategic. Define

β = (1/T )
∑

t∈T αt to be a measure of simultaneous truthfulness from buyers and price-
discrimination by the seller. Our proof involves the following parts. We outline the parts
and state them as lemmas here and prove them in Appendix C.3

1. Obtaining U∗
1 requires the buyers to be truthful strictly more than α∗ fraction of rounds.

▶ Lemma 15. limT →∞ |T |/T ≤ α∗ implies that limT →∞

(∑T
t=1 US(πt)

)
/T < U∗

1.
2. The no regret property requires that the seller price discriminates in most rounds where

buyers are truthful. So β is close to |T |/T .
▶ Lemma 16. limT →∞ |T |/T ≤ limT →∞

∑
t∈T αt/T .

3. There is a limit on simultaneous price-discrimination and truthful signaling due to the
buyers’ consistent beliefs. That is, β converges to at most α∗.
▶ Lemma 17. limT →∞

∑
t∈T αt/T ≤ α∗.

From Lemmas 16, 17, limT →∞ |T |/T ≤ α∗. Lemma 15 shows that this means average
seller utility is strictly less than U∗

1. ◀

3.3.2 Policy-regret-minimizing seller
As we have seen, regret minimization does not guarantee that the seller achieves higher than
price-discrimination utility. On the other hand, if we model the seller as minimizing policy
regret [3], the seller necessarily achieves utility that is higher than the utility achieved by
the naive strategy of always price discriminating.

FORC 2024
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▶ Definition 18 (Seller’s policy regret). Consider a buyer algorithm AB and a seller algorithm
AS. Let (πt(AB , AS))T

t=1 be the sequence of mixed strategies generated by the interaction
between AB and AS. Given a sequence of mixed strategies (πt)T

t=1, the seller’s average policy
regret of (πt)T

t=1 relative to a buyer algorithm AB and a baseline class AS of seller algorithms
is

PRS
T

(
(πt)T

t=1; AB ,AS

)
= max

AS∈AS

1
T

T∑
t=1

US(πt(AB , AS)) − 1
T

∑
t=1

US(πt)

▶ Definition 19 (No-policy-regret algorithm). Let AB be an algorithm employed by the
buyer in the repeated PD protocol. An algorithm AS is a no-policy-regret algorithm for
the seller given AB and relative to a class of seller algorithms AS if the sequence of
mixed strategies (πt(AB , AS))T

t=1 generated by the interaction between AB and AS satisfies
PRS

T ((πt(AB , AS); AB ,AS)T
t=1) ∈ o(1).

Consider a baseline class AMS
S consisting of seller algorithms that employ the same mixed

strategy in each round, that is, πp
t (·|s) is the same distribution for all t and similarly for

πp
t (·|s).

▶ Proposition 20 (Policy-regret-minimizing seller achieves U∗
1). Given CBER-buyers, if the

seller achieves sub-linear policy regret relative to AMS
S , then the seller’s average utility

asymptotically converges to at least U∗
1.

Proof sketch. Under the conditions of this proposition, the seller’s utility must, by definition
of policy regret, approach a utility at least as high (or better) than the utility of any strategy
in AMS

S as T → ∞. Recall that U∗
1 is the seller utility achieved in the PD game when α = α∗.

Consider the PD game that results in a seller utility of at least U∗
1 − ϵ, which is achieved

by the seller price-discriminating with probability α̃ < α∗. Then the repeated-interaction
strategy of always price-discriminating with probability α̃ has an average expected utility of
at least U∗

1 − ϵ (this must be true due to the consistency of buyer beliefs; see the full proof in
Appendix C.4 for details). Taking ϵ to 0 gives the desired result. ◀

Combining the previous result with the following result tells us that a no-policy regret
seller’s algorithm will cause the seller’s average utility to asymptotically converge to exactly
U∗

1. In fact, this result tells us the stronger result that there does not exist any seller
algorithm that can achieve utility higher than U∗

1.

▶ Proposition 21. Given CBER-buyers, for any seller algorithm, the seller’s average utility
asymptotically converges to at most U∗

1.

Proof sketch. This proof is similar to the argument of the proof of Proposition 14 and the
full proof is in Appendix C.4. The key ideas again are that for high seller utility, there must
be sufficiently many rounds where simultaneously, the seller price discriminates and the
buyer reports truthfully. Since the buyers’ belief estimators are consistent, this cannot be
the case. The difference between the average seller utility and U∗

1 is a constant times the
following quantity: 1

T

∑
t∈T (πp

t (θ|s) − πp
t (θ|s)) − α∗, where T is the set of rounds where the

buyer signals truthfully. Lemma C.1, 17 (from the proof of Proposition 14) show that the
consistency property implies that this difference converges to most zero. ◀

4 Experiments

In this section, we simulate the repeated PD protocol with µ = 0.5, θ = 5, θ = 15, cB =
cS = 5, and n = 10 and empirically verify our theoretical claims from Section 3. We
report the convergence of buyer and seller utilities, seller actions, and buyer estimators.
The seller and buyer algorithms we consider are described below. Code is available at
https://github.com/nivasini/PrivacyDynamics.

https://github.com/nivasini/PrivacyDynamics
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4.1 Algorithms
Seller.
1. Signal-blind seller. The seller plays the regret-minimizing Exp3 algorithm (specifically

Exp3-IX in Chapter 12 of [17]). At round t the seller sets a price pt ∈ {θ, θ} according to
the algorithm’s current sampling distribution, charges pt to all buyers and updates the
sampling distribution based on the resulting average utility from the buyers’ purchase
decisions.

2. Signal-aware seller. The seller plays a contextual version of Exp3, which we call
CExp3, in which the algorithm maintains two sampling distributions over prices {θ, θ},
conditioned on the received signal, s or s. At each round, the seller samples once from
each distribution and charges one price p

t
to all buyers who signal s and pt to all buyers

who signal s. Depending on the sampling distributions, p
t

and pt may or may not be
equal.

3. Stackelberg equilibrium seller. The seller commits to an α∗ = cB/∆θ level of price-
discrimination, i.e., they play the (α = 1)-PD equilibrium strategy (Theorem 2) with
probability α∗ and the (α = 0)-PD equilibrium with probability 1 − α∗.

CBER-Buyer. Using a sequence of consistent estimators {α̂τ }t−1
τ=1 (Def. 8) to estimate the

seller’s probability of price-discrimination at each round, each buyer plays the (α = α̂τ )-PD
equilibrium strategy. For our simulations, buyers use the estimator described in (3) to
estimate the seller’s probability of price discrimination at each round. All buyers in a single
round use the same estimator.

4.2 Discussion
Convergence of Utilities. Figure 2 shows convergence of seller and buyer utilities for each
of the seller’s algorithms played against a CBER-buyer. As expected, when a seller plays
Exp3 (which ignores signals) against a CBER-buyer, the players’ utilities converge to the
(α = 0)-PD equilibrium utility (Theorem 2). When the seller plays CExp3 (which observes
signals) against a CBER-buyer, the seller’s utility converges to the (α = 1)-PD equilibrium
utility. Given our experiment parameters, multiple different distributions πp

t (·|s = s) reward
the seller equivalently, while some are more favorable for the buyer than others. Therefore,
while the seller’s utility will always converge to (α = 1)-PD, the buyer’s utility may converge
to something less than (α = 1)-PD. Finally, when the seller plays the Stackelberg equilibrium
against a CBER-buyer, the players’ utilities converge to the (α = α∗)-PD equilibrium utility.

Consistency of α̂. Figure 3 illustrates the consistency of the buyer’s estimator ((3)). Our
simulations show that the buyer’s estimate α̂t of the seller’s probability of price discrimination
converges to 0 against a seller playing Exp3, to 0.5 against a seller playing α∗-PD (where
α∗ = cB/∆θ = 0.5 given our simulation parameters), and to higher-than-0.5 against a
seller playing CExp3. Importantly, α̂t aligns with the seller’s true average probability of
price-discrimination, ᾱt, giving empirical evidence for Lemma 9.

Convergence of Seller Actions. In Figure 4, we track the cumulative proportion of the
seller’s price-discriminatory vs. non-price-discriminatory actions. Specifically, we track four
seller actions: 1) charging a high price regardless of signal, 2) charging a low price regardless
of signal, 3) charging a high price for a low signal and low price for a low signal (PD), and 4)
charging a low price for a high signal and a high price for a low signal (reversePD). Given our
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Figure 2 Convergence of seller and buyer utilities for various algorithms. θ < µθ with our
experiment parameters, so the buyer’s (α = 0)-PD and (α = α∗)-PD utilities are the same (see
Corollary 4).

Figure 3 α̂t and ¯̂αt over time when seller is playing Exp3, CExp3, or α∗-PD. In all cases, α̂ is a
consistent estimator of the seller’s true probability of price discrimination.

parameter values for these simulations (i.e. θ < µθ and α∗ = 0.5), in equilibrium we would
expect that, for each batch of n buyers at a single round: 1) a signal-blind seller sets a high
price for all n buyers, 2) a signal-aware seller sets a high price for high-signal buyers and a
low price for low-signal buyers, and 3) a α∗-PD seller sets a high price for all high-signal
buyers and low price for all low-signal buyers with probability 0.5 and sets a high price for
all n buyers with probability 0.5. Figure 4 gives empirical evidence for this intuition.

Biased α̂. In realistic settings, the buyer may not have a consistent estimate of price
discrimination and instead only have access to a biased α̂. Figure 5 examines whether a seller
can benefit from non-consistency in the buyer’s estimate. The y-axis of the figure tracks
the seller’s cumulative average utility after 20, 000 rounds of interaction with CBER-buyers.
We partition the interval [−1, 1] into twenty segments γi of width 0.1, and the buyers use
estimator α̂t + ϵt, where ϵt ∼ Unif(γi). The plot then tracks the seller’s cumulative average
utility after 20, 000 rounds of interaction with buyers for each biase interval γi. If α̂t + ϵt is
less than 0 or greater than 1, we clip it at those values respectively. In all cases, the seller is
hurt by a θ-buyer who overestimates the probability of price discrimination (high values of
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Figure 4 Relative frequency of actions for the seller playing Exp3, CExp3 and α∗-PD. The
number of PD and reversePD actions for the Exp3 seller are both 0, as is expected.

Figure 5 Cumulative average utility of the seller playing against CBER-buyers using biased α̂’s.

ϵt) and is thus more likely to evade, costing the seller the evasion cost. Against a buyer who
underestimates the probability of price discrimination (low values of ϵt), neither the Exp3
nor α∗-PD seller gains utility, since the equilibrium behavior of the buyer with consistent α̂t

aligns with the no-price-discrimination equilibrium (see Figure 2). By contrast, the CExp3
seller benefits from a buyer who underestimates the probability of price discrimination, since
the seller benefits from discriminatory pricing without incurring the evasion cost. Against a
CBER-buyer with consistent estimates, this advantage is impossible at equilibrium.

5 Conclusion

Since the type and level of privacy desired generally depends on the utilities of stakeholders
and forms of interaction among them, we propose a game theoretic framework for privacy in
this paper. We analyzed the perfect Bayes Nash equilibrium in a single-interaction setting as
well as no-regret and no-policy-regret dynamics emerging over repeated interactions. In both
these settings, we show how the different components of the game – utilities, actions and
information sets (information available to players when choosing actions) impact the privacy
levels that emerge.
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Our results shed light on the impacts of different privacy-related interventions – we
showed that enabling a seller to credibly commit to privacy (e.g., through privacy legislation
like the GDPR) or revealing the seller’s past behavior (e.g., through privacy auditing) can
surprisingly improve their utility. Thus, we believe our framework can be used to help analyze
and craft privacy policies.
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A Proofs from Section 2

A.1 Proof of Theorem 2

Proof. Part (a) comes from the fact that θ buyers have no reason to pretend to have a higher
valuation for the good than they actually do. Part (e) comes from the fact that buyers are
utility maximizing.

Part (c) comes from the following reasoning: since signal blind sellers cannot see the
buyers’ signals, they must choose one price to set for all buyers. The seller wants to maximize
their revenue, so they would ideally want to set the highest price that the buyer is willing
to pay (θ for θ-buyers and θ for θ-buyers). However, the seller does not know the type of
the buyer; all they know is the probability µ that the buyer is θ. The seller has to make
a decision between charging θ or θ. If the seller charges θ, both θ and θ agents would be
willing to buy, so the expected revenue is θ. If the seller charges the higher price θ, only θ

agents would be willing to buy, so the expected revenue is µθ, which corresponds to

p∗
signalblind =

{
θ if θ ≤ µθ

θ if θ > µθ.

Part (c) and (d) come from the following best-response arguments. Our goal is to show
p∗

signalaware is a best response given q∗ and vice versa, where

p∗
signalaware(s) =

{
θ if s = s is observed
θ if signal s = s is observed.

and q∗ = min
{

1,
(1 − µ)θ

µ∆θ

}

What is the signal aware seller’s best response after seeing s? From part (a), we know
that θ buyers never signal θ, so the seller knows that a s signal implies that the buyer is type
θ and should therefore set a price of θ after seeing s, i.e., p∗

signalaware(s) = θ.
What is the signal aware seller’s best response after seeing s? In order for p∗

signalaware to
be a best response, it must maximize the seller’s expected utility, where the expectation is
over the seller’s posterior belief over the buyer’s type given that they have signaled s. Given
probability q∗ that the θ buyer sends signal s, the seller’s posterior belief µ̂ that the buyer is
type θ is

µ̂ = P(θ = θ|s = s) = P(s = s|θ = θ)P(θ = θ)
P(s = s|θ = θ)P(θ = θ) +P(s = s|θ = θ)P(θ = θ)

= q∗µ

q∗µ + 1 − µ
.
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Let f(p) denote the seller’s expected utility from charging price p after observing signal s, so

f(p) =
{

p − µ̂q∗cS if p < θ

µ̂p − µ̂q∗cS if p ∈ [θ, θ].

In order for p∗
signalaware(s) to be a best response, it must be the value that maximizes f :

p∗
signalaware(s) = max

p
f(p) =

θ if q∗ ≤ min
{

1,
(1−µ)θ

µ∆θ

}
θ else.

= θ,

where the last equality comes from the choice of q∗. This shows that p∗
signalaware(s) = θ is a

best response for the seller. We now turn our attention to the θ-buyer.
What is the optimal probability q∗ of evasion for the θ-buyer? Let g(q) denote the the

expected utility for the θ buyer when they evade with probability q, given that the seller is
playing p∗

signalblind if they are signal blind and p∗
signalaware if they are signal aware, so

g(q) = P(seller is signal blind)(θ-buyer utility if seller plays p∗
signalblind)

+P(seller is signal aware)(θ-buyer utility if seller plays p∗
signalaware). (2)

If 1 ≤ (1−µ)θ/µ∆θ, this implies that θ ≥ µθ, so (2) simplifies to

uB = (1 − α)∆θ + (α∆θ − cB)q.

If (1−µ)θ/µ∆θ ≤ 1, this implies θ < µθ, so (2) simplifies to

uB =
{

(α∆θ − cB)q if q ≤ (1−µ)θ/µ∆θ

−cBq else.

Combining everything, we see that the θ-buyer’s optimal probability of evasion is q∗ as
written in the theorem statement. ◀

B Repeated PD Protocol

The detailed algorithm is described in the arXiv version.

C Proofs from Section 3

C.1 Proof of Proposition 10
Proof. For each round t, let It = 1

{
∃i s.t. st

i = s and ∃j s.t. st
j = s

}
be an indicator for

whether both types of signals are observed at round t, i.e., whether round t is “informative”
about if there is price discrimination. For rounds t with It = 1, we additionally define the
following random variables: P t = pt

i for the smallest i ∈ [N ] such that st
i = s; P t = pt

j for
the smallest j ∈ [N ] such that st

j = s; and Xt = 1
{

P t ̸= P t

}
, an indicator for observed

price discrimination. Note that the choice to define P t and P t to correspond to the smallest
index satisfying the corresponding condition is simply for concreteness; we could equivalently
sample uniformly from the set of indices satisfying the condition.

Recall that Ht = ((θτ
i , sτ

i , pτ
i )n

i=1)t−1
τ=1 is the history known by buyers at the beginning of

round t. Consider the following estimator:

α̂t = 1
t

t−1∑
τ=1

Xτ Iτ

E[Iτ |Hτ ] (3)

https://arxiv.org/abs/2404.10767
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The expectation E[Iτ |Hτ ] is over the randomness at round τ . Note that α̂t is computable
based on the history Ht, because E[Iτ |Hτ ] is computable for any τ < t. We will now show
that α̂t satisfies Definition 8. We start by computing the expectation of α̂t:

E[α̂t] = E

[
1
t

t−1∑
τ=1

Xτ Iτ

E[Iτ |Hτ ]

]

= 1
t

t−1∑
τ=1

E
[

Xτ Iτ

E[Iτ |Hτ ]

]
linearity of expectation

= 1
t

t−1∑
τ=1

E
[
E

[
Xτ Iτ

E[Iτ |Hτ ]

∣∣∣∣Hτ

]]
tower rule

= 1
t

t−1∑
τ=1

E
[
E[Xτ Iτ |Hτ ]
E[Iτ |Hτ ]

]
Observe that Xτ and Iτ are independent given Hτ . To see why, note that the randomness in
Xτ |Hτ comes only from the randomness in the seller’s mixed strategy at round τ , whereas
the randomness in Iτ |Hτ comes only from the randomness in the buyers mixed strategy
at round τ . The mixed strategies are fixed given Hτ , and the additional randomness is
independent. Thus,

= 1
t

t−1∑
τ=1

E
[
E[Xτ |Hτ ]E[Iτ |Hτ ]

E[Iτ |Hτ ]

]

= 1
t

t−1∑
τ=1

E[E[Xτ |Hτ ]]

= 1
t

t−1∑
τ=1

E
[
E

[
1

{
P τ ̸= P τ

}
|Hτ

]]
by definition of Xτ

Since P τ |Hτ ∼ πp
t (·|s = s) and P τ |Hτ ∼ πp

t (·|s = s) by definition of the game, we have

= 1
t

t−1∑
τ=1

ατ

Finally, plugging in the above expression with t = T into the criterion for consistency, we
have

lim
T →∞

∣∣∣∣∣E[α̂T ] − 1
T

T∑
t=1

αt

∣∣∣∣∣ = lim
T →∞

∣∣∣∣∣ 1
T

T −1∑
t=1

αt − 1
T

T∑
t=1

αt

∣∣∣∣∣ = lim
T →∞

αT

T
= 0

as desired. The last equality comes from the fact that αT is a probability, so it is bounded
between 0 and 1 for all T . ◀

C.2 Proof of Proposition 13
Proof. First, we will show that always price-discriminating (πp

t = πp
PD for all t ∈ [T ]) is

no-regret against CBER-buyers. For CBER-buyers, their strategy πs
t at each round t is

either πs
truthful or πs

strategic. For both these buyer responses, the seller’s optimal strategy is
to always price discriminate as shown in the computation of the seller’s equilibrium response
in the proof of Theorem 2. In other words, the seller incurs zero regret in each round and
thus zero average regret.
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Next, we will analyze the seller’s average utility. Note that when πp
t = πp

PD, the probability
of seeing different prices for different signals is αt = 1, so (1/t)

∑t
τ=1 ατ = 1 for all t. By

the consistency property, α̂t becomes greater than α∗ eventually (where α∗ is as defined in
Corollary 5) and the buyer plays πs

strategic. In other words, eventually the seller and buyers
will all be playing their equilibrium strategies for the PD-game with α = 1, so their average
utilities will converge to the corresponding equilibrium utilities. We make this argument
formal below.

Define κ < ∞ to be the maximum utility that can be achieved by a seller in any round.
The finiteness of κ is guaranteed by definition of the seller’s utility function. Define AT =
{∃t >

√
T s.t. α̂t > α∗} and let AC

T = {α̂t > α∗ for all t >
√

T} denote the complement.
Let γT = P(AT ) and 1 − γT = P(AC

T ) denote the corresponding probabilities. Then, we can
decompose the expected average seller’s utility as

E

[
1
T

T∑
t=1

US(πt)
]

= γtE

[
1
T

T∑
t=1

US(πt)

∣∣∣∣∣AT

]
+ (1 − γt)E

[
1
T

T∑
t=1

US(πt)

∣∣∣∣∣AC
T

]
. (4)

The first term of (4) is trivially upper bounded by γT κ.
To bound the second term of (4), first note that for any round t where α̂t > α∗, the

buyer’s strategy will be equivalent to their equilibrium strategy with α = 1. Thus, the
best utility that the seller can achieve for those rounds is uS(1). It follows that under the
condition that α̂t > α∗ for every t >

√
T , we have

1
T

T∑
t=1

US(πt) = 1
T

T∑
t=

√
T

US(πt) + 1
T

√
T∑

t=1
US(πt)

≤ 1
T

T∑
t=

√
T

uS(1) + 1
T

√
T∑

t=1
κ

= T −
√

T

T
uS(1) +

√
Tκ

T

≤ uS(1) + κ − uS(1)√
T

.

Plugging back into (4), we get

E

[
1
T

T∑
t=1

US(πt)
]

≤ γtκ + (1 − γt)
(

uS(1) + κ − uS(1)√
T

)
.

By the consistency property (Lemma 9), we know limT →∞ γT = 0, which yields the stated
asymptotic bound on the seller’s average utility. ◀

C.3 Missing Proofs of Lemmas in Proof of Proposition 14

Proof of Lemma 15. Based on the utility orderings from Corollary 4, note the following
ordering of seller utilities for different combinations of buyer and seller policies:

US(πs
truthful, πp

PD) > US(πs
truthful, πp

noPD) > US(πs
strategic, πp

PD) > US(πs
strategic, πp),
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where πp is any other pricing strategy besides πp
PD and πp

noPD. We can then write

1
T

T∑
t=1

US(πt) ≤ 1
T

∑
t∈T

US(πs
truthful, πp

noPD) +
∑

t∈[T ]\T

US(πs
strategic, πp

PD)

= |T |
T

US(πs
truthful, πp

noPD) +
(

1 − |T |
T

)
US(πs

strategic, πp
PD)

lim
T →∞

1
T

T∑
t=1

US(πt) ≤ US(πs
truthful, πp

noPD) lim
T →∞

|T |
T

+ US(πs
strategic, πp

PD)
(

1 − lim
T →∞

|T |
T

)
Since US(πs

truthful, πp
PD) > US(πs

strategic, πp
PD), the above upper bound on the limit of the

average utility is increasing as limT →∞ |T |/T is increasing. When limT →∞ |T |/T ≤ α∗,

≤ α∗US(πs
truthful, πp

PD) + (1 − α∗)US(πs
strategic, πp

PD)
< α∗US(πs

truthful, πp
PD) + (1 − α∗)US(πs

truthful, πp
PD) = U∗

1

◀

Proof of Lemma 16. Let RS
T denote the average seller utility in the T rounds. Since the

seller is no regret, limT →∞ RS
T = 0.

Consider the regret due to the seller deviating to πp
PD in each round. The gain in

utility in each round due to this deviation is non-negative since πp
PD is the best-response

to both possible buyer strategies πs
truthful, πs

strategic. We can then lower bound the regret by
considering regret accumulated in rounds where α̂t ≤ α∗. In such rounds, all buyers are
truthful, so whenever the seller does not charge a buyer the price corresponding to their
signal type, they incur regret. The probability that the seller observes s but charges θ is
µπp

t (θ|s), and this yields a loss of utility of ∆θ, because the buyer is type θ. Similarly, the
probability that the seller observes s but charges θ is (1 − µ)πp

t (θ|s), and this yields a loss of
utility of θ, since the buyer is type θ.

RS
T ≥ 1

T

∑
t:α̂t≤α∗

µ∆θπp
t (θ|s) + (1 − µ)θπp

t (θ|s)

≥ 1
T

∑
t:α̂t≤α∗

κ(1 − (πp(θ|s) − πp(θ|s))) where κ := min{µ∆θ, (1 − µ)θ}

=⇒ 1
T

∑
t∈T

(
πp

t (θ|s) − πp
t (θ|s)

)
≥ |T |

T
− RS

T

κ

The above inequality shows that |T |/T is bounded above by some measure of simultaneous
truthfulness and price discrimination. Each quantity πp

t (θ|s) − πp
t (θ|s) is a measure of price-

discrimination in each round and is related to αt as described in the following lemma.

▶ Lemma C.1. When seller pricing strategies are supported on {θ, θ}, αt ≥ πp
t (θ|s) − πp

t (θ|s)

Proof of Lemma C.1. Since seller pricing strategies are supported on {θ, θ}, αt which is the
probability of seeing different prices for different signals is

αt = πp
t (θ|s)πp

t (θ|s) + πp
t (θ|s)πp

t (θ|s)
= πp

t (θ|s)(1 − πp
t (θ|s)) + (1 − πp

t (θ|s))πp
t (θ|s)

= πp
t (θ|s) + πp

t (θ|s) − 2πp
t (θ|s)πp

t (θ|s)
= πp

t (θ|s) − πp
t (θ|s) + 2πp

t (θ|s)(1 − πp
t (θ|s))

≥ πp
t (θ|s) − πp

t (θ|s) ◀
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By inequality 1, Lemma C.1, and since limT →∞ RS
T /κ = 0, limT →∞

|T |
T ≤ limT →∞

1
T

∑
t∈T αt.

◀

Proof of Lemma 17. Consider the last index t∗ ∈ T . Let us consider two cases. The
first case is limT →∞ t∗/T < α∗. Then,

∑
t∈T αt/T ≤ |T |/T ≤ t∗/T . This implies

limT →∞
∑

t∈T αt/T ≤ α∗. In the second case, limT →∞ t∗ = ∞. Consider ᾱt∗ = 1
t∗

∑
t≤t∗ αt ≥∑

t∈T αt/T . By the consistency property, limT →∞ ᾱt∗ = α̂t∗ . α̂t∗ ≤ α∗ since t∗ ∈ T . ◀

C.4 Proofs of Propositions 20, 21
Please see arXiv version for proofs.

https://arxiv.org/abs/2404.10767
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