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Abstract
Hairpin completion, derived from the hairpin formation observed in DNA biochemistry, is an
operation applied to strings, particularly useful in DNA computing. Conceptually, a right hairpin
completion operation transforms a string S into S · S′ where S′ is the reverse complement of a prefix
of S. Similarly, a left hairpin completion operation transforms a string S into S′ · S where S′ is the
reverse complement of a suffix of S. The hairpin completion distance from S to T is the minimum
number of hairpin completion operations needed to transform S into T . Recently Boneh et al. [3]
showed an O(n2) time algorithm for finding the hairpin completion distance between two strings of
length at most n. In this paper we show that for any ε > 0 there is no O(n2−ε)-time algorithm for
the hairpin completion distance problem unless the Strong Exponential Time Hypothesis (SETH)
is false. Thus, under SETH, the time complexity of the hairpin completion distance problem is
quadratic, up to sub-polynomial factors.
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1 Introduction

Hairpin completion [6], derived from the hairpin formation observed in DNA biochemistry, is
an operation applied to strings, particularly useful in DNA computing [10, 9, 8, 7]. Consider
a sequences over an alphabet Σ with involution Inv : Σ → Σ assigning for every σ ∈ Σ an
inverse symbol σ. For a string S ∈ Σ∗, a left hairpin completion transforms S into

←−
S′ · S,

where S′ is a suffix of S, and for any X ∈ Σ∗ we define ←−X = X[|X|] ·X[|X| − 1] · . . . ·X[1].
This operation can only be applied under the restriction that the suffix S′ is preceded by
the symbol S[1]. Similarly, a right hairpin completion transforms S into S ·

←−
S′ where S′ is a

prefix of S followed by S[|S|].
Several problems regarding hairpin completion were studied [11, 12, 13, 14, 3]. In this

paper, we consider the hairpin completion distance problem. In this problem, we are given
two strings x and y and our goal is to compute the minimum number of hairpin completion
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11:2 Hairpin Completion Distance Lower Bound

operations one has to apply on y to transform y into x, or to report that there is no
sequence of hairpin completion operation can turn y into x. In 2009, Manea, Martín-Vide
and Mitrana [12] proposed the problem and introduced a cubic time O(n3) algorithm (where
n = |x|). Later Manea [11] introduced a faster algorithm that runs in O(n2 log n) time.
Recently, Boneh et al. [3] showed that the time complexity of the problem is O(n2). Moreover,
Boneh et al. posed the following open problem.

▶ Problem 1. Can one prove a lower bound for hairpin completion distance computation
that matches the O(n2) upper bound?

In this paper, we show that for every ε > 0, there is no O(n2−ε) time algorithm for computing
the hairpin completion distance from y to x, unless the Strong Exponential Time Hypothesis
(SETH) [5] is false. Thus, we provide a conditional lower bound matching the upper bound
of [3] up to sub-polynomial factors.

▶ Theorem 2. Let ε > 0. If there is an algorithm that computes the hairpin completion
distance from y to x in O(|x|2−ε) time, then SETH is false. This holds even if the input
strings are over an alphabet of size 4.

We note that due to the relationship between hairpin operations and DNA biochemistry,
a typical output for a hairpin-related problem is over the alphabet {A, C, G, T} of size 4.
Hence, our lower bound applies to a natural set of practical inputs.

Theorem 2 is proven by reducing Longest Common Subsequence (LCS) problem to the
hairpin completion distance problem. Namely, for two ternary strings S and T , we show a
linear time construction of a pair of strings x and y such that LCS(S, T ) can be computed
in linear time from the hairpin completion distance from y to x. The hardness of hairpin
completion computation follows from the conditional lower bound on the LCS problem [4, 1].
We refer the reader to Section 3 where we introduce the reduction and to Section 3.1 where
we provide a high-level discussion regarding the correctness of our construction.

2 Preliminaries

For i, j ∈ N let [i..j] = {k ∈ N | i ≤ k ≤ j}. We denote [i] = [1..i].
A string S over an alphabet Σ is a sequence of characters S = S[1]S[2] . . . S[|S|]. For

i, j ∈ [|S|], we call S[i..j] = S[i]S[i + 1] . . . S[j] a substring of S. If i = 1, S[i..j] is a prefix of
S, and if j = |S|, S[i..j] is a suffix of S. Let x and y be two strings over an alphabet Σ. x ·y is
the concatenation of x and y. For strings x1, x2, . . . xm, we denote as

⊙m
i=1 = x1 ·x2 · . . . ·xm.

For a string x and k ∈ N we write the concatenation of x to itself k times as xk. For a
symbol σ ∈ Σ, we denote as #σ(x) = |{i ∈ [|x|] | x[i] = σ}| the number of occurrences of σ

in x. We say that a string y occurs in x (or that x contains an occurrence of y) if there is an
index i ∈ [|x| − |y|+ 1] such that x[i..i + |y| − 1] = y.

For two sets of strings S and T , we define the set of strings S ∗ T = {s · x · t | s ∈ S, x ∈
Σ∗, t ∈ T }. We use the notations S∗ = S ∗ Σ∗ and ∗S = Σ∗ ∗ S. When using ∗ notation,
we sometimes write s ∈ Σ∗ to denote the set {s} (for example, 0∗ is the set of all strings
starting with 0).

Hairpin Operations. Let Inv : Σ→ Σ be a permutation on Σ. We say that Inv is an inverse
function on Σ if Inv = Inv−1 and Inv(σ) ̸= σ for every σ ∈ Σ. Throughout this paper, we
discuss strings over alphabet Σ = {0, 1} with Inv(σ) = 1−σ. For every symbol in σ, we denote
σ = Inv(σ). We further extend this notation to strings by denoting x = x[1] · x[2] · . . . · x[|x|].
We denote ←−x = x[|x|] · x[|x| − 1] · . . . · x[2] · x[1].
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We define several types of hairpin operations that can be applied to a string over Σ with
an inverse function on Σ. In [6], hairpin operations are defined as follows.

▶ Definition 3 (Hairpin Operations). Let S ∈ Σ∗. A right hairpin completion of length
ℓ ∈ [|S|] transforms S into S ·

←−−−−
S[1..ℓ]. A right hairpin completion operation of length ℓ can

be applied on S only if S[ℓ + 1] = S[|S|]. Similarly, a left hairpin completion of length ℓ

transforms S into
←−−−−−−−−−−−−
S[|S| − ℓ + 1..|S|] ·S. A left hairpin completion of length ℓ can be applied to

S only if S[|S|− ℓ] = S[1]. A right (resp. left) hairpin deletion operation of length ℓ ∈ [
⌊

|S|
2

⌋
]

transforms a string S into a prefix (resp. suffix) S′ of S such that S can be obtained from S′

by a valid right (resp. left) hairpin completion of length ℓ.

Throughout this paper, we use the following modified definition of hairpin operation,
which removes the constraints regarding S[1] and S[|S|].

▶ Definition 4 (Hairpin Operations, Modified definition). Let S ∈ Σ∗. A right hairpin
completion of length ℓ ∈ [|S|] transforms S into S ·

←−−−−
S[1..ℓ]. Similarly, a left hairpin completion

of length ℓ transforms S into
←−−−−−−−−−−−−
S[|S| − ℓ + 1..|S|] · S. A right (resp. left) hairpin deletion of

length ℓ ∈ [
⌊

|S|
2

⌋
] operation transforms a string S into a prefix (resp. suffix) S′ of S such

that S can be obtained from S′ by a valid right (resp. left) hairpin completion of length ℓ.

We highlight that the modified definition is not equivalent to the definition of [6]. Even
though the paper is phrased in terms of the modified definition, we emphasize that Theorem 2
is correct with respect to both definitions. In the full version of this paper, we discuss the
machinery required to make our hardness result applicable to Definition 3. The complete
details for bridging this gap are developed in the full version of this paper [2].

Let x and y be two strings. We denote by HDD(x, y) (resp. HCD(x, y)) the minimum
number of hairpin deletion (resp. completion) operations required to transform x into y,
counting both left and right operations. Note that HDD(x, y) = HCD(y, x).

For the sake of analysis, we define the following graph.

▶ Definition 5 (Hairpin Deletion Graph). For a string x the Hairpin Deletion Graph Gx =
(V, E) is defined as follows. V is the set of all substrings of x, and (u, v) ∈ E if v can be
obtained from u in a single hairpin deletion operation.

We define the distance between two vertices s and t in a graph G (denoted as distG(s, t))
to be the minimal length (number of edges) of a path from s to t in G (of ∞ if there is
no such path). Note that for a source string x and a destination string y, it holds that
HDD(x, y) = distGx

(x, y). We distinguish between two types of edges outgoing from x[i..j].
An edge of the form x[i..j]→ x[i+ℓ..j] for some ℓ ∈ N is called a left edge and it corresponds to
a left hairpin deletion operation of length ℓ. Similarly, an edge of the form x[i..j]→ x[i..j− ℓ]
for some ℓ ∈ N is called a right edge and it corresponds to a right hairpin deletion operation
of length ℓ. When a path p in Gx traverses a left (resp. right) edge outgoing from v, we say
that p applies a left (resp. right) hairpin deletion to v. For a path p we denote by cost(p)
the length of p.

Hairpin Deletion. Since the paper makes intensive use of hairpin deletion notations, we
introduce an alternative, more intuitive definition for hairpin deletion, equivalent to Defini-
tion 4. For a string S, if for some ℓ ∈ [

⌊
|S|
2

⌋
] we have S[1..ℓ] =

←−−−−−−−−−−−−
S[|S| − ℓ + 1..|S|] then a left

(resp. right) hairpin deletion operation transforms S into S[ℓ + 1..|S|] (resp. S[1..|S| − ℓ]).
In particular, if S[1] ̸=

←−−−
S[|S|] then there is no valid hairpin deletion operation on S.

CPM 2024
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Longest Common Subsequence. A subsequence of a string S of length n is a string X

of length ℓ such that there is an increasing sequence 1 ≤ i1 < i2 < . . . iℓ ≤ n satisfying
X[k] = S[ik] for every k ∈ [ℓ]. For two strings S and T , a string X is a common subsequence
of S and T if X is a subsequence of both S and T . The LCS problem is, given two strings S

and T of length at most n, compute the maximum length of a common subsequence of S

and T , denoted as LCS(S, T ).
Bringmann and Künnemann [4] have shown the following.

▶ Fact 6 (Hardness of LCS). For every ε > 0, there is no O(n2−ε)-time algorithm that solves
the LCS problem for ternary input strings unless SETH is false.

Fibonacci sequence. The Fibonacci sequence is defined as follows. Fib(0) = 1, Fib(1) = 1
and for all integer i > 1 we have Fib(i) = Fib(i − 1) + Fib(i − 2). The inverse function
Fib−1 : R→ N is defined as Fib−1(x) = min{y ∈ N | Fib(y) ≥ x}.

3 The Reduction

Here we introduce a reduction from the LCS problem on ternary strings. We also provide in
Section 3.1 a high-level discussion of why the reduction should work.

We present a linear time algorithm such that given two strings S, T ∈ {0, 1, 2}∗, constructs
two (binary) strings x and y with |x| = O(|S| + |T |) and |y| = O(1). The strings x and
y have the property that HDD(x, y) can be used to infer LCS(S, T ) in linear time. Thus,
by Fact 6, we deduce that any algorithm computing HDD(x, y) cannot have running time
O(|x|2−ε) for any ε > 0 (assuming SETH).

We use several types of gadgets. Let:
IL(0) = (0103)i0

IL(1) = (0105)i1

IL(2) = (0107)i2

PL = (0109)p

SyncL = 01
IR(0) = (0310)i0 =

←−−−
IL(0)

IR(1) = (0510)i1 =
←−−−
IL(1)

IR(2) = (0710)i2 =
←−−−
IL(2)

PR = (0910)p =←−PL

SyncR = 010
with i0 = 55, i1 = 54, i2 = 53 and p = 144. We call IL(0), IL(1) and IL(2) left information
gadgets and IR(0), IR(1) and IR(2) right information gadgets. We say that IL(α) and IR(β)
match if α = β or mismatch otherwise. PL and PR are called left and right protector gadgets,
respectively. SyncL and SyncR are called left and right synchronizer gadgets, respectively. We
say that two gadgets g1, g2 are symmetric if g2 =←−g1 . Specifically, (IL(0), IR(0)), (IL(1), IR(1)),
(IL(2), IR(2)) and (PL, PR) are the pairs of symmetric gadgets. We emphasize that SyncL and
SyncR are not symmetric.

Using the gadgets above, we define 6 mega gadgets encoding characters from S and T .
For α ∈ {0, 1, 2} we define

EL(α) = PL · SyncL · IL(α) · SyncL and ER(α) = SyncR · IR(α) · SyncR · PR.
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Finally, we define y = PL · SyncL · 01 · 1111 · 10 · SyncR · PR and x =
(⊙|S|

i=1 EL(S[i])
)
· y ·(⊙1

i=|T | ER(T [i])
)

. Note that on the suffix of x we concatenate the elements of T in reverse
order.

In the remainder of this paper, we only use ’x’ and ’y’ to refer to the strings defined above.
We define notations for indices in x which are endpoints of protector and information gadgets
as follows. For ℓ ∈ [|S|+1], let leftP

ℓ = 1+
∑ℓ−1

j=1 |EL(S[j])| be the leftmost index of the ℓth PL

gadget (from the left) in x. Notice that leftP
|S|+1 corresponds to the left PL gadget contained

in y. For r ∈ [|T |+ 1], let rightP
r = |x| −

∑r−1
j=1 |ER(T [j])| be the rightmost index of the rth

PR gadget (from the right) in x. Notice that rightP
|T |+1 corresponds to the right PR gadget

contained in y. For ℓ ∈ [|S|], let leftI
ℓ = leftP

ℓ + |PL|+ |SyncL| be the leftmost index of the ℓth
information gadget (from the left) in x. For r ∈ [|T |], let rightI

r = rightP
r − |PR| − |SyncR| be

the rightmost index of the rth information gadget (from the right) in x.
The rest of the paper is dedicated for proving the following property of x and y.

▶ Lemma 7 (Reduction Correctness). For some constants D(0), D(1), D(2) and B we have:
HDD(x, y) =

∑
α∈{0,1,2} D(α)(#α(S) + #α(T ))− LCS(S, T ) ·B.

Note that #α(S) and #α(T ) can be easily computed for all values of α in linear time.
Therefore, if HDD(x, y) can be computed in O(n2−ε) time for some ε > 0, LCS can be
computed in O(n + n2−ε) (the values of the constants are fixed in the proof). Since
HDD(x, y) = HCD(y, x), hairpin deletion and hairpin completion distance are computa-
tionally equivalent. Recall that HDD(x, y) refers to the modified hairpin deletion distance
(Definition 4). In order to bridge the gap to the original definition of hairpin deletion distance,
we provide a linear time construction of strings x′ and y′ such that HDD′(x′, y′) = HDD(x, y)
in the full version of this paper [2]. Here, HDD′(x′, y′) denotes the hairpin deletion distance
from x′ to y′ as defined in Definition 3. It clearly follows from this construction and the
above discussion that HDD′(x′, y′) can not be computed in O(n2−ε), unless SETH is false.
Thus, proving Theorem 2.

3.1 Intuition for the Reduction Correctness
We provide some high-level discussion regarding the correctness of the construction. First,
notice that y has a single occurrence in x. Therefore, a sequence of hairpin deletion operations
transforming x into y has to delete all mega gadgets. Consider an intermediate step in a
deletion sequence in which the substring x[i..j] is obtained such that i is the leftmost index
of some left gadget gi and j is the rightmost index of some right gadget gj .

If gi and gj are not symmetric, the next hairpin deletion would not be able to make much
progress. This is due to the 1 symbols in gi and the 1 symbols in gj being separated by
a different number of 0’s and 0’s. For the goal of minimizing the number of deletions for
removing all mega gadgets, this is a significant set-back, as either gi or gj would have to be
removed using roughly #1(gi) (or #1(gj)) deletions.

Now consider the case in which gi and gj are symmetric to each other. In this case, either
one of them can be deleted using a single hairpin deletion. However, note that greedily
removing gi will put us in the asymmetric scenario. Notice that there is another possible
approach for deleting symmetric gadgets - a synchronized deletion. In this process, gi and
gj are both deleted gradually. One can easily figure out a way to apply such synchronized
deletion using roughly log(#1(gi)) steps.

Think of a scenario in which i = leftP
ℓ and j = rightP

r for some ℓ and r, i.e. i and j are a
leftmost index and a rightmost index of left and right mega gadgets mℓ and mr, respectively.
Initially, both i and j are in the beginning of protector gadgets pℓ and pr. If mℓ and mr are

CPM 2024



11:6 Hairpin Completion Distance Lower Bound

mega gadgets corresponding to the same symbol α, the protector gadgets and the information
gadgets of mℓ and mr are symmetric to each other. It is therefore very beneficial to remove
the mega gadgets in a synchronized manner. The event in which the ℓ’th left mega gadget
and the r’th right mega gadgets are deleted in a synchronized manner corresponds to S[ℓ]
and T [r] being matched by the longest common subsequence.

Now, consider the case in which mℓ and mr do not match i.e. S[ℓ] ̸= T [r]. Deleting the
protectors in a synchronized manner would not yield much benefit in this scenario, since
the information gadgets are not symmetric, and therefore would have to be removed slowly.
In this case, since an inefficient deletion of an information gadget is inevitable, it is more
efficient to delete one of the protectors gadgets using a single deletion operation, and proceed
to delete the following information gadget inefficiently. This would result in either the left
mega gadget being deleted, or the right one. The event in which the ℓ’th left (resp. r’th
right) mega gadget is deleted in a non synchronized manner corresponds to S[ℓ] (resp. T [r])
not being in the longest common subsequence. The gadgets are designed in a way such that
deleting mega gadgets in a synchronized way is faster than deleting each mega gadget in a
non-synchronized way. Furthermore, the cost reduction of a synchronized deletion over a
non-synchronized deletion is a constant number B. Therefore, by selecting D(α) as the cost
of deleting a mega gadget corresponding to the symbol α in a non-synchronized way, one
obtains Lemma 7.

The above discussion makes an implicit assumption that the sequence of deletion is
applied in phases. Each phase starts with x[i..j] such that i and j are edge endpoints of
mega gadgets and proceeds to either delete both in a synchronized manner or one in a
non-synchronized manner. In order to show that HDD(x, y) is at most the term in Lemma 7,
this is sufficient since we can choose a sequence of deletion with this structure as a witness.
In order to show that HDD(x, y) is at least the expression in Lemma 7, one has to show
that there is an optimal sequence of deletions with this structure. This is one of the main
technical challenges in obtaining Theorem 2.

In a high level, the sync gadgets function as “anchors” that force any sequence of deletions
to stop in their proximity. Another key property of our construction that enforces the “phases”
structure is the large size of a protector relatively to the information. Intuitively, an optimal
sequence would always avoid deleting a protector gadget inefficiently, so if a left protector
is deleted using a right protector, left deletions would continue to occur until the next left
protector is reached.

In Section 4, we provide the formal definition for a well-structured sequence and prove
that there is an optimal sequence of deletions with this structure. In Section 5 we provide a
precise analysis of every phase in a well-structured sequence. In Section 6 we put everything
together and prove Lemma 7.

4 Well-Behaved Paths

We start by defining a well-behaved path.

▶ Definition 8 (Well-Behaved Path). A path p from x to y in Gx is well-behaved if for every
ℓ ∈ [|S|+ 1] and r ∈ [|T |+ 1], if p visits x[leftP

ℓ ..rightP
r ], one of the following vertices is also

visited by p: x[leftP
ℓ+1..rightP

r ], x[leftP
ℓ ..rightP

r+1], or x[leftP
ℓ+1..rightP

r+1]. If one of ℓ + 1 and
r + 1 is undefined, the condition is on the subset of defined vertices. If both are undefined,
the condition is considered satisfied.

This section is dedicated to proving the following lemma.
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▶ Lemma 9 (Optimal Well-Behaved Path). There is a shortest path from x to y in Gx which
is well-behaved.

We start by proving properties regarding paths and shortest paths from x to y in Gx.
Due to space constraints, the proofs for the lemmata in this section appear in the full version
of this paper [2].

4.1 Properties of Paths in Gx

We start by observing that an x to y path in Gx never deletes symbols from y.

▶ Observation 10 (Never Delete y). The substring x[leftP
|S|+1..rightP

|T |+1] = y is the unique
occurrence of y in x. Let p be a path from x to y in Gx. For every vertex x[i..j] in p,
[leftP

|S|+1..rightP
|T |+1] ⊆ [i..j].

Since each hairpin deletion operation deletes a prefix (or a suffix) of a substring of x, we
have the following observation and immediate corollary.

▶ Observation 11. Let x[i..j] ∈ 010a1 ∗ 10b10 for a ̸= b. A single left hairpin deletion
operation removes at most a single 1 character. Symmetrically, a right hairpin deletion
operation removes at most a single 1 character.

▶ Corollary 12. A single left (resp. right) hairpin deletion operation on x[i..j] can remove
more than a single 1 (resp. 1) character only if i and j are in symmetric gadgets.

The next lemma assures a restriction over the vertices along a path from x to y in Gx.

▶ Lemma 13 (Always 01∗ or ∗10). Let p be a path from s to t in Gx such that s, t ∈ 01 ∗ 10.
For every vertex x[i..j] visited by p, we have x[i] = 0 and x[j] = 0. Furthermore, x[i + 1] = 1
or x[j − 1] = 1.

Due to the equivalence between a path in Gx and a sequence of hairpin deletions and due
to the symmetry between hairpin deletion and hairpin completion, we obtain the following.

▶ Corollary 14. Let s, t ∈ 01 ∗ 10 and let H be a sequence of h hairpin deletion operations
(or a sequence of hairpin completion operations) that transforms s into t. For i ∈ [h], let Si

be the string obtained by applying the first i operations of H on s. For every i ∈ [h], we have
Si[1] = 0 and Si[|Si|] = 0. Furthermore, either Si[2] = 1 or Si[|Si| − 1] = 1.

The following lemma discusses the situation in which p visits a vertex not in 01 ∗ 10.
Essentially, the lemma claims that when p visits a substring x[i..j] with a prefix 00, the next
step would be x[i + 1..j], i.e., deleting a single zero from the left.

▶ Lemma 15 (Return to 01 ∗ 10). Let p be a path from x to y in Gx. If p visits a vertex
x[i..j] such that x[i..j] = 01 ∗ 10k for some integer k ≥ 1, then for every k′ ∈ [k − 1] it
must be that p visits x[i..j − k′] as well. Symmetrically, if p visits a vertex x[i..j] such that
x[i..j] = 0k1 ∗ 10 for some integer k ≥ 1, then for every k′ ∈ [k − 1] it must be that p visits
x[i + k′..j] as well.

The following is a direct implication of Lemmata 13 and 15.

▶ Observation 16. Let p be a path from x to y in Gx. If p applies a right hairpin deletion
operation on v then v ∈ 01∗. Symmetrically, if p applies a left hairpin deletion operation on
v then v ∈ ∗10.

CPM 2024



11:8 Hairpin Completion Distance Lower Bound

The following lemma establishes the importance of the synchronizer gadgets.

▶ Lemma 17 (Synchronizer Lemma). Let p be a path from x to y in Gx and let s = x[is..js] =
SyncL be a left synchronizer which is not contained in y, p must visit a vertex x[js + 1..k]
for some integer k. Symmetrically, if x[is..js] = SyncR is a right synchronizer which is not
contained in y, p must visit a vertex x[k..is − 1].

Notice that the leftmost index of every left information and protector gadget is js + 1 for
some left synchronizer x[is..js] (excluding the leftmost protector gadget). A similar structure
occurs with right gadgets. The following directly follows from Lemma 17.

▶ Corollary 18. Let p be a path from x to y in Gx. Then, for each ℓ ∈ [|S|] the path p visits
vertices u = x[i..j] with i = leftP

ℓ and v = x[i..j] with i = leftI
ℓ . Symmetrically, for each

r ∈ [|T |] the path p visits vertices u = x[i..j] with j = rightP
r and v = x[i..j] with j = rightI

r.

4.2 Transitions Between Gadegets
In this section, we address the way shortest paths apply to vertices that transit from a gadget
to the gadget afterward.

▶ Lemma 19. Let p be a shortest path from x to y in Gx. For some ℓ ∈ |S|, let v = x[i1..j1]
be the first vertex visited by p with i1 = leftI

ℓ . Let u = x[i2..j2] be the first vertex visited by p

with i2 = leftP
ℓ+1. Then, there is no occurrence of PR in x[j2..j1].

Symmetrically, for some r ∈ |T | let v = x[i1..j1] be the first vertex visited by p with
j1 = rightI

r. Let u = x[i2..j2] be the first vertex visited by p with j2 = rightP
r+1. Then, there

is no occurrence of PL in x[i1..i2].

Proof Sketch, Complete Proof in the full version of this paper [2]. The proof is by con-
tradiction. If there is only a single PR gadget that is contained in x[j2..j1], by Corollary 12
the number of hairpin deletions that must happen just to remove this gadget is at least p.
We introduce an alternative, shorter path: At the moment p reaches this PR gadget, it first
removes all the IL(S[ℓ]) gadget, and then removes all the remaining characters on the right
side greedily, until reaching x[i2..j2]. The reason why this alternative path is indeed shorter
is since in this way the removal of the PR gadget takes 1 operation, instead of p, and we
may pay at most iα + iβ ≤ 2i0 for some α, β ∈ {0, 1, 2}, for removing one information gadget
in the left side and the information gadget following the right protector gadget. Since p is
much larger than i0, the alternative path is shorter, contradicting the assumption that p is
a shortest path. Notice that if there are more than one PR gadgets in x[j2..j1], the benefit
from deleting IL(S[ℓ]) first is even larger. ◀

The following lemma states that every right deletion on x[i..j] with i being within a
non SyncL gadget can also be applied if i is the leftmost index of the gadget. A symmetric
argument is stated as well.

▶ Lemma 20. Let p be a path from x to y in Gx. Let v = x[i..j] be a vertex visited by p

such that i ∈ [leftP
ℓ ..leftI

ℓ − 1] for some ℓ ∈ [|S|]. Let v′ = x[leftP
ℓ ..j], let u = x[i..j − k] and

u′ = x[leftP
ℓ ..j − k] for some k. If (v, u) is an edge in p, then (v′, u′) is an edge in Gx.

The above statement considers the case in which v interacts with a PL gadget, the following
similar statements, regarding different gadgets hold as well:

PR: Let v = x[i..j] be a vertex visited by p such that j ∈ [rightI
r + 1..rightP

r ] for some
r ∈ [|T |]. Let v′ = x[i..rightP

r ], let u = x[i + k..j] for some k, and let u′ = x[i + k..rightP
r ]

If (v, u) is an edge in p, then (v′, u′) is an edge in Gx.
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IL(α) for some α ∈ {0, 1, 2}: Let v = x[i..j] be a vertex visited by p such that
i ∈ [leftI

ℓ ..leftP
ℓ+1 − 1] for some ℓ ∈ [|S|]. Let v′ = x[leftI

ℓ ..j], let u = x[i..j − k] and
u′ = x[leftI

ℓ ..j − k] for some k. If (v, u) is an edge in p, then (v′, u′) is an edge in Gx.
IR(α) for some α ∈ {0, 1, 2}: Let v = x[i..j] be a vertex visited by p such that
j ∈ [rightP

r+1 + 1..rightI
r ] for some r ∈ [|T |]. Let v′ = x[i..rightI

r ], let u = x[i + k..j] for
some k, and let u′ = x[i + k..rightI

r ] If (v, u) is an edge in p, then (v′, u′) is an edge in
Gx.

Proof Sketch, Complete Proof in the full version of this paper [2]. We distinguish be-
tween two cases. If x[i..i + 1] ̸= 01, by Lemma 15 the hairpin deletion removes exactly one
0 character, and by x[leftP

ℓ ] = 0 the edge (u′, v′) is in Gx. If x[i..i + 1] = 01, we first prove
(using Corollary 18) that k ≤ leftI

ℓ − i. Moreover, since i ∈ [leftP
ℓ ..leftI

ℓ −1] it must be the case
that i = leftP

ℓ + q · 11 for some q. Since x[leftP
ℓ ..leftI

ℓ − 1] is periodic with period 11. Thus,
x[leftP

ℓ ..leftP
ℓ + k] = x[leftP

ℓ + q · 11..leftP
ℓ + q · 11 + k] = x[i..i + k] and the claim follows. ◀

We are now ready to prove Lemma 9.

▶ Lemma 9 (Optimal Well-Behaved Path). There is a shortest path from x to y in Gx which
is well-behaved.

Proof. We describe a method that converts a shortest path p from x to y that visits
u = x[leftP

ℓ ..rightP
r ] into a shortest path p′ from x to y that visits one of the following vertices:

x[leftP
ℓ+1..rightP

r ], x[leftP
ℓ ..rightP

r+1], or x[leftP
ℓ+1..rightP

r+1]. Moreover, the prefixes of p and p′

from x to u are identical. Using this technique, it is straightforward to convert a shortest
path from x to y in Gx into a well-behaved path of the same length.

Let vL = x[iL..jL] be the first vertex in p with iL = leftP
ℓ+1 and let vR = x[iR..jR] be the

first vertex in p with jR = rightP
r+1. By Corollary 18, vL and vR are well defined (unless

ℓ = |S|+ 1 or r = |T |+ 1, in such a case just one of the vertices is well defined and the claim
follows trivially from Observation 10). We consider the case where vL appears before vR in p

and show how to convert p. The other case is symmetric.
We distinguish between two cases:

Case 1: jL ∈ [rightI
r + 1..rightP

r ]. Let q be the sub-path of p from u to vL. We present
a path q∗ from u to vL that is not longer than q and visits x[leftP

ℓ+1..rightP
r ]. Recall that

an edge of the form x[i..j] → x[i + k..j] is called a left edge, and an edge of the form
x[i..j] → x[i..j − k] is called a right edge. Let costL be the number of left edges in q and
costR be the number of right edges in q. We first show a path from u = x[leftP

ℓ ..rightP
r ]

to x[leftP
ℓ+1..rightP

r ] of length costL. Let e = x[i1..j] → x[i2..j] be a left edge in q. It must
be that j ∈ [jL..rightP

r ] ⊆ [rightI
r + 1..rightP

r ]. Hence, by Lemma 20, there exists an edge
e′ = x[i1..rightP

r ]→ x[i2..rightP
r ]. Let e1, e2, . . . , ecostL

be the subsequence of all left edges in
q. The path q∗

1 = e′
1, e′

2, . . . , e′
costL

is a valid path of length costL from u = x[leftP
ℓ ..rightP

r ] to
x[leftP

ℓ+1..rightP
r ].

If jL = rightP
r then q∗ = q∗

1 is a path that satisfies all the requirements. Otherwise, costR ≥
1. We claim that there is an edge eR from x[leftP

ℓ+1..rightP
r ] to vL = x[leftP

ℓ+1..jL]. This is
true since x[leftP

ℓ+1..leftI
ℓ+1 − 1] = PL · SyncL =

←−−−−−−−−−−−−−−−
SyncR[2..|SyncR|] · PR =

←−−−−−−−−−−−−−−−
x[rightI

r + 2 .. rightP
r ]

and jL ∈ [rightI
r + 1..rightP

r ]. We conclude q∗ by appending eR to the end of q∗
1 . Finally,

cost(q∗) = costL + 1 ≤ costL + costR = cost(q), and q∗ visits x[leftP
ℓ+1..rightP

r ].

CPM 2024
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Case 2: jL ∈ [rightP
r+1 − 1..rightI

r]. We first prove the following claim.

▷ Claim. iR ∈ [leftP
ℓ+1..leftI

ℓ+1 − 1].

Proof. Since vR appears after vL, we have iR ≥ iL = leftP
ℓ+1. Assume to the contrary that

iR ≥ leftI
ℓ+1. Let vf = x[if ..jf ] be the first vertex in p with jf = rightI

r (vf exists according
to Corollary 18). Note that vf does not appear after vL in p since jL =≤ rightI

r = jf

Therefore, if ≤ iL = leftP
ℓ+1 and [leftP

ℓ+1..leftI
ℓ+1] ⊆ [if ..iR]. Therefore, the occurrence of PL

starting in leftP
ℓ+1 is contained in x[if ..iR]. Since p is a shortest path, this is a contradiction

to Lemma 19. ◁

Let q be the sub-path of p from vL to vR. Let costL be the number of left edges in q and
costR be the number of right edges in q. We present a path q∗ from vL to vR that is not
longer than q and visits x[leftP

ℓ+1..rightP
r+1]. We first show a path q∗

1 from vL = x[leftP
ℓ+1..jL]

to x[leftP
ℓ+1..rightP

r+1] of length costR. Let e = x[i..j1]→ x[i..j2] be a right edge in q. It must
be that i ∈ [leftP

ℓ+1..iR] ⊆ [leftP
ℓ+1..leftI

ℓ+1 − 1] due to the claim. Hence, by Lemma 20, there
exists an edge e′ = x[leftP

ℓ+1..j1] → x[leftP
ℓ+1..j2]. Let e1, e2, . . . , ecostL

be the subsequence
of all right edges in q. The path q∗

1 = e′
1, e′

2, . . . , e′
costL

is a valid path of length costR from
vL = x[leftP

ℓ+1..jL] to x[leftP
ℓ+1..rightP

r+1].
If iR = leftP

ℓ+1 then q∗ = q∗
1 is a path that satisfies all the requirements. Otherwise,

costL ≥ 1. We claim that there is an edge eL from x[leftP
ℓ+1..rightP

r+1] to vR = x[iR..rightP
r+1].

This is true since x[leftP
ℓ+1..leftI

ℓ+1] = PL · SyncL · 0 =
←−−−−−−−
SyncR · PR =

←−−−−−−−−−−−−−−−−−−
x[rightI

r+1 + 1 .. rightP
r+1]

and iR ∈ [leftP
ℓ+1..leftI

ℓ+1 − 1]. We conclude q∗ by appending eL to the end of q∗
1 . Finally,

cost(q∗) = costL + 1 ≤ costL + costR = cost(q), and q∗ visits x[leftP
ℓ+1..rightP

r ]. ◀

5 Cost of Well-Behaved Steps

In this section, we analyze the cost of each of the possible phases of a well-behaved path
(Definition 8). We first consider the cost of deletion of a single mega-gadget.

▶ Lemma 21 (Non Synchronized Deletion). Let v = x[leftP
ℓ ..rightP

r ], u1 = [leftP
ℓ+1..rightP

r ]
and u2 = [leftP

ℓ ..rightP
r+1] for ℓ ∈ [|S|] and r ∈ [|T |]. Let S[ℓ] = α and T [r] = β. It holds that

distGx
(v, u1) = iα + 2 and distGx

(v, u2) = iβ + 2.

Proof. We prove distGx
(v, u1) = iα + 2. The proof for distGx

(v, u2) = iβ + 2 is symmetrical.
We prove the lemma by showing distGx

(v, u1) ≥ iα + 2 and distGx
(v, u1) ≤ iα + 2.

distGx(v, u1) ≥ iα + 2. Let p be a v to u1 path in Gx. Note that vertex x[i..j] in p has
j = rightP

r . According to Corollary 18, p must visit z = x[leftI
ℓ ..rightP

r ]. Since z ̸= v, the
sub-path of p from v to z induces a cost of at least 1 to p. Consider the sub-path q of p from
z to u1. According to Corollary 12, every left hairpin deletion step in q deletes at most a
single ’1’ symbol. Due to x[leftI

ℓ ..leftP
ℓ+1 − 1] = IL(α) · SyncL, the sub-path q consists of at

least #1(IL(α)) + 1 = iα + 1 additional left hairpin deletions.

distGx(v, u1) ≤ iα + 2. We present a path p with cost exactly iα + 2 from v to u1.
Initially, p deletes a prefix of length |PL| + |SyncL| from v in one step. This is possible
since v has a suffix 10 · PR. Then, p proceeds to delete x[leftI

ℓ ..leftP
ℓ+1 − 1] = IL(α) · SyncL a

single ’1’ character at a time. Note that this is possible regardless of the value of α due to
x[rightP

r − 8..rightP
r ] = 0710. The total cost of this path is iα + 2 as required. ◀
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In the following lemma, we show that the cost of deleting two disagreeing mega-gadgets
is the same as deleting each one of them separately.

▶ Lemma 22 (Synchronized Deletion of Disagreeing Mega Gadgets). Let v = x[leftP
ℓ ..rightP

r ],
u = [leftP

ℓ+1..rightP
r+1] for ℓ ∈ [|S|] and r ∈ [|T |] with S[ℓ] ̸= T [r]. It holds that distGx(v, u) =

iα + iβ + 4 with S[ℓ] = α and T [r] = β.

Proof. We prove the claim by showing distGx
(v, u) ≥ iα + iβ +4 and distGx

(v, u) ≤ iα + iβ +4.

distGx(v, u) ≥ iα + iβ + 4. Let p be a path from v to u in Gx. According to Corollary 18,
p visits vertices z1 = x[leftI

ℓ ..j] and z2 = x[i..rightI
r ] for some i, j. The last left hairpin

deletion in p before z1 and the last right hairpin deletion in p before z2 induce a cost of 2 to
p. Consider a left hairpin deletion that is applied to a vertex x[i′..j′] after z1 in p. Note that
i′ is either within an IL(α) gadget or within a SyncL gadget, and j′ is either within an IR(β)
gadget, a SyncR gadget or a PR gadget. In any of the above cases, Corollary 12 suggests that
the deletion operation deletes at most a single ’1’ character. Therefore, there are at least
iα + 1 left deletions after z1 in p. Due to similar reasoning, there are at least iβ + 1 right
hairpin deletions after z2 in p. It follows that the total cost of p is at least iα + iβ + 4.

distGx(v, u) ≤ iα + iβ + 4. Consider the path p that is composed of two sub-paths, the
prefix p1 is a shortest path from v to w = x[leftP

ℓ+1..rightP
r ] and the suffix p2 is a shortest

path from w to u. By Lemma 21 we have cost(p1) = iα + 2 and cost(p2) = iβ + 2. Therefore
cost(p) = cost(p1) + cost(p2) = iα + 2 + iβ + 2. ◀

The last case we have to analyze is a synchronized deletion of agreeing mega gadgets.
We first present the concept of Fibonacci-regular numbers.

▶ Definition 23 (Fibonacci-regular number). We say that a ∈ N is a Fibonacci-regular number
if for all 2 ≤ k ≤ a it holds that Fib−1(a) ≤ Fib−1(a/k) + k − 1.

▶ Fact 24. i2 = 53, i1 = 54, i0 = 55 and p = 144 are Fibonacci-regular numbers.

The following lemma, which proof is in the full version of this paper, provides the required
machinery to analyze the cost of a synchronized deletion [2].

▶ Lemma 25. Let per = 010ext and let q ∈ 010int01 ∗ 1111 ∗ 100int10 with int ̸= ext and
min{int, ext} ≥ 3. For every Fibonacci-regular number a, we have HDD(pera · SyncL · q ·
SyncR · ←−pera, q) = Fib−1(a) + max(ext− int− 1, 0) + 3.

Finally, we are ready to analyze the cost of synchronized deletion of agreeing mega
gadgets.

▶ Lemma 26 (Synchronized Deletion of Agreeing Mega Gadgets). Let v = x[leftP
ℓ ..rightP

r ],
u = [leftP

ℓ+1..rightP
r+1] for ℓ ∈ [|S|] and r ∈ [|T |] with S[ℓ] = T [r] = α. Then distGx

(v, u) =
Fib−1(p) + Fib−1(iα) + 11− 2α.

Proof. Let w = x[leftI
ℓ ..rightI

r ]. Consider the following path p′ from u to v in Gx. The path p′

consists of a prefix p′
1 which is a shortest path from u to w and a suffix p′

2 which is a shortest
path from w to v. Since i0, i1, i2 and p are Fibonacci-regular numbers (Fact 24), according
to Lemma 25 (with ext = 9 and int = 3 + 2α) we have cost(p′

1) = Fib−1(p) + max(9− (3 +
2α)− 1, 0) + 3 = Fib−1(p) + 8− 2α. Similarly, according to Lemma 25 (with ext = 3 + 2α

CPM 2024
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and int = 9) we have cost(p′
2) = Fib−1(iα) + max(3 + 2α− 9− 1, 0) + 3 = Fib−1(iα) + 3. In

total we have cost(p′) = cost(p′
1) + cost(p′

2) = Fib−1(p) + Fib−1(iα) + 11 − 2α. Therefore
distGx

(v, u) ≤ Fib−1(p) + Fib−1(iα) + 11− 2α = 31− 2α.
We prove the following claim.

▷ Claim. There is a shortest path p from v to u that visits w.

Proof. Let vL = x[iL..jL] and vR = x[iR..jR] be the first vertices visited by p with iL = leftI
ℓ

and jR = rightI
r . Assume without loss of generality that vR occurs before vL in p. We

consider two cases regarding jL.

Case 1: jL = rightP
r+1. Consider the suffix ps of p from vL to u. Let v′ = x[i′..j′]

be a vertex in ps that is immediately followed by a left hairpin deletion operation in ps.
Since i′ ∈ [leftI

ℓ ..leftP
ℓ+1 − 1] is either within an IL(α) gadget or within a SyncL gadget, and

j′ = rightP
r+1 is in a PR gadget, Corollary 12 suggests that the left hairpin deletion applied to

v′ deletes at most a single ’1’ character. It follows from the above analysis that the number
of left hairpin deletions in ps is at least #1(IL(α)) + 1 ≥ i2 + 1 = 54. Therefore, the cost of p

is at least 55 > 31 ≥ cost(p′), which contradicts the minimality of p.

Case 2: jL > rightP
r+1. Let q be the sub-path of p from vR to vL. Let costL be the number

of left edges in q and costR be the number of right edges in q. We first show a path from
vR to x[leftI

ℓ ..rightI
r ] of length costL. Let e = x[i1..j]→ x[i2..j] be a left edge in q. It must

be that j ∈ [jL..rightI
r ] ⊆ [rightP

r+1 + 1..rightI
r ]. Hence, by Lemma 20, there exists an edge

e′ = x[i1..rightI
r ]→ x[i2..rightI

r ]. Let e1, e2, . . . , ecostL
be the subsequence of all left edges in

q. The path q∗
1 = e′

1, e′
2, . . . , e′

costL
is a valid path of length costL from vR to x[leftI

ℓ ..rightI
r ].

If jL = rightI
r then q∗ = q∗

1 is a path that satisfies all the requirements. Otherwise, costR ≥
1. We claim that there is an edge eR from x[leftI

ℓ ..rightI
r ] to vL = x[leftI

ℓ ..jL]. This is true
since x[leftI

ℓ ..leftP
ℓ+1 − 1] = IL(S[ℓ]) · SyncL = IL(T [r]) · SyncL =

←−−−−−−−−−−−−−−−−−−−
SyncR[2..|SyncR|] · IR(T [r]) =

←−−−−−−−−−−−−−−−−−
x[rightP

r+1 + 2 .. rightI
r ] and jL ∈ [rightP

r+1 + 1..rightI
r ]. We conclude q∗ by appending eR

to the end of q∗
1 . Finally, cost(q∗) = costL + 1 ≤ costL + costR = cost(q), and q∗ visits

x[leftI
ℓ ..rightI

r ]. ◁

Let p be a shortest path from u to v in Gx. According to the claim, we can indeed
assume that p consists of a shortest path p1 from v to w and a shortest path p2 from w to v.
Therefore we have cost(p) = cost(p′) = Fib−1(p) + Fib−1(iα) + 11− 2α as required. ◀

6 Correctness

Let D(0) = 57, D(1) = 56, D(2) = 55, Dsync(0) = 31, Dsync(1) = 29, Dsync(2) = 27, and
B = 83. The following lemma summarize Lemmata 21, 22, and 26.

▶ Lemma 27. Let ℓ ∈ [|S|] and let r ∈ [|T |] be two integers. Denote S[ℓ] = α and T [r] = β.
The following is satisfied.
1. distGx

(x[leftP
ℓ ..rightP

r ], x[leftP
ℓ+1, rightP

r ]) = D(α)
2. distGx

(x[leftP
ℓ ..rightP

r ], x[leftP
ℓ , rightP

r+1]) = D(β)
3. distGx(x[leftP

ℓ ..rightP
r ], x[leftP

ℓ+1, rightP
r+1]) = D(α) + D(β) if α ̸= β

4. distGx
(x[leftP

ℓ ..rightP
r ], x[leftP

ℓ+1, rightP
r+1]) = Dsync(α) if α = β

5. 2D(0)−Dsync(0) = 2D(1)−Dsync(1) = 2D(2)−Dsync(2) = B
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Proof. According to Lemma 21, we have D(γ) = iγ +2 for every γ ∈ {0, 1, 2}. It follows from
Lemma 22 that if α ̸= β we have distGx

(x[leftP
ℓ ..rightP

r ], x[leftP
ℓ+1, rightP

r+1]) = iα + iβ + 4 =
iα + 2 + iβ + 2 = D(α) + D(β). It follows from Lemma 26 that Dsync(γ) = Fib−1(p) +
Fib−1(iα) + 11− 2γ = 11 + 9 + 11− 2γ = 31− 2γ for every γ ∈ {0, 1, 2}.

Indeed, we have 2 ·D(0)−Dsync(0) = 2 ·57−31 = 83, 2 ·D(1)−Dsync(1) = 56 ·2−29 = 83
and 2 ·D(2)−Dsync(2) = 55 · 2− 27 = 83 as required. ◀

We are now ready to prove Lemma 7 which concludes the correctness of the reduction.

▶ Lemma 7 (Reduction Correctness). For some constants D(0), D(1), D(2) and B we have:
HDD(x, y) =

∑
α∈{0,1,2} D(α)(#α(S) + #α(T ))− LCS(S, T ) ·B.

Proof. We prove the equality claimed, by showing two sides of inequality.

HDD(x, y) ≤
∑

α∈{0,1,2} D(α)(#α(S) + #α(T )) − LCS(S, T ) · B. Denote c =
LCS(S, T ). Let I = i1 < i2 < i3.., . . . , .. < ic ⊆ [|S|] and J = j1 < j2 < j3 . . . < jc ⊆ [|T |] be
two sequences of indices such that S[ik] = T [jk] for every k ∈ [c]. Thus, I and J represent a
maximal common subsequence of S and T .

We present a path p in Gx from x to y. The path p starts in x = x[leftP
1 ..rightP

1 ], and
consists of 3 types of subpaths.
1. Left deletion subpath: a shortest path from x[leftP

ℓ ..rightP
r ] to x[leftP

ℓ+1..rightP
r ] for some

ℓ ∈ [|S|] and r ∈ [|T |+ 1].
2. Right deletion subpath: a shortest path from x[leftP

ℓ ..rightP
r ] to x[leftP

ℓ ..rightP
r+1] for some

ℓ ∈ [|S|+ 1] and r ∈ [|T |].
3. Match subpath: a shortest path from x[leftP

ℓ ..rightP
r ] to x[leftP

ℓ+1..rightP
r+1] for some

ℓ ∈ [|S|] and r ∈ [|T |].
Specifically, if p visits x[leftP

ℓ ..rightP
r ], then p proceeds in a left deletion subpath if ℓ ∈ [|S|]\I.

Otherwise, p proceeds in a right deletion subpath if r ∈ [|T |] \ J . If both ℓ ∈ I and r ∈ J ,
the path p proceeds in a match subpath. Note that it is guaranteed that as long as ℓ ̸= |S|+1
or r ̸= |T |+ 1, p continues to make progress until finally reaching x[leftP

|S|+1..rightP
|T |+1] = y.

We proceed to analyze the cost of p. For α ∈ {0, 1, 2} we introduce the following notation
regarding I and J . Let uL(α) = |{i | S[i] = α and i /∈ I}|, uR(α) = |{j | T [j] = α and j /∈
J }|. In addition, let c(α) = |{k | k ∈ [c] and S[ik] = α}|.

Clearly, by Lemma 27 every k ∈ [c] induces a cost of Dsync(S[ik]) to p. Moreover, every
i ∈ [|S|] \ I, induces a cost of D(S[i]) to p, and every j ∈ [|T |] \ J induces a cost of D(T [j])
to p. Thus, we have

cost(p) =
∑

α∈{0,1,2}

D(α)(uL(α) + uR(α)) +
∑

α∈{0,1,2}

Dsync(α) · c(α)

=
∑

α∈{0,1,2}

D(α)(uL(α) + uR(α)) +
∑

α∈{0,1,2}

(2D(α)−B) · c(α)

=
∑

α∈{0,1,2}

D(α)(uL(α) + uR(α) + 2c(α))−B ·
∑

α∈{0,1,2}

c(α)

=
∑

α∈{0,1,2}

D(α)(#α(S) + #α(T ))− c ·B.

Where the first equality follows from B = 2 ·D(α)−Dsync for every α ∈ {0, 1, 2}, and the last
equality is since for every α ∈ {0, 1, 2} we have #α(S) = uL(α) + cα,#α(T ) = uR(α) + cα

and c = c(0) + c(1) + c(2).
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HDD(x, y) ≥
∑

α∈{0,1,2} D(α)(#α(S) + #α(T )) − LCS(S, T ) · B. Let p be a well-
behaved shortest path from x to y in Gx. According to Lemma 9, such a path p exists.

Let X = {v = x[leftP
ℓ ..rightP

r ] | p visits v}. Notice that the vertices of X are naturally
ordered by the order of their occurrences in p, so we denote the ith vertex in X by xi. For
i ∈ [|X |−1], we classify the vertex xi = x[leftP

ℓ ..rightP
r ] for some ℓ ∈ [|S|+1] and r ∈ [|T |+1]

into one of the following four disjoint types.

1. Match vertex : if xi+1 = [leftP
ℓ+1..rightP

r+1] and S[ℓ] = T [r].

2. Mismatch vertex : if xi+1 = [leftP
ℓ+1..rightP

r+1] and S[ℓ] ̸= T [r].

3. Left deletion vertex : if xi+1 = [leftP
ℓ+1..rightP

r ].

4. Right deletion vertex : if xi+1 = [leftP
ℓ ..rightP

r+1].

Notice that since p is well-behaved, xi is classified into one of the four types.

We proceed to analyze the cost of the subpath of p from xi = x[leftP
ℓ ..rightP

r ] to xi+1
using Lemma 27. If xi is a match vertex, it induces a cost of Dsync(S[ℓ]). If xi is a mismatch
vertex, it induces a cost of D(S[ℓ]) + D(T [r]). If xi is a right (resp. left) deletion vertex,
it induces a cost of D(S[ℓ]) (resp. D(T [r]). For α, β ∈ {0, 1, 2} we present the following
notations.

cmatch(α) = |{x ∈ X | x is a match vertex with S[ℓ] = α}|

cmis({α, β}) = |{x ∈ X | x is a mismatch vertex with {S[ℓ], T [r]} = {α, β}}|

cmis(α) = |{x ∈ X | x is a mismatch vertex with S[ℓ] = α or T [r] = α}|

cleft(α) = |{x ∈ X | x is a left deletion vertex with S[ℓ] = α}|

cright(α) = |{x ∈ X | x is a right deletion vertex with T [r] = α}|

Note that since every super-gadget is deleted exactly once as a part of an xi to xi+1 subpath.
It follows that for every α ∈ {0, 1, 2} we have #α(S) + #α(T ) = cleft(α) + cright(α) + cmis(α) +
2cmatch(α). Note that for α ∈ {0, 1, 2} we have cmis(α) =

∑
β ̸=α cmis({α, β}). We denote

cmatch = cmatch(0) + cmatch(1) + cmatch(2). We make the following claim:

▷ Claim. cmatch ≤ LCS(S, T ).

Proof. We show that there is a common subsequence of S and T with length cmatch. Let
Pairs = {(ℓ, r) | x[leftP

ℓ ..rightP
r ] is a match vertex}. Note that Pairs is naturally ordered by

the order of occurrences of the corresponding vertices in p. We denote by (ℓi, ri) the ith
pair in Pairs according to this order. Note that for every i ∈ [|Pairs| − 1], we have ℓi < ℓi+1
and ri < ri+1 due to the definition of a match vertex. Furthermore, we have S[ℓi] = T [ri]
for every i ∈ [|Pairs|]. It follows that the subsequence S[ℓ1], S[ℓ2] . . . , S[ℓ|Pairs|] equals to the
subsequence T [r1], T [r2], . . . , T [r|Pairs|]. Therefore, S and T have a common subsequence of
length |Pairs| = cmatch. ◁
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It follows from the above analysis that

cost(p) =
∑

α∈{0,1,2}

Dsync(α)cmatch(α) +
∑

α̸=β∈{0,1,2}

(D(α) + D(β)) · cmis({α, β})

+
∑

α∈{0,1,2}

D(α)(cleft(α) + cright(α))

=
∑

α∈{0,1,2}

Dsync(α)cmatch(α) +
∑

α∈{0,1,2}

D(α)
∑
β ̸=α

cmis({α, β})

+
∑

α∈{0,1,2}

D(α)(cleft(α) + cright(α))

=
∑

α∈{0,1,2}

Dsync(α)cmatch(α) +
∑

α∈{0,1,2}

D(α) · cmis(α)

+
∑

α∈{0,1,2}

D(α)(cleft(α) + cright(α))

=
∑

α∈{0,1,2}

(2D(α)−B)cmatch(α) +
∑

α∈{0,1,2}

D(α)(cleft(α) + cright(α) + cmis(α))

=
∑

α∈{0,1,2}

D(α)(cleft(α) + cright(α) + cmis(α) + 2cmatch(α))−B
∑

α∈{0,1,2}

cmatch(α)

=
∑

α∈{0,1,2}

D(α) · (#α(S) + #α(T ))−B · cmatch

≥
∑

α∈{0,1,2}

D(α) · (#α(S) + #α(T ))−B · LCS(S, T ).

Where the last inequality follows from the claim. ◀
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