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Preface

The Symposium on Foundations of Responsible Computing (FORC), now in its fifth year, is
a forum for mathematically rigorous research in computation and society writ large. The
Symposium aims to catalyze the formation of a community supportive of the application of
theoretical computer science, statistics, economics, and other relevant analytical fields to
problems of pressing and anticipated societal concern.

Thirty-nine papers were selected to appear at FORC 2024, held at Harvard University in
Cambridge, MA on June 12–14, 2024. These papers were selected by the program committee,
with the help of additional expert reviewers, out of fifty-two submissions. FORC 2024 offered
two submission tracks: archival-option (giving authors of selected papers the option to appear
in this proceedings volume) and non-archival (providing a showcase for FORC-relevant
work that will appear or has recently appeared in another venue). Ten archival-option and
twenty-nine non-archival submissions were selected for the program.

The program committee awarded the FORC 2024 Best Paper Award to the paper
“Balanced Filtering via Disclosure-Controlled Proxies” by Siqi Deng, Emily Diana, Michael
Kearns and Aaron Roth. The FORC 2024 Best Student Paper Award was given to two
papers: “Drawing Competitive Districts in Redistricting” by Gabriel Chuang, Oussama
Hanguir and Clifford Stein, and “Distribution-Specific Auditing For Subgroup Fairness” by
Daniel Hsu, Jizhou Huang and Brendan Juba.

Thank you to entire program committee and to the external reviewers for their hard
work during the review process. It has been an honor and a pleasure to work together
with you to shape the program of this young conference. Finally, I would like to thank our
generous sponsors: the Simons Collaboration on the Theory of Algorithmic Fairness for their
conference support.

Guy Rothblum
Tel Aviv, Israel
April 23, 2024
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Effects of Privacy-Inducing Noise on Welfare and
Influence of Referendum Systems
Suat Evren1 #

Massachusetts Institute of Technology (MIT), Cambridge, MA, USA

Praneeth Vepakomma #

MIT Institute for Data, Systems and Society (IDSS), Massachusetts Institute of Technology (MIT),
Cambridge, MA, USA
Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), Abu Dhabi, UAE

Abstract
Social choice functions help aggregate individual preferences while differentially private mechanisms
provide formal privacy guarantees to release answers of queries operating on sensitive data. However,
preserving differential privacy requires introducing noise to the system, and therefore may lead to
undesired byproducts. Does an increase in the level of privacy for releasing the outputs of social
choice functions increase or decrease the level of influence and welfare, and at what rate? In this
paper, we mainly address this question in more precise terms in a referendum setting with two
candidates when the celebrated randomized response mechanism is used. We show that the level of
privacy is inversely proportional to society’s welfare and influence.
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1 Introduction

Differential privacy [6] provides a compelling privacy guarantee to ensure that the outcome of
a query over any dataset is substantially not influenced based on the presence or absence of
an individual’s record. This form of privacy has recently been studied in the context of social
choice theory [26, 15, 12]. A predominant strategy to achieve differential privacy in general
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1:2 Privacy-Welfare-Influence in Referendums

even outside the context of social choice theory is to introduce noise or randomization to the
system. One of the issues that has been widely studied in this context is the loss of accuracy
upon introducing noise and the trade-off between accuracy and increasing levels of privacy
preservation. This has been commonly referred to as the privacy-accuracy or privacy-utility
trade-off. Recent work has involved the formalization of other trade-offs such as the trade-off
between privacy and fairness [4]. In this work, we analyze two other trade-offs. We show
that introducing noise to privatize systems that aggregate the preferences of individuals may
affect several other fundamental phenomena such as influence and welfare.

Does an increase in the level of privacy for releasing the outputs of social choice functions,
increase or decrease the level of influence and welfare, and at what rate? In this paper, we
mainly address this question in more precise terms and affirmatively answer that this relation
is inversely-proportional and shares specific corresponding rates for the popular ρ-correlated
randomized response mechanism of privatization when used in a referendum setting with two
candidates.

The noisy mechanism that we propose and analyze in regards to influence and welfare in
this paper is based on a simple coin-flipping perturbation of the input as follows. Let ρ be
an exogenous constant in [0, 1] and let each original vote made in the ballot take a value of
either 1 or −1. The randomized response records each original vote in the ballot as it is with
a probability ρ while with probability 1− ρ, it ignores the original vote and instead records it
as either a 1 or −1 with a uniformly random pick. The resulting probability space is known
as ρ-correlated distribution or noisy distribution in the field of analysis of Boolean functions,
and it is referred to as the randomized response mechanism in the field of differential privacy.2
We show that this mechanism preserves ordinal relations between the influences of voters for
any social choice function. Therefore, if Alice had more influence before than Bob, she will
still continue to have more influence.

In the field of analysis of Boolean functions, the notion of the influence of a voter is used
to measure the power of an individual on the final result of a social choice function. We
extend this definition of influence to our probabilistic setting where noise is introduced for
privacy, and term this new notion of influence as probabilistic influence. Similarly, we define
welfare to address the second issue of capturing how ideal a voting rule is. First, we define it
for deterministic functions and then we extend this definition to any probabilistic mechanism.
We then show the effect of our privacy inducing randomized response on the welfare of the
system. In particular, we show that it preserves the ordinal relations between the welfare
of voting systems. That is, if a social choice function f had a greater welfare than g in the
deterministic setting after the randomized response Mρ is applied based on the exogenous
parameter ρ, the welfare of Mρf will continue to be greater than that of Mρg.

In this setting, we share precise statements connecting the noising probabilities ρ used
in the mechanism Mρ, their effect on level of privacy ϵ which in turn results in a specific
level of influence and welfare expressed in terms of ρ. We precisely show that as the level of
privacy increases, the welfare and influence happen to decrease at correspondingly specific
rates. Arguably, having a higher welfare in a voting system is desirable and therefore we
shine light on this new trade-off between privacy and welfare. In terms of influence, it is
questionable whether a decrease in influence with an increase in privacy is desirable or not.
We believe it depends on the context, and therefore in this case, we do not refer to it as a
trade-off but instead call it a scaling law. However, as we show in Section 5, welfare of the
society is equal to total influence of the society under the monotonicity assumption.

2 For a survey of the field of analysis of Boolean functions, see [22]. For a survey of the field of differential
privacy, see [7].
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1.1 Contributions
We contribute towards bridging differential privacy and social choice theory by deriving the
following results on the effect of randomized response over influence, welfare, and accuracy.
1. Privacy-Influence scaling law: A notion of influence is widely used in the analysis of

Boolean functions to study social choice functions. We extend the notion of influence to
the noisy setting, and call it probabilistic influence. We then show a result relating the
trade-off between ρ−correlated distribution based differential privacy and probabilistic
influence. We show that such privatization changes the influence of every single voter by
a factor of 1+ρ2

2 . Thus, the randomized response preserves the ordinal relations between
influences of agents while scaling them by a factor depending on ρ while still ensuring
their privacy is preserved.

2. Privacy-Welfare trade-off: We define welfare W (f) of a social choice function f and
extend the definition to probabilistic mechanisms. Then, we show that W (Mρf) = ρ·W (f),
i.e. the randomized response scales the welfare by a factor of ρ, whereby preserving the
ordinal relations between the welfare of social choice functions.

3. Accuracy analysis: We restrict the analysis of accuracy3 of our mechanism to social
choice functions, i.e. the functions with range {−1, 1}. We give the accuracy for
Dictatorship, Majority, AND, and OR functions. For dictatorship, AND, and OR
functions, we provide a theoretical analysis of accuracy. For the Majority function, we
give an asymptotic accuracy when n goes to ∞ based on the existing results in the
literature. We also give an exact analysis of accuracy for the Majority function for small
n by using a computational method that involves dynamic programming.

1.2 Organization
The rest of the paper is organized as follows. In Section 2, we provide further motivation and
background. In Section 3, we formally describe the differentially private randomized response
mechanism. In Section 4, we introduce the notion of probabilistic influence, and give one
of our main results that influence scales down by the same constant for every individual.
In Section 5, we introduce the concept of welfare for general probabilistic mechanisms, and
analyze it for randomized response. We shed light into the connection between influence and
welfare, and give our second main result that randomized response scales down welfare by the
same factor for any given social choice function. In Section 6, we provide an analysis of the
accuracy for the randomized response mechanism. In Section 7, we discuss the possible future
work and the limitations of this paper, and we conclude. Some preliminaries from social
choice theory are provided in Appendix B. All of the proofs are relegated to Appendix A.

2 Motivation

To intuitively expand on the potential relation between privacy and influence, consider an
instance where it might be the case that introduction of noise for the sake of obtaining
privacy results in undesired shifts of the power held by different individuals in deciding
society’s final outcome. For example, say that a voter Alice would have had more impact on
the outcome than Bob in a case where there is no privatization. It could as well be the case

3 It is common to refer to accuracy with the name utility in the differential privacy literature. However,
since this term is overloaded also in the economics and social choice theory literature with different
meanings, we will opt to call it accuracy throughout our analysis to prevent possible confusion.

FORC 2024



1:4 Privacy-Welfare-Influence in Referendums

that the power balance shifts to Bob having more impact than Alice after a privacy-inducing
noise is introduced. We conclusively show that this cannot be the case as the influence scales
down for every voter with the increasing level of privacy by the same constant in the case of
the popular randomized response privacy mechanism.

Second, regarding the potential relation between privacy and welfare, consider an instance
where it may be the case that upon introduction of noise, the chosen social choice function
that was originally used to aggregate the individual preferences into a final outcome ends up
not being ideal anymore. Hence, it may instead be desirable to switch to another social choice
function. For example, suppose that a system uses the majority function to decide which one
of the two candidates is elected in the deterministic case. However, the majority function
could be severely affected in some instances upon introduction of noise, and another function
could end up being a better choice. We show that as the privacy increases in the randomized
response mechanism, the welfare of each social choice function scales down proportionally
under our definition of welfare, which is similar to the notions used in mathematical social
choice theory. This implies that if a function is a welfare maximizer before introducing noise,
it still is a welfare maximizer after the introduction of the noisy mechanism. These two
results are especially useful, as they imply that the designers of the initial deterministic
social choice mechanism do not have to be concerned about whether their design is robust to
the introduction of noise in terms of influence and welfare.

We now discuss the work that has been done regarding influence and welfare in the
context of social choice theory. Influences have long been studied in discrete Fourier analysis
and theoretical computer science. The notion of influence was first introduced in [23] and it
was first systematically studied in [3]. Some other novel works related to influences in the
context of social choice theory include, but are not limited to, the KKL Theorem [14] and
the Majority is Stablest Theorem [20]. We extend the notion of influence to the noisy setting
and call it probabilistic influence, and prove a direct linear relation between deterministic
influence and probabilistic influence.

The question of the ideal voting rule has long been a matter of discussion in social choice
theory. When there are only two candidates, the answer is relatively simple as the majority
function seems to be the most ideal voting rule. It is known that majority is the only social
choice function that is anonymous and monotone among all two-candidate voting rules [19].
For more than two candidates, different objectives may result in different voting rules, or
even in impossibility results [1, 2, 11, 9, 10]. Various aspects of utilitarian voting is studied
in [13]. Finding the best function in computationally efficient ways has been studied in the
recent field of computational social choice theory. There is a line of work [16, 17] that aims
to maximize welfare given each voter’s utility for candidates in a “distortion framework” in
which there is a lack of information about voter’s utilities. In that framework, a typical
approach is to attempt to maximize the worst-case objective.

To the best of our knowledge, a definition of welfare that is closest to ours is the one
given by O’Donnell ([22], page 51). Although the author does not explicitly define welfare
of a social choice function, there is an affine relation between the expected value of their
objective function and the way we define welfare. However, our main conceptual contribution
is that our definitions are extended to hold for probabilistic mechanisms and we analyze the
effects of privacy on influence and welfare. O’Donnel proves that among all two-candidate
voting rules, majority is the unique maximizer of welfare, whose proof is essentially based on
[27]. Our main objective is not to find the function that maximizes the welfare; that is rather
a simple question. In fact, we show that majority is the unique welfare maximizer as well in
an almost identical way to [22]. The primary motivation of the paper is to show that if a
voting rule is better in the deterministic setting, it is still better after the privacy-inducing
noise is introduced.
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3 Model: Randomized Response and Privacy Guarantee

There are three main reasons as to why we chose the randomized response as the privacy-
preserving mechanism to focus our attention. First, it is simple, in addition to being one
of the earliest, and yet one of the most popularly used privacy-preserving mechanisms to
date, be it in the classic form or as a variant of it. As an example, RAPPOR [8] is a recent
popular real-world use-case of randomized response, otherwise classically used a few decades
ago [28, 18]. Second, the mechanism is based on perturbations of the input which allows it to
be applied to any social choice function. This enables us to talk about the ordinal relations
between the welfare of potential social choice functions before and after the mechanism is
applied. Third, ρ-correlated distributions are well studied in mathematical social choice
theory [22].

Our randomized mechanism is an input-perturbing mechanism. That is, the mechanism
introduces noise to the votes in the ballot so that one can use any social function afterward,
yet the same privacy guarantee will continue to hold due to the post-processing property of
differential privacy [5]. Randomized response introduces noise by utilizing a simple coin-flip
scheme that is based on the following distribution that is widely used in the analysis of
Boolean functions.

▶ Definition 1. Let ρ ∈ [0, 1] and x ∈ {−1, 1}n be fixed. y is called ρ-correlated with x if
for every i ∈ [n], yi = xi with probability ρ and uniformly distributed with probability 1− ρ,
and it is denoted by y ∼ Nρx.

Note the symmetry in the definition of ρ-correlation. We formalize this symmetry in the
following fact, which we will often use in the proofs of our results.

▶ Observation 2. x ∼ {−1, 1}n, y ∼ Nρx if and only if y ∼ {−1, 1}n, x ∼ Nρy. If
x ∼ {−1, 1}n, y ∼ Nρx, we say (x, y) is a ρ-correlated uniformly random pair.

In the literature, ρ-correlated distribution is sometimes referred to as noisy distribution.
A famous analogy for this definition is as follows. Suppose the votes are recorded by a noisy
machine. That is, the machine records each ballot correctly with probability ρ, and blurs the
ballot with probability 1− ρ and instead records it at uniform random. As a result, the vote
gets misrecorded with probability (1−ρ)/2. In fact, our mechanism corresponds to this noisy
machine. Hence, we will call it by the generic name randomized response, or ρ-correlated
randomized response when we need to specify ρ and denote a mechanism that applies it by
Mρ as defined below.4 It is worth noting that ρ-correlated randomized response is in essence
just like randomized response [28], a classic scheme that inspired several privacy mechanisms.

▶ Definition 3. Let f : {−1, 1}n → R be any function. For every x ∈ {−1, 1}n, the
randomized response Mρf(x) outputs f(y) where y ∼ Nρx.

Now that we formally defined the randomized response mechanism, we can give the
formal definition of differential privacy in our context.

▶ Definition 4 (ϵ-Differential Privacy [6]). A randomized voting mechanism A : {−1, 1}n →
{−1, 1} is ϵ-differentially private if for all pair of neighboring voting profiles x, x′ ∈ {−1, 1}n

that differ in exactly one bit and for all s ∈ {−1, 1},

Pr[A(x) = s] ≤ eϵ Pr[A(x′) = s]

4 Note the subtle distinction between Mρ and Nρ. The former is a randomized query function, i.e. a
random variable; whereas the latter denotes a probability distribution.

FORC 2024



1:6 Privacy-Welfare-Influence in Referendums

The above definition of differential privacy is specific to our context. For the general
definition of differential privacy and a broad survey of the field, see [7]. The randomized
response mechanism preserves ε-differential privacy. The following result holds for any
Boolean function f .

▶ Proposition 5. For any ρ ∈ [0, 1], randomized response Mρf preserves log( 1+ρ
1−ρ )-differential

privacy regardless of the function f : {−1, 1}n → R. (or, (ε,0)-differential privacy when
ρ ≤ 1− 2

exp(ε)+1 ).

Proof. Proof is relegated to Appendix A.1. ◀

▶ Remark 6. The equality case is satisfied if f is a dictatorship, which implies that the
bound log( 1+ρ

1−ρ ) is tight. That is, when f is a dictatorship, Mρf is not ε-differentially private
for any ε < log( 1+ρ

1−ρ ). In fact, it can be shown that a social choice function f satisfies the
equality case if and only if there is a triple (r, b, i) where r ∈ R, b ∈ {−1, 1}, i ∈ [n] such that
∅ ̸= {z ∈ {−1, 1}n|f(z) = r} ⊆ {z ∈ {−1, 1}n|zi = b}.

The reason our mechanism preserves differential privacy for any Boolean function f

is that the mechanism is input-perturbing. In this sense, we could instead present the
mechanism as Mρ : {−1, 1}n → {−1, 1}n and write f ◦Mρ instead of Mρf . Then we could
prove the analogous version of Proposition 5, and by using the post-processing property
of differential privacy, we would again obtain Proposition 5. In fact, one can see that in
the proof, we also re-prove the post-processing property, seemingly for no reason. However,
the reason we choose to give the mechanism altogether after post-processing with f is to
make the all equality cases in the above remark apparent. Once post-processing is applied
black-box, whether the privacy result is robust is not clear anymore. For example, consider
any constant function f , e.g. f(x) = 1 for any x ∈ {−1, 1}n. In this case, Mρf is not only
log( 1+ρ

1−ρ )-differentially private but 0-differentially private. On the other hand, as Remark 6
implies, the privacy guarantee in Proposition 5 is tight, which we would not be able to show
without an explicit proof.

4 Probabilistic Influence

Influence of a voter is a notion that is used to measure the power of an individual on a
deterministic social choice function. Influences of Boolean functions have long been studied
in computer science and the field of analysis of Boolean functions starting with [3]. The
influence of a voter in a voting system is defined to be the probability of the change in
outcome when the voter changes their vote ceteris paribus. For example, in the case of a
dictatorship, the dictator has influence 1 while every other voter has influence 0. In the
majority function with n = 2k + 1 voters, each voter’s influence is the same and equal to(2k

k

)
/22k.
We use xi→1 = (x1, · · · , xi−1, 1, xi+1, · · · , xn) to denote the case where the i-th voter

chooses to vote for 1, and every other voter follows x. Similarly, we denote the alternate
case where the i-th voter chooses to vote for −1 and every other voter follows x by xi→−1 =
(x1, · · · , xi−1,−1, xi+1, · · · , xn). Using this notation, influence in the deterministic setting is
defined as follows.

▶ Definition 7. For f : {−1, 1}n → {−1, 1}, the influence of elector i is defined as

Ii[f ] = Px∼{−1,1}n [f(xi→1) ̸= f(xi→−1)].

The total influence of the function f is defined to be

I[f ] =
n∑

i=1
Ii[f ].
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A similar notion can be introduced in the probabilistic setting where the randomized
response Mρf(x) is applied. To do so, we consider the case where everybody casts their
votes, following which Mρf(x) is applied and the voter i changes their vote. That is, we
leave all the noisy versions of the votes cast by everyone as is except for the elector i’s vote.
For this particular vote, we re-run the randomized response on coordinate i. The probability
of result being different is called the probabilistic influence of coordinate i. We now introduce
the formal definition of the proposed probabilistic influence, which applies not only to social
choice functions with range {−1, 1} but to all Boolean functions with range in R as follows.
In the notation of the following definition, yi ∼ Nρ(1) refers to the case where voter i chooses
to vote for 1 while zi ∼ Nρ(−1) refers to the case where voter i chooses to vote for −1.

▶ Definition 8. Let f : {−1, 1}n → R and the probabilistic influence of coordinate i in a
mechanism Mρf(x) is defined as

Ii[Mρf ] = Ex∼{−1,1}n,∀j ̸=i zj=yj=xj ,yi∼Nρ(1),zi∼Nρ(−1)

[(
f(y)− f(z)

2

)2
]

.

The total influence of the mechanism Mρf is defined to be

I[Mρf ] =
n∑

i=1
Ii[Mρf ].

We showed in Proposition 5 that our probabilistic voting mechanism preserves ε-differential
privacy. Inducing such privacy requires probabilistic mechanisms as opposed to using
deterministic functions. For example, in the majority voting with 2k + 1 voters, if the votes
are split k to k + 1, then changing only one bit in the input may change the outcome of the
voting mechanism. Thus, it is not differentially private. Similarly, no deterministic Boolean
function can preserve differential privacy unless it is a constant function.

On the other hand, introducing noise may cause several issues in the voting system, one
of which is the accuracy of the mechanism, which we will discuss in more detail in Section 6.
Another possible issue is that when noise is introduced, we might be altering the voting
system in favor of a particular voter. For example, voter A might have more influence relative
to voter B in the system now even if that was not the case before. For symmetric social
choice functions, it is natural to expect that the randomized response mechanism would have
the same effect for any voter since the noise is also symmetric. However, it is not as trivial
for arbitrary social choice functions. Yet, we show that each voter’s probabilistic influence is
proportional to her influence in the deterministic setting, which is one of our main results.

▶ Theorem 9. Let ρ ∈ [0, 1] be any real number and f : {−1, 1}n → R be any function. For
every i ∈ [n], Ii[Mρf ] = 1+ρ2

2 Ii[f ].

Proof. Proof is relegated to Appendix A.2. ◀

This result shows that the randomized response preserves the ordinal relations between
influences of the voters regardless of the original social choice function being used. In other
words, if voter A had greater influence than another voter B, she will still have a greater
influence on the system after the noise is introduced.

5 Welfare

In this section, we introduce a formal definition of welfare of social choice functions. Then
we extend this definition to probabilistic mechanisms, and we show that the randomized
response preserves the ordinal relations between the welfare of social choice functions.
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5.1 Welfare of Deterministic Voting Systems
[24] argues in his Social Contract that an ideal voting rule should maximize the number
of votes that agree with the outcome. For a more comprehensive discussion on this, see
[25]. [22] proves that the majority function is the unique ideal function based on Rousseau’s
perception of the ideal voting rule without formally introducing welfare. Perhaps, when he
proved this result, he had some form of welfare in his mind, especially because he uses the
letter w to denote the number of votes that agrees with the outcome. In this section, we will
formally define welfare, which will be slightly different than what the w notation of O’Donnell
describes. In particular, we define welfare of a social choice function f : {−1, 1}n → {−1, 1}
as the average difference between the number of votes that agree with the outcome and the
number of votes that do not agree with the outcome under the impartial culture assumption.

▶ Definition 10. Let f : {−1, 1}n → {−1, 1} and x ∈ {−1, 1}n, and let wx(f) = |{i; xi =
f(x)}| − |{i; xi ̸= f(x)}|. Welfare of the social choice function f is defined to be

W (f) = Ex[wx(f)].

We can still prove that the majority function is the unique maximizer of welfare when n

is odd by using a similar method as in the proof of Theorem 2.33 in [22].

▶ Proposition 11. When n is odd, the unique maximizer of W (f) is the majority function.

Proof. Proof is relegated to A.3. ◀

Without further assessment, it is not possible to say whether we prefer total influence to
be larger or smaller for the welfare of society in a voting system. As we show in the following
result, if the social choice function is monotone – that is if a voter changes her vote in favor
of a candidate, then this candidate should be weakly better off – then these two notions
collide.

▶ Proposition 12. Let f be any monotone social choice function f : {−1, 1}n → {−1, 1}.
Then, W (f) = I[f ].

Proof. Proof is relegated to Appendix A.4. ◀

This result has implications beyond being a simple identity, making the case that if we
want to achieve a greater social welfare while adhering to monotone social choice functions,
we must choose a function with a greater total influence.

5.2 Welfare of Noisy Mechanisms
To capture the same notion for the probabilistic functions as well, we similarly define welfare
of a randomized mechanism applied on a social choice function as follows. Note that the
following definition is not only for the randomized response Mρ, but any mechanism defined
on social choice functions.

▶ Definition 13. Let f : {−1, 1}n → {−1, 1}, x ∈ {−1, 1}n, and M be any mechanism. Let
wx(Mf) = |{i; xi = Mf(x)}| − |{i; xi ̸= Mf(x)}|. Welfare of the mechanism M with the
social choice function f is defined to be

W (Mf) = Ex,M [wx(Mf)]

where the expectation is both over x and the mechanism M .



S. Evren and P. Vepakomma 1:9

We showed in Theorem 9 that although introducing ρ-correlated noise in a voting system
has negative effects on influences, it does not provide an unfair advantage to any agent.
Another possible undesired byproduct of a randomized mechanism could be that the effect of
randomization on the welfare of a particular voting system is more severe compared to the
other voting systems. For example, we showed in Proposition 11 that the majority function
is the unique welfare maximizer. It could be the case that after we introduce noise, it is
more likely in the majority function that the outcome will change. Within this context, the
following result implies that every voting system is equally affected by the input-perturbing
randomized response mechanism. Therefore the randomized response preserves the ordinal
relations between the welfare of two-candidate voting systems.

▶ Theorem 14. Let f be any social choice function f : {−1, 1}n → {−1, 1}. Then,
W (Mρf) = ρ ·W (f).

Proof. Proof is relegated to Appendix A.5 ◀

This result, together with Proposition 11, implies that the majority function is the unique
welfare maximizer also after the noise is introduced in applying the randomized response
mechanism.

6 Accuracy Analysis

There is one significant drawback of the randomized response privatization mechanism in
consideration. It is hard to analyze the accuracy of releasing the output of social choice
functions upon privatizing it with the randomized response. Although our main objective in
this work is not about the analysis of accuracy, we will dedicate a section to the analysis of
accuracy for the sake of completeness. As a first pass, we easily find a generic lower-bound on
accuracy of the randomized response, but it ends up to be so low that it makes it redundant.
Therefore, we restrict our analysis to specific social choice functions. We theoretically provide
results on accuracy for dictatorship, AND, and OR functions.5 In addition, we give a tight
lower bound as well as an upper bound for the accuracy of majority function. We also give an
algorithm to calculate exact accuracy of majority function by using dynamic programming
via memoization. The dynamic programming approach avoids the need to make calculations
over every entry in the power-set and instead is much more efficient, while still resulting
in an exact solution for computing the accuracy. Our definition of accuracy is in-fact the
average of accuracy under the impartial culture assumption. That is,

Acc(Mρf) = Px∼{−1,1}n

Mρ

[Mρf(x) = f(x)].

Now, we define the noise operator, also referred to as the noisy Markov operator, which
is a linear operator on the set of Boolean functions. This operator will be useful for accuracy
calculations.

▶ Definition 15. For any ρ ∈ [0, 1], the noise operator Tρ is the linear operator on the set of
functions f : {−1, 1} → R defined by

Tρf(x) = Ey∼Nρx[f(y)].

5 For formal definitions of these widely known social choice functions, see Appendix B.

FORC 2024



1:10 Privacy-Welfare-Influence in Referendums

Before we start our analysis, let us also give the definition of noise stability.

▶ Definition 16. For any ρ ∈ [0, 1] and f : {−1, 1}n → R, ρ-correlated noise stability of f is
given by

Stabρ(f) = Ex∼{−1,1}n

y∼Nρ(x)
[f(x) · f(y)]

There is a linear relation between the noise stability of a function and accuracy of the
randomized response on this function. Note that Mρf(x) · f(x) = 1 if Mρf(x) = f(x),
Mρf(x) · f(x) = −1 otherwise. Thus,

2 ·Acc(Mρf)−1 = 2 ·Px∼{−1,1}n

y∼Nρ(x)
[f(y) = f(x)]−1 = Ex∼{−1,1}n

y∼Nρ(x)
[f(y) ·f(x)] = Stabρ(f). (1)

Also, note that

Stabρ(f) = Ex∼{−1,1}n

y∼Nρ(x)
[f(x) · f(y)] = Ex∼{−1,1}n [f(x)Tρf(x)]. (2)

The reason we feel the need to write accuracy in terms of stability is that in the field of
Analysis of Boolean functions most results are given in terms of stability for convenience.
Yet, we use stability explicitly only when we analyze the accuracy of the majority function.

6.1 Majority
In this section, we will give the asymptotic accuracy for Majn function where n is an odd
number that goes to infinity.

▶ Lemma 17 (Proposition 10, [21]). For any ρ ∈ [0, 1), Stabρ[Majn] is a decreasing function
of n where n is an odd number, with

2
π

arcsin(ρ) ≤ Stabρ[Majn] ≤ 2
π

arcsin(ρ) + O( 1√
1− ρ2√n

).

By using the fact that accuracy is equal to 1
2 + 1

2 Stabρ(f) due to Equation (1), we get
that

1
2 + 1

π
arcsin(ρ) ≤ Acc[Mρ(Majn)] ≤ 1

2 + 1
π

arcsin(ρ) + O( 1√
1− ρ2√n

). (3)

Despite this fact being quite useful, there is no convenient way to calculate the exact
value of accuracy of the randomized response on Majority function. Hence, we compute it
using dynamic programming via memoization in the following section.

6.1.1 Algorithm to compute the exact accuracy for small n

We now provide a dynamic programming algorithm with memoization to compute the
accuracy of the randomized response. In particular, we give the algorithm to calculate the
accuracy of the threshold functions, that are of the form

fθ(x) =
{

1 if
∑

i∈[n] xi > θ

−1 if
∑

i∈[n] xi ≤ θ
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Note that Majn = f0(·) where it takes care of ties by considering them as if −1 is the winner.
In general, we work with the odd number of voters when we talk about the majority function.
But as a simple trick, we will compute it for any n based on the generic definition of the
threshold function we gave above since it makes the algorithm less involved.

We now state the noise operator Tρfθ0(x) as introduced in Definition 15 when applied to
threshold functions as a way to quantify the expected accuracy as

Tρfθ0(x) = Ey∼Nρx [1 (y1 + . . . yn > θ0)] .

Let x−n denote x without the last bit. In particular, if x = (x1, x2, · · · , xn−1, xn), then
x−n = (x1, x2, · · · , xn−1). Note that x−n ∈ {−1, 1}n−1 while x ∈ {−1, 1}n. Then, the
stability can be defined using two calls of recursion as follows

Tρfθ0(x) = 1 + ρ

2 Tρfθ0−xn
(x−n) + 1− ρ

2 Tρfθ0+xn
(x−n)

That is because

Ey∼Nρx [1 (y1 + · · ·+ yn > θ0)]
= Eyn∼Nρxn

[
Ey−n∼Nρx−n

[1 (y1 + · · ·+ yn−1 > θ0 − yn) | yn]
]

= 1 + ρ

2 E
y−n∼Nρ(x−n)

[1 (y1 + · · ·+ yn−1 > θ0 − xn)]

+ 1− ρ

2 E
y−n∼Nρ(x−n)

[1 (y1 + · · ·+ yn−1 > θ0 + xn)]

= 1 + ρ

2 Tρfθ0−xn
(x−n) + 1− ρ

2 Tρfθ0+xn
(x−n)

To summarize, this dynamic programming with memoization algorithm is as shown
in Algorithm 1 below. In terms of notation we denote a specific diction-
ary (in terms of popular programming terminology of dictionary data types) as
Dictionary: {(ρ, n, s, θ) = Tρfθ0(x) for some x s.t sum(x) = s}.

Our approach is to use this proposed recursive relation with an appropriate initial
condition to exactly compute the noise operator Tρf(x). Then, by using Equation (2),
we calculate the Stability of the function. Finally, by using the linear relation between
stability and accuracy from Equation (1), we compute the exact accuracy. This dynamic
programming approach avoids having to make 2n computations, given that x ∼ {−1, 1}n.
Note that, Tpfθ0(x) = Tpfθ0(z) if sum(x) = sum(z). Therefore we iterate over i from 1 to n

to represent vectors with i number of 1′s. Then as the rest of entries are −1, and since the
length of the array is n, this approach can model the exact sum of all possible vectors. Since
the calculation of the stability is one-to-one with respect to sums, we store the intermediate
results in a dictionary indexed by this sum. As there are

(
n
i

)
vectors that can be represented

this way, we just compute once per each i and multiply it by
(

n
i

)
. This enables us to model

all possible vectors efficiently but allows us to not have to compute the intermediate results
every time via our recursive approach.

In Figure 1, we plot the accuracy curves of the randomized response mechanism with
varying values of ρ applied to the majority function as the number of voters increases. Note
that as n goes to ∞, the accuracy asymptotically approaches to 1

2 + 1
π arcsin(ρ) as implied

by Equation (3).
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Algorithm 1 Proposed dynamic programming algorithm with memoization.
Result: Accuracy
Initialization;
Define Dictionary:{(ρ, n, s, θ) = Tρfθ0(x) for some x s.t sum(x) = s}
Def Tρfθ0(x) :
s = sum(x);
if (ρ, n, s, θ0) is in dictionary then

return dictionary [(ρ, n, s, θ0)];
else

Using 2 recursive calls in summands, compute:

α = 1 + ρ

2 Tρfθ0−xn
(x−n) + 1− ρ

2 Tρfθ0+xn
(x−n)

Save (ρ, n, s, θ0) = α to dictionary
end
Def Accρ (fθ) :
total = 0
for i← 1 to n + 1 do

total + =
(

n

i

)
· fθ0(x) · Tρfθ(x) for some x s.t. x has i different + 1 bits

end
return 1

2 + total /2n

2

Figure 1 The accuracy curves of the randomized response mechanism with varying values of ρ

applied to the majority function as the number of voters increases.

6.2 Dictatorship
Let f : {−1, 1}n → {−1, 1} be the dictatorship of voter-i, that is f(x) = 1 if and only if
xi = 1.
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Then, for any given x ∈ {−1, 1}n,

P[Mρf(x) = f(x)] = Py∼Nρ(x)[f(y) = f(x)] = Pyi∼Nρ(xi)[yi = xi] = 1 + ρ

2 .

Hence, the average accuracy is also equal to 1+ρ
2 .

6.3 ANDn and ORn

We will first make the calculations for ANDn and the results will be analogous due to
symmetry. We will make use of Fact 2 in the analysis.

First, we start with a generic calculation that holds for any social choice function f . In
the calculations in this section, our probability space is x ∼ {−1, 1}n, Mρf(x) ∼ f(y) where
y ∼ Nρx.

Note that by Fact 2,

Px,Mρ
[Mρf(x) = 1] = Px[f(x) = 1].

P [Mρf(x) = f(x)] = P [Mρf(x) = 1 ∧ f(x) = 1] + P [Mρf(x) = −1 ∧ f(x) = −1]

and

P [Mρf(x) = −1 ∧ f(x) = −1] = 1 − P [Mρf(x) = 1 ∨ f(x) = 1]
= 1 − P [Mρf(x) = 1] − P [f(x) = 1] + P [Mρf(x) = 1 ∧ f(x) = 1]
= 1 − 2 · P [f(x) = 1] + P [Mρf(x) = 1 ∧ f(x) = 1] .

Thus for any social choice function f ,

P [Mρf(x) = f(x)] = 1− 2 · P [f(x) = 1] + 2 · P [Mρf(x) = 1 ∧ f(x) = 1]

For f = ANDn,

P[f(x) = 1] =
∏

i∈[n]

P[xi = 1] = 2−n,

and

P [Mρf(x) = 1 ∧ f(x) = 1] = P[f(x) = 1] · P[Mρf(x) = 1|f(x) = 1] = 2−n · (1 + ρ

2 )−n.

Hence, the accuracy of Mρ for ANDn function is equal to 1 − 2−n+1(1 − ( 1+ρ
2 )n), whose

limit goes to 1 as n goes to ∞. Due to symmetry, accuracy analysis is the same for ORn

function.

7 Conclusion

The main objective in this work is to study the privacy-welfare trade-off and the relation
between privacy and probabilistic influence. The proposed definition of welfare happens
to hold for any mechanism while on the other hand, the defined probabilistic influence is
only specific to the randomized response mechanism. In fact, a more general definition of
influence could be coined and a similar property could potentially be observed. We leave out
this potential generalization of influence to future work. In terms of welfare, the analysis
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done in this paper can be replicated in a similar style to other popular privatization schemes
such as the Laplace and exponential mechanisms. The privacy-accuracy trade-off of the
current mechanism for the majority function may also be further improved. Note that
Dictatorship, AND, and OR functions satisfy the equality condition in Proposition 5 as
discussed in Remark 6. Thus, the accuracy-privacy analyses for these functions are tight.
On the other hand, for a given ρ, the asymptotic accuracy of majority is tight whereas the
privacy result is a possibly loose upper bound.

Also, our definitions of influence and welfare assume that the votes are unbiased, that is,
they consider everybody to be equally likely to vote for −1 or +1. In fact, these definitions
can be further generalized to cover the same concept, but for the case of biased voting. For
example, one can extend the definitions to be p-biased for a given p ∈ [−1, 1], that is the
expected value of each vote is p instead of 0. p-biased distribution is also well-studied in the
field of Analysis of Boolean functions.

Finally, our voting model in this paper is a classical referendum model with two candidates.
However, in most real-world applications, we generally have multiple candidates and we have
to aggregate the rankings. If there is a Condorcet winner in a voting system, then the results
regarding two-candidate elections can be directly applied in the multiple-candidate setting.
Yet, in many cases, there is no Condorcet winner. Restricting the number of candidates to
two has the primary advantage that both the definitions and analyses of welfare and influence
naturally follow. We believe that extending the definitions and the tools developed in this
paper to multiple-candidate settings would be interesting.

In a broader perspective, we study the effect of using privacy inducing randomized
responses in the voting process. We construct a relation between the level of privacy and
the resulting level of influence of voters involved in the voting system and the welfare of the
chosen social choice function. An insightful takeaway that we can deduce from the derived
relationships in this paper is that the ordering of voters’ influences and the ordering of welfare
amongst the considered social choice functions remain unchanged upon introducing noise via
the celebrated randomized response mechanism. Existing works have extensively studied
the relationship between privacy and the resulting accuracy in preserving the output of the
query that was privatized. At a high level we are the first to shed light on the relationship
between privacy and other important phenomena of influence and welfare. We hope that
this bridge we have proposed between the two important fields of differential privacy and
social choice theory will be further studied and extended as part of future works.
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A Proofs

A.1 Proof of Proposition 5
Proof. Let r be any element in the range of Mρf . Let Z = {z ∈ {−1, 1}n|f(z) = r}. Let x

and x′ differ only at xi for some i ∈ [n].

P[Mρf(x) = r]
P[Mρf(x′) = r] =

∑
z∈Z Py∼Nρx[y = z]∑
z∈Z Py∼Nρx′ [y = z] =

∑
z∈Z

∏
j∈[n] Pyj∼Nρxj [yj = zj ]∑

z∈Z

∏
j∈[n] Pyj∼Nρx′

j
[yj = zj ] .

The first equality is upon considering all cases of output of the randomized response resulting
in a z ∈ Z. Then by definition that would result in the function f evaluated on this output z

to be r. The second equality is due to the independence assumption across the voters choices.
Now, for any z ∈ Z,

Pyj∼Nρxj
[yj = zj ] =

{
1+ρ

2 if xj = zj

1−ρ
2 if xj ̸= zj

and Pyj∼Nρx′
j
[yj = zj ] =

{
1+ρ

2 if x′
j = zj

1−ρ
2 if x′

j ̸= zj

This is because 1−ρ
2 is the probability of a misrecorded vote and 1 − 1−ρ

2 = 1+ρ
2 is the

probability otherwise. More explicitly, with probability 1− ρ, it chooses to blur the ballot
and the blurring is then done by picking uniformly out of the two options of {−1, 1} with
probability 0.5 each, out of which one pick would result in no change to the vote and the
other would result in a misrecorded vote. Also, for any j ̸= i,

Pyj∼Nρxj
[yj = zj ] = Pyj∼Nρx′

j
[yj = zj ].

Thus,

1− ρ

1 + ρ
≤

∑
z∈Z

∏
j∈[n] Pyj∼Nρxj [yj = zj ]∑

z∈Z

∏
j∈[n] Pyj∼Nρx′

j
[yj = zj ] ≤

1 + ρ

1− ρ
,

which completes the proof. ◀

A.2 Proof of Theorem 9
Proof. Using conditional probability, we get that

Ii[Mρf ] = Ex∼{−1,1}n,∀j ̸=i zj=yj=xj ,yi∼Nρ(1),zi∼Nρ(−1)

[(
f(y)− f(z)

2

)2
]

= Pyi∼Nρ(1),zi∼Nρ(−1)[yi = 1, zi = −1] · Ex∼{−1,1}n

[(
f(xi→1)− f(xi→−1)

2

)2
]

+ Pyi∼Nρ(1),zi∼Nρ(−1)[yi = −1, zi = 1] · Ex∼{−1,1}n

[(
f(xi→1)− f(xi→−1)

2

)2
]

Noting that

Pyi∼Nρ(1),zi∼Nρ(−1) [yi = 1, zi = −1] =
(

1 + ρ

2

)2
,

Pyi∼Nρ(1),zi∼Nρ(−1) [yi = −1, zi = 1] =
(

1− ρ

2

)2
,
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and that

Ex∼{−1,1}n

[(
f(xi→1)− f(xi→−1)

2

)2
]

= Ii[f ],

we get that

Ii[Mρf ] = 1 + ρ2

2 Ii[f ]. ◀

A.3 Proof of Proposition 11
Proof. First, let us fix x. Note that

wx(f) = f(x) ·
∑
i∈[n]

xi.

Since f(x) ∈ {−1, 1}, f(x) ·
∑

i∈[n] xi is maximized when f(x) = sign(
∑

i∈[n] xi). Hence,
W (f) is maximized if ∀x ∈ {−1, 1}n, f(x) = sign(

∑
i∈[n] xi), which is exactly the definition

of the majority function. ◀

▶ Remark 18. Note that we used the condition that n is odd to ensure that sign function is
well-defined. If n was even, then the maximizers of W (f) are again the majority functions
where it does not matter who is elected if it is tied.

A.4 Proof of Proposition 12
In the proof of this result, we use discrete Fourier analysis. It is a well-known result from the
field of analysis of Boolean functions, that every function f : {−1, 1}n → R can be uniquely
expressed as a multilinear polynomial,

f(x) =
∑

S⊆[n]

f̂(S)χS(x)

where for any S ∈ [n]

χS(x) =
∏
i∈S

xi.

This expression is called the Fourier expansion of f , and the real number f̂(S) is called
the Fourier coefficient of f on S. Collectively, the coefficients are called the Fourier spectrum
of f . The following is an essential result from discrete Fourier Analysis.

▶ Lemma 19 (Plancherel’s Theorem). For any functions f, g : {−1, 1}n → R,

Ex∼{−1,1}n [f(x)g(x)] =
∑

S⊆[n]

f̂(S)ĝ(S).

It is possible to neatly calculate many features of f including the influences in terms of
Fourier coefficients.

▶ Lemma 20 (Proposition 2.21, [22]). Let f : {−1, 1}n → {−1, 1} be a monotone function
and let the Fourier spectrum of f be f(x) =

∑
S⊆[n] f̂(S)χS(x). Then, for any i ∈ [n],

Ii[f ] = f̂({i}).
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1:18 Privacy-Welfare-Influence in Referendums

It is also possible to calculate the welfare in terms of the Fourier coefficients by taking
one step further from the proof of Proposition 11.

▶ Lemma 21. Let f be any social choice function f : {−1, 1}n → {−1, 1}. Then, W (f) =∑
i∈[n] f̂({i}).

Proof. By the definition of welfare,

W (f) = Ex[wx(f)] = Ex[f(x) ·
∑
i∈[n]

xi] =
∑
i∈[n]

f̂({i})

where the last equation follows from Lemma 19. ◀

We are ready to finish the proof.

Proof of Proposition 12. The proof follows immediately from Lemma 20 and Lemma 21. ◀

A.5 Proof of Theorem 14
Proof. We prove this identity by using a double-counting method and linearity of expectation.
Fix f . For any i ∈ [n], let 1i,x,ρ be the indicator random variable defined as follows:

1i,x,ρ =
{

1 if Mρf(x) = xi

−1 if Mρf(x) ̸= xi

where the randomization is due to the randomized response. Note then when x is given and
ρ = 1, there is no randomization because Mρf(x) = f(x) with probability 1. Therefore, 1i,x,1
is a deterministic function. For the sake of simplicity, we will abuse the notation and write
1i,x instead of 1i,x,1 in the deterministic case. Then,

wx(Mρf) =
∑
i∈[n]

1i,x,ρ and wx(f) =
∑
i∈[n]

1i,x.

Thus,

W (Mρf) = EMρ,x[wx(f)] = Ex,Mρ
[
∑
i∈[n]

1i,x,ρ] =
∑
i∈[n]

Ex,Mρ
[1i,x,ρ]

and so

W (f) =
∑
i∈[n]

Ex[1i,x].

Now, we will show that for any i ∈ [n],

Ex,Mρ
[1i,x,ρ] = ρ · Ex[1i,x].

First, note that

Ex,Mρ [1i,x,ρ] = Px∼{−1,1}n

y∼Nρx

[f(y) = xi]− Px∼{−1,1}n

y∼Nρx

[f(y) ̸= xi].

By using

Px∼{−1,1}n

y∼Nρx

[f(y) = xi] + Px∼{−1,1}n

y∼Nρx

[f(y) ̸= xi] = 1,
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we get that

Ex,Mρ
[1i,x,ρ] = 2 · Px∼{−1,1}n

y∼Nρx

[f(y) = xi]− 1.

By Fact 2, we can replace x ∼ {−1, 1}n, y ∼ Nρx with y ∼ {−1, 1}n, x ∼ Nρy. Thus, by
using conditional probability,

Ex,Mρ [1i,x,ρ] = 2 · Py∼{−1,1}n

x∼Nρy

[f(y) = xi]− 1

= 2(Px∼Nρy[xi = yi] · Py∼{−1,1}n [f(y) = yi]
+ Px∼Nρy[xi = −yi] · Py∼{−1,1}n [f(y) = −yi])− 1

= (1 + ρ) · Py∼{−1,1}n [f(y) = yi] + (1− ρ) · Py∼{−1,1}n [f(y) ̸= yi]− 1
= ρ · (Py∼{−1,1}n [f(y) = yi]− Py∼{−1,1}n [f(y) ̸= yi])
= ρ · Ex[1i,x]

which completes the proof. ◀

B Social Choice Functions

In this paper, we exclusively focus on social choice functions with two alternatives. There
are many ways to interpret these functions. It can be considered as a two-candidate election
or as a referendum in the context of political science. It can also be interpreted as a classifier
in the context of Machine Learning. In this paper, we will generally give the interpretations
in the context of two-candidate elections.

In general, we work with the Boolean functions defined as f : {−1, 1}n → R, and we
denote the bit i of the input x by xi for any i ∈ [n]. However, we define welfare only for
social choice functions, that is the Boolean functions whose ranges are {−1, 1}. We analyze
accuracy only for the following specific social choice functions.

Majority: Suppose that n is an odd number. The majority function of n agents/voters
is denoted by Majn and defined as

f(x) = sign(
∑
i∈[n]

xi)

for any x ∈ {−1, 1}n where sign : R→ {−1, 0, 1} is the function such that

sign(a) = a

|a|

for any a ∈ R, a ̸= 0 and sign(0)=0.
Dictatorship: For a given number n and i ∈ [n], the dictatorship of voter-i is defined as

f(x) = xi

for any x ∈ {−1, 1}n.
ANDn: The ANDn function outputs 1 if there is unanimity on 1, outputs −1 otherwise.
Namely,

f(x) =
{

1 if ∀i ∈ [n], xi = 1
−1 otherwise
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ORn: The ORn function outputs 1 if at least one voter votes for 1, and outputs −1
otherwise. In other words, it outputs −1 if there is unanimity on −1, outputs 1 otherwise.
Namely,

f(x) =
{
−1 if ∀i ∈ [n], xi = −1
1 otherwise

Note that, in this paper, we assume the impartial culture assumption, that is the voters
are not affected by each other and they vote independently uniform at random between two
candidates.
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1 Introduction

Active learning has emerged as a powerful paradigm in which labels of selected data points
are sequentially queried from a large pool of unlabeled data, referred to as the unlabeled
pool. The primary objective is to minimize labeling effort to find a classifier that exhibits
low error on fresh data points from the same data source, known as generalization error.
Typically, if the pool is large enough, a classifier that performs well on the pool can also
achieve low generalization error through uniform convergence.

Active learning has also been studied in the distributed setting, where the unlabeled pool
is scattered across multiple machines (called agents), (e.g., [45, 2]). While active learning has
demonstrated promising results, traditional approaches often operate in isolation, neglecting
the potential benefits of collaboration among agents should they agree to collaborate. In this
paper, we propose a novel framework for incentivized collaboration active learning, where
agents can collaboratively explore their data pools to discover a common target function.
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2:2 Incentivized Collaboration in Active Learning

The motivation for collaboration in active learning stems from real-life scenarios where
collaboration and collective intelligence yield improved outcomes, e.g., when agents collect
data from the same distribution, and can easily end up labeling the same or very similar
points. This redundancy leads to unnecessary and inefficient utilization of resources, as the
labeling is often done by experts. Additionally, more data can be translated to improved
accuracy, prompting agents to pool their resources and employ a more powerful model.

The incentive-driven nature of our framework aligns with the reality of collaboration in
the real world. When agents are incentivized to collaborate only when their expected labeling
complexity decreases, it reflects the real-life scenario where individuals are motivated to
engage in cooperative endeavors if they perceive a clear benefit, such as reduced effort, faster,
and better outcomes. In this work, we focus on a specific notion of incentives, where agents
already have access to a baseline algorithm and they are motivated to join the collaboration
if their label complexity is smaller than running the baseline algorithm on their own.

Consider, for example, the case of a new drug (e.g., Paxlovid for Covid-19[40], that has
different efficacy on patients with different features. While individual hospitals can test the
drug on their patients in an active learning fashion by executing their preferred baseline
algorithm, collaborating efficiently with other hospitals, each with their own patients, often
leads to a better prognosis.

However, if the incentives of the hospitals are not maintained, i.e., the effort of some
hospitals is increased, the collaboration may be compromised. By emulating this collaboration
within the active learning framework, we unlock the potential of collective intelligence to
enhance the learning process. Besides, imagine that several data labeling companies have to
recover the labels of unlabeled images assigned to them. Each data labeling company would
like to collaborate with other companies to recover the labels of all images while minimizing
the query complexity and not increasing their burden.

Our basic model is as follows: there are k agents, each with their own set of unlabeled
data points, and a single hypothesis class with a prior on the hypotheses, which all agents
are aware of. We assume realizability, meaning that there exists an underlying ground
truth labeling function called the target function, labeling all the data points, and that the
hypothesis class encompasses such a target function. We refer readers to the discussion for
more information about this assumption in the context of active learning.

The agents reach a consensus on an arbitrary baseline algorithm for pool-based active
learning (e.g., the best tractable approximation algorithm). To select whether or not to join
the collaboration, the agents need to evaluate their utility from joining the collaboration.
Since the goal of each individual agent (regardless of the collaboration) is to minimize their
expected query complexity, the most natural cost function is the expected query complexity.
To ensure each individual benefits from their collaboration, we establish a collaboration
protocol that guarantees that each agent cannot reduce their expected label complexity
by running the baseline algorithm individually. This concept is referred to as individual
rationality (IR). Our objective is to design an IR collaboration protocol that minimizes the
overall labeling queries.

There are cases in which collaboration is not necessarily beneficial. For example, each
agent has non-zero points on a different axis and the hypothesis class contains every possible
halfspace. If the prior distribution is uniform over all labelings, then no agent can reduce
their label complexity by joining the collaboration.

Clearly, if each agent has the same set of points, the label complexity of each agent can
decrease to 1/k of its original label complexity if the collaboration protocol equally splits the
labeling burden. Even if agents do not share the same set of points, they can still benefit
from collaboration, as we show in the next example.
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What is the 0.5’s label?

What is the 0.7’s label?

1[x ≥ 0.8] 1[x ≥ 0.6]

What is the 0.3’s label?

1[x ≥ 0.4] 1[x ≥ 0.2]

0 1

0 1 0 1

Figure 1 The query tree of binary search for thresholds.

▶ Example 1. Consider the scenario with 1-dimensional thresholds H = {1[x ≥ α]|α =
0.2, 0.4, 0.6, 0.8} and a uniform prior distribution over H. Suppose agent 1 has points
{0.25, 0.5, 0.75} and agent 2 has points {0.3, 0.45, 0.55, 0.7}. When running binary search
collaboratively, each agent only performs one labeling query, as illustrated as a search tree in
Fig 1. On the other hand, if they were to run binary search independently, each agent would
need to query 2 labels. Thus, collaboration can effectively reduce the label complexity for
each agent by 1.

Bayesian Assumption. The reason why we have a Bayesian assumption regarding the
hypothesis class is that without it, querying all the labels to discover the target hypothesis
can be inevitable, even for a simple class of linear separators in R2 (see, e.g., Claim 1 in [21]).
It is worth noting that as in [21], we do not require the prior distribution to align with nature.
Instead, the prior distribution serves as a measure for average case analysis. Having a prior
belief in our model has the following clear assumption. If the algorithm reaches a point where
the remaining consistent hypotheses largely agree on the unlabeled data, it is reasonable to
stop and output one of these remaining hypotheses [28]. In a non-Bayesian setting, it does
not make sense to operate this way.

Game Theory Interpretation. The agreed-upon baseline algorithm induces a sort of (not
private) values for agents- each agent has its (negative) individual labeling complexity as value.
The collaboration protocol can be then interpreted as a mechanism: Initially, the collaboration
protocol (principal) is introduced to the agents, and each agent can understand it and have
confidence in the principal’s commitment to implementing it faithfully. Subsequently, the
agents either rely on their trust in the algorithm’s IR property or have the ability to verify it
autonomously. Lastly, the agents behave rationally by joining the collaboration only if it
is IR.

We remark that there is an interesting parallelism between our IR collaboration algorithms
and truthful mechanisms. It is well known that Vickrey–Clarke–Groves (VCG) mechanism
is a truthful mechanism that maximizes social welfare, but since it is hard to compute
and to approximate [15], the optimal outcome is replaced by a sub-optimal outcome of an
approximation algorithm, and the resulting mechanism is not necessarily truthful. The goal
is therefore relaxed to design an efficient approximation algorithm that returns a truthful
mechanism.

Contributions and Organization. We formalize the model in Section 2. In Section 3, we
demonstrate that any optimal algorithm is individually rational when the baseline is itself.
This implies that optimizing for optimality ensures individual rationality for all baseline
algorithms.
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However, computing (or even approximating) the optimal algorithm is known to be
NP-hard. To address this, we then show that the best available tractable approximation
algorithm, the greedy algorithm [34, 21], is not individually rational when the baseline
is itself. We demonstrate this by presenting an example where joining the collaboration
increases the labeling complexity of an agent from O(1) to Ω(n). In response, we introduce a
general approach that can transform any arbitrary baseline algorithm into an IR collaborative
algorithm. This conversion ensures that the total label complexity remains competitive with
running the baseline algorithm on the entire data set. Furthermore, in Section 4 we present
a scheme that converts any IR collaborative algorithm into a strict IR one, guaranteeing the
label complexity is strictly lower by joining the collaboration under mild assumptions. When
the baseline algorithm is both efficient and approximately optimal, our (strict) IR algorithms
efficiently achieve label complexity that is approximately optimal.

1.1 Related Work

The most related work is the recent work of [51], which studies individual rationality in
collaborative active learning in a Gaussian Process. While their notion of IR is similar to ours,
we focus on query complexity in binary classification. [27] studied incentive compatibility in
active learning, where there is a single agent that responds to a learner’s query strategically.
Our work is situated at the junction of Learning in the presence of strategic behavior and
active learning.

Learning in the presence of strategic behavior

encompasses a vast body of research, including [8, 52, 31]. We are particularly driven by
prior research in this area, and how to create learning algorithms that incentivize agents to
participate while maximizing the overall welfare. For example, incentivized exploration in
Multi Arm Bandits [35, 37, 38, 39, 20, 19, 5, 4, 6, 32, 33, 42, 7, 48, 47] or MDPs [46], where
the principal recommends actions to the agents (in order to explore different alternatives),
but the agents ultimately decide whether to follow the given recommendation. This raises the
issue of incentives in addition to the exploration-exploitation trade-off. In particular,[3] study
this problem in the context of fairness with a group-based regret notion. They show that
regret-optimal bandit algorithms can be unfair and design a nearly optimal fair algorithm.
Incentivizing agents to share their data has been studied by [50] in federated bandits.

Federated learning

has gained popularity as a method to foster collaboration among large populations of learning
agents among else for incentivizing participation and fairness purposes [11, 36, 24, 23, 26,
25, 49]. Our work also addresses fairness, in the sense that if a collaborative algorithm is
individually rational, it is fair for all the participating agents. Another related line of research
is kidney exchange [41, 1, 9, 10, 14, 22], where the goal is to find a maximum match in a
directed graph (representing transplant compatibilities between patient–donor pairs). In this
problem, incentives arise in the form of individual rationallity when different hospitals have
different subsets of patient–donor pairs, and will not join the collaboration if the number of
pairs matched by the collaboration is lower than the number of pairs matched they could
pair on their own.
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Active learning

There are two basic models in active learning– stream-based [28] (where the learner has to
determine immediately whether to query the label of the current instance or discard it), and
pool-based, which is the basis for our model. Pool-based active learning investigates scenarios
in which a learner is confronted with an array of unlabeled data points and the goal is to
recover a target function by querying the labels of these points (see [30] for a survey). Active
learning has been studied in the context of other societal desiderata such as fairness [44, 16],
and safety [17].

To our knowledge, no research has amalgamated these fields to explore strategic constraints
in the context of active learning. This is where our work makes a valuable contribution.

2 Preliminaries and Model

Throughout the work, we consider the binary classification problem. Let X denote the input
space, Y = {0, 1} denote the label space, and H ⊂ YX denote the hypothesis class.2 We
focus on the realizable setting in this work, namely, there exists a target hypothesis h∗ ∈ H
correctly labels every point. In the pool-based active learning setting [30], given a collected
unlabeled data set X = {x1, . . . , xm}, the learning goal is to recover the labels of X. Now
just suppose the pool of unlabeled data x1, . . . , xm is available. The possible labelings of
these points form a subset of {0, 1}m, called the effective hypothesis class, which is

Ĥ = {h(X)|h ∈ H} ,

where h(X) = (h(x1), . . . , h(xm)) is the labeling of X by h. Note that |Ĥ| ≤ 2m and
|Ĥ| = O(md) if the VC dimension of H is d.

In this work, we focus on the Bayesian setting [21], where the target hypothesis is chosen in
advance from some prior distribution π over Ĥ . Namely, without any additional information,
for any labeling h ∈ Ĥ, the probability that h is the correct labeling of X is π(h). Since we
can eliminate any hypothesis h with π(h) = 0 before starting to query for labels, we assume
w.l.o.g. that π(h) > 0 for all effective hypotheses in Ĥ.

We remark that assuming that the unlabeled data X is collected from some distribution
Dx, which is essentially a distribution D projected onto its input space, and that this
distribution Dx can be accurately classified by a hypothesis in H with VC dimension d,
standard generalization guarantees apply when the prior π over H is uniform (see [21] for
more details).

Standard active learning model. In the standard pool-based active learning setting, a
single agent owns the pool of unlabeled data X. The agent, who knows both Ĥ and π, can
query the labels of points in X, and her goal is to recover the labeling of X (or to find the
target hypothesis) by querying as few points as possible.

A standard query algorithm receives as input the prior distribution π and unlabeled data
set, X. In each iteration t = 1, 2, . . ., given the history up to time t,

Ft = ((x1, y1), . . . , (xt−1, yt−1)) ∈ (X × {0, 1})t−1,

2 Results in this work can be directly extended to any active learning problem that can be formalized
using a hypothesis class, e.g., multiclass classification.
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it selects a point xt to query and observes its label, yt. The algorithm stops when all the
labels of X are recovered. Alternatively, the algorithm stops when for every two hypotheses
h1, h2 ∈ Ĥ consistent with Ft (meaning that h1(xτ ) = h2(xτ ) = yτ for all τ = 1, . . . , t− 1),
h1(X) = h2(X).

Collaborative active learning model. In the collaborative setting, we assume there is more
than one agent. Formally, there are k agents and each agent i has an individual unlabeled
data set Xi such that they together compose the pool, i.e., ∪i∈[k]Xi = X, and each can query
points from their own set Xi (but cannot query points which are not in their set). The goal
of each agent is to recover the true labeling of their own set while performing as few queries
as possible. The collaboration protocol, also called principal, who knows {X1, . . . , Xk}, Ĥ

and π, decides which point should be queried at each iteration, and her goal is to recover all
the labels of X using as few queries as possible. We remark that since data points belong
to agents, queries of any point x ∈ X can only be performed by agents whose data set
contains x.

The query algorithm in the collaborative setting is similar to that in the standard setting,
except that the algorithm needs to coordinate among the agents and decide which agent
will query each point as some data points might belong to more than one agent. In this
setting, agents can decide to join the collaboration or learn individually at the beginning
of the learning. But if they join the collaboration, they commit to follow the instructions
of the query algorithm. Therefore, given a prior distribution π over Ĥ and a set of agents
who would join the collaboration, w.l.o.g. denoted as {X1, . . . , Xκ} for some κ ∈ [k], at time
t = 1, 2, . . ., a collaborative query algorithm asks agent it ∈ [κ] such that xt ∈ Xit to query
point xt, and observes its label, yt; the algorithm stops when the labels of points in ∪i∈[κ]Xi

are completely recovered.
It is straightforward to check that standard query algorithms are a special case of

collaborative query algorithms when there is a single agent, i.e., k = 1. Additionally, a
standard algorithm can also be run over multiple agents by considering the union of their
data ∪i∈[κ]Xi as a single agent. Hence, we omit “standard” or “collaborative” in a query
algorithm when it is clear from the context how many agents are involved.

For any collaborative algorithm A, given an input π and any collection of unlabeled
data sets X1, . . . , Xκ ⊆ X of size κ ≥ 1, we denote by Q(A, π, {X1, . . . , Xκ}, h) the label
complexity (number of label queries) of A(π, {X1, . . . , Xκ}) when the target hypothesis is h.
For randomized algorithms, the label complexity is taken expectation over the randomness
of the algorithm. We define the label complexity as follows.

▶ Definition 2 (Label complexity). Given any fixed unlabeled pool and effective hypothesis
class (X, Ĥ), for any algorithm A, prior distribution π over Ĥ and any collection of unlabeled
data sets X1, . . . , Xκ ⊆ X of size κ ≥ 1, the label complexity of A with (π, {X1, . . . , Xκ}) as
input, denoted by Q(A, π, {X1, . . . , Xκ}), is the expected number of label queries when h is
drawn from the prior π, i.e.,

Q(A, π, {X1, . . . , Xκ}) = Eh∼π [Q(A, h, {X1, . . . , Xκ})] .

For each agent i ∈ [κ] in the collaboration, we let Qi(A, π, {X1, . . . , Xκ}) denote the expected
number of queries performed by agent i.

For any (π, {X1, . . . , Xκ}), let Q∗(π, {X1, . . . , Xκ}) = minA Q(A, π, {X1, . . . , Xκ}) de-
note the optimal query complexity. An algorithm A is said to be optimal if
Q(A, π, {X1, . . . , Xκ}) = Q∗(π, {X1, . . . , Xκ}) for any prior distribution π and X1, . . . , Xκ.
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Rational agents. We assume that agents have access to a baseline algorithm and are able
to run it on their own local data. Agents can decide to join the collaboration or run the
baseline individually at the beginning of the learning. If they join the collaboration, they
commit to follow the instructions of the query algorithm. Each agent is incentivized to join
the collaboration if she could perform fewer label queries (assuming that all others join the
collaboration) by pulling out and running the baseline A individually. Formally,

▶ Definition 3 (Individual rationality). In a collaborative learning problem with prior distribu-
tion π and k agents {X1, . . . , Xk}, given a baseline algorithm A, a collaborative algorithm
A′ is individually rational (IR) if

Qi(A′, π, {X1, . . . , Xk}) ≤ Q(A, π, {Xi}), ∀i ∈ [k] . (1)

We say A′ is strictly individually rational (henceforth, SIR) if

Qi(A′, π, {X1, . . . , Xk}) < Q(A, π, {Xi}), ∀i ∈ [k] .

We remark that in addition to their own sets, each agent knows all the unlabeled data sets,
{X1, . . . , Xk}, and the prior distribution π, otherwise, they will not be able to compute
Qi(A′, π, {X1, . . . , Xk}). The principal also has access to {X1, . . . , Xk} and π, and can
therefore make sure these constraints are satisfied.

It is worth noting that our model can also accommodate different individual baseline
algorithms. We briefly discuss this in Section 5.

An alternative interpretation of the problem in a game theoretic framework is as follows:
each agent has a strategy space of two strategies, joining the collaboration and not. The
utility of an agent that performs Q queries is −Q. If the algorithm A is IR, then the case of
all agents joining the collaboration is a Nash equilibrium (since switching to not joining will
not increase their utility). If A is SIR, then all agents joining the collaboration is a strict
Nash equilibrium.

3 Construction of IR Collaborative Algorithms

When agents are limited to a poor baseline algorithm, e.g., randomly selecting points to query,
the principal can simply incentivize agents to collaborate by using a superior algorithm that
requires fewer labeling efforts. We therefore start by considering optimal baseline algorithms
in Section 3.1. If we are able to find an IR collaborative algorithm for an optimal baseline
algorithm, OPT, then it must be IR w.r.t. all baseline algorithms. We demonstrate that,
surprisingly, the optimal algorithm OPT is IR given that the baseline algorithm is OPT itself.
Since computing an optimal algorithm is known to be NP-hard, we continue by considering
the best-known approximation algorithm, the greedy algorithm. In Section 3.2, we show
that given the greedy algorithm as baseline, the collaboration protocol that runs the greedy
algorithm is not IR. Then in Section 3.3, we provide a general scheme that transforms any
baseline algorithm into an IR algorithm while maintaining a comparable label complexity.

3.1 Optimality Implies Universal Individual Rationality
Incorporating individual rationality as an additional constraint to optimality usually requires
additional effort in certain settings, e.g., in online learning by [13]. However, in our specific
setting, optimality does not contradict the individual rationality property. That is, an
optimal algorithm will not increase any agent’s label complexity to benefit other agents.
In fact, optimizing for optimality implies achieving individual rationality for all baseline
algorithms.
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▶ Theorem 4. For any optimal collaborative algorithm OPT, we have

Qi(OPT, π, {X1, . . . , Xk}) ≤ Q(OPT, π, {Xi}) = Q∗(π, {Xi}), ∀i ∈ [k].

Therefore, OPT is IR w.r.t. any baseline algorithm.

We prove the theorem by contradiction. If OPT is not IR for the baseline being OPT,
then there exists an agent i such that Q(OPT, π, {Xi}) < Qi(OPT, π, {X1, . . . , Xk}). In this
case, we can construct a new algorithm by first running OPT over {Xi} (to recover the labels
of Xi) and then running OPT(π, {X1, . . . , Xk}}) and replacing agent i’s queries with the
recovered the labels of Xi. This new algorithm incurs a strictly smaller label complexity than
OPT, which is a contradiction to the optimality of OPT. The formal proof is deferred to
Appendix A. Unfortunately, computing an optimal query algorithm is not just NP-hard, but
also hard to approximate within a factor of Ω(log(|Ĥ|)) [29, 18]. One of the most popular
heuristics to find an approximated solution is greedy.

3.2 The Greedy Algorithm is Not Individually Rational
For standard Bayesian active learning, [34, 21] presented a simple greedy algorithm called
generalized binary search (GBS), which chooses a point leading to the most balanced partition
of the set of hypotheses consistent with the history. More specifically, at time step t, given
the history Ft = ((x1, i1, y1), . . . , (xt−1, it−1, yt−1)), let VS(Ft) = {h ∈ Ĥ|h(xτ ) = yτ , ∀τ ∈
[t− 1]} denote the set of hypotheses consistent with the history Ft (often called the version
space associated with Ft). Given Ft and (π, {X1, . . . , Xκ}) as input, GBS will query

xt = arg max
x∈∪i∈[κ]Xi

min(π({h ∈ VS(Ft)|h(x) = 1}), π({h ∈ VS(Ft)|h(x) = 0}))

at time t. When referring to GBS as a collaborative algorithm, we complement it with an
arbitrary tie-breaking rule for selecting it, as GBS itself does not specify how to choose which
agent to query. GBS is guaranteed to achieve competitive label complexity with the optimal
label complexity.

▶ Lemma 5 (Optimality of GBS, Theorem 3 of [21]). For any prior distribution π over Ĥ

and k agents {X1, . . . , Xk}, the label complexity of GBS satisfies that

Q(GBS, π, {X1, . . . , Xk}) ≤ 4Q∗(π, {X1, . . . , Xk}) ln( 1
min

h∈Ĥ
π(h) ) .

The greedy algorithm GBS not only achieves approximately optimal label complexity, but it
is also computationally efficient, with a running time of O(m2|Ĥ|). As GBS is the best-known
efficient approximation algorithm, it is natural to think that agents would adopt GBS as a
baseline.

As we have shown that the optimal algorithm is IR w.r.t. itself, the next natural question
is: Is GBS (as collaboration protocol) individually rational w.r.t. GBS itself?

We answer this question negatively, even in the case of two agents. Even worse, we
present an example in which an agent’s label complexity is Ω(n) when participating in the
collaboration, but only O(1) when not participating.

▶ Theorem 6. For the algorithm of GBS, there exists an instance of (X1, X2, π) with |X1| = n,
in which agent 1 incurs a label complexity of Q1(GBS, π, {X1, X2}) = Ω(n) when participating
the collaboration and can achieve Q(GBS, π, {X1}) = O(1) when not participating.
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Intuitively, at each time step, GBS only searches for an xt which leads to the most
balanced partition of the version space, which does not necessarily lead to the optimal point
to query. Given additional label information from the other agent, GBS possibly choose a
worse point to query. In addition, the label complexity of GBS is upper bounded by the
optimal label complexity multiplied by a logarithmic factor. It is possible that the agent
achieves a smaller multiplicative factor by running GBS individually and a larger factor in
the collaboration. To prove the theorem, we construct an instance in which there exists
a hypothesis with a prior probability of 1/4, such that if GBS runs on {X1, X2} and this
hypothesis is the target, GBS will query almost all the points in X1 (in a particular order)
before returning this hypothesis. We show this part by induction. Additionally, we compute
the query tree by running GBS solely on X1 and use it to show that in this case, GBS has
an expected query complexity of O(1). The full construction of the instance and the proof of
Theorem 6 is deferred to Appendix B.

3.3 A Scheme of Converting Algorithms to IR Algorithms
Given that the greedy algorithm has been proven to be not individually rational w.r.t. itself,
we raise the following question: Is it possible to develop a general scheme that can generate
an IR algorithm given any baseline algorithm? In this section, we propose such a scheme that
addresses this question. Moreover, given a baseline algorithm A, the resulting IR algorithm
can achieve a label complexity comparable to implementing the baseline algorithm over all
agents, i.e., A(π, {X1, . . . , Xk}). It is important to note that we aim for the label complexity
to be comparable to Q(A, π, {X1, . . . , Xk}) rather than

∑
i∈[k] Q(A, π, Xi), as the latter

holds true by individual rationality. Given an efficient approximately optimal algorithm
as baseline (e.g., GBS), our scheme can provide an algorithm that simultaneously exhibits
individual rationality, efficiency, and approximately optimal label complexity.

For any baseline algorithm A, we define a new algorithm B2IR(A), which runs A as
a subroutine. Basically, we first calculate the label complexity of agent i both when she
is in collaboration with all the other agents, i.e., Qi(A, π, {X1, . . . , Xk}), and when she is
not in collaboration, i.e., Q(A, π, {Xi}), for all i ∈ [k]. By doing so, we can distinguish
which agents can benefit from collaboration when running A and which cannot. We denote
the set of agents who cannot benefit from collaboration with all others when running A
as S = {i|Qi(A, π, {X1, . . . , Xk}) > Q(A, π, {Xi})}. For those who do not benefit from the
collaboration, we just run A on their own data. For those who benefit from collaborating
with the others together, we run A over all agents [k]– Only whenever A(π, {X1, . . . , Xk})
asks to query the label of a point belonging to some i ∈ S, since we already recovered the
labels of Xi, we just feed A(π, {X1, . . . , Xk}) with this label without actually asking agent i

to query. The detailed algorithm is described in Algorithm 1.

▶ Theorem 7. For any baseline algorithm A, the algorithm B2IR(A) satisfies the following
properties:

IR property: B2IR(A) is individually rational w.r.t. the baseline algorithm A.
Efficiency: B2IR(A) runs in O(kTA,Q + mTA,0) time, where TA,0 is the time of
computing (it, xt) at each time t for A and TA,Q is the maximum time of comput-
ing Qi(A, π, {X1, . . . , Xκ}) for an agent i, unlabeled data {X1, . . . , Xκ}, and algorithm
A.
Label complexity: Q(B2IR(A), π, {X1, . . . , Xk}) ≤ Q(A, π, {X1, . . . , Xk}).
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Algorithm 1 B2IR.

1: input: A query algorithm A, set {X1, . . . , Xk} and prior π over Ĥ

2: For each i ∈ [k], calculate Qi(A, π, {X1, . . . , Xk}) and Q(A, π, {Xi}).
3: Let S ← {i|Qi(A, π, {X1, . . . , Xk}) > Q(A, π, {Xi})} and XS ← ∪i∈SXi // the agents

who do not benefit from collaboration
4: for each i ∈ S do Yi ← Run A over {Xi} // recover the labels for agent i

5: for t = 1, . . . do
6: (it, xt)← the querying agent and the query point from A(π, {X1, . . . , Xk})
7: if it ∈ S then Feed the label of xt from Yit// we already recovered the labels of XS

8: else Ask agent it to query the label of xt

9: end for

The proof follows the algorithm description immediately. Note that when the baseline is
GBS, we have TGBS,0 = O(m). We can compute Qi(A, π, {X1, . . . , Xκ}) by simulating over
all effective hypotheses h ∈ Ĥ. For each h, we will query at most m rounds. Therefore, we
have TGBS,Q = O(m2|Ĥ|) and we can run B2IR(GBS) in O(km2|Ĥ|) time. Using GBS as
the baseline, we derive the following corollary.

▶ Corollary 8. Given GBS as the baseline, B2IR(GBS) is IR; runs in O(km2|Ĥ|) time; and
satisfies that Q(B2IR(GBS), π, {X1, . . . , Xk}) ≤ 4Q∗(π, {X1, . . . , Xk}) ln( 1

min
h∈Ĥ

π(h) ).

4 Converting Algorithms to SIR Algorithms

In Section 3, we provided a generic scheme for constructing an IR algorithm given any baseline
algorithm. In this section, we focus on constructing SIR algorithms given IR algorithms.
Since strict individual rationality requires that agents strictly benefit from collaboration, this
is impossible without further assumptions. For example, consider a set of agents who only
have one single independent point in their own sets and a prior distribution that is uniform
over all labelings. In this case, each agent, regardless of whether she collaborates or not, has
a label complexity of 1 and cannot strictly benefit from collaboration as the other agents
cannot obtain information about her data.

Now, let us consider a notion weaker than SIR, called i-partially SIR, in which only agent
i strictly benefits from the collaboration, and any other agent j ≠ i does not get worse by
joining the collaboration. More formally,

▶ Definition 9 (Partially SIR algorithms). For any baseline algorithm A, for all i ∈ [k], an
algorithm Oi is i-partially SIR, if Oi satisfies that

Qi(Oi, π, {X1, . . . , Xk}) < Q(A, π, {Xi}) ,

and

Qj(Oi, π, {X1, . . . , Xk}) ≤ Q(A, π, {Xj}), ∀j ∈ [k] \ {i} .

If we are given an i-partially SIR algorithm Oi for each i, then we can construct a SIR
algorithm by running a mixture of an IR algorithm A′ (e.g., B2IR(A) in Algorithm 1) and
{Oi|i ∈ [k]} with the label complexity a little (arbitrarily small) higher than that of A′.

▶ Lemma 10. For any baseline algorithm A, given an IR algorithm A′ and partially SIR
algorithms {Oi|i ∈ [k]}, for any ε > 0, let A′′

ε be the algorithm of running A′ with probability
(1− ε

n ) and running Oi with probability ε
kn . Then A′′

ε satisfies the following properties.
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SIR property: A′′
ε is SIR with respect to the baseline algorithm A.

Label complexity: Q(A′′
ε , π, {X1, . . . , Xk}) ≤ Q(A′, π, {X1, . . . , Xk}) + ε.

The proof is straightforward from the definition, and we include it in Appendix C for
completeness. Since a SIR algorithm is also i-partially SIR for all i ∈ [k], constructing a
SIR algorithm is equivalent to constructing a set of partially SIR algorithms {Oi|i ∈ [k]}.
Therefore, the problem of constructing a SIR algorithm is reduced to constructing partially
SIR algorithms {Oi|i ∈ [k]}.

For the remainder of this section, we will present the SIR results for an optimal baseline
algorithm in Section 4.1, where we propose a sufficient and necessary assumption for the
existence of SIR algorithms and then provide a SIR algorithm. This algorithm is SIR w.r.t.
any baseline algorithm but again, computationally inefficient. In Section 4.2, we provide a
general scheme that transforms any baseline algorithm into a SIR algorithm.

4.1 A Universal SIR Algorithm for Any Baseline Algorithm
Constructing a universal SIR algorithm w.r.t. any baseline is equivalent to constructing a
SIR algorithm for an optimal baseline. For the existence of SIR algorithms given any optimal
baseline algorithm, we propose the following assumption, which is sufficient and necessary.
We include the proof for the necessity of this assumption in Appendix D. The sufficiency of
this assumption will be verified immediately after we construct a SIR algorithm.

▶ Assumption 1. We assume that for any i ∈ [k], the optimal label complexity of agent i

given the information regarding the labels of all other agents is strictly smaller than that
without this additional information, i.e., Q∗(π, {Xi})− Eh∼π [Q∗(πh,−i, {Xi})] > 0 , where
πh,−i is the posterior distribution of π after observing {(x, h(x))|x ∈ ∪j ̸=iXj}.

According to Lemma 10, we can construct a SIR algorithm by constructing a set of
partially SIR algorithms {Oi|i ∈ [k]}.

Let Oi be the algorithm of running an optimal algorithm OPT over (π, {Xj |j ̸= i}) first,
then given the query-label history of {(x, h(x))|x ∈ ∪j ̸=iXj} for some h ∈ Ĥ, run OPT over
(πh,−i, {Xi}). Then it immediately follows that Oi is i-partially SIR from Assumption 1. Let
OPT′′

ε denote the algorithm of of running OPT with probability (1 − ε
n ) and running Oi

with probability ε
kn for all i ∈ [k]. By Lemma 10, we have

▶ Corollary 11. Under Assumption 1, for any ε > 0, OPT′′
ε is SIR w.r.t. OPT and satisfies

Q(OPT′′
ε , π, {X1, . . . , Xk}) ≤ Q∗(π, {X1, . . . , Xk}) + ε.

In addition, OPT′′
ε is SIR w.r.t. any baseline algorithm A as

Qi(OPT′′
ε , π, {X1, . . . , Xk}) < Q∗(π, {Xi}) ≤ Q(A, π, {Xi}).

4.2 A Scheme of Converting Algorithms to SIR Algorithms
As mentioned before, computing an optimal algorithm is NP-hard. Assumption 1 assumes
that collaboration can strictly benefit agents when the collaboration protocol can compute
the optimal algorithm given πh,−i. Hence, the assumption does not take the computational
issue into consideration and thus might not be enough for the existence of an efficient SIR
algorithm w.r.t. an efficient approximation algorithm like GBS.

Instead, we propose prior-independent assumption that is sufficient for the existence of
efficient SIR algorithms when we are given an efficient baseline and an efficient IR algorithm
w.r.t. the baseline. Basically, we assume that, there exists an effective hypothesis h ∈ Ĥ,
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given the information that all other agents are labeled by h, the number of labelings of Xi

consistent with the label information is strictly smaller than the total number of labelings of
Xi by Ĥ. Formally, for any i ∈ [k], let X−i = ∪j ̸=iXj denote the union of all agents’ data
except agent i. Let H(Xi) = {h′(Xi)|h′ ∈ Ĥ} denote the effective hypothesis class of Xi,
i.e., all labelings of Xi. For any h ∈ Ĥ, let H(X|h) = {h′(Xi)|h′(X−i) = h(X−i), h′ ∈ Ĥ}
denote the subset which are consistent with all other agents being labeled by h.

▶ Assumption 2. For all i ∈ [k], there exists an h ∈ Ĥ s.t. the number of labelings of Xi

consistent with (X−i, h(X−i)) is strictly smaller than the number of labelings by Ĥ, i.e.,
|H(Xi|h)| < |H(Xi)|.

Intuitively, Assumption 2 means that for every agent i, there exists an hypothesis h such
that when h∗ = h, the cardinality of the set of hypotheses consistent with (X−i, h(X−i)) is
strictly smaller than |Ĥ|. We will show that this assumption is sufficient for the existence of
algorithms satisfying SIR property. Without it, it is unclear if there exist SIR algorithms.
The assumption can be easily verified by iterating each h ∈ Ĥ (this is polynomial in |Ĥ| and
m).

Notice that each deterministic query algorithm A can be represented as a binary tree,
TA whose internal nodes at level t are queries (“what is the xt’s label?”), and whose leaves
are labelings as illustrated in Figure 1. Under Assumption 2, we can prune the query tree
of A(π, {Xi}) by removing all subtrees whose leaves are all in H(Xi) \ H(Xi|h). We do
not need to construct this pruned tree when we implement the algorithm. At time t, we
just need to generate an xt from A(π, {Xi}), then check if this node should be pruned by
checking if all the hypotheses H(Xi|h) agree on the label of xt. If this is true, it means
that we have already recovered the label of xt and thus we just need to feed the label to
the algorithm without actually querying xt again. Then we can construct a i-partially SIR
algorithm Oi by running B2IR(A) over (π, {Xj |j ̸= i}) to recover the labeling of X−i first,
then running pruned version of A(π, {Xi}). Note that the implementation also works when
A is randomized.

Consider Example 1, where the hypothesis class H = {x ≥ α|α = 0.2, 0.4, 0.5, 0.6, 0.8}
with a uniform prior, agent 1 with points X1 = {0.25, 0.5, 0.75} and agent 2 with points
X2 = {0.3, 0.45, 0.55, 0.7}. When agent 1 runs a binary search, the query tree has 0.5 as a
root, then if 0.25 if h∗(0.5) = 1, and 0.75 otherwise. Now, algorithm O1 runs a binary search
on X2 and obtains all the labels of the points in X2. The hypothesis h = 1(x ≥ 0.5) holds
|H(X1|h)| = 1 < |Ĥ(X1)| = 4. When h is the labeling function, 0.3 and 0.45 are labeled as
negative, and 0.55 and 0.7 are labeled as positive. Then, O1 will only need agent 1 to query
0.5 as the labels of 0.25 and 0.75 can be inferred and they are pruned in the query tree.

▶ Lemma 12. Under Assumption 2, the algorithm Oi constructed above is i-partially SIR
and runs in time O(TB2IR(A) + m(|Ĥ|+ TA,0)) time, where TB2IR(A) is the running time of
B2IR(A) and TA,0 is the time of computing (it, xt) at each time t for A.

The proof of Lemma 12 is deferred to Appendix E.
We can then construct an algorithm A′′

ε by running B2IR(A) with probability with
probability (1− ε

n ) and running Oi constructed in the above way with probability ε
kn for all

i ∈ [k]. By combining Lemmas 10 and 12, we derive the following theorem. Then, combining
it with Corollary 8, we derive a SIR algorithm for GBS as baseline GBS.

▶ Theorem 13. Under Assumption 2, for any baseline algorithm A, for any ε > 0, A′′
ε is

SIR and satisfies

Q(A′′
ε , π, {X1, . . . , Xk}) ≤ Q(B2IR(A), π, {X1, . . . , Xk}) + ε.

In addition, Algorithm A′′
ε runs in O(TB2IR(A) + m(|Ĥ|+ TA,0)) time.
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▶ Corollary 14. Given GBS as the baseline, Algorithm GBS′′
ε is SIR; runs in O(km2|Ĥ|)

time; and satisfies that

Q(GBS′′
ε , π, {X1, . . . , Xk}) ≤ 4Q∗(π, {X1, . . . , Xk}) ln

(
1

minh∈H π(h)

)
+ ε.

5 Discussion

In this paper, we have initiated the study of collaboration in active learning in the presence
of incentivized agents. We first show that an optimal collaborative algorithm is IR w.r.t. any
baseline algorithm while approximate algorithms are not. Then we provide meta-algorithms
capable of producing IR/SIR algorithms given any baseline algorithm as input.

Our model and algorithms can also allow different agents to have different baseline
algorithms – Whenever the principal plans to run an algorithm on a union of datasets, she
can simply check which baseline algorithm has the lowest expected query complexity on this
union, and run it. When she needs to run an algorithm on a dataset of an individual, she
can simply run their baseline. This way the (S)IR is preserved.

There are a few problems we leave open. First, relaxing the assumption that each
agent i has full knowledge of X−i (e.g., due to privacy concerns). Second, relaxing the
assumption that agents provide reliable labels. Third, deriving results in non-realizable
settings. Realizability is a standard assumption in learning theory at large and particularly
within active learning as highlighted in the classical machine learning theory textbook by [43]
and the active learning theory survey by [30]. Moreover, realizability has also been adopted
in the collaborative learning setting (e.g., [12]). The reason is that without realizability,
additional complications might arise in collaboration such as why collaboration would yield
benefits. In general, we believe that additional assumptions would be required to relax this
assumption. Forth, towards a more game theory orientation, it would be interesting to design
collaborative algorithms in a setting where agents can form coalitions. Finally, finding a
necessary and sufficient assumption(s) for the existence of efficient SIR algorithms will be an
interesting direction (and we have found a sufficient one in this work).
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since we already know the labeling of Xi, we can just feed OPT(π, {X1, . . . , Xk}) with these
labels without actually asking agent i to query them.

Thus, the label complexity of A′ is

Q(A′, π, {X1, . . . , Xk}) = Q(OPT, π, {Xi}) +
∑

j:j ̸=i

Qj(OPT, π, {X1, . . . , Xk})

< Qi(OPT, π, {X1, . . . , Xk}) +
∑

j:j ̸=i

Qj(OPT, π, {X1, . . . , Xk})

= Q(OPT, π, {X1, . . . , Xk}) = Q∗(π, {X1, . . . , Xk}) ,

where the first inequality holds due to that OPT is not IR and the last equality holds since
OPT is optimal. Since Q∗(π, {X1, . . . , Xk}) ≤ Q(A′, π, {X1, . . . , Xk}) by definition, there is
a contradiction. ◀

B Proof of Theorem 6

Proof. The construction is inspired by [21]. Consider k = 2 and let the unlabeled data set
of agent 1 be

X1 = {(0, 1, 0), (0, 2, 0), (0, 0, 1), (0, 0, 2), . . . , (0, 0, n)}

for some n ∈ N+.
Let the unlabeled data set of agent 2 be

X2 = {(1, 0, 0)} .

Let the unlabeled pool X = X1 ∪ X2. Let hi,j,l denote the hypothesis which labels
(i, 0, 0), (0, j, 0), (0, 0, l) as 1 and the rest as 0.

Let the hypothesis class be H = {hi,j,l|i ∈ {0, 1}, j ∈ [2], l ∈ [n]}.
Let the prior distribution π0 = π be defined as follows:

π(h0,0,0) = 1
4

π(h0,j,l) = 1
4·3l for j = 1, 2, l = 1, . . . , n− 1

π(h0,j,n) = 1
8·3n−1 for j = 1, 2

π(h1,1,l) = 1
3l for l = 1, . . . , n− 1

π(h1,1,n) = 1
2·3n−1 .

Now we show that the label complexity of agent 1 in the collaboration is
Q1(GBS, π, {X1, X2}) = Ω(n). While the label complexity of running GBS itself is
Q(GBS, π, {X1}) = O(1).

Label complexity of agent 1 in the collaboration

Let VS denote the version space. And for any point x, let VS+
x = {h ∈ VS|h(x) = 1} denote

the subset of the version space which labels x by 1. Similarly, let VS−
x = {h ∈ VS|h(x) = 0}.

Now let us consider the length of the path in the query tree when the target hypothesis
is h0,0,0.

A-priori (before starting to query), for point (1, 0, 0), we have

π(VS+
(1,0,0)) =

n∑
l=1

π(h1,1,l) = 1
3 + 1

32 + . . . + 1
3n−1 + 1

2 · 3n−1 = 1
2 .

FORC 2024



2:18 Incentivized Collaboration in Active Learning

For point (0, 1, 0), we have

π(VS+
(0,1,0)) =

n∑
l=1

(π(h0,1,l) + π(h1,1,l)) =
n∑

l=1
π(h0,1,l) + π(VS+

(1,0,0)) >
1
2 .

For point (0, 2, 0), we have

π(VS+
(0,2,0)) =

n∑
l=1

π(h0,2,l) = 1
4 · 3 + 1

4 · 32 + . . . + 1
4 · 3n−1 + 1

8 · 3n−1 = 1
8 .

For other points (0, 0, l) for l ∈ [n− 1], we have π(VS+
(0,0,l)) = 1

4·3l + 1
3l = 5

4·3l < 1
2 and for

(0, 0, n), we have π(VS+
(0,0,n)) < π(VS+

(0,0,n−1)) < 1
2 .

Therefore, the algorithm GBS(π, {X1, X2}) will query (1, 0, 0) at time 1. Suppose the
label of (1, 0, 0) is 0 since we consider the path corresponding to h0,0,0 as the target hypothesis.

Now we show that GBS(π, {X1, X2}) will query points (0, 0, 1), (0, 0, 2), . . . , (0, 0, n) se-
quentially by induction.

At time 1, the version space is VS = {h0,0,0} ∪ {hi,j,l ∈ Ĥ|i = 0}. We list π(h0,j,l) for
j ∈ {1, 2} and l ∈ [n] in Table 1 for illustration.

Table 1 Table of π(h0,j,l) for j ∈ {1, 2} and l ∈ [n].

(0, 1, 0) (0, 2, 0)
(0, 0, 1) 1

4·3
1

4·3

(0, 0, 2) 1
4·32

1
4·32

· · · · · · · · ·
(0, 0, n) 1

8·3n−1
1

8·3n−1

Then we can compute that

π(S+
(0,1,0)) = π(S+

(0,2,0)) = 1
4 · 3 + 1

4 · 32 + . . . + 1
4 · 3n−1 + 1

8 · 3n−1 = 1
8 ,

π(S+
(0,0,1)) = 1

6 > π(S+
(0,0,l)) ,

π(S+
(0,0,l)) ≤ π(S+

(0,0,2)) = 1
18 ,

for all l ≥ 2.
Thus, the algorithm GBS(π, {X1, X2}) will choose (0, 0, 1) at time 2.
Suppose that at time t = 2, 3, . . . , l, GBS(π, {X1, X2}) has picked (0, 0, 1), . . . , (0, 0, l− 1)

and all are labeled 0.
Now we show that GBS(π, {X1, X2}) will pick (0, 0, l) at time t = l + 1. The version

space at the beginning of time l + 1 is VS = {h0,0,0} ∪ {hi,j,p ∈ Ĥ|p ≥ l}. We can compute
that

π(S+
(0,0,l)) = 1

2 · 3l
> π(S+

(0,0,p))

for all p > l, and that

π(S+
(0,1,0)) = π(S+

(0,2,0)) = 1
4 · 3l

+ 1
4 · 3l+1 + . . . + 1

4 · 3n−1 + 1
8 · 3n−1 = 1

8 · 3l−1 .

Hence, GBS(π, {X1, X2}) will pick (0, 0, l).
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Therefore, we proved that when the target hypothesis is h0,0,0, GBS(π, {X1, X2}) will
query
(1, 0, 0), (0, 0, 1), (0, 0, 2), . . . , (0, 0, n) sequentially.

Thus, we have that Q1(GBS, π, {X1, X2}, h0,0,0) = n + 1, and Q1(GBS, π, {X1, X2}) ≥
n+1

4 as π(h0,0,0) = 1
4 .

Label complexity of agent 1 when she runs the (GBS) baseline individually

Now we show that Q(GBS, π, {X1}) = O(1). Since X1 does not contain (1, 0, 0), both h0,j,l

and h1,j,l label X1 identically. Every effective hypothesis over X1 can be written as h∗,j,l

with π(h∗,j,l) = π(h0,j,l) + π(h1,j,l), which is listed in Table 2.

Table 2 Table of π(h∗,j,l) for j ∈ {1, 2} and l ∈ [n].

(0, 1, 0) (0, 2, 0)
(0, 0, 1) 1

4·3 + 1
3

1
4·3

(0, 0, 2) 1
4·32 + 1

32
1

4·32

· · · · · · · · ·
(0, 0, n) 1

8·3n−1 + 1
2·3n−1

1
8·3n−1

Notice that if we know that the label of (0, 0, l) is positive for some l, then the version space
has at most 2 effective hypotheses, h∗,1,l and h∗,2,l. In this case, the algorithm needs at most
2 more queries.

At time t = 1, we have

π(S+
(0,0,1)) = 1

4 · 3 + 1
3 + 1

4 · 3 = 1
2 ,

π(S+
(0,0,l)) < π(S+

(0,0,1)) , ∀l ≥ 2 ,

π(S+
(0,2,0)) = 1

4 · 3 + 1
4 · 32 + . . . + 1

4 · 3n−1 + 1
8 · 3n−1 = 1

8 ,

π(S+
(0,1,0)) = π(S+

(0,2,0)) · 5 = 5
8 .

Therefore, GBS(π, {X1}) will query (0, 0, 1) at t = 1.
We complete the proof by exhaustion. If (0, 0, 1) is labeled as 1, then the algorithm needs

at most two more queries as aforementioned.
If (0, 0, 1) is labeled as 0, then h∗,1,1 and h∗,2,1 will be removed from the version space

and GBS(π, {X1}) will query (0, 1, 0) at t = 2 then.
If the label is 1, the version space is reduced to {h∗,1,l|l = 2, . . . , n} and GBS(π, {X1})

will query (0, 0, 2), (0, 0, 3), . . . sequentially until receiving a positive label.
If the label of (0, 1, 0) is 0, GBS(π, {X1}) will query (0, 2, 0) at time t = 3. If the label of

(0, 2, 0) is 1, then it is similar to the case of (0, 1, 0) being labeled 1 and the algorithm will
query (0, 0, 2), (0, 0, 3), . . . sequentially.

If the label of (0, 2, 0) is 0, we know the target hypothesis is h0,0,0 and we are done.
Hence we have Q(GBS, π, {X1}) ≤

∑n
l=1(π(h∗,1,l) + π(h∗,2,l)) · (3 + l) + π(h0,0,0) · 3 =∑n−1

l=1
1

2·3l−1 · (3 + l) + 1
4 · 3 = O(1). ◀
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C Proof of Lemma 10

Proof. SIR property: Since A′ and {Oi|i ∈ [k]} are IR and agent i can strictly benefit
from Oi, we have Qi(A′′

ε , π, {X1, . . . , Xk}) < Q(A, π, {Xi}) for all i ∈ [k].
Label complexity: The label complexity of A′′

ε is

Q(A′′
ε , π, {X1, . . . , Xk}) =(1 − ε

n
)Q(A′, π, {X1, . . . , Xk}) + ε

kn

k∑
i=1

Q(Oi, π, {X1, . . . , Xk})

≤(1 − ε

n
)Q(A′, π, {X1, . . . , Xk}) + ε .

Then we are done. ◀

D Proof of necessity of Assumption 1

Proof of necessity. Suppose that there exists an SIR algorithm A′′ when the baseline
algorithm is optimal. We therefore have Qi(A′′, π, {X1, . . . , Xk}) < Q∗(π, {Xi}) by definition.
We claim that A′′ must satisfy Qi(A′′, π, {X1, . . . , Xk}) ≥ Eh∼π [Q∗(πh,−i, {Xi})]. This is
because we can construct another algorithm B by running A′′ over all other agents except
agent i, i.e., running A′′ over (π, X−i) with X−i = {Xj |j ̸= i} first to recover the labels of all
other agents X−i. Then, B simulates A′′ over (π, {X1, . . . , Xk}) without actually querying
any point in X−i (similarly to Algorithm 1). In this case, the label complexities of agent i are
identical for algorithms B and A′′, i.e., Qi(B, π, {X1, . . . , Xk}) = Qi(A′′, π, {X1, . . . , Xk}).
Since Q∗(πh,−i, {Xi}) is the optimal label complexity of agent i given the label information of
X−i, we have Qi(B, π, {X1, . . . , Xk}) ≥ Q∗(πh,−i, {Xi}). Therefore, we have Q∗(π, {Xi}) >

Qi(A′′, π, {X1, . . . , Xk}) ≥ Q∗(πh,−i, {Xi}). ◀

E Proof of Lemma 12

Proof. First, note that Oi is IR as B2IR(A) is IR, and pruning the query tree does not
increase label complexity. For any i ∈ [k], suppose that there exists an hypothesis h ∈ Ĥ s.t.
|H(Xi|h)| < |H(Xi)|. Then in the query tree of A(π, {Xi}), either all leaves are inconsistent
with h(X−i) or there exists one internal node v who has exactly one subtree with all leaves
inconsistent with h(X−i). This node v as well as the corresponding subtree are pruned
in Oi and thus the leaves in the other subtree rooted at v have their depth reduced by
at least 1. Now, there exists an hypothesis h′′ ∈ Ĥ such that h′′(Xi) ∈ H(Xi|h) and
h′′(Xi) is in the other subtree. Since h′′(X−i) = h(X−i), when the underlying hypothesis
is h′′, the pruned tree given h′′(X−i) is the same as that given h(X−i). Hence, we have
Qi(Oi, π, {X1, . . . , Xk}, h′′) ≤ Qi(A, π, {X1, . . . , Xk}, h′′)− 1.

Then we have

Qi(Oi, π, {X1, . . . , Xk}) = Eh∼π [Qi(Oi, π, {X1, . . . , Xk}, h)]
=π(h′′)Qi(Oi, π, {X1, . . . , Xk}, h′′) + (1 − π(h′′))Eh∼π|h ̸=h′′ [Qi(Oi, π, {X1, . . . , Xk}, h)]
≤π(h′′)(Qi(A, π, {X1, . . . , Xk}, h′′) − 1) + (1 − π(h′′))Eh∼π|h ̸=h′′ [Qi(A, π, {X1, . . . , Xk}, h)]
<Qi(A, π, {X1, . . . , Xk}) ,

where the last inequality holds due to π(h′′) > 0 since w.l.o.g., we assumed π(h) > 0 for all
h ∈ Ĥ in Section 2. ◀
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1 Introduction

Recent advancements in machine learning have sparked a wave of new possibilities and
applications that could potentially transform various aspects of our daily lives and revo-
lutionize numerous professions through automation. However, training such algorithms
heavily relies on extensive content which may include copyrighted materials. Under U.S
copyright law, copyright protection subsists in original content of authorship fixed in any
tangible medium of expression [55], excluding any “idea, procedure, process, system, method
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of operation, concept, principle, or discovery, regardless of the form in which it is described,
explained, illustrated, or embodied in such work.” [55, § 102(b)]. The unauthorized copying
of copyrighted works may amount to copyright infringement [55, § 106] unless permitted
by exceptions and limitations provided by law ([55, §107-122], and [50]). Consequently,
identifying and, determining when and how content can be used within this framework
without infringing upon individuals’ legal rights has become a pressing challenge. Foundation
Models and generative AI (GenAI), trained on gigantic datasets, exacerbate this challenge.
One area where this issue arises prominently is in the operation of generative models, which
take human-produced content – much of it copyrighted as input and are expected to generate
“-similar” content. For instance, consider a machine trained on images and then generates
new images that resemble the ones it was trained on. In this context, the fundamental
question arises:

When does the content generated by a machine (output content) infringe copyright in the
training set (input content)?

This question is not purely theoretical, as various aspects of this problem have become
subjects of legal disputes in recent years. In 2022, a class action was filed against Microsoft,
GitHub, and OpenAI, claiming that their code-generating systems, Codex and Copilot,
infringed copyright in the licensed code that the system was allegedly trained on [13].
Similarly, in another class action, against Stable Diffusion, Midjourney, and DeviantArt,
plaintiffs argue that by training their system on web-scraped images, the defendant infringes
millions of artists’ rights [3]. Allegedly, the images produced by these systems, in response
to prompts provided by the systems’ users, are derived solely from the training images,
which belong to plaintiffs, and, as such, are considered unauthorized derivative works of the
plaintiffs’ images [55, § 106 (2)].

A preliminary question is whether it is lawful to make use of copyrighted content in the
course of training [36, 23, 34]. There are compelling arguments to suggest that such interme-
diary copying might be considered fair use [36]. For example, Google’s Book Search Project –
entailing the mass digitization of copyrighted books from university library collections to
create a searchable database of millions of books – was held by US courts to be fair use [22].
Then, there is a claim that generative models reproduce protected copyright expressions
from the input content on which the model was trained. However, to claim that the output
of a generative model infringes her copyright, a plaintiff must prove not only that the model
had access to her copyrighted work, but also that the alleged copy is substantially similar to
her original work [53, 8]

Identifying what constitutes “substantial similarity,” and unlawful copying remains a
pressing challenge. Recent studies have proposed measurable metrics to quantify copyright
infringement [59, 5, 51, 9]. One approach, [59, 5] asserts that a machine generating output
content substantially similar to an input content does not infringe that input content
copyright if the machine would have reasonably generated the same output content even
without accessing the input content. This argument can be illustrated as follows: Suppose
that Alice outputs content A and Bob claims it plagiarizes content B. Alice might argue
that she never saw content B, and would reason that this means she did not infringe Bob’s
copyright. However, since Alice must have observed some content, a second line of defense
could be that “had she never saw B” she would still be likely to produce A. The above
argument was exemplified by [5] who interprets differential-privacy in the above manner.
Subsequently, [59] presented a certain generalization, in the form of a near-free access (NAF)
notion that can potentially allow a more versatile notion of copyright protection. Both
applications draw on algorithmic stability notions used in privacy research.



N. Elkin-Koren, U. Hacohen, R. Livni, and S. Moran 3:3

However, certain crucial traits of copyright law make it challenging to reduce the problem
to a question of privacy. An essential element of copyright law in the United States is
utilitarian rationale, seeking to promote the creation and deployment of creative works
[11, 41]. It is crucial, then, that any interpretation of copyright, or for that matter any
quantifiable measure for copyright, will be aligned with these objectives. In particular, while
the law delineates exclusive rights to the creators of original expressions, it must ensure
sufficient creative space for current and future creators [49]. For this reason, several criteria
exist in copyright law, specifically allowing breathing room for subsequent authors to draw
upon copyrighted content. These criteria distinguish copyright law from privacy as defined
by algorithmic stability notions. First, copyright is limited in time, and once protection has
expired, the copyright content enters the public domain and is free for all to use without
authorization [37]. This issue, though, can be modeled by distinguishing between private
and public data (or protected and non-protected data). Second, and more importantly,
copyright law excludes specific subject (e.g. ideas, methods of operation, facts), since they
are regarded as raw materials needed for cultural expression. According to the US Supreme
Court, “originality” is the “sine qua non” of copyright. [20] Thus, only the original elements
within copyrighted works are legally protected by copyright law. Unoriginal elements (e.g.,
ideas, facts) are never protected. Privacy, in contrast, protects content and not expression,
which in turn can be misaligned with the original objectives of copyright law.

This point cannot be overestimated. Copyright law not only allows subsequent authors
to draw upon the unoriginal, and thus unprotected, elements of copyrighted works (unlike
in privacy) but also encourages subsequent authors to do so [37, 18]. Because copyright
protection only applies to some elements within copyrighted works (i.e, expression) while
deliberately excluding others (i.e., ideas) courts need to delineate the scope of legal protection
when deciding copyright disputes. As a result, the scope of copyright protection varies not
only among different works but also among different elements within a single work [54].

Third, in a stark distinction from privacy, copyright law also encourages using the original
(and thus protected) elements of copyrighted works in certain circumstances. These include de
minimis quotations, transformative uses serving different purposes compared to the purpose
of the original work (such as parodies), and other types of “fair uses” such as learning and
research [43]. The fair use doctrine serves as a check on copyright, to ensuring it does not
stifle the very creativity copyright law seeks to foster. Fair use is also considered one of the
safety valves that allows copyright protection to coexist with freedom of expression [42].

For all these reasons, privacy notations are both over-inclusive and under-inclusive from
a copyright perspective. They are over-inclusive because they withhold much more from
subsequent authors than copyright law necessitates, consequently undermining the objectives
of copyright law. At the same time, by focusing on content rather than original expression,
privacy notations are also under-inclusive because they allow (in some cases) unlawful access
to original copyrighted expression. This could happen, for example, if Alice’s model did not
access input content B, but did access input content C that incorporated original expression
deriving (lawfully or not) from input content B.

In this study we initiate a discussion about the challenges involved in providing a rigorous
definition capturing the concept of copyright. We commence with a technical discussion,
comparing different proposed notions of copyright (in particular, differential privacy and
NAF) and examining their close connection to algorithmic stability. Subsequently, we
argue that any approach following this line of reasoning encounters significant obstacles
in modeling copyright as understood within the legal context. In more detail, we argue
that algorithmic stability strategies fail to account for some principles of copyright law
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that intend to preserve copyright law’s delicate balance. We identify several major gaps
between algorithmic stability strategies and copyright doctrine. Accordingly, we argue, that
if algorithmic stability techniques are adopted as a standard for copyright infringement, they
may undermine the intended goals of copyright law. We further propose a different approach
to using quantified measures in copyright disputes that could better reconcile copyright
trade-offs.

1.1 Related Work

A growing number of researchers in recent years have explored how to address legal problems
by applying computer science theories and methods . This literature seeks to narrow the
gap between the vague and abstract concepts used by law and mathematical models, and to
offer more rigor, coherent, and scalable definitions for issues such as privacy [14], fairness
and discrimination. [15, 30] In the context of generative models, [9] and [25] have explored
whether generative diffusion models memorize protected works that appeared in the models’
training set. Their approach indicates the mere possibility of unauthorized cpoying by GenAI
models. However, as discussed, memorizing of the input content does not necessarily equate
to copyright infringement. To evaluate infringement we must consider other measurable
metrics and quantified measures for copyright key limiting concepts.

There is also active and thought-provoking discussion on how ML technologies are
reshaping our understanding of copyright within the realm of law. [2] explores the question
of whether AI system outputs should be subject to copyright protection. [23, 36] examine the
implications of copyright law’s notions of authorship and learning for literary machines. Our
Focus, though, is on the legitimacy of using copyrighted materials by models that generate
similar output content.

The works of [5] and [59]w, hich rely on privacy/privacy-like notions, are the main focus of
our work. An alternative approach taken by [51] proposes a framework to test the substantial
similarity of a mode’s output content by comparing Kolmogorov-Levin complexity with and
without access to the copyrighted input content. However, one has to distinguish between
protected expressions and non-protected ideas; this crucial challenge is overlooked by their
approach. Another work by [19] suggests using generative learning techniques to assess
creativity. Such approaches may prove valuable, as we indicate in Section 4, but only if they
are designed to align with copyright principles. Lastly, [27] seek to develop strategies to be
applied to generative models to ensure they satisfy the same fair use standard as in human
discretion. The application of this solution may not be possible, though, in cases where little
to no open source or fair use data is readily available.

2 Algorithmic stability as a surrogate for copyright

In this section, we focus is introducing and discussing two notions of algorithmic stability:
near-access-freeness (NAF) and differential privacy (DP); these two notions were specifically
investigated in the realm of training methods aimed at safeguarding copyrighted data.

NAF and DP adhere to a shared form of stability: they ensure that the resulting model,
denoted as q, satisfies a safety condition with respect to each copyrighted data instance,
denoted as c. This safety condition guarantees the existence of a “safe model”, denoted by
qc, which does not infringe the copyright of data c, and importantly, q exhibits sufficient
similarity to qc. Consequently, both NAF and DP guarantee that p itself does not violate
the copyright of the respective data instance c.
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Formally, we consider a standard setup of an unknown distribution D, and a generative
algorithm A. The algorithm A, gets as an input a training set of i.i.d samples S =
{z1, . . . , zm} ∈ Zm ∼ Dm, and outputs a model pA

S = A(S), which is a distribution supported
on Z. For simplicity, we will assume here that Z is a discrete finite set, but of arbitrary
size. [59] consider a more general variant in which the output posterior is dependent on a
“prompt” x, and A outputs a mapping p(AS)(·|x) that may be regarded as a mapping from
prompts to posteriors. For our purposes there is no loss in generality in assuming that p is
“promptless”, and our results easily extend to the promptful case, by thinking of each prompt
as inducing a different algorithm when we hard-code the prompt into the algortihm.

Differential Privacy

A is said to be (α, β)-differentially private [16] if for every pair of input datasets S, S′ that
differ on a single datapoint, we have that for every event E:

P(A(S) ∈ E) ≤ eαP(A(S′) ∈ E) + β and P(A(S′) ∈ E) ≤ eαP(A(S) ∈ E) + β (1)

The concept of privacy, viewed as a measure of copyright, can be explained as follows:
Let’s consider an event, denoted as E, which indicates that the generative model produced
by A violates the copyright of a protected content item c. The underlying assumption is that
if the model has not been trained on c, the occurrence of event E is highly improbable. Thus,
we can compare the likelihood of the event E when c is present in the sample S with the
likelihood of E when c is not included in a neighboring sample S′ (which is otherwise identical
to S). If A satisfies the condition stated in equation Equation (1), then the likelihood of
event E remains extremely low, even if c happened to be present once in its training set.

Near Access Freeness

There are several shortcomings of the notion of differential privacy that have been identified.
Some of these are reiterated in Section 3. [59] proposed the notion of Near-Access Freeness
(NAF) that relaxes differential privacy in several aspects. Formally, NAF (or more accurately
NAF w.r.t safe function safe and ∆max is defined as follows: First, we assume a mapping
safe that assigns to each protected content c a model qc which is considered safe in the sense
that it does not breach the copyright of c. The function safe, for example, can assign c to
a model that was trained on a sample that does not contain c. Several safe functions have
been suggested in [59].

A model p is considered α-NAF if the following inequality holds simultaneously for every
protected content c and every z:

p(z) ≤ eαqc(z). (2)

The intuition behind NAF is very similar to the one behind DP, however there are key
differences that can, in principle, help it circumvent the stringency of DP.

1. The first difference between NAF and DP is that the NAF framework allows more
flexibility by picking the ’safe’ function. Whereas DP is restricted to a safe model
corresponding to training the learning algorithm on a neighboring sample excluding the
content c.

2. A second difference is the fact that NAF is one sided (see Equation (2)), in contrast
with DP which is symmetric (see Equation (1)). Note that one-sidedness is indeed more
aligned with the requirement of copyright which is non-symmetric.
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3. NAF makes the distinction between content-safety and model-safety [59]. In more detail,
the NAF notion requires that the output model is stable. This is in contrast with privacy
that requires stability of the posterior distribution over the output models. In this sense
the notion of NAF is more akin to prediction differential privacy [14] then to differential
privacy.

4. Finally, NAF poses constraints on the model outputted by the learning algorithm (each
constraint corresponds to a prespecified safe model). This is in contrast with privacy which
does not restrict the output model, but requires stability of the posterior distributions
over output models. This distinction may seem minor but it can lead to peculiarities.
For example, an algorithm that is completely oblivious to its training set and that always
outputs original content can still violate the requirements of NAF. To see this, imagine
that our learning rule outputs a model q that always generates the same content z which
is completely original and not similar to any protected content c. However, depending on
the safe models qc it can be the case that the model q is not similar to any of them.

These differences, potentially, allow NAF to circumvent some of the hurdles for using DP
as a notion for copyright. For example, the one-sidedness seems sufficient for copyright and
may allow models that are discarded via DP. Also, the distinction between model-safety and
content-safety can, for example, allow models that may memorize completely the training
set as long as a content they output does not provide a proof for such memorization. Next,
the fact that NAF is defined by a set of constraints, and not a property of the learning
algorithm, allows one to treat breaches of Equation (2) as soft “flagging” and not necessarily
as hard constraints. This advantage is further discussed in Section 4. Finally, perhaps most
distinguishable, is the possibility to use general safety functions that can capture copyright
breaches more flexibly. We next discuss the implications of these refinements, and the
question of model safety vs. content safety in NAF and in DP.

Model safety vs. Content safety

Our first result is a parallel to Theorem 3.1 in [59] in the context of DP stability. Theorem
3.1 in [59] shows how to efficiently transform a given learning rule A to a learning rule B

which is NAF-stable, provided that A tends to output similar generative models when given
inputs that are identically distributed. We state and prove a similar result by replacing
NAF stability with DP stability, which demonstrates that the notion of DP can be relaxed ,
analogously to NAF, to require only content safety under proper assumptions:

Recall that the total variation distance between any two distributions is defined as:
∥q1 − q2∥ = 1

2
∑

|q1(x) − q2(x)| = supE (q1(E) − q2(E)) ,

▶ Proposition 1. Let A be an algorithm mapping samples S to models qA
S such that

ES1,S2

[
∥qA

S1
− qA

S2
∥
]

≤ α, where S1, S2 ∼ Dm are two independent samples. Then, there
exist an (ϵ, δ) DP algorithm B that receives a sample SB ∼ Dmpriv such that if mpriv =
Õ

(
m
ηϵ log 1/δ

)
and SA ∼ Dm then: ESA,SB

[
∥E[qB

SB
] − qA

SA
∥
]

≤ 2α
1+α + O(η). Where the

expectation within, is taken over the randomness of B.

The premise in the above theorem is identical to that in Theorem 3.1 in [59] and captures
the property that A provides similar outputs on identically distributed inputs. The obtained
algorithm B is DP-stable and at the same time it has a similar functionality like A in sense
that its output model qB generates content z which in expectation is distributed like contents
generated by qA.
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Safety functions

We now turn to a discussion on the potential behind the use of different safety functions.
The crucial point (which we discuss in great detail in Section 3 below) is that a satisfactory
“copyright definition” must allow algorithms to be highly influenced, even by their input
content which is protected. This reveals a stark contrast with algorithmic stability: it is easy
to see that DP does not allow such influence. Indeed, the whole philosophy behind privacy
is that a model is “safe” if it did not observe the private example (in particular was not
influenced by it).

This raises the question of whether the greater flexibility of the NAF model can provide
better aligned notions of safety. In fact, if it is allowed to be influenced by protected data,
one might even want to consider safe models that have intentionally observed a certain
content and derived out of it the derivatives that are not protected.

The next result, though, shows that there is a no free lunch phenomenon. For every
protected content c, we can either only consider safe models that observed c and are influenced
by it, or only safe models that never observed it and were not influenced by it. In other
words, if a protected content c influenced its safe model qc then it must influence all safe
models qc′ for all protected contents c′. We further elaborate on the implication of this result
in Section 4.

Below, q1 and q2 should be thought of as safe models, and p as the model outputted by
the NAF learning algorithm. (So, in particular p should satisfy Equation (2) w.r.t q1 and
q2.) This result complements Theorem 3.1 in [59] which shows that NAF can be satisfied in
the sharded-safety setting when the two safe models are close in total-variation. The proof is
left to Appendix A.1.

▶ Proposition 2. Let q1 and q2 be two distributions such that ∥q1 − q2∥ ≥ α, then for any
distribution p we have that for some z: p(z) ≥ 1

2(1−α) min{q1(z), q2(z)}.

3 The gap between algorithmic stability and copyright

So far, we have provided a technical comparison between existing notions in the CS literature
aimed at provable copyright protection. While the technical notion of privacy may seem
closely related, as observed through NAF, there are differences. Accordingly, there is room
for more refined definitions that could capture these essential differences. While algorithmic
stability approaches hold promise in helping courts assess copyright infringement cases (an
issue we further discuss in Section 4), they cannot serve as a definitive test for copyright
infringement. To see that, we next discuss the issue of copyright from a legal perspective.
From this perspective, formal algorithmic stability approaches are both over inclusive and
under-inclusive. Consequently, we will organize this section based on these challenges.

3.1 Over-inclusiveness
Here we focus on a concern that algorithmic stability approaches may filter out lawful output
content that does not infringe copyright in the input content. Because non-infringing output
content is lawful, employing algorithmic stability approaches as filters to generative models
may needlessly limit their production capabilities, and, thereby, undermine the ultimate
objectives of copyright law. Copyright law intends to foster the creation of original works of
authorship by securing incentives to authors and, at the same time, ensuring the freedom
of current and future authors to use and build upon existing works. The law derives from
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the U.S Constitutional authority: “To promote the Progress of Science and useful Arts, by
securing for limited Times to Authors and Inventors the exclusive Right to their respective
Writings and Discoveries.” [11]

However, promoting progress is often at odds with granting unlimited control over
copyrighted materials. This is why copyright law sets fundamental limits on the rights granted
to authors. Promoting progress is inconsistent with an unrestricted right to prevent every
unauthorized use because creators and creative processes are embedded in cultural contexts.
Creative processes often requires ongoing interactions with preexisting materials, whether
through learning and research, engagement with prior art to generating new interpretations,
or using a shared cultural language and applying existing styles to make works of authorship
more comprehensible. Consequently, using copyrighted materials becomes a crucial input in
any creative discourse [10, 17].

For this reason, unlike the mandate of the algorithmic stability approaches, copyright
law does not require output contents not to draw on input contents to be lawful. On the
contrary, there are many cases where copyright law explicitly allows output contents to draw
heavily on input contents without raising infringement concerns. In such cases, allowing
input contents to impact output contents is not only something copyright law permits, but
it is also something copyright law encourages. Doing so, as Jessica Litman put it, “is not
parasitism; it is the essence of authorship.” [37]

Copyright law allows output contents to substantially draw an input contents in three
main cases, which we next explore: (1) When an input content is in the public domain, (2)
When an input content is copyrighted but incorporates aspects excluded from copyright
protection, and (3) When the use of the protected aspects of the input content is lawful.

When input content is in the public domain

Input content may be unprotected because its copyright term has lapsed. Copyrights are
limited in duration (though relatively long duration, which in most countries will last the
life of the author plus seventy years). Once the copyright term expires, input content
enters the public domain and can freely be used and impact output content without risking
copyright infringement [37]. Public domain materials may also contain anything that is
not copyrightable, such as natural resources. For instance, if two photographers are taking
pictures of the same person, some similarity between those pictures is likely due to how this
person looks, which is in the public domain. Other elements such as an original composition,
or the choices made regarding lighting conditions and the exposure settings used in capturing
the photograph, might be considered copyrighted expression. If the generative model only
uses the former in the output content, it may not constitute an infringement.

When an input content incorporates unprotected aspects

Input content with a valid copyright term enjoys “full” legal protection, but it too is limited
in scope. As provided by the copyright statute, “[i]n no case does copyright protection for
an original work of authorship extend to any idea, procedure, process, system, method of
operation, concept, principle, or discovery, regardless of the form in which it is described,
explained, illustrated, or embodied in such work.” [55]. By this principle, output content
may substantially draw on input content without infringing copyright in the latter, as long
as such taking is limited to the input’s content unprotected elements.

Procedures, processes, systems and methods of operation Copyright protection
does not extend to “useful” or “functional” aspects of copyrighted works such as procedures,
systems, and methods of operation. These aspects of an input content are freely accessible
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for an output content to draw upon. For example, in the seminal case of Baker vs. Selden,
the Supreme Court allowed Baker to create a book covering an improved book-keeping
system while drawing heavily on the charts, examples, and descriptions used in Selden’s
book without infringing Selden’s copyright [7]. As the court explained, these aspects that
Baker took from Selden’s work are functional methods of operations and as such are not
within the domain of copyright law. Similarly, in Lotus v. Borland, the United States
Court of Appeals for the First Circuit allowed Borland to copy Lotus’s menu command
hierarchy for its spreadsheet program, Lotus 1-2-3. The court ruled that Lotus menu
command hierarchy was not copyrightable because they form methods of operation [39] -
Consequently, if a generative model simply extracts procedures, processes, systems and
methods from the training set it may not infringe copyright.
Ideas Copyright protection is limited to concrete “expressions” and does not cover
abstract “ideas.” Thus, in Nicholas v. Universal, the United States Court of Appeals for
the Second Circuit allowed Universal to incorporate many aspects of Anne Nichols’ play
Abie’s Irish Rose, in their film The Cohens and Kellys [58]. The court explained that the
narratives and characters that Universal used (“a quarrel between a Jewish and an Irish
father, the marriage of their children, the birth of grandchildren and a reconciliation”),
were “too generalized an abstraction from what she wrote. . . [and, as such]. . . only
a part of her [unprotected] ‘ideas.”’ [58] When a generative model simply extract ideas
from copyrighted materials, rather than replicating expressive content from their training
data, it does not trigger copyright infringement.
Facts Copyright protection also does not extend to facts. For example, in Nash v. CBS.,
the court ruled that CBS. could draw heavily from Jay Robert Nash’s books without
infringing his copyright [44]. As the court explained, the hypotheses that Nash rose
speculating the capture of the gangster John Dillinger and the evidence he gathered (such
as the physical differences between Dillinger and the corpse, the planted fingerprints, and
photographs of Dillinger and other gangsters in the 1930s) were all unprotected facts
that Nash could not legally appropriate. Consequently, generative models which simply
memorize facts do not infringe copyright law.

When the use of the protected aspects of the input content was lawful

Even when the protected elements of an input content (“expressions” rather than the “ideas”)
are impacting an output content, such impact may be legally permissible. There are two
main categories of lawful uses: de minimis copying and fair use.

De minimis copying Copyright law allows de minimis copying of protected expression.
I.e. copying of an insignificant amount that has no substantial impact on the rights of
the copyright owner or their economic value. Similarly, “[w]ords and short phrases, such
as names, titles, and slogans, are uncopyrightable.”[45]. However, de minimis copying
of protected expression may be unlawful if it captures the heart of the work [28]. E.g.
phrases like “E.T. Phone Home.” [56]
Fair Use Copyright law also allows copying of protected expression if it qualifies as fair
use. The U.S fair use doctrine, as codified in § 107 of the U.S Copyright Act of 1976, is
yet another legal standard to carve out an exception for an otherwise infringing use after
weighing a set of four statutory factors. The four statutory factors are: (1) the purpose
and character of the use, including whether such use is of a commercial nature or is for
nonprofit educational purposes; (2) the nature of the copyrighted work; (3) the amount
and substantiality of the portion used in relation to the copyrighted work as a whole; and
(4) the effect of the use upon the potential market for or value of the copyrighted work
[55].
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Importantly, the fair use claimant need not satisfy each factor for the use to qualify as fair
use [12]. Nor are the four factors meant to set out some kind of mathematical equation
whereby, if at least three factors favor or disfavor fair use, that determines the result [43].
Rather, the factors serve as guidelines for holistic, case-by-case decision. In that vein, in
its preamble paragraph, § 107 provides a list of several examples of the types of uses that
can qualify as fair use. The examples, which include “criticism, comment, news reporting,
teaching (including multiple copies for classroom use), scholarship, [and] research,”[55] are
often thought to be favored uses for qualifying for fair use. Importantly, however, the list of
favored uses is not dispositive. Rather, fair use’s open-ended framework imposes no limits on
the types of uses that courts may determine “fair” [12].

When the factors strongly favor a finding of fair use, even output contents that are heavily
impacted by copyrighted input contents may be excused from copyright infringement. For
example, in Campbell v. Acuff-Rose, although the rap music group 2 Live Crew copied
significant portions of lyrics and sound from Roy Orbison’s familiar rock ballad “Oh, Pretty
Woman” [12]. The Supreme Court denied liability in this case, based on the premise that
the 2 Live Crew’s derivative work was considered a “parody” of Orbison’s original work,
and, therefore, constituted fair use. Similarly, in The Authors Guild v. Google, the court
defended Googles’ mass digitization of millions of copyrighted books to create a searchable
online database as fair use, because it considered Google’s venture to be socially desirable
[22] as explained by [47], concluding that the copying of expressive works for non-expressive
purposes should not be counted as a copyright infringement.

3.2 Under-Inclusiveness
Algorithmic stability approaches are under exclusive because they might fail to filter out un-
lawful output content that infringes copyright in the input content. As explained, algorithmic
stability approaches find infringement only when the output content heavily draws on input
content. The law of copyright infringement, however, is not so narrow. Copyright law only
requires that the output content heavily draw on the protected expression originating from
an input content to find infringement. Such expression need not come from the input content
itself; it may come from other sources including copies, derivatives or snippets of the original
input content [33].

To illustrate this point, consider the fact pattern in the U.S Supreme Court case Warhol
vs. Goldsmith [60]. In that case, the portrait photographer Lynn Goldsmith accused Andy
Warhol of infringing copyrights in a photograph she took of the American singer Prince.
Goldsmith authorized Warhol to use her photograph as an “artistic reference” for creating
a single derivative illustration (see Figure 1, bottom right most picture). Still, she did not
approve nor imagine that Warhol had, in fact, made 16 different derivatives from the original
photograph. Warhol’s collection of Prince portraits, also known as the Prince series , is
depicted in Figure 1, right side.

For our purposes, assume the Prince Series’ portraits served as input for a generative
machine. Suppose the machine’s output content draws heavily on Goldsmith’s protected
expression that is baked into the Prince Series’ portraits. In that case, the machine’s output
content may infringe Goldsmith’s copyright in original photograph (Figure 1 , left side), even
if the machine did not have access to Goldsmith’s original photograph. Moreover, this risk
will not be eliminated even if the Supreme Court decided that the Prince Series’ portraits
themselves are non-infringing because they constitute fair use.

Simply put, copying from a derivative work – whether authorized by the copyright owner
or not – may infringe copyright in the original work on which the derivative work is based.
This situation is prevalent in copyright practice, especially in music. In modern music
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copyright cases, plaintiffs usually show access to the original copyrighted work (musical
composition) by showing access to a derivative work of that original work (sound recording).
Plaintiffs are not required to demonstrate that the defendants also had access to the original
sheet music nor that they could actually read musical notes.

Lastly, output content can also infringe copyright in input content by accessing parts
or snippets of the input content even without accessing the input content in its entirety.
This concern was raised recently in The Authors Guild v. Google, a case dealing with the
legality of the Google Book Search Library Partner project [22]. As part of this project,
Google scanned and entered many copyrighted books into their searchable database but only
provided “snippet views” of the scanned pages in search results to their users. The plaintiff in
the case argued that Google facilitated copyright infringement by allowing users to aggregate
different snippets and reconstruct infringing copies of their original works. The court ended
up dismissing this claim, but only because Google took affirmative steps to prevent such
reconstruction by limiting the number of available snippets and by blacklisting certain pages.

To sum up, there are numerous instances where copyright law permits (even encourages)
an output content to draw on an input content. The more substantial unproteceted aspects
of input content, and the more likely it is that using the input content’s protectable aspects is
considered lawful, the more expansively can the output content draw upon the input content
without fearing copyright infringement. At the same time, there are cases where copyright
law outlaws an output even if it did not draw upon an input content, provided that it did
draw on protected expression originating from that content. The more original the input
content, and the more copies, derivatives, or snippets of that original content exist in the
model datasets, the more likely the output content is to infringe copyrights in that input
content. Therefore, any strategy for detecting or mitigating copyright infringement must
account for these crucial copyright distinctions.

4 Discussion

Algorithmic stability approaches, when used to establish proof of copyright infringement
are either too strict or too lenient from a legal perspective. Due to this misfit, applying
algorithmic stability approaches as filters for generative models will likely to distort the
delicate balance that copyright law aims to achieve between economic incentives and access
to creative works.

The purpose of this article is to illuminate this misfit. This is not to say that algorithmic
approaches in general and algorithmic stability approaches, in particular, have no value
to the legal profession. Quite the opposite. Computer science methodologies significantly
benefit the judicial table: the capability to process large volumes of information and assist
policymakers in making more informed decisions. Many areas in law involve applying murky
“standards” as opposed to rigid “rules.” [31]. As discussed, copyright law extensively uses
legal standards, such as idea/expression distinction, or fair use principles, to restrict the
scope of protection accorded to copyrighted works. Consequently, copyright infringement
cannot be boiled down to a binary computational test.

The true value of computer science methodologies to the legal profession is not necessarily
to convert murky standards into rigid rules (e.g., by constructing a definitive binary test
for copyright infringement), but, instead, to make legal standards less murky. A rich body
of scholarship explores the ills of vaguely-defined legal standards, especially in the context
of intellectual property [46, 4, 48, 21, 40] Algorithmic stability approaches, if applied with
caution, may introduce new quantifiable methods for applying legal standards more clearly
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and predictably. Such methods could help measure vague legal concepts such as “fairness”
“privacy,” and, in the copyright context – “originality”, and at the same time facilitate the
ongoing development of legal and social norms [24]. However, to ensure these methods
are beneficial, it is vital to acknowledge the limitations of applying algorithmic stability
approaches to copyright.

Stability is not safe

The NAF framework, which allows a rich class of safety functions, has the potential to
circumvent some of the challenges presented, but may still be limited and we now wish to
discuss this in further details. RL is supported by an ERC Grant (FOG

To utilize the NAF framework, the first basic question one needs to address is Given
a protected content c how should we choose the safe model safe(c)? It seems natural to
include models that are not heavily influenced by c since otherwise this might allow copyright
breaching. However, such choice of safe(c) leads to the discussed limitations encountered by
algorithmic-stability approaches such as DP. It is true that some aspects, such as content
safety vs. model safety, can be better aligned through the definition of NAF but also,
as Proposition 1 shows, through variants of DP. Overall, there is room, then, to further
investigate the different possible models for copyright, within such an approach, but we
should take into account the limitations presented in Section 3.

Perhaps a more exciting application of NAF, then, is to consider notions of safety that
allow some influence by c. e.g. to enable generating parodies, fair-use, de minimis copying,
etc. We consider then safety functions that now do have access to c, and exploit this access
to enable only allowed influence. Here we face a different challenge. Suppose that qc, qc′

are such a safe models for contents c and c′ respectively. If qc′ and qc are far away, then
Proposition 1 shows that there is no hope to output a NAF model. But even if qc and qc′ are
not far away, but suppose that qc′ ignores content c, then for any content z that is influenced
by c we may assume that:

qc(z) ≫ qc′(z).

But, if p is a NAF model, we must also have due to Equation (2) with respect to c′ and z:

qc(z) ≫ p(z).

In other words, the NAF model censors permissible content z even though it is safe. This
happens because z is an improbable event in model qc′ . Not because z breaches copyright
of c′ but because it is influenced by c, and content that is influenced by c is discarded by
safe models that had no access to c. It follows, then, that all safe models must treat
protected content in a similar manner, and qc′ must also be influenced by c if we expect the
NAF model to make any use of it. Hence, it is unclear if a more refined notion of safe may
help circumvent the hurdles of applying the privacy approach for establishing a copyright
infringement. This suggests, though, to perhaps consider a relaxed variant of NAF in which
a content is discarded by a safe model only when certain links between the protected content
and the generated content are established.

It seems, then, that an algorithmic approach that assists jurists in understanding such
links between existing works of authorship, study their hidden interconnection, and quantify
their originality holds a great promise. In other words, rather than constructing binary legal
rules (e.g., aiming to devise a definitive test for copyright infringement), algorithmic stability
approaches could facilitate new quantifiable methods for applying legal standards, such as
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Figure 1 The Prince series.

measuring originality [24]. From this perspective, originality is evaluated by the semantic
distance between the elements of a measured expressive work and similar elements found in
the corpus of the training content. The more salient the expressive elements within the larger
corpus of pre-existing content, the less likely these elements are to be considered original by
copyright law, and the more likely copyright law is to legitimize drawing upon them by the
output content.

Research in this area is still in its infancy but holds outstanding potential for the
copyright system [52, 26]. Algorithmic approaches that focus on the element level rather
than the content level, and are applied not as binary tests for apprising infringement but
as tools for measuring copyright originality may greatly empower the legal profession. As
the extensive body of legal scholarship has long acknowledged, the originality standard in
copyright law, along with many of its related doctrines for delineating scope (such as the
“idea-expression dichotomy”), is inherently vague and uncertain [37, 35, 29]. Such vagueness
leads to inconsistent judicial precedent, deters permissible uses of copyrighted material, and
undermines the goals of copyright law [21, 42, 38, 48, 57].
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A Proofs

A.1 Proof of Proposition 2
Suppose that

∥q1 − q2∥ ≥ α.

In particular there exists an event E such that:

q2(E) ≤ q1(E) − α ≤ 1 − α.

Let p be some distribution. We assume that p(E) ≥ 1/2 (otherwise, replace E with its
complement and q1 and q2 replace roles). Thus, we have that:

p(E) ≥ 1
2 ≥ 1

2(1 − α)q2(E).

In particular, for some z ∈ E, the result follows.

A.2 Proof of Proposition 1
The proof relies on a coupling Lemma, taken from [1]. Recall that, given a collection of
distribution measures Q, a coupling can be thought of as a collection of random variables
X = (Xq)q∈Q, whose marginal distributions are given by q. I.e. P(Xq = x) = q(x):

▶ Lemma 3 (A special case of Thm 2 in [1]). Let Q be the collection of all posteriors over a
finite domain X 1. There exists a coupling such that for every q, q′ ∈ Q:

P(Xq ̸= Xq′) ≤ 2∥q − q′∥
1 + ∥q − q′∥

.

The second Lemma we rely on is a private heavy hitter mechanism, described as follows:

▶ Lemma 4 ([32, 6]). Let Z be a finite data domain. For some

k ≥ Ω
(

log 1/ηβδ

ηϵ

)
,

there exists an (ϵ, δ)-DP algorithm hist, such that with probability (1 − β) on an inputs
S = {z1, . . . , zk} outputs a mapping a ∈ [0, 1]Z , such that, for every z ∈ Z,

|a(z) − freqS(z)| ≤ η.

In particular, if freqS(z) > 0, then a(z) > 0.

Where we denote by freqS(z) = |i:zi=z|
|S| .

We next move on to prove the claim. Let X be the coupling from Lemma 3. Our private
algorithm works as follows:
1. First, we take β = η, and set

k = Ω
(

log 1/η2δ

ηϵ

)
.

To be as in Lemma 4.

1 which are all absolutely continuous w.r.t the uniform distribution
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2. Divide S, the input sample, to k, disjoint datasets S1, . . . , Sk of size m. Each data set,
via A, defines a model qA

Si
.

3. Next, we define the random sample

SX = {XqA
S1

, XqA
S2

, . . . , XqA
Sk

} ∈ ZK .

4. Apply the mechanism in Lemma 4 and output a ∈ [0, 1]Z such that, w.p. 1 − η, for all
z ∈ Z:

|a(z) − freqSX
(z)| ≤ η.

5. Let p be any arbitrary distribution such that for every z ∈ Z:

|a(z) − p(z)| ≤ η (3)

(if no such distribution exists p is any distribution). and output

qB
S = p.

Notice that each sample zj affects only a single sub-sample Si and in turn only a single
random variable XqA

Si

. The histogram function a is then (ϵ, δ)-DP w.r.t to its input S.
The output p, by processing is also private. We obtain, then, that the above algorithm is
(ϵ, δ)-private.

We next set out to prove that p = qB
S is close in TV distance to qA

SA
in expectation. For

ease of notation let us denote Xi = XqA
Si

. Notice that, with probability (1 − η), for every z:

|a(z) − freqSX
(z)| ≤ η,

in particular, there is a p that satisfies the requirement in Item 5 (i.e. freqSX
defines such a

distribution) and Equation (3) is satisfied. We then have that for every z:∣∣∣∣p(z) − 1
k

∑
1[Xi = z]

∣∣∣∣ ≤ |p(z) − a(z)| +
∣∣∣∣a(z) − 1

k

∑
1[Xi = z]

∣∣∣∣
≤ 2η. (4)

We now move on to bound the total variation between the model E[qB
S ] and qSA

, where
expectation is taken over the randomness of B.

To show this, we will use the reverse inequality of the coupling Lemma, in particular if
(X̂B , X̂A) is a coupling of qB

S and qA
SA

(where S and SA are now fixed), then:

∥E[qB
S ] − qA

SA
∥ ≤ P(X̂B ̸= X̂A). (5)

Our coupling will work as follows, first we output p = qB
S and sample X̂B ∼ p, and we

let X̂A = XqSA
. This defines a coupling (X̂B , X̂A). Applying Equation (4), with z = X̂A,

exploiting the fact that Equation (4) holds with probability at least 1 − η:

P(X̂B ̸= X̂A) ≤ 1
k

k∑
i=1

P(Xi ̸= XqSA
) + η

≤ 2η + η.

And we have that:

P(X̂B ̸= X̂A) ≤ 1
k

k∑
i=1

P(Xi ̸= XqSA
) + 3η ≤ 1

k

k∑
i=1

2∥qA
Si

− qSA
∥

1 + ∥qA
Si

− qSA
∥

+ 3η.
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And,

E
SA,S

∥E[qB
S ] − qSA

∥ ≤ E
SA,S

1
k

k∑
i=1

[
2∥qA

Si
− qSA

∥
1 + ∥qA

Si
− qSA

∥

]
+ 3η

≤ E
S1,S2∼S

[
2∥qA

S1
− qS2∥

1 + ∥qA
S1

− qS2∥

]
+ 3η

≤

[
2E[∥qA

S1
− qS2∥]

1 + E[∥qA
S1

− qS2 ]∥

]
+ 3η concavitiy of 2x

1 + x

≤
[

2α

1 + α

]
+ 3η monotinicity 2x

1 + x
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Abstract
We study the problem of collecting a cohort or set that is balanced with respect to sensitive groups
when group membership is unavailable or prohibited from use at deployment time. Specifically,
our deployment-time collection mechanism does not reveal significantly more about the group
membership of any individual sample than can be ascertained from base rates alone. To do this,
we study a learner that can use a small set of labeled data to train a proxy function that can later
be used for this filtering or selection task. We then associate the range of the proxy function with
sampling probabilities; given a new example, we classify it using our proxy function and then select
it with probability corresponding to its proxy classification. Importantly, we require that the proxy
classification does not reveal significantly more information about the sensitive group membership of
any individual example compared to population base rates alone (i.e., the level of disclosure should
be controlled) and show that we can find such a proxy in a sample- and oracle-efficient manner.
Finally, we experimentally evaluate our algorithm and analyze its generalization properties.
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1 Introduction

There are a variety of situations in which we would like to select a cohort or set that is
balanced or representative (having an approximately equal number of samples from different
groups) with respect to race, sex, or other sensitive attributes – but, we cannot explicitly
select based on these attributes. This could be because the attributes are sensitive so were
never collected, they could be redacted from the information we see, they could be too
resource intensive to collect, or selecting based on these attributes could be illegal.

Consider the context of college admissions. Out of many qualified applicants, a college
may prioritize racial diversity when deciding upon the final cohort to admit. However,
in the United States Supreme Court decision for Students for Fair Admissions, Inc. v.
President and Fellows of Harvard College, it was determined that “Harvard’s and UNC’s
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[race-conscious] admissions programs violate the Equal Protection Clause of the Fourteenth
Amendment” [36]. How might a college select a racially diverse cohort with affirmative action
prohibited?

Our approach is based on training a proxy classifier – in the form of a decision-tree –
with the following properties: (1) The set of points classified at each leaf should not be
strongly correlated with the protected attribute (the disclosure-control part) and (2) The
set of distributions on the protected attributes induced at each leaf should be such that
the uniform distribution on protected attributes is in their convex hull (the balancing part).
The second condition allows us to assign sampling probabilities to the leaves such that if we
accept each example with probability corresponding to its proxy classification, in expectation
the selected cohort will be balanced with respect to the protected attribute.2

1.1 Related Work

The proxy problem is a subject of ongoing debate in the philosophy of science and causal
inference literatures (e.g. [18, 3, 32, 24, 41, 29, 31, 9]), and our work engages with this
literature methodologically – we do not believe that it is our role to take a philosophical
or legal stance but rather to broaden the set of available tools. Using proxy variables for
sensitive attributes in settings where diversity or equity is a concern has been standard
practice, yet in many cases, existing features are chosen for the proxies (such as surname,
first name, or geographic location [13, 40, 44]). Rather than using an existing feature as a
proxy, we propose deliberately constructing a proxy. Several works take this perspective – in
[10], for example, the authors produce a proxy that can be used during training to build a
fair model downstream. But often, proxies for protected attributes are explicitly intended to
be good predictors for those attributes; it is not clear that using an accurate “race predictor”
is an acceptable solution to making decisions in which race should not be used (and is often
explicitly prohibited). Our primary point of departure is that we train a model to make
classifications that are minimally correlated with the protected attribute.

While our intended use cases are primarily curation or cohort selection, one may also use
our method for collecting balanced data sets for machine learning applications. However, we
recommend caution in these scenarios, as our approach does not give guarantees about the level
of distortion of the final filtered data set. In order to provide comparisons to existing empirical
techniques, however, we do measure our approach against a common data pre-processing
technique, SMOTE (Synthetic Minority Oversampling Technique) [8]. Other re-sampling
methods for data balancing include ADASYN [17], MIXUP [43], SMOTE adaptations
[26, 4, 5, 11, 15, 23]) and cluster-based approaches that under-sample disproportionately
represented classes [16, 42, 33, 21, 34]. In the causal literature, propensity score re-weighting
[22] is also a popular approach to account for group size differences. Each of these techniques,
however, requires access to the sensitive attribute. Our approach’s primary point of departure
is that we do not use the sensitive attribute – or a direct prediction or imputation of it – at
the final collection time when we are deploying our method.

2 A natural first approach is to add noise to the predictor for the protected attribute, against which
we compare. However, we are motivated by the need to have strategies that never involve training a
classifier for the protected attribute, especially if it could be used outside of the intended system.
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1.2 Limitations and Discussion
Our contributions are twofold. First, for situations where balance is desired but disclosure
is not a concern, we introduce a sampling scheme optimized to collect a balanced cohort.
Second, for when disclosure is a concern, we present a method to produce a proxy function
for the balanced selection task that is guaranteed not to be too disclosive. Below, we discuss
important considerations having to do with appropriate usage of our methodology, limitations,
and areas for expansion.

The sensitive attribute is still used to inform the proxy, and our approach
relies on accessing a small sample of data with this attribute: The proxy training
algorithm we propose is not blind to the sensitive attributes, which it must access during
training. Rather, the proxy does not use these attributes at the time of deployment.3
We emphasize that there is no contradiction between (1) being able to obtain (once) a
small data set labeled with sensitive attributes and then using it to train a classification
algorithm (in this case, our proxy model) and (2) having the inability to collect or use
sensitive attributes when gathering the bulk of one’s data. This is especially true when
the final selection criterion is not closely correlated with the sensitive attribute, which is
one of our primary objectives. In the algorithmic fairness literature in particular, there
is a substantial and growing body of work on learning classifiers that satisfy fairness
constraints by sensitive attributes but that do not use these attributes at test time (e.g.
[1, 20, 27, 28]). These methods still require access to the attributes at training time.
The distinction between using sensitive attributes at train versus test time is essential. In
certain financial applications in the United States, using race or gender at test time (i.e.,
when making lending decisions) is illegal. But it is not illegal to use these attributes at
training time to audit models for statistical bias and to remove it if found. The distinction
in our case is similar: We use these attributes to find a statistical selection criterion but
do not use sensitive attributes of individuals to make selection decisions about them.
The filtered cohort or data set will likely exhibit within-group distortion:
This is an important consideration that should be taken into account when using our
method. Our theoretical guarantees provide bounds on the level of balance and disclosure
when measured with respect to the sensitive attributes, but they do not guarantee that
the distribution over selected individuals matches that of the true population. In fact,
this is perhaps a necessary effect of our process and in many cases may be natural. For
example, in the context of college admissions or interview selection, a university or firm
is intentionally selecting a pool that is not representative of the base population. The
use cases for which this quality may create the greatest challenge is in curating data sets
for training machine learning models. While our method can improve representation in
data sets, it will not necessarily lead to improvements in downstream fairness of models
trained on the balanced data. We provide a detailed analysis of this in Appendix B.4

Affirmative Action and Legal Challenges: We do not propose our method as a
way to circumvent the intent of legislation, nor do we make claims regarding the legal or
moral appropriateness of its usage in any particular affirmative action setting. Rather, we
view it as a tool that can be used, when permitted legally, in settings where diversity or

3 It would be impossible to give an algorithm making no use of the protected attribute during deployment or
training and yet promising any sort of balance – it would have to behave identically on any distributions
with the same marginals over non-protected attributes, even if they differed on the protected attribute.

4 One note, however, is that our method does allow for balancing multiple attributes at a time – therefore,
one could ask for a cohort that has the same number of positive and negative examples in each group.
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balance is desired but when the sensitive attribute can or should be used only minimally.
For example, in the college admissions example, it is also undesirable to use explicit
race-based predictors in lieu of observing the sensitive attribute. However, students can
include race considerations in their admissions essays, which admissions officers see. Given
the stakes of college admissions and the strategic behavior of both sides (applicants and
schools), it is very likely that an ad-hoc system will still develop to indirectly make use
of racial information for the sake of diversity. In a situation such as this, our method
provides a controlled way to achieve such desiderata without unintentionally revealing
too much information or making use of highly correlated proxies.

2 Model and Preliminaries

Let Ω = X ×Y ×Z be an arbitrary data domain and P be the probability distribution over Ω.
Px will refer to the marginal distribution over X , Pz will refer to the marginal distribution
over Z, and Pz|x will refer to the conditional distribution over Z|X . Each data point is
a triplet ω = (x, y, z) ∈ X × Y × Z, where x ∈ X is the non-sensitive feature vector and
y ∈ Y = {0, 1} is the label. The label y is not required in training or applying our filtering
method, but it will be used in the analysis of downstream fairness effects of the filtering
process provided in Appendix B. In the paper body, therefore, we omit it for clarity.

Unless otherwise specified, we take group membership as disjoint such that z ∈ Z = [K] is
an integer indicating sensitive group membership, but our framework can easily be extended to
the case where group membership need not be disjoint. We consider the uniform distribution,
U , to be our target distribution over sensitive attributes, where U = ( 1

K , ..., 1
K ). We also

provide a brief extension to the intersecting case below.
We imagine we can sample unlimited data from Px, but the corresponding value z can

only be obtained from self-report, authorized agencies, or human annotation. We use rk

to denote the base rate Prz∼Pz
[z = k] in the underlying population distribution. We also

assume that we can obtain a limited sample of data D of n samples {(xi, zi)}n
i=1 ⊂ Ω for

which we can observe the true sensitive attribute z. We would like to use this sample to
collect a much larger set S ⊂ Ω such that even if we cannot observe the sensitive attributes,
S is balanced with respect to z.

Formally, we define a balanced set as follows, where Prz∼S [z = k] = 1
|S|
∑|S|

i=1 1zi=k is the
empirical distribution of z drawn uniformly from S.

▶ Definition 1 (Balance). A set S is balanced with respect to K disjoint groups z ∈ [K] if
Prz∼S [z = k] = 1

K ∀k.

Due to finite sampling, Definition 1 will rarely be met, even if the underlying distribution is
uniform over sensitive attributes. Therefore, we also discuss approximate balance:5

▶ Definition 2 (β-Approximate Balance). A set S is β-approximately balanced with respect to
K disjoint groups z ∈ [K] if ∥(Prz∼S [z = 1], ..., Prz∼S [z = K]) − (1/K, .., 1/K)∥2 ≤ β.

Note that β-approximate balance involves the distribution of sensitive groups in S: as this
distribution deviates farther from the uniform, the imbalance, β, increases.

In the intersecting groups case, we let the sensitive attribute domain Z be a binary vector
of length K, such that z ∈ Z = {0, 1}K . We will assume Z is composed of G group classes
{Zi}G

i=1 (e.g., sex, race, etc), and each group class Zi has Ki groups. Thus, the vector z will

5 We use the L2 norm due to operational reasons, as it allows us to make useful geometric arguments.
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indicate all possible group memberships, where the length of the vector of group memberships
is K =

∑G
i=1 Ki. We also replace U with Uint = ( 1

K1
, ..., 1

K1
, ..., 1

KG
, ..., 1

KG
) to indicate the

target distribution over intersecting sensitive attributes.

▶ Definition 3 (Multi-Class Balance). We will say that a set S is balanced with respect
to K intersecting groups if, for any group class {Zi}G

i=1 composed of groups {Zij }Ki
j=1,

Prz∼S [z[Zij
] = 1] = 1

Ki
∀j.

▶ Definition 4 (β-Approximate Multi-Class Balance). We say that a set S is β-approximately
balanced with respect to K intersecting groups if

∥( Pr
z∼S

[z[Z11 ] = 1], Pr
z∼S

[z[Z12 ] = 1], ..., Pr
z∼S

[z[ZGKG−1 ] = 1], Pr
z∼S

[z[ZGKG
] = 1]) − Uint∥2 ≤ β

▶ Remark 5. This definition aims to take into account the fact that for different group classes,
there may be a different number of potential groups. For example, there may only be two sex
groups but eight income groups. Asking that the representation of each of those categories be
one-tenth of the final sample would not make sense. However, our definition does not prevent
certain intersections being more represented than others. When the number of groups is
small, this can always be dealt with by using the Cartesian product over group classes to
enumerate intersectional groups.

In addition to desiring that our proxy allows us to select an approximately balanced
cohort, we would also like the classification outcomes of the proxy not to be overly disclosive.
We model this by asking that the posterior distribution on group membership is close to the
prior distribution when conditioning on the outcome of the proxy classifier.

▶ Definition 6 (α-Disclosive Proxy). A proxy g is α-disclosive (or has disclosure level at
most α) on set S if, for all sensitive groups k and proxy values i, |Prz|x∼S [z = k|g(x) =
i] − Prz∼S [z = k]| ≤ α.

For any proxy function g, we can analyze the distribution of sensitive groups amongst points
mapped to each value k in the range of the proxy. Call this conditional distribution ak, let l

be the number of unique elements in the range of the proxy, and let A be the ℓ × K matrix
whose kth row is ak. Denote the convex hull, defined in Definition 8, of the rows of A by
C(A). Then, we can add a notion of balance into our proxy definition in the following way:

▶ Definition 7 ((α, β) Proxy). g : X → N is an (α, β) proxy if it is α-disclosive and
inf

U ′∈C(A)
∥U ′ − U∥2 ≤ β.

Here, infU ′∈C(A)∥U ′ − U∥2 indicates the Euclidean distance between U and the closest point
in C(A). We will slightly abuse notation and refer to this as the distance ∥C(A) − U∥2.
The disclosure parameter α controls the amount of additional information the proxy gives
about group membership, while the balance parameter β quantifies the minimum distance
from uniform achievable with any acceptance probabilities for a given proxy. There do exist
limitations on how small α can be if we need full balance. With K sensitive groups, the
final frequency of each group must be 1

K if we desire β = 0: if there is a group with initial
frequency f , there is no avoiding that α ≥ |f − 1

K |. For some data sets, this unavoidably
can be quite large. For example, consider a data set of 1

3 men and 2
3 women and assume

the proxy g takes values 0 or 1. Of the samples mapped to g = 0, 1
4 are men and 3

4 are
women. Of those mapped to g = 1, 1

2 are men and 1
2 are women. Then, α = 1

6 , because
| Pr[z = men|g = 0] − Pr[z = men]| = | 1

3 − 1
2 | = 1

6 . In this example, β would be 0, because
the convex hull of the conditionals Pr[z|g(x)] contains [ 1

2 , 1
2 ]. Next, we provide definitions

for a convex hull and stochastic vector.
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▶ Definition 8 (Convex Hull [7]). The convex hull of a set of points S in K dimensions is
the intersection of all convex sets containing S. For l points s1, ..., sl, the convex hull C is
given by the expression: C ≡ {

∑l
i=1 qisi : qi ≥ 0 for all i and

∑l
i=1 qi = 1}

▶ Definition 9 (Stochastic Vector [6]). v = (vi)ℓ
i=1 is a stochastic vector if

∑ℓ
i=1 vi =

1 and vi ≥ 0 ∀i.

Finally, we observe a necessary and sufficient condition for U to be in C(A).

▶ Lemma 10 (Inclusion in Convex Hull). Let A be an l × K matrix and U be a 1 × K vector
with 1

K in each entry. There exists a stochastic vector q such that qA = U if and only if
U ∈ C(A).

Proof. Let ai denote the ith row of A. If U is in C(A), then by Definition 8, there exists a
non-negative vector q such that

∑l
i=1 qiai = U and

∑l
i=1 qi = 1. Similarly, for any stochastic

q, qA ∈ C(A). Then if qA = U , U ∈ C(A). ◀

Finally, we outline several key results that we will use in the derivations and proofs for
our proxy training algorithm. We begin by considering a zero-sum game between two players,
a Learner with strategies in S1 and an Auditor with strategies in S2. The payoff function of
the game is W : S1 × S2 → R≥0.

▶ Definition 11 (Approximate Equilibrium [14]). A pair of strategies
(s1, s2) ∈ S1×S2 is said to be a ν-approximate minimax equilibrium of the game if the following
conditions hold: U(s1, s2) − mins′

1∈S1 U(s′
1, s2) ≤ ν, maxs′

2∈S2 U(s1, s′
2) − U(s1, s2) ≤ ν

Freund and Schapire [14] show that if a sequence of actions for the players jointly has low
regret, the uniform distribution over each player’s actions forms an approximate equilibrium:

▶ Theorem 1 (No-Regret Dynamics [14]). Let S1 and S2 be convex, and suppose W (·, s2) :
S1 → R≥0 is convex for all s2 ∈ S2 and W (s1, ·) : S2 → R≥0 is concave for all s1 ∈ S1. Let
(s1

1, s2
1, . . . , sT

1 ) and (s1
2, s2

2, . . . , sT
2 ) be sequences of actions for each player. If for ν1, ν2 ≥ 0,

the regret of the players jointly satisfies

T∑
t=1

W (st
1, st

2) − min
s1∈S1

T∑
t=1

W (s1, st
2) ≤ ν1T max

s2∈S2

T∑
t=1

W (st
1, s2) −

T∑
t=1

W (st
1, st

2) ≤ ν2T

then the pair (s̄1, s̄2) is a (ν1 + ν2)-approximate equilibrium, where s̄1 = 1
T

∑T
t=1 st

1 ∈ S1 and
s̄2 = 1

T

∑T
t=1 st

2 ∈ S2 are the uniform distributions over the action sequences.

Additionally, we define a Cost Sensitive Classification (CSC) oracle over a classification
model class H, which we will use as an efficient subroutine in our algorithm.

▶ Definition 12 (Weighted Cost-Sensitive Classification Oracle for H [2]). An instance of
a Weighted Cost-Sensitive Classification problem, or a CSC problem, for the class H, is
given by a set of n tuples {w(xi), xi, c0

i , c1
i }n

i=1 such that c1
i corresponds to the cost for

predicting label 1 on sample xi and c0
i corresponds to the cost for prediction label 0 on

sample xi. The weight of xi is denoted by w(xi). Given such an instance as input, a
CSC(H) oracle finds a hypothesis h ∈ H that minimizes the total cost across all points:
h ∈ argminh′∈H

∑n
i=1 w(xi)

[
h′(xi)c1

i + (1 − h′(xi))c0
i

]
.
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3 Computing Sampling Weights from a Proxy (QP Approach)

Now we introduce our first methodological contribution: a selection approach for producing
a balanced set given a proxy. At a high level, our approach involves mapping each example
to an acceptance probability. We construct such a mapping by labeling the range of the
proxy g : X → N with acceptance probabilities and then selecting samples for our set by
applying the proxy function to a sample and keeping it with probability corresponding to
the element of the range of the proxy that the point maps to.

Recall the condition distribution matrix A, where each row represents the distribution of
z values mapped to a given proxy value. Our goal is to find acceptance probabilities such
that the induced distribution on retained points is uniform over the protected attributes. By
Lemma 10, such probabilities exist if A contains the uniform distribution in its convex hull.
Consider the system qA = U , where U = ( 1

K , ..., 1
K ) and q must be a length ℓ stochastic

vector. If there is a solution for q, we consider this a valid acceptance rate scheme and use it
to derive the selection probabilities for our filtering problem. If there is not an exact solution
(which will happen frequently) we take argminq∥qA−U∥2 as our best acceptance rate scheme.
Because this involves solving a quadratic program, we refer to the proxies and accompanying
selection schemes produced by this approach as QP (Quadratic Program) proxies.

Algorithm 1 Finding Acceptance Probabilities ρ.
Input: proxy g, D = {(xi, zi)}n

i=1, number of sensitive groups K

for j in Range(g) do
For k in [K], let ak = Prz|x∼D[z = k|g(x) = j]
Let r̂j = Prx∼D[g(x) = j]

Let A be the matrix with kth row ak and let U = ( 1
K , ..., 1

K )
q = argminq∥qA − U∥2 s.t. qi ≥ 0 and

∑
qi = 1

For j in Range(g), set ρj = qj

r̂j

Let C = maxj ρj and normalize ρj = ρj/C

return ρ, A

Algorithm 2 Filtering with ρ.
Input: g, ρ, Px

Draw x ∼ Px and compute g(x)
With probability ρg(x), accept x into sample

▶ Lemma 13 (Filtering According to ρ). Consider acceptance probabilities ρ and conditional
distribution matrix A returned by Algorithm 1. Then, if U ∈ C(A), filtering according to ρ

as in Algorithm 2 induces a uniform distribution over protected attributes.

Proof. We want to show that the distribution over sensitive attributes in the filtered set is
uniform. We begin by expressing the distribution over sensitive attributes in the filtered set
constructively, as the distribution obtained from sampling according to ρ. From there, we
plug in our definitions of ak,j as the jth element in the kth row of the conditional distribution
matrix of z values given proxy values and as well as our definition of r̂j as the marginal
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4:8 Balanced Filtering via Disclosure-Controlled Proxies

probability that a proxy value is j. Finally, we use the result that qA = U = ( 1
K ... 1

K )∑
j∈Range(g)

ρj Pr[z = k, g(x) = j] =
∑

j∈Range(g)

ρj Pr[z = k|g(x) = j] Pr[g(x) = j]

=
∑

j∈Range(g)

ak,j r̂jρj =
∑

j∈Range(g)

ak,jqj = 1
K

◀

4 Learning an (α, β) Proxy

We have discussed a proxy function g : X → N that maps samples to proxy groups and
described the conditional distribution matrix A indicating the distribution of sensitive
attributes within each proxy group. In Section 3, we showed how A can be used to derive
acceptance probabilities for each group, such that under appropriate conditions, selecting
according to these probabilities induces a uniform distribution over the protected attributes.
Up until now, however, we have referenced A as fixed – we have used it to derive retention
probabilities but have not described how it and the proxy can be generated. Recall that
our proxy function g ∈ G takes the form of a decision tree, where each leaf is a proxy group.
Therefore, each row in A, corresponding to the distribution over sensitive attributes in a
given proxy group, also corresponds to the distribution over these attributes in a given leaf.

We grow our decision tree by sequentially making splits over the feature space – our tree
will start as a stump and our matrix will have just one row, then we will split the tree into
two leaves and the matrix will have two rows, and we will continue in this manner, splitting
a leaf (and adding a row to the matrix) at each iteration. We will make these splits by
employing a classification function from the pre-specified model class H ⊆ {h : X → {0, 1}}
assigned to each leaf. Because the two representations, as a matrix or a tree, afford different
analytical advantages, we will continue to refer to both as we derive our algorithm. One
advantage of the matrix representation is that it allows us to reason about the convex hull of
a set of conditional distributions. Lemma 10 showed that there is a solution to qA = U for a
stochastic vector q if and only if U lies in the convex hull of A. Our goal will be to grow our
tree (and the matrix A) so that the infU ′∈C(A)∥U ′ − U∥2 shrinks at each iteration – until
finally U is contained within (or sufficiently close to) C(A).6

We begin with a geometric interpretation of C(A) and describe how it changes as our
tree and conditional distribution matrix expand. In particular, we grow a tree that has
leaves V and keep track of the corresponding matrix A of sensitive attribute distributions
conditional on their classification by the tree. We can always label the leaves of a tree with a
binary sequence, so from now on we will identify each V with a binary sequence. Using this
description, we derive sufficient conditions to decrease the Euclidean distance between C(A)
and U . We begin with several definitions that we will use to characterize C(A).

▶ Definition 14 (Vertex). Let R be a bijective mapping of vertices to a rows in A. Then
V ∈ {0, 1}N is a vertex of C(A) if R(V ) corresponds to a row ai such that ai /∈ C({aj}j<i).

Note that in our context this means that each row of A corresponds to a vertex of C(A)
as long as it cannot be represented as a convex combination of the other rows. Next, we
introduce the function that is used at a node of the decision tree to partition samples into
the left or right child. It will also be convenient in our algorithm to make use of randomized
splitting functions, so we handle both cases.

6 Algorithms 1 and 2 and Lemma 13 extend easily to distributions other than the uniform.
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▶ Definition 15 (Splitting Function). We call hV ∈ H a deterministic splitting function at
vertex V . A randomized splitting function h̃V ∈ ∆H is a distribution supported on a finite
set of deterministic splitting functions {hi

V }n
i=1 such that h̃V (x) = hi

V (x) with probability 1
n

for all i.

Each vertex V is paired with a splitting function h̃V operating on samples mapped to V .
To model the expected action of a randomized splitting function, we introduce the notion
of sample weights, where the weight of a sample x at V is the probability that x reaches
V in its random walk down the tree (as determined by the randomized splitting function).
Here, V \0 indicates the parent of V if V ends in 0, and V \1 indicates the parent if V ends
in 1. Note that because V is a binary sequence, we can apply the modulo operator with the
binary representation of 2 to isolate the last digit.

▶ Definition 16 (Sample Weights). The weight of a sample x at vertex V is defined as follows:

w0(x) = 1 and for V ̸= 0, wV (x) =
{

wV \0(x) · E[h̃V \0(x)] if V mod 2 = 0
wV \1(x) · E[1 − h̃V \1(x)] if V mod 2 = 1

}
We distinguish between V and the collection of weighted samples represented by V, lV .

▶ Definition 17 (Collection of Weighted Samples at V ). Given randomized splitting functions
{h̃i}V

i=0, the collection of weighted samples at V is denoted by lV = {wV (x), (x, z) : (x, z) ∈ S}.

▶ Definition 18 (Vertex Split). A vertex split results from applying h̃V to x ∈ lV , where
lV 0 = {wV 0(x), (x, z) : (x, z) ∈ S} and lV 1 = {wV 1(x), (x, z) : (x, z) ∈ S}.

After V is split into V0 and V1, V is no longer a vertex, whereas V0 and V1 may be. So, the
number of leaves in the tree, and therefore the number of rows in A, increased by at most 1.

4.1 Growing the Convex Hull and Learning a Splitting Function
Imagine that we have started to grow our proxy tree, but U is not in C(A). We would like
to expand C(A) to contain U , and intuitively, we might like to expand C(A) in the direction
of U . One way to do so is to choose a vertex V to split into two vertices, V 1 and V 0. We
assume that V 1 is the split such that R(V 1) − R(V ) is most in the direction of U − U ′, where
U ′ is the closest point in Euclidean distance to U in C(A).

▶ Definition 19 (Convex Hull Notation). Let θ be the angle between R(V 1) − R(V ) and
U − U ′, and U ′′ be the closest point to U on the line segment R(V 1) − U ′:

U ′ = arg min
U∗∈C(A)

∥U − U∗∥2

cos θ = ⟨R(V 1) − R(V ), U − U ′⟩
∥R(V 1) − R(V )∥2∥U − U ′∥2

U ′′ = tU ′ + (1 − t)R(V 1) where
t = argmin

0<t∗<1
∥U − (t∗U ′ + (1 − t∗)R(V 1))∥2

R(V 1)

U

R(V )
U ′

R(V 0)

θ
ϕ

U ′′

We show that, given certain assumptions, we can lower bound how much this splitting process
will decrease the distance from C(A) to U . The first condition in Lemma 20 will be used to
derive an objective function over which we can optimize to find a splitting function. The
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second and third conditions limit the theory to the case where we can prove our progress
lemma. The second condition says that the distance between R(V ) and R(V 1) has to be
sufficiently large compared to the existing distance between the uniform distribution and
its projection onto C(A). The third condition is needed for the proof, allowing us to make
arguments based on right triangles – it is satisfied when the second condition is met and the
angle between R(V 1) − R(V ) and U − U ′ is not too large. As these conditions are potentially
limiting theoretically, we verify that they are indeed frequently satisfied in the experiments.

▶ Lemma 20 (Progress via Vertex Split). When a vertex V is split, forming new vertices V 0
and V 1, the distance from the convex hull to U decreases by at least a factor of 1 − γ if

⟨R(V 1) − R(V ), U − U ′⟩/∥U − U ′∥2 ≥ f(γ) and (1)

∥R(V 1) − R(V )∥2 ≥ (1 − γ)−1
√

2γ − γ2∥U − U ′∥2, R(V 1) − U ′ ⊥ U − U ′′ where

f(γ) :=

√
(2γ − γ2)

(
2 − ∥R(V ) − U ′∥2

2 + 2∥R(V ) − U ′∥2(1 − γ)
√

(γ2 − 2γ)∥R(V ) − U ′∥2
2 + 2

)
▶ Remark 21. These are sufficient, but not necessary, conditions for a split to make sufficient
progress. Empirically, we simply require that each split decreases the distance from the
convex hull to U by at least a factor of 1 − γ for the algorithm to continue.
To summarize, these conditions ask that we split a vertex of the convex hull (equivalently a
leaf of the proxy tree), so that the convex hull expands in the direction of the target vector.
In other words, we want to split a leaf into the over-represented groups in one child and
the under-represented groups in the other child, without violating the disclosure constraints.
Lemma 1 also involves conditions that make sure that this split is sufficiently large to move
the convex hull closer to the uniform rather than making minute progress. Having identified
a sufficient condition for a split to make suitable progress toward containing the uniform
distribution within the convex hull, we present a subroutine to find an α-proxy. We first
express Equation (1) in a form amenable to use in a linear program:

▶ Lemma 22 (Objective Function). Let mV be the number of samples in lV and let hV be
the splitting function for vertex V . The condition ⟨R(V 1)−R(V ),U−U ′⟩

∥U−U ′∥2
≥ f(γ) is equivalent to

mV∑
i=1

wV (xi)hV (xi)(−Q +
K∑

k=1
1zi=k (U ′

k − Uk)) ≤ 0

for QV,U ′,γ := ∥U ′ − U∥f(γ) +
∑mV

i=1 wV (xi)
∑K

k=1 1zi=k (U ′
k − Uk)∑mV

i=1 wV (xi)

Proof. We begin by expanding the scaled dot product between R(V 1) − R(V ) and U − U ′:

⟨R(V 1) − R(V ), U − U ′⟩
∥U − U ′∥

=
mV∑
j=1

wV (xj)
K∑

k=1
1zj=k

(
hV (xj)∑mV

j=1 wV (xj)hV (xj)
− 1∑mV

j=1 wV (xj)

)
Uk − U ′

k

∥U − U ′∥

Asking ⟨R(V 1)−R(V ),U−U ′⟩
∥U−U ′∥ ≥ f(γ) is equivalent to asking ⟨R(V 1)−R(V ),U ′−U⟩

∥U ′−U∥ ≤ f(γ) or:

∑mV

j=1 wV (xj)hV (xj)
∑K

k=1 1zj=k (U ′
k − Uk)∑mV

i=1 wV (xj)hV (xj)
≤ ∥U ′ − U∥f(γ) +

∑mV

j=1 wV (xj)
∑K

k=1 1zj=k (U ′
k − Uk)∑mV

j=1 wV (xj)
(2)
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Finally, the right-hand side is constant given V , U ′, and γ. Therefore, we represent it

by a constant QV,U ′,γ := ∥U ′ − U∥f(γ) +
∑mV

j=1
wV (xj)

∑K

k=1
1zj =k(U ′

k−Uk)∑mV

j=1
wV (xj)

. This allows us to

rewrite Equation (2) as

mV∑
j=1

wV (xj)hV (xj)
(

−QV,U ′,γ +
K∑

k=1
1zj=k (U ′

k − Uk)
)

≤ 0 ◀

We use Lemma 22 to form a cost-sensitive classification problem for vertex V , where the
constraints make sure that any candidate proxy is no more than α-disclosive:

min
hV ∈H

mV∑
i=1

wV (xi)hV (xi)
(

−QV,U ′,γ +
K∑

k=1
1zi=k (U ′

k − Uk)
)

s.t. ∀k (3)

|
∑mV

i=1 wV (xi)hV (xi)1zi=k∑mV

i=1 wV (xi)hV (xi)
− rk| ≤ α and |

∑mV

i=1 wV (xi)(1 − hV (xi))1zi=k∑mV

i=1 wV (xi)(1 − hV (xi))
− rk| ≤ α

Next, we will appeal to strong duality to derive the corresponding Lagrangian. We note
that computing an approximately optimal solution to the linear program corresponds to
finding approximate equilibrium strategies for both players in the game in which one player,
the “Learner,” controls the primal variables and aims to minimize the Lagrangian value.
The other player, the “Auditor,” controls the dual variables and seeks to maximize the
Lagrangian value. If we construct our algorithm in such a way that it simulates repeated play
of the Lagrangian game such that both players have sufficiently small regret, we can apply
Theorem 1 to conclude that our empirical play converges to an approximate equilibrium of
the game. Furthermore, our algorithm will be oracle efficient: it will make polynomially
many calls to oracles that solve weighted cost-sensitive classification problems over H.

To turn Program (3) into a form amenable to our two-player zero-sum game formulation,
we expand H to ∆H, allow our splitting function to be randomized, and take expectations
over the objective and constraints with respect to deterministic splitting functions drawn
according to h̃V . Doing so yields the following CSC problem to be solved for vertex V :

min
h̃V ∈ ∆H

EhV ∼h̃V

mV∑
i=1

wV (xi)hV (xi)
(

−QV,U ′,γ +
K∑

k=1
1zi=k (U ′

k − Uk))
)

s.t. EhV ∼h̃V

mV∑
i=1

wV (xi)h̃V (xi) (1zi=k − rk − α) ≤ 0 ∀k,

EhV ∼h̃V

mV∑
i=1

wV (xi)(1 − hV (xi)) (1zi=k − rk − α) ≤ 0 ∀k,

EhV ∼h̃V

mV∑
i=1

wV (xi)hV (xi) (rk − 1zi=k − α) ≤ 0 ∀k,

EhV ∼h̃V

mV∑
i=1

wV (xi)(1 − hV (xi)) (rk − 1zi=k − α) ≤ 0 ∀k

(4)

We solve this constrained optimization problem by simulation a zero-sum two-player
game on the Lagrangian dual. Given dual variables λ ∈ R4K

≥0 such that ∥λ∥2 ≤ λmax for
some constant λmax, the Lagrangian of Program (4) is:
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L(λ, h̃V ) = EhV ∼h̃V

mV∑
i=1

wV (xi)
(

−QV,U ′,γhV (xi) +
K∑

k=1
hV (xi)1zi=k (U ′

k − Uk) +

(λk,1hV (xi) + λk,0(1 − hV (xi))) (1zi=k − rk − α) +
(λk,3hV (xi) + λk,2(1 − hV (xi))) (rk − 1zi=k − α))

Given the Lagrangian, solving Program (4) is equivalent to solving the minimax problem
minh̃V ∈∆H maxλ∈R4K

≥0
L(λ, h̃V ) = maxλ∈R4K

≥0
minh̃V ∈∆H L(λ, h̃V ), where the minimax theo-

rem holds because the range of the primal variable, i.e., ∆H is convex and compact, the
range of the dual variable, i.e., R4K

≥0 is convex, and the Lagrangian function L is linear in both
primal and dual variables. Therefore, we focus on solving the minimax problem, which can be
seen as a two-player zero-sum game between the primal player (the Learner) who is controlling
h̃V and the dual player (the Auditor) who is controlling λ. Using no-regret dynamics, we
will have the Learner deploy its best response strategy in every round, which will be reduced
to a call to CSC(H) and let the Auditor with strategies in Λ = {λ : 0 ≤ λ ≤ λmax} play
according to Online Projected Gradient Descent [45].

Our local algorithm for splitting a vertex is described in Algorithm 3, and its guarantee
is given in Theorem 2. We note that the algorithm returns a distribution over H. Given
an action λ of the Auditor, we write LC(λ) for the vector of costs for labeling each data
point as 1. We view our costs as the inner product of the outputs of a deterministic splitting
function hV on the mV points and corresponding cost vector. We define the cost for labeling
an example 0 to be 0 for all x (c0(x) = 0), and the cost for labeling an example 1 as:

c1(x) = wV (x)(−QV,U ′,γ +
K∑

k=1
1zj=k (U ′

k − Uk) + (λk,1 − λk,0) (1z=k − rk − α)

+ (λk,3 − λk,2) (rk − 1z=k − α))

Algorithm 3 Learning a Splitting Function.
Input: {wV (xi), (xi, zi)}mV

i=1, model class H, CSC(H), α, ϵ, γ

Set λmax = m(K − 1)/Kϵ + 2 and T = ⌈(2Km (1 + α) λmax/ϵ)2⌉
Initialize λk = 0 ∀k

for t = 1 . . . T do
ht = argminh∈H⟨LC(λ), h⟩
λt = λt−1 + t−1/2 (∇λL)+; If ∥λt∥ > λmax, set λt = λmax

λt

∥λt∥
return h̃V := uniform distribution over ht

V

▶ Theorem 2 (Learning an (α + ϵ)-Disclosive Proxy). Fix α, ϵ, suppose H has finite V C

dimension, and suppose ∃ h̃∗
V ∈ ∆H that is a feasible solution to Program (4). Then,

Algorithm 3 returns a distribution h̃V that is an ϵ-optimal solution to Program (4).
Theorem 2 says that with appropriate conditions on the model class H and access to

CSC(H), Algorithm 3 returns a model satisfying the conditions of Program 4 (i.e. produces
an acceptable split) up to an additive factor of ϵ. A few requirements of this theorem may
not hold in practice and thus motivate our experiments. The choice of a base model class H
impacts whether a feasible solution exists – typically more complex model classes will be more
likely to contain a feasible solution, but this complexity will impact the generalization bounds.
Also, the guarantee relies on Algorithm 3 having access to a cost sensitive classification oracle.
In practice, we typically do not have such an oracle so must use a heuristic.
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4.2 Decision Tree Meta-Algorithm
Finally, we use these results to greedily construct a proxy g : X → N. We do this iteratively
using a decision tree, where leaves correspond to proxy groups. We split the data into these
leaves in such a way that when we consider the distribution of groups in each leaf, the
uniform vector is contained in their convex hull. This allows us to select a balanced set
in expectation. In addition, we require that the proxy be α-disclosive at every step. We
grow the tree as follows, for some tolerance β: (1) If ∥U − C(A)∥2 ≤ β, output the tree.
(2) Otherwise, look for a leaf to split. If we find a suitable split, make it, and continue. If
not, output the tree. To determine if a split is suitable, we use the results from Section 4.1:
for fixed approximation factor ϵ, disclosivity budget α − ϵ, and progress parameter γ, a
splitting function h̃V must be an ϵ-approximate solution to Program 4 (and therefore no
more than α-disclosive) at vertex V . If we can find such an h̃V for at least ln β−ln

√
2

ln 1−γ rounds,
the decision tree will be an (α, β) proxy.

Algorithm 4 Learning an (α, β) Proxy.
Input: D = {xi, zi}n

i=1, CSC(H), α, ϵ, γ, β

while infU ′∈C(A)∥U ′ − U∥2 > β do
Apply Algorithm 3 to find feasible split (if no feasible split, terminate)
Expand tree T and re-calculate A, C(A)

return T , A

▶ Theorem 3 (Learning an (α, β) Proxy). If the conditions of Lemma 20 are satisfied at every
split, Algorithm 4 produces an (α, β) proxy in-sample within ln β−ln

√
2

ln 1−γ rounds.

Proof. Let Ai∗ be the conditional distribution matrix returned by Algorithm 4 after i∗

rounds. Our goal is to produce Ai∗ such that ∥U − C(Ai∗)∥2 ≤ β. Let A0 be the initial
conditional distribution matrix, and observe that if we decrease the distance from the
current conditional distribution matrix to U by a factor of 1 − γ each round, at round i,
∥U − C(Ai)∥2 ≤ (1 − γ)i∥U − C(A0)∥2. Further, recall that ∥U − C(A0)∥2 ≤

√
2 because

both U and C(A0) must lie in the unit simplex. Setting ∥U − C(Ai∗)∥2 ≤ β, we have
β ≤ (1 − γ)i∗√

2 =⇒ β√
2 ≤ (1 − γ)i∗ =⇒ i∗ ≥ ln β−ln

√
2

ln (1−γ) . Then, after i∗ = ln β−ln
√

2
ln (1−γ)

rounds, ∥U − C(Ai∗)∥2 ≤ γ. Finally, because our linear program constrains splits to only
those that guarantee α-disclosiveness, the final proxy must be α-disclosive in-sample. ◀

Theorem 3 allows us to upper bound the number of times that Algorithm 4 performs a
split and, therefore, the number of unique proxy groups generated. The theorem’s hypothesis
states, informally, that it must be possible to find a splitting function at each round that
makes both a sufficiently large split (i.e. the new vertex is sufficiently far from the old
vertex compared to the current distance from the convex hull to the target uniform) and the
split is sufficiently in the direction of the target. This theorem, in turn, allows us to state
generalization bounds depending on both the number and size of each proxy group.

▶ Theorem 4 (Generalization). Let ϵ, δ, γ > 0 and G be the proxy class. Let there be K

sensitive groups. If each proxy group has at least 1
2ϵ2 ln 8K·V C(G)(ln β−ln

√
2)

δ ln (1−γ) samples, with

probability 1 − δ, an (α, β) proxy in-sample will be an (α + 2ϵ, β + Kϵ
√

ln β−ln
√

2
ln (1−γ) ) proxy

out-of-sample.

Theorem 4 presents the number of samples needed in each proxy group to obtain a
sufficiently small generalization gap in both the disclosure level and imbalance – it is based
on the size of the smallest proxy group in-sample, which might get quite small in practice.
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Furthermore, the generalization gap for β scales by an additive factor of the number of
sensitive groups, K. Therefore, as our problem becomes more challenging, more samples are
required to achieve a proxy that performs similarly out-of-sample compared to in-sample.

5 Experiments

Here, we test our two main methodological contributions. The first is to use Algorithms 1 and 2
to solve minq∥qA − U∥2 subject to qi ≥ 0 ∀i and

∑
i qi = 1 and derive the corresponding

acceptance probabilities ρ for the given proxy. The second is to additionally use Algorithms 3
and 4 to learn a decision-tree proxy guaranteed not to exceed a specified level of disclosure.
1. QP Regression and Decision Tree Proxies: We train a multinomial logistic regression

model or decision tree to directly predict the sensitive attribute but select our acceptance
probabilities by employing Algorithms 1 and 2.

2. (α, β) Proxy: We use Algorithm 4 to develop a proxy for a specified disclosure budget.
We compare the performances of these proxy functions against those of two baselines:7
1. Naive Regression and Decision Tree proxies: We train models to directly predict sensitive

attributes then sample the same number of points from each predicted group, inducing a
conditional distribution matrix of the distribution of sensitive attributes in each proxy
group. We then calculate the degree of disclosure and imbalance of the sampled set.

2. SMOTE [8]: We train a decision tree to directly predict groups and then, using these
predictions as input for SMOTE, balance the data by synthesizing minority examples.

5.1 Data, Hyperparameters, and Compute Time
We evaluate the disclosure, α, and imbalance, β, obtained by each proxy filtering scheme on
the Bank Marketing [25, 12], Adult [12], and Communities and Crime data sets [12, 35, 37, 38,
39, 30], for which we have 5, 4, and 12 sensitive attribute values, respectively. The Marketing
data set consists of 45211 labeled samples with 48 non-sensitive attributes and a sensitive
attribute of job type. The downstream classification goal is to predict whether a client will
subscribe a term deposit based on a phone call marketing campaign of a Portuguese banking
institution. The Adult data set consists of 48842 labeled samples with 14 non-sensitive
attributes, and we select race as the sensitive attribute. The associated classification task is
to determine whether individuals make over $50K dollars per year. The Communities and
Crime data set consists of 1594 samples with 132 non-sensitive features, race as the sensitive
group, and the number of violent crimes per population as the prediction task.

For each experiment, we run trials with 20 different seeds, and for each seed, we input a
grid of values with increments of 0.1 for the disclosure parameter, α, evenly spaced between
0 and 1. We then average over the seeds for each α and calculate empirical 95% confidence
intervals (which are displayed as the shaded region around each line in the plots). Each
data set is split into three parts of sizes 50%, 30%, and 20%. The first is used to train the
proxy. The second is used first to test the filtering effects of the proxy out-of-sample and
then to train a classification model on to study downstream performance. The third is the
set upon which we apply these classifiers trained on filtered and unfiltered data to see how

7 For the Naive Proxies, QP Proxies, and SMOTE, we interpolate between a uniform and proxy-specific
sampling strategy by post-processing: We predict z with the proxy and then, with probability η ∈ [0, 1],
uniformly re-assign the prediction. Finally, we apply Algorithm 2 to sample according to the post-
processed proxy labels and plot the balance and disclosure of the corresponding data set with respect to
the post-processed proxy values. We use a large point marker for the results without post-processing
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the group-wise accuracy levels are affected. For brevity, we will refer to these three splits as
the “Train” set, “Test” set, and “Post-Test” set, respectively. See Appendix B for an analysis
of downstream fairness effects induced by our strategy.

On the Adult and Communities and Crime data sets, one run over the grid of α values
typically took between 20 minutes and two hours for the (α, β) proxy. On the Marketing
data set, running one full experiment over the grid of α values took about three hours. The
parameter γ was set to 0.0001, the maximum height of the proxy tree was set to 15, and the
learning process was stopped once the distance between the convex hull of the conditional
distribution matrix and the uniform distribution fell below 0.05. As we used publicly available
tabular data sets that has already been cleaned, there were no missing values.

Finally, the choice of oracle (the base model class for the (α, β) proxy) is heuristic – as we
do not have a true cost-sensitive classification oracle for Algorithm 3, we choose two models
that allow us to predict the cost of each example and then classify based on the cost’s sign.
We experiment with a linear threshold function – the paired regression classifier (PRC) used
in [19] and defined below – as well as the XGBoost Regressor model. We found that the
PRC was simpler and seemed to perform at least as well as the XGBoost Regressor, so we
relegate the analysis for the latter to Appendix B.

▶ Definition 23 (Paired Regression Classifier [19]). The paired regression classifier operates as
follows: We form two weight vectors, z0 and z1, where zk

i corresponds to the penalty assigned
to sample i in the event that it is labeled k. For the correct labeling of xi, the penalty is 0. For
the incorrect labeling, the penalty is the current sample weight of the point, wV . We fit two
linear regression models h0 and h1 to predict z0 and z1, respectively, on all samples. Then,
given a new point x, we calculate h0(x) and h1(x) and output h(x) = argmink∈{0,1} hk(x).

5.2 Results
In Figure 1, on the Communities data set, the (α, β) proxy Pareto-dominates the other
approaches in sample, while the QP proxies Pareto-dominate SMOTE and the Naive proxies.
All methods generalize well. On the Adult data set, the (α, β) proxy primarily dominates
the remaining approaches in-sample. The generalization performance for all methods, but
particularly the (α, β) proxy, is weaker on the Adult data set. This is likely because there
are slightly more sensitive groups than in the Communities data set, and the acceptance
probabilities were sparse. On the Marketing data set, the (α, β) and QP Decision Tree proxies
exhibit favorable performance in-sample, driving the imbalance to just above zero at higher
levels of disclosure. The plot on the test set shows a more modest improvement in balance
for all methods. One source of variance in Figure 1 is the generalization performance by the
(α, β) proxy. We believe this to be due to the size of the smallest proxy group being quite
low (especially for the Marketing data set which has 12 sensitive groups). Recall that the
generalization gap depends directly on this quantity. There is also nothing in our method to
prevent a sparse sampling scheme. Empirically, we found that in cases where generalization
results were weak, the acceptance probabilities were nonzero for only a handful of the final
proxy groups. Addressing these weaknesses, if possible, could strengthen our approach.

5.3 Discussion and Future Work
Our primary conceptual point is that even though the final goal (balance) references the
protected attributes, it is a condition on the aggregate composition of the final selected set.
Therefore, achieving it does not necessarily require finding a predictor strongly correlated with
the protected attribute. We emphasize that while the QP proxies (our secondary contribution)
are appealingly simple and provide a range of disclosure levels after post-processing, they
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(a) Communities.

(b) Adult.

(c) Marketing.

Figure 1 Trade-off of Disclosure and Balance of Proxies on Communities, Adult, and Marketing.

still involve explicitly training a classifier for the attribute. In contrast, the (α, β) proxy (our
primary contribution) never involves training a classifier at any step of the process that is
more disclosive than a pre-specified threshold. While this does not solve the challenging legal
and technical problems associated with proxy use in high-stakes selection processes, it takes
a step in this direction by permitting controlled trade-offs between balance and disclosure.
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A Omitted Proofs

▶ Lemma 20 (Progress via Vertex Split). When a vertex V is split, forming new vertices V 0
and V 1, the distance from the convex hull to U decreases by at least a factor of 1 − γ if

⟨R(V 1) − R(V ), U − U ′⟩/∥U − U ′∥2 ≥ f(γ) and (1)

∥R(V 1) − R(V )∥2 ≥ (1 − γ)−1
√

2γ − γ2∥U − U ′∥2, R(V 1) − U ′ ⊥ U − U ′′ where

f(γ) :=

√
(2γ − γ2)

(
2 − ∥R(V ) − U ′∥2

2 + 2∥R(V ) − U ′∥2(1 − γ)
√

(γ2 − 2γ)∥R(V ) − U ′∥2
2 + 2

)
Proof. We want to find sufficient conditions for ∥U − U ′′∥ ≤ (1 − γ)∥U − U ′∥. Let ϕ be
the angle between the vectors U − U ′′ and U − U ′. Then ∥U − U ′′∥ = ∥U − U ′∥ cos ϕ.
So, we would like to find conditions for which cos ϕ ≤ (1 − γ). By the law of cosines,
∥V 1 − U ′∥2 = ∥V − U ′∥2 + ∥V 1 − V ∥2 − 2∥V − U ′∥∥V 1 − V ∥ cos(90 + θ) and

cos(ϕ) = ∥V − U ′∥2 + ∥V 1 − U ′∥2 − ∥R(V 1) − R(V )∥2

2∥V − U ′∥∥V 1 − U ′∥

= ∥V − U ′∥ − ∥R(V 1) − R(V )∥ cos(90 + θ)√
∥V − U ′∥2 + ∥R(V 1) − R(V )∥2 − 2∥V − U ′∥∥R(V 1) − R(V )∥ cos(90 + θ)

= ∥V − U ′∥ + ∥R(V 1) − R(V )∥ sin θ√
∥V − U ′∥2 + ∥R(V 1) − R(V )∥2 + 2∥V − U ′∥∥R(V 1) − R(V )∥ sin θ

Setting −(1 − γ) ≤ cos ϕ ≤ 1 − γ and solving for sin θ, we see that this is satisfied by

sin θ ∈ (γ2 − 2γ)∥R(V ) − U ′∥
∥R(V 1) − R(V )∥ ±

(1 − γ)
√

(γ2 − 2γ)∥R(V ) − U ′∥2 + ∥R(V 1) − R(V )∥2

∥R(V 1) − R(V )∥

To find a set of values for cos θ that make the above expression always true, we will
consider only γ for which the set of values of sin θ includes the origin. This is true for
γ ∈

[
0, 1 −

√
∥V −U ′∥2

∥V −U ′∥2+∥R(V 1)−R(V )∥2

]
. Then,

cos2 θ ≥ 1 −

(
(γ2 − 2γ)∥R(V ) − U ′∥

∥R(V 1) − R(V )∥ +
(1 − γ)

√
(γ2 − 2γ)∥R(V ) − U ′∥2 + ∥R(V 1) − R(V )∥2

∥R(V 1) − R(V )∥

)2

Rearranging, we have

∥R(V 1) − R(V )∥2 cos2 θ ≥

∥R(V 1) − R(V )∥2 −
(

(γ2 − 2γ)∥R(V ) − U ′∥ + (1 − γ)
√

(γ2 − 2γ)∥R(V ) − U ′∥2 + ∥R(V 1) − R(V )∥2
)2

=
(
2γ − γ2) ·

(
∥R(V 1) − R(V )∥2 − ∥R(V ) − U ′∥2+

2∥R(V ) − U ′∥ (1 − γ)
√

(γ2 − 2γ) ∥R(V ) − U ′∥2 + ∥R(V 1) − R(V )∥2
)

Using the fact that ∥R(V 1) − R(V )∥2 ≤ 2, we upper bound the right-hand side to say
that a split satisfying the following condition will guarantee that we decrease the distance
from U to the convex hull by (1 − γ):

∥R(V 1) − R(V )∥ cos θ ≥(
2γ − γ2) 1

2
(

2 − ∥R(V ) − U ′∥2 + 2∥R(V ) − U ′∥ (1 − γ)
√

(γ2 − 2γ)∥R(V ) − U ′∥2 + 2
) 1

2 := f (γ) ◀

FORC 2024



4:20 Balanced Filtering via Disclosure-Controlled Proxies

▶ Theorem 2 (Learning an (α + ϵ)-Disclosive Proxy). Fix α, ϵ, suppose H has finite V C

dimension, and suppose ∃ h̃∗
V ∈ ∆H that is a feasible solution to Program (4). Then,

Algorithm 3 returns a distribution h̃V that is an ϵ-optimal solution to Program (4).

Proof. We begin by upper bounding the L2 norm of the gradient:

∥∇λL(λ, h̃V )∥2 =
(

K∑
k=1

m∑
i=1

EhV ∼h̃V
w(xi)hV (xi) (1zi=k − rk − α)

)2

+

(
K∑

k=1

m∑
i=1

EhV ∼h̃V
w(xi)(1 − hV (xi)) (1zi=k − rk − α)

)2

+

(
K∑

k=1

m∑
i=1

EhV ∼h̃V
w(xi)hV (xi) (rk − 1zi=k − α)

)2

+

(
K∑

k=1

m∑
i=1

EhV ∼h̃V
w(xi)(1 − hV (xi)) (rk − 1zi=k − α)

)2

≤ 4K2m2 (1 + α)2

We now apply the regret bound for Online Gradient Descent from [45]. With an appro-
priate choice of η (derived below), we bound the Auditor’s average regret over T rounds:

RT

T
≤

supλ,λ′∈Λ∥λ − λ′∥∥∇λL(h̃, λ)∥
√

T

T
≤

2Km (1 + α) supλ,λ′∈Λ∥λ − λ′∥
√

T

Setting T ≥
(

2Km(1+α) supλ,λ′∈Λ∥λ−λ′∥
ϵ

)2
and η = supλ,λ′∈Λ∥λ−λ′∥

2Km(1+α)
√

T
, we have that RT

T ≤ ϵ.
Because the Learner plays a no-regret strategy, we can apply Theorem (1) to assert that
the mixed strategy of the Auditor and Learner together form an ϵ-approximate equilibrium.
Next, we must show that an approximate solution to the game corresponds to an approximate
solution to Program (4). We will show this using two cases. In the first case, we consider some
h̃∗

V that is a feasible solution to Program (4) at vertex V and a λ̂ that is an ϵ−approximate
minimax solution to the Lagrangian game specified in the Lagrangian above. Now we will
analyze the case in which we have a solution h̃V that is an ϵ-approximate solution to the
Lagrangian game but is not a feasible solution for Program (4) – we will show that this is
impossible. To illustrate this, assume that we do have such a h̃V . Because it is not a feasible
solution for Program (4), some constraints must be violated. Let ξ be the magnitude of the
violated constraint, and let λ be such that the dual variable for the violated constraint is set
to λmax := supλ,λ′∈Λ∥λ − λ′∥. By definition of an ϵ-approximate minimax solution, we know
that L(λ̂, h̃V ) ≥ L(λ, h̃V ) ≥ EhV ∼h̃V

∑m
i=1 wV hV (xi)

∑K
k=1 1zi=k (U ′

k − Uk) + λmaxξ − ϵ.
Then,

EhV ∼h̃V

m∑
i=1

wV hV (xi)
K∑

k=1
1zi=k (U ′

k − Uk) + λmaxξ

≤ L(h̃V , λ̂) + ϵ ≤ L(h̃∗
V , λ̂) + 2ϵ ≤ EhV ∼h̃∗

V

m∑
i=1

wV hV (xi)
K∑

k=1
1zi=k (U ′

k − Uk) + 2ϵ

Finally, because EhV ∼h̃∗
V

∑m
i=1 wV hV (xi)

∑K
k=1 1zi=k (U ′

k − Uk) ≤ m(K−1)
K , we have that

λmaxξ ≥ m(K−1)
K + 2ϵ. Therefore, the maximum constraint violation is no more than

m(K−1)
K +2ϵ

λmax
. Setting λmax = m(K−1)

Kϵα
+ 2, h̃V does not violate any constraint by more than

ϵ. ◀
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▶ Theorem 4 (Generalization). Let ϵ, δ, γ > 0 and G be the proxy class. Let there be K

sensitive groups. If each proxy group has at least 1
2ϵ2 ln 8K·V C(G)(ln β−ln

√
2)

δ ln (1−γ) samples, with

probability 1 − δ, an (α, β) proxy in-sample will be an (α + 2ϵ, β + Kϵ
√

ln β−ln
√

2
ln (1−γ) ) proxy

out-of-sample.

Proof. Let Ãk,j = Pr(x,y,z)∼P [z = k, g(x) = j] and Ai,j = 1
n

∑n
i=1 wj(xi)1zi=k,g(xi)=j . Then,

Hoeffding’s inequality gives us that, for fixed k, j, g

Pr
D∼Ω

[∣∣∣∣∣ 1n
n∑

i=1
wj(xi)1zi=k,g(xi)=j − E(x,y,z)∼P [1zi=k,g(xi)=j ]

∣∣∣∣∣ > ϵ

]
≤ 2e−2ϵ2n

Recall from Theorem 3, our decision tree proxy will contain at most ln γ−ln
√

2
ln (1−γ) splits, and

therefore there will be at most ln γ−ln
√

2
ln (1−γ) unique proxy groups. Applying a union bound over

all k, j pairs and fixed g, we see that

Pr
D∼Ω

[
∩k,j1| 1

n

∑n

i=1
wj(xi)1zi=k,g(xi)=j−E(x,y,z)∼P [1zi=k,g(xi)=j ]| > ϵ

]
≤ 2K

ln β − ln
√

2
ln (1 − γ) e−2ϵ2n

Again applying a union bound, this time over the model class g – with VC dimension d –
as well as k, j pairs, we see that for all k, j, g,

Pr
D∼Ω

[
∩k,j1| 1

n

∑n

i=1
wj(xi)1zi=k,g(xi)=j−E(x,y,z)∼P [1zi=k,g(xi)=j ]| > ϵ

]
≤ 2dK

ln β − ln
√

2
ln (1 − γ) e−2ϵ2n

Setting this to be less than δ
3 , we obtain 2dK ln β−ln

√
2

ln (1−γ) e−2ϵ2n ≤ δ
3 , which implies n ≥

1
2ϵ2 ln 6dk(ln β−ln

√
2)

δ ln (1−γ) . Then, with probability 1 − δ
3

∥
(
A − Ã

)
ρ∥2 ≤

√√√√√ J∑
j=1

(
K∑

k=1

(
Ak,j − Ãk,j

)
· ρj

)2

<

√√√√ J∑
j=1

(Kϵρj)2 ≤ Kϵ

√
ln β − ln

√
2

ln (1 − γ)

This bounds the degradation we expect in balance when we apply the proxy out of sample.
Next, we consider the degradation in disclosiveness, which will depend on our estimates of
Prz∼Pz [z = k] and Prz|x∼Pz|x

[z = k|g(x) = j]. First, we bound the empirical estimate of
Prz∼Pz

[z = k]. Applying Hoeffding’s inequality gives
PrD∼Ω

[∣∣ 1
n

∑n
i=1 1zi=k − Ez∼Pz [1zi=k]

∣∣ > ϵ
]

≤ 2e−2ϵ2n. Applying a union bound over the
range of Z gives PrD∼Ω

[
∩k

i=1
∣∣ 1

n

∑n
l=1 1zi=k − Ez∼Pz [1zi=k]

∣∣ > ϵ
]

≤ 2Ke−2ϵ2n. Setting this
to be less than δ

3 gives us: 2Ke−2ϵ2n ≤ δ
3 =⇒ n ≥ 1

2ϵ2 ln 6K
δ .

Finally, repeating the exercise for Prz|x∼Pz|x
[z|g(x)], we have that for fixed g ∈ G and

z ∈ Z,

Pr
D∼Ω

[∣∣∣∣∣
n∑

i=1

wj(xi)∑n
i=1 wj(xi)

1zi=k|g(xi)=j −
n∑

i=1
wj(xi)Ez|x∼Pz|x

[1zi=k|g(xi)=j ]

∣∣∣∣∣ > ϵ

]
≤ 2e−2ϵ2

∑n

i=1
wj(xi)

Applying a union bound over z, g, and the VC dimension of G, and setting the
probability to be less than δ

3 gives us 2dK ln β−ln
√

2
ln (1−γ) e−2ϵ2

∑n

i=1
wj(xi) ≤ δ

3 , which implies∑n
i=1 wj(xi) ≥ 1

2ϵ2 ln 6dK(ln β−ln
√

2)
δ ln (1−γ) . Then, with probability 1 − δ both of our estimates for

Prz|x∼Pz|x
[z|g(x)] and Prz∼Pz

[z] must be within ϵ of the true parameters if we have sample
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count n ≥ 1
2ϵ2 max{ln 6K

δ , ln 6dK(ln γ−ln
√

2)
δ ln (1−γ) }. Note that max{ln 6K

δ , ln 6dK(ln γ−ln
√

2)
δ ln (1−γ) } ≤

ln 6dK(ln γ−ln
√

2)
δ ln (1−γ) . Then, taking n ≥ 1

2ϵ2 ln 6dK(ln γ−ln
√

2)
δ ln (1−γ) suffices. Finally, we can ap-

ply our concentration bounds to the expression for disclosure level. If we obtain an
α-disclosive proxy in-sample, this is equivalent to satisfying, for all z ∈ Z and g ∈ G,
|Prz|x∼D[z|g(x)] − Prz∼D[z]| ≤ α =⇒ |Prz|x∼Pz|x

[z|g(x)] − Prz∼Pz
[z]| ≤ α + 2ϵ ◀

B Additional Experimental Details

In Figure 2, we show trade-off curves for balance and disclosure when using XGB as the
base model. In these plots we also explore a slight relaxation of our (α, β) Proxy, in which
we remove the constraint

∑
i qi = 1 when solving minq∥qA − U∥2 subject to qi ≥ 0 ∀i. We

find that both the original and relaxed version perform similarly. On Communities, there
is less stability displayed by the proxies trained with the XGB base model compared to
those trained with the PRC base model. On Adult, the proxies trained with XGB as a base
model exhibit a smoother trade-off curve. On the Marketing data set, our proxy approach
dominates in sample for smaller levels of α but struggles to generalize.

(a) Communities. (b) Adult. (c) Marketing.

Figure 2 Trade-off of Disclosure and Balance for Proxy Models on the Communities, Adult, and
Marketing data sets with XGBoost Base Model.

Next, we analyze the downstream fairness impact resulting from using our proxy filtering
approach to prepare machine learning training datasets. Here, we train a model for the
data-specific classification or regression task on an unfiltered sample and a filtered sample
of the same size, and we compare the differences in gropup-wise accuracy obtained by each
model. We consider the downstream fairness impact of training a model on data that has
been filtered by our (α, β) proxy function but find our results are inconclusive. While we are
able to theoretically guarantee a certain level of balance in the filtered data set, we cannot
guarantee that the distribution over features and labels will not be skewed in the filtered set,
nor can we guarantee that the distribution over features and labels given sensitive attributes
will not be distorted. To test this, we first use an (α, β) proxy with a specified α budget to
filter the Test set into a balanced sub-sample. Then, we train two model for the dataset
specific classification task, one on the filtered data, and the other on a down-sampled version
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(a) Communities.

(b) Adult.

(c) Marketing.

Figure 3 Difference in accuracy between models trained on filtered and unfiltered data on the
Communities, Adult, and Marketing data sets with PRC base model.

of the original Test set of the same size. We calculate the accuracy of the models on each
sensitive group and then plot the difference in accuracy between the two models, calculated
as the group accuracy on the filtered data minus the group accuracy on the unfiltered data.
Thus, positive values indicate an improvement in group accuracy from training on the filtered
data, while negative values indicate a decrease. Between the three data sets, we see mixed
results, displayed in Figure 3. On the Communities data set, we broadly see improvement on
lower accuracy groups when using the model trained on the filtered data. However, results
from the Adult data set in show a decrease in performance across all groups, and results
from the Marketing data set show improvement for one of the least represented groups, but
a decrease in performance for most others.
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showed that the problem of auditing combinatorial subgroups fairness is as hard as agnostic learning.
Essentially all work on remedying statistical measures of discrimination against subgroups assumes
access to an oracle for this problem, despite the fact that no efficient algorithms are known for it. If
we assume the data distribution is Gaussian, or even merely log-concave, then a recent line of work
has discovered efficient agnostic learning algorithms for halfspaces. Unfortunately, the reduction
of Kearns et al. was formulated in terms of weak, “distribution-free” learning, and thus did not
establish a connection for families such as log-concave distributions. In this work, we give positive
and negative results on auditing for Gaussian distributions: On the positive side, we present an
alternative approach to leverage these advances in agnostic learning and thereby obtain the first
polynomial-time approximation scheme (PTAS) for auditing nontrivial combinatorial subgroup
fairness: we show how to audit statistical notions of fairness over homogeneous halfspace subgroups
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1 Introduction

The deployment of decision rules obtained using machine learning has raised the risk that the
rules may exhibit biases against historically marginalized communities. In particular, Kearns
et al. [20] raised the concern that these decision rules may be biased against sub-groups
characterized by a combination of “protected” attributes. Since there are an exponential
number of such subgroups, even detecting such statistical patterns of discrimination is a
nontrivial computational problem; indeed, Kearns et al. [20] showed that the problem of
finding disadvantaged subgroups is equivalent to the problem of agnostic learning, which
is believed to be intractable in general for all but the simplest classes of sets. Essentially
all work [20, 23, 18] on remedying statistical measures of discrimination against subgroups
assumes access to an oracle for this problem, despite the fact that no efficient algorithms
are known for it. In this work we are proposing a solution for a variant of the fairness
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auditing problem with provable guarantees of efficiency and correctness, as well as some
strong limitations on the extent to which these solutions can be extended to richer families
of subgroups.

1.1 Background and Motivation

Fairness learning has received massive attention in recent years. It turns out learning a fair
classifier, in most cases, is equivalent to auditing [20, 23, 18]. In particular, if auditing is
possible, learning a fair classifier is easy. There are many successful examples of fairness
learning with auditing over a relatively small number of predetermined subgroups [1, 29].
However, a small number of predetermined subgroups, in many cases, is not enough to cover
all the natural subgroups.

▶ Example 1. In the court case “DeGraffenreid v General Motors” [6], five Black women
brought suit against General Motors for its discrimination against the group of Black women.
Although no sex discrimination was revealed, the evidence showed that Black women hired
after 1970 were discriminated against by the company’s seniority system. Such discrimination
can be better illustrated by an example shown in Table 1. In particular, the hiring rate of a
company could seemingly be fair in terms of gender or race alone, but clearly discriminates
against the subgroups of white men and black women. The court rejected the plaintiffs’
attempt to bring a suit not on behalf of Blacks or women, but specifically on behalf of Black
women. In the ruling, in favor of the defendant, the judge was specifically concerned about
the proliferation of protected classes.

Table 1 an example of discrimination against subgroups.

men women total
black 50 0 50
white 0 50 50
total 50 50 100

More generally, a classifier may appear to be fair on each individual attribute, e.g., gender,
race, age, incomes, etc., and yet perform unfairly on subgroups defined on multiple attributes,
i.e., the conjunction of such attributes. In the case of DeGraffenreid v General Motors, it is
the conjunction of race and gender being discriminated against. The possible number of the
conjunctions grows exponentially as the number of the “protected” attributes increases.

Thereafter, [20] proposed more general notions of statistical fairness that require auditing
over subgroups defined on simple combinations of data features. Specifically, such combin-
ations of features can be any simple representations, such as conjunctions and halfspaces,
which, however, can generate exponentially many subgroups. They also showed that the
problem of auditing subgroups defined by such simple representation is as hard as “weak
agnostic learning” in the standard “distribution-free” setting [17, 22]. While the problem of
distribution-free weak agnostic learning is widely believed to be computationally intractable
[22, 12], its hardness does not necessarily hold for specific distribution families. Thus, it
is natural to consider auditing using distribution-specific agnostic learning approaches as
agnostic learning is a much more extensively studied problem. However, it turns out there
are still obstacles remaining for doing so.
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1.2 Challenges of Auditing through Agnostic Learning

The main challenge that prevents us from applying existing agnostic learning techniques to
perform auditing based on the reduction by [20] is that it is formulated in terms of weak
agnostic learning, that is, finding classifiers with error rates that are nonnegligibly better than
guessing, and correspondingly weak auditing guarantees. In particular, the approximation
guarantees we obtain for distribution-specific agnostic learning yield vacuous guarantees for
weak learning. When we have guarantees for arbitrary distributions, “boosting” [28] enables
us to obtain high accuracy from such weak learners. Unfortunately, these techniques require
re-weighting the data examples after which the distribution-specific properties may no longer
hold.

One might hope to dodge this issue by casting the problem of finding a harmed subgroup
as a Mixed-Integer Program and using solvers that, though they lack polynomial-time
guarantees, obtain adequate performance in practice. In such an approach, the failure of the
solver to find a feasible solution to the optimization problem is taken as the proof that the
classifier is fair. Unfortunately, these solvers owe their speed in part to a lack of soundness,
both due to numerical issues [5] and the complexity of the heuristics used to prune the
search [2, 14], and it remains a current research challenge to obtain acceptable performance
(using the various advanced techniques employed by commercial solvers) while retaining the
guarantee that the solver correctly reports infeasibility [4]. In any case, the works by [20, 21]
and [24] that empirically studied these approaches to obtaining fair classifiers used linear
regression as a proxy for the agnostic learning or cost-sensitive classification subroutines.
Unfortunately, these heuristics do not even provide in-principle guarantees.

In this paper, we will show auditing general halfspace subgroups is hard even for data
with a Gaussian distribution, and present an alternative auditing approach for subgroups
determined by homogeneous halfspaces with provable guarantees.

1.3 Our Contribution

Our first contribution is a more careful analysis of the relationship between auditing and
agnostic learning: Given a fixed positive classification rate, the harm (w.r.t. statistical parity)
suffered by a subgroup is affinely related to the error rate of the subgroup indicator. Thus,
a solution to the agnostic learning problem directly gives a harmed subgroup. Note that
whereas the fairness objective refers to conditioning on a group, which generally doesn’t
preserve a distributional assumption, agnostic learning instead refers to the accuracy under
that “nice” distribution, and hence is easier to analyze. Also note that under a standard
normal distribution, the subclass of halfspaces with a fixed positive classification rate is given
by the halfspaces with unit normal vectors and the same threshold.

▶ Remark 2. Our reduction to learning halfspaces with fixed positive classification rates can
achieve arbitrarily high precision auditing and does not rely on re-weighting data examples
or make any assumptions on the potentially unfair classifiers. This enables the use of the
existing distribution-specific agnostic learning methods for auditing.

Based on the reduction and a inspiration from Diakonikolas et al. [7], our second major
contribution is a lower bound on the unfairness detectable when auditing for halfspace
subgroups under Gaussian distributions by reducing the problem of continuous Learning
With Errors (cLWE) to auditing. Our hardness results include both multiplicative and
additive forms. More interestingly, we can further show that even “nonconstructive auditing”
is hard, where we do not need to exhibit a discriminated subgroup for a failed audit.
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For our algorithmic results, we will present a general auditing framework given an oracle
for (distribution-specific) agnostic learning. Also, we give a randomized PTAS auditing
algorithm for subgroups determined by homogeneous halfspaces under Gaussian data by
applying the method from Diakonikolas et al. [8].

▶ Remark 3. We stress that a PTAS for auditing subgroups defined by homogeneous halfspaces
for Gaussian distributions is, in fact, the best guarantee we know so far, hence, not trivial.

At first blush, the reliance on a (prima facie unverifiable) distributional assumption for
the analysis of our auditing algorithm may seem to be at odds with our desire to certify the
fairness of a classifier. Nevertheless, a line of recent works by Rubinfeld and Vasilyan [27]
and Gollakota et al. [15] have shown that the properties of the data that are crucial to these
algorithms for distribution-specific learning of halfspaces can be verified. Thus, these methods
give a way of certifying fairness for families of nice distributions: so long as the data passes
these tests and the audit reveals no subgroup that is significantly harmed, we may guarantee
that the classifier is fair.

This paper will be organized as follows. Some necessary background for our arguments
are given in Section 2. We will present the main reduction from auditing to agnostic learning
in Section 3. Then, we will show the hardness results in Section 4. Section 5 will present
our auditing framework as well as the distribution-specific PTAS algorithm. Finally, we will
discuss the limitations of our approach and suggest directions for future work.

1.4 Related Work

Many authors have considered the problem of ensuring fairness in classification, and Barocas
et al. [3] give a good overview of the broader area. In particular, there are alternatives to the
statistical, group-fairness notions we are considering, for example individual-level fairness
as proposed by Dwork et al. [11], or based on causal modeling, such as the “counterfactual”
fairness notion proposed by Kusner et al. [25]. We cannot do justice to the breadth of
literature and philosophical issues here, and we strongly encourage the interested reader to
consult Barocas et al. The group-fairness notions we consider have their roots in the game-
theory-based approach of Kearns et al. [20] for learning representations with subgroup fairness
by assuming there exists an efficient oracle for auditing. A follow-up study [21] evaluated their
algorithm on real-world datasets. Hébert-Johnson et al. [18] showed a method of obtaining
“multi-accurate” representations by assuming the existence of an efficient auditing oracle.
Further, Kim et al. [23] proposed a variant of statistical fairness called “multi-fairness,” which
allows them to efficiently learn a multi-fair classifier with querying “relative fairness” of data
pairs. As we discussed previously, the auditing oracles in these works were provided by using
linear regression as a heuristic for the optimal halfspace, which does not provide guarantees.
They also did not consider auditing for specific families of distributions. On the other hand,
the works on agnostic learning for specific families of distributions, e.g., [19, 9, 8, 10, 13] do
not consider how their techniques may be applied to the subgroup fairness auditing problem.

2 Preliminaries

We use lowercase bold font characters to represent real vectors and subscripts to index the
coordinates of each vector, e.g., xi represents the i-th coordinate of vector x. We denote the
lp-norm by ∥x∥p = (

∑
i xp

i )1/p, and x̄ = x/∥x∥2. We model each individual as a vector of
protected attributes, i.e., x ∈ X .
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Further, the probability of an event under a distribution D is denoted by Prx∼D{·}.
N (0, I) denotes a standard normal distribution, where I represents the identity matrix. For
simplicity of notation, we may use N ,Nσ instead of N (0, I),N (0, σ2I) or even drop D and
N from the subscript when it is clear from the context.

▶ Fact 4 (Rotational Invariance). For any real vector u, if x ∼ N (0, I), then ū⊤x ∼ N (0, 1).

To understand the problem of fairness auditing, it is necessary to define fairness or
unfairness precisely. In this work, we focus on the notion of Statistical Parity Subgroup
Fairness (SPSF). Formally, we have the following definition.

▶ Definition 5 (Statistical Parity Subgroup Fairness). Fix any binary classifier c ∈ C such that
c : Rd → {−1, +1}, data distribution D, collection of subgroups G, and parameter γ ∈ [0, 1].
Define

dD(c, g) = Pr
x∼D
{c(x) = 1} − Pr

x∼D
{c(x) = 1 | x ∈ g} (1)

We say that c does not satisfy γ-statistical parity fairness (or is γ-unfair) with respect to D
and G, if ∃g ∈ G such that

Pr
x∼D
{x ∈ g} |dD(c, g)| ≥ γ (2)

Equation (1) is a straightforward way to quantify how much the positive classification rate
within a subgroup deviates from that of the overall population. The weighting by the size
of the group (i.e., Prx∼D{x ∈ g}) is a concession to address the statistical issues that arise
with estimating d on small groups: we cannot escape that our empirical estimates are less
accurate as the size shrinks. Our approach makes no assumptions on the form of the function
c; note therefore, that by replacing c with other functions of x, such as whether a given
classifier agrees with a given label, or whether the classifier makes a false-positive error, our
results will immediately extend to other standard notions of statistical subgroup fairness.
The goal of fairness auditing is to develop an “auditing algorithm” to efficiently find such a
certificate g ∈ G for any c ∈ C with sample access to D, formalized as follows.

▶ Definition 6 (Constructive Auditing [20]). Fix a collection of group indicators G over the
protected features, and any δ, γ, γ′ ∈ (0, 1) such that γ′ ≤ γ. A constructive (γ, γ′)-auditing
algorithm for G with respect to distribution D is an algorithm A such that for any classifier
h, when given access the joint distribution (D, h(D)), A runs in time poly(1/γ′, log(1/δ)),
and with probability 1− δ, outputs a γ′-unfair certificate for h whenever h is γ-unfair with
respect to D and G. If h is γ′-fair, A will output “fair”.

Moreover, we will consider a more general type of auditing task, called “non-constructive
auditing”, where the algorithms are only required to tell if a discriminated subgroup exists.

▶ Definition 7 (Non-constructive Auditing). Under the same setting as Definition 6, a non-
constructive (γ, γ′)-auditing algorithm for G with respect to distribution D is an algorithm
A such that for any classifier h, when given access the joint distribution (D, h(D)), A runs
in time poly(1/γ′, log(1/δ)), and with probability 1− δ, claims h is γ′-unfair whenever h is
γ-unfair with respect to D and G. If h is γ′-fair, A will output “fair”.

In this work, we will mainly focus on subgroups defined on halfspaces, a.k.a. linear
threshold functions (LTF) over a d-dimensional real domain. Formally:
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▶ Definition 8 (Halfspaces). The class of halfspaces over Rd is defined as Hd := {x 7→

sgn(v⊤x − t) | x, v ∈ Rd, t ∈ R} where sgn(x) =
{

1 x ≥ 0
−1 otherwise . In particular, the class

of homogeneous halfspaces can be defined as {x 7→ sgn(v⊤x) | x, v ∈ Rd}.

Since our reduction involves the subclass of halfspace subgroups of a fixed size, we give
the formal definition of it as follows.

▶ Definition 9 (Fixed-size Halfspaces). We use Hd to represent the collection of all halfspaces
in Rd. Then, for any arbitrary distribution D over Rd, we define the collection of all
halfspaces with the same (relative) density µ as

HD
µ := {h ∈ Hd | Pr

x∈D
{h(x) = 1} = µ} (3)

In particular, the class of homogeneous halfspaces for a mean-0 Gaussian distribution is
HN (0,Σ)

1/2 .

For conciseness, we may abbreviate Pr{f(x) = 1} and Pr{f(x) = −1} to simply Pr{f} and
Pr{¬f} for any binary output functions f : X → {−1, +1} in the rest of the paper.

To state the hardness results, we denote Sd−1 := {x ∈ Rd | ∥x∥2 = 1}, Zq := {0, 1, . . . , q−
1}, Rq := [0, q), and modq : Rd → Rq for the unique translation of the input by qZd to Rq

for q ∈ N. The hardness of distribution-specific auditing is based on the assumption that
the problem of “Learning With Errors” (LWE) is computationally intractable. Informally
speaking, in the problem of LWE, we are given labelled examples from two hypothesis cases.
In one case, the labels are biased by some secret vector, while, in another case, the labels are
generated uniformly at random. We wish to distinguish between these cases. We formally
define the problem of LWE [26], following [7]:

▶ Definition 10 (Learning With Errors). For m, d ∈ N, q ∈ R+, let Dsample,Dsecret,Dnoise

be distributions on Rd,Rd,R respectively. In the LWE(m,Dsample,Dsecret,Dnoise, modq)
problem, with m independent samples (x, y), we want to distinguish between the following
two cases:

Alternative hypothesis: (x, y) is generated as y = modq(s⊤x + z), where x ∼
Dsample, s ∼ Dsecret, z ∼ Dnoise.
Null hypothesis: y is sampled uniformly at random on the support of its marginal
distribution in the alternative hypothesis, independent of x ∼ Dsample.

An algorithm is said to be able to solve the LWE problem with ∆ advantage if the probability
that the algorithm outputs “alternative hypothesis” is ∆ larger than the probability that it
outputs “null hypothesis” when the given data is sampled from the alternative hypothesis
distribution.

This problem is widely believed to be computationally hard, formalized as follows.

▶ Assumption 11 (Sub-exponential LWE Assumption). For q, κ ∈ N, α ∈ (0, 1) and C > 0
being a sufficiently large constant, the problem LWE(2O(nα),Zd

q ,Zd
q ,Nσ, modq) with q ≤ dκ

and σ = C
√

d cannot be solved in 2O(dα) time with 2O(−dα) advantage.

3 From Auditing To Agnostic Learning

In this section, we describe our reduction from auditing to agnostic learning. In addition, we
give a lower bound for fairness auditing under Gaussian distributions.
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We are considering the auditing problem w.r.t. SPSF as in Definition 5, which naturally
rules out the statistically small subgroups. Indeed, if the probability of accessing the data of
certain sub-population is exponentially small, it is statistically hard to even estimate their
deviation. Therefore, it makes sense to just consider the collection of subgroups G that are
statistically large enough, e.g., Pr{x ∈ g} = Θ(1) for x ∈ Rd.

Based on the observation, the following optimization program, PD
a,b(G), can capture the

most unfair subgroup which is also statistically significant enough. That is

max
g∈G

Pr
x∈D
{x ∈ g} |dD(c, g)|

s.t. a ≤ Pr
x∈D
{x ∈ g} ≤ b (4)

for some constants 0 < a ≤ b < 1.
Furthermore, if we only consider the subgroups represented by halfspaces, i.e., G ≡ Hd,

there exists a simple reduction from PD
a,b(Hd) to agnostic learning that, in particular, preserves

the properties of the data distribution. We show our reduction as the following theorem.

▶ Theorem 12 (Main Reduction). Given any binary classifier c : Rd → {−1, +1}, and a
data distribution D over Rd whose 1-dimensional marginals have continuous cumulative
distribution functions, if there exists an efficient algorithm for learning HD

µ in the agnostic
model on distribution D, then there is an efficient auditing algorithm for c on subgroups
represented by Hd over distribution D.

We delay the proof of the above theorem to the end of this section, and show two fundamental
hurdles we need to overcome in order to prove Theorem 12.

▶ Remark 13. While learning from a representation class like HD
µ may seems to be hard at

a first glance, there are actually examples [10] of learning HD
µ in an agnostic setting under

Gaussian data.

Instead of starting from the optimization problem (4), it turns out that solving a sequence
of simpler optimization problems suffices to certify the γ-unfairness as stated in Definition 5.
We state the equivalence in the following proposition. Its proof is deferred to the appendix.

▶ Proposition 14. Consider any binary classifier c : Rd → {−1, +1}, any data distribution
D over Rd whose 1-dimensional marginals have continuous cumulative distribution functions,
and any 0 < a ≤ b < 1. For each pair of non-negative integers k < n, let PD

a,b(k, n) denote
the optimization program

max
h∈Hd

Pr
x∈D
{h(x) = 1} |dD(c, h)|

s.t. Pr
x∈D
{h(x) = 1} = a + k(b− a)

n
.

Let h∗ be a global optimizer of PD
a,b(Hd), as defined in (4), and let γ∗ = Pr{h∗} |dD(c, h∗)|.

For each k = 0, . . . , n, let h∗
k be a global optimizer of PD

a,b(k, n). Then

max
k

Pr{h∗
k} |dD(c, h∗

k)| ≥ γ∗ − 2(b− a)
n

.

The reason why this proposition is so crucial is that it allows us to solve a simpler
optimization problem without compromising the guarantee. Being able to fix Pr{h(x) = 1}
as a constant will significantly simplify the overall optimization as it reduces the degree of
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5:8 Distribution-Specific Auditing for Subgroup Fairness

the optimization objective. In fact, it is because we can optimize Pr{h(x) = 1} |dD(c, h)|
over HD

µ instead of Hd that we can conduct the reduction from auditing to agnostic learning.
The following lemma shows a direct relationship between the unfairness level and the

classification error.

▶ Lemma 15. Given any binary classifier c : X → {−1, +1}, a data distribution D over X
and a collection of subgroups g ∈ G such that g : X → {−1, +1}, we have

2 Pr{g}dD(c, g) = Pr{¬c}Pr{¬g}+ Pr{c}Pr{g} − Pr{c(x) = g(x)}

for x ∼ D.

Proof. By the law of total probability, we have

Pr{c ∩ g} = Pr{g} − (Pr{¬c} − Pr{¬c ∩ ¬g}).

which along with Definition 5 gives

dD(c, g) = Pr{c} − Pr{c | g}

=Pr{c}Pr{g} − Pr{c ∩ g}
Pr{g}

=Pr{¬c}Pr{¬g} − Pr{¬c ∩ ¬g}
Pr{g} . (5)

Summing up the two different forms of dD(c, g) results to

2dD(c, g) =Pr{¬c}Pr{¬g} − Pr{¬c ∩ ¬g}
Pr{g} + Pr{c}Pr{g} − Pr{c ∩ g}

Pr{g}

=Pr{¬c}Pr{¬g}+ Pr{c}Pr{g} − (Pr{¬c ∩ ¬g}+ Pr{c ∩ g})
Pr{g} (6)

Notice that, because c ∩ g and ¬c ∩ ¬g are two disjoint events, we have

Pr{c(x) = g(x)} = Pr{(c ∩ g) ∪ (¬c ∩ ¬g)}
= Pr{c ∩ g}+ Pr{¬c ∩ ¬g}

Plugging it back in to Equation (6) produces the desired result. ◀

This immediately implies a duality between SPSF auditing and agnostic learning as follows.

▶ Corollary 16. Given any binary classifier c : Rd → {−1, +1}, a data distribution D and a
collection of halfspaces HD

µ over Rd, we have the following two properties
(1) dD(c, h∗) ≥ dD(c, h), ∀h ∈ HD

µ if and only if h∗ = argminh∈HD
µ

Prx∼D{c(x) = h(x)}
(2) dD(c, h∗) ≤ dD(c, h), ∀h ∈ HD

µ if and only if h∗ = argmaxh∈HD
µ

Prx∼D{c(x) = h(x)}

Proof. Because Pr{c} is a constant and Pr{h} = µ, ∀h ∈ HD
µ by Definition 9, dD(c, h) is

simply an affine transformation of Pr{c(x) = h(x)} for a fixed µ by Lemma 15, which implies
the desired results. ◀

Proposition 14 tells us that solving PD
a,b(k, n) for k = 0, . . . , n would give us a good

enough approximation to the maximum unfairness level, of course, with a large enough n.
Therefore, we just need to further show that solving each PD

a,b(k, n) is equivalent to learning
HD

µ to complete the reduction.
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Formally, because PD
a,b(k, n) can be equivalently written as

max
h∈HD

µ

Pr
x∈D
{h(x) = 1} |dD(c, h)| (7)

for some µ = a + k(b− a)/n, it suffices to prove the following theorem.

▶ Lemma 17. Given any binary classifier c : Rd → {−1, +1}, a data distribution D and a
collection of halfspaces HD

µ over Rd such that

optmin ≤ Pr
x∼D
{c(x) = h(x)} ≤ optmax

for all h ∈ HD
µ , if hv , hu ∈ HD

µ satisfy that Pr{c(x) = hv(x)} ≤ optmin + 2ϵ as well as
Pr{c(x) = hu(x)} ≥ optmax − 2ϵ, we have either

Pr
x∼D
{hv(x) = 1}

∣∣dD(c, hv)
∣∣ ≥ γ∗ − ϵ (8)

or

Pr
x∼D
{hu(x) = 1}

∣∣dD(c, hu)
∣∣ ≥ γ∗ − ϵ (9)

where γ∗ = maxh∈HD
µ

Prx∼D{h(x) = 1} |dD(c, h)|.

Proof. By the proof of Lemma 15, we have

2 Pr{h} |dD(c, h)| = |Pr{¬c}Pr{¬h} − Pr{¬c ∩ ¬h}︸ ︷︷ ︸
I1

+ Pr{c}Pr{h} − Pr{c ∩ h}︸ ︷︷ ︸
I2

|

Let h∗ ∈ HD
µ be such that Pr{h∗} |dD(c, h∗)| = γ∗. Then for I2, we have

I2 =(Pr{c} − Pr{c | h∗}+ Pr{c | h∗}) Pr{h} − Pr{c ∩ h}
= Pr{h∗}dD(c, h∗) + Pr{c ∩ h∗} − Pr{c ∩ h}

where the last equation is because h∗ ∈ HD
µ , then Pr{h} = Pr{h∗} = µ by Definition 9.

Similarly, for I1, we can write

I1 = Pr{¬h∗}(Pr{¬c} − Pr{¬c | ¬h∗}) + Pr{¬c ∩ ¬h∗} − Pr{¬c ∩ ¬h}
= Pr{h∗}dD(c, h∗) + Pr{¬c ∩ ¬h∗} − Pr{¬c ∩ ¬h}

where the last equation follows because we have shown in the proof of Lemma 15 that
dD(c, h∗) = Pr{¬h∗}(Pr{¬c} − Pr{¬c | ¬h∗})/ Pr{h∗}.

Combining I1 and I2 will result to

Pr{h} |dD(c, h)| =|Pr{h∗}dD(c, h∗) + Pr{c(x) = h∗(x)} − Pr{c(x) = h(x)}
2 |

≥γ∗ − |Pr{c(x) = h∗(x)} − Pr{c(x) = h(x)}|
2

by triangle inequality. Further, since h∗ maximizes |dD(c, h)|, it either maximizes or minimizes
dD(c, h). Then, by Corollary 16, we know

Pr
x∼D
{c(x) = h∗(x)} ∈ {optmin, optmax}
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which implies either∣∣Pr{c(x) = h∗(x)} − Pr{c(x) = hv(x)}
∣∣ ≤ 2ϵ

or ∣∣Pr{c(x) = h∗(x)} − Pr{c(x) = hu(x)}
∣∣ ≤ 2ϵ

Therefore, the proof is completed. ◀

▶ Remark 18. We emphasize that it is necessary for us to consider the guarantee of agnostic
learning in a additive form rather than multiplicative form. Although Corollary 16 shows
that the classification error, Pr{c(x) ̸= h(x)}, and the unfairness level, Pr{h} |dD(c, h)|,
are dual to each other over HD

µ , the affine relationship between them prohibits obtaining a
guarantee on the unfairness from a multiplicative error. This also explains why the guarantee
provided by [10] does not fit in our analysis.

Now we are ready to prove Theorem 12.

Proof of Theorem 12. To solve the auditing problem, we just need to solve the sequence of
optimization problems, {PD

a,b(k, n) | k = 0, . . . , n} as described in Proposition 14. We can
solve each PD

a,b(k, n) with an additive error ϵ by calling the given oracle of learning halfspaces
with the same strategy specified in Lemma 17. Eventually, we solve all of these optimization
problems with an 2(b− a)/n + ϵ additive error and a running time of O(n) factor overhead
compared with that of the oracle. ◀

4 Intractability Of Auditing Under Gaussian Data

In this section, we will show that the problem of auditing halfspaces subgroups under a
Gaussian distribution is computationally hard in two forms: the multiplicative form and
additive form. To do so, we first show that distinguishing between fair and unfair cases with
respect to halfspace subgroups for Gaussian data is hard. Then, the hardness of auditing
will follow as corollaries.

4.1 Indistinguishability Of Unfairness
We claim it is computationally hard to distinguish between halfspace subgroups that are
evenly fair and halfspace subgroups among which there exists a slightly unfair subgroup with
significant advantage.

▶ Theorem 19. Under Assumption 11, for any d ∈ N, any constants α ∈ (0, 1), β ∈ R+, and
any logβ d ≤ k ≤ cd where c is a sufficiently small constant, there is no algorithm that runs
in time dO(kα) and distinguishes between the following two cases of a joint distribution D of
(x, c(x)) supported on Rd × {−1, +1} with marginal Dx = N (0, I), with d−O(kα) advantage:

(i) Alternative Hypothesis: There exist non-negligibly unfair halfspace subgroups, spe-
cifically ∃h ∈ Hd, PrD{h(x) = 1}|dD(c, h)| = Ω(1/

√
k log d).

(ii) Null Hypothesis: All halfspace subgroups are perfectly fair, i.e., PrD{h(x) =
1}|dD(c, h)| = 0, ∀h ∈ Hd.

The above theorem simply states that the closer the unfairness level of the alternative
hypothesis is to zero (k log d is large), the harder it is to distinguish between these two cases,
where the hardness is reflected on the running time dO(kα). Hence, if we restrict the running
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time to a certain order, there is a limitation on how large k log d can be for someone to be
able to distinguish between them with a significant enough advantage. It is this observation
that allows us to prove the hardness of auditing in the next section.

The idea behind the proof of this theorem is to observe that the data generated in the
two hypotheses in certain LWE instances can be reduced to binary labelled ones through
rounding. With such a reduction, the distribution from the null hypothesis case of LWE
will produce perfectly fair data, while the distribution from alternative hypothesis will yield
slightly biased labels where a unfair halfspace subgroup therefore exists. Thus, if we can
distinguish between the fair case from the unfair case with some marginal error, we can solve
the LWE problem. We defer the formal proof to the appendix.

4.2 Auditing With Small Error Is Hard
We now show that the hardness of distinguishability implies the hardness of auditing with
both multiplicative error and additive error.

Suppose an auditing algorithm is guaranteed to return us a γ′-unfair certificate (a
halfspace) given a γ-unfair classifier c, where γ′ ≤ γ ≤ 1. The following corollaries show that
γ′ can never be close to γ.

▶ Corollary 20 (multiplicative form). Given Assumption 11, there is no polynomial-time
1/poly(d)-approximation algorithm for constructive auditing for halfspace subgroups under
Gaussian marginals in Rd.

Proof. Suppose there exists an auditing algorithm that guarantees to return a δγ-unfair
certificate given a γ-unfair collection of halfspace subgroup and access to data with a Gaussian
marginal, where δ ∈ (0, 1).

For the alternative hypothesis case as described in Theorem 19, given a 1/
√

k log d-unfair
collection of halfspace subgroups, we run such an algorithm to obtain a δ/

√
k log d-unfair

certificate, i.e., a halfspace h such that Prx∼N {h(x) = 1}|dN (c, h)| ≥ δ/
√

k log d. By the
Hoeffding Bound, we can verify that the empirical estimation of Prx∼N {h(x) = 1}|dN (c, h)|
is ε1-close to δ/

√
k log d with high probability by drawing O(1/ε2

1) examples from the
distribution constructed in the alternative hypothesis case.

For the null hypothesis case, with the same argument, we can verify there is no ε2-unfair
subgroup with high probability given O(1/ε2

2) examples from the distribution in the null
hypothesis case.

Suppose δ = Ω(1/poly(d)), notice that we only need ε1, ε2 to be O(1/poly(d)) to ensure
δ/
√

k log d − ε1 > ε2. However, this implies that our auditing algorithm can distinguish
between the two cases in Theorem 19 with high probability and only runs in polynomial
time, which contradicts to the hardness assumption. ◀

▶ Corollary 21 (additive form). Given Assumption 11, for any constants α ∈ (0, 1), β ∈ R+,
and any C/

√
d log d ≤ ϵ ≤ c′/ log(1+β)/2 d where C is a sufficiently large constant and c′

is a sufficiently small constant, no auditing algorithm can return a unfair certificate for
halfspace subgroups in Rd with an additive error ϵ under Gaussian marginals and runs in
time dO(1/(ϵ2 log d)α).

Proof. Suppose there exists an auditing algorithm that guarantees to return a γ − ϵ-unfair
certificate given a γ-unfair collection of halfspace subgroups and access to data with a
Gaussian marginal, where ϵ ∈ (0, 1).

Similar to the proof of Corollary 20, given a 1/
√

k log d-unfair collection of halfspace
subgroups, we run such an algorithm to obtain a (1/

√
k log d− ϵ)-unfair certificate. Observe

that, if ϵ = c′/
√

k log d for some sufficiently small constant c′, we can solve the testing problem
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in Theorem 19 within time dO(kα) by running this algorithm as well as drawing enough
examples to estimate the unfairness of the returned certificates from the two cases respectively.
On the other hand, given ϵ = c′/

√
k log d, we can rewrite dO(kα) = dO(1/(ϵ2 log d)α).

However, Theorem 19 tells that the above case is impossible for any C/
√

d log d ≤ ϵ ≤
c′/ log(1+β)/2 d, where C is a sufficiently large constant. ◀

Besides the general general auditing problem, we also consider the “non-constructive
auditing” problem as in Definition 7, where the algorithm is only required to tell if there
exists an unfair subgroup without returning the unfair certificate. Actually, it turns out any
non-constructive auditing algorithm can distinguish the two cases in Theorem 19.

▶ Corollary 22 (non-constructive auditing is hard). Given Assumption 11, for any constants
α ∈ (0, 1), β ∈ R+, and any C/

√
d log d ≤ ϵ ≤ c′/ log(1+β)/2 d where C is a sufficiently large

constant and c′ is a sufficiently small constant, no auditing algorithm can tell if there exists
a unfair certificate for halfspace subgroups in Rd with

an additive error ϵ under Gaussian marginals and running in time dO(1/(ϵ2 log d)α).
or a multiplicative approximation factor of 1/poly(d) and running in polynomial time.

Proof. Suppose there exists an auditing algorithm that can either tell if a δγ-unfair certificate
or a γ− ϵ-unfair certificate exists given a γ-unfair collection of halfspace subgroup and access
to data with a Gaussian marginal, where δ, ϵ ∈ (0, 1). With the same argument as that of
Corollary 20 and 21, we can achieve the desired results. ◀

To the best of our knowledge, there does not exist any PTAS for properly learning general
halfspaces in the agnostic model with guarantees of additive error close to O(1/

√
log d).

However, in the next section, we will show that if we restrict out attention to just homogeneous
halfspaces under a standard normal distribution, it is possible to achieve additive error of
O(1/ log1/C d) for some constant C > 2.

5 Auditing Via Agnostic Learning Under Gaussian Distribution

In this section, we present our algorithmic results. Our approach is based on Theorem 12:
auditing over subgroups determined by halfspaces can be accomplished by solving a sequence
of simpler tasks of learning halfspaces. As a result, we are able to take advantage of existing
agnostic learning methods to solve the auditing problem.

Meanwhile, we will discuss the testability of Gaussian distributions and show that existing
distribution testing methods [15, 27] for learning halfspaces will not increase the running time
significantly for our task. In fact, the running time of the testing method is asymptotically
no greater than that of our auditing algorithm.

5.1 Auditing Algorithm for Homogeneous Halfspaces
Assuming there exists an efficient oracle for agnostic learning, Algorithm 1 will eventually
return a halfspace h′ as a certificate of the subgroup that has the highest unfairness level.

Notice, we create a negatively labelled data sets at Line 3 because maximizing (minim-
izing) the unfairness Pr{h} |dD(c, h)| for the c(x) = 1 labelling is equivalent to minimizing
(maximizing) Pr{h} |dD(c, h)| for c(x) = −1. Thus, by reversing the labels, we can use the
oracle to solve both the maximization and minimization directions.

In the loop, we simply follow our previous reduction by dividing the population constraint
into multiple approximately-fixed-size constraints at Line 11. Then, we solve each sub-task
with a fixed population size by calling the oracle on both data sets at Lines 7 and 8.
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Algorithm 1 Fairness Auditing.

Input : n, a, b, ϵ, δ,D, classifier c, oracle O
Result: µ′, h′

1 X̂ ← draw N(d, ϵ, δ) i.i.d. samples from D;
2 D̂+ ← {X̂ , c(X̂ )};
3 D̂− ← {X̂ ,−c(X̂ )};
4 µ← a;
5 (µ′, h′)← (1, c);
6 while µ ≤ b do
7 h+

µ ← O(ϵ, δ/2n, µ, D̂+);
8 h−

µ ← O(ϵ, δ/2n, µ, D̂−);
9 if

∣∣dD(c, h+
µ )

∣∣ <
∣∣dD(c, h−

µ )
∣∣ then h+

µ ← h−
µ ;

10 if µ′ |dD(c, h′)| ≤ µ
∣∣dD(c, h+

µ )
∣∣ then (µ′, h′)← (µ, h+

µ ) ;
11 µ← µ + (b− a)/n;
12 end

We give the guarantees of our algorithm below and defer the proof to the appendix.

▶ Theorem 23 (Auditing Framework). Given any binary classifier c : Rd → {−1, +1}, a
data distribution D whose 1-dimensional marginals have continuous cumulative distribution
functions, and collections of halfspaces {HD

µ | µ > 0} over Rd, if there exists an oracle O
that takes ϵ, δ, µ ∈ (0, 1) and N(d, ϵ, δ) labelled i.i.d. samples from D in the form of (x, c(x)),
runs in time T (d, ϵ, δ), and returns a halfspace hµ such that, with at least 1− δ probability

Pr
x∼D
{hµ(x) ̸= c(x)} ≤ min

h∈HD
µ

Pr
x∼D
{h(x) ̸= c(x)}+ ϵ

then there exists an algorithm that takes n ∈ Z+, 0 < a ≤ b < 1, ϵ, δ ∈ (0, 1) and
O(N(d, ϵ, δ/n)) labeled i.i.d samples from D, runs in time O(nT (d, ϵ, δ/n)) and returns a
halfspace h′ as a certificate such that a ≤ Prx∼D{h′} ≤ b and

Pr
x∼D
{h′} |dD(c, h′)| ≥ max

h∈Hd
Pr

x∼D
{h} |dD(c, h)| −O(ϵ)

with at least 1− δ probability.

While our framework heavily relies on the methods of agnostic learning with small additive
error, unfortunately, there are no known methods for learning general halfspaces that can
achieve additive error better than a constant, even under distributions as nice as standard
normal ones.

However, if we restrict our audit to the class of homogeneous halfspaces, Diakonikolas et
al. [8] proposed an agnostic learning PTAS for homogeneous halfspaces under Gaussian data.
That is, we only audit for subgroups with probability mass 1/2.

▶ Lemma 24 (Learning Homogeneous Halfspaces [8]). Let D be a distribution on labeled
examples (x, y) ∈ Rd×{−1, +1} whose x-marginal is N (0, I). There exists an algorithm that,
given τ, ϵ, δ > 0, and N = dpoly(1/τ)poly(1/ϵ) log(1/δ) i.i.d. samples from D, the algorithm
runs in time poly(N, d), and computes a halfspace hv such that, with probability at least
1− δ, it holds that PrD{y ̸= hv(x)} ≤ (1 + τ) minh∈HN

1/2
PrD{y ̸= h(x)}+ ϵ.
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Now, notice that Lemma 24 gives us an oracle for auditing halfspace subgroups with
population size 1/2 under Gaussian distributions, since by Lemma 15, we know that agnostic
learning with fixed threshold will have constant population size under a Gaussian distribution
and, hence, is equivalent to auditing with fixed population size. Therefore, we can use
this oracle in Algorithm 1 to audit the subgroup class Hd

1/2 for D = N (0, I). We show our
algorithmic guarantee of a PTAS in the following corollary.

▶ Corollary 25 (Auditing Under Gaussian). Given any binary classifier c : Rd → {−1, +1}, a
data distribution N (0, I) and a collection of halfspaces HN

1/2 over Rd, there exists an auditing
algorithm that takes ϵ, δ > 0 and N = dpoly(1/ϵ)poly(1/ϵ) log(1/δ) labeled i.i.d. examples from
N (0, I) in the form of (x, c(x)), runs in time poly(N, d), and returns a halfspace h′ as a
certificate such that Prx∼D{h′} = 1/2 and

|dN (c, h′)| ≥ max
h∈HN

1/2

|dN (c, h)| − 2ϵ

with at least 1− δ probability.

Proof. We can simply run Algorithm 1 for just one iteration with the same set of parameters
except that D = N (0, I), n = 1, a = b = 1/2 and the oracle being as described by Lemma
24 for τ = ϵ. Notice that Lemma 24 guarantees us that the requirement on the oracle in
Theorem 23 is satisfied. Thus, we can refer to the proof of Theorem 23 to establish that
running Algorithm 1 for just one iteration suffices. Also, since we only run the algorithm for
one iteration, we have T = 1, hence, the running time is dominated by the running time of
the oracle, which is poly(N, d). ◀

5.2 Testability Of Gaussian Distribution
Given the assumption that our algorithm only works under Gaussian distributions, one might
ask if a set of data examples can be tested to be Gaussian without increasing the running
time guarantee in Corollary 25 asymptotically. We will show that this kind of testing can be
accomplished within the same running time as our auditing algorithm.

A recent work by Rubinfeld and Vasilyan [27] has proposed a moment matching method for
testing Gaussian assumptions specifically for agnostic learning. Their method is based on the
observation that linear threshold functions have degree poly(1/ϵ) polynomial approximations
with additive error of ϵ [19, 8]. Abstractly, this moment matching testing method estimates
the moments of the data samples up to degree O(1/ϵ4) and check if the element-wise difference
between the estimated moments and the actual Gaussian moments are small. They proved
that running their testing method along with the agnostic learning algorithm proposed by
Kalai et al. [19] will not increase the running asymptotically, i.e., dO(1/ϵ4).

To see why the testing method in [27] will not increase the asymptotic running time of
our auditing algorithm, we need to dig deeper into the algorithm described by Lemma 24
from [8]. First, they run the learning algorithm of Kalai et al. [19] to get an approximating
polynomial of degree O(1/ϵ4). Then, they estimate the moments of the outer product of
the derivatives of the learned polynomial. Finally, they estimate the classification error of a
collection of halfspaces in a subspace of degree O(1/ϵ4). See [8] for further details.

The most important observation is that every step in the algorithm stated in Lemma 24
only requires estimating the moments of the data up to degree O(1/ϵ4). Thus, running the
moment matching testing method of [27] will only require an additional dO(1/ϵ4) running
time, which will not increase the asymptotic running time of the agnostic learning algorithm
in Lemma 24 or our auditing algorithm.
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6 Future Work

The major drawback of our result is still the lack of approaches of learning halfspaces with a
sub-constant error guarantee for more general distributions. Therefore, a major direction
for fairness auditing remains to develop an agnostic learning method with additive error
guarantees for broader classes, such as log-concave distributions – subject to the constraints
of Corollary 21/Diakonikolas et al. [7]. Even a computationally efficient learning algorithm
for general halfspaces that can achieve additive error close to O(1/

√
log d) under Gaussian

distributions would be an interesting improvement.
An alternative direction is to seek stronger guarantees for conjunctions on such families

of distributions. Conjunctions are more natural in the context of auditing, and their relative
lack of expressive power might enable a better guarantee.
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Proof of Proposition 14. For conciseness of the proof, we define

α(k) := a + k(b− a)
n

Since a ≤ Pr{h∗(x) = 1} ≤ b by definition, there must exists a k ∈ {0, . . . , n− 1} such that

α(k) < Pr{h∗(x) = 1} < α(k + 1)

Then, since we assumed that D has a continuous CDF w.r.t. the normal of h∗, we can
construct another halfspace h′ by either increasing or decreasing the threshold of h∗ until
Pr{x ∈ h′} hits either α(k) or α(k + 1). We thus obtain

Pr{h′(x) ̸= h∗(x)} =|Pr{h∗} − Pr{h′}|
≤α(k + 1)− α(k)

=(b− a)
n

(10)

Let dom := {x | h′(x) ̸= h∗(x)}. Then, by the triangle inequality and the fact that
Pr{c(x) = 1} ≤ 1, we have

|Pr{h∗}dD(c, h∗)| −
∣∣Pr{h′}dD(c, h′)

∣∣ ≤| Pr{h∗} − Pr{h′}| + | Pr{h′ ∩ c} − Pr{h∗ ∩ c}|

≤ (b − a)
n

+ | Pr{h′ ∩ c ∩ dom} − Pr{h∗ ∩ c ∩ dom}|

≤ (b − a)
n

+ | Pr{x ∈ dom}|

≤2(b − a)
n

(11)

where the second inequality is obtained by expanding Pr{h∩ c} on the event x ∈ dom using
the law of total probability and exploiting the fact that h′ always agrees with h∗ on the
complement of dom, i.e., Pr{h′ ∩ c∩domc} = Pr{h∗ ∩ c∩domc}; the third inequality holds
because at most one of h∗(x) = 1 and h′(x) = 1 holds for any x ∈ dom by definition; and
the last inequality is due to equation (10).

Finally, due to the optimality of h∗
k, we have

Pr{h∗
k} |dD(c, h∗

k)| ≥Pr{h′} |dD(c, h′)| − γ∗ + γ∗

≥γ∗ − 2(b− a)
n

by inequality (11) with Pr{h∗(x) = 1} |dD(c, h∗)| = γ∗. ◀

B Proof Of Hardness

We will need the following proposition from [16, 7] in the proof of theorem 19.

▶ Proposition 26 ([16, 7] Hardness of cLWE). Given Assumption 11, for any d ∈ N, any
constants κ ∈ N, α ∈ (0, 1), β ∈ R+ and any logβ d ≤ k ≤ Cd where C > 0 is a sufficiently
small universal constant, the problem LWE(dO(kα),N , Sd−1,Nσ, modT ) over Rd with σ ≥ k−κ

and T = 1/C ′√k log d, where C ′ > 0 is a sufficiently large universal constant, cannot be
solved in time dO(kα) with d−O(kα) advantage

The problem of continuous Learning With Error (cLWE) under Gaussian distribution is
known to be as hard as LWE. Now we are ready to prove the main theorem.
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Proof of Theorem 19. We give an efficient method taking as input samples from a dis-
tribution D′, that is either from the alternative hypothesis or the null hypothesis of
LWE(dO(kα),N (0, I), Sd−1,N (0, σ), modT ) from Proposition 26, and generate samples from
another distribution D with the following properties: if D′ is from the alternative (resp. null)
hypothesis of the LWE problem, then the resulting distribution D will satisfy the alternative
(resp. null) hypothesis requirement of the theorem for the halfspace auditing problem.

The reduction process can be formulated as follow: for a sample (x, y) from a instance D′

of the problem LWE(dO(kα),N (0, I), Sd−1,N (0, σ), modT ) from Proposition 26, we simply
output (x, c(x)) ∼ D, where

c(x) =
{

+1, if y ≤ T/2
−1, otherwise

We argue that D satisfies the desired requirement stated above.
For the alternative hypothesis case, let D′ be from the alternative hypothesis case of

the LWE. Let s be the secret vector in the LWE problem. We consider the following two
halfspaces:

h1(x) = sgn(s⊤x − T/6)
h2(x) = sgn(−s⊤x + T/3)

If we can show
∣∣∣Prx∼Dx {h1(x) = 1}dD(c, h1) + Prx∼Dx {h2(x) = 1}dD(c, h2)

∣∣∣ = Ω(T ), then
either h = h1 or h = h2 satisfies Prx∼Dx {h(x) = 1} |dD(c, h)| = Ω(T ), which implies the
desired property of the alternative hypothesis we would like to prove. By Lemma 15, we have

2 Pr
x∼Dx

{h1(x) = 1}dD(c, h1) + 2 Pr
x∼Dx

{h2(x) = 1}dD(c, h2)

= Pr{¬c}(Pr{¬h1}+ Pr{¬h2}) + Pr{c}(Pr{h1}+ Pr{h2})︸ ︷︷ ︸
I1

− (Pr{c(x) = h1(x)}+ Pr{c(x) = h2(x)}︸ ︷︷ ︸
I2

)

To bound I1, I2, we first examine the subset of domain where h1 and h2 agree, namely

B :={x ∈ Rd | h1(x) = h2(x)}
={x ∈ Rd | h1(x) = 1 ∩ h2(x) = 1}
={x ∈ Rd | s⊤x ∈ [T/6, T/3]}

Then, for I1, by the law of total probability, we have

I1 = Pr{c(x) = −1}(Pr{h1(x) = −1} + Pr{h2(x) = −1} + Pr{x ∈ B} − Pr{x ∈ B})

+ Pr{c(x) = 1}(Pr{h1(x) = 1} + Pr{h2(x) = 1 ∩ x /∈ B} + Pr{h2(x) = 1 ∩ x ∈ B})

(i)= Pr{c(x) = −1}(1 − Pr{x ∈ B}) + Pr{c(x) = 1}(1 + Pr{x ∈ B})

=1 + Pr{x ∈ B}(Pr{c(x) = 1} − Pr{c(x) = −1})

=1 + Pr{x ∈ B}(2 Pr{c(x) = 1} − 1)
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where (i) is because {x ∈ Rd | h1(x) = −1}, {x ∈ Rd | h2(x) = −1}, {x ∈ B} are pairwise
disjoint and their union equals to Rd, {x ∈ Rd | h1(x) = 1}, {x ∈ Rd | h2(x) = 1 ∩ x /∈ B}
are disjoint and their union equals to Rd; and since {x ∈ B} ⊂ {x ∈ Rd | h2(x) = 1} by
definition, {x ∈ B} = {x ∈ B | h2(x) = 1}.

For I2, because for any x ∈ B, h1(x) = h2(x) = 1 by construction, and by the law of
total probability, we have

I2 = Pr{c(x) = h1(x) ∩ x /∈ B} + Pr{c(x) = h2(x) ∩ x /∈ B} + 2 Pr{c(x) = 1 ∩ x ∈ B}

= Pr{x /∈ B} + 2 Pr{c(x) = 1 ∩ x ∈ B}

=1 + Pr{c(x) = 1 ∩ x ∈ B} − Pr{c(x) = −1 ∩ x ∈ B}

=1 − Pr{x ∈ B}(1 − 2 Pr{c(x) = 1 | x ∈ B}

By the definition of c as well as the Alternative case distribution of the LWE problem,
{x ∈ Rd | c(x) = 1} is equivalent to {x ∈ Rd | mod T (s⊤x + z) ≤ T/2} for some
z ∼ N (0, σ2). Furthermore, we have

{x ∈ Rd | modT (s⊤x + z) ≤ T/2} ≡
⋃
k∈Z
{s⊤x + z ∈ (kT, kT + T/2]}

Notice that s⊤x + z is a one dimensional Gaussian random variable, which, by symmetry of
Gaussian distribution, implies Pr{c(x) = 1} = Pr{ ∪ k∈Z{s⊤x + z ∈ (kT, kT + T/2]}} = 1/2.
Therefore, combining I1 and I2 gives

I1 − I2 =2 Pr{x ∈ B}(Pr{c(x) = 1} − Pr{c(x) = 1 | x ∈ B})

=Ω(T )(1/2− Pr{c(x) = 1 | x ∈ B}) (12)

where the last equation is because s⊤x ∼ N (0, 1), hence, Pr{x ∈ B} = Pr{s⊤x ∈
[T/6, T/3]} = Ω(T ). Since we were only concerned with showing |I1 − I2| is large, it
suffices to show Pr{c(x) = 1 | x ∈ B} − 1/2 = Ω(1).

For x ∈ B, we have s⊤x ∈ [T/6, T/3], therefore c(x) = −1 only if |z| ≥ T/6. Notice
that z ∼ N (0, σ2) and Proposition 26 states that the LWE problem is hard for any fixed
constant κ ∈ N and σ ≥ k−κ. Given the constant β ∈ R+ in this theorem, we can take
κ = ⌈1/2β + 1/2 + 1⌉, which is a fixed constant. Then, by Proposition 26, the LWE problem
is hard for σ = k−κ ≤ 1/(k3/2√log d) = o(T ). Therefore, by a Gaussian tail bound, we have

Pr
x∼Dx

{c(x) = −1 | x ∈ B} ≤ Pr
z∼N (0,σ2)

{|z| ≥ T/6} = o(1)

Plugging the above back into Equation (12), we can conclude that

Pr
x∼Dx

{h1(x) = 1}dD(c, h1) + Pr
x∼Dx

{h2(x) = 1}dD(c, h2) = Ω(T )

Thus, either h = h1 or h = h2 must satisfy Prx∼Dx {h(x) = 1} |dD(c, h)| = Ω(T ), which
completes the proof for the alternative hypothesis case.

For the null hypothesis, we can immediately see that Prx∈N {h}dN (c, h) = 0, ∀h ∈ Hd

because c(x) is independent from each h ∈ Hd.
It remains to verify the time lower bound and the distinguishing advantage for auditing

halfspace subgroups. From Proposition 26, we know that under Assumption 11, for the
problem LWE(dO(kα),N (0, I), Sd−1,N (0, σ2), modT ) with any σ ≥ k−κ (where κ ∈ N is a
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constant) and T = 1/c′√k log d, where c′ > 0 is a sufficiently large universal constant, the
problem cannot be solved in dO(kα) time with d−O(kα) advantage. Therefore, under the same
assumption, there is no algorithm that can solve the decision version of auditing problem
w.r.t. halfspace subgroups in dO(kα) time with d−O(kα) advantage. ◀

C Analysis Of Algorithm

We prove the correctness, time and sample complexity of Algorithm 1.

Proof of Theorem 23. Let’s notice that, although each iteration of the loop in Algorithm 1
solves minh∈HD

µ
Pr{c(x) ̸= h(x)} and maxh∈HD

µ
Pr{c(x) ̸= h(x)}, it is essentially equivalent

to solving maxh∈HD
µ
|dD(c, h)| according to Lemma 17. As the oracle returns a halfspace

with additive error smaller than ϵ with probability at least 1− δ, we have that

max(
∣∣dD(c, h+

µ )
∣∣ ,

∣∣dD(c, h−
µ )

∣∣) ≥ max
h∈HD

µ

∣∣dD(c, h+
µ )

∣∣− ϵ

µ

with probability at least 1− δ/n because of Lemma 17 as well as a union bound.
Across all iterations, the algorithm maximizes µ

∣∣dD(c, h+
µ )

∣∣ over HD
µ for µ increase from

a to b with step size (b− a)/n. With a union bound over all n iterations, we obtain the same
additive error ϵ in every iteration, with probability at least 1− δ. As a result, the algorithm
equivalently solves

max
h∈Hd

Pr
x∈D
{h(x) = 1} |dD(c, h)|

s.t. a ≤ Pr
x∈D
{h(x) = 1} ≤ b

with probability at least 1 − δ for an additive error at most 2(b − a)/n + ϵ according to
Proposition 14, which completes the proof. ◀
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Increasing diversity in a community or an organization requires paying attention to many different
aspects, including recruitment, hiring, retention, climate, and more. In this paper, we focus on
how climate, captured through network interactions, can affect the growth or decay of minority
populations within that community. Building on previous work, we develop a dynamic stochastic
block model that grows according to a weighted version of preferential attachment, while having some
memory of previous edges as well. This models how interactions between nodes in the network can
influence the recruitment of new nodes to the network. We derive a deterministic approximation of
this random system and prove its convergence is determined by the network parameters. Additionally,
we show how the memory of the network affects convergence under different parameter regimes,
and we validate this model by assessing the growth of women scientists in the American Physics
Society’s co-authorship network.
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1 Introduction

While efforts have been made since the 1920s to desegregate and diversify the workplace,
modern notions of diversity primarily originate from policies in the 1960s during the Civil
Rights Era [21]. The Civil Rights Act of 1964 put an end to the “de facto” policies that
discriminated against classes of workers [16]. The benefits of diverse organizations are
well-documented; studies and computational experiments show that diverse organizations
have increased feelings of belonging and satisfaction amongst workers, and increased problem-
solving ability [17, 23].

There has been a large body of work in recent years that has focused on how hiring
practices can be amended to be more inclusive and support diversity [33, 40, 45, 29, 37, 48].
However, real-world experience shows that many times so-called “inclusive hiring” programs
can mask deeply entrenched social biases that still privilege the status quo [27, 11].
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In addition to hiring, growing diversity in an organization also requires focusing on what
happens after someone is hired. Harvard Business Review reports that U.S. companies
invest a total of 8 billion dollars on Diversity, Equity, and Inclusion (DEI) trainings per
year [26]. However, studies show that there remains a large problem with diversity in these
organizations [5, 38, 27].

Culture is a huge part of an individual’s experience in a community. An institution that
does a good job of recruiting under-represented people but does not have a climate that
encourages their retention will ultimately revert to the status quo [6]. In this paper, we
explore the connection between the growth of diversity in a community and the connections
and collaborations among the people in the community.

Network analysis allows a way to link “micro-scale” interactions to “macro-scale” or-
ganizational structure and dynamics [19, 35, 28]. In this sense, the key micro-scale insight
about organizational networks is that in recruiting, people tend to favor candidates similar
to them, or those who fit the dominant culture of the organization [43, 11]. The employee
referral system, hiring bias, and the infamous “culture fit” qualification are all examples
of this phenomenon [43, 44]. As an organization’s network grows in this way, it tends to
reproduce the demographics already present in the network. This is known as homophily, a
term developed to capture how interpersonal networks tend to self-cluster around shared
characteristics [35]. In the context of networks, this can be captured through the notion of
preferential attachment [9], a weighted version of which we use in this paper.

It has been shown that social ties and networks can impact employment [14, 49] and
education outcomes [15]. This property is important to consider for diversity because
networks with strong homophily tend to become less diverse over time [2, 44]. We wish
to create a model that can capture this phenomenon, and demonstrate how under certain
network conditions, it can be prevented. Analysis like this creates an opening for researchers
to go beyond assessing inclusive policies from a purely qualitative standpoint and towards
a mathematical characterization of organizational “climate”. Additionally, to validate this
model in real-world settings we look towards the coauthorship network of the American
Physical Society (APS) from 1980 to 2009, to assess how the collaboration structure has
impacted the proportion of women authors in APS.

2 Background and Related Work

Many works try to mathematically assess the dynamics of organizations and their impact on
diversity. Some works propose ecological models, particularly ecological theories of affiliation
to understand how organizational networks grow over time [34]. Others use agent-based
modeling approaches, where agents of different communities will have different access to
information and algorithms to solve problems [23, 18]. We will focus on network-oriented
approaches.

The classic preferential attachment algorithm for network growth was introduced in [9].
The growth of scientific collaboration networks has been specifically studied in [10, 24].
Strategic perspectives on these collaborations have also been studied in [25]. How network
growth relates to the communities formed is studied in [8]. [41] provides a formulation of
“social capital” in networks, which defines how value can be generated based on one’s position
in a social network, through useful information, personal relationships, or the ability to
organize groups. In heterogeneous networks, it has been shown that “broker” nodes with ties
that connect clusters and span the “structural holes” of the network have greater access to
social capital due to their unique access to diverse information [13]. To this end, measures
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of “betweenness” in networks have been used as a way to identify which nodes tend to
span structural holes [33]. Research has also been done on the strength of weak ties, or
connections that are accessed less frequently, in networks. Due to the nature of strong ties
being connections that are accessed frequently, much of the information shared in networks
of strong ties becomes redundant, and through weak ties, more novel information can be
accessed [19].

Recently, [12] utilized the Stochastic Block Model to show how diversity in a heterogeneous
network evolves under homophily and preferential attachment. The model in [12] is very
similar to the model in [47], which also tries to capture biased network growth through
homophily. This model was able to mathematically prove threshold effects under which
minority populations would proportionally vanish or reach parity in the network, showing
that low cross-community collaboration rates will always lead to the minority vanishing [12].
However, one of the main oversights of this model was its lack of long-term memory. In
particular, it was assumed that the network was renewed at every time step. In time-evolving
networks, memory is crucial in the understanding of complex temporal systems and can have
great influence on emergent properties of the network [42, 36]. Works such as [20] have also
explored how memory of social connections influences network communities. Without any
encoding of memory, the model dynamics in [12] were essentially a sequence of independent
static graphs with new nodes added. This paper’s model seeks to build on [12] with the
addition of a “memory” parameter which influences how long edges persist over time steps.

3 Main Contributions

In our paper, we contribute the following:
(1) Develop a model that builds on [12] that captures how homophily can affect diversity

in collaboration networks while accounting for memory in the collaborations (edges) of
the graph. We show that certain network conditions can lead to a decline in minority
populations (Section 4).

(2) Characterize the effect memory has on the rate of growth of the minority population
and provide parameter regimes where memory can change the fixed point of the system,
using a deterministic approximation to the stochastic system (Sections 5 and 6).

(3) Validate this model on gender diversity in scientific collaborations using the American
Physics Society’s citation network dataset [1]. In particular, we see in Figure 1 that the
best-fit model we propose can roughly predict the growth of the minority population
(women) in this dataset. We discuss this figure in more detail in Section 7.

4 Model Overview

Our basic model here replicates many of the features of [12]. We consider a Stochastic
Block Model with two communities as the underlying structure. Nodes have weights that
correspond to their “success” (which is the weighted sum of the collaborations (edges) of the
node). Successful nodes are more influential in the recruitment of new nodes to the network
(preferential attachment). Homophily plays a key role in recruitment since nodes only recruit
members of their own community. The combination of homophily and preferential attachment
leads to a rich-get-richer phenomenon, and we are interested in how the minority community
evolves over time. We summarize key model features here:

(i) Community Structure: We use a two-community (Red/Blue) Stochastic Block Model to
account for differential interactions between different communities.

FORC 2024



6:4 Modeling Diversity Dynamics in Time-Evolving Collaboration Networks

Figure 1 Plot of the proportion of women in the APS co-authorship network from 1980-2009.
The best-fit model identified, with memory parameter q = 0.265 is shown in orange, and the model
from [12], with memory parameter q = 0 (i.e. no memory) is shown in green.

(ii) Collaborations: In this network model, nodes represent people, and edges between nodes
represent collaborations between two people. These edges will be weighted to account
for how “successful” a collaboration is.

(iii) Node Influence: The weight of a node is the sum of the weights of all its edges. Nodes
with higher weight can recruit more new nodes.

(iv) Homophily: A node will always recruit new nodes of the same color (sub-community).
This leads to a rich-get-richer phenomenon since nodes with higher weight tend to
recruit more nodes (weighted preferential attachment). The total number of nodes from
a community (say red nodes) arriving at a particular time depends on the total weight
of red nodes in the graph at the preceding time.

(v) Memory: Given a collaboration network, people who have collaborated in one timestep
are more likely to collaborate again in the next timestep. This is the key point of
divergence from the model in [12]. While [12] assumed that brand-new collaborations
were created at every time step, here we allow collaborations to persist over multiple
time steps.

4.1 Weighted Stochastic Block Model

The Stochastic Block Model (SBM) [22] is a generalization of the Erdös-Rényi G(n, p)
random graph, which supports the interactions of multiple communities within the graph [31].
Weighted SBMs have been studied in [3, 4, 39]. In this paper, we consider two communities,
Red and Blue. Without loss of generality, assume Red is the minority community. To
maintain consistency with [12], we mirror much of the notation below.

▶ Definition 1 (Weighted Stochastic Block Model). Let [n] = {1, ..., n} be a set of nodes,

where each node i ∈ [n] has color c[i] ∈ {R, B}. Define interaction matrix P =
[
µRR µRB

µBR µBB

]
and weight matrix W =

[
wRR wRB

wBR wBB

]
where P, W > 0. Generate a weighted random graph

on [n], so that for every pair of nodes i, j ∈ [n]2, the edge’s weight wi,j = wc[i],c[j] with
probability µc[i],c[j]/n, and otherwise wi,j = 0.
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For this paper, we assume our matrices P, W are such that µRR = µBB , wRR = wBB and
µRB = µBR, wRB = wBR. Also note that the entries µc[i],c[j] of matrix P are not themselves
probabilities. The probability of an edge existing between two nodes is µc[i],c[j]/n. One can
think of µc[i],c[j] as the expected number of edges a node of color c[i] will form with nodes of
color c[j] in the network without any memory.

4.2 Stochastic Block Model Dynamics

We assume that the recruitment of new nodes to the network happens in discrete time steps,
and a constant fraction of new nodes join the network at each time step.

▶ Definition 2 (Stochastic Block Model Dynamics). Let Gt = (Vt, Et) be our graph at time t.
Assume this graph contains nt nodes, with nR

t Red nodes and nB
t Blue nodes. At each time

step, ⌈λnt⌉, λ > 0 new nodes are added to the network. Additionally, define edge holdover
probability q ∈ [0, 1]. Our procedure for generating the subsequent graph Gt+1 is as follows:
(1) Calculate the total weight of Red nodes and Blue nodes in Gt, defined as

Rt =
∑

c[i]=R

∑
j∈[nt] wij, and Bt =

∑
c[i]=B

∑
j∈[nt] wij.

(2) Define intermediate graph G+
t = (Vt, E+

t ) where for every edge (i, j) ∈ Et, with probability
q let (i, j) ∈ E+

t , otherwise remove it.
(3) Add mt+1 := ⌈λnt⌉ new nodes to graph G+

t . Each incoming node is Red with probability
Rt

Rt+Bt
, or Blue with probability Bt

Rt+Bt
.

(4) Initialize Gt+1 = G+
t , and for all potential edges (i, j) /∈ E+

t , generate them according
the Weighted Stochastic Block Model with parameters P and W.

(a) Create Gt accord-
ing to the Weighted
SBM. Calculate Rt =
10, Bt = 4.

(b) Create intermedi-
ate graph G+

t , where
an edge stays with
probability q and de-
letes otherwise (de-
leted edges denoted
by gray dashed lines).

(c) Add ⌈λnt⌉ new nodes
to the graph. These nodes
are Red with probability

Rt

Rt+Bt
= 5

7 and Blue with
probability Bt

Rt+Bt
= 2

7 .

(d) Create graph Gt+1 by
re-drawing edges according
to the Weighted SBM. Cal-
culate Rt+1 = 10, Bt+1 =
10.

Figure 2 Visualization of the Stochastic Block Model Dynamics described in Definition 2 for

P =
[

0.7 1
1 0.7

]
, W =

[
3 2
2 3

]
, q = 0.5, λ = 0.5. Figure 2a shows initialization of Gt. Figure 2b

shows the intermediate graph G+
t with some edges persisting according to the q parameter. Figure

2c shows new nodes being added to the network according to preferential attachment, and Figure 2d
shows the creation of Gt+1 according to the Weighted SBM from Definition 1.

The recruitment dynamics in step (3) of Definition 2 come from our assumption of
homophily and preferential attachment. New Red nodes are recruited by existing Red nodes
and arrive proportional to the total weight of Red nodes in the network. The same is true
for Blue nodes. Let wi =

∑
j∈[nt] wi,j be the weight of a node i, and w =

∑
i∈[nt] wi be the

total weight of all nodes. Then our recruitment dynamics in step (3) are equivalent to every
node i recruiting on average mt+1 · wi

w nodes of the same color.
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5 Deterministic Approximation

To understand the stochastic system, we will construct a deterministic approximation that
follows the mean of the system. We will show that the stochastic system does not deviate too
far from the deterministic system. For this, we first compute the probability that an edge
exists at a given time. Because the graph has memory, the probability of an edge existing at
time t is dependent on all previous graphs {Gk|k ≤ t}. We define the event Eij(t) on each
edge (i, j) ∈ Et, where Eij(t) :=

{
edge (i, j) exists at time t

}
.

▶ Lemma 3. Let ΠRR(t) := Pr(Eij(t)|c[i] = c[j] = R). Then:

ΠRR(t) = µRR

nt
+

t−1∑
k=0

µRR

nk

t∏
j=k+1

q

(
1 − µRR

nj

)
. (1)

Proof. Fix edge (i, j) ∈ Et. Without loss of generality, assume c[i] = c[j] = R. We derive
the probability of event Eij(t) by conditioning on the previous timestep Eij(t − 1) with our
edge holdover probability q.

Pr(Eij(t)) = Pr
(
Eij(t)|Eij(t − 1)

)
Pr(Eij(t − 1)) + Pr

(
Eij(t)|Ec

ij(t − 1)
)
Pr(Ec

ij(t − 1))

(2)

=
(

q + (1 − q)µRR

nt

)
Pr(Eij(t − 1)) +

(
µRR

nt

)(
1 − Pr(Eij(t − 1))

)
(3)

= µRR

nt
+ q

(
1 − µRR

nt

)
Pr
(
Eij(t − 1)

)
. (4)

This produces a recursive relationship with initial condition Pr(Eij(0)) = µRR

n0
. We solve this

inductively, yielding

ΠRR(t) := Pr(Eij(t)|c[i] = c[j] = R) = µRR

nt
+

t−1∑
k=0

µRR

nk

t∏
j=k+1

q

(
1 − µRR

nj

)
. (5)

completing the proof. ◀

We can similarly define and compute probabilities ΠRB(t) and ΠBB(t). Define the minority
fraction in the network as

(ϕt)t≥0 := nR
t

nt
= nR

t

nR
t + nB

t

. (6)

Where nR
t , nB

t are the number of Red and Blue nodes in the network at time t, respectively.

▶ Lemma 4. Assume ∃ε ∈
(
0, 1

2
)

such that
(

1
nt

) 1
2 −ε

≤ ϕt ≤ 1
2 . Let Ft be a filtration until

time t. Let

Γq(xt) := x2
t wRRΠRR(t) + xt(1 − xt)wRBΠRB(t)

(x2
t + (1 − xt)2)wRRΠRR(t) + 2xt(1 − xt)wRBΠRB(t) . (7)

Then, we can bound the conditional expectation of our process E[ϕt+1|Ft] as follows:

ϕt + ⌊λnt⌋
nt

·
(

1 − 1
n

ε/5
t

)
Γq(ϕt)

1 + ⌊λnt⌋
nt

≤ E[ϕt+1|Ft] ≤
ϕt + ⌈λnt⌉

nt
·
(

1 + 1
n

ε/5
t

)
Γq(ϕt)

1 + ⌈λnt⌉
nt

, (8)

with probability at least 1 − 8
exp(C1nε

t ) , where C1 = min
{

µRR

24 , µRB

12
}

and ε ∈ (0, 1
2 ).
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The proof of Lemma 4 is given in the Appendix A.1. We notice that the limit as t → ∞ of
the lower and upper bounds in Lemma 4 goes to ϕt+λ·Γq(ϕt)

1+λ . This motivates the consideration
of the following deterministic system, Φt, to approximate the stochastic system behavior.

▶ Definition 5 (Deterministic System). We define the deterministic system Φt as:

Φt+1 = Φt + λ · Γq(Φt)
1 + λ

, Φ0 = nR
0

n0
, (9)

where Γq(xt) is as before:

Γq(xt) = x2
t wRRΠRR(t) + xt(1 − xt)wRBΠRB(t)

(x2
t + (1 − xt)2)wRRΠRR(t) + 2xt(1 − xt)wRBΠRB(t) . (10)

We derive this expression in more detail in Appendix Sec. A.2.

6 Analysis & Discussion of Deterministic System

In this section, we prove the existence of parameter regimes that will dictate the convergence
of the deterministic system. Define ρt := ΠRR(t)wRR

ΠRB(t)wRB
. This will be a key parameter in our

analysis of the system’s behavior.

▶ Lemma 6. For q > 0, the limit limt→∞ ρt := ρ = µRRwRRSq
RR

µRBwRBSq
RB

exists, where we define Sq
RR

as:

Sq
RR = lim

t→∞
(1 + λ)−t +

t−1∑
k=0

(1 + λ)−k
t∏

j=k+1
q

(
1 − µRR

n0
(1 + λ)−j

)
, (11)

Sq
RB = lim

t→∞
(1 + λ)−t +

t−1∑
k=0

(1 + λ)−k
t∏

j=k+1
q

(
1 − µRB

n0
(1 + λ)−j

)
. (12)

For q = 0, we have ρt = ρ0 = µRRwRR

µRBwRB
.

The proof is in Appendix Section A.3. Now, consider the function ft : [0, 1] → [0, 1], such
that

ft(x) = x + λΓq(x)
1 + λ

=
x + λ

(
x2wRRΠRR(t)+x(1−x)wRBΠRB(t)

(x2+(1−x)2)wRRΠRR(t)+2x(1−x)wRBΠRB(t)

)
1 + λ

(13)

= 2x3(ρt − 1) − x2(ρt − 1)(2 − λ) + x(ρt + λ)
(1 + λ)(2x2(ρt − 1) − 2x(ρt − 1) + ρt)

. (14)

The simplifications above follow from algebra. ft(x) captures the update function for the
deterministic system in Def. 5. We establish the following properties of ft.

▶ Lemma 7. ft(x) converges uniformly to f(x) as t → ∞, where

f(x) = 2x3(ρ − 1) − x2(ρ − 1)(2 − λ) + x(ρ + λ)
(1 + λ)(2x2(ρ − 1) − 2x(ρ − 1) + ρ) .

Proof. The denominator of ft(x) is (1 + λ)
(
2x2(ρt − 1) − 2x(ρt − 1) + ρt

)
. This denominator

is quadratic, with discriminant

D = 4(1 + λ)2(ρt − 1)2 − 4(2)(1 + λ)2(ρt − 1)ρt = −4(1 + λ)2(ρ2
t − 1). (15)

FORC 2024



6:8 Modeling Diversity Dynamics in Time-Evolving Collaboration Networks

In the case of ρt > 1, we have D < 0, meaning ft(x) is strictly bounded away from 0 for all
x ∈ R. For ρt = 1, our denominator is simply (1 + λ)ρt, and we have ρt > 0 by assumption.
However, in the case of ρt ∈ (0, 1), we see that the discriminant D > 0 and the denominator
of ft(x) has real roots. We show that these roots must lie outside the domain of ft(x), and
thus do not impact its convergence.

To prove this, assume ρt ∈ (0, 1). By the quadratic formula the denominator of ft(x) has
roots x1, x2, defined as

x1, x2 = 2(ρt − 1) ±
√

−4(ρ2
t − 1)

4(ρt − 1) . (16)

We first show that x1 := 2(ρt−1)+
√

−4(ρ2
t −1)

4(ρt−1) < 0. This is equivalent to proving 2(ρt − 1) +√
−4(ρ2

t − 1) > 0. We construct the following chain of implications

2(ρt − 1) +
√

−4(ρ2
t − 1) > 0 (17)

⇐⇒ −2(ρt − 1) <
√

−4(ρ2
t − 1) (18)

⇐⇒ 2(1 − ρt) < 2
√

1 − ρ2
t . (19)

Since ρt ∈ (0, 1), we know both 1 − ρt < 1 − ρ2
t , and 1 − ρ2

t <
√

1 − ρ2
t , thus proving the

claim. To show that x2 := 2(ρt−1)−
√

−4(ρ2
t −1)

4(ρt−1) > 1, we aim to prove the equivalent statement
2(ρt − 1) −

√
−4(ρ2

t − 1) < 4(ρt − 1). Again we construct a chain of implications.

2(ρt − 1) −
√

−4(ρ2
t − 1) < 4(ρt − 1) (20)

⇐⇒
√

−4(ρ2
t − 1) > −2(ρt − 1). (21)

Inequality (21) is identical to (18), thus proving the claim. Since we have shown that no
roots can exist in the denominator of ft(x) for x ∈ [0, 1], we can express the limit as follows:

lim
t→∞

ft(x) = limt→∞ 2x3(ρt − 1) − x2(ρt − 1)(2 − λ) + x(ρt + λ)
limt→∞(1 + λ)(2x2(ρt − 1) − 2x(ρt − 1) + ρt)

(22)

= 2x3(ρ − 1) − x2(ρ − 1)(2 − λ) + x(ρ + λ)
(1 + λ)(2x2(ρ − 1) − 2x(ρ − 1) + ρ) . (23)

which gives the desired result. ◀

▶ Lemma 8. For any fixed t, if 0 < x < 1/2:
(1) If ρt > 1, then ft(x) < x.
(2) If ρt < 1, then ft(x) > x.
(3) If ρt = 1, ft(x) = x.
Similarly, if 0 < x < 1/2
(1) If ρ > 1, then f(x) < x.
(2) If ρ < 1, then f(x) > x.
(3) If ρ = 1, f(x) = x.
The proof of this follows similarly to [12] and is omitted.

▶ Lemma 9. f(x) has fixed points at x = {0, 1
2 , 1} if ρ ̸= 1. If ρ = 1, then f(x) = x ∀x.

Furthermore, for x ∈ (0, 1/2) the function f(x) monotonically converges to 0 when ρ > 1,
monotonically converges to 1/2 when ρ < 1, and remains constant if ρ = 1.
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The proof follows directly from [12] and is omitted.

▶ Theorem 10.
If ρ > 1, the deterministic system Φt will converge to 0.
If ρ < 1, the deterministic system Φt will converge to 1

2 .

Proof. If ρ > 1, then there exists T0 where we have ρt > 1 for t ≥ T0. Thus for t > T0
Lemma 8 implies that Φt+1 < Φt. Since Φt ∈ [0, 1/2] is monotonically strictly decreasing, it
must converge to a limit. We claim that this limit must be 0.

For contradiction, let Φt converge to α > 0. Since Φt is decreasing it must converge from
the right and there exists T1 such that for t > T1, we have Φt > α.

Let f(α) = β < α, by Lemma 8. By the continuity of f , we have a neighborhood of α

such that for all x in that neighborhood, f(x) is arbitrarily close to β. Hence, there exists δ

such that

f(α + δ1) < α − α − β

2 (24)

for all δ1 ∈ (0, δ).
Lemma 7 implies that ft converges uniformly to f , and there exists T2 such that for

t > T2, we have |ft(x) − f(x)| < α−β
4 for all x. Note that ft(Φt) = Φt+1 by definition of the

update function ft(x), so we have

|ft(Φt) − f(Φt)| = |Φt+1 − f(Φt)| <
α − β

4 . (25)

Consider Φt ∈ (α, α + δ) for t > max{T0, T1, T2}. We combine equations (24) and (25) to
get:

Φt+1 < f(Φt) + α − β

4 < α − α − β

2 + α − β

4 < α. (26)

But this is a contradiction, and therefore Φt must converge to 0. A similar argument holds
in the case of ρ < 1. ◀

6.1 The Role of Memory in the Deterministic Approximation
This paper considers a memory parameter q, which is the probability that an edge from
one time step persists to the next time step, and this is the primary extension to the model
in [12]. Define ρ0 := µRRwRR

µRBwRB
, which is the threshold parameter of the model in [12] with

q = 0, as well as the value of ρt at t = 0.
In the case that ρ0 ≠ 1, we empirically observe that the value of q only changes the

convergence rate of the system to a particular fixed point, and does not change the fixed
point itself (Figure 3). In Figure 3a, we see that since µRR < µRB and ρ0 < 1, increasing q

causes our process to converge to 1
2 at a slower rate. In Figure 3b, we see that µRR > µRB

and ρ0 > 1, therefore increasing q causes the process to converge to 0 slower. Additionally,
we see that for q ∈ {0, 0.5, 0.75}, the approximation trajectories are all roughly the same. It
is only once q ∈ {0.95, 1.0} that the approximation starts to noticeably differ in its trajectory.

In the case where ρ0 = 1, in the absence of any memory the fraction of the minority will
remain constant. However, we see that the inclusion of memory propels the system towards
a fixed point (i.e. reaching parity or vanishing). In Figure 4, we see with µRR > µRB and
ρ0 = 1, that increasing q causes the once stationary process to converge to 1

2 . Figure 4b
plots the limit point of the deterministic process Φ∞ over different values of our memory
parameter q. Φ1000 is used as an approximation for Φ∞. We see that a phase transition
happens soon after q crosses 0.9. We summarize these observations in Table 1.
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Figure 3 Plot of two different deterministic approximations Φ1
t , Φ2

t with different P, W parameters
over q ∈ {0, 0.5, 0.75, 0.95, 1} with λ = 0.1, N0 = 100. In Figure 3a, we see µRR < µRB and ρ0 < 1,
so as q increases to 1, our process Φ1

t converges to 1
2 at a slower rate. In Figure 3b, we have

µRR > µRB , and ρ0 > 1, so increasing q to 1 has the effect of Φ2
t decreasing the rate of convergence

to 0.

Table 1 The convergence of the system with memory in comparison with the memoryless baselines
model from [12].

Baseline
model [12]

µRR < µRB µRR > µRB µRR = µRB

ρ0 > 1 Converges to 0 Faster to 0 Slower to 0 No change
ρ0 < 1 Converges to 1

2 Slower to 1
2 Faster to 1

2 No change
ρ0 = 1 Constant Converges to 0 Converges to 1

2 No change

7 APS Dataset & Model Validation

To validate this model, we assess gender diversity in scientific collaboration networks. We
use the co-authorship network from the American Physical Society (APS) [1], a database of
Physics publications that has been used on a variety of meta-analyses of research collaborations
[32, 46]. In particular, we use a filtered version of the data set as in [46]. We join this with
the citation data from [1]. We use this network to find how often a paper is cited within the
APS community, which serves as a proxy for edge weight in our model.

7.1 APS Dataset Information

7.1.1 Data Processing

We largely follow the procedure used in [32]. First, we used data provided in [46] which de-
duplicates author names. We also restrict all publications to those that have been published
between 1980 and 2009. The primary reason for this is because [46] provides a supplementary
dataset of publications with the de-duplicated author names from 1893 until 2010, and to
control for large political changes, we only selected the final three decades. We also exclude
the year 2010 because the supplementary data in [46] did not provide data for the full
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Figure 4 Plot of our deterministic approximation Φt and threshold parameter ρt for P =
[

10 8
8 10

]
and W =

[
1 1.25

1.25 1

]
over q ∈ {0, 0.5, 0.75, 0.95, 1}. Here we see µRR > µRB and ρ0 = 1, so as q

increases, we see our process change from stationary to convergent towards 1
2 . Additionally we plot

Φ1000 over different values of q. We empirically observe that there is a threshold q∗ ≈ 0.915 where
the Φ1000 values quickly jump from 0 towards converging to 1

2 .

year of 2010. We also only include active authors, defined as authors who have, since their
first publication, published at least once every five years until the most recent year 2009.
Additionally, we filtered the data by removing all publications with 0 authors.

To predict the gender of authors, we used the pre-trained gender classifier GenderPer-
formr [50]. We let GenderPerformr predict gender for our authors in the dataset and only
kept the authors whose gender could be predicted with > 80% confidence. We note that this
model could potentially be biased towards Western-sounding names, which could reduce the
relevance of our analysis as applied to diversity in Physics collaborations. We also note that
this model classifies gender on a Male/Female binary, which does not accurately reflect all
authors’ gender identities.

This left us with a set of 14,793 authors, which formed our collaboration network. We
consider our collaboration network as a sequence of graphs over time, Gt = (Vt, Et) where
t ∈ {1980, ..., 2009}. For time t, our nodes Vt are the set of authors whose first publication
was at or before time t. This formulation ensures that our network will constantly grow
over time. A pair of nodes is connected with an edge if the two nodes co-authored a paper
together. In the case of a paper having more than two authors, we default to connecting the
first and last authors of the paper, following the procedure in [32]. However, in the case that
the first or last co-author is either a non-active author or their gender couldn’t be predicted
by GenderPerformr, we choose the authors nearest to the first/last position (i.e if the first
author isn’t available, choose the second author, same with last and second to last authors
and so on). This procedure alters the data by removing all author-publication pairs if the
author was not nearest to the first or last (i.e. if Author A wrote one paper in 1980 where
they were the third author out of seven, they would not appear in the graph for 1980, but
instead would appear whenever they were nearest to first/last author of a paper). We allow
for self-edges if the author published a paper with no co-authors. Each edge is given weight
according to the number of citations received five years after the paper has been published.
The best-fit model to the data according to this edge generation is shown in Figure 1.
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An alternate strategy for creating a collaboration network is to connect all pairs of
coauthors on a paper. However, this leads to an over-representation of papers with large
numbers of co-authors in our weight computation, and reduces our model’s predictive accuracy,
as seen in Figure 5.

Figure 5 Plot of the proportion of women in the APS co-authorship network from 1980-2009 for
data created with no restriction on coauthorship (every pair of coauthors is connected in the graph)
in red, and data created where only the first and last authors connected (approximately, see text for
exact procedure) in blue. The deterministic model’s predictions are overlaid in the dashed lines.

7.2 Estimating Model Parameters
To fit our model to the data, we perform the following procedure to estimate model
parameters. We assume our probability and weight matrices at time t are of the form

Pt =
[
µMM (t) µMF (t)
µMF (t) µMM (t)

]
, Wt =

[
wMM (t) wMF (t)
wMF (t) wMM (t)

]
, meaning subscripts MM and MF

represent in-community and cross-community parameters respectively. To estimate our
in-community probability parameter µ̂MM (t), we counted all in-community edges (both
M − M and F − F ) and divided them by the total number of possible in-community edges
in our Graph. Let nMM (t), nMF (t), nF F (t) be the number of Male-Male, Male-Female,
and Female-Female edges present in our collaboration network Gt, respectively. Then our
estimated parameter can be defined as

µ̂MM (t) = nt

(
nMM (t) + nF F (t)

(nM
t )2 + (nF

t )2

)
. (27)

µ̂MF (t) is computed similarly. To derive our in-community weight parameter ŵMM (t) (or
similarly ŵMF (t)), we averaged the weights over all in-community edges at time t.

ŵMM (t) =
∑

c[i],c[j]∈(M,M),(F,F ) (wij)t

nMM (t) + nF F (t) . (28)

To derive the probability of an edge persisting from time t to time t + 1, we consider the set
Et ∩ Et+1, which is the set of edges present in both Gt and Gt+1 and find their ratio with
respect the number of edges in Gt as

q̂t = |Et ∩ Et+1|
|Et|

. (29)
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Finally, to estimate the network growth parameters, we perform an exponential curve-fitting
on the size of the network over time. Namely, choose approximation f(t) := N̂0(1 + λ̂)t which
minimizes L2 error over our network size |Vt|. Formally, we have

λ̂, N̂0 = arg min
λ,N0

2009∑
t=1980

(
N0(1 + λ)t − |Vt|

)2
. (30)

In order to find the overall estimates P̂, Ŵ, q̂, we simply average over times t, which results

in P̂ =
[
0.359 0.468
0.468 0.359

]
, Ŵ =

[
14.337 18.026
18.026 14.337

]
, q̂ = 0.265, λ̂ = 0.115, N̂0 = 466.2 being the

estimated parameters for our model with coauthor restriction. For the model in Figure 5

with no coauthor restriction, these estimated parameters were P̂ =
[
0.511 0.718
0.718 0.511

]
, Ŵ =[

54.71 47.17
47.17 54.71

]
, q̂ = 0.309, λ̂ = 0.116, N̂0 = 473.0. Note that we do not use N̂0 in generating

any of the plots. Instead, we use the true value of N0 = 251.

7.3 Results & Discussion
With the optimal estimated parameter values from Section 7.2, we fit the model to our
dataset and assessed how accurately the model predicts the growth of women authors in the
scientific collaboration network, as in Figure 1. In the data, we see that from 1980-2009,
the proportion of active women researchers grew from around 1% to 6%. This is roughly
captured by our model when fitted to the dataset, predicting slightly over 6% active women
researchers in 2009. We also observe that the addition of memory did not significantly change
the model’s predicted trajectory. The estimated parameters from Section 7.2 suggest that
increasing q will cause a slower rate of convergence to 1

2 . However, we empirically observe
that the estimated memory parameter q̂ = 0.265 does not meaningfully alter the trajectory
when compared to the no memory case of q = 0. This was suggested by Figures 3 & 4, since
in those figures large shifts away from the baseline trajectory occurred only after q was close
to 1.

These results show that a combination of node influence (through preferential attachment)
and homophily can partially explain the growth of the minority population in a scientific
collaboration network. This result offers a powerful tool for understanding the impact of
network dynamics on diversity in scientific communities, though some finer-tuned analysis is
necessary to make it more accurate for prediction.

8 Conclusion

The above model is a simple abstraction that captures the effect of homophily in networks
on long-term diversity, which matches sociological observations of workplace diversity and
networks with preferential attachment [44, 28, 43]. Many other factors must be considered
before we can have an end-to-end model, from pre-recruitment to promotion, and this is
a clear limitation of our work. To expand the model, we could also consider more subtle
versions of preferential attachment (e.g. a red node recruits α fraction red and 1 − α fraction
blue nodes). We could also look at node creation mechanisms beyond preferential attachment,
such as a constant number of new nodes joining each timestep, or a time-inhomogenous rate
parameter λt, to model seasonality trends in the recruitment step.

Mathematically, we have not derived an explicit definition for our threshold parameter
ρ. With more knowledge of this parameter, we could precisely determine when memory
significantly affects convergence. This model is also hindered by the fact that it only has fixed

FORC 2024



6:14 Modeling Diversity Dynamics in Time-Evolving Collaboration Networks

points of {0, 1
2 , 1} when in actuality, diversity isn’t usually judged by equivalent parity, but

rather representative parity. Finding ways to mathematically extend the model to arbitrary
fixed points would be an important future step. Additionally, in our model, the network
grows infinitely large as t → ∞. Allowing for node departures and finite population size may
make the model more applicable to real-world collaboration networks.

With this in mind, our model and our findings about its threshold property could point
towards a network analysis of institutions to establish whether cross-community collaborations
are frequent enough or weighted highly enough to encourage lasting diversity. This is a
powerful tool because an organization can look at how a network is at one point in time,
and use it to extrapolate into the future, as well as develop interventions for the present (e.g.
incentives to encourage more cross-community collaborations).
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A Appendix

A.1 Proof of Lemma 4:
Before we prove the bounds on the ϕt process itself, we first must prove bounds on E

[
Rt

Rt+Bt

]
,

as defined in the following Lemma.

▶ Lemma 11. Assume ∃ε ∈
(
0, 1

2
)

such that
(

1
nt

) 1
2 −ε

≤ ϕt ≤ 1
2 . Then there exists N0 such

that for nt ≥ N0 the following holds(
1 − 1

n
ε/4
t−1

)
E[Rt]

E[Rt + Bt]
<

Rt

Rt + Bt
<

(
1 + 1

n
ε/4
t−1

)
E[Rt]

E[Rt + Bt]
. (31)

With probability at least 1 − 8
exp(C1nε

t−1) , where C1 = min
{

µRR

24 , µRB

12
}

and ε ∈ (0, 1
2 ). Addi-

tionally, we have(
1 − 1

n
ε/5
t−1

)
E[Rt]

E[Rt + Bt]
≤ E

[
Rt

Rt + Bt

]
≤

(
1 + 1

n
ε/5
t−1

)
E[Rt]

E[Rt + Bt]
. (32)

Prerequisite (Chernoff Bound). We define a Chernoff Bound [30] on a random variable X:

Pr(X ≥ δ) ≤ E[esX ]e−sδ. (33)

For all s > 0. A corollary of this is also

Pr(|X − E[X]| ≥ δE[X]) ≤ 2e−δ2E[X]/3. (34)

◀

Proof of Lemma 11. Consider random variables RR, RB, BB, representing the total weight
of Red-Red, Red-Blue, and Blue-Blue edges respectively. We can bound the number of these
edges (RR/wRR), (RB/wRB) using the Chernoff BoundPr

(∣∣∣ RR
wRR

− E[RR]
wRR

∣∣∣ ≥ δ E[RR]
wRR

)
≤ 2 exp

(
− δ2

6 (nR
t )2ΠRR(t)

)
Pr
(∣∣∣ RB

wRB
− E[RB]

wRB

∣∣∣ ≥ δ E[RB]
wRB

)
≤ 2 exp

(
− δ2

6 (nR
t nB

t )ΠRB(t)
) . (35)

From our assumption, we find that nR
t ≥ n

1
2 +ε
t where ε ∈

(
0, 1

2
)
, and nB

t ≥ nt

2 . Define
constant C1 = min{ µRR

24 , µRB

12 }. Letting δ = 1
nε/2 , we can establish the following probability

bounds on edge weights RR, RB, BB:

Pr

(
|RR − E[RR]| ≥ E[RR]

n
ε/2
t

)
≤ 2 exp

(
−ntΠRR(t)

6 nε
t

)
≤ 2 exp (−C1nε

t ) . (36)

Pr

(
|RB − E[RB]| ≥ E[RB]

n
ε/2
t

)
≤ 2 exp

(
−ntΠRB(t)

12 n
1
2
t

)
≤ 2 exp (−C1nε

t ) . (37)

Pr

(
|BB − E[BB]| ≥ E[BB]

n
ε/2
t

)
≤ 2 exp

(
−ntΠBB(t)

24 n1−ε
t

)
≤ 2 exp(−C1nε

t ). (38)
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See that Rt = RRt + RBt, so we can establish bounds on the total weight of red R by union
bound

Pr

(
|R − E[R]| ≥ E[R]

n
ε/2
t

)
≤ 4 exp(−C1nε

t ). (39)

Likewise for the total blue weight B

Pr

(
|B − E[B]| ≥ E[B]

n
ε/2
t

)
≤ 4 exp(−C1nε

t ). (40)

We see that the event |R − E[R]| < E[R]
n

ε/2
t

implies
(

1 − 1
n

ε/2
t

)
E[R] < R <

(
1 + 1

n
ε/2
t

)
E[R],

so we use this to bound our ratio R
R+B


(

1 − 1
n

ε/2
t

)
(

1 + 1
n

ε/2
t

)
 E[R]

E[R + B] <
R

R + B
<


(

1 + 1
n

ε/2
t

)
(

1 − 1
n

ε/2
t

)
 E[R]

E[R + B] (41)

(
1 − 1

n
ε/4
t

)
E[R]

E[R + B] <
R

R + B
<

(
1 + 1

n
ε/4
t

)
E[R]

E[R + B] . (42)

Define event G as the event of this inequality holding. By union bound on the values from
(39) and (40), we see that Pr(GC) ≤ 8 exp(−C1nε

t ). Therefore our inequality holds with
probability at least 1 − 8

exp(C1nε
t ) , concluding the proof for inequality (31).

To prove the second inequality (32) , we extend our bound to the expected value E
[

Rt

Rt+Bt

]
.

Notice our ratio 0 < Rt

Rt+Bt
< 1, so to upper bound our expectation we condition on our

inequality G from (42).

E
[

Rt

Rt + Bt

]
≤

((
1 + 1

n
ε/4
t

)
E[R]

E[R + B]

)
Pr(G) + 1 · (1 − Pr(G)) (43)

≤
(

1 − 8
exp(C1nε

t )

)(
1 + 1

n
ε/4
t

)
E[R]

E[R + B] + 8
exp(C1nε

t ) (44)

≤

(
1 + 1

n
ε/4
t

)
E[R]

E[R + B] + 8
exp(C1nε

t ) (45)

≤

(
1 + 1

n
ε/5
t

)
E[R]

E[R + B] . (46)

This above inequality only holds when nt ≥ N0. Therefore, defining constants N1, N2

N1: When nt ≥ N1 = exp
( 20 ln 2

ε

)
then 1

n
ε/5
t

− 1
n

ε/4
t

≥ 1
n

ε/4
t

N2: nε
t ≥ ln(nt)

(
2−3ε
4C1

)
+ ln 2

4C1
− 1

C ln
(

µRBwRB

5µRRwRR+4µRBwRB

)
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Thus, let N0 = max{N1, N2} so that for nt ≥ N0 both bounds hold, completing the proof
for the upper bound. Now to prove the lower bound, we condition again

E
[

Rt

Rt + Bt

]
≥

((
1 − 1

n
ε/4
t

)
E[R]

E[R + B]

)
Pr(G) + 0 · (1 − Pr(G)) (47)

≥
(

1 − 8
exp(C1nε

t )

)(
1 − 1

n
ε/4
t

)
E[R]

E[R + B] (48)

≥N3

(
1 − 1

n
ε/5
t

)
E[R]

E[R + B] . (49)

There exists N3 such that inequality (49) holds for nt ≥ N3(
1 − 8

exp(8C1nε
t )

)(
1 − 1

n
ε/4
t

)
≥ 1 − 1

n
ε/5
t

. (50)

Thus let N0 ≥ max{N1, N2, N3} such that all our bounds hold for nt ≥ N0 and we have(
1 − 1

n
ε/5
t−1

)
E[Rt]

E[Rt + Bt]
≤ E

[
Rt

Rt + Bt

]
≤

(
1 + 1

n
ε/5
t−1

)
E[Rt]

E[Rt + Bt]
. (51)

Concluding the proof of (32). ◀

Now with Lemma 11, we can prove Lemma 4.

Proof of Lemma 4. Consider the expected number of new red nodes arriving at time t + 1,
denoted E[mR

t+1], we can bound this quantity by rounding our total expected new nodes λnt

⌊λnt⌋E
[

Rt

Rt + Bt

]
≤ E[mR

t+1|Ft] ≤ ⌈λnt⌉E
[

Rt

Rt + Bt

]
. (52)

Additionally, we can use inequality (32) from Theorem 1 to bound E
[

Rt

Rt+Bt

]
⌊λnt⌋

(
1 − 1

n
ε/5
t

)
E[Rt]

E[Rt + Bt]
≤ E[mR

t+1|Ft] ≤ ⌈λnt⌉

(
1 + 1

n
ε/5
t

)
E[Rt]

E[Rt + Bt]
. (53)

Also note that we define Γq(ϕt) := E[Rt]
E[Rt+Bt]

E[Rt]
E[Rt + Bt]

= (nR
t )2wRRΠRR(t) + (nR

t nB
t )wRBΠRB(t)

((nR
t )2 + (nB

t )2)wRRΠRR(t) + 2(nR
t nB

t )wRBΠRB(t)
(54)

= ϕtwRRΠRR(t) + ϕt(1 − ϕt)wRBΠRB(t)
(ϕ2

t + (1 − ϕt)2)wRRΠRR(t) + 2ϕt(1 − ϕt)wRBΠRB(t) (55)

= Γq(ϕt). (56)

Using this to bound our original equation for E[ϕt+1|Ft] = nR
t +E[mR

t+1|Ft]
(1+λ)nt

ϕt + ⌊λnt⌋
nt

(
1 − 1

n
ε/5
t

)
· Γq(ϕt)

1 + ⌈λnt⌉
nt

≤ E[ϕt+1|Ft] ≤
ϕt + ⌈λnt⌉

nt

(
1 + 1

n
ε/5
t

)
· Γq(ϕt)

1 + ⌊λnt⌋
nt

. (57)

As t → ∞, our bounds converge to the following expression

E[ϕt+1|Ft] = ϕt + λ · Γq(ϕt)
1 + λ

. (58)

Which is our deterministic approximation, concluding the proof. ◀
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A.2 Derivation of Deterministic Approximation
Using Theorem 3, we define ΠRR(t), ΠRB(t), ΠBB(t), where for Red-Blue edges:

ΠRB(t) = µRB

nt
+

t−1∑
k=0

µRB

nk

t∏
j=k+1

q

(
1 − µRB

nj

)
. (59)

And for Blue-Blue edges:

ΠBB(t) = µBB

nt
+

t−1∑
k=0

µBB

nk

t∏
j=k+1

q

(
1 − µBB

nj

)
. (60)

In our graph, the existence of an edge is not dependent on the existence of any other edges,
so our probability is independent across edges. As such, we define the expected weight of Red
and Blue nodes at time t as the expected weight of all Red-Red, Red-Blue, and Blue-Blue
edges in our graph.

E[Rt] = nR
t ΠRR(t)wRR + (nR

t )(nR
t − 1)

2 2wRRΠRR(t) + nR
t nB

t wRBΠRB(t) (61)

= (nR
t )2ΠRR(t)wRR + (nR

t + nB
t )ΠRB(t)wRB (62)

E[Bt] = nB
t ΠBB(t)wBB + (nB

t )(nB
t − 1)

2 2wBBΠBB(t) + nR
t nB

t wRBΠRB(t) (63)

= (nB
t )2wBBΠBB(t) + nRnBwBBΠBB(t). (64)

Assume P =
[
µRR µRB

µRB µRR

]
, W =

[
wRR wRB

wRB wRR

]
. With this, we calculate E[Rt]

E[Rt+Bt]

E[Rt]
E[Rt + Bt]

= (nR
t )2wRRΠRR(t) + (nR

t nB
t )wRBΠRB(t)

((nR
t )2 + (nB

t )2)wRRΠRR(t) + 2(nR
t nB

t )wRBΠRB(t)
. (65)

Let ϕt be the fraction of red nodes and mt be the new nodes joining the graph at time t.
From our growth dynamics we know ϕt = nR

t−1+mR
t

nt−1+mt
. Note that while nR

t and mR
t are random

variables, nt and mt are deterministic. We can approximate this expectation

E[ϕt+1|Ft] =
nR

t + λntE
[

Rt

Rt+Bt

]
(1 + λ)nt

≈
nR

t + λnt
E[Rt]

E[Rt+Bt]

(1 + λ)nt
≈ ϕt + λ · Γq(ϕt)

1 + λ
. (66)

Where

Γq(xt) = x2
t wRRΠRR(t) + xt(1 − xt)wRBΠRB(t)

(x2
t + (1 − xt)2)wRRΠRR(t) + 2xt(1 − xt)wRBΠRB(t) . (67)

A.3 Proof of Lemma 6:
Proof. Consider ρt = wRRΠRR(t)

wRBΠRB(t) . Note that if q = 0, then ρt = ρ0 = wRRµRR

wRBµRB
for all t. Hence

we restrict our attention to the case where q > 0. We expand the definition of ρt using the
explicit definitions of ΠRR(t), ΠRB(t) from (5),(59), yielding

ρt = wRRntΠRR(t)
wRBntΠRB(t) =

wRR

(
µRR + nt

∑t−1
k=0

µRR

nk

∏t
j=k+1 q

(
1 − µRR

nj

))
wRB

(
µRB + nt

∑t−1
k=0

µRB

nk

∏t
j=k+1 q

(
1 − µRB

nj

)) . (68)
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Additionally, let r := 1 + λ, we have

ρt =
wRR

(
µRR + µRRrt

∑t−1
k=0 r−k

∏t
j=k+1 q

(
1 − µRR

n0
r−j
))

wRB

(
µRB + µRBrt

∑t−1
k=0 r−k

∏t
j=k+1 q

(
1 − µRB

n0
r−j
)) (69)

=
wRR

(
µRRrt

∑t
k=0 r−k

∏t
j=k+1 q

(
1 − µRR

n0
r−j
))

wRB

(
µRBrt

∑t
k=0 r−k

∏t
j=k+1 q

(
1 − µRB

n0
r−j
)) (70)

=
wRRµRR

(
r−t +

∑t−1
k=0 r−k

∏t
j=k+1 q

(
1 − µRR

n0
r−j
))

wRBµRB

(
r−t +

∑t−1
k=0 r−k

∏t
j=k+1 q

(
1 − µRB

n0
r−j
)) . (71)

Define the series Sq
RR(t) := r−t +

∑t−1
k=0 r−k

∏t
j=k+1 q

(
1 − µRR

n0
r−j
)

and define Sq
RB(t)

similarly. Additionally, note both Sq
RR(t) and Sq

RB(t) must converge because they are the
partial series of a geometric series. Namely,

Sq
RR(t) = r−t +

t−1∑
k=0

r−k
t∏

j=k+1
q

(
1 − µRR

n0
r−j

)
≤

t∑
k=0

r−k, (72)

Sq
RB(t) = r−t +

t−1∑
k=0

r−k
t∏

j=k+1
q

(
1 − µRB

n0
r−j

)
≤

t∑
k=0

r−k. (73)

Therefore we have limt→∞ Sq
RR(t) ≤ 1

1−r−1 = 1+λ
λ and limt→∞ Sq

RB(t) ≤ 1+λ
λ . Define these

limits as Sq
RR and Sq

RB respectively. Also, we observe that these quantifies are bounded
away from 0 for q > 0. Observing Sq

RR(0) = Sq
RB(0) = 1 > 0. Since Sq

RR(t), Sq
RB(t) are both

positive series, this inequality then holds for all t ≥ 0 and thus holds for the limits Sq
RR, Sq

RB

as well. This allows us to express the limit of the overall ratio ρt:

ρ = lim
t→∞

ρt = lim
t→∞

wRRµRRSq
RR(t)

wRBµRBSq
RB(t) (74)

= limt→∞ wRRµRRSq
RR(t)

limt→∞ wRBµRBSq
RB(t)) (75)

= wRRµRRSq
RR

wRBµRBSq
RB

. (76)

Note that because Sq
RR(0) = Sq

RB(0) = 1, and also for q = 0 we have S0
RR(t) = S0

RB(t) = r−t

for all t ≥ 0, we know that the baseline threshold parameter ρ0 = wRRµRR

wRBµRB
is consistent with

the threshold parameter in [12]. As far as we know, there is no explicit expression for Sq
RR

or Sq
RB . ◀
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Abstract
In the process of redistricting, one important metric is the number of competitive districts, that is,
districts where both parties have a reasonable chance of winning a majority of votes. Competitive
districts are important for achieving proportionality, responsiveness, and other desirable qualities;
some states even directly list competitiveness in their legally-codified districting requirements. In
this work, we discuss the problem of drawing plans with at least a fixed number of competitive
districts. In addition to the standard, “vote-band” measure of competitivenesss (i.e., how close was
the last election?), we propose a measure that explicitly considers “swing voters” - the segment
of the population that may choose to vote either way, or not vote at all, in a given election. We
present two main, contrasting results. First, from a computational complexity perspective, we show
that the task of drawing plans with competitive districts is NP-hard, even on very natural instances
where the districting task itself is easy (e.g., small rectangular grids of population-balanced cells).
Second, however, we show that a simple hill-climbing procedure can in practice find districtings
on real states in which all the districts are competitive. We present the results of the latter on
the precinct-level graphs of the U.S. states of North Carolina and Arizona, and discuss trade-offs
between competitiveness and other desirable qualities.
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1 Introduction

In the United States, redistricting is the task of geographically dividing a state into a fixed
number of regions called districts, each of which elects one representative to a legislative
body (such as the U.S. House of Representatives or a state legislature). The process is prone
to various types of manipulation, collectively known as gerrymandering, in which parties
draw districting maps that are optimized for particular outcomes. For example, a party may
wish to maximize seats in which their preferred voters constitute a majority, protect their
party’s incumbents, or force opposition-party incumbents to run against each other. This
process often results in many districts that are uncompetitive, i.e., districts in which one
party’s voters constitute such a large majority that voters are denied any meaningful choice
and the winning party is effectively pre-determined.
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To combat gerrymandering, many quantitative and qualitative measures capturing vari-
ous normative criteria have been proposed. These include notions of proportionality [18],
responsiveness [26], partisan symmetry [30], typicality [15], stability under perturbation [17],
and many others (e.g., [9], [10]; see [31] for a comparison of several partisan-based measures).

In this work, we focus on competitive districts: those where one expects elections to be
close and highly contested, i.e., where the outcomes of future elections are not pre-determined
by the geography of the district. There are three reasons we consider competitiveness to be
of particular importance:
1. Several jurisdictions in the United States explicitly require competitiveness as a quality

that their districting plans must satisfy. Colorado, for example, has a requirement that
plans must “maximize the number of politically competitive districts,” where competitive
is defined as “having a reasonable potential for the party affiliation of the district’s
representative to change at least once between federal decennial censuses” [14]. See [15]
for an overview.

2. Having competitive districts is key for the responsiveness of the plan. Responsiveness is
a measure of how much a given change in popular vote translates into a change in the
proportion of seats held by a particular party. For example, the 14-district Congresional
map enacted in North Carolina in 2023 is highly non-responsive: the state could swing
5 points more Democratic and result in zero more Democratic-held seats, or 17 points
more Republican and result in only one Republican pickup. This lack of responsiveness
is a direct consequence of there being only one competitive seat of the fourteen.

3. Competitive elections are generally seen as promoting various positive civic qualities,
such as voter engagement, high turnout, close attention to local issues, and others.

The number of competitive districts in the country has been shrinking rapidly. In 2020,
only 45 of 435 districts have a Cook Partisan Voting Index between R+3 and D+3, down
from 107 in 1999 [32]; Wasserman estimates that around half of the lost swing seats are
due to changes to district boundaries, rather than “true” changes in electoral behavior (e.g.
changing voter preferences, geographic polarization, etc.).

1.1 Contributions
Motivated by the desirable qualities of competitive districts, we study a version of the
districting problem where the goal is to draw maps with at least some fixed number of
competitive districts. In addition to the intuitive notion of competitiveness, where a district
is considered competitive if recent elections have been decided by close margins (e.g., by
5% or less), we consider a characterization that relies on separately counting “swing voters”
– that is, voters who have a reasonable chance of voting for either party, a formulation
that aligns with the Colorado requirement of having districts with a “reasonable chance
of being won by either party”. We show that the problem of maximizing swing districts is
NP-hard for both our characterization and the standard model, even on instances where
the underlying districting problem is polynomial-time solvable: that is, the hardness comes
from the competitive-districts requirement, rather than the inherent hardness of balanced
graph partitioning. Despite this, we show that a simple hill-climbing procedure can achieve a
very high number of competitive districts without significantly sacrificing compactness, equal
population, and other desirable qualities. We demonstrate the results on data from North
Carolina and Arizona, showing that it is possible to make every district competitive (although
we do not necessarily advocate for doing so). We also complement the NP-completeness
results by giving restrictions that make the problem of maximizing swing districts more
tractable.
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2 Related Work

2.1 Competitiveness of districting plans
Among the plethora of proposed evaluation metrics for districting plans, Deford et al. [15] take
a comprehensive look at various criteria that aim to operationalize competitiveness, including
“evenness” (how close is the vote share to 50%?), “typicality” (how close is the vote share to
the national or statewide average?), and “vote-band” metrics (does the vote fall within a
fixed percentage of 50%, or the statewide average?). They observe that “there is no guarantee
that it is even possible to construct a plan with a large number of ... districts [that fall within
a given vote-band] while adhering to reasonable compactness and boundary preservation
norms,” an idea we will expand on in this work. We will adopt the vote-band metric, because
its binary nature allows us to easily express the problem of drawing competitive districts as
a decision problem. In addition, we will propose another metric based on swing voters.

In the same work, Deford et al. [15] also conduct an extensive ensemble analysis of
how many competitive districts arise in “typical” districtings, and present two hill-climbing
algorithms for optimizing directly for competitive districts. We conduct similar experiments
for both vote-band and swing-voter metrics, but use a randomized weighted scheme that
incorporates compactness directly via the isoperimetric score.

Other works that explore the competitiveness of enacted and proposed plans largely use
margins in recent elections as their measurement for competitiveness, including [14], which
investigates plans for Colorado, and [20], which studies whether independent commissions
tend to draw more competitive plans.

2.2 Computational complexity of redistricting
There has also been work exploring hardness of the districting problem in a computational
complexity sense, including work on auditing for local deviating groups [24], on minimizing
the margin of victory in non-geographically-bounded districts [29], and on describing classes
of graphs for which various redistricting tasks are NP-hard [21]. Notably, even the balanced
graph partition problem (i.e., drawing population-balanced districts, without any other
restrictions) is NP-hard, even for planar graphs [5]. Given this, [25] show that the problem
of drawing districts where each party wins at least c seats is NP-hard even on instances
where valid (contiguous and population-balanced) maps can be found in polynomial time, by
showing a reduction from Var-Linked Planar 3-SAT. We will adopt this structure for our
hardness results: we will show reductions that create instances where population-balanced
districts can be drawn in polynomial time but drawing competitive districts (both vote-band
competitive and swing) is hard.

3 Preliminaries and Problem Formulation

3.1 Voting setting
Our setting consists of a set of voters distributed over a given geographic area (such as a U.S.
state), represented by a (typically planar) graph G with n cells (nodes). The cells are some
fixed geographic units (such as counties, precincts, etc.) and edges represent adjacency1.

1 Depending on the jurisdiction, legal requirements may mandate either rook adjacency or queen adjacency.
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7:4 Drawing Competitive Districts in Redistricting

We assume that there are only two parties in consideration, Party A and Party B; every
voter may be either a partisan voter or a swing voter. Specifically, each cell ci : i ∈ {1, · · · , n}
has the following four quantities, all non-negative integers:

Popi ≥ 0 indicating the total population of the cell, which we abbreviate Popi;
ai, the number of voters that vote for Party A;
bi, the number of voters that vote for Party B;
optionally, si, the number of swing voters (who may vote either way).

3.2 Districtings and Competitive Districts
For a fixed d ∈ {2, . . . , n − 1}, a d-districting is a partition of the cells of G into d disjoint
subgraphs D1, · · · , Dd, which we call districts. For any district Dj , we have:

PartyA(Dj) = Aj =
∑

ci∈Dj

ai, PartyB(Dj) = Bj =
∑

ci∈Dj

bi, Swing(Dj) = Sj =
∑

ci∈Dj

si.

Since every voter is either A, B, or swing, we have Pop(Dj) = Popj = Aj + Bj + Sj .
In general, a d-districting of a graph G is ε-valid if it satisfies the following constraints:

1. Contiguity, i.e., the subgraph induced by Dj must be connected for each j = 1, · · · , d.
Thus, each district is contiguous, which is typically required by law.

2. ε-Population-balance, i.e. (1 − ε)
(

P op(G)
d

)
≤ Pop(Dj) ≤ (1 + ε)

(
P op(G)

d

)
for each

j = 1, · · · , d, which ensures that each district has approximately the same population,
which is required under the “One Person, One Vote” rule [28]. We only consider ε < 1

6 ,
as ε ≥ 1

6 allows one district to have double the population of another district. Different
jurisdictions may require different values of ε.

3.2.1 Competitiveness
We consider two notions that aim to capture the competitiveness of a given district.

First, we consider the intuitive notion that a district is competitive if the most recent
election was decided by a very close margin - for example, 51% of votes cast for Party A and
49% cast for Party B. Deford et al. [15] call this “vote-band” competitiveness, named for the
“band” of outcomes (for example, 45-55%) that the vote share should fall into in order for
the election to be considered competitive2. This notion does not depend on counting swing
voters separately, so, in this context, si = 0 for all cells ci.

▶ Definition 1. A district Dj is δ-Vote-Band Competitive (δ-VBC) iff Aj

P opj
,

Bj

P opj
∈[ 1

2 − δ, 1
2 + δ

]
.

An alternative notion is that a district is competitive if the outcome depends on how the
swing voters vote. In particular, elections can be both close and uncompetitive. For example,
a district comprised of 40% Party A voters, 40% Party B voters, and 20% swing voters (who
may vote either way) is likely to be highly competitive, whereas a district with 52% Party A
voters, 47% Party B voters, and 1% swing voters is less likely to be competitive.

▶ Definition 2. A district Dj is Swing if Sj ≥ |Aj − Bj |.

2 Deford et al. consider both centering the vote band around 50% and centering it around the statewide
or nationwide average. For simplicity, we only discuss the former.
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This formulation more directly captures the notion that districts are competitive if there
is a reasonable chance for either party to win. However, evaluation of this metric depends
on having a reasonable estimate of the number of such voters; we discuss using statistical
methods of Ecological Inference for this task in Section 5.1.2. In particular, while polling data
is valuable for estimating voter transitions, we need this information at a precinct-by-precinct
level to do redistricting analysis, and polls are mostly conducted at a national or statewide
level.

This formulation also allows us to capture the fact that, due to partisan polarization,
elections in the US are often determined by turnout, rather than vote-switching [19]. For
example, we can count “unreliable partisan voters” (those who will either vote for Party A
or stay home) as half of a “true” swing voter (those who may vote for Party A or Party B),
as their decision will affect the eventual vote margin in their precinct, district, or state by
half as much.

3.3 Maximizing Competitive Districts
▶ Definition 3 (δ-VBC-Max). Given a graph G with n cells c1, . . . , cn, d ∈ [2, n − 1], ε > 0,
and δ > 0, the δ-VBC District Maximization Problem is to compute a ε-valid d-districting
that maximizes the number of δ-VBC districts.

▶ Definition 4 (Swing-Max). Given a graph G with n cells c1, . . . , cn, d ∈ [2, n − 1] and
ε > 0, the Swing District Maximization Problem is to compute a ε-valid d-districting that
maximizes the number of swing districts.

4 Hardness results

Our main results in this section are to show that the δ-VBC District Maximization Problem
and the Swing District Maximization Problem are both NP-hard. On its own, deciding the
existence of any ε-valid d-districting for a graph G is NP-hard, regardless of competitive
districts. Therefore, we show that both δ-VBC-Max and Swing-Max are hard, even on
instances where:

the underlying graph G is a grid,
the number of districts d is 2, and
there exists a polynomial-time computable ε-valid d-districting.

This setup is similar that of Kueng et al. [25], who show that drawing districtings where both
parties have at least c seats is hard even on instances where balanced-population districting
is easy.

▶ Theorem 1 (Vote-Band Hardness). For all positive ε < 1
6 , δ < 1

2 , the δ-VBC ε-valid District
Maximization Problem (δ-VBC-Max(ε)) is NP-hard, even on instaces where G is a grid,
d = 2, and ε-valid districtings (that are not δ-VBC-maximal) are poly-time computable.

▶ Theorem 2 (Swing Hardness). For all positive ε < 1
6 , the Swing ε-valid District Maximiza-

tion Problem (Swing-Max(ε)) is NP-hard, even on instaces where G is a grid, d = 2, and
ε-valid districtings (that are not Swing-maximal) are poly-time computable.3

3 This constraint of ε < 1
6 is extremely lenient: in practice, most districtings have population balance

under 1%, and ε = 1
6 would allow one district to have double the population of another - which is

certainly illegal.
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Figure 1 The chain of reductions from Subset Sum to FPSP to δ-VBC-Max, for δ = 0.1, ε = 1
6 .

Given the Subset Sum instance T (left), we construct an instance of FPSP (center) where bin i has
6 + ti type-A units and 4 − ti type-B units. This induces a districting instance (right), where the
central row has Party A and Party B voters corresponding to type-A and type-B units. The green
and orange districts (where each district has population in ( 1

2 ± ε)poptotal and exactly 60% Party A
voters) correspond to a FPSP partition (where each partition has exactly 60% type-A units), which
in turn corresponds to a solution to the original Subset Sum instance.

We will prove both of these via a reduction from Subset Sum [22]. Specifically, we will
reduce through an intermediate problem, the Fixed-Proportion Subset Problem.

4.1 The Fixed-Proportion Subset Problem
▶ Definition 5 (FPSP(δ)). For any fixed positive δ < 1

2 , the Fixed-Proportion Subset Problem
(FPSP) takes a list of tuples S = [(a1, b1) · · · (an, bn)], where:

n∑
i=1

ai =
(

1
2 + δ

) n∑
i=1

(ai + bi) and a1 + b1 = a2 + b2 = · · · = an + bn

The task is to find nonempty proper subsets S1, S2 ⊊ [n] that partition [n], such that∑
i∈S1

ai =
(

1
2 + δ

)∑
i∈S1

(ai + bi) and
∑
i∈S2

ai =
(

1
2 + δ

)∑
i∈S2

(ai + bi).4

Intuitively, the Fixed-Proportion Subset Problem asks to partition a population of units
with ( 1

2 + δ) type-a units and ( 1
2 − δ) type-b units, which are grouped into equal-size bins,

into two subsets, where each subset is also exactly ( 1
2 + δ) type-a and ( 1

2 − δ) type-b.

▶ Theorem 3 (FPSP Hardness). The Fixed-Proportion Subset Problem is NP-hard for all
δ ∈ [0, 1

2 ).

Proof. Fix any δ ∈ [0, 1
2 ). Given an instance of Subset Sum T = [t1, · · · tn−1] with desired

sum 0, let T ′ = [t1, · · · tn−1, tn], where tn = −
∑n−1

i=1 ti, so that
∑

T ′ = 0.

4 The existence of any S1 satisfying the first condition is sufficient to have S2 = [n] \ S1 satisfy the second
condition, but we explicitly write both for clarity.
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We construct an instance of FPSP(δ) as follows. Let c = − min ti
1
2 +δ

. Our instance of FPSP
will be

S = [(a1, b1) · · · (an+1, bn+1)] where ai = ti +
(

1
2 + δ

)
c and bi = c − ai .

Each “bin” will have c units total, satisfying the second condition of FPSP. We can verify
the first condition holds, using the fact that

∑
ti = 0:

n∑
i=1

ai =
n∑

i=1

(
ti +

(
1
2 + δ

)
c

)
=

n∑
i=1

ti +
(

1
2 + δ

) n∑
i=1

c = 0 +
(

1
2 + δ

) n∑
i=1

(ai + bi) .

Now, suppose that S1, S2 ⊊ [n] is a solution to FPSP(δ) for this instance S. Without
loss of generality, suppose n ̸∈ S1. We claim that {ti : i ∈ S1} is a solution to the original
Subset Sum instance T :∑

i∈S1

ai =
(1

2 + δ
)∑

i∈S1

(ai + bi) =⇒
∑
i∈S1

(
ti +

(1
2 + δ

)
c
)

=
(1

2 + δ
)∑

i∈S1

c =⇒
∑
i∈S1

ti = 0

◀

4.2 Reduction from FPSP to Competitive Districts

We prove Theorem 1 via a reduction from FPSP(δ) to δ-VBC-Max.

Proof. Fix ε and δ. Let S = [(a1, b1) · · · (an, bn)] be an instance of FPSP(δ), and let
Z =

∑n
i=1(ai + bi). Our redistricting instance (“state”) for δ-VBC-Max(ε) will be a 3 × n

grid of cells Ci,j , where:
The top left and bottom left cells C ∈ {C1,1, C3,1} will each have

pop(C) = 1
2P, PartyA(C) =

(
1
2 + δ

)
1
2P, PartyB(C) =

(
1
2 − δ

)
1
2P ,

where P =
1
2 +ε
1
2 −ε

Z.
All other cells in the first and third row have zero population5: pop(C1,·) = pop(C3,·) = 0.
For each cell C2,i in the second row (for i = 1, 2, · · · n),

pop(C2,i) = (ai + bi) PartyA(C2,i) = ai PartyB(C2,i) = bi .

The total population of the state is poptotal = Z + P =
1
2 −ε+ 1

2 +ε

( 1
2 −ε) Z = 1

1
2 −ε

Z .

Observation 0. Since all cells C2,1···n have the same population, it is trivial to draw an
ε-valid districting: one can assign the first row and half of the second row to D1, and the
rest to D2. That is, one can district this instance in polynomial time, if competitiveness is
not considered.

5 One can easily modify the reduction to have all cells have nonzero population by multiplying all other cells
by 2(n+2)+1 and having the first- and third-row cells have pop(C) = 2, P artyA(C) = 1, P artyB(C) = 1.
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7:8 Drawing Competitive Districts in Redistricting

Observation 1. The two left “corner” cells C1,1 and C3,1 must be assigned to different
districts. If they were assigned the same district Di (along with at least one center-row cell
cj , required for connectivity), that district’s population would exceed

( 1
2 + ε

)
poptotal:

pop(C1,1) + pop(C3,1) + pop(C2,j) = P + (aj + bj) > P =
1
2 + ε
1
2 − ε

Z =
(

1
2 + ε

)
poptotal.

Observation 2. Each district must contain at least one of the center-row cells C2,i; a “corner”
cell alone is under the population bounds.

Besides these two cells, the structure of the state allows all other second-row cells to be
assigned to either district while respecting contiguity. For example, one can assign all cells
in the first row to district 1 and all cells in the third row to district 2.

Observation 3. 1
2 + δ of the overall population is Party A voters:

total P artyA =
n∑

i=1

ai +
(1

2 + δ
) 1

2 + ε
1
2 − ε

Z =
(1

2 + δ
)

Z +
(1

2 + δ
) 1

2 + ε
1
2 − ε

Z =
(1

2 + δ
)

poptotal,

where the last equality holds because poptotal = 1
1
2 −ε

Z.
Let {D1, D2} be a ϵ-valid δ-Vote-Band-Competitive districting on this state. We claim

that S1 = {i : C2,i ∈ D1}, S2 = {i : C2,i ∈ D2} is a valid solution to the FPSP(ε) instance.
For S1, S2 to be a solution to FPSP(ε), we must show (a) both are nonempty (which

follows from Observation 2 above), and (b)
∑

i∈S1
ai =

( 1
2 + δ

)∑
i∈S1

(ai + bi).
Since both districts’ margins fall in the 1

2 ± δ vote band, each one must have exactly 1
2 + δ

Party A voters; if (for example) D1 had < 1
2 + δ Party A voters, then D2 would end up with

> 1
2 + δ Party A voters, falling outside the vote band. So,

1
2 + δ = PartyA(D1)

PartyA(D1) + PartyB(D1) =
( 1

2 + δ
) 1

2 P +
∑

i∈S1
ai

1
2 P +

∑
i∈S1

(ai + bi)
.

Solving this equation for
∑

i∈S1
ai, yields

∑
i∈S1

ai =
( 1

2 + δ
)∑

i∈S1
(ai + bi) as required.

Thus, S1, S2 are a valid solution to the FPSP instance. ◀

The chain of reductions, using the Subset Sum instance T = {1, −1, −6, 2, 4} as an
example, is shown in Fig. 1.

The proof for Swing district maximization is nearly identical. We present it in Ap-
pendix A.1.

▶ Corollary 4 (Hardness for more than two districts). For any k, d with 2 ≤ k ≤ d, it is
NP-hard to generate an ε-valid d-districting plan where at least k districts are competitive
(for either δ-VBC or SWING).

The proof for Corollary 4 is given in Appendix A.2.

4.3 Algorithms for Special Cases
In Appendix B, we present some special cases of graphs which admit polynomial time
algorithms. Although these cases are somewhat artificial if expressed as standard redistricting
instances, they may be of interest to those interested in districting-flavored problems on
constrained structures, such as road networks or low-population grids.
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Figure 2 Precinct-level voting data for Arizona and North Carolina. Nodes are colored according
to the margin in the 2020 presidential election.

4.4 Discussion of Complexity Results
First, we re-emphasize that we have shown that the hardness is a result of the competitive
district maximization, not the intrinsic hardness of the balanced partition problem, because
the instances we construct can be partitioned to population balance ε = 0 trivially.

There are reasons to see this reduction as somewhat more “natural” than previous
hardness results, which often construct instances with strange features (for example, [25]
constructs instances with that have long, tendril-like geography with many holes; [29] deals
with a setting without geographic contiguity requirements; [24] creates instances where half
of the nodes are connected to only one other node (i.e., there are many “donut” precincts,
where one precinct entirely surrounds another)). In contrast, we construct instances where
the underlying graph is a rectangular grid; many states (especially in the Midwest) have
precinct graphs that have this approximate structure.

On the other hand, our reduction relies heavily on the hard cutoff at the edge of a desired
“vote band” – that is, the hardness comes from distinguishing, in a binary way, between a
district that is 59.99% Party A and one that is 60.01% Party A. In practice, the difference is
likely to be negligible. Therefore, one may hope that we can, in practice, draw maps that
significantly increase the number of competitive districts. We explain our approach to doing
so in the subsequent section.

5 Algorithms, Heuristics, and Experiment Setup

Given the hardness of drawing competitive districting plans (as measured both in vote-band
and swing-voter flavors), even on fairly constrained and natural varieties of graphs, one
may wonder whether it is tractable to draw such districtings on real-world graphs. In this
section, we argue that the answer is a definitive yes. In particular, we find that very simple
hill-climbing procedure can yield reasonable districting plans that are highly competitive.

We propose a heuristic hill-climbing procedure based on making local moves called
“single node flips”, and run several experiments on the U.S. states of North Carolina and
Arizona: one set seeking to maximize δ-Vote-Band-Competitive districts for δ = 0.1, 0.05
(corresponding to the thresholds used by the Center for Voting and Democracy for “landslides”
(margin difference above 20%) and “competitive” (margin under 10%) [4]), and one seeking
to maximize swing districts. In all cases, we fixed the allowable population deviation at
ε = 5% and required all districts to be contiguous.

5.1 Data
We used precinct-level shapefiles and election data of the U.S. states of Arizona and North
Carolina, two medium-sized states that have been highly competitive in recent elections. The
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7:10 Drawing Competitive Districts in Redistricting

geographic data was collected and processed by the Metric Geometry and Gerrymandering
Group [2], and the election data was obtained from the Redistricting Data Hub [3]. Specifically,
the data includes the area, perimeter, and population of each precinct; voting history for the
last several elections, and adjacency information. North Carolina has 2,650 precincts and
fourteen Congressional districts. Arizona has 1489 precincts and nine Congressional districts.
We chose these two states due to their extremely close statewide margins in recent elections,
and their moderate size (for reasonable computational burden). They are shown in Figure 2.

5.1.1 Previous Election Votes for Vote-Band Competitiveness
Evaluating the vote-band competitiveness of a given districting plan depends on the votes
cast in a past election. For these experiments, we used the results of the 2020 Presidential
election, shown in Fig. 2.

5.1.2 Ecological Inference for Estimating Swing Voters
Evaluating whether a given district is swing or not depends on having estimates for the
number of reliable voters of each party, and the number of swing voters. The task of estimating
voter transitions from election data is a well-studied problem in Ecological Inference (EI).
Given only top-level voting information (i.e., the number of votes cast for each candidate
in two subsequent elections), the task of finding the number of voters who switched their
vote from one election to the next (or who voted in one election and not the other) is highly
underdetermined. As a result, EI techniques have no worst-case guarantees; however, they
have been shown to perform well in practice. For an overview, see [23].

The task is made easier by the fact that we have the marginals (i.e., total votes cast) for
each precinct in the state. nslphom is a multi-iteration Linear Programming technique that
takes advantage of this fact, using statewide homogeneity assumptions, developed by Pavia
et al. [27]. It is available as an R package, which we used to estimate the inner cell values of
the 3 × 3 tables of the form shown in Fig. 3 (one table per precinct). For example, 71.30 is
the estimate for the number of voters who voted for the Democratic candidate in 2012 but
did not vote in 2016.

2016 votes
Democratic Republican Nonvote/Other Total

2012
votes

Democratic 407.45 9.24 71.30 488
Republican 3.55 1583.69 73.76 1660

Nonvote/Other 0.00 272.07 2713.93 2986
Total 410 1864 2859

Figure 3 The EI table for votes cast in Alamance County, North Carolina, Precinct 01. The inner
cell values are estimated using the R package nslphom, using the known marginal values. In this
case, the estimated number of swing voters is 3.55 + 9.24 + 1

2 (71.30 + 73.76 + 0.0 + 272.07) = 221.36.

We use the election results of the 2012 and 2016 elections to estimate swing voter counts
and the results of the 2020 election to evaluate the final redistricting maps in order to keep
estimation and evaluation metrics separate. For each precinct, we compute the final estimate
for “swing voters” by summing the off-diagonal elements of the EI table, with the entries in
a “Nonvote/Other” row or column halved. Intuitively, compared to a voter who switches
their vote from Party A to Party B, a voter who merely goes from abstaining to voting (or
from voting to abstaining) only changes the top-level margin by half as much.
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5.2 Heuristic-based optimization procedure
In order to find districtings that maximize the number of competitive districts, we use a
simple randomized greedy hill-climbing procedure based on repeatedly making “single node
flips” (also called spin flips) that incrementally improve the plan when measured against some
objective(s). These methods are extensively used in ensemble-based analyses of redistricting;
see, for example, [13, 12].6

A single-node-flip is a step that flips a node that is on the boundary of two districts from
one district to another, subject to some constraints. Specifically, a node u ∈ Dj is eligible
to be flipped to district Di (where i ̸= j) if (a) u is adjacent to some v ∈ Di, (b) Dj \ {u}
remains connected and within population bounds; and (c) Di ∪ {u} is within population
bounds.

In each step, we randomly choose a single-node-flip (u, D1, D2) from the set of all valid
flips, proportional to a score function Ji, which quantifies the “desirability” of the resulting
districts (D1 \ {u}, D2 ∪ {u}), compared to the original districts (D1, D2), for particular
objectives of interest:

J(u, D1, D2) = exp

 ∑
objectives i

−wi

(
Ji(D1 \ {u}) + Ji(D2 ∪ {u}) − (Ji(D1) + Ji(D2))

) .

Here, low values for Ji are preferred; this weight function weights a flip more heavily
the more it decreases the Ji values.7 In this work, our weight includes two score functions:
compactness and competitiveness (via swing districts or δ-VBC districts).

We employ the widely-used measure of compactness, the isoperimetric ratio [8], defined
as the perimeter squared divided by area. The more compact a district, the lower its
isoperimetric ratio, and we define Jiso(D) = perimeter(D)2

area(D) .

The vote-band competitiveness term in the score function prioritizes districts that are
close to even (i.e., 50-50 margin), and further prioritizes districts where the margin is in the
range 1

2 ± δ:

JV BC(D) =


(

P artyA(D)
P op(D) − 1

2

)2
if P artyA(D)

P op(D) ̸∈ 1
2 ± δ ,

1
16

(
P artyA(D)

P op(D) − 1
2

)2
if P artyA(D)

P op(D) ∈ 1
2 ± δ .

The swing term in the score function prioritizes having districts where the number of
Party A voters plus half the swing voters are close to half of the total population, and
further prioritizes districts where neither party’s reliable voters comprise more than half of
the overall population:

Jsw(D) =


(

1
2 −

(
1
2

Swing(D)
P op(D) + P artyA(D)

P op(D)

))2
if P artyA(D)

P op(D) > 1
2 or P artyB(D)

P op(D) > 1
2 ,(

1
2 −

(
1
2

Swing(D)
P op(D) + P artyA(D)

P op(D)

))2
· 0.82 if P artyA(D)

P op(D) < 1
2 and P artyB(D)

P op(D) < 1
2 .

6 However, we are not doing an ensemble analysis; we will not attempt to sample from a measure or use
the Metropolis-Hastings algorithm, as these works do. Rather, we are simply investigating the degree to
which a direct optimization can achieve competitive districtings.

7 This type of score function can be considered to be a “tempered choice” according to the measure
π(D) = exp

(∑
i
−wiJ(Di)

)
. This form of measure is commonly used in ensemble methods, e.g., in

[7, 6].
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(a) Vote shares of the enacted
plan in North Carolina.

(b) Vote share range of a sample
of compact plans.

(c) Vote shares of the 5%-vote-
band competitive districting.

Figure 4 Explicitly considering competitiveness allows us to draw plans with significantly fewer
safe districts than both the enacted plan and a sample of compact plans.

5.3 Run Parameters
We ran the hill-climbing procedure for 36,000 steps, restarting from a random initial state
every 3,000 steps and taking the most compact plan with the maximal number of competitive
districts. We used weights of wiso = 3, wV BC = 105, for VBC runs and wiso = 3, wsw = 105

for the Swing runs. We implemented the procedure in Python using the gerrychain package
[1]. With unoptimized, single-threaded Python code, the procedure takes about three hours
to run on Intel Xeon Gold 6226 2.9 Ghz machines.

As a basis for comparison, we also ran the hill-climbing procedure for 40,000 steps,
restarting every 200 steps, with wiso = 3, wV BC = 0, wsw = 0, i.e., prioritizing only
compactness. We logged the most-compact plan found in each 200-step interval. We will
refer to this set of plans as the compact sample below.

6 Experimental Results

We find that the heuristics are extremely effective for constructing districting plans with a
significant proportion of swing districts. In fact, we obtain districtings on North Carolina
and Arizona where every single district is competitive (for 10%-vote-band, 5%-vote-band,
and swing metrics).

In Fig. 5, we display the most compact plan for each of δ = 0.1, 0.05, and Swing,
alongside the current enacted plan, for North Carolina. We also display the vote share of
each district: that is, the percentage of Democratic and Republican (and Swing, for the last
plot) voters in each district, based on votes cast in the 2020 presidential election. In Fig. 4,
we compare the vote share distribution of the 5%-VBC plan to that of the enacted plan and
of the compact sample.

We display the same results for Arizona in Fig. 6.
Notably, the VBC plans exhibit signficantly improved responsiveness: the median district

is extremely competitive (49.9% D-voting) and a small statewide swing in vote share would
correspond to a larger change in number of seats won.

7 Discussion

We explicitly do not present these plans as examples of ideal districting plans. Rather,
we present them in contrast to the hardness results presented above, and to explore the
consequences of fully prioritizing competitiveness as an objective. Although both swing
district and vote-band-competitive district maximization is NP-hard (even if only seeking to
make two out of d districts competitive), we explicitly show that it is tractable in practice,
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(a) The currently-enacted plan. Despite winning just over half of the two-party vote, Trump would have
carried ten of the fourteen Congressional districts.

(b) In this plan, all districts are δ-Vote-Band competitive for δ = 10%. That is, all districts have a Biden
vote share between 40% and 60%. Note that Biden and Trump would have each carried seven of the
fourteen districts: a result that is significantly more reflective of the fact that they won nearly the same
number of votes.

(c) In this plan, all districts are δ-Vote-Band competitive for δ = 5%: all districts have a Biden vote share
between 45% and 55%. Again, Biden and Trump would have each carried seven districts. However, the
districts are noticeably less compact, with significantly contorted boundary shapes; the heavily Democratic
areas of Charlotte and Raleigh-Durham are visibly “cracked” among many districts.

(d) In this plan, all districts are swing. The range of outcomes (ranging from all swing voters voting for
Trump to all swing voters voting for Biden) is shown for each district.

Figure 5 Our simple hill-climbing procedure successfully finds plans for North Carolina where all
fourteen districts are competitive.
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(a) The current enacted plan.

(b) A 0.1-Vote-Band-Competitive districting: all districts have a Biden vote share between 40% and 60%.

(c) A 0.05-Vote-Band-Competitive districting: all districts have a Biden vote share between 45% and 55%.
Unlike in North Carolina, this appears to be achievable without significant loss of compactness.

(d) In this plan, all districts are swing. The range of outcomes (ranging from all swing voters voting for
Trump to all swing voters voting for Biden) is shown for each district.

Figure 6 Our hill-climbing procedure successfully finds plans for Arizona where all nine districts
are competitive. Unlike in North Carolina, there is no significant sacrifice in compactness to achieve
a δ = 5%-vote-band-competitive districting.
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even achieving plans that make all d districts competitive. Thus, the point is to dissuade
the reader from drawing the conclusion that “because drawing swing districts is NP-hard,
attempting to do so is a lost cause”, or that “policymakers are exempt from drawing
competitive districts because of computational intractibility.” Instead, drawing competitive
districts is very tractable in practice.

Notably, whereas the enacted plan “packs” the heavily-Democratic areas of Charlotte
and Raleigh-Durham into as few districts as possible, maximizing competitive districts
entails “cracking” those areas up into multiple districts. We observe this among all plans
that achieved 14 competitive districts; in some sense, this is likely unavoidable given the
political geography of the state (in which Democratic voters are heavily concentrated in
small geographic areas).

Indeed, the ideal number of competitive districts is almost certainly not the maximal
number. We leave the question of exactly how many districts should be competitive as a
normative question (for discussion of the relationship between proportionality and competitive
districts, see [18]); we simply present the result that it is tractable to achieve anywhere from
0 to d competitive districts on some real-world graphs.

In particular, while having every district in a state be competitive makes the makeup of
the state’s Congressional delegation highly responsive (that is, small changes in vote share
can result in large changes in topline number-of-seats-won), taking this to an extreme (for
example, by enacting the plan in Fig. 5(c)) can result in a sharp decline in the proportionality
of the results. For example, under the plan in Fig. 5(c), if one party won 55% of the
votes statewide, they would sweep all of the congressional districts - certainly sending an
unrepresentative delegation to represent the state.

We do not expect all states to admit fully-competitive districtings; indeed, states with
remarkably homogeneously distributed electorates (such as Massachusetts) have been observed
to be impossible to draw competitive districts on [16]. On the other extreme, some states
may have voters that are so geographically polarized that drawing competitive districts may
require splitting uban areas into unacceptably many districts. For example, Democratic
voters in Pennsylvania and Illinois are so heavily concentrated in cities like Philadelphia
and Chicago that maximizing competitive districts likely involves splitting them into over a
dozen districts - likely an unacceptable result. We leave detailed investigation of these cases
for future work.

8 Conclusion

We observe a very large gap between the theoretical intractibility of drawing competitive
districts (even on fairly natural instances) and the high performance of empirical heuristics
on real instances. This is consistent with the literature on optimizing various metrics in
redistricting, as well as with the fact that population-balanced districting itself is clearly
achievable in reality while being complexity-wise infeasible in the worst case. We attribute the
tractability on real instances to the fact that “close to optimal” is an acceptable substitute for
“truly optimal” in the context of elections, where a large amount of variation and uncertainty
is to be expected.
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A Further Proofs

A.1 Hardness of Swing Competitiveness
In this section, we prove Theorem 2, which we restate here for convenience:

▶ Theorem 2 (Swing Hardness). For all positive ε < 1
6 , the Swing ε-valid District Maximiza-

tion Problem (Swing-Max(ε)) is NP-hard, even on instaces where G is a grid, d = 2, and
ε-valid districtings (that are not Swing-maximal) are poly-time computable.8

The proof is nearly identical the the proof of Theorem 1.

Proof. Fix ε and let δ = 0. Let S = [(a1, b1) · · · (an, bn)] be an instance of FPSP(0), and let
Z =

∑n
i=1(ai + bi). Our redistricting instance (“state”) for Swing-Max(ε) will be a 3× (n+2)

grid of cells Ci,j , where:
All cells in the first and third row have zero population: pop(C1,·) = pop(C3,·) = 0.
For second-row cells C2,i for i = 1, 2, · · · n,

pop(C2,i) = (ai + bi) PartyA(C2,i) = ai Swing(C2,i) = bi

8 This constraint of ε < 1
6 is extremely lenient: in practice, most districtings have population balance

under 1%, and ε = 1
6 would allow one district to have double the population of another - which is

certainly illegal.
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Finally, for second-row cells C2,j for j = n + 1, n + 2,

pop(C2,j) = 1
2P, where P =

1
2 + ε
1
2 − ε

(1 + Z)

PartyA(C2,j) = 1
4P Swing(C2,j) = 1

4P

The total population of the state is

Poptotal = 0 + Z + 2
(

1
2P

)
= Z + P =

1
2 − ε + 1

2 + ε( 1
2 − ε

) Z +
1
2 + ε( 1
2 − ε

) = 1
1
2 − ε

Z +
1
2 + ε
1
2 − ε

Let {D1, D2} be a ϵ-valid Swing districting on this state.
The following observations still hold, from the proof of Theorem 1:

Observation 0. One can district this instance in polynomial time.

Observation 1. Cells C2,n+1 and C2,n+2 must be assigned to different districts. Without
loss of generality, let C2,n+1 ∈ D1.

Observation 2. Each district must contain at least one of C2,i for i ∈ [n].
Claim: S1 = {i : C2,i ∈ D1}, S2 = {i : C2,i ∈ D2} is a valid solution to the FPSP(ε)

instance.
For S1, S2 to be a solution to FPSP(ε), we must show (a) both are nonempty (which

follows from Observation 2 above), and (b)
∑

i∈S1
ai =

( 1
2 + δ

)∑
i∈S1

(ai + bi).
1
2 of the overall population is Party A voters:

total PartyA

total population =

∑n
i=1 ai +

( 1
2
) 1

2 +ε
1
2 −ε

(1 + Z)∑n
i=1(ai + bi) +

1
2 +ε
1
2 −ε

(1 + Z)

=
( 1

2 )
(∑n

i=1(ai + bi) +
1
2 +ε
1
2 −ε

(1 + Z)
)

∑n
i=1(ai + bi) +

1
2 +ε
1
2 −ε

(1 + Z)
= 1

2

Since both districts’ margins are exactly 1
2 , each one must have exactly 1

2 Party A voters.
So,

1
2 = PartyA(D1)

PartyA(D1) + PartyB(D1)

=
( 1

2
) 1

2 P +
∑

i∈S1
ai

1
2 P +

∑
i∈S1

(ai + bi)(
1
2

)(
1
2P +

∑
i∈S1

(ai + bi)
)

=
(

1
2

)
1
2P +

∑
i∈S1

ai(
1
2

)
1
2P +

(
1
2

)∑
i∈S1

(ai + bi) =
(

1
2

)
1
2P +

∑
i∈S1

ai

∑
i∈S1

ai =
(

1
2

)∑
i∈S1

(ai + bi)

as required. Thus, S1, S2 are a valid solution to the FPSP instance. ◀
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A.2 Hardness for an arbitrary number of districts
In this section, we prove Corollary 4:

▶ Corollary 4 (Hardness for more than two districts). For any k, d with 2 ≤ k ≤ d, it is
NP-hard to generate an ε-valid d-districting plan where at least k districts are competitive
(for either δ-VBC or SWING).

Proof. We reduce from an instance with d = 2. Fix d′, k with 2 ≤ k ≤ d′. We simply add
d′ − 2 cells to the instance. Each cell will have the maximal allowable district population.
k − 2 of the districts will have half Party A voters and half Party B voters (which makes that
singleton district competitive under either Swing or δ-VBC definitions), and the remainder
will be entirely Party A voters (i.e., uncompetitive).

Any valid districting with k competitive districts must have the added cells as singleton
districts, of which k − 2 will be competitive. The other two districts must be a competitive
districting of the original instance. ◀

B Polynomial Algorithms and Approximations

In this section, we consider special cases of the Swing District Maximization problem in which
either the graph G has a special structure (line, bounded degree tree, etc), the population
constraint is relaxed, or the districts satisfy an additional structure.

B.1 Line
We start by considering the case where G is the line graph on n vertices c1, . . . , cn, such
that there is an edge between ci and ci+1 for 1 ≤ i ≤ n − 1. Satisfying the connectivity
constraint in this case is easy; simply make sure that every districts has only consecutive
cells cj , cj+1, . . . , ci. A district is feasible if it’s connected and satisfies the population
constraints. We can find the optimal d-districting by solving a dynamic program. For fixed d,
i ∈ {1, . . . , n} and k ≤ d, let M(i, k) denote the maximum number of swing districts among
all valid d-districtings of the subgraph induced by c1, . . . , ci. We show that

M(i, k) = max
1≤j<i

(cj+1,...,ci) feasible

{
M(j, k − 1) + 1{(cj+1, . . . , ci) is swing}

}
, (1)

and

M(i, 0) = −∞ ∀ i ∈ {1, . . . , n}
M(i, 1) = 1{(c1, . . . , ci) is swing} if (c1, . . . , ci) feasible, ∀ i ∈ {1, . . . , n}
M(i, 1) = −∞ if (c1, . . . , ci) is not feasible, ∀ i ∈ {1, . . . , n}

Equation (1) holds since to get the maximum number of swing districts in a k-districting
of c1, . . . , ci, we need to decide on the cell cj+1 that limits the last district from the left.
Once the last district {(cj+1, . . . , ci)} is fixed, we need to pick the remaining k − 1 districts
from c1, . . . , cj . Checking if a subset of cells satisfies population constraints and induces a
swing district can be done in O(n) time. Therefore, we can fill the n × d entries of the matrix
M(i, k) top down from left to right. The optimal solution is stored in M(n, d). We have the
following lemma.

▶ Lemma 6. If G is a line on n cells, we can compute the optimal d-districting in O(n2d)
time.
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B.2 Bounded-Degree Trees with Districts of Bounded Depth
In this subsection, we consider bounded-degree trees with the additional assumptions that
districts need to have bounded depth, that is, the distance between every two cells in the
same district must be less than a parameter d > 0. Consider the graph G to be a tree with
n vertices and a maximum degree ∆. Let ε be the population tolerance. We require that in
a valid districting, all districts must run for a depth of at most d (i.e., the diameter of every
district is less than d).

Let D(v, ε, d) be the set of ε-valid districts with depth at most d that are rooted at v.

▷ Claim 7.

|D(v, ε, d)| ≤ 2∆d

Proof. The number of vertices at a distance less or equal than d from the root v is less than
∆d. For every one of these vertices and every D ∈ D(v, ε, d), D can either contain the vertex
or not. ◁

When d = O(1) and ∆ = O(1), we propose a polynomial time dynamic program to solve
the swing district maximization problem. For a fixed d and k ≤ d, let M(v, k) denote the
maximum number of swing districts in a ε-valid k-districting for the subtree of G that is
rooted at v. To get the optimal districting, we need to first fix the district that v will belong
to in D(v, ε, d). Because of the depth constraint on districts, the number of possible choices is
bounded by 2∆d . After we fix the district of v, we need to choose the roots of the remaining
k − 1 districts.

Let G(v) be the subtree of G that is rooted at v. Let D ∈ D(v, ε, d), and let R(D) be
the roots of the subtrees of G(v) \ D. If |R(D)| > k − 1, then clearly we cannot assign all
the remaining cells to districts. Therefore we need 0 < |R(D)| ≤ k − 1. Furthermore, to
compute the remaining k − 1 districts, we need to start from the roots in R(D) such that,
every vertex in R(D) will give rise to at least one district. To decide how many district every
tree rooted at a vertex in R(D) needs to have, we assign a number ℓ(u) ∈ {1, . . . , k − 1} for
every u ∈ R(D), such that

∑
u∈R(D)

ℓ(u) = k − 1, and the subtree rooted at u contains l(u)

out of the remaining k − 1 districts. This gives rise to the following dynamic program

M(v, k) = max
D∈D(v,ε,d)
|R(D)|≤k−1∑

u∈R(D)

ℓ(u)=k−1

{
1{D is swing} +

∑
u∈R(D)

M(u, ℓ(u))
}

If r is the root of G, the M(r, d) will contain the optimal number of swing districts. In
order to get M(r, d), we need to top-down fill O(nk) entries of M . To fill an entry M(v, k),
we have to choose a district D ∈ D(v, ε, d) and an assignment u 7→ ℓ(u) for u ∈ R(D) such
that

∑
u∈R(D)

ℓ(u) = k − 1.

▷ Claim 8. Once a district D ∈ D(v, ε, d) is fixed, the number of possible assignments
u 7→ ℓ(u) for u ∈ R(D) such that

∑
u∈R(D)

ℓ(u) = k − 1 is less than k2∆d

.

Proof. Similarly to the proof of Claim 7, we can show that |R(D)| ≤ 2∆d

. The number of
positive assignments u 7→ ℓ(u) such that 1 ≤ ℓ(u) ≤ k − 1 is less than k2∆d

. ◁
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The combination of Claim 7 and 8 show that every entry M(v, k) can be computed in
O(2∆d

k2∆d

) time given that we already know the previous entries. We therefore have the
following lemma.

▶ Lemma 9. If G is a tree with a maximum degree ∆, and districts can have at most a
depth of d, we can compute the optimal d-districting in O(n2∆d

k1+2∆d

) time.

B.3 Convex Districtings of Grid Graphs
In this subsection, we assume that the graph G is an m × n grid. If we require all the
districts to be x-convex, that is, if two cells c1 and c2 of the same row are assigned to the
same district, then all the cells between c1 and c2 of that same row are also assigned to that
district. This case encompasses a compactness constraint since convexity has been used in
gerrymandering studies as a measure of compactness to examine how redistricting reshapes
the geography of congressional districts [11].

▶ Theorem 5. et G be an m × n grid, and let P = Pop(G) be the total population on P .
There exists an algorithm for computing an x-convex valid d-districting of G with maximum
swing districts, with running time (Pm)O(d). In particular, the running time is polynomial
when the total population is polynomial and the total number of partitions is a constant.

Proof. Let D1, . . . , Dk be an x-convex d-districting of G. For any i ∈ {1, . . . , n}, let Ci be
the i-th column of G. We observe that for all i ∈ {1, . . . , n}, and for all j ∈ {1, . . . , d}, we
have that Dj ∩ Ci is either empty, or consists of a single rectangle of width 1. Let Ci be the
set of all contiguous partitions of Ci into exactly d (possibly empty) segments, each labeled
with a unique integer in {1, . . . , d}. We further define

αi,j = PartyA
(
D∗

j ∩ (C1 ∪ . . . ∪ Ci)
)

βi,j = PartyB
(
D∗

j ∩ (C1 ∪ . . . ∪ Ci)
)

γi,j = Swing
(
D∗

j ∩ (C1 ∪ . . . ∪ Ci)
)
,

For each column i ∈ [n], and each district j ∈ [d], αi,j (resp. βi,j , γi,j) denote the number of
Party A (resp. Party B, swing) voters in district Dj between column 1 and column i.

We can enumerate all the possible solutions starting from the first column and moving to
the right as follows. For each i ∈ {1, . . . , n}, let Ii = N3d × Ci × [m]d. Let

Xi = (αi,1, βi,1, γi,1, . . . , αi,d, βi,d, γi,d, Zi,i ) ∈ Ii,

where Zi is a d-partition of the column Ci and i = {Fi,1, . . . , Fi,d} is a collection of the
forbidden indices for every district in the next column Ci+1, to ensure the connectivity of
the districts as well as the x-convexity constraints.

If i = 1, we say that Xi is feasible if 1 = {∅, . . . ∅} and, for all j ∈ {1, . . . , d}, the set
Z1 = {Z1, . . . , Zd} satisfies

αi,j = PartyA
(
Zi,j

)
, βi,j = PartyB

(
Zi,j

)
, and γi,j = Swing

(
Zi,j

)
If i > 1, we say that Xi with Zi = {Zi,1, . . . , Zi,d} is feasible if the following holds,

there exists some Xi−1 = (αi−1,1, βi−1,1, γi−1,1, . . . , αi−1,d, βi−1,d, γi−1,d, Zi−1,i−1 ) ∈ Ii−1
such that
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αi,j = αi−1,j + PartyA
(
Zi,j

)
, βi,j = βi−1,j + PartyB

(
Zi,j

)
, and γi,j = γi−1,j + Swing

(
Zi,j

)
,

(2)
Zi,j∩i−1,j = ∅, (3)
If Zi,j ̸⊂ Zi−1,j then Fi,j = (Zi−1,j \ Zi,j)∪i−1,j , else Fi,j =i−1,j (4)

The constraint (2) simply states that the voter populations in columns 1, . . . , i are equal to
the the voter populations in columns 1, . . . , i−1 plus the voters from partition Zi. Constraint
(3) ensure that the partition of the i-th column has to respect x-convexity and not include any
of the forbidden cells from i−1. The last constraint (4) shows how to update the forbidden
cells for the next column i + 1. If for a district Dj , the indices of the rows added from column
i to Dj is included in the set of rows of Dj from column i − 1, then there is no need to add
any other forbidden row for the next column. If however, Zi,j ̸⊂ Zi−1,j , that means that
the column i does not “transfer” the rows of Dj from column i − 1 to column i, then the
“non-transfered” rows have to be forbidden in the next column.

For each i ∈ {1, . . . , n} we inductively compute the set of all feasible Xi ∈ Ii. This can
be done in time (Pm)O(d) where P is the total population of the map. ◀
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Agencies thus aim to ensure that optimizing scores leads to improved metrics. As the number
of performance metrics can be large in practice [51, 40], agencies must design succinct
multi-dimensional surrogate scores. We present a framework to study this minimal design
problem, and propose score designs that prevent unintended consequences.

Our work is directly motivated by real-world examples in safety-critical domains such as
healthcare and education, where manifestations of Goodhart’s law exemplify the serious ram-
ifications of unintended consequences. When Pacificare, a healthcare provider, incentivized
hospitals in 2003 to perform certain medical procedures to improve quality of care, several
unrepresented metrics deteriorated [35]. Similar misalignment between performance metrics
and score-based hospital ratings, used by the Medicare agency (CMS), has been widely
critiqued [47, 11, 33, 1, 44, 3]. Even so, CMS uses these score-based ratings to incentivize
hospital policies [13, 18]. Hence, it aims to design scores so that improving on scores also
improves all performance metrics. This goal motivates the improvement objective in our
framework. In a similar vein, rating agencies such as USNews aim to incentivize efficient
use of hospital resources through published scores [49]. On multi-dimensional metrics, the
efficiency goal [41] naturally translates into the notion of pareto-efficiency, which motivates
the optimality objective in our framework.

We present a framework for designing scores to summarize performance metrics. We give
three natural design restrictions that align with real-world interpretability desiderata [15, 49],
and propose score designs that satisfy the multi-criteria objectives under these restrictions.
Striving for succinct scores, we formulate our design to minimize the dimensionality of scores.
We give polynomial-time algorithms to design these succinct scores, which are provably
minimal under mild assumptions on the structure of performance metrics. While existing
work on score design for incentivization studies scalar scores [34, 28, 43, 52], we design
scores of smallest dimensionality to satisfy the multi-criteria objectives. These objectives are
unsatisfiable with scalar scores in general.

1.1 Designing surrogate scores from performance metrics

In our model, the agency aims to design a surrogate score function S : F → S given a set of
performance metrics F of hospitals.

Hospitals report to agencies like CMS and USNews on hundreds of performance metrics
such as condition-specific death rates, readmission rates, and percentages of patients receiving
satisfactory care [15, 14, 49]. We can denote the values of d metrics of a hospital with a real-
valued vector f ∈ F ⊆ Rd. Since d is large and metrics can be related through confounding
variables [5, 37], the agency wants to summarize the d metrics as k scores with values S ⊆ Rk,
where k is small as possible. For instance, Example 3 suggests that, to summarize COVID
and pneumonia death rate metrics, the agency can choose either of the two metrics as the
score, so that k = 1. Whereas for pneumonia death rate and excess antibiotic use metrics,
Example 4 argues that selecting both metrics as scores is necessary, and so k = 2.

Surrogate design objectives

Anticipating that the hospital would target the incentives by optimizing the score function S,
the agency wants to design S in such a way that optimizing them ensures that the hospital
does well on the performance metrics. We formalize this goal with two design objectives,
which utilize an ordering on the sets F and S, denoted by ≻F and ≻S . The two objectives
are motivated from CMS and USNews hospital rating agencies [15, 49].



A. Kabra, M. Karzand, T. Lechner, N. Srebro, and S. Wang 8:3

1. Improvement objective. Improving on surrogate scores should result in improving on
performance metrics. In particular,

for f , f ′ ∈ F , if S(f ′) ⪰S S(f) then f ′ ⪰F f . (1)

2. Optimality objective. Pareto-optimal points of surrogate scores should be pareto-optimal
points of performance metrics. In particular,

ParetoOpt(S) ⊆ ParetoOpt(F). (2)

Throughout the paper, we analyze the setting F ⊆ Rd and S ⊆ Rk and use elementwise
order of vectors for ⪰F and ⪰S .

Surrogate design restrictions

Due to interpretability and public reporting obligations, rating agencies like CMS and
USNews design scores by selecting subsets of the list of performance metrics or by taking
weighted averages [14, 15, 16, 17, 49]. Moreover, monotonicity of scores in performance
metrics is a desirable property for CMS, as it ensures that a hospital striving to improve all
performance metrics sees improved score values [14, 17].

We formulate these requirements as three different restrictions on S. These restrictions
impose a linear form on S : f 7→ Af with A ∈ Rk×d satisfying certain structural constraints.

1. Coordinate Selection (Res-CS). Each of the k coordinates of scores are chosen from d

coordinates of performance metrics. That is, for all i ∈ [k] there exists j ∈ [d] such that
S(f)i = f j for all f ∈ F . Equivalently, S : f 7→ Af where rows of A are 1-hot vectors.

2. Linear and Monotone (Res-LM). The k coordinates of scores are linear combinations
of d coordinates of performance metrics, and improving on performance metrics should
result in improving on surrogate scores. That is, S : f 7→ Af where for f , f ′ ∈ F , if
f ′ ≥ f then Af ′ ≥ Af .

3. Linear (Res-L). The coordinates of surrogate scores are linear combinations of coordinates
of performance metrics. That is, S : f 7→ Af without any further constraints on A.

Minimal design problem

Since the number of performance metrics d can be large [14, 15, 49], a natural goal is to
succinctly summarize metrics with scores that are accessible to patients and policymakers.
This goal of succinctness translates into designing a multi-dimensional function S : Rd → Rk

with the smallest output dimension k. For a combination of design objective and design
restriction, the minimal design problem is determining the smallest dimensionality k and
providing an algorithm outputs a surrogate score function S with this k.

1.2 Our contributions
In this paper, we study the minimal design problem. Our key contributions are:
1. We formalize surrogate score design for incentivizing multiple criteria, motivated from

real-world practices of two hospital rating systems, CMS and USNews.
2. We fully determine the minimal design problems of all combinations of objectives and

restrictions introduced in Section 1.1, and propose efficient score design algorithms
(Algorithms 1 and 2). We summarize our results in Table 1.
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a. We show that the smallest dimensionalities k are dictated by structural properties of
the affine hull of performance metrics F .

b. Identifying a relationship between improvement and optimality objectives (Theorem 13),
we determine the minimal design problem for simultaneously satisfying both objectives.

Table 1 We list smallest dimensionalities k for the minimal design problem of all combina-
tions of objectives and restrictions. Here columns of Z are an orthonormal basis of the lin-
ear subspace associated with r-dimensional affine hull of F . We define the three matrix ranks
ConeSubsetRank, ConeGeneratingRank, ConeRank in Theorem 2. For the improvement objective, the
listed dimensionalities are also necessary, when F has non-empty relative interior (Theorem 7).

Restriction Improvement (§2) Optimality (§3) Both (§4)

Res-CS ConeSubsetRank(Z) r ConeSubsetRank(Z)
Res-LM ConeGeneratingRank(Z) 1 ConeGeneratingRank(Z)
Res-L ConeRank(Z) 1 ConeGeneratingRank(Z)

1.3 Related work
Recent work has highlighted the plight of score-based incentivization when scores that do not
align with performance metrics. In healthcare, design objectives of hospital rating agencies
often vary across agencies. Two popular examples are the Medicare agency (CMS), which
incentivizes healthcare investment across care metrics through a five-star score [15, 18], and the
USNews agency, which promotes highly-specialized medical departments [49]. When hospitals
target these score-based ratings, they often degrade on a few performance metrics [35]. For
example, CMS’s score-based ratings have been found to encourage hospitals to selectively
treat patients for minimizing readmission rates [3, 20, 12], and have exacerbated unequal
access to healthcare [33, 1, 44]. Such unintended consequences are prevalent in fields that use
scores as an incentive mechanism [6], for instance, in standardized testing [35] and financial
credit ratings [31, 54, 7, 26].

Our framework extends recent work on score design in principal-agent theory [34, 28,
43, 52, 27, 38, 30, 29, 4, 2] by designing scores for multi-criteria objectives. Kleinberg and
Raghavan [34] compare linear with monotone scalar score design for incentivizing effort from
agents. On a similar front, Haghtalab et al. [28] study scalar score design with a linear
threshold restriction. Score design has also been studied through a causality lens to optimize
the average treated outcome [52, 27, 38]. Finally, Rolf et al. [43] use noisy score observations
to approximate the pareto-frontier of performance metrics. Our framework’s optimality
objective and design restrictions capture this line of work on scalar scores. However, our
improvement objective is a novel contribution, and this objective turns to be unsatisfiable with
scalar scores (Theorem 7). Hence, our score design problems are inherently multi-criteria.

Technically, our design algorithms utilize novel techniques to decompose and enclose
polyhedral cones, building on work in computational geometry on finding frames of polyhedral
cones [21, 39, 53] and enclosing convex hulls [22, 36, 42, 48]. Our definition of ConeRank
(Theorem 2) is similar to NonNegativeRank, which is extensively studied in the context of
non-negative matrix factorization [23, 24, 19, 50, 36].

1.4 Notation
We represent scalars as λ, c ∈ R, and vectors and matrices as w ∈ Rn, W ∈ Rm×n. We
denote the nonnegative orthant with Rn

+. We generally write matrices as a stack of rows,
W = [w1; . . . ; wm], often denoting the set of rows with W . We say that matrix W (or set



A. Kabra, M. Karzand, T. Lechner, N. Srebro, and S. Wang 8:5

W ) generates cone KW if KW = Cone(W ) =
{

x ∈ Rn | x = λW , λ ∈ Rm
+

}
. We denote a

vector of zeros (or ones) as 0n ∈ Rn (or 1n), and the n-by-n identity matrix as In, dropping
subscripts when unambiguous.

2 Minimal design problem for improvement objective

We propose a surrogate score design for satisfying the improvement objective under the three
design restrictions. Then we illustrate our design strategy on simple examples of performance
metrics F , highlighting relationships between the geometry of F and the succinctness of
scores. Finally, we show that our proposed design is minimal under a mild assumption on F ,
implying that score design for improvement objective is inherently multi-criteria.

We first simplify the improvement objective in Equation (1) to identify geometric objects
that represent movement and improvement directions. Score function S : f 7→ Af on domain
F satisfies improvement when for all f , f ′ ∈ F , if A(f ′ −f) ≥ 0 then (f ′ −f) ≥ 0. Denoting
the movement directions at center f with Ff =

{
g = f ′ − f ∈ Rd | for all f ′ ∈ F

}
, we can

rearrange terms to get

for all centers f ∈ F , movement directions g ∈ Ff , if Ag ≥ 0 then Ig ≥ 0 (3)

Here the set of score improvement directions is exactly K∗
A =

{
g ∈ Rd | Ag ≥ 0

}
, which

is the dual of polyhedral cone KA generated from rows of A. Similarly, the set of metric
improvement directions is K∗

I =
{

g ∈ Rd | Ig ≥ 0
}

= Rd
+, which is the dual of polyhedral

cone KI = Rd
+ generated from rows of I. So intuitively, score function S : f 7→ Af satisfies

improvement if and only if every movement direction (in Ff ) that is a score improvement
direction (in K∗

A) is also a metric improvement direction (in K∗
I ):

S satisfies improvement ⇐⇒ for all f ∈ F , Ff ∩ K∗
A ⊆ K∗

I . (4)

2.1 Design proposal for improvement objective
When performance metrics F ⊆ Rd is a full-dimensional set, score design is trivial where
the most succinct score design is S(f) = f . Note that while performance is measured in
many dimensions [51, 40], the number of confounding variables of performance metrics is
often smaller due to correlated metrics [5, 37]. This typically induces a low-dimensional
structure on F , observed in practice and assumed in theory [6, 8, 5, 37]. We do not assume
such low-dimensional structure of F , but the smallest dimensionality k of score function S is
impacted by the intrinsic dimension of F . The affine hull of F is a natural geometric choice
to capture its intrinsic dimension.

▶ Definition 1. Define the affine hull of F , aff(F), as the intersection of all affine subspaces
in Rd containing F . Let L be the linear subspace associated with aff(F), i.e. L is the
translation of aff(F) so that for all centers f ∈ F , movement directions Ff ⊆ L.

By utilizing this subspace L containing all possible movement directions Ff , we propose
a score design in Algorithm 1 with dimensionalities given in Theorem 2. We introduce three
matrix ranks – ConeSubsetRank (CSR), ConeGeneratingRank (CGR), and ConeRank (CR) – to
characterize the score design dimensionalities for the three respective design restrictions
– Coordinate Selection (Res-CS), Linear and Monotone (Res-LM), Linear (Res-L). These
three matrix ranks capture the geometric properties of performance metrics F that dictate
the dimensionality of optimal score design for the three restrictions.
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▶ Theorem 2. Let columns of Z be an orthonormal basis of linear subspace L associated with
aff(F). For each design restriction, there exists S : F → Rk, designed using Algorithm 1,
that satisfies the improvement objective with the following dimensionalities.

Dimensionality k ≥

Res-CS ConeSubsetRank(Z) := minq {q | KZ = KV for some V ∈ Rq×r s.t. V ⊆ Z}
Res-LM ConeGeneratingRank(Z):= minq {q | KZ = KV for some V ∈ Rq×r}
Res-L ConeRank(Z) := minq {q | KZ ⊆ KV for some V ∈ Rq×r}

Algorithm 1 Design strategy for improvement objective.
1: Given: performance metrics F and a design restriction.
2: Find Z whose columns are an orthonormal basis of subspace L associated with aff(F).
3: Find V that attains2 the matrix rank corresponding to the design restriction.
4: Find A that satisfies V = AZ and design S : f 7→ Af .

Theorem 2 follows from the following key insight of Equation (4): “for S : f → Af

to satisfy the improvement objective, score improvement directions need to be metric
improvement directions only for movement directions Ff , which are contained in subspace L.”
In fact, satisfying the improvement objective boils down to ensuring that score improvement
directions are a subset of metric improvement directions in the coefficient space w.r.t. subspace
L. The respective improvement directions K∗

A and K∗
I are generated by rows of A and I,

which have coefficients that are rows of V = AZ and Z, where columns of Z are an
orthonormal basis of subspace L. It turns out that improvement directions in the coefficient
space are precisely the duals K∗

V and K∗
Z of polyhedral cones generated from rows of V and

Z. So to satisfy the improvement objective, we need to ensure K∗
V ⊆ K∗

Z , or KZ ⊆ KV .
With the three matrix ranks, we capture the additional structure on A imposed by the

three design restrictions (Section 1.1). Res-L restriction does not further impose structure
on A, and so we only need to enclose cone KZ with KV . Res-LM restriction further requires
function S to be monotone in F , which intuitively means that every metric improvement
direction needs to be a score improvement direction, i.e., K∗

Z ⊆ K∗
V . So to satisfy Res-LM,

we must generate cone KZ with KV . Finally, Res-CS restriction requires selecting the k

score function coordinates from d metrics. In the coefficient space, this requirement means
that rows of V are chosen from rows of Z and KV generates KZ . Hence, the three matrix
ranks precisely capture structure on A imposed by the improvement objective and the design
restrictions. We include the proof of Theorem 2 in Theorem A.1.

2.2 Geometry of metrics dictates succinctness of scores
We now illustrate Algorithm 1 with several examples of metrics F . We instantiate performance
metrics in our examples with familiar notions of hospital metrics, to intuitively bridge our
analysis and algorithm with practical score design. In doing so, we discuss how the geometry
of F dictates the shape of polyhedral cone KZ , influencing the dimensionality of minimal
score design for the three design restrictions. Finally, we provide high-level descriptions of
techniques to to implement Algorithm 1 efficiently.

2 For a matrix rank, e.g. CSR, we say that V “attains” it if V ⊆ Z (rows of V are chosen from rows of
Z), KZ = KV , and the number of rows of V equals CSR(Z).
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COVID deaths

Pneumonia deaths

F

L

(a) When the two metrics are correlated (Ex. 3), we
can choose either metric in S : F → R1.

Excess antibiotics

Pneumonia deaths

F

L

(b) When the two metrics are anti-correlated (Ex. 4),
we must choose both metrics in S : F → R2.

Figure 1 To design scores for two metrics (F ⊆ R2), we can inspect the correlation between
metrics – the correlation dictates the succinctness of S : F → Rk for satisfying improvement.

▶ Example 3 (Two correlated metrics =⇒ choose either for score design). CMS evaluates
hospitals on numerous performance metrics like condition-specific death rates, readmission
rates, and safety standards [15]. Often comorbidities of medical conditions can lead to
positive correlations between metrics. In the case of two perfectly positively correlated
metrics, Algorithm 1 suggests to choose either of the two metrics to design S : F → R1.

Consider two metrics – (i) pneumonia death rate and (ii) COVID-19 death rate – that
have a positive correlation due to comorbidities. Assume that for a hospital, these two
death rates take values F =

{
f ∈ R2 | −f1 + 2f2 = 1, −1 ≤ f1 ≤ 1

}
, lying in a 1-dimensional

affine subspace of R2 (Figure 1a, red). As the affine hull aff(F) = {f | −f1 + 2f2 = 1} is
1-dimensional, the associated linear subspace L = {f | −f1 + 2f2 = 0} (Figure 1a, blue)
containing all movement directions Ff is 1-dimensional. Per Line 2 of Algorithm 1, we arrange

an orthonormal basis for L as columns of Z ∝
[
2
1

]
, whose rows generate the polyhedral cone

KZ = {2λ1 + λ2 | λ1, λ2 ≥ 0} = R+. Note that the metric improvement directions in the
coefficient space are the dual cone K∗

Z = R+.
To satisfy improvement objective under a design restriction, we need to find matrix

V that attains the corresponding matrix rank. For all three matrix ranks, the cone KV

generated by rows of V needs to enclose cone KZ . Equivalently, in the coefficient space, score
improvement directions K∗

V need to be a subset of metric improvement directions K∗
Z . The

choice of V = [2] ∈ R1×1 yields the desired property KZ ⊆ KV . In fact, we get KZ = KV

and V ⊆ Z, and so all three matrix ranks have value 1.
Finally, we can recover A = [1, 0] such that V = AZ, and design S(f) = [1, 0] · f = f1.

It is easy to verify that this S satisfies the improvement objective (we could also have chosen
V = [1] previously to design S(f) = [0, 1] · f = f2). Hence, when the two metrics are
perfectly positively correlated, choosing one for score design suffices.

▶ Example 4 (Two anti-correlated metrics =⇒ must choose both for score design). Performance
metrics used by CMS can also be negatively correlated when a hospital must balance its
effort to simultaneously improve all metrics. In the case of two perfectly negative correlated
metrics, Algorithm 1 suggests to use both metrics to design S : F → R2, as no 1-dimensional
score function can satisfy improvement objective.

Consider two metrics – (i) pneumonia death rate and (ii) excessive antibiotic use –
that have a negative correlation as improving on one degrades the other. Assume that
these two metrics take values F =

{
f ∈ R2 | −f1 − 2f2 = 1, −1 ≤ f1 ≤ 1

}
, lying in a 1-

dimensional affine subspace of R2 (Figure 1b, red). Similar to Example 3, the subspace
L = {f | −f1 + 2f2 = 0} (Figure 1b, blue) associated to aff(F) is 1-dimensional. But the
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rows of orthonormal basis Z ∝
[

2
−1

]
generate cone KZ = {2λ1 − λ2 | λ1, λ2 ≥ 0} = R, which

contains a linear subspace within. This means that the metric improvement directions in
the coefficient space are the dual cone K∗

Z = {0}, i.e., there are no non-trivial directions to
simultaneously improve both metrics.

To satisfy improvement objective, score improvement directions in the coefficient space K∗
V

need to be a subset of metric improvement directions K∗
Z = {0}, or equivalently KZ ⊆ KV .

Hence, we choose V =
[

2
−1

]
∝ Z with 2 rows. Note that V with just 1 row would generate

either cone R+ or cone −R+, and fail to enclose cone KZ = R. Hence, all three matrix ranks
have value 2 even though all movement directions Ff lie in a 1-dimensional subspace L.

Finally, we can recover A = I2 such that V = AZ and design the trivial S(f) = f . Due
to the perfect negative correlation in metrics, we must choose both in the score design.

▶ Example 5 (Restriction with monotonicity =⇒ higher dimensionality). When the number of
metrics is large, understanding correlations among them can be unintuitive. Hence, we rely on
structure of polyhedral cones for score design, specifically improvement directions of scores K∗

V

and metrics K∗
Z (in the coefficient space). We find that score function dimensionality k under

Res-CS and Res-LM restrictions can be much larger than under Res-L, as CSR, CGR ≫ CR.
Consider the case of four metrics where two of them balance the other two, i.e., a toy ex-

ample where performance metrics take values F = aff(F) =
{

f ∈ R4 | [1, −1, 1, −1] · f = 0
}

.
Here the four metrics lie in a 3-dimensional linear subspace of R4 and F = aff(F) = L.
Hence, three orthonormal vectors in R4 form a basis of L such that the rows of Z generate
the “square” cone KZ in R3 (Figure 2a, red):

Z = 1
2 ·


1 1 1
1 −1 1
1 −1 −1
1 1 −1

 ∈ R4×3.

For Res-CS and Res-LM restrictions, we need to find matrix V such that KV = KZ . As
all rows of Z are extreme rays of KZ , matrix V must have four rows V = I4Z (any V with
fewer rows would not generate the square cone). Hence, CSR(Z) = CGR(Z) = 4. But for
Res-L restriction that does not require monotonicity, rows of V need only ensure KZ ⊆ KV .
The following matrix V with three rows that generates a “triangular” cone KV (Figure 2a,
blue) enclosing the square cone KZ :

V = 1
2 ·

1 0 2
1 3 −1
1 −3 −1

 and so V = AZ with A = 1
4 ·

 3 3 −1 −1
3 −3 −1 5

−3 3 5 −1

 .

Generally, CSR and CGR can be much larger than CR (Figure 2b). Since these three
matrix ranks describe the dimensionality under the three restrictions (Theorem 2), restrictions
that require monotonicity (Res-CS, Res-LM) lead to higher dimensionality in score design
compared to Res-L. In other words, allowing negative values in matrix A can significantly
reduce dimensionality of score design.

▶ Remark 6 (Competing metric improvement directions =⇒ higher dimensionality under Res-CS).
When rows of Z generate cone KZ that is pointed3, we get CSR(Z) = CGR(Z). But when

3 A cone K is pointed if for all nonzero x ∈ K, we have −x /∈ K. It is called non-pointed otherwise.
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KV KZ

(a) Rows of Z are extreme rays of the generated
“square” cone KZ . The square cone can be enclosed
by a “triangular” cone KV .

KV KZ

(b) All rows of Z ∈ Rd×3 are extreme rays of the
generated “circular” cone KZ . The circular cone can
be enclosed by a “triangular” cone KV .

Figure 2 Side and top views of cones KZ (red) generated by rows of Z, whose columns are
orthonormal basis of 3-dimensional subspace L. As CSR and CGR require generating KZ with KV ,
the matrix ranks depend on the number of extreme rays of KZ , which can be much higher than
dim aff(F) = 3. On the other hand, CR only requires enclosing KZ with KV ; and so is independent
of the number of extreme rays.

cone KZ that is non-pointed , we get CSR(Z) > CGR(Z). KZ can be non-pointed when
improving one metric degrades another, i.e., when metric improvement directions compete
among themselves. In this setting, dimensionality under Res-CS is higher than that under
Res-LM (see Example A.2).

Efficiently implementing Algorithm 1

Our proposed design strategy in Algorithm 1 can be efficiently implemented with algorithms
that utilize the geometry of metrics F . Elementary linear algebra operations can implement
Lines 2 and 4 of Algorithm 1, i.e., finding orthonormal basis Z and recovering A from
V = AZ. It is also possible to efficiently implement Line 3, to find matrix V that attain the
matrix ranks – ConeSubsetRank, ConeGeneratingRank, and ConeRank [32]. We briefly discuss
algorithms for Line 3, thus ensuring that the full Algorithm 1 can be efficiently implemented.
These algorithms leverage a key property of polyhedral cones, pointedness.

When the cone KZ generated from rows of Z is pointed, we can easily find V that attains
the matrix ranks. For ConeSubsetRank, we can keep the rows of Z that are extreme rays of
the polyhedral cone KZ , as extreme rays minimally generate a pointed cone [9, Prop. 26.5.4].
ConeGeneratingRank turns out to be the same as ConeSubsetRank, as every extreme ray of
KZ is a row of matrix Z [9, Prop. 26.5.4]. For ConeRank, the matrix V attaining it must
generate KV that encloses KZ . An intuitive procedure can find this V : can scale rows of Z

to lie on a hyperplane, and find a simplex that encloses the convex hull of scaled rows [22].
When the cone KZ is non-pointed, the cone contains a linear subspace within. Here we

can utilize the unique Minkowski decomposition of polyhedral cones into two orthogonal com-
ponents: the maximal linear subspace within, and a pointed remnant [45, Sec. 8.2]. Then, for
all three matrix ranks, we can generate/enclose non-pointed cone KZ , by generating/enclosing
the two orthogonal components separately.

2.3 Proposed design is minimal
Theorem 2 states that dimensionalities determined by the three matrix ranks –
ConeSubsetRank, ConeGeneratingRank, and ConeRank – are sufficient for score design. It
turns out that these dimensionalities are also necessary under a mild assumption on F
(Theorem 7). Hence, Theorems 2 and 7 together imply that the three matrix ranks exactly
determine the minimal design problem for improvement objective.
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▶ Theorem 7. Assume metrics F ⊆ Rd have non-empty relative interior with respect to
aff(F). Then the listed dimensionalities k in Theorem 2 are necessary.

We briefly discuss the implication of metrics F having non-empty relative interior on
satisying the improvement objective. Such a set F contains a center f∗ ∈ F where every
direction in subspace L is a positively-scaled movement direction from Ff∗ . Intuitively, all
score improvement directions are movement directions in the coefficient space. As a result, we
get an equivalence between satisfying improvement in the ambient space and the coefficient
space, i.e., satisfying improvement in Equation (4) is equivalent to satisfying KZ ⊆ KV . See
Theorem A.3 for the proof.
▶ Remark 8. In Figure 3 we illustrate examples of F and their relative interior. F having
non-empty relative interior is a reasonable condition in practice, as performance metrics used
by rating agencies are often correlated and not isolated points [6, 15, 49, 8, 37, 5]. For instance,
CMS uses percentage-rate-based metrics, such as condition-specific death rates, readmission
rates, and screening rates [15, 14]. This leads to real-valued metrics F = [0, 1]d, which has
non-empty relative interior. We note that, when the relative interior is empty, dimensionality
k significantly less than listed values in Theorem 2 can suffice (Proposition A.5).

Figure 3 Examples of F ⊆ R2. The left three have empty relative interior, whereas the right two
have non-empty relative interior with respect to aff(F), which is lightly shaded.

▶ Remark 9 (Choice of affine subspace and orthonormal basis). Our design strategy in Al-
gorithm 1 can use any orthonormal basis Z of the linear subspace LH associated with
any affine subspace H containing metrics F . To design the minimal S : F → Rk, we pick
any orthonormal basis of subspace L associated with affine hull H = aff(F). This follows
from Lemma A.4, which states that three matrix ranks are (1) invariant to the choice of
orthonormal basis for a fixed subspace LH, and (2) minimized with the choice of H = aff(F).

3 Minimal design problem for optimality objective

We propose a surrogate score design for satisfying the optimality objective and discuss the
minimality of our proposed design. We use the standard definition of pareto-optimality.

▶ Definition 10. Point f ∈ F is pareto-optimal for maximizing S if no other point in F
both improves S(f) in all coordinates and strictly improves S(f) in at least one coordinate.

ParetoOpt(S) :=
{

f ∈ F | for all f ′ ∈ F , either S(f ′) ̸≥ S(f) or S(f ′) = S(f)
}

.

We write ParetoOpt(F) to denote the pareto-optimal points in F w.r.t. the identity map.

We simplify the optimality objective in Equation (2) – ParetoOpt(S) ⊆ ParetoOpt(F) –
using movement directions Ff at center f , score improvement directions K∗

A, and metric
improvement directions K∗

I . Intuitively, score function S : f 7→ Af satisfies optimality if and
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only if movement directions Ff that are non-strict score improvement directions are also
non-strict metric improvement directions:

Optimality ⇐⇒
{

f ∈ F | Ff ⊆ (K∗
A)c ∪ ker A

}
⊆

{
f ∈ F | Ff ⊆ (K∗

I )c ∪ ker I
}

. (5)

3.1 Design proposal for optimality objective
We propose a score design in Algorithm 2 with dimensionalities given in Theorem 11. We note
that dimensionalities for score design are much smaller for the optimality objective than for
the improvement objective (Theorem 2). Specifically, for Res-LM and Res-L restrictions, a 1-
dimensional score function S : F → R suffices to satisfy optimality whereas multi-dimensional
function S is necessary for improvement (Theorem 7). This suggests that the optimality
objective is significantly weaker than the improvement objective.

▶ Theorem 11. For each design restriction, there exists S : F → Rk, designed using
Algorithm 2, that satisfies the optimality objective with the following dimensionalities.

Dimensionality k ≥

Res-CS dim aff(F)
Res-LM 1
Res-L 1

Algorithm 2 Design strategy for optimality objective.
1: Given: F and a design restriction.
2: if Design restriction is Res-LM or Res-L then
3: Design S(f) = a · f with any positive vector a.
4: else if Design restriction is Res-CS then
5: Find Z whose columns are an orthonormal basis of subspace L associated with aff(F).
6: Let V be linearly independent rows of Z.
7: Find A that satisfies V = AZ and design S : f 7→ Af .

For Res-LM and Res-L restrictions, the minimal design is straightforward: design S : f 7→
a · f using any vector a > 0 [55]. For Res-CS restriction, we utilize an isomorphism between
movement directions Ff and their coefficients Cf ⊆ Rr w.r.t. orthonormal basis Z ∈ Rd×r

of subspace L associated with r-dimensional aff(F). The columns of Z span subspace L
and its rows correspond to coordinates of movement directions Ff . Using this isomorphism,
choosing r linearly independent rows of Z as rows of V suffices to satisfy the optimality
objective. As V ⊆ Z, we can find A ∈ Rr×d with 1-hot rows such that V = AZ, and design
S : f 7→ Af that satisfies the Res-CS restriction. We include the proof in Theorem A.6.

3.2 Discussion of minimality of proposed design
While our proposed design for improvement objective is minimal when F has non-empty
relative interior (Theorem 7), our design for the optimality objective is not necessarily
minimal under the same condition on F . The challenge is that ParetoOpt(F), the optimal
trade-off surface [10], depends on the boundary of F . To demonstrate this, we give three
examples of d-dimensional F with non-empty relative interior – for one of the examples
dimensionality k = dim aff(F) is necessary for satisfying optimality under Res-CS, whereas
for the other two examples, a 1-dimensional S suffices. See Proposition A.7 for the proof.

FORC 2024



8:12 Score Design for Multi-Criteria Incentivization

▶ Proposition 12. Consider designing S : F → Rk to satisfy optimality objective.
1. For F =

{
f ∈ Rd | ∥f∥1 ≤ 1

}
, k ≥ 1 is necessary and sufficient for all design restrictions.

2. For F =
{

f ∈ Rd | ∥f∥2 ≤ 1
}

, k ≥ 1 is necessary and sufficient for all design restrictions.
3. For F =

{
f ∈ Rd | ∥f∥∞ ≤ 1

}
, k ≥ d is necessary and sufficient for Res-CS. Moreover,

k ≥ 1 is necessary and sufficient for the Res-LM and Res-L restrictions.

4 Minimal design problem for both objectives simultaneously

So far we have separately analyzed the minimal design problems for improvement and
optimality objectives. We now give results for simultaneously satisfying both objectives.

First, we establish a relationship between the improvement and optimality objectives.
This result holds even for score functions S that are not linear in F .

▶ Theorem 13. Let S : F → Rk be monotone in F . If S satisfies improvement, then S

satisfies optimality.

Proof. Let score function S : F → Rk be monotone in F and satisfy improvement. Hence,
for all f , f ′ ∈ F we have S(f ′) ≥ S(f) ⇐⇒ f ′ ≥ f , i.e., the function S preserves the
ordering on set F . We prove by contradiction that such an S satisfies optimality. Assume
that f∗ ∈ ParetoOpt(S) but f∗ /∈ ParetoOpt(F). That is, there exists f ∈ F such that
f ≥ f∗ and f ̸= f∗. Because S preserves the ordering, it must be that S(f) ≥ S(f∗) and
S(f) ̸= S(f∗), which means that f∗ /∈ ParetoOpt(S) and contradicts our assumption. ◀

We utilize Theorem 13 to design S that simultaneously satisfies both objectives. As S is
monotone in F under Res-CS and Res-LM restrictions, it suffices to design S that satisfies
the improvement objective. We include the proof in Corollary A.8.

▶ Corollary 14. Let columns of Z be an orthonormal basis of linear subspace L associated with
aff(F). For each design restriction, there exists score function S : F → Rk that simultaneously
satisfies improvement and optimality objectives with following dimensionalities.

Dimensionality k ≥

Res-CS ConeSubsetRank(Z)
Res-LM ConeGeneratingRank(Z)
Res-L ConeGeneratingRank(Z)

Moreover, for Res-CS and Res-LM restrictions, the score design is minimal when F has
non-empty relative interior.

▶ Remark 15. For simultaneously satisfying both objectives under Res-L restriction, dimen-
sionality k = CR(Z) is necessary, when F has non-empty relative interior (Theorem 7).
Corollary 14 states that k = CGR(Z) is sufficient, and CGR ≫ CR in general (Example 5).
We leave to future work to close this gap between necessary and sufficient dimensionality.

5 Conclusion

We propose a framework to design succinct scores to summarize performance metrics F , and
give polynomial-time algorithms that design scores that are provably minimal under mild
assumptions on F . Two future directions are to design scores: (1) when metrics takes discrete
high-dimensional values, (2) using incomplete, noisy high data from historical samples of
metric values, and (3) when metrics have a non-linear structure. On a technical note, it
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remains to identify structural properties of F and corresponding minimal designs for the
optimality objective. Designing minimal scores for simultaneously satisfying both objectives
under linear restriction is also an open direction.
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A Omitted Proofs

A.1 Minimal design problem for improvement objective
▶ Theorem A.1 (Theorem 2). Let columns of Z be an orthonormal basis of linear subspace L
associated with aff(F). For each design restriction, there exists S : F → Rk, designed using
Algorithm 1, that satisfies the improvement objective with the following dimensionalities.

Dimensionality k ≥

Res-CS ConeSubsetRank(Z) := minq {q | KZ = KV for some V ∈ Rq×r s.t. V ⊆ Z}
Res-LM ConeGeneratingRank(Z):= minq {q | KZ = KV for some V ∈ Rq×r}
Res-L ConeRank(Z) := minq {q | KZ ⊆ KV for some V ∈ Rq×r}

Proof. We give a proof for the Res-CS restriction; proofs for the other two restrictions are
similar. We show that, if k ≥ CSR(Z), then there exists S(f) = Af satisfying improvement
and Res-CS.
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Let columns of Z ∈ Rd×r be an orthonormal basis of r-dimensional linear subspace L
associated with aff(F). The definition of CSR states that k ≥ CSR(Z) when there exists
V ∈ Rk×r such that (i) V ⊆ Z and (ii) KZ = KV . Property (i) means that V = AZ

for some A ∈ Rk×d with 1-hot rows, and so S(f) = Af satisfies the Res-CS restriction.
Property (ii) implies that KZ ⊆ KV , and so S satisfies improvement:

KZ ⊆ KV
Lem. B.2⇐=====⇒ L ∩ K∗

A ⊆ K∗
I

Def. 1====⇒ for all f ∈ F ,

Ff ∩ K∗
A ⊆ K∗

I

Eq. 4⇐===⇒ Improvement. (6)

The proof of Lemma B.2 uses V = AZ, and the projection of rows of A and Id in
subspace L using orthonormal basis Z. ◀

▶ Example A.2 (Competing metric improvement directions =⇒ dimensionality for Res-CS >

Res-LM). When cone KZ generated by rows of Z is non-pointed, we have CSR(Z) > CGR(Z),
implying that the score design dimensionality is higher under Res-CS restriction than under
Res-LM. The cone KZ can be non-pointed in the presence of competing metric improvement
directions, i.e., when improving on one metric degrades another. A non-pointed KZ results
in a gap between CSR(Z) and CGR(Z).

Consider 8 metrics lying in a 5-dimensional subspace, which has the following orthonormal
basis (arranged as columns of Z):

Z = 1
2 ·



1 1 0 0 0
−1 1 0 0 0
−1 −1 0 0 0
1 −1 0 0 0
0 0 1 1 1
0 0 1 −1 1
0 0 1 −1 −1
0 0 1 1 −1


∈ R8×5.

The rows generate a 5-dimensional cone KZ with two orthogonal parts: (i) a 2-dimensional
linear subspace due to the first 4 metrics, and (ii) a 3-dimensional “square” pointed cone
due to the last 4 metrics, as visualized in Figure 4. Since KZ contains a 2-dimensional linear
subspace within, it is a non-pointed cone.

A matrix V that attains CSR(Z) must have rows of V chosen from rows of Z and
KZ = KV . Excluding any row of Z shrinks the generated cone – excluding any row of the
first 4 generates a halfspace rather than the 2-dimensional subspace, and excluding any row
of the last 4 does not generate the “square” pointed cone. So CSR(Z) = 8. On the other
hand, a matrix V that attains CGR(Z) need not have rows of V chosen from rows of Z; V

must only satisfy KZ = KV . We need all last 4 rows to generate the “square” cone, but there
exists 3 points (the blue and two bottom black points) whose nonnegative combinations
generate the 2-dimensional linear subspace. So CGR(Z) = 7.

▶ Theorem A.3 (Theorem 7). Assume metrics F ⊆ Rd have non-empty relative interior
with respect to aff(F). Then the listed dimensionalities k in Theorem 2 are necessary.

Proof. We give a proof for the Res-CS restriction; proof for the other two restrictions are
similar. We show that, when F has non-empty relative interior, we get:

for all f ∈ F , Ff ∩ K∗
A ⊆ K∗

I =⇒ L ∩ K∗
A ⊆ K∗

I . (7)
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Figure 4 A 5-dimensional non-pointed cone KZ with two orthogonal components: a 2-dimensional
linear subspace, and a 3-dimensional “square” pointed cone.

By adding this implication to Equation (6), we prove that, when F has non-empty relative
interior, a score function S satisfies the improvement objective and Res-CS restriction if and
only if k ≥ CSR(Z).

We now prove the implication in Equation (7). Let x ∈ L ∩ K∗
A. Since F has non-

empty relative interior, there exists f∗ in the relative interior. Lemma B.3 states that, as
x ∈ L, there exists a > 0 such that ax ∈ Ff∗ . Since x is in cone K∗

A as well, we have
ax ∈ K∗

A. Hence, ax ∈ Ff∗ ∩ K∗
A. According to the premise of Equation (7), we know that

Ff∗ ∩ K∗
A ⊆ K∗

I , and so ax ∈ K∗
I . As a > 0, we get x ∈ K∗

I , completing the proof. ◀

▶ Lemma A.4. Given affine subspace H containing F , the matrix ranks are invariant to the
choice of orthonormal basis of LH. Moreover, among all affine subspaces containing F , the
matrix ranks are smallest for H = aff(F).

Proof. We give a proof for CSR, proofs for the other two matrix ranks are similar.

1. We first give a geometric interpretation for invariance to choice of orthonormal basis of
LH. Then we give an algebraic proof.

Geometric interpretation. For any matrix W , note that CSR(W ) is the minimum
cardinality of a subset V of W (set of rows of W ), such that cone KV encloses KW . By
rotating rows of W without altering the column span of W , although the row vectors W

change, the relative position of them with respect to each other is the same. So the cone
generated by the rotated vectors is just a rotation of cone KW . As a result, the minimum
cardinality of a subset of rotated vectors (to enclose the rotated cone) is unchanged, and
so CSR(W ) is unchanged.

Algebraic argument. Let columns of Z1 and Z2 be two sets of orthonormal basis of
rH-dimensional LH. We will show that CSR(Z1) = CSR(Z2). The two orthonormal bases
have the same column span, and are rotations/reflections of each other. So there exists
orthogonal matrix Q ∈ RrH×rH such that Z1 = Z2Q and Z1Q⊤ = Z2.
We prove that CSR(Z1) ≤ CSR(Z2). Let CSR(Z2) = k∗. Then there exists V 2 ∈ Rk∗×rH

such that V 2 ⊆ Z2 and KZ2 ⊆ KV2 . These two properties mean that V 2 = AZ2 for some
A with 1-hot rows, and Z2 = BV 2 for some nonnegative B. Multiplying with Q on the
right, we get V 2Q = AZ2Q and Z2Q = BV 2Q. Therefore, V 1 = V 2Q ∈ Rk∗×rH has
the properties V 1 ⊆ Z1 and KZ1 ⊆ KV1 . This proves that CSR(Z1) ≤ CSR(Z2). With a
symmetric argument, we also get CSR(Z1) ≥ CSR(Z2).

2. Let H1 and H2 be two non-empty affine subspaces containing F such that H1 ⊆ H2.
Let L1 and L2 be linear subspaces corresponding to H1 and H2 respectively. Since
H1 ⊆ H2 and for any f ∈ H1 we can write L1 = H1 − f and L2 = H2 − f , we find that
L1 ⊆ L2. According to statement (1), CSR is invariant to the choice of orthonormal basis
of linear subspace. Hence, pick columns of Z1 and Z2 as orthonormal basis of L1 and L2
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respectively, such that columns of Z2 are a superset of columns of Z1. In the definition
of CSR, adding vectors to Z1 only increases the number of constraints to satisfy, and so
CSR can only grow. Hence, CSR(Z1) ≤ CSR(Z2).
Since aff(F) is the unique intersection of all affine subspaces containing F , we have
aff(F) ⊆ H for every affine subspace H containing F . Thus, CSR(Z) ≤ CSR(ZH), where
columns of Z and ZH are orthonormal basis of linear subspaces corresponding to aff(F)
and H respectively. ◀

▶ Proposition A.5. For each design restriction, there exists F ⊆ Rd with dim aff(F) = d and
empty relative interior such that there exists function S : F → R that satisfies improvement
objective.

Proof. We first give an example of F ⊆ R2, and show that there exists S : F → R that
satisfies improvement and the Res-CS restriction. So S will also satisfy the other two design
restrictions.

Consider F = {(0, 0), (1, 1), (2, 3)} ⊆ R2 and let A = [1, 0] ∈ R1×2. We now argue that
S(f) = Af satisfies the improvement objective. For metric pairs

(f ′, f) ∈ {((1, 1), (0, 0)), ((2, 3), (1, 1)), ((2, 3), (0, 0))}

we have Af ′ ≥ Af and f ′ ≥ f . Hence, improvement objective holds for these pairs. Whereas
for metric pairs

(f ′, f) ∈ {((0, 0), (1, 1)), ((1, 1), (2, 3)), ((0, 0), (2, 3))}

the left-hand side of the implication (Af ′ ≥ Af) is not true. And so improvement objective
holds for these pairs vacuously. Thus for all f , f ′ ∈ F if Af ′ ≥ Af then f ′ ≥ f .

We now give a counterexample of d + 1 points in F ⊆ Rd. Let f (0) = 0d and f (1) = 1d.
For i = 2, . . . , d, construct f

(i)
j =

(
f

(i−1)
j

)2
+ j for each coordinate j ∈ [d]. For example, the

construction in R4 is:

F =




0
0
0
0

 ,


1
1
1
1

 ,


2
3
4
5

 ,


5
11
19
29

 ,


26
123
364
845




Points f (1), . . . , f (d) are linearly independent, and so dim span(F) = d. Let A =
[1, 0, . . . , 0] ∈ R1×d. Following a similar argument as the d = 2 case, we find that S(f) = Af

satisfies the improvement objective (with dimensionality k = 1). ◀

A.2 Minimal design problem for optimality objective
▶ Theorem A.6 (Theorem 11). For each design restriction, there exists S : F → Rk, designed
using Algorithm 2, that satisfies the optimality objective with the following dimensionalities.

Dimensionality k ≥

Res-CS dim aff(F)
Res-LM 1
Res-L 1

Proof. For the last two design restrictions, the minimal design is straightforward. Using
any vector a > 0 of positive entries, design S : f 7→ a · f [55]. Clearly, S is linear in f .
To see that S is also monotone, fix f , f ′ ∈ F such that f ≥ f ′. Taking inner product
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with positive vector a, we get a · f ≥ a · f ′. To see that optimality objective is satisfied,
fix f∗ ∈ ParetoOpt(S). Since S is 1-dimensional, by definition of ParetoOpt(S), we have
a · f∗ ≥ a · f for all f ∈ F . Since a only has positive elements, for any f ∈ F either f∗ = f

or there exists j ∈ [d] such that f∗
j > f j . Therefore, f∗ ∈ ParetoOpt(F).

Res-CS restriction. We now give a design for the Res-CS restriction. We first simplify
the optimality objective – ParetoOpt(S) ⊆ ParetoOpt(F) using movement directions Ff ={

g = f ′ − f ∈ Rd | for all f ′ ∈ F
}

, definitions of dual cones K∗
A and K∗

I , and ker A ={
x ∈ Rd | Ax = 0

}
. We rewrite ParetoOpt(S) as follows:

ParetoOpt(S) = {f ∈ F | for all g ∈ Ff , either Ag ̸≥ 0 or Ag = 0}
=

{
f ∈ F | Ff ⊆ (K∗

A)c ∪ ker A
}

.

Similarly, ParetoOpt(F) =
{

f ∈ F | Ff ⊆ (K∗
I )c ∪ ker I

}
. Thus we get:

Optimality ⇐⇒
{

f ∈ F | Ff ⊆ (K∗
A)c ∪ ker A

}
⊆

{
f ∈ F | Ff ⊆ (K∗

I )c ∪ ker I
}

.

(Eq. 5)

We now identify an isomorphism between movement directions Ff in the ambient space
and the coefficient space. Let columns of Z ∈ Rd×r be an orthonormal basis of r-dimensional
linear subspace L associated with aff(F). Fix any f ∈ F . Denote with Cf ∈ Rr the set
of coefficients of Ff w.r.t. orthonormal basis Z, i.e., Cf = Z⊤ (Ff ). This introduces an
isomorphism between the sets Ff and Cf , i.e., for every g ∈ Ff these exists unique d ∈ Cf

such that g = Zd. With V = AZ, we have four equivalences:

Ag ≥ 0 ⇐⇒ V d ≥ 0 and Ag = 0 ⇐⇒ V d = 0 ,

g ≥ 0 ⇐⇒ Zd ≥ 0 and g = 0 ⇐⇒ Zd = 0.

Lemma B.4 uses these equivalences to state that for any f ∈ F , we have

Ff ⊆ (K∗
A)c ∪ ker A ⇐⇒ Cf ⊆ (K∗

V )c ∪ ker V (8)
Ff ⊆ (K∗

I )c ∪ ker I ⇐⇒ Cf ⊆ (K∗
Z)c ∪ ker Z. (9)

We further simplify the optimality objective (Equation (5)):

Optimality ⇐⇒
{

f ∈ F | Ff ⊆ (K∗
A)c ∪ ker A

}
⊆

{
f ∈ F | Ff ⊆ (K∗

I )c ∪ ker I
}

(10)
⇐⇒

{
f ∈ F | Cf ⊆ (K∗

V )c ∪ ker V
}

⊆
{

f ∈ F | Cf ⊆ (K∗
Z)c ∪ ker Z

}
(11)

where Equation (11) follows from Lemma B.4.
Now, we choose r linear independent rows of Z to create V ∈ Rr×r. Since Z has

orthonormal columns, we have ker V = ker Z = {0}. Moreover, we have V ⊆ Z, implying
KV ⊆ KZ and K∗

Z ⊆ K∗
V (Lemma B.1). This shows that K∗

Z ∪ (ker Z)c ⊆ K∗
V ∪ (ker V )c. As

a result, (K∗
V )c ∪ker V ⊆ (K∗

Z)c ∪ker Z. Hence, for any f ∈ F for which Cf ⊆ (K∗
V )c ∪ker V ,

we also have Cf ⊆ (K∗
Z)c ∪ ker Z. This shows that Equation (11) holds with the proposed

choice of V . As V = AZ for A with 1-hot rows, this design satisfies optimality and Res-CS
restriction. ◀

▶ Proposition A.7 (Proposition 12). Consider designing S : F → Rk to satisfy optimality
objective.
1. For F =

{
f ∈ Rd | ∥f∥1 ≤ 1

}
, k ≥ 1 is necessary and sufficient for all design restrictions.

2. For F =
{

f ∈ Rd | ∥f∥2 ≤ 1
}

, k ≥ 1 is necessary and sufficient for all design restrictions.
3. For F =

{
f ∈ Rd | ∥f∥∞ ≤ 1

}
, k ≥ d is necessary and sufficient for Res-CS. Moreover,

k ≥ 1 is necessary and sufficient for the Res-LM and Res-L restrictions.

FORC 2024



8:20 Score Design for Multi-Criteria Incentivization

Proof. Theorem 11 states k ≥ 1 is sufficient for Res-LM and Res-L restrictions for any F ;
trivially, k ≥ 1 is necessary. So, we prove the claims for the Res-CS restriction. For the
stated sets F , we determine ParetoOpt(F) and discuss choice of S to satisfy ParetoOpt(S) ⊆
ParetoOpt(F).

We denote the d coordinates of metric value f ∈ F with f1, . . . , fd. Let ej be
the jth canonical basis vector of Rd. We denote the unit ℓp-norm ball with Bd

p ={
f ∈ Rd | ∥f∥p ≤ 1

}
.

1. Let F = Bd
1, the unit ℓ1-norm ball centered at the origin. Note that the jth coordinate of

metric value f j is maximized when f = ej . So vectors e1, . . . , ed are pareto-optimal w.r.t.
F . In fact, all vectors on the surface of Bd

1 in the nonnegative orthant are pareto-optimal
w.r.t. F . That is, ParetoOpt(F) =

{
f ∈ Rd

+ | 1d · f = 1
}

.
We choose any coordinate j ∈ [d] and design 1-dimensional S(f) = f j . Since F is the
unit ℓ1-norm ball, ParetoOpt(S) = {ej}, which a subset of ParetoOpt(F) as 1d · ej = 1.
Hence, this design with dimensionality k = 1 satisfies the optimality objective under
Res-CS restriction.
Trivially, k ≥ 1 is necessary as well.

2. Let F = Bd
2, the unit L2-ball centered at the origin. Note that the jth coordinate of

metric value f j is maximized when f = ej . So vectors e1, . . . , ed are pareto-optimal w.r.t.
F . In fact, all vectors on the unit shell in the nonnegative orthant are pareto-optimal
w.r.t. F . That is, ParetoOpt(F) = Sd−1

2 ∩R+
d = Sd−1

2 ∩KI where I is the identity matrix.
We can similarly determine pareto-optimal points w.r.t. S(f) = Af . Let A have k

rows A = [a1; . . . ; ak] ∈ Rk×d. The ith coordinate of S is maximized when f = ai

∥ai∥2
.

So vectors a1
∥a1∥2

, . . . , ak

∥ak∥2
are pareto-optimal w.r.t. S. In fact, all vectors on the

unit shell and cone KA generated by rows of A are pareto-optimal w.r.t. S. That is,
ParetoOpt(S) = Sd−1

2 ∩ KA.
So S satisfies optimality if Sd−1

2 ∩ KA ⊆ Sd−1
2 ∩ KI . Any matrix A ⊆ Id implies KA ⊆ KI .

Hence, we can choose any coordinate j ∈ [d] and construct 1-dimensional S(f) = f j .
This design with dimensionality k = 1 satisfies the optimality objective under Res-CS
restriction.
Trivially, k ≥ 1 is necessary as well.

3. Let F = Bd
∞, the unit L∞-ball centered at the origin. It is easy to see that ParetoOpt(F) =

{1d}, a singleton set.
Under the Res-CS restriction, S : F → Rk is such that S(f) = [f i1 ; . . . ; f ik

] where the
every index ij ∈ [d]. Let I be the set of unique indices. We will now show that if k < d,
then there does not exist score function S that satisfies optimality. Since k < d, we have
|I| < d. The point f ∈ Bd

∞ is pareto-optimal w.r.t. S if f i = 1 for every i ∈ I. Precisely,
ParetoOpt(S) =

{
f ∈ [−1, 1]d | f i = 1 for all i ∈ I

}
. Since there exists j ∈ [d] that is

not in I, ParetoOpt(S) contains points with f j = −1. Hence, ParetoOpt(S) is not a
subset of ParetoOpt(F). Therefore, for F = Bd

∞ and k < d it is not possible to design
S : F → Rd that satisfies optimality objective under Res-CS restriction.
Trivially, k = d is sufficient to satisfy the optimality objective under Res-CS restriction:
design S(f) = f . Hence, k ≥ d is both necessary and sufficient when F = Bd

∞. ◀

A.3 Minimal design problem for both objectives simultaneously
▶ Corollary A.8. Let columns of Z be an orthonormal basis of linear subspace L associated
with aff(F). For each design restriction, there exists score function S : F → Rk that
simultaneously satisfies improvement and optimality objectives with following dimensionalities.
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Dimensionality k ≥

Res-CS ConeSubsetRank(Z)
Res-LM ConeGeneratingRank(Z)
Res-L ConeGeneratingRank(Z)

Moreover, for Res-CS and Res-LM restrictions, the score design is minimal when F has
non-empty relative interior.

Proof. For the first two restrictions (Res-CS and Res-LM), S is monotone in F . So, Theo-
rems 2 and 13 immediately give the design for simultaneously satisfying both objectives with
dimensionality k = CSR(Z) and CGR(Z) respectively. Theorem 7 proves the minimality of
this design. The design for Res-LM restriction also applies for the Res-L restriction. ◀

B Technical Lemmas

▶ Lemma B.1. For two polyhedral cones K1 and K2, we have K1 ⊆ K2 ⇐⇒ K∗
2 ⊆ K∗

1.

Proof. Since the two cones are polyhedral, they are closed and convex. For any closed and
convex cone K, the dual of its dual cone is the cone itself: K∗∗ = K. The result then follows
from the fact that for any two convex cones K1 ⊆ K2 =⇒ K∗

2 ⊆ K∗
1 [10, Sec. 2.6.1]. ◀

▶ Lemma B.2. Let L ⊆ Rd be an r-dimensional linear subspace, and let columns of Z ∈ Rd×r

be an orthonormal basis of L. Let KA1 and KA2 be cones in Rd generated by rows of matrices
A1 ∈ Rm1×d and A2 ∈ Rm2×d respectively. With V 1 = A1Z and V 2 = A2Z, we have,

L ∩ K∗
A1

⊆ K∗
A2

⇐⇒ K∗
V1

⊆ K∗
V2

⇐⇒ KV2 ⊆ KV1 .

Proof. We can simplify this condition L ∩ K∗
A1

⊆ K∗
A2

further by expressing vectors in the
basis Z.

First, every x ∈ L has a unique representation in the basis Z. That is, x = Zc for
some c ∈ Rr. Second, every d-dimensional row a of A1 and A2 can be written as a∥ + a⊥,
where a∥ = aZZ⊤ ∈ L and a⊥ = a(I − ZZ⊤) ∈ L⊥. Therefore, A1 = A

∥
1 + A⊥

1 where
A

∥
1 = A1ZZ⊤ + A1(I − ZZ⊤). Note that A⊥

1 Z = 0m1×r. Similarly we can decompose the
matrix A2 = A

∥
2 + A⊥

2 . Denote the coefficients as V 1 = A1Z and V 2 = A2Z. Using these
simplifications, we get:

L ∩ K∗
A1

⊆ K∗
A2

⇐⇒ for all x ∈ L, A1x ≥ 0 =⇒ A2x ≥ 0 (12)
⇐⇒ for all c ∈ Rr, A1Zc ≥ 0 =⇒ A2Zc ≥ 0 (13)

⇐⇒ for all c, (A∥
1 + A⊥

1 )Zc ≥ 0 =⇒ (A∥
2 + A⊥

2 )Zc ≥ 0 (14)
⇐⇒ for all c, V 1Z⊤Zc ≥ 0 =⇒ V 2Z⊤Zc ≥ 0 (15)
⇐⇒ for all c, V 1c ≥ 0 =⇒ V 2c ≥ 0 (16)
⇐⇒ K∗

V1
⊆ K∗

V2
(17)

⇐⇒ KV2 ⊆ KV1 . (18)

where the last equivalence follows from Lemma B.1. ◀

▶ Lemma B.3. Let L be the linear subspace corresponding to aff(X). For any x∗ in the
relative interior of X and any x ∈ L, there exists a > 0 such that ax ∈ Xx∗ .
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Proof. We use the definition of relative interior. Since x∗ is in relative interior of X, there
exists R > 0 such that (x∗ + R · Bd

2) ∩ aff(X) ⊆ X. Centering the sets at x∗, there exists
R > 0 such that R · Bd

2 ∩ aff(X)x∗ ⊆ Xx∗ . We note that L = aff(X)x∗ .
Let x ∈ L. If x = 0 then we are done as ax = 0 ∈ Xx∗ for any a > 0. If x is nonzero,

then we can normalize it so that x̃ = R · x
∥x∥ ∈ R · Bd

2 ∩ L. From the definition of relative
interior, we get that x̃ ∈ Xx∗ . Thus for any nonzero x ∈ L there exists a = R/ ∥x∥ such
that ax ∈ Xx∗ . ◀

▶ Lemma B.4. Let L be the linear subspace corresponding to r-dimensional aff(X) ⊆ Rd,
and let columns of Z ∈ Rd×r be an orthonormal basis of L. For any x ∈ X, denote with
Cx ⊆ Rr the preimage of Xx under the orthonormal basis Z. Let KA ⊆ Rd be generated by
rows of A ∈ Rm×d, and let V = AZ. Then for every f ∈ F ,

Xx ∩ K∗
A ∩ (ker A)c = ∅ ⇐⇒ Cx ∩ K∗

V ∩ (ker V )c = ∅.

Proof. Note that for every x ∈ X, the linear subspace spanned by the set Xx is L, and
columns of Z are an orthonormal basis of L. That is, for every y ∈ Xx these exists
unique d ∈ Cx such that y = Zd. Moreover, we can decompose rows of A in the linear
subspace L and its orthogonal complement L⊥, as in proof of Lemma B.2. We decompose
A = AZZ⊤ + A(Id − ZZ⊤).

We use these decomposition results to prove the desired result. We first prove the forward
direction by contradiction. Let x ∈ X and assume that Xx ∩ K∗

A ∩ (ker A)c = ∅. Now
assume that there exists d ∈ Cx ∩ K∗

V ∩ (ker V )c. So V d ≥ 0 and V d ̸= 0, implying
that AZd ≥ 0 and AZd ̸= 0. Hence, there exists y = Zd ∈ Xx such that y ∈ K∗

A and
y ∈ (ker A)c. This contradicts our assumption that Xx ∩ K∗

A ∩ (ker A)c = ∅, and so we must
have Cx ∩ K∗

V ∩ (ker V )c = ∅.
We also prove the backward direction by contradiction. Let x ∈ X and assume that

Cx ∩ K∗
V ∩ (ker V )c = ∅. Now assume that there exists y ∈ Xx ∩ K∗

A ∩ (ker A)c. So Ay ≥ 0
and Ay ̸= 0. Using decomposition of rows of A and y in the basis Z, we get that Ay = AZd

where y = Zd for d ∈ Cx. So there exists d ∈ Cx such that AZd ≥ 0 and AZd ̸= 0. Since
V = AZ, we get that there exists d ∈ Cx ∩ K∗

V ∩ (ker V )c. This contradicts our assumption
that Cx ∩ K∗

V ∩ (ker V )c = ∅, and so we must have Xx ∩ K∗
A ∩ (ker A)c = ∅. ◀
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Abstract
We study price-discrimination games between buyers and a seller where privacy arises endogenously
– that is, utility maximization yields equilibrium strategies where privacy occurs naturally. In this
game, buyers with a high valuation for a good have an incentive to keep their valuation private,
lest the seller charge them a higher price. This yields an equilibrium where some buyers will send a
signal that misrepresents their type with some probability; we refer to this as buyer-induced privacy.
When the seller is able to publicly commit to providing a certain privacy level, we find that their
equilibrium response is to commit to ignore buyers’ signals with some positive probability; we refer
to this as seller-induced privacy. We then turn our attention to a repeated interaction setting where
the game parameters are unknown and the seller cannot credibly commit to a level of seller-induced
privacy. In this setting, players must learn strategies based on information revealed in past rounds.
We find that, even without commitment ability, seller-induced privacy arises as a result of reputation
building. We characterize the resulting seller-induced privacy and seller’s utility under no-regret and
no-policy-regret learning algorithms and verify these results through simulations.
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1 Introduction

The question of how to define and preserve privacy in the age of machine learning has been
a topic of ongoing debate in the computer science and policy communities [11]. The widely
accepted theoretical framework of differential privacy [8] formalizes privacy as the ability to
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9:2 Privacy Can Arise Endogenously

withstand membership inference attacks. That is, differential privacy ensures that the output
of a computation obfuscates whether a particular data point was present in the input.

However, the practical implementations of differential privacy has been fraught with
challenges. There has been significant debate around how to interpret the key privacy
parameter ε and how to choose it [21]. This is especially true when data is continuously
collected from users (what does it mean to have a guarantee of ε = 1 per data point when a
user’s data is continuously collected?) This has also led to controversies where companies
have claimed their algorithms are private, when in fact the chosen ε value confers negligible
protection [24]. Further complicating matters, there are multiple variants and extensions of
differential privacy – e.g. (ε, δ)-DP [8], Reyni-DP [19], Gaussian-DP [7], etc. – each with
different parameters and interpretations.

Perhaps more fundamentally, a growing body of work argues that the public’s under-
standing of privacy is drastically different from differential privacy [23, 18]. While differential
privacy focuses on membership inference, privacy is more commonly understood to mean the
prevention of the platform using one’s data in ways that are misaligned with the individual’s
interests, such as price discrimination or other exploitative practices.

This work seeks to provide a new perspective on privacy that bridges the gap between
the theoretical computer science view and the public’s intuitive understanding. We develop
a game-theoretic model of privacy that allows us to analyze the effect of privacy choices
on all the stakeholders. Additionally, the framework shows how to derive optimal privacy
mechanisms that balance the gain in privacy with loss of accuracy in order to maximize
net utility. In our model, a “principal” (e.g., a platform or seller) can observe signals from
“agents” (e.g., users or buyers) and use this information to maximize its own profit, while
the agents have an incentive to obfuscate their data to prevent exploitation. We focus on a
price-discrimination setting involving interactions between buyers and sellers.

We show that “buyer-induced privacy” behavior, which resembles randomized response,
arises endogenously as an equilibrium strategy. Furthermore, we find that the seller is often
better off committing to not observing the agents’ data at all (“seller-induced privacy”),
as the revenue loss from buyer-induced privacy can be substantial. Finally, we extend our
analysis to a dynamic setting where the seller is a learning agent who interacts with multiple
buyers over time. We demonstrate how a simple external auditing mechanism can implement
the sellers’s commitment to privacy and lead to an equilibrium with endogenously arising
privacy-preserving behavior.

Our results provide a new framework for understanding privacy that encompasses both
the theoretical guarantees of differential privacy and the practical, user-centric notion of
privacy. By modeling privacy as an emergent property of an economic system, we hope to
offer insights that can inform the design of privacy-preserving platforms and policies.

Motivating example. In the absence of regulation, online retailers may price discriminate
based on information they have collected about past purchases of the customers. Some
customers may be willing to pay more for a good than others, perhaps due to innate
preferences for certain types of good or because they have more disposable income. The
retailer wants to identify customers with higher valuations and charge them higher prices in
order to maximize their revenue.

Since customers are aware of the potential for price discrimination, they may engage in
evasive action to protect their privacy. Customers may avoid choosing goods that signal
their true preferences for less consequential purchases, e.g., a high-income customer choosing
between an expensive water bottle that is slightly better than a cheaper option may opt to
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buy the cheaper bottle in an attempt to obscure their income status. This evasive action
imposes a cost on the customer, who misses out on buying their truly preferred product, and
also on the retailer, who would have preferred to sell the more expensive product.

What are the behaviors that arise at equilibrium? What if the seller can credibly commit
to not price discriminate? How do these behaviors change in more realistic settings where
game parameters are not known and strategies must be learned based on past interactions?
These are questions we answer in this paper.

1.1 Preview of contributions

We introduce a price-discrimination game in Definition 1 that involves buyers of two types –
one with a high valuation and one with a low valuation of an item. A seller may potentially
track buyers’ signals that reveal their valuations. We characterize the perfect Bayes Nash
equilibrium of this game in Theorem 2 and show that a buyer-induced privacy mechanism
emerges in the equilibrium. That is, the buyer with a high valuation, with some probability,
chooses an evasive action to appear to have a low valuation.

We then introduce commitment ability for the seller wherein a seller can commit to
not track buyers’ signals with some probability. In the price-discrimination game with
commitment, the equilibrium response (Corollary 5) results in seller-induced privacy, which
obviates the need for buyer-induced privacy. That is, with some probability, the seller chooses
to commit to respect privacy and voluntarily does not track signals. Due to this privacy
commitment from the seller, it is optimal for buyers to truthfully report their type. We call
this seller-induced privacy the “commitment strategy” and denote the resulting utility U∗

1.
In Section 3, we remove the seller’s commitment ability but give buyers access to the

seller’s historical pricing. We model this as a repeated interaction between a seller and
buyers with each buyer participating in only one round. The pricing history is used by
buyers to construct the seller’s “reputation” (i.e., an estimate of the probability of price
discrimination), which buyers then use to inform their signaling strategy. We model the
buyers as using a reputation construction procedure that satisfies a consistency condition
given in Definition 8, which requires that the reputation is able to differentiate between
sellers employing price-discriminating strategies and non-price-discriminating strategies. In
Proposition 10, we show the existence of such a reputation mechanism using the available
history. We show that consistent reputation can yield seller-induced privacy (i.e., ignoring
signals), depending on the model of the seller; we consider no-regret and no-policy-regret
sellers. Our findings are:
1. With a no-regret seller, there could be no seller-induced privacy. That is, the seller can

use signals and price discriminate in every round and still be no-regret (Proposition 13).
2. Regret minimization achieves strictly less average utility (asymptotically) than U∗

1 (Propo-
sition 14).

3. Employing the commitment strategy in every round is a no-policy-regret algorithm for
the seller (Proposition 20).

4. Employing the commitment strategy in every round ensures the seller (asymptotically) an
average utility of U∗

1. This the highest possible average utility achievable (asymptotically)
in the repeated interaction (Proposition 21).

1.2 Related work

Our work sits at the intersection of many areas, ranging from classical economics to online
learning.
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9:4 Privacy Can Arise Endogenously

There is a vast literature on privacy in computer science studying mechanisms for notions
of privacy such as differential privacy [8]. The mechanisms arising in our setting resemble
mechanisms in these works. We observe local privacy (buyer-induced privacy) where users
add noise to their data. We also observe central privacy (seller-induced privacy) where the
platform ensures similar outcomes for different user data.

Literature in economics studies the economic implications of enacting privacy mechanisms
(see [1] for a survey). Within this body of work, there is a literature on privacy and price
discrimination (e.g., [2, 5, 20, 12]). We build on this work and extend to a setting that
relaxes common-prior assumptions for buyers and sellers so that players must now devise
strategies based on what they learn from repeated interactions.

In these repeated interactions, we observe the emergence of a reputation-based privacy
mechanism. This reputation, learned by buyers based on previous interactions, takes the
place of the prior that is used in the single-interaction game. There are numerous papers
in economics on reputation focusing on sellers’ reputations for the quality of the proffered
good [15, 22, 9]. We focus on seller’s reputation for enacting price discrimination and analyze
how this arises in an online learning framework.

We also study the differences in behavior that arise from seller commitment, which has
been studied in [14], [2], [12] and [16]. We show that even without commitment, similar
behavior can arise through repeated interactions where reputation substitutes for the role of
commitment.

Finally, we draw upon work on online learning and repeated games. There are a number
of papers [4, 6, 13, 10] on repeated interactions between a principal and an agent where the
agent chooses actions based on evolving beliefs about the principal’s actions. In our setting,
we interpret the evolving beliefs as the reputation of the principal. Our setting differs in
two ways. The first is that the principal’s actions are not revealed at the end of the round.
Instead partial information about the action, depending on the agent’s response, is revealed.
The second is that our results hold for weaker conditions on the agent’s beliefs compared to
previous work.

2 A Price-Discrimination Game

We formulate price discrimination as a sequential, incomplete-information game between n

buyers and a seller.

▶ Definition 1 (PD game). The price-discrimination game with parameters n, α, µ, θ, θ, cB , cS,
denoted the (n, α, µ, θ, θ, cB , cS)-PD game, has the following extensive-form representation.
1. Nature’s move. The game begins with Nature assigning types to each participant

according to random draws. For i ∈ [n], the type for buyer i is θi ∈ {θ, θ}, representing
their valuation of the item being sold, with θ < θ. A buyer is type θ with probability µ

and type θ with probability 1 − µ. The seller’s type χ is either signal aware (χ = 1) or
signal blind (χ = 0). The seller is signal aware with probability α and signal blind with
probability 1 − α.

2. Signaling stage. Based on their assigned type θi, each buyer signals si ∈ {s, s}.
Signaling one’s true type (s for type θ and s for type θ) incurs no cost, whereas signaling
a mismatched type, referred to as “evasion,” imposes a cost cB on the buyer and a cost
cS on the seller.1

1 We can more generally allow for each type of buyer impose a different evasion cost (e.g., if a θ-buyer
evades, the costs are c̄B , c̄S ∈ R, and if a θ-buyer evades, the costs are cB , cS ∈ R. However, as we later
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3. Pricing decision. The seller chooses a price pi to set for buyer i. The information the
seller can use to set the prices depends on the type of seller. A signal-aware seller can set
prices depending on the signals sent by the buyers, that is, they can set one price for all
buyers that signaled s and a different price for all buyers that signaled s. A signal-blind
seller must set the same price for all buyers since they have no information to distinguish
buyers.

4. Purchase decisions. Each buyer, based on the price pi set for them and their valuation
θi, makes a choice bi ∈ {0, 1}, to purchase the item (bi = 1) or not (bi = 0).

5. Utilities. All players receive their respective utilities. Each buyer’s positive utility is zero
if they do not buy the item and the difference between their valuation and price otherwise.
If they took evasive action in the signaling stage, their negative utility is equal to their
cost of evasion cB. That is, buyer i’s utility is

uB(θi, si, pi, bi) = (θi − pi)bi − cBe(θi, si)

where e(θi, si) = 1{(θi = θ ∧ si = s) ∨ (θi = θ ∧ si = s)} indicates evasion or not. The
seller’s overall utility is the sum of utilities uS(θi, si, pi, bi) from their interactions with
each buyer. The positive utility due to buyer i is the revenue pi if buyer i buys and zero
otherwise. If the buyer took evasive action in the signaling stage, the seller incurs negative
utility cS. That is, the seller’s utility is

uS ((θi, si, pi, bi)n
i=1) =

n∑
i=1

uS(θi, si, pi, bi) =
n∑

i=1
pibi − cSe(θi, si).

Mixed strategies. For simplicity of presentation, our game definition is stated in terms of
pure strategies (i.e., players take deterministic actions). However, we can more generally
allow players to employ mixed strategies. A mixed strategy for a player is a distribution over
allowed actions conditioned on the information available when taking the action: buyer i’s
mixed signaling strategy induces a conditional distribution over signals πs

i (·|θi) ∈ ∆({s, s});
the seller’s mixed pricing strategy induces conditional distributions πp(·|s, χ), πp(·|s, χ) over
positive reals with the constraint πp(·|s = s, χ = 0) = πp(·|s = s, χ = 0); finally, each buyer
i’s mixed buying strategy induces conditional distribution πb

i (·|θi, pi) ∈ ∆({0, 1}).
Let π = (πs, πp, πb) denote a mixed strategy profile. π, along with the probability of

player types described in Step 1 of Definition 1 (which we will denote p(χ) and p(θi)) induce
a distribution over action profiles with the probability of an action profile (χ, (θi, si, pi, bi)n

i=1)
given by

P (χ, (θi, si, pi, bi)n
i=1) = p(χ)

n∏
i=1

p(θi)πs
i (si|θi)πp(pi|θi, χ)πb

i (bi|θi, pi). (1)

Given a mixed strategy profile π, we will denote the expected utility for the seller and buyer
i by

US(π) = E [uS ((θi, si, pi, bi)n
i=1)] and U i

B(π) = E [uB (θi, si, pi, bi)] ,

where the expectation is over the joint distribution in (1).

show, the only costs that are relevant are the evasion costs associated with the θ-seller, because the θ
seller will never choose to evade, so we can think of cB = c̄B and cS = c̄S .

FORC 2024



9:6 Privacy Can Arise Endogenously

Solution concept. We study the perfect Bayes Nash equilibrium (PBNE). Mixed
strategies of players constitute a PBNE if the following conditions hold: (1) sequential
rationality, meaning that each player’s strategy constitutes a best response to their beliefs
about the other players’ types and strategies, given the history of the game up to the point
of choosing the action and (2) consistency of beliefs, meaning that players’ beliefs about
other players’ types are updated following Bayes’ rule.

The following theorem characterizes the PBNE of the price-discrimination game described
in Definition 1.

▶ Theorem 2. An (n, α, µ, θ, θ, cB , cS)-PD game has the following unique perfect Bayes Nash
equilibrium. Define ∆θ = θ − θ.
(a) Buyers with type θi = θ will signal si = s.
(b) Buyers with type θi = θ will signal

si =

s w.p. q∗ if α > cB/∆θ where q∗ = min
{

1,
(1−µ)θ

µ∆θ

}
s otherwise.

(c) The signal-aware seller sets price

p∗
signalaware(s) =

{
θ if signal s = s is observed
θ if signal s = s is observed.

(d) The signal-blind seller sets price

p∗
signalblind =

{
θ if θ ≥ µθ

θ otherwise.

(e) Buyer i buys the good if and only if their price pi is at most their value, so

bi = 1{θi ≤ pi}.

The proof is given in Appendix A.1.
▶ Remark 3 (Buyer-induced privacy). The θ-buyers’ equilibrium response can be interpreted
as a privacy-protecting mechanism. This type of buyer is vulnerable to price discrimination,
so rather than always signaling their true type, they may choose to randomize their signal.
More specifically, if the cost of evasion is very high, the θ-buyer will tell the truth, but if the
evasion cost is low enough, the θ-buyer can receive a reduction in price that is higher than
their evasion cost. In the latter case, the θ-buyer must then choose the maximum evasion
probability q∗ such that it is still in the seller’s best interest to take the the buyer’s signal at
face value. We call this randomization “buyer-induced privacy.”

Theorem 2 tells us that strategic behavior can only happen if cB < ∆θ (otherwise, we
can never have α > cB/∆θ, so buyers will always signal truthfully). For the rest of the paper,
we will focus on this setting.

▶ Assumption 1. In all following results, we assume cB < ∆θ.

A natural next question is how each player’s utility is affected by the game parameters.
In particular, we focus on the effect of α, due to its connection to privacy. In Figure 1,
we visualize the utilities of the seller and θ-buyers as α varies from 0 to 1. Observe that
the seller’s utility increases for α less than some threshold value α∗, whose exact value we
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Figure 1 Plots of the θ-buyer and seller utilities as a function of α in the θ ≥ µθ setting (left)
and the θ < µθ setting (right).

give in the corollary below. This corresponds to the set of PD-games where the buyer’s
equilibrium response is truthful. Beyond α∗, the θ-buyers’ equilibrium response changes to
being strategic and the seller’s utility drops. We formalize the ordering of utilities in the
following corollary.

▶ Corollary 4. (Order of utilities) Fix n, µ, θ, θ, cB , cS and let uS(α), uB(α) denote the seller’s
and θ-buyers’ equilibrium utilities of the (n, α, µ, θ, θ, cB , cS)-PD game. uS(·) is maximized
at α∗ = cB/∆θ, and the equilibrium utilities for the settings where the seller is always signal
blind (α = 0), is always signal aware (α = 1), and is signal aware with probability α∗ (α = α∗)
have the following orderings:
(a) When θ ≥ µθ,

uS(α∗) > uS(0) > uS(1) and uB(0) > uB(1) = uB(α∗).

(b) When θ < µθ,

uS(α∗) > uS(0) > uS(1) and uB(1) > uB(0) = uB(α∗).

θ-buyers always receive a utility of zero, regardless of the value of α.

2.1 Price discrimination with seller commitment
A key takeaway from Corollary 4 is that the seller’s utilities are dependent on the value of α,
and if the seller could choose a value of α, they would want to choose α = α∗ to maximize
their utility. Suppose we are now in a setting where the seller is able to choose and publicly
commit to an α. As a motivating example, suppose that the seller must go through a data
broker to access signals, and the data broker publishes trusted summaries of what fraction of
buyers the seller requests data on. In such a setting, where α is chosen by the seller instead
of treated as given, we arrive at the following equilibrium.

▶ Corollary 5. (Equilibrium of price-discrimination game with commitment) When the seller
has commitment power (i.e., is able to credibly communicate to sellers that they will not
price discriminate with some probability), the perfect Bayes Nash equilibrium of the PD-game
consists of the following strategies:
(a) The seller commits to not price-discriminating (by playing p∗

signalblind from Theorem 2)
with probability 1 − α∗, where α∗ = cB/∆θ.

(b) All buyers always signal truthfully.
The buyers’ buying decisions are the same as in Theorem 2.

FORC 2024



9:8 Privacy Can Arise Endogenously

Proof. (a) follows directly from Corollary 4, which tells us that the seller’s utility is maximized
at α∗, and (b) comes from applying Theorem 2 with α = α∗. ◀

▶ Remark 6. Commitment ability allows the seller to achieve a higher utility by providing
seller-induced privacy. This seller-induced privacy obviates the need for buyers to take evasion
action to create buyer-induced privacy, which benefits the seller. We use U∗

1 to refer to the
seller’s maximum achievable equilibrium utility in the single interaction price discrimination
game with commitment. This utility is achieved when the seller plays the strategy given in
Corollary 5.

3 Repeated Interactions

In the previous section, we saw the emergence of seller-induced privacy when the seller
has commitment ability. If possible, the seller would commit to providing seller-induced
privacy (by ignoring signals with probability 1 − α∗, as in Corollary 5), thereby limiting the
extent of price discrimination performed by the seller. However, these results hinge on the
buyer believing that the α stated by the seller truly corresponds to the probability of price
discrimination. Without this credible commitment from the seller, the story becomes more
complicated.

In this section, we study whether seller-induced privacy can still arise in the absence
of such commitment ability, through the development of a reputation based on the seller’s
historical pricing. We ask the question of how the extent of privacy and resulting utilities
differ under reputation-based privacy versus commitment-based privacy. We model the seller
as making pricing decisions using an online learning algorithm and show how different models
such as no-regret and no-policy-regret lead to different answers to this question.

In the repeated interaction setting, we also relax the assumptions that the distribution µ

over agent types and the probability α that the seller looks at the agent’s signal are publicly
known. Rather than playing the single-interaction equilibrium strategies, which require full
knowledge of game parameters, the players now have to learn strategies online based on past
interactions.

3.1 Setup

We consider repeated interactions between a seller and buyers where a new batch of buyers
is drawn at each round. We call this as the repeated PD protocol. Each round is similar
to the one-shot PD-game from Definition 1 but with the following differences: (1) There is
one fixed seller throughout all rounds. (2) When players choose actions, they not only have
access to information from the current round (as was the case in the one-shot PD game) but
also some information from previous rounds. Specifically, at round t, the seller has access to
((sτ

i , pτ
i )n

i=1)t−1
τ=1, the signals they observed and the prices they set in previous rounds, and

each buyer i has access to (((θτ
i , sτ

i , pτ
i )n

i=1)t−1
τ=1), the buyer types, signals, and prices of all

buyers from previous rounds. This modeling of the buyers’ access is appropriate in settings
where buyer information is pooled either through crowd-sourcing or by an auditing entity
and made available to buyers. (3) The parameter µ (the probability of a type-θ buyer) is
not known to the seller. (4) The probability that the seller will price discriminate is not
known to buyers, as was assumed in the one-shot PD game; rather, buyers must estimate
this probability based on past rounds. We write out the repeated interaction protocol in
detail in Appendix B.
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3.2 Model of the buyers
Since each buyer participates in only one round of the repeated PD protocol, the equilibrium
response is still appropriate to model the buyer’s response. However, in the repeated
interaction setting, we no longer assume the buyers hold a static, prior belief about the
probability of a signal-aware seller. Instead, buyers have evolving beliefs based on the seller’s
interactions with past buyers.

Some specific buyer strategies we will refer to are πs
truthful, which corresponds to always

signaling truthfully, and πs
strategic, which corresponds to signaling s with probability q∗ (as

defined in Theorem 2) and signaling s with probability 1 − q∗. We consider the following
model of buyer behavior.

▶ Definition 7 (Consistent belief based equilibrium responding (CBER) buyers). Consistent
belief based equilibrium responding buyers (or CBER-buyers) form a sequence of beliefs (α̂t)T

t=1
satisfying a consistency property defined below and at round t, choose the corresponding
equilibrium strategy (from Theorem 2) of the PD-game with α = α̂t. That is, θ-buyers always
signal truthfully, and θ-buyers signal truthfully (play πs

truthful) if α̂t ≤ α∗ and signal the
opposite type with probability q∗ otherwise (play πs

strategic).

We now explain the consistency property. Given a sequence of seller mixed strategies
action profiles that induce the sequences of distributions (πp

t (·|s = s))T
t=1 and (πp

t (·|s = s))T
t=1

indicating price distributions at each round for signals s, s respectively, define αt to be

αt = PP ∼πp
t (·|s=s),P ∼πp

t (·|s=s)
[
P ̸= P

]
.

That is, αt denotes the probability of a different price for s compared to s at round t. The
probability here is over the randomness due to the seller’s mixed strategy at round t. αt is a
measure of extent of price discrimination by the seller at round t.

▶ Definition 8 (Consistent sequence). Let ᾱT = (1/T )
∑T

t=1 αt. We say a sequence of
estimators (α̂t)T

t=1 is consistent if limT →∞ |E[α̂T ] − ᾱT | = 0, where the expectation is taken
over the randomness of the history HT = ((θt

i , st
i, pt

i)n
i=1)T −1

t=1 used to construct α̂T .

A useful implication of consistency is that α̂T converges pointwise to ᾱT .

▶ Lemma 9. If (α̂t)T
t=1 is a consistent sequence of beliefs, then for any ϵ < 0 and δ > 0,

there exists some positive integer N such that for all T > N , we have P [|α̂T − ᾱT | ≥ ϵ] ≤ δ.

Proof. Due to consistency and the definition of limits, there exists N such that for all T > N ,
we have |E[α̂T ] − ᾱT | ≤ δϵ. Thus, for T > N , we can apply Markov’s inequality to get
P(|α̂T − ᾱT | ≥ ϵ) ≤ (|E[α̂T ] − ᾱT |)/ϵ ≤ δϵ/ϵ = δ. ◀

The following proposition and associated proof provide an algorithm to construct a
consistent sequence of estimators (α̂t)T

t=1.

▶ Proposition 10 (Existence of consistent sequence). Assume that buyers equilibrium-respond
to α̂t at each round t. Then, for any sequence of seller actions, there exists a sequence of
estimators (α̂t)T

t=1 that is consistent.

Proof sketch: Since there are multiple buyers at each round, we can infer whether
the seller is price discriminating or not by comparing the prices charged to a buyer who
signals s and a buyer who signals s. However, only some rounds are informative about
price discrimination; in rounds where all buyers send the same signal, we are not able

FORC 2024



9:10 Privacy Can Arise Endogenously

to determine if the seller had a price discriminatory pricing policy in place. The consis-
tent estimator α̂t we consider is the fraction of past rounds where price discrimination is
observed, normalized to account for the probability that a round is likely to be informa-
tive about price discrimination. We show that E[α̂t] = (1/t)

∑t−1
τ=1 ατ , which implies that

limT →∞ |E[α̂T ] − ᾱT | = limT →∞

∣∣∣(1/T )
∑T −1

t=1 αt − (1/T )
∑T

t=1 αt

∣∣∣ = limT →∞ αT /T = 0.
See Appendix C.1 for the full proof.

3.3 Model of the seller
Since the seller does not a priori know the distribution over buyer types and is engaged
in multiple rounds of the repeated interaction, modeling the seller’s response by the one-
shot equilibrium from Theorem 2 is not reasonable. Instead, we consider the seller as
optimizing various common objectives of repeated interactions such as regret minimization
and policy-regret minimization.

The seller’s mixed strategy at a given round is a pair of probability distributions πp
t =

(πp
t (·|s), πp

t (·|s)). Let Π denote the set of possible mixed strategies. For rational sellers,
we can focus on distributions supported only on {θ, θ} without loss of generality. Prices
supported on {θ, θ} maximize seller revenue in each round. The seller’s effect on future
rounds is also not affected by limiting the support. This is because the parameters αt that
the buyers’ consistent estimator estimates treats any difference in prices as indicating price
discrimination, so all price differences are treated the same.

Some specific seller strategies we will refer to are πp
PD and πp

noPD. The former is the
“always-price-discriminating strategy,” with πp

PD(θ|s) = πp
PD(θ|s) = 1. The latter is the

“never-price-discriminating strategy,” with πp
noPD(θ|s) = πp

noPD(θ|s) = 1 if θ ≥ µθ and
πp

noPD(θ|s) = πp
noPD(θ|s) = 1 otherwise.

3.3.1 Regret-minimizing seller
The first seller model we consider is a regret-minimizing seller.

▶ Definition 11 (Seller’s regret). Given a sequence of mixed strategy profiles {πt} =
{(πs

t , πp
t , πb

t )}T
t=1, the seller’s average regret is

RS
T ({πt}T

t=1) = 1
T

[
max

πp∗∈Π

T∑
t=1

US(πs
t , πp∗

t , πb
t ) −

T∑
t=1

US(πs
t , πp

t , πb
t )

]
.

▶ Definition 12 (No-regret algorithm). Let AB be an algorithm employed by the buyer in
the repeated PD protocol. A seller algorithm AS in the repeated PD protocol is a no-regret
algorithm for the seller given AB if the sequence of mixed strategies (πt)T

t=1 generated by the
interaction between AB and AS has seller’s average regret that is sublinear in the number of
rounds. That is, RS

T ((πt)T
t=1) ∈ o(1).

We will denote by (πt)T
t=1 the sequence of random variables denoting the players’ mixed

strategies in each round. Our results analyze the asymptotic convergence of average seller
utility. We say that the average seller utility asymptotically converges to some value v if
limT →∞ E

[
(1/T )

∑T
t=1 US(πt)

]
= v. We write US(πp) and US(πs, πp) when it is clear what

the other arguments are.
If the seller employs a no-regret algorithm, then the seller could end up always price-

discriminating i.e., no seller-induced privacy. This is stated below.



N. Ananthakrishnan, T. Ding, M. Werner, S. P. Karimireddy, and M. I. Jordan 9:11

▶ Proposition 13. (Always price-discriminating is regret minimizing) Given CBER-buyers,
the seller algorithm that always employs the price-discrimination strategy i.e., πp

t = πp
PD for

all timesteps t is a no-regret algorithm for the seller. The seller’s average utility asymptotically
converges to a value at most uS(1), where uS(1) is the seller’s equilibrium utility in the
single-interaction PD-game with α = 1.

Proof sketch. The strategy of CBER-buyers in each round is either πs
truthful or πs

strategic.
For both these buyer responses, the seller’s optimal strategy is to always price discriminate,
as shown in the computation of the seller’s equilibrium response in the proof of Theorem 2.
In other words, the seller incurs zero regret in each round by always price-discriminating.

Next, we analyze the seller’s average utility. Note that when πp
t = πp

PD, the probability
of seeing different prices for different signals is αt = 1, so ᾱt = 1 for all t. By Lemma
9, α̂t becomes greater than α∗ eventually (where α∗ is as defined in Corollary 5), which
causes θ-buyers to play πs

strategic. In other words, eventually the seller and buyers will all be
playing their equilibrium strategies for the PD-game with α = 1, so their average utilities will
converge to the corresponding equilibrium utilities. See Appendix C.2 for the full proof. ◀

The next proposition tells us that regret minimization necessarily causes the seller to
achieve a worse expected average utility that the optimal utility they can achieve in the
single interaction setting.

▶ Proposition 14 (Regret minimization is inherently at odds with achieving U∗
1). Given CBER-

buyers, for any no-regret seller algorithm, the seller’s average utility asymptotically converges
to strictly less than U∗

1.

Proof sketch. Define T = {t ∈ [T ] : α̂t ≤ α∗} to be the set of rounds where θ-buyers’
signaling strategy is πs

truthful. In all other rounds, their signaling strategy is πs
strategic. Define

β = (1/T )
∑

t∈T αt to be a measure of simultaneous truthfulness from buyers and price-
discrimination by the seller. Our proof involves the following parts. We outline the parts
and state them as lemmas here and prove them in Appendix C.3

1. Obtaining U∗
1 requires the buyers to be truthful strictly more than α∗ fraction of rounds.

▶ Lemma 15. limT →∞ |T |/T ≤ α∗ implies that limT →∞

(∑T
t=1 US(πt)

)
/T < U∗

1.
2. The no regret property requires that the seller price discriminates in most rounds where

buyers are truthful. So β is close to |T |/T .
▶ Lemma 16. limT →∞ |T |/T ≤ limT →∞

∑
t∈T αt/T .

3. There is a limit on simultaneous price-discrimination and truthful signaling due to the
buyers’ consistent beliefs. That is, β converges to at most α∗.
▶ Lemma 17. limT →∞

∑
t∈T αt/T ≤ α∗.

From Lemmas 16, 17, limT →∞ |T |/T ≤ α∗. Lemma 15 shows that this means average
seller utility is strictly less than U∗

1. ◀

3.3.2 Policy-regret-minimizing seller
As we have seen, regret minimization does not guarantee that the seller achieves higher than
price-discrimination utility. On the other hand, if we model the seller as minimizing policy
regret [3], the seller necessarily achieves utility that is higher than the utility achieved by
the naive strategy of always price discriminating.

FORC 2024
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▶ Definition 18 (Seller’s policy regret). Consider a buyer algorithm AB and a seller algorithm
AS. Let (πt(AB , AS))T

t=1 be the sequence of mixed strategies generated by the interaction
between AB and AS. Given a sequence of mixed strategies (πt)T

t=1, the seller’s average policy
regret of (πt)T

t=1 relative to a buyer algorithm AB and a baseline class AS of seller algorithms
is

PRS
T

(
(πt)T

t=1; AB ,AS

)
= max

AS∈AS

1
T

T∑
t=1

US(πt(AB , AS)) − 1
T

∑
t=1

US(πt)

▶ Definition 19 (No-policy-regret algorithm). Let AB be an algorithm employed by the
buyer in the repeated PD protocol. An algorithm AS is a no-policy-regret algorithm for
the seller given AB and relative to a class of seller algorithms AS if the sequence of
mixed strategies (πt(AB , AS))T

t=1 generated by the interaction between AB and AS satisfies
PRS

T ((πt(AB , AS); AB ,AS)T
t=1) ∈ o(1).

Consider a baseline class AMS
S consisting of seller algorithms that employ the same mixed

strategy in each round, that is, πp
t (·|s) is the same distribution for all t and similarly for

πp
t (·|s).

▶ Proposition 20 (Policy-regret-minimizing seller achieves U∗
1). Given CBER-buyers, if the

seller achieves sub-linear policy regret relative to AMS
S , then the seller’s average utility

asymptotically converges to at least U∗
1.

Proof sketch. Under the conditions of this proposition, the seller’s utility must, by definition
of policy regret, approach a utility at least as high (or better) than the utility of any strategy
in AMS

S as T → ∞. Recall that U∗
1 is the seller utility achieved in the PD game when α = α∗.

Consider the PD game that results in a seller utility of at least U∗
1 − ϵ, which is achieved

by the seller price-discriminating with probability α̃ < α∗. Then the repeated-interaction
strategy of always price-discriminating with probability α̃ has an average expected utility of
at least U∗

1 − ϵ (this must be true due to the consistency of buyer beliefs; see the full proof in
Appendix C.4 for details). Taking ϵ to 0 gives the desired result. ◀

Combining the previous result with the following result tells us that a no-policy regret
seller’s algorithm will cause the seller’s average utility to asymptotically converge to exactly
U∗

1. In fact, this result tells us the stronger result that there does not exist any seller
algorithm that can achieve utility higher than U∗

1.

▶ Proposition 21. Given CBER-buyers, for any seller algorithm, the seller’s average utility
asymptotically converges to at most U∗

1.

Proof sketch. This proof is similar to the argument of the proof of Proposition 14 and the
full proof is in Appendix C.4. The key ideas again are that for high seller utility, there must
be sufficiently many rounds where simultaneously, the seller price discriminates and the
buyer reports truthfully. Since the buyers’ belief estimators are consistent, this cannot be
the case. The difference between the average seller utility and U∗

1 is a constant times the
following quantity: 1

T

∑
t∈T (πp

t (θ|s) − πp
t (θ|s)) − α∗, where T is the set of rounds where the

buyer signals truthfully. Lemma C.1, 17 (from the proof of Proposition 14) show that the
consistency property implies that this difference converges to most zero. ◀

4 Experiments

In this section, we simulate the repeated PD protocol with µ = 0.5, θ = 5, θ = 15, cB =
cS = 5, and n = 10 and empirically verify our theoretical claims from Section 3. We
report the convergence of buyer and seller utilities, seller actions, and buyer estimators.
The seller and buyer algorithms we consider are described below. Code is available at
https://github.com/nivasini/PrivacyDynamics.

https://github.com/nivasini/PrivacyDynamics
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4.1 Algorithms
Seller.
1. Signal-blind seller. The seller plays the regret-minimizing Exp3 algorithm (specifically

Exp3-IX in Chapter 12 of [17]). At round t the seller sets a price pt ∈ {θ, θ} according to
the algorithm’s current sampling distribution, charges pt to all buyers and updates the
sampling distribution based on the resulting average utility from the buyers’ purchase
decisions.

2. Signal-aware seller. The seller plays a contextual version of Exp3, which we call
CExp3, in which the algorithm maintains two sampling distributions over prices {θ, θ},
conditioned on the received signal, s or s. At each round, the seller samples once from
each distribution and charges one price p

t
to all buyers who signal s and pt to all buyers

who signal s. Depending on the sampling distributions, p
t

and pt may or may not be
equal.

3. Stackelberg equilibrium seller. The seller commits to an α∗ = cB/∆θ level of price-
discrimination, i.e., they play the (α = 1)-PD equilibrium strategy (Theorem 2) with
probability α∗ and the (α = 0)-PD equilibrium with probability 1 − α∗.

CBER-Buyer. Using a sequence of consistent estimators {α̂τ }t−1
τ=1 (Def. 8) to estimate the

seller’s probability of price-discrimination at each round, each buyer plays the (α = α̂τ )-PD
equilibrium strategy. For our simulations, buyers use the estimator described in (3) to
estimate the seller’s probability of price discrimination at each round. All buyers in a single
round use the same estimator.

4.2 Discussion
Convergence of Utilities. Figure 2 shows convergence of seller and buyer utilities for each
of the seller’s algorithms played against a CBER-buyer. As expected, when a seller plays
Exp3 (which ignores signals) against a CBER-buyer, the players’ utilities converge to the
(α = 0)-PD equilibrium utility (Theorem 2). When the seller plays CExp3 (which observes
signals) against a CBER-buyer, the seller’s utility converges to the (α = 1)-PD equilibrium
utility. Given our experiment parameters, multiple different distributions πp

t (·|s = s) reward
the seller equivalently, while some are more favorable for the buyer than others. Therefore,
while the seller’s utility will always converge to (α = 1)-PD, the buyer’s utility may converge
to something less than (α = 1)-PD. Finally, when the seller plays the Stackelberg equilibrium
against a CBER-buyer, the players’ utilities converge to the (α = α∗)-PD equilibrium utility.

Consistency of α̂. Figure 3 illustrates the consistency of the buyer’s estimator ((3)). Our
simulations show that the buyer’s estimate α̂t of the seller’s probability of price discrimination
converges to 0 against a seller playing Exp3, to 0.5 against a seller playing α∗-PD (where
α∗ = cB/∆θ = 0.5 given our simulation parameters), and to higher-than-0.5 against a
seller playing CExp3. Importantly, α̂t aligns with the seller’s true average probability of
price-discrimination, ᾱt, giving empirical evidence for Lemma 9.

Convergence of Seller Actions. In Figure 4, we track the cumulative proportion of the
seller’s price-discriminatory vs. non-price-discriminatory actions. Specifically, we track four
seller actions: 1) charging a high price regardless of signal, 2) charging a low price regardless
of signal, 3) charging a high price for a low signal and low price for a low signal (PD), and 4)
charging a low price for a high signal and a high price for a low signal (reversePD). Given our

FORC 2024
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Figure 2 Convergence of seller and buyer utilities for various algorithms. θ < µθ with our
experiment parameters, so the buyer’s (α = 0)-PD and (α = α∗)-PD utilities are the same (see
Corollary 4).

Figure 3 α̂t and ¯̂αt over time when seller is playing Exp3, CExp3, or α∗-PD. In all cases, α̂ is a
consistent estimator of the seller’s true probability of price discrimination.

parameter values for these simulations (i.e. θ < µθ and α∗ = 0.5), in equilibrium we would
expect that, for each batch of n buyers at a single round: 1) a signal-blind seller sets a high
price for all n buyers, 2) a signal-aware seller sets a high price for high-signal buyers and a
low price for low-signal buyers, and 3) a α∗-PD seller sets a high price for all high-signal
buyers and low price for all low-signal buyers with probability 0.5 and sets a high price for
all n buyers with probability 0.5. Figure 4 gives empirical evidence for this intuition.

Biased α̂. In realistic settings, the buyer may not have a consistent estimate of price
discrimination and instead only have access to a biased α̂. Figure 5 examines whether a seller
can benefit from non-consistency in the buyer’s estimate. The y-axis of the figure tracks
the seller’s cumulative average utility after 20, 000 rounds of interaction with CBER-buyers.
We partition the interval [−1, 1] into twenty segments γi of width 0.1, and the buyers use
estimator α̂t + ϵt, where ϵt ∼ Unif(γi). The plot then tracks the seller’s cumulative average
utility after 20, 000 rounds of interaction with buyers for each biase interval γi. If α̂t + ϵt is
less than 0 or greater than 1, we clip it at those values respectively. In all cases, the seller is
hurt by a θ-buyer who overestimates the probability of price discrimination (high values of
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Figure 4 Relative frequency of actions for the seller playing Exp3, CExp3 and α∗-PD. The
number of PD and reversePD actions for the Exp3 seller are both 0, as is expected.

Figure 5 Cumulative average utility of the seller playing against CBER-buyers using biased α̂’s.

ϵt) and is thus more likely to evade, costing the seller the evasion cost. Against a buyer who
underestimates the probability of price discrimination (low values of ϵt), neither the Exp3
nor α∗-PD seller gains utility, since the equilibrium behavior of the buyer with consistent α̂t

aligns with the no-price-discrimination equilibrium (see Figure 2). By contrast, the CExp3
seller benefits from a buyer who underestimates the probability of price discrimination, since
the seller benefits from discriminatory pricing without incurring the evasion cost. Against a
CBER-buyer with consistent estimates, this advantage is impossible at equilibrium.

5 Conclusion

Since the type and level of privacy desired generally depends on the utilities of stakeholders
and forms of interaction among them, we propose a game theoretic framework for privacy in
this paper. We analyzed the perfect Bayes Nash equilibrium in a single-interaction setting as
well as no-regret and no-policy-regret dynamics emerging over repeated interactions. In both
these settings, we show how the different components of the game – utilities, actions and
information sets (information available to players when choosing actions) impact the privacy
levels that emerge.

FORC 2024
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Our results shed light on the impacts of different privacy-related interventions – we
showed that enabling a seller to credibly commit to privacy (e.g., through privacy legislation
like the GDPR) or revealing the seller’s past behavior (e.g., through privacy auditing) can
surprisingly improve their utility. Thus, we believe our framework can be used to help analyze
and craft privacy policies.
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A Proofs from Section 2

A.1 Proof of Theorem 2

Proof. Part (a) comes from the fact that θ buyers have no reason to pretend to have a higher
valuation for the good than they actually do. Part (e) comes from the fact that buyers are
utility maximizing.

Part (c) comes from the following reasoning: since signal blind sellers cannot see the
buyers’ signals, they must choose one price to set for all buyers. The seller wants to maximize
their revenue, so they would ideally want to set the highest price that the buyer is willing
to pay (θ for θ-buyers and θ for θ-buyers). However, the seller does not know the type of
the buyer; all they know is the probability µ that the buyer is θ. The seller has to make
a decision between charging θ or θ. If the seller charges θ, both θ and θ agents would be
willing to buy, so the expected revenue is θ. If the seller charges the higher price θ, only θ

agents would be willing to buy, so the expected revenue is µθ, which corresponds to

p∗
signalblind =

{
θ if θ ≤ µθ

θ if θ > µθ.

Part (c) and (d) come from the following best-response arguments. Our goal is to show
p∗

signalaware is a best response given q∗ and vice versa, where

p∗
signalaware(s) =

{
θ if s = s is observed
θ if signal s = s is observed.

and q∗ = min
{

1,
(1 − µ)θ

µ∆θ

}

What is the signal aware seller’s best response after seeing s? From part (a), we know
that θ buyers never signal θ, so the seller knows that a s signal implies that the buyer is type
θ and should therefore set a price of θ after seeing s, i.e., p∗

signalaware(s) = θ.
What is the signal aware seller’s best response after seeing s? In order for p∗

signalaware to
be a best response, it must maximize the seller’s expected utility, where the expectation is
over the seller’s posterior belief over the buyer’s type given that they have signaled s. Given
probability q∗ that the θ buyer sends signal s, the seller’s posterior belief µ̂ that the buyer is
type θ is

µ̂ = P(θ = θ|s = s) = P(s = s|θ = θ)P(θ = θ)
P(s = s|θ = θ)P(θ = θ) +P(s = s|θ = θ)P(θ = θ)

= q∗µ

q∗µ + 1 − µ
.
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Let f(p) denote the seller’s expected utility from charging price p after observing signal s, so

f(p) =
{

p − µ̂q∗cS if p < θ

µ̂p − µ̂q∗cS if p ∈ [θ, θ].

In order for p∗
signalaware(s) to be a best response, it must be the value that maximizes f :

p∗
signalaware(s) = max

p
f(p) =

θ if q∗ ≤ min
{

1,
(1−µ)θ

µ∆θ

}
θ else.

= θ,

where the last equality comes from the choice of q∗. This shows that p∗
signalaware(s) = θ is a

best response for the seller. We now turn our attention to the θ-buyer.
What is the optimal probability q∗ of evasion for the θ-buyer? Let g(q) denote the the

expected utility for the θ buyer when they evade with probability q, given that the seller is
playing p∗

signalblind if they are signal blind and p∗
signalaware if they are signal aware, so

g(q) = P(seller is signal blind)(θ-buyer utility if seller plays p∗
signalblind)

+P(seller is signal aware)(θ-buyer utility if seller plays p∗
signalaware). (2)

If 1 ≤ (1−µ)θ/µ∆θ, this implies that θ ≥ µθ, so (2) simplifies to

uB = (1 − α)∆θ + (α∆θ − cB)q.

If (1−µ)θ/µ∆θ ≤ 1, this implies θ < µθ, so (2) simplifies to

uB =
{

(α∆θ − cB)q if q ≤ (1−µ)θ/µ∆θ

−cBq else.

Combining everything, we see that the θ-buyer’s optimal probability of evasion is q∗ as
written in the theorem statement. ◀

B Repeated PD Protocol

The detailed algorithm is described in the arXiv version.

C Proofs from Section 3

C.1 Proof of Proposition 10
Proof. For each round t, let It = 1

{
∃i s.t. st

i = s and ∃j s.t. st
j = s

}
be an indicator for

whether both types of signals are observed at round t, i.e., whether round t is “informative”
about if there is price discrimination. For rounds t with It = 1, we additionally define the
following random variables: P t = pt

i for the smallest i ∈ [N ] such that st
i = s; P t = pt

j for
the smallest j ∈ [N ] such that st

j = s; and Xt = 1
{

P t ̸= P t

}
, an indicator for observed

price discrimination. Note that the choice to define P t and P t to correspond to the smallest
index satisfying the corresponding condition is simply for concreteness; we could equivalently
sample uniformly from the set of indices satisfying the condition.

Recall that Ht = ((θτ
i , sτ

i , pτ
i )n

i=1)t−1
τ=1 is the history known by buyers at the beginning of

round t. Consider the following estimator:

α̂t = 1
t

t−1∑
τ=1

Xτ Iτ

E[Iτ |Hτ ] (3)

https://arxiv.org/abs/2404.10767
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The expectation E[Iτ |Hτ ] is over the randomness at round τ . Note that α̂t is computable
based on the history Ht, because E[Iτ |Hτ ] is computable for any τ < t. We will now show
that α̂t satisfies Definition 8. We start by computing the expectation of α̂t:

E[α̂t] = E

[
1
t

t−1∑
τ=1

Xτ Iτ

E[Iτ |Hτ ]

]

= 1
t

t−1∑
τ=1

E
[

Xτ Iτ

E[Iτ |Hτ ]

]
linearity of expectation

= 1
t

t−1∑
τ=1

E
[
E

[
Xτ Iτ

E[Iτ |Hτ ]

∣∣∣∣Hτ

]]
tower rule

= 1
t

t−1∑
τ=1

E
[
E[Xτ Iτ |Hτ ]
E[Iτ |Hτ ]

]
Observe that Xτ and Iτ are independent given Hτ . To see why, note that the randomness in
Xτ |Hτ comes only from the randomness in the seller’s mixed strategy at round τ , whereas
the randomness in Iτ |Hτ comes only from the randomness in the buyers mixed strategy
at round τ . The mixed strategies are fixed given Hτ , and the additional randomness is
independent. Thus,

= 1
t

t−1∑
τ=1

E
[
E[Xτ |Hτ ]E[Iτ |Hτ ]

E[Iτ |Hτ ]

]

= 1
t

t−1∑
τ=1

E[E[Xτ |Hτ ]]

= 1
t

t−1∑
τ=1

E
[
E

[
1

{
P τ ̸= P τ

}
|Hτ

]]
by definition of Xτ

Since P τ |Hτ ∼ πp
t (·|s = s) and P τ |Hτ ∼ πp

t (·|s = s) by definition of the game, we have

= 1
t

t−1∑
τ=1

ατ

Finally, plugging in the above expression with t = T into the criterion for consistency, we
have

lim
T →∞

∣∣∣∣∣E[α̂T ] − 1
T

T∑
t=1

αt

∣∣∣∣∣ = lim
T →∞

∣∣∣∣∣ 1
T

T −1∑
t=1

αt − 1
T

T∑
t=1

αt

∣∣∣∣∣ = lim
T →∞

αT

T
= 0

as desired. The last equality comes from the fact that αT is a probability, so it is bounded
between 0 and 1 for all T . ◀

C.2 Proof of Proposition 13
Proof. First, we will show that always price-discriminating (πp

t = πp
PD for all t ∈ [T ]) is

no-regret against CBER-buyers. For CBER-buyers, their strategy πs
t at each round t is

either πs
truthful or πs

strategic. For both these buyer responses, the seller’s optimal strategy is
to always price discriminate as shown in the computation of the seller’s equilibrium response
in the proof of Theorem 2. In other words, the seller incurs zero regret in each round and
thus zero average regret.

FORC 2024



9:20 Privacy Can Arise Endogenously

Next, we will analyze the seller’s average utility. Note that when πp
t = πp

PD, the probability
of seeing different prices for different signals is αt = 1, so (1/t)

∑t
τ=1 ατ = 1 for all t. By

the consistency property, α̂t becomes greater than α∗ eventually (where α∗ is as defined in
Corollary 5) and the buyer plays πs

strategic. In other words, eventually the seller and buyers
will all be playing their equilibrium strategies for the PD-game with α = 1, so their average
utilities will converge to the corresponding equilibrium utilities. We make this argument
formal below.

Define κ < ∞ to be the maximum utility that can be achieved by a seller in any round.
The finiteness of κ is guaranteed by definition of the seller’s utility function. Define AT =
{∃t >

√
T s.t. α̂t > α∗} and let AC

T = {α̂t > α∗ for all t >
√

T} denote the complement.
Let γT = P(AT ) and 1 − γT = P(AC

T ) denote the corresponding probabilities. Then, we can
decompose the expected average seller’s utility as

E

[
1
T

T∑
t=1

US(πt)
]

= γtE

[
1
T

T∑
t=1

US(πt)

∣∣∣∣∣AT

]
+ (1 − γt)E

[
1
T

T∑
t=1

US(πt)

∣∣∣∣∣AC
T

]
. (4)

The first term of (4) is trivially upper bounded by γT κ.
To bound the second term of (4), first note that for any round t where α̂t > α∗, the

buyer’s strategy will be equivalent to their equilibrium strategy with α = 1. Thus, the
best utility that the seller can achieve for those rounds is uS(1). It follows that under the
condition that α̂t > α∗ for every t >

√
T , we have

1
T

T∑
t=1

US(πt) = 1
T

T∑
t=

√
T

US(πt) + 1
T

√
T∑

t=1
US(πt)

≤ 1
T

T∑
t=

√
T

uS(1) + 1
T

√
T∑

t=1
κ

= T −
√

T

T
uS(1) +

√
Tκ

T

≤ uS(1) + κ − uS(1)√
T

.

Plugging back into (4), we get

E

[
1
T

T∑
t=1

US(πt)
]

≤ γtκ + (1 − γt)
(

uS(1) + κ − uS(1)√
T

)
.

By the consistency property (Lemma 9), we know limT →∞ γT = 0, which yields the stated
asymptotic bound on the seller’s average utility. ◀

C.3 Missing Proofs of Lemmas in Proof of Proposition 14

Proof of Lemma 15. Based on the utility orderings from Corollary 4, note the following
ordering of seller utilities for different combinations of buyer and seller policies:

US(πs
truthful, πp

PD) > US(πs
truthful, πp

noPD) > US(πs
strategic, πp

PD) > US(πs
strategic, πp),
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where πp is any other pricing strategy besides πp
PD and πp

noPD. We can then write

1
T

T∑
t=1

US(πt) ≤ 1
T

∑
t∈T

US(πs
truthful, πp

noPD) +
∑

t∈[T ]\T

US(πs
strategic, πp

PD)

= |T |
T

US(πs
truthful, πp

noPD) +
(

1 − |T |
T

)
US(πs

strategic, πp
PD)

lim
T →∞

1
T

T∑
t=1

US(πt) ≤ US(πs
truthful, πp

noPD) lim
T →∞

|T |
T

+ US(πs
strategic, πp

PD)
(

1 − lim
T →∞

|T |
T

)
Since US(πs

truthful, πp
PD) > US(πs

strategic, πp
PD), the above upper bound on the limit of the

average utility is increasing as limT →∞ |T |/T is increasing. When limT →∞ |T |/T ≤ α∗,

≤ α∗US(πs
truthful, πp

PD) + (1 − α∗)US(πs
strategic, πp

PD)
< α∗US(πs

truthful, πp
PD) + (1 − α∗)US(πs

truthful, πp
PD) = U∗

1

◀

Proof of Lemma 16. Let RS
T denote the average seller utility in the T rounds. Since the

seller is no regret, limT →∞ RS
T = 0.

Consider the regret due to the seller deviating to πp
PD in each round. The gain in

utility in each round due to this deviation is non-negative since πp
PD is the best-response

to both possible buyer strategies πs
truthful, πs

strategic. We can then lower bound the regret by
considering regret accumulated in rounds where α̂t ≤ α∗. In such rounds, all buyers are
truthful, so whenever the seller does not charge a buyer the price corresponding to their
signal type, they incur regret. The probability that the seller observes s but charges θ is
µπp

t (θ|s), and this yields a loss of utility of ∆θ, because the buyer is type θ. Similarly, the
probability that the seller observes s but charges θ is (1 − µ)πp

t (θ|s), and this yields a loss of
utility of θ, since the buyer is type θ.

RS
T ≥ 1

T

∑
t:α̂t≤α∗

µ∆θπp
t (θ|s) + (1 − µ)θπp

t (θ|s)

≥ 1
T

∑
t:α̂t≤α∗

κ(1 − (πp(θ|s) − πp(θ|s))) where κ := min{µ∆θ, (1 − µ)θ}

=⇒ 1
T

∑
t∈T

(
πp

t (θ|s) − πp
t (θ|s)

)
≥ |T |

T
− RS

T

κ

The above inequality shows that |T |/T is bounded above by some measure of simultaneous
truthfulness and price discrimination. Each quantity πp

t (θ|s) − πp
t (θ|s) is a measure of price-

discrimination in each round and is related to αt as described in the following lemma.

▶ Lemma C.1. When seller pricing strategies are supported on {θ, θ}, αt ≥ πp
t (θ|s) − πp

t (θ|s)

Proof of Lemma C.1. Since seller pricing strategies are supported on {θ, θ}, αt which is the
probability of seeing different prices for different signals is

αt = πp
t (θ|s)πp

t (θ|s) + πp
t (θ|s)πp

t (θ|s)
= πp

t (θ|s)(1 − πp
t (θ|s)) + (1 − πp

t (θ|s))πp
t (θ|s)

= πp
t (θ|s) + πp

t (θ|s) − 2πp
t (θ|s)πp

t (θ|s)
= πp

t (θ|s) − πp
t (θ|s) + 2πp

t (θ|s)(1 − πp
t (θ|s))

≥ πp
t (θ|s) − πp

t (θ|s) ◀
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By inequality 1, Lemma C.1, and since limT →∞ RS
T /κ = 0, limT →∞

|T |
T ≤ limT →∞

1
T

∑
t∈T αt.

◀

Proof of Lemma 17. Consider the last index t∗ ∈ T . Let us consider two cases. The
first case is limT →∞ t∗/T < α∗. Then,

∑
t∈T αt/T ≤ |T |/T ≤ t∗/T . This implies

limT →∞
∑

t∈T αt/T ≤ α∗. In the second case, limT →∞ t∗ = ∞. Consider ᾱt∗ = 1
t∗

∑
t≤t∗ αt ≥∑

t∈T αt/T . By the consistency property, limT →∞ ᾱt∗ = α̂t∗ . α̂t∗ ≤ α∗ since t∗ ∈ T . ◀

C.4 Proofs of Propositions 20, 21
Please see arXiv version for proofs.
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We introduce a model of online algorithms subject to strict constraints on data retention. An online
learning algorithm encounters a stream of data points, one per round, generated by some stationary
process. Crucially, each data point can request that it be removed from memory m rounds after it
arrives. To model the impact of removal, we do not allow the algorithm to store any information
or calculations between rounds other than a subset of the data points (subject to the retention
constraints). At the conclusion of the stream, the algorithm answers a statistical query about the
full dataset. We ask: what level of performance can be guaranteed as a function of m?

We illustrate this framework for multidimensional mean estimation and linear regression problems.
We show it is possible to obtain an exponential improvement over a baseline algorithm that retains
all data as long as possible. Specifically, we show that m = Poly(d, log(1/ϵ)) retention suffices to
achieve mean squared error ϵ after observing O(1/ϵ) d-dimensional data points. This matches the
error bound of the optimal, yet infeasible, algorithm that retains all data forever. We also show a
nearly matching lower bound on the retention required to guarantee error ϵ. One implication of our
results is that data retention laws are insufficient to guarantee the right to be forgotten even in a
non-adversarial world in which firms merely strive to (approximately) optimize the performance of
their algorithms. Our approach makes use of recent developments in the multidimensional random
subset sum problem to simulate the progression of stochastic gradient descent under a model of
adversarial noise, which may be of independent interest.
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to be forgotten” and mandating compliance with data deletion requests [14]. Similar policies
have taken effect across the United States, such as the California Consumer Privacy Act [5]
and Virginia’s Consumer Data Protection Act [6]. These policies specify rules governing
deletion requests, but data removal is a complicated process. Data is not just stored: it is
used to make decisions; it touches a vast array of metrics; it trains machine learning models.
What, then, should it mean to remove data from a system? And how do such requests impact
an algorithm’s ability to learn?

A growing body of literature approaches these questions through the “outcome-based” lens
of constraining the observed behavior and outcomes of an algorithm. For example, one might
require that once a piece of data has been “removed” in response to a request, the algorithm’s
behavior should be indistinguishable (in a cryptographic sense) from one that does not have
access to the data. Formalizing this idea leads to a myriad of details and modeling choices, and
multiple notions of deletion-respecting algorithms have been proposed [4, 13, 7]. An alternative
approach is to directly impose restrictions on an algorithm’s internal implementation that
regulate and define the data removal process. This “prescriptive” approach is especially
appealing from a regulatory perspective, since such restrictions provide clear guidance on
what is and is not allowed (and, by extension, what constitutes an enforceable violation).
But on the other hand, the actual implications of any given implementation restriction are
not necessarily clear a priori. Constraints that appear very restrictive at first glance may still
allow undesirable behavior through clever algorithm design. This undesirable behavior may
be exhibited even by non-adversarial firms that simply wish to optimize their performance.
Thus, for any given definition of what is meant by an implementation that respects data
deletion, it is crucial to explore the outcomes that are generated by optimal (or near-optimal)
algorithm design.

In this paper we explore the latter approach. We consider a stark framework in which an
online algorithm can retain no state beyond stored data, which is subject to deletion requests.
We show that even under such a restriction and even for simple statistical tasks like mean
estimation, an algorithm that can preemptively delete data from its dataset can effectively
retain information about data that was supposedly removed while still following the letter of
the law (i.e., limited data retention). Moreover, we show that one can use this flexibility to
substantially improve performance on statistical tasks relative to naive baseline algorithms
that follow the spirit of the law (i.e., the right to be forgotten).1 These results suggest
that even in a world where an algorithm can retain no internal state whatsoever beyond
its dataset, the curation of the dataset itself can be used to encode substantial information
about data that has been supposedly removed, and even non-adversarial designers who seek
only to maximize performance may naturally develop algorithms that leak information that
was requested to be deleted. These results emphasize the importance of laws that regulate
outcomes as well as process.

1.1 A Framework for Limited Data Retention

We propose a framework for algorithm design built upon a literal interpretation of a request
to remove data. A sequence of data points is observed by a learning algorithm that actively
maintains a subset of the data that has been observed so far. Each data point can come
with a request that it be stored for only m rounds, after which it must be removed from the

1 For example, by retaining all data as long as is allowed by regulation and then using optimal statistical
estimators on the retained dataset.
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algorithm’s subset.2 We think of m as a legally-mandated period of time after which the
algorithm is obligated to fulfill the request.3 The algorithm is free to discard data earlier, if
desired; the only constraint is that data cannot be retained beyond the m rounds.

Of course, removing data points from the “official” dataset has no bite without additional
restrictions on what else the algorithm can store. To clarify the impact of removing data, we
impose a crucial modeling assumption: the algorithm cannot retain any state between rounds
other than the dataset itself. In other words, any statistics or intermediate calculations
performed by the algorithm must be recomputed, when needed, using only the data currently
in the dataset.4

Such an algorithm can be described by two procedures: one that maintains the dataset
(i.e., given the current subset and an incoming data point, choose which subset to keep)
and one that answers a query about the full data stream given the current subset, possibly
employing some non-standard estimator tailored to the data retention strategy.

We initiate an exploration of this framework through the lens of two standard statistical
tasks: mean estimation and linear regression. In the case of mean estimation, each data
point is a drawn from an unknown distribution over Rd and the algorithm’s goal is to recover
the distribution’s mean. In the case of linear regression, each data point is a pair (x, y) where
x is a d-dimensional characteristic vector and y is generated through a linear function of x

plus random noise, and the goal is to simulate the linear function on challenge queries. In
each case, the mean squared error achievable by an estimator that can retain an entire data
stream of T data points (without any requirement to remove data) improves linearly with T .
We ask: what error is achievable by an algorithm that respects requests to remove incoming
data points within m rounds?

One baseline algorithm is to simply retain all data as long as possible. That is, the
algorithm retains all of the previous m data points, then returns the maximum likelihood
estimator given the sample for the target query. This approach is equivalent to keeping a
uniform subsample of m draws from the underlying distribution. For the mean estimation
and linear regression tasks, a uniform subsample of size m yields an average squared error
no better than Θ(1/m), even for draws from a Gaussian distribution. In other words, this
baseline would need to retain data for m = O(T ) rounds to achieve error comparable to what
is attainable from the entire data stream.

1.2 An Improved Data Retention Policy
We show that it is possible to achieve an exponential improvement relative to the baseline
solution described above. We present an algorithm for mean estimation that achieves a
loss guarantee comparable to the optimal estimator over all T data points, but that retains
each data point for only m = Poly(d, log(T )) rounds. In more detail, if m is at least
Θ(d log(d/ϵ)), then for any query time T > Cd/ϵ (where C is a constant depending on the
input distribution) the expected squared error will be at most ϵ. For linear regression we
achieve a similar guarantee, with m = Θ(d2 log(d) log(d/ϵ)). Our algorithms are polytime:
each update step takes time linear in d and 1/ϵ.

2 All of our results extend directly to model where a removal request can be made in any round after the
data arrives (not just at the moment of arrival), and the data must be removed within m rounds of the
request.

3 For example, under GDPR Article 12, any request to delete personal data must be honored “Without
undue delay and in any event within one month of receipt of the request” [14].

4 One can equivalently think of this as a policy describing which statistics can be kept between rounds;
namely, those that could be directly recomputed using only the retained data.
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We also present a nearly-matching lower bound: if m = o
(

d log(1/ϵ)
log(d) log log(1/ϵ)

)
then the

algorithm must have error greater than ϵ with constant probability, regardless of the output
function used to map the final subsample to an estimate of the mean.

1.3 Related Work

There is a substantial line of literature that explores definitions of data removal, especially as
it relates to data protection and privacy laws. The literature on machine unlearning, initiated
by [4], explores the process of updated a trained machine learning model so that it cannot
leak information about to-be-deleted data. This has led to a vast body of work exploring
different definitions and designs; see [19, 23] for some recent surveys of this literature. Beyond
machine learning contexts, a notion of data deletion in terms of not leaking information
about the data and maintaining secrecy, termed deletion-as-confidentiality, was proposed
by [13]. A more permissive notion that constrains the leakage of information only after a
removal request, deletion-as-control, was explored by [7]. Such works employ outcome-based
constraints on data leakage, often in combination with internal state restrictions. In contrast,
we explore a prescriptive framework that directly restricts an algorithm’s implementation
and explore the extent to which these restrictions do (or do not) constrain the algorithm’s
achievable performance and observable outcomes. While our algorithm respects certain
notions of random differential privacy [15], we show that simple implementation restrictions
to delete data points is not sufficient to retain full differential privacy of the deleted data.

Our work is also related to a line of literature on non-uniform subsampling for linear
regression. The typical goal is to draw a sample from a large (or infinite) pool of potential data
items (x, y) to increase accuracy of resulting models. Early works employed leverage scores
to weight the predictor vector x [10, 17]. This approach has been extended to other norms
via low-distortion embeddings [18] and improved by including outcomes y via importance
weighting [9, 24, 22]. In contrast, our approach is not based on independent sampling but
rather adaptive sample maintenance with elements added and removed over time.

Our approach is also closely related to coreset construction [11], in which the goal is to
develop a highly compressed summary of a large dataset that retains the ability to answer
queries from a given query class. Effective constructions are known for many learning
problems, including variations of regression for numerous risk functions [1]. In principle a
coreset can retain additional information beyond an (unweighted) subset of the original data,
whereas our framework motivates us to focus specifically on unweighted subsampling.

From a technical perspective, our constructions use online implementations of stochastic
gradient descent (SGD), which itself makes heavy use of sampling [3]. Our algorithms
effectively simulate the progression of SGD using subsamples to approximate estimates.
These approximations introduce some poorly-controlled noise to the SGD process, which
necessitates an analysis that is robust to adversarial noise; for this we provide a slight variation
on an SGD analysis due to [21]. To show that small subsets of data suffice to approximate
the evolution of a sequence of improving estimates of regression coefficients, we employ recent
advances in the theory of the random subset sum problem (RSS) [2, 16, 8]. The application of
the RSS problem in contexts where SGD is used has also been explored in literature related
to the Strong Lottery Ticket Hypothesis (SLTH) in learning theory [12, 2, 20]. However, the
application of RSS to our setting requires a novel analysis.
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2 Techniques

The full version of our paper, which can be found at https://arxiv.org/abs/2404.10997,
contains our formal model, theorem statements, and proofs. Here, we describe our techniques.

Our approach is to simulate the progression of stochastic gradient descent (SGD). Consider
the mean estimation task, where the goal is to learn the distribution mean θ. As new data
points arrive, a (non-subsample-based) SGD algorithm would maintain an estimate for θ;
continuously updating the estimate in proportion to the noisy gradient estimate provided
by fresh samples. Of course, such an SGD algorithm cannot be directly implemented as a
subsampling algorithm because we are not allowed to directly maintain an estimate for θ,
only subsets of data samples.

Our algorithm must therefore simulate the desired gradient steps: given a current
estimator for θ (implied by the current subsample) and a proposed update (suggested by a
gradient step), our algorithm will search recently-seen data points for a subset whose average
approximates the target update. This approximation via a subset of data introduces noise
into the gradient step. This noise is challenging to control, since the set of all averages of a
subset of data points are heavily correlated with each other. We therefore treat this noise as
adversarial, and note that SGD guarantees are robust to such adversarial noise as long as it
is appropriately bounded. It turns out that having squared ℓ2 distance of approximately ϵ

between the target update and the closest subset-average would suffice to achieve our desired
error rate.

How much memory is necessary to ensure that there is a subset of data points whose
average is within ϵ of a given target point? As it turns out, recent developments in the
random subset sum problem provides a surprising answer: for the single-dimensional case
we only need that m = Ω(log(1/ϵ)) and that the target point is not “too far” from the
distributional average θ, where the asymptotic notation hides dependencies on parameters of
the input distribution. To put this in perspective, this is asymptotically the same as what
would be achievable if each of the 2m subsets of samples were drawn independently of every
other subset. To extend to d dimensions, we can either employ a multidimensional variant of
the random subset sum problem, or target an error of ϵ/d on each dimension separately.

Extending this approach to linear regression tasks brings a new challenge. While SGD
can still be used in this setting, the optimal estimator for the regression coefficients is not an
empirical mean, so one cannot directly apply solutions to the random subset sum problem
to encode an update step. For mean estimation, the natural estimator for θ is precisely an
empirical mean of collected data points, so it is straightforward to encode an estimate of
θ with a subsample that solves a random subset sum problem. For linear regression, the
estimator for the coefficient vector is a specific transformation of a set of input (x, y) pairs,
so we cannot directly apply the same trick. Instead, we will reduce to the mean estimation
problem in a different way. Our proposed algorithm collects data points together into small
groups that each generate an independent maximum likelihood estimate for the regression
coefficients. As long as these groups are sufficiently large (Ω(d log d) data points per group is
enough) their corresponding estimates will be smoothly distributed near the true state. We
can then think of these per-group maximum likelihood estimates as inputs to the random
subset sum problem, and find a subset of them whose average approximates a proposed
gradient step. This allows us to encode a gradient step by preserving the corresponding
groups in our subsample.

To this point we have described ways to simulate gradient descent using subsampling.
The algorithm effectively learns the desired statistics at the same rate as an algorithm
with unbounded memory, and by maintaining the subsample judiciously it can encode
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what has been learned. One might naturally wonder at this point whether the memory
requirements could be substantially improved with more clever encodings. Since we put
no restriction on the mapping from subset to algorithm output, in principal an algorithm
could use the retained subsample to encode complex features of the full data stream in
some Byzentine manner, then decode this information at query time. While we do not rule
this out, we show a lower bound: any algorithm that satisfies the recency property requires
m = Ω((d/ log(d))(log(1/ϵ)/ log log(1/ϵ))) in order to achieve squared error ϵ, even for mean
estimation. Roughly speaking, this bound follows because even if the algorithm succeeds
in perfectly learning θ, it will not achieve error less than ϵ if for every subset of m data
points, the output function applied to that subset falls outside the ϵ-ball centered at θ. For
m smaller than our bound, we can take a union bound over all subsets to show that the
probability of this bad event will be large no matter what output function is used.

3 Conclusions and Future Work

In this work we introduced a framework for online algorithms subject to strict data retention
limits. The algorithms in our framework retain no state other than a subsample of the
data, and each data point must be removed from the subsample after at most m rounds.
We provide upper and lower bounds on the value of m needed to achieve error ϵ for mean
estimation and linear regression. We find that it is possible to substantially outperform
a naive maximal-storage baseline by adaptively and proactively curating the algorithm’s
dataset in order to improve its representativeness of the full data stream (including data that
was to have been dropped).

Many technical questions are left open for future pursuits. We take a worst-case perspective
that all data must be removed after m rounds, but one might consider a model where some
data points can be retained for much longer. Does the presence of long-lived data alongside
data that must be removed quickly enable different algorithmic approaches? Our subsampling
framework can also be extended to other statistical tasks like non-linear regression, estimating
higher moments, classification tasks, and so on. In each case, the algorithmic challenge is to
dramatically reduce the size of a training set, online, so that a (perhaps specially-tailored)
training process executed on the subsample can achieve performance approximately matching
what is possible on the full data.

One could also apply our framework to non-stochastic or partially stochastic environments,
where data is not necessarily generated according to a stationary process. Such environments
can amplify the impact of individual data points (and their removal) on an algorithm’s
output and state. Of course, the achievable algorithmic guarantees might vary substantially
depending on the assumptions made on the data. But even so, understanding the structure
of optimal (or near optimal) algorithms can shed light on the manner in which algorithm
designers may be incentivized to build systems in the face of data retention limitations.

Finally, one can explore whether alternative frameworks for data removal lead to different
types of behavior in optimal algorithm designs. A step in this direction is to quantify
the extent to which optimal algorithms in a given framework are “undesirable” from the
perspective of data removal, and use this to directly compare frameworks. Such an endeavor
can help to build a toolkit for building up algorithmic restrictions that align well with stated
policy goals.
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