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Abstract
We study a natural type of repetitions in 2-dimensional strings. Such a repetition, called a matching
frame, is a rectangular substring of size at least 2 × 2 with equal marginal rows and equal marginal
columns. Matching frames first appeared in literature in the context of Wang tiles.

We present two algorithms finding a matching frame with the maximum perimeter in a given
n×m input string. The first algorithm solves the problem exactly in Õ(n2.5) time (assuming n ≥ m).
The second algorithm finds a (1 − ε)-approximate solution in Õ( nm

ε4 ) time, which is near linear in
the size of the input for constant ε. In particular, by setting ε = O(1) the second algorithm decides
the existence of a matching frame in a given string in Õ(nm) time. Some technical elements and
structural properties used in these algorithms can be of independent interest.
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10:2 Searching 2D-Strings for Matching Frames

1 Introduction

Throughout the years, a variety of notions for repetitive structures in strings have been
explored; see, e.g., [18, 31, 27, 42, 29]. Even recently, new efficient algorithms regarding
palindromes [10, 22, 37], squares [17], runs [6, 16, 33], and powers [4] have been introduced.
In the studies on 2-dimensional strings (aka 2d-strings or matrices), periodic and palindromic
structures also attracted definite interest [2, 3, 5, 13, 21, 30, 19, 38].

Matching frame is a natural repetition in 2d-strings, first considered by Wang [40] when
introducing Wang tiles. Given a 2d-string M over an alphabet Σ, a frame in M is a
rectangle defined by a tuple (u, d, ℓ, r) such that u < d and ℓ < r. This rectangle covers the
submatrix M [u..d][ℓ..r] and is matching if this submatrix has equal marginal rows and equal
marginal columns. Formally, (u, d, ℓ, r) is a matching frame if M [u][ℓ..r] = M [d][ℓ..r] and
M [u..d][ℓ] = M [u..d][r] (see Figure 1). Wang’s fundamental conjecture, later disproved by
Berger [8], said “a set of tiles is solvable (= tiles the plane) if and only if it admits a cyclic
rectangle (= matching frame)”. Note that a fast algorithm to find matching frames would
simplify a huge computation conducted by Jeandel and Rao [24] to prove that their aperiodic
set of tiles is minimal.

ℓ 𝒓

o n v w l a m l i s a c

𝒖 r a l i t e r a l s s e

m p a e r s y a a u c t

o r b n e o h q b u e v

l l e e n a g n e o n q

𝒅 u e l i t e r a l s a c

d v r a l n t n e o n m

s e m e t k a t o t y o

Figure 1 An example of a matching frame (u, d, ℓ, r) = (2, 6, 3, 9). The strings on the top and
bottom sides of the frame are equal, and the strings on the left and right sides are also equal. The
perimeter of the frame is 2 · (6 − 2 + 9 − 3) = 20. The matrix also contains a smaller matching frame.

Matching frames indicate “potential” periodicity in two dimensions. Namely, if a 2d-string
M is built according to some local rule, then any matching frame in M can be extended to a
periodic tiling of the plane, respecting this local rule. Well-known examples of such local rules
are given, in particular, by self-assembly models such as aTAM [36] or 2HAM [11]. Note that
matching frame is an avoidable repetition: as was first observed by Wang [41], there exist
infinite binary 2d-strings without matching frames. Avoidable repetitions are interesting, in
particular, due to a nontrivial decision problem.

Overall, there is a clear motivation to design efficient algorithms searching for matching
frames. Let us specify the exact problem studied in this paper. The perimeter of a
frame F = (u, d, ℓ, r) is the total number of cells in its marginal rows and columns, i.e.
per(F ) = 2(d− u + r − ℓ). By maximum frame (in a set of frames) we mean the frame with
the maximal perimeter in this set. In the maximum matching frame problem, the goal is to
find a maximum matching frame in a given matrix or report that no matching frame exists.
We also consider the (1− ε)-approximation version of this problem, in which the goal is to
find a matching frame with a perimeter within the factor (1− ε) from the maximum possible.
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Our Results. We present Õ(nm)-space algorithms that establish the following bounds on
the complexity of the maximum matching frame problem and its approximation version.

▶ Theorem 1 (Maximum Matching Frame). The time complexity of the maximum matching
frame problem for an n×m matrix M is Õ(n2.5) in the case m = Θ(n). In the general case,
the complexity is Õ(ab min{a,

√
b}), where a = min{n, m} and b = max{n, m}.1

▶ Theorem 2 ((1− ε)-Approximation). The time complexity of the (1− ε)-approximation
maximum matching frame problem for an n×m matrix M is Õ( nm

ε4 ).

▶ Corollary 3 (Deciding Matching Frame). There is an algorithm deciding whether an n×m

matrix M contains a matching frame in Õ(nm) time and space.

We remark that our exact and approximation algorithms can be straightforwardly adapted
to find matching frames with the maximum area / the minimum perimeter / the minimum
area instead of matching frames with the maximum perimeter.

High-Level Overview
Maximum Matching Frame. The algorithm for finding a maximum matching frame follows
a heavy-light approach. The parameter used to distinguish between heavy and light frames
is the shorter side of the frame. A frame F = (u, d, ℓ, r) has height d− u and width r − ℓ.
We assume that there is a maximum matching frame having its height smaller than or equal
to its width. (Either the input matrix or its transpose satisfies this assumption and we can
apply our algorithm to both matrices and return the better of two results.) For some integer
threshold x, we say that a frame with d− u ≤ x is short (or light); otherwise, it is tall (or
heavy). We provide two algorithms, one that returns a maximum short matching frame in M

and another returns a maximum tall matching frame in M . The largest of the two answers
is the maximum matching frame in M .

The algorithm for short frames iterates over all pairs of rows with distance at most x from
each other. Note that there are O(nx) such pairs. Moreover, under the assumption that some
matching frame F = (u, d, ℓ, r) is short, the rows u and d used by F are processed as a pair.
When processing a pair, the algorithm decomposes its rows into maximal equal segments.
Every segment is processed in linear time to obtain a maximum matching frame that uses a
portion of the segment as top and bottom rows (see Section 5.1). The accumulated size of
the segments is bounded by m, so the algorithm runs in Õ(n ·m · x) time.

The algorithm for tall frames (see Section 5.2) first guesses a range [H/2..H] for the height
and a range [W/2..W ] for the width of a maximum matching frame. As we consider tall
frames, the ranges are sufficiently large, so it is easy to find a small set of positions P in the
matrix M such that every frame with the height and width from the given ranges contains
a position from P. The algorithm employs a subroutine that, given H, W , and a position
(i, j), computes a maximum matching frame among the frames that contain (i, j), have the
height in [H/2..H] and the width in [W/2..W ]. The implementation of this subroutine is
the main technical part of the algorithm. This is done by maintaining and querying a range
data structure (see Section 4) that allows one to process pairs of columns and pairs of rows
with the position (i, j) between them. There are O(W 2) pairs of columns and O(H2) pairs
of rows to be processed, which we do in Õ(H2 + W 2) = Õ(W 2) total time. We also show
that |P| = O( nm

HW ), and therefore the running time for one pair of ranges is Õ(nm W
H ). We

1 Throughout the paper, Õ(f(n)) = O(f(n) · polylogn)

CPM 2024
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further observe that the sum of values W
H over all guessed ranges is O( W ′

H′ ) for some single
guessed pair (W ′, H ′). Since x ≤ H ′ ≤ W ′ ≤ max{n, m}, we obtain the running time of
Õ(nm max(n,m)

x ).
Finally, the algorithm selects the threshold x =

√
max{n, m} and applies the algorithms

for both the short and the tall case to obtain a running time of Õ(nm
√

max{n, m}). Altern-
atively, one can run the algorithm for short frames alone, setting x = min(n, m). Taking the
better of these two options proves Theorem 1.

Approximation Algorithm. As a preliminary step in our approach for finding a (1 − ε)-
approximation to the maximum matching frame, we apply a two-dimensional variant of the
so-called standard trick [15, 12] from certain one-dimensional pattern matching problems. In
pattern matching, we are given a text T [1..n] and a pattern P [1..m] and the goal is to find all
the indices i ∈ [n−m + 1] such that T [i..i+m−1] “matches” P . The standard trick refers to
partitioning T into O(n/m) overlapping fragments of size Θ(m), such that every match of P

is contained in a fragment. In general, the trick allows one to assume that the length of the
text is within a small factor from the length of the pattern. Our two-dimensional variant of
this trick (Lemma 15) allows us to assume that both dimensions of the maximum matching
frame are within a poly(1− ε) factor of the vertical and the horizontal lengths of M .

This assumption allows us to focus on matching frames with sides that are “close” to the
boundaries of M ; we call such frames large. The algorithm uses a carefully selected threshold
for being close to the boundaries, guaranteeing that (1) the maximum matching frame is
large and (2) the perimeter of every large frame approximates the perimeter of the maximum
matching frame. With that, the problem boils down to determine whether there exists a
large matching frame. The main technical novelty of the approximation algorithm is solving
this decision problem in near-linear time.

The algorithm for the above decision problem consists of two main components. The first
component (see Section 6.3) is an Õ(1) time subroutine that, given a triplet (u, d, ℓ), decides
if there is an integer r such that (u, d, ℓ, r) is a large matching frame. However, applying this
subroutine to every triplet would cost Ω(n2m) time. The second component (see Section 6.2)
of the algorithm is the retrieval of a set of Õ(nm) triplets such that if some large matching
frame exists, there must also be a large matching frame derived from one of these triplets.

We conclude by presenting the combinatorial structure that allows us to consider Õ(nm)
triplets in the second component. Consider a triplet (u, d, ℓ) and let k be the largest integer
such that M [u][ℓ..k] = M [d][ℓ..k] (let S denote this string). Assuming there exists an index
r such that (u, d, ℓ, r) is a large matching frame, one has r ≤ k. Observe that if there is
an index d′ < d that is close to the bottom boundary of M such that M [d′][ℓ..k] = S, then
(u, d′, ℓ, r) is also a large matching frame. Therefore, the triplet (u, d, ℓ) can be removed from
the set of triplets that have to be processed. We say that a triplet that is not eliminated due
to this reasoning is interesting. Surprisingly, the number of interesting triplets is bounded
by O(nm log n) (see Section 6.1). This combinatorial observation is the main novelty of the
approximation algorithm.

2 Preliminaries

We use range notation for integers and strings. We write [i..j] and [i..j) for the sets {i, . . . , j}
and {i, . . . , j − 1} respectively (assuming i ≤ j). Further, we abbreviate [1..n] to [n]. A
string S[1..n] = S[1]S[2] · · ·S[n] is a sequence of characters from an alphabet Σ. We also
write

←−−−−
S[1..n] = S[n]S[n−1] · · ·S[1]. For every i ≤ j ∈ [n], S[i..j] = S[i]S[i + 1] · · ·S[j] is a

substring of S. The substring is called a prefix (resp., a suffix) of S if i = 1 (resp., j = n).
We assume Σ to be linearly ordered, inducing a lexicographic order (lex-order) on strings.
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An n×m matrix (or 2d-string) M is a 2-dimensional array of symbols from Σ. We refer
to the number of cells in M as the size of M , writing |M | = nm. We denote a horizontal
substring of M as M [i][j1..j2] = M [i][j1]M [i][j1 + 1] . . . M [i][j2]. Similarly, we denote a
vertical substring as M [i1..i2][j] = M [i1][j]M [i1 + 1][j] . . . M [i2][j].

2.1 Suffix Arrays, Longest Common Prefixes
For a tuple of strings S = (S1, S2, . . . , Sn), the lexicographically sorted array LSAS is an array
of length n that stores the lex-order of the strings in S. Formally, LSAS [i] = j if Sj is the ith
string in S according to the lex-order (ties are broken arbitrarily). For a string S[1..n], the
suffix array SAS of S is the LSA of all suffixes of S. Formally, for every i ∈ [n] let Si = S[i..n]
and let SS = (S1, S2, . . . , Sn); then SAS = LSASS

. The suffix arrays were introduced by
Manber and Myers [32] and became ubiquitous in string algorithms. The array can be
constructed in near-linear time and space by many algorithms [25, 26, 28, 34, 35, 42, 39].

▶ Lemma 4. Given a string S[1..n], the suffix array of S can be constructed in O(n log n)
time and space.

An important computational primitive is a data structure for computing the length
of the longest common prefix of two strings S[1..n] and T [1..m], given as LCP(S, T ) =
max{ℓ ∈ [min{n, m}] | S[1..ℓ] = T [1..ℓ]}. An LCP data structure LCPS for a set of strings
S = {S1, S2, . . . , Sn} supports queries in the form “given two indices i, j ∈ [n], report
LCP(Si, Sj)”. We denote by LCP(S) the LCP data structure for the set of suffixes of a given
string S[1..n]. It is known that the following can be obtained by applying the lowest common
ancestor data structure of [23] to the suffix tree of [42].

▶ Lemma 5. There is an LCP data structure with O(n log n) construction time and O(1)
query time. The data structure uses O(n) space.

The following facts are easy. For their proofs, see the full version [9] of this paper.

▶ Fact 6. Given three strings S1, S2 and S3, the condition LCP(S1, S2) > LCP(S1, S3) implies
LCP(S1, S3) = LCP(S2, S3).

▶ Fact 7. Let S = (S1, S2, . . . , Sn) be a tuple of strings and let P [1..m] be a string. The set
Occ(S, P ) = {k | Sk[1..m] = P} coincides with the range LSAS [i..j] for some i, j ∈ [n].

Furthermore, there is an O(log n) time algorithm that given k, m, LSAS , and LCPS
computes i and j such that Occ(S, Sk[1..m]) = LSAS [i..j].

▶ Definition 8 (Fingerprint). For a tuple S and a string P = Sk[1..m], the fingerprint of P

in S is the tuple (i, j, m) such that i and j are the indices specified in Fact 7.

2.2 Orthogonal Range Queries
Our algorithms use data structures for orthogonal range queries. Such a data structure stores,
for some positive integer dimension d, a set P ⊆ Rd of d-dimensional points. Each point
p ∈ P has an associated value v(p) ∈ R. The data structure supports the queries regarding
an input d-dimensional orthogonal range R = [a1..b1]× [a2..b2]× . . .× [ad..bd]. For a point
p = (x1, x2, . . . , xd) one has p ∈ R if xi ∈ [ai..bi] for every i ∈ [1..d]. We need the queries
Maximum(R) = argmaxv(p)(p ∈ R ∩ P) and Minimum(R) = argminv(p)(p ∈ R ∩ P). For this,
we use the data structure [43, 14] with the following running times.

CPM 2024



10:6 Searching 2D-Strings for Matching Frames

▶ Lemma 9. For any integer d, a set of n points in Rd can be preprocessed in O(n logd−1 n)
time and space to support Maximum and Minimum range queries in O(logd−1 n) time.

In Section 6.3, we use a very particular type of 2-dimensional Maximum/Minimum queries,
where v(p) is one of the coordinates of p. Though faster data structures are known in this
case [7, 20], using these data structures cannot improve the asymptotics of our results.

3 Data Structures

When looking for matching frames in an n×m matrix M , we make use of the following data
structures, which all our algorithms create during their preprocessing phase.

For each column ℓ ∈ [m] we use
1. a lex-sorted array LSAℓ

rows of the strings {M [i][ℓ..m] | i ∈ [n]} (see Figure 2a);
2. an LCP structure LCPℓ

rows over LSAℓ
rows;

3. a range query structure Dℓ
rows, containing all pairs {(i, Ii,ℓ

rows) | i ∈ [n]}, where Ii,ℓ
rows is

the index of the string M [i][ℓ..m] in LSAℓ
rows (see Figure 2b).

In addition, we build the same three structures for the set of all strings of the form←−−−−−−
M [i][1..ℓ], denoted as LSAℓ←−−rows, LCPℓ←−−rows and Dℓ←−−rows.
Symmetrically, for each row u ∈ [n] we use

1. a lex-sorted array LSAu
columns of the strings {M [u..n][i] | i ∈ [m]};

2. an LCP structure LCPu
columns over LSAu

columns;
3. a range query structure Du

columns, containing all pairs {(i, Iu,i
columns) | i ∈ [m]}, where

Iu,i
columns is the index of the string M [u . . . n][i] in LSAu

columns.
In addition, we build the same three structures for the set of all strings of the form←−−−−−−
M [1..u][i], denoted as LSAu←−−−−

columns, LCPu←−−−−
columns and Du←−−−−

columns
.

In the full version [9] of this paper we show how to construct all these structures in
O(nm log(nm)) time and space.

4 The Segment Compatibility Data Structure

In this section we present the segment compatibility data structure (SCDS), which is at the
core of our maximum matching frame algorithm (see Section 5.2). We start with technical
definitions.

Segment, aligned pair, compatible pairs. A horizontal (resp. vertical) segment is a triplet
(i, j1, j2) (resp. (i1, i2, j)) with j1 < j2 (resp. i1 < i2). It represents the horizontal (resp.
vertical) segment in the plane connecting the points (i, j1) and (i, j2) (resp. (i1, j) and (i2, j)).
A pair (s1, s2) of horizontal segments is aligned if s1 = (i1, j1, j2) and s2 = (i2, j1, j2) for
some i1 < i2, j1 < j2 ∈ N. Such a pair has distance |i2− i1|. Symmetrically, a pair of vertical
segments (s1, s2) is aligned if s1 = (i1, i2, j1) and s2 = (i1, i2, j2) for some i1 < i2, j1 < j2 ∈ N.
Such a pair has distance |j2 − j1|.

An aligned pair of horizontal segments (i1, j1, j2) and (i2, j1, j2) and an aligned pair of
vertical segments (a1, a2, b1) and (a1, a2, b2) are compatible if and only if a1 ≤ i1 ≤ i2 ≤ a2,
and j1 ≤ b1 ≤ b2 ≤ j2.

The SCDS stores a set of aligned pairs of vertical segments and supports the query
MaxCompatible(h1, h2): given an aligned pair (h1, h2) of horizontal segments, return a
pair (v1, v2) with the maximum distance among the stored pairs compatible with (h1, h2),
or return null if no stored pair is compatible with (h1, h2).
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Figure 2 (a) An example of LSAℓ
rows. Every cell in LSAℓ

rows contains an index corresponding to a
horizontal word in the matrix starting in column ℓ. The (indices representing the) words appear
bottom-up in lex-order.
(b) A visualization of the points stored in Dℓ

rows. Every point corresponds to a horizontal word.
The height of every point corresponds to the location of the corresponding word in LSAℓ

rows. The
horizontal location of a point represents the index of its appearance in the string.

▶ Lemma 10. Given a set T of t aligned pairs of vertical segments, the SCDS with O(log3 t)
query time can be built in O(t log3 t) time.

Proof. For each aligned pair P =
(
(a1, a2, b1), (a1, a2, b2)

)
, we define a 4-dimensional point

point(P ) = (a1, a2, b1, b2) with the value v(point(P )) = b2 − b1. Then we build, for the set of
points {point(P ) | P ∈ T}, a 4-dimensional range data structure D with Maximum queries.

Let (h1, h2) =
(
(i1, j1, j2), (i2, j1, j2)

)
be a pair of aligned horizontal segments and let

R = ([−∞, i1], [i2,∞], [j1, j2], [j1, j2]). It is clear that a pair P is compatible with (h1, h2) if
and only if point(P ) ∈ R. Hence, to perform the query MaxCompatible(h1, h2), we query D

with Maximum(R) and return the output.
Due to Lemma 9, the construction time and the query time are as required. ◀

CPM 2024
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5 Maximum Matching Frame

In this section we prove Theorem 1, describing an algorithm with the announced time
complexity. We assume that the input matrix M contains a maximum matching frame
(u, d, ℓ, r) whose height d − u is smaller than or equal to its width r − ℓ. To cover the
complementary case, the algorithm is applied both to the original matrix M and to its
transpose M⊤ and then the maximum result is reported.

Our algorithm chooses a parameter x and distinguishes between short frames of height
at most x and tall frames with height larger than x. It processes the two types of frames
separately and returns the maximum between two solutions.

5.1 Algorithm for Short Frames
In this section we prove the following lemma:

▶ Lemma 11. There is an algorithm that for a given x ∈ [n] finds, in Õ(n ·m · x) time and
O(n) additional space, a maximum matching frame of height at most x.

Proof. For every two rows u′, d′ ∈ [n] such that d′ ∈ [u′ + 1..u′ + x] the algorithm works as
follows. First, the algorithm finds all maximal ranges [a..b] such that M [u′][a..b] = M [d′][a..b].
By “maximal” we mean that a range can not be extended to the right or to the left while
keeping equality. Note that all maximal ranges are disjoint. For k ∈ [m] we denote the
vertical string M [u′..d′][k] by Sk.

Let [a..b] be a maximal range. For every vertical string Sk with k ∈ [a..b] we find its
leftmost and rightmost occurrences in the range [a..b]. This is achieved by initializing an
empty dictionary Da,b and scanning the range [a..b] left to right. For each k ∈ [a..b] the
algorithm computes the fingerprint f in LSAu′

columns of the string Sk (see Definition 8). If f is
not in Da,b, we add f to Da,b and update both the leftmost and rightmost occurrence of Sk

to be k. If f is already in Da,b, we update the rightmost occurrence of Sk to be k.
After completing the scan, the algorithm finds a vertical string Sk such that the distance

between the leftmost occurrence ℓ′ and the rightmost occurrence r′ of Sk is maximal. If
ℓ′ < r′, we call the frame (u′, d′, ℓ′, r′) the (a, b)-range candidate of (u′, d′); otherwise, there
is no such candidate. Among all maximal ranges [a..b], an (a, b)-range candidate with the
maximal perimeter is the (u′, d′)-candidate (if there are no (a, b)-range candidates for (u′, d′),
there is no (u′, d′) candidate). The algorithm outputs a (u′, d′)-candidate with the maximal
perimeter over all pairs of rows (u′, d′) or returns null if there are no such candidates.

Correctness. Let F ′ = (u′, d′, ℓ′, r′) be the frame returned by the algorithm. Then F ′ is the
(a, b)-range candidate of (u′, d′) for some range [a..b] such that a ≤ ℓ′ < r′ ≤ b. Then, the
equality M [u′][a..b] = M [d′][a..b] implies M [u′][ℓ′..r′] = M [d′][ℓ′..r′], while M [u′..d′][ℓ′] =
M [u′..d′][r′] by the choice of ℓ′, r′. Hence, F ′ is matching.

Let F = (u, d, ℓ, r) be a maximum matching frame among the frames of height at most x.
When the algorithm iterates over the rows u, d, it identifies a range [a..b] such that a ≤ ℓ <

r ≤ b. Let F̂ = (u, d, ℓ̂, r̂) be the (a, b)-range candidate of (u, d). Since F is a valid choice for
this candidate, the inequality r − ℓ ≤ r̂ − ℓ̂ holds, implying per(F ) ≤ per(F̂ ) ≤ per(F ′).

Complexity. For a pair of rows (u′, d′), identifying the maximal ranges takes O(m) time.
A maximal range [a..b] requires O(b− a) dictionary operations, each taking O(log n) time
using, for example, an AVL tree [1]. Since all the maximal ranges of (u′, d′) are disjoint, their
lengths sum to at most m, leading to the running time Õ(m) for (u′, d′).
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Since d′ ∈ [u′ + 1..u′ + x], there are O(n · x) pairs of rows to process. Therefore, the total
running time of the algorithm is Õ(n ·m · x). Since the algorithm considers every pair of
rows (u′, d′) separately, the (additional) space usage of the algorithm is O(n). ◀

5.2 Algorithm for Tall Frames
In this section, we prove the following lemma:

▶ Lemma 12. There is an algorithm that for a given x ∈ [n] finds, in Õ(n·m2

x ) time and
Õ(m2) additional space, a maximum matching frame of height at least x.

Given a frame F = (u, d, ℓ, r) and a position p = (i, j) such that i ∈ [u..d] and j ∈ [ℓ..r],
we say that p is contained in F and F contains p. We say that F is a (p, H, W )-frame if
d− u ∈ [H/2..H], r− ℓ ∈ [W/2..W ], and F contains p. We introduce an algorithm that finds
a maximum matching (p, H, W )-frame and use it as a subroutine of the algorithm finding
the maximum matching tall frame.

▶ Lemma 13. Given a position (i, j) in M and a pair of positive integers (H, W ) ∈ [n]× [m],
there is an algorithm finding a maximum matching ((i, j), H, W )-frame in Õ(H2+W 2) time
and Õ(W 2) additional space.

Proof. For every pair (ℓ, r) ∈ [m]2 such that r − ℓ ∈ [W/2..W ] and j ∈ [ℓ..r], the algorithm
finds the maximal aligned agreement between the columns ℓ and r intersecting the ith row
by executing two LCP queries. First the algorithm queries LCPi

columns to obtain the maximal
d′ such that M [i..d′][ℓ] = M [i..d′][r]. Similarly, the algorithm queries LCPi←−−−−

columns to obtain
the minimal u′ such that M [u′..i][ℓ] = M [u′..i][r]. Then the algorithm stores the pair of
segments s1 = (u′, d′, ℓ) and s2 = (u′, d′, r). To conclude this part, the algorithm constructs
an SCDS over all stored pairs.

Next, the algorithm iterates over all pairs (u, d) ∈ [n]2 such that d− u ∈ [H/2..H] and
i ∈ [u..d]. For each such pair, the algorithm queries the data structures LCPj

rows and LCPj
←−−rows

(similar to the above computation of vertical agreements), obtaining the minimal ℓ′ and the
maximal r′ such that M [u][ℓ′..r′] = M [d][ℓ′..r′]. The algorithm then constructs the horizontal
aligned pair of segments sh

1 = (u, ℓ′, r′) and sh
2 = (d, ℓ′, r′). The algorithm queries SCDS for

(sv
1, sv

2)← MaxCompatible(sh
1 , sh

2 ). Let sv
1 = (t1, t2, ℓ) and sv

2 = (t1, t2, r). We call the frame
(u, d, ℓ, r) the (u, d)-optimal frame. If the query MaxCompatible(sh

1 , sh
2 ) returns null, there is

no (u, d)-optimal frame. The algorithm reports the (u, d)-optimal frame with the maximum
perimeter among all pairs (u, d), or returns null if no such frames were found.

Correctness. By construction, each frame (u, d, ℓ, r) identified by the algorithm is a
(p, H, W )-frame. We proceed to show that it is a matching frame. Recall that (u, d, ℓ, r) was
obtained from two compatible pairs of segments sv

1, sv
2 and sh

1 , sh
2 . Notice that for the pair

sv
1 = (uv, dv, ℓ) and sv

2 = (uv, dv, r) to be compatible with sh
1 = (u, ℓh, rh), sh

2 = (d, ℓh, rh),
the inequalities uv ≤ u and dv ≥ d must hold. By the construction of sv

1 and sv
2 we have

M [uv..dv][ℓ] = M [uv..dv][r] and then M [u..d][ℓ] = M [u..d][r]. In a similar way, one can prove
M [u][ℓ..r] = M [d][ℓ..r], showing that (u, d, ℓ, r) is a matching frame as required.

To conclude the correctness of our algorithm, we need to show that some maximum
matching (p, H, W )-frame is (u, d)-optimal for some (u, d). Let (ut, dt, ℓt, rt) be a maximum
matching (p, H, W )-frame. For (ut, dt), the algorithm creates the horizontal aligned pair
sh

1 = (ut, ℓh, rh), sh
2 = (dt, ℓh, rh). Since M [ut][ℓt..rt] = M [dt][ℓt..rt], we have ℓh ≤ ℓt and

rh ≥ rt. By a similar argument, when constructing the SCDS, the algorithm creates a
vertical aligned pair sv

1 = (uv, dv, ℓt), sv
2 = (uv, dv, rt) with uv ≤ ut and dv ≥ dt. Denote the
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output of MaxCompatible(sh
1 , sh

2 ) by
(
(u′, ℓ′, r′), (d′, ℓ′, r′)

)
. One has r′ − ℓ′ ≥ rt − ℓt since

the pair (sv
1, sv

2) is compatible with (sh
1 , sh

2 ). Then (ut, dt, ℓ′, r′) is a matching frame with
perimeter 2(dt − ut + r′ − ℓ′) ≥ 2(dt − ut + rt − ℓt). Due to the maximality of the perimeter
of (ut, dt, ℓt, rt), we have that (ut, dt, ℓ′, r′) is a maximum matching (p, H, W )-frame.

Complexity. It can be easily shown that there are O(W 2) pairs (ℓ, r) satisfying r − ℓ ≤W

and j ∈ [ℓ..r]. Similarly, there are O(H2) pairs (u, d) satisfying d− u ≤ H and i ∈ [u..d]. By
Lemma 10, the construction of the SCDS takes Õ(W 2) time. The algorithm then applies
O(H2) queries to the SCDS and the overall complexity is Õ(W 2 + H2). The additional space
usage of the algorithm is dominated by the SCDS data structure of size Õ(W 2). ◀

Proof of Lemma 12. The algorithm iterates over all pairs H, W ∈ {x · 2k | k ≥ 1} such that
H ≤ W < 2m. For a pair (H, W ), the algorithm runs the subroutine from Lemma 13 for
every position (i, j) ∈ [n]× [m] such that i mod H/2 = 0 and j mod W/2 = 0. Finally, the
algorithm reports the maximum matching frame among all outputs of this subroutine.

Correctness. Since every instance of the subroutine from Lemma 13 reports a matching
frame or a null, the algorithm also reports a matching frame (or a null). Let F = (u, d, ℓ, r) be
a maximum matching frame of height at least x. Let W (resp. H) be the smallest number in
{x · 2k | k ≥ 1} which is at least r − ℓ (resp. d− u). Then there exist i ∈ [u..d] and j ∈ [ℓ..r]
such that i mod H/2 = 0 and j mod W/2 = 0. Hence the algorithm ran the subroutine for
((i, j), H, W )-frames and got reported a matching frame F ′ with per(F ′) ≥ per(F ). Therefore,
the algorithm returns a maximum matching frame.

Complexity. For a given pair (H, W ), the subroutine of Lemma 13 was called for
⌊ 2n

H

⌋
·
⌊ 2m

W

⌋
points (i, j). In total, these calls cost Õ

(
nm
HW (W 2 + H2)

)
= Õ

(
nm W

H

)
time. Therefore, the

algorithm runs in Õ(nm) ·
∑

H,W
W
H time, where the summation is over all possible pairs.

Let t =
⌈
log m

x

⌉
. Since x ≤ H ≤W < 2m, we have

∑
H,W

W
H = 2t + 2 · 2t−1 + 3 · 2t−2 + · · · ≤

4 · 2t = O(m
x ). The time bound from the lemma now follows. The additional space usage

of the algorithm is dominated by the space of the largest instance of Lemma 13, which is
Õ(W 2) for some W . Since W < 2m, we have the required bound Õ(m2). ◀

5.3 Combining the Short and Tall Algorithms

In this section, we combine the results of Section 5.1 and Section 5.2 to prove Theorem 1.

Proof of Theorem 1. Applying the algorithm of Lemma 11 and the algorithm of Lemma 12
with the same threshold x =

√
m and reporting the maximum frame between both outputs

yields an algorithm with running time Õ(nm ·
√

m). We run the same scheme for the
transposed matrix M⊤ and x =

√
n, which takes Õ(nm ·

√
n) time. In total, processing both

M and M⊤ takes Õ(nm ·
√

max{n, m}) time. The space usage of the algorithm is dominated
by the preprocessed data, which takes Õ(nm) space.

Notice that d−u ≤ r− ℓ for all considered frames, yielding d−u ≤ min{n, m}. Therefore,
applying Lemma 11 to both M and M⊤ with x = min{n, m} provides an alternative algorithm
that outputs the maximum matching frame within Õ(nm ·min{n, m}) time. Choosing the
faster between the two above algorithms implies Theorem 1. ◀
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6 Approximation Version

In the (1− ε)-approximation version of the problem, the goal is to find, given a matrix M

with a maximum matching frame F , a matching frame F ′ in M with per(F ′) ≥ (1− ε)per(F ).
Our algorithm reduces the problem to multiple instances of a decision problem defined below.
The reduction is shown in Lemma 15 below and the decision problem is solved in Section 6.3.

Decision problem. The input for this problem is a matrix M , and an inner rectangle
(u⊏⊐, d⊏⊐, ℓ⊏⊐, r⊏⊐) in M . A frame (u, d, ℓ, r) in M is surrounding if (u⊏⊐, d⊏⊐, ℓ⊏⊐, r⊏⊐) is strictly
inside it; formally, if u < u⊏⊐ ≤ d⊏⊐ < d and ℓ < ℓ⊏⊐ ≤ r⊏⊐ < r. The goal in this version of the
problem is to output a surrounding matching frame (u, d, ℓ, r) or report that no such frame
exists in M . In Section 6.3, we show that this problem can be solved in near-linear time, by
proving the following lemma.

▶ Lemma 14. Given an n×m matrix M with an inner rectangle (u⊏⊐, d⊏⊐, ℓ⊏⊐, r⊏⊐), there is
an algorithm that finds, in Õ(nm) time and space, a surrounding matching frame in M or
reports that no such frame exists.

Via an application of a 2-dimensional variant of the so-called standard trick [15, 12], we
obtain the following reduction.

▶ Lemma 15. Let a = 1 + ε/3. For every (h, w) ∈ [loga n]× [loga m] such that ah, aw ≥ 2,
there is a set Mh,w of sub-matrices, each associated with an inner rectangle, such that the
following properties are satisfied:
1. |Mh,w| = O( nm

ε2ah+w ).
2. For every sub-matrix M ′ ∈Mh,w, |M ′| = O(ah+w).
3. For every frame (u, d, ℓ, r) with d− u ∈ [ah..ah+1 − 1] and r− ℓ ∈ [aw..aw+1 − 1] there is

a sub-matrix M ′ ∈Mh,w such that (u, d, ℓ, r) is a surrounding frame in M ′ with respect
to its inner rectangle.

4. For every surrounding frame F in any M ′ ∈Mh,w, per(F ) ≥ (1− ε)
(
2(aw+1 + ah+1)

)
.

The inner rectangles and the corners of the sub-matrices in Mh,w can be obtained in
O(|Mh,w|) time and space given h and w.

Proof. Fix (h, w) ∈ [loga n] × [loga m]. We define several numeric values that are used
repeatedly by our reduction, namely δw =

⌊
εaw+1

3

⌋
, δh =

⌊
εah+1

3

⌋
, Ww =

⌈
aw+2⌉

, and
Hh =

⌈
ah+2⌉

. For convenience, assume without loss of generality that both n−Hh

δh
and m−Ww

δw

are integers. Otherwise, the algorithm adds dummy rows and columns to the right and to the
bottom sides of the matrix with distinct unique characters not in Σ until δh divides n−Hh

and δw divides m−Ww. The set Mh,w of sub-matrices of M is defined as follows:

Mh,w =
{

M [αδh + 1..αδh + Hh][βδw + 1..βδw + Ww] | α ∈ [0.. n−Hh

δh
] and β ∈ [0.. m−Ww

δw
]
}

.

In words, those are all sub-matrices with width Ww − 1 and height Hh − 1, having their
upper left corner in a cell (x′, y′) of M such that x′ mod δh = y′ mod δw = 1. Note that
Properties 1 and 2 are trivially satisfied. Additionally, it is clear that the corners of each
sub-matrix can be obtained in constant time.

Property 3 is obtained by combining the following two claims.

▷ Claim 16. Every frame (u, d, ℓ, r) with d− u ∈ [ah..ah+1 − 1] and r − ℓ ∈ [aw..aw+1 − 1]
is contained in some M ′ ∈Mh,w.
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Proof. Let x (resp. y) be the largest integer multiple of δh (resp. δw) that is smaller than u

(resp. ℓ). By definition, Mh,w contains a sub-matrix M ′ = M [x + 1..x + Hh][y + 1..y + Ww].
In order to prove that (u, d, ℓ, r) is fully contained inside M ′, we need to show that (1) x < u,
(2) y < ℓ, (3) x + Hh ≥ d and (4) y + Ww ≥ r. Conditions (1), (2) are immediate from the
choice of x and y. Let us show (3). The choice of x also implies x + δh ≥ u. Therefore,

x + Hh ≥ u− δh + Hh = u−
⌊

εah+1

3

⌋
+

⌈
ah+2⌉

≥ u − εah+1

3 + ah+2 = u + ah+1
(

a− ε

3

)
= u + ah+1.

By conditions of the lemma, d− u < ah+1, so we obtain x + Hh > d as required. Condition
(4) can be shown in the same way. ◁

For each sub-matrix M ′ = M [x + 1..x + Hh][y + 1..y + Ww] we define the inner rectangle
R⊏⊐ = (u⊏⊐, d⊏⊐, ℓ⊏⊐, r⊏⊐) = (x + Hh −

⌈
ah

⌉
+ 1, x +

⌈
ah

⌉
− 1, y + Ww − ⌈aw⌉+ 1, y + ⌈aw⌉ − 1).

As the further argument does not depend on x, y, we assume x = y = 0 for simplicity.

▷ Claim 17. If (u, d, ℓ, r) is a frame in M ′ with r−ℓ ∈ [aw..aw+1−1] and d−u ∈ [ah..ah+1−1],
then (u, d, ℓ, r) is a surrounding frame.

Proof. Since d ≤ Hh and d−u ≥ ah, one has u ≤ d− ah ≤ Hh− ah < u⊏⊐, as required. Since
u ≥ 1, one also has d ≥ ah + 1 > d⊏⊐ as required. The inequalities ℓ < ℓ⊏⊐ and r > r⊏⊐ are
proved in the same way, so (u, d, ℓ, r) is surrounding by definition. ◁

To prove Property 4, we note that the perimeter of a surrounding frame in M ′ is at
least 2((d⊏⊐ − u⊏⊐ + 2) + (r⊏⊐ − ℓ⊏⊐ + 2)). We show that d⊏⊐ − u⊏⊐ + 2 ≥ (1− ε) · ah+1. It can
be similarly argued that r⊏⊐ − ℓ⊏⊐ + 2 ≥ (1 − ε) · aw+1; the two inequalities together yield
Property 4. Recall that u⊏⊐ = Hh −

⌈
ah

⌉
+ 1, d⊏⊐ =

⌈
ah

⌉
− 1, Hh =

⌈
ah+2⌉

. Then

d⊏⊐ − u⊏⊐ + 2 =
⌈
ah

⌉
− 1−Hh +

⌈
ah

⌉
− 1 + 2 ≥ 2ah − ah+2 = ah+1( 2

a − a
)

It remains to show that 2
a − a ≥ 1− ε. Indeed,

2
a
− a = 2− (1 + 2ε/3 + ε2/9)

1 + ε/3 = 1− 2ε/3− ε2/3 + 2ε2/9
1 + ε/3 = 1− ε + 2ε2/9

1 + ε/3 > 1− ε,

as required. The lemma is proved. ◀

With Lemmas 14 and 15, we are ready to prove Theorem 2.

Proof of Theorem 2. The algorithm first processes frames of height 1 or width 1, applying
the algorithm of Lemma 11 with x = 1 to both M and M⊤. After that, the algorithm
proceeds as follows. For every pair (h, w) ∈ [loga n]× [loga m] such that aw, ah ≥ 2, it creates
the setMh,w with the corresponding inner rectangles (see Lemma 15) and applies Lemma 14
on every M ′ ∈Mh,w with its inner rectangle. The algorithm returns the maximum frame
among the matching frames returned by algorithms of Lemma 11 and Lemma 14. If neither
of these two algorithms reported a frame, then a “no frames” answer is reported.
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Correctness. Let F = (u, d, ℓ, r) be a maximum matching frame in M . If d = u + 1 or
r = ℓ + 1, then F is found by the algorithm of Lemma 11. Otherwise, consider the pair
(h, w) ∈ [loga n]× [loga m] such that d− u ∈ [ah..ah+1 − 1] and r − ℓ ∈ [aw..aw+1 − 1]. By
Property 3 of Lemma 15, there is a sub-matrix M ′ ∈Mh,w that contains F as a surrounding
frame. The algorithm in Lemma 14 returns a surrounding matching frame F ′ in M ′, and by
Property 4 of Lemma 15, per(F ′) ≥ (1−ε)

(
2(aw+1 + ah+1)

)
. Since per(F ) < 2(aw+1 + ah+1),

the approximation guarantee is fulfilled.

Complexity. Given h and w, the running time of the algorithm that obtains Mh,w and the
suitable R⊏⊐ is O(|Mh,w|) ⊆ O(nm/ε2) by Property 1 of Lemma 15.

Due to Properties 1 and 2 of Lemma 15, the sum of the sizes of the matrices in Mh,w

is O
(

nm
ε2

)
. Hence, applying Lemma 14 on all M ′ ∈ Mh,w takes Õ

(
nm
ε2

)
time. Recall that

there are O(log1+ε n · log1+ε m) = O( 1
ε2 log n · log m) values of h and w. Thus, the total

running time of the algorithm is Õ( nm
ε4 ). Each matrix in Mh,w is processed separately. The

space complexity of processing a matrix is Õ(ah+w) = Õ(nm). The space is reused when
each matrix is processed, so the overall space complexity of the algorithm is Õ(nm). ◀

6.1 Interesting Pairs and Interesting Triplets
In order to prove Lemma 14, we introduce and study the following notion, illustrated by
Figure 3.

▶ Definition 18. Given a tuple (S1, . . . , Sn) of strings, we call a pair (i, j) interesting if
i < j and for any ℓ such that ℓ ∈ [i + 1, j − 1] one has LCP(Si, Sℓ) < LCP(Si, Sj).

𝑺𝟏 i n t e r e s t i n g

𝑺𝟐 i n d e x

𝑺𝟑 i n t r i g u i n g

𝑺𝟒 p a i r s

𝑺𝟓 p a l i n d r o m e

𝑺𝟔 i n t e g e r

𝑺𝟕 p a i n t

𝑺𝟖 i n t e l l e c t u a l

Figure 3 An example of interesting pairs where the first component of the pair is S1 or S4. The
rows beginning in red form interesting pairs with S1 and the rows beginning in blue form interesting
pairs with S4. The color indicates the LCP of the components of the pair. Notice that (S1, S8) is
not an interesting pair because of S6.

Trivially, all pairs of the form (i, i + 1) are interesting for any tuple. The next lemma
bounds the number of interesting pairs. This bound is tight as shown in the full version [9]
of this paper.

▶ Lemma 19. For each n-tuple of strings, there are O(n log n) interesting pairs.

Proof. For a given tuple (S1, . . . , Sn), fix an integer ℓ ∈ [1..⌈log n⌉] and consider the set
Iℓ = {(i, j) | (i, j) is interesting and j − i ∈ [2ℓ−1..2ℓ − 1]}. We say that a pair (i, j) ∈ Iℓ is
of the first type if i = max{i′ | (i′, j) ∈ Iℓ} and of the second type otherwise. The following
claim is crucial.
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▷ Claim 20. All pairs of the first type from Iℓ have different second components; all pairs
of the second type from Iℓ have different first components.

Proof. The first statement stems directly from the definition of the first type. Let us prove
the second one. Assume by contradiction that (i, j), (i, j′) ∈ Iℓ are pairs of the second type,
with j′ < j. As (i, j) is not of the first type, Iℓ contains a pair (i′, j) with i′ > i. We prove
the following sequence of inequalities, leading to a contradiction.

LCP(Si, Si′)
(1)
< LCP(Si, Sj′) (2)= LCP(Sj′ , Sj) (3)= LCP(Si′ , Sj′)

(4)
< LCP(Si′ , Sj) (5)= LCP(Si, Si′),

Since 2ℓ−1 ≤ j− i′, 2ℓ−1 ≤ j′− i and j− i < 2ℓ ≤ j− i′ + j′− i, we have i′ < j′. Since (i, j′)
is an interesting pair and i′ ∈ [i+1..j′−1], we obtain (1) by Definition 18. Since (i, j) is an
interesting pair, every k ∈ [i+1..j−1] satisfies LCP(Si, Sk) < LCP(Si, Sj). Hence, by Fact 6
we have LCP(Si, Sk) = LCP(Sk, Sj). We obtain (2) and (5) by setting k = j′ and k = i′

respectively. Finally, (i′, j) is an interesting pair, and j′ ∈ [i′ + 1..j − 1]. So, Definition 18
gives us (4) and then Fact 6 implies (3). ◁

Claim 20 says that Iℓ contains at most n pairs of the first type and at most n pairs of the
second type. As ℓ takes ⌈log n⌉ values, the lemma follows. ◀

To relate interesting pairs to our decision problem we need one more notion.

▶ Definition 21. Let M be an n×m-matrix and ℓ ∈ [m]. A triplet (u, d, ℓ) is called interesting
if the pair (u, d) is interesting for the tuple (M [1][ℓ..m], . . . , M [n][ℓ..m]).

6.2 Finding all interesting triplets
▶ Lemma 22. All interesting triplets for an n×m matrix M can be found in Õ(nm) time.

We assume that the data structures described in Section 3 are constructed. We process each
ℓ ∈ [m] independently, computing all interesting triplets of the form (u, d, ℓ). By Definition 21,
such a triplet is interesting if the pair (u, d) is interesting for the tuple S = (S1, . . . , Sn),
where Si = M [i][ℓ..m]. Below we work with this fixed tuple S. The algorithm scans S string
by string; while processing Si, the algorithm finds all the interesting pairs (i, j).

For i < j ∈ [n], let L(i, j) be the maximum LCP value between Si and any Sk for
k ∈ [i + 1 . . . j]. Let I(i, j) = min{k ∈ [i + 1 . . . j] | LCP(Si, Sk) = L(i, j)} be the minimum
index k with this maximum LCP value. Using the function I(i, j) we characterize the set of
interesting pairs that share the first index i.

▶ Lemma 23. For i ∈ [n], let j1 > j2 > · · · > jz be the second coordinates of all interesting
pairs of the form (i, j). Then j1 = I(i, n) and jk = I(i, jk−1 − 1) for every k ∈ [2..z].

Proof. First we need to prove that (i, I(i, n)) is interesting and that there is no interesting pair
(i, j′) with j′ > I(i, n). By the definitions of L(i, n) and I(i, n), for every j′ < I(i, n) we have
LCP(Si, Sj′) < L(i, n) = LCP(Si, SI(i,n)), so (i, I(i, j)) is interesting. Now consider a pair
(i, j′) with j′ > I(i, n). The same definitions imply LCP(Si, Sj′) ≤ L(i, n) = LCP(Si, SI(i,n)),
so the pair (Si, Sj′) is not interesting and we have j1 = I(i, n) as required.

Let k ∈ [2..z] and consider the second statement. Similar to the above, we argue that the
pair (i, I(i, jk−1 − 1)) is interesting and no pair (i, j′) such that I(i, jk−1 − 1) < j′ < jk−1 is
interesting. Hence I(i, jk−1 − 1) follows jk−1 in the list of second coordinates of interesting
pairs of the form (i, j), i.e., jk = I(i, jk−1 − 1). ◀

We proceed to show how to compute I(i, j) and L(i, j) efficiently.
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▶ Lemma 24. Given i and j, L(i, j) can be computed in O(log n) time.

Proof. Note that if we lex-sort the tuple (Si, . . . , Sj), then the maximum LCP value with Si

would be reached by one of its neighbors Sjleft and Sjright in the sorted tuple; we assume Sjleft <

Si < Sjright (one neighbor may absent). Thus, L(i, j) = max{LCP(Si, Sjleft), LCP(Si, Sjright)}.
The algorithm retrieves jleft and jright using range queries on Dℓ

rows as detailed below.
Recall that Ix,ℓ

rows denotes the index of Sx in LSAℓ
rows. Note that I

jright,ℓ
rows is the minimal index

satisfying Ix,ℓ
rows > Ii,ℓ

rows with x ∈ [i + 1..j]. Hence, in order to get jright one queries Dℓ
rows for a

point (x, Ix,ℓ
rows) in the range [i + 1..j]× [Ii,ℓ

rows + 1..∞] that minimizes Ix,ℓ
rows; the first coordinate

of this point is jright. Symmetrically, in order to get jleft one queries Dℓ
rows for a point (x, Ix,ℓ

rows)
in the range [i + 1..j]× [1..Ii,ℓ

rows − 1] that maximizes Ix,ℓ
rows; the first coordinate of this point is

jleft. After retrieving jright and jleft, one queries the LCPℓ
rows structure for LCP(Si, Sjright) and

LCP(Si, Sjleft), and outputs the maximum as L(i, j).
Two range queries take O(log n) time (Lemma 9 for d = 2) while two LCP queries take

O(1) time (Lemma 5). The lemma now follows. ◀

▶ Lemma 25. Given i and j, I(i, j) can be computed in O(log n) time.

Proof. The algorithm starts by applying Lemma 24 to obtain L(i, j) in O(log n) time. Let
P = Si[1..L(i, j)] be the prefix of length L(i, j) of Si. Recall that by definition, I(i, j) is
the minimal index k ∈ [i + 1..j] such that Sk[1..L(i, j)] = P . Using Fact 7, the algorithm
finds, in O(log n) time, a pair of indices iP , jP such that Sz[1..L(i, j)] = P if and only if
Iz,ℓ

rows ∈ [iP ..jP ]. After that, the algorithm retrieves I(i, j) by querying Dℓ
rows for the point

(k, Ik,ℓ
rows) in the range [i + 1..j]× [iP ..jP ] with the minimal first coordinate. This coordinate

k is then reported as I(i, j). As this query takes O(log n) time by Lemma 9 for d = 2, the
lemma follows. ◀

Proof of Lemma 22. Let ℓ be fixed and S = {S1, . . . , Sn} be defined as above. For each Si,
the algorithm finds j1 = I(i, n) using Lemma 25, reports (i, j1) as an interesting pair (see
Lemma 23), and then iterate. As long as jk ̸= i + 1, the algorithm finds jk+1 = I(i, jk − 1)
using Lemma 25 and reports the interesting pair (i, jk+1). Note that the algorithm is
guaranteed to finish the iteration, since the pair (i, i + 1) is interesting.

The algorithm spends O(log n) time per interesting pair by Lemma 22; the number of
such pairs is O(n log n) by Lemma 19. Multiplying this by m choices for ℓ, we obtain the
required time bound Õ(nm). ◀

6.3 Algorithm for the Decision Variant
In this section we prove Lemma 14, presenting the required algorithm.

The algorithm starts by modifying M as follows. For every (i, j) ∈ [u⊏⊐ . . . d⊏⊐]× [ℓ⊏⊐ . . . r⊏⊐],
we set M [i][j] = $i,j with $i,j being a unique symbol not in Σ. Since neither of the changed
symbols belongs to a marginal row/column of a surrounding frame, this modification preserves
surrounding matching frames. The following claim clarifies the role of interesting triplets.

▶ Lemma 26. If a matrix M with an inner rectangle (u⊏⊐, d⊏⊐, ℓ⊏⊐, r⊏⊐) contains a surrounding
matching frame (u, d, ℓ, r), then it contains a surrounding matching frame (u′, d′, ℓ, r) such
that (u′, d′, ℓ) is an interesting triplet.

Proof. Let (u, d, ℓ, r) be a surrounding matching frame in M . We denote Sh = M [u][ℓ..r] =
M [d][ℓ..r]. Let u′ be the maximal index in [u..u⊏⊐ − 1] such that M [u′][ℓ..r] = Sh and let
d′ be the minimal index in [d⊏⊐ + 1..d] such that M [d′][ℓ..r] = Sh. The frame (u′, d′, ℓ, r) is

CPM 2024
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surrounding by definition and matching by construction (note that M [u..d][ℓ] = M [u..d][r]
implies M [u′..d′][ℓ] = M [u′..d′][r]). Finally, for arbitrary d′′ ∈ [u′ + 1..d′ − 1] one has
M [d′′][ℓ..r] ̸= Sh. If d′′ < u⊏⊐ or d′′ > d⊏⊐, this condition holds by the choice of u′ and d′

respectively. Otherwise the condition is guaranteed by uniqueness of the symbols of the inner
rectangle. Hence LCP(M [u′][ℓ..m], M [d′′][ℓ..m]) < |Sh| ≤ LCP(M [u′][ℓ..m], M [d′][ℓ..m]), and
the triplet (u′, d′, ℓ) is interesting by definition. ◀

The Algorithm. After setting M [i][j] = $i,j for each (i, j) ∈ [u⊏⊐ . . . d⊏⊐] × [ℓ⊏⊐ . . . r⊏⊐], the
algorithm applies the preprocessing described in Section 3 and finds all interesting triplets
in O(nm log2 n) time by applying Lemma 22. The final ingredient we need is a mechanism
verifying, given an interesting triplet (u, d, ℓ), if there is a surrounding matching frame
(u, d, ℓ, r). For this purpose, we present the following lemma.

▶ Lemma 27. There is an algorithm that, given an interesting triplet (u, d, ℓ) of M , outputs
an integer r such that (u, d, ℓ, r) is a surrounding matching frame or reports null if no such r

exists. The algorithm runs in O(log n) time.

Proof. The algorithm reports null if u ≥ u⊏⊐, or d ≤ d⊏⊐, or ℓ ≥ ℓ⊏⊐. Otherwise, it seeks for a
value r such that (i) r ≥ r⊏⊐ + 1, (ii) M [u][ℓ..r] = M [d][ℓ..r], and (iii) M [u..d][r] = M [u..d][ℓ].

The algorithm queries LCPℓ
rows for Lu,d = LCP(M [u][ℓ..m], M [d][ℓ..m]). By definition of

LCP, we have M [u][ℓ..r] = M [d][ℓ..r] if and only if r ≤ ℓ + Lu,d−1. Hence, conditions (i) and
(ii) are satisfied if and only if r ∈ [r⊏⊐ + 1 . . . ℓ + Lu,d − 1]. To check (iii), let Sv = M [u..d][ℓ].
Using Fact 7, the algorithm finds the pair of indices iv, jv such that M [u..d][r] = Sv if and
only if r ∈ LSAu

columns[iv..jv]. Now the algorithm checks the existence of a value r satisfying
(i)–(iii) by querying Du

columns for a point within the range [r⊏⊐ + 1..ℓ+Lu,d−1]× [iv..jv]. If the
queried structure returns a point (r, Iu,r

columns), the algorithm outputs r; otherwise, it reports
null, as there is no value of r such that (u, d, ℓ, r) is a surrounding matching frame.

The algorithm performs a single LCP query (O(1) time by Lemma 5), finds iv and jv

(O(log n) time by Fact 7), queries Du
columns (O(log n) time by Lemma 9), and compares a

constant number of integers. The lemma follows. ◀

We are finally ready to prove Lemma 14.

Proof of Lemma 14. After finding all interesting triplets, the algorithm applies the sub-
routine from Lemma 27 to every interesting triplet (u, d, ℓ). If this subroutine outputs r,
the algorithm outputs the surrounding matching frame (u, d, ℓ, r). If the subroutine outputs
null for all interesting triplets, then, relying on Lemma 26, the algorithm reports that no
surrounding matching frame exists.

The algorithm spends O(nm log2(nm)) for each of three tasks it performs: prepro-
cessing (Section 3), finding interesting triplets (Lemma 22), and verifying interesting triplets
(Lemma 19 and Lemma 27). Thus, its time (and therefore, space) complexity is Õ(nm), as
required. ◀
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