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Abstract
Within the field of haplotype analysis, the Positional Burrows-Wheeler Transform (PBWT) stands
out as a key innovation, addressing numerous challenges in genomics. For example, Sanaullah et al.
introduced a PBWT-based method that addresses the haplotype threading problem, which involves
representing a query haplotype through a minimal set of substrings. To solve this problem using the
PBWT data structure, they formulate the Minimal Positional Substring Cover (MPSC) problem,
and then, subsequently present a solution for it. Additionally, they present and solve several variants
of this problem: k-MPSC, leftmost MPSC, rightmost MPSC, and length-maximal MPSC. Yet, a full
PBWT is required for each of their solutions, which yields a significant memory usage requirement.
Here, we take advantage of the latest results on run-length encoding the PBWT, to solve the MPSC
in a sublinear amount of space. Our methods involve demonstrating that k-Set Maximal Exact
Matches (k-SMEMs) can be computed in a sublinear amount of space via efficient computation of
k-Matching Statistics (k-MS). This leads to a solution that requires sublinear space for, not only
the MPSC problem, but for all its variations proposed by Sanaullah et al. Most importantly, we
present experimental results on haplotype panels from the 1000 Genomes Project data that show
the utility of these theoretical results. We conclusively demonstrate that our approach markedly
decreases the memory required to solve the MPSC problem, achieving a reduction of at least two
orders of magnitude compared to the method proposed by Sanaullah et al. This efficiency allows
us to solve the problem on large versions of the problem, where other methods are unable to
scale to. In summary, the creation of µ-PBWT paves the way for new possibilities in conducting
in-depth genetic research and analysis on a large scale. All source code is publicly available at
https://github.com/dlcgold/muPBWT/tree/k-smem.
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1 Introduction

In recent years, the Positional Burrows-Wheeler Transform (PBWT) has emerged as a
fundamental data structure for solving various challenges in haplotype analysis. One challenge
in haplotype analysis is haplotype threading, which aims to represent a query haplotype by
using one or more substrings derived from at least k haplotypes within a reference panel.
Sanaullah et al. [10, 11] showed that solutions to the Minimal Positional Substring Cover
(MPSC) problem can be used to solve the haplotype threading problem in the context of
the PBWT. This insight led to a PBWT-framework for solving haplotype threading that
is an alternative to the classical Li and Stephens [7] model that is promised to be more
scalable – as the original is unlikely to be efficient enough to be applied on large biobank
datasets. In addition to the formulation and solution to the MPSC problem, Sanaullah et
al. define several variants of this problem as well as algorithmic solutions. Although more
space-efficient than the Li and Stephens model, each of the solutions presented by Sanaullah
et al. require the construction and storage of the full PBWT. As it was previously mentioned
by Durbin [4], storing the entire PBWT will scale linearly in the size of the input – more
precisely, Durbin predicted it to be 13n bytes. For reasonably large biobank datasets – such
as the ones offered by the 1000 Genomes Project data – this would quickly become unwieldy.

In this paper, we present a space- and time- efficient manner for solving MPSC as well as
all variants suggested by Sanaullah et al: k-MPSC, leftmost MPSC, rightmost MPSC, and
length-maximal MPSC. Our methods take advantage of the latest advancements in run-length
encoding the PBWT, and exploit the fact that MPSC problem can be construed as computing
all Set Maximal Exact Matches (SMEMs) in the PBWT, which are maximal matches that
are common between a pattern and a panel that cannot be extended. More specifically, we
show that we can efficiently compute k-Set Maximal Exact Matches (k-SMEMs), which have
the additional constraint that any SMEM must occur in at least k rows in the reference
panel. This efficient computation comes from extending the definition of Matching Statistics
in the PBWT [3] to k-Matching Statistics (k-MS) in the PBWT. This allows for algorithms
developed by Cozzi et al. [3] to compute Matching Statistics to be extended to computing
k-MS, which yield k-SMEMs, and finally, a solution to the MPSC and the k-MPSC problem,
i.e., find a MPSC in which each positional substring is covered by at least k rows in the
reference panel. Hence, we show how k-SMEMs and k-MS naturally provide a framework for
developing efficient solutions to the MPSC problem and its variants, proving that we can
solve these problems in sublinear space with respect to the size of the panel.

Most importantly, we implement our approach and show that the sublinear bound on the
space usage has a practical benefit in haplotype analysis. We compare our implementation
to the current state-of-the-art on increasingly-larger autosome panels of the 1000 Genomes
Project. Our findings on these datasets demonstrate that our methods substantially lowers
memory consumption for solving the k-MPSC problem, achieving reductions of at least two
orders of magnitude compared to the method presented by Sanaullah et al. Due to this
memory usage, only our method was able to scale to the largest panel sizes in 1000 Genomes
Project with reasonable memory constraints. Hence, we show our strategy is applicable of
solving haplotype threading on extensive datasets found in modern biobanks.
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2 Background

In this paper, we propose novel algorithms for solving the MPSC problem and its variants.
Our algorithms are based on µ-PBWT, which is a run-length encoding of the PBWT. To
lay the groundwork for describing the algorithms in this paper, we formally introduce the
MPSC problems and its variants, and then introduce µ-PBWT and the concepts needed for
the development of our methods.

2.1 The Minimal Positional Substring Cover Problems
Throughout this paper, we define a string X over a finite, ordered alphabet Σ = {c1, . . . , cσ}
to be the concatenation of |X| = n characters X = X[1..n] of Σ. We denote the empty string
as ε, the string spanning position i through j as X[i..j] (with X[i..j] = ε if i > j), the i-th
prefix of X as X[1..i], and the i-th suffix as X[i..|X|].

A positional substring of a string X is a triplet (i, j, X) with 1 ≤ i, j ≤ |X| and we say
that the substring corresponding to (i, j, X) is X[i..j]. Two positional substrings (i, j, X)
and (k, l, Y ) are equal iff i = k, j = l, and X[i..j] = Y [k..l]. A positional substring (i, j, X)
is contained in a string Y iff X[i..j] = Y [i..j].

Given a set S of strings of length w (i.e., panel), a k-positional substring cover of a
w-length string P by S is a set C of positional substrings such that: (i) each position l ∈ [1, w]
of P is covered by a (i, j, X) ∈ C (i.e., i ≤ l ≤ j), (ii) each (i, j, X) ∈ C is contained in P ,
and (iii) each (i, j, X) ∈ C is contained in at least k distinct strings of S. The size of the
cover is the number of elements in C, which we denote as |C|.

▶ Problem 1 (k-Minimal Positional Substring Cover problem, k-MPSC [10]). Given a set S of
h strings of length w and a string P of length w, find, if it exists, a k-positional substring
cover of P by S with the smallest size over all k-positional substring covers of P by S.

The MPSC problem is the k-MPSC problem where k is equal to 1 (i.e., each positional
substring of the cover is contained in at least one string of the panel). It is easy to see that
a solution to the problem exists iff for every i, with 1 ≤ i ≤ w, the positional substrings
(i, i, P ) are contained in at least k distinct strings of S.

The best known algorithm for computing a k-MPSC requires O(w) time [11] and it works
column-wise from left to right by extending matches of the string P with at least k strings
of the panel S. At any column, if the current match cannot be extended, then a new match
starting at the current column is initiated. Optimality is ensured by the property of k-MPSC
modularity [10, Lemma 2]. Matches of P with at least h strings in S are efficiently computed
and extended using the Positional Burrows–Wheeler Transform (PBWT) of S. Hereon, we
denote h · w as n, which will be used throughout this paper to bound the space and time
complexity. The k-MPSC algorithm of Sanaullah et al. [10] requires O(n) space to ensure
constant-time random access to the input panel and to the PBWT.

Next, we draw a relationship between positional substrings and a generalization of
maximal exact matches, which we refer to as k-Set Maximal Exact Match (k-SMEM), by
requiring the maximality of matches to be defined as follows.

▶ Definition 2 (k-SMEM). Let S be a set of h sequences of length w and let P be a string of
length w. The pair (i, j) is a k-SMEM if the positional substring (i, j, P ) is contained in at
least k sequences of S and one of the following holds:

i = 1 and j = w

i = 1 and (i, j + 1, P ) is not contained in at least k strings of S

j = w and (i− 1, j, P ) is not contained in at least k strings of S

(i− 1, j, P ) and (i, j + 1, P ) are not contained in at least k strings of S

CPM 2024
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It is straightforward to observe that every positional substring (i, j, P ), which is part of a
k-MPSC of P by S, generates an interval that fits within a k-SMEM (i′, j′), where i′ ≤ i

and j′ ≥ j. This is because (i, j) either directly constitutes a k-SMEM or can be extended
either to the left, the right, or both.

▶ Problem 3 (k-SMEM-finding). Given a set S of h sequences of length w, a string P of
length w, and an integer k, such that 1 ≤ k ≤ h, find all k-SMEMs between P and S.

As previously mentioned, the k-MPSC problem does not admit a solution if there exists
any positional substring (i, i, P ) that is not included in at least k strings from S. On the
contrary, the k-SMEM-finding problem always admits a solution–possibly not covering some
columns.

Leftmost, Rightmost, and Length-maximal MPSC
Given a panel S and a string P there can exist several distinct k-MPSC of the same size
(hence, several solutions to the problem). Since the returned solution might affect the results
of downstream applications of k-MPSC, three problems have been identified [10, 11] to
constrain (and, possibly, to uniquely identify) the returned solution. As in the original paper,
we state the problems in terms of MPSC (hence, 1-MPSC), but they can be generalized to
k-MPSC.

For the definition of the problems, given a MPSC C, the i-th positional substring of C, for
1 ≤ i ≤ |C|, is the i-th positional substring in the enumeration of the positional substrings of
C by increasing the starting positions, while the length of C is the sum of the lengths of its
positional substrings.

find a leftmost MPSC C of P by S, i.e. a MPSC of P by S such that any i-th substring
in C starts at least as early as the i-th substring of every other MPSC of P by S

find a rightmost MPSC C of P by S, i.e. a MPSC of P by S such that any i-th substring
in C ends at least as late as the i-th substring of every other MPSC of P by S

find a length-maximal MPSC of P by S, i.e. the MPSC that has the largest length out of
all MPSCs of P by S

Given a string P of length w, a set S of h strings of length w, and the PBWT of S,
Sanaullah et al. showed that all these problems can be solved in O(w) time and O(n)
space [11].

2.2 Positional Burrows–Wheeler Transform
The PBWT [4] is a data structure that allows to efficiently perform pattern matching tasks
on a set S = {S1, . . . , Sh} of h binary sequences of length w.

The core data structure is composed of two arrays per each column j: the prefix array
PAj and the divergence array DAj . In detail, PAj stores the permutation of the set {1, . . . , h}
induced by the co-lexicographic ordering of prefixes of S up to column j − 1. More formally,
PAj [i] is equal to k iff Sk[1..j − 1] is the i-th element in co-lexicographical ordered list of
prefixes S1[1..j−1], . . . , Sh[1..j−1]. We note that PA1 = {1, . . . , h}. DAj [i] stores the length
of the longest common suffix between the sequence in position i and its predecessor in the
co-lexicographic ordering of prefixes up to the (j − 1)-th column, i.e., SPAj [i][1..j − 1] and
SPAj [i−1][1..j − 1]. We note that DA1 = {0, . . . , 0}. Finally, the PBWT of S is a matrix
PBWT[1..h][1..w] where each column j stores the bits contained in each position j of each
input sequence reordered by the permutation induced by PAj . More formally, if we consider
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the input set S as a matrix M and we denote the j-th column of a matrix A by col(A)j , we
have col(PBWT)j [i] = col(M)j [PAj [i]] for all i = 1..h and j = 1..w. Durbin [4] prove that we
can compute the entire set of PA arrays, the entire set of DA arrays, and the PBWT matrix
in O(n) time and O(n) space.

2.3 Run-length Encoded PBWT and µ-PBWT

In the seminal paper that first introduced the PBWT, Durbin [4] noted that run-length
encoding can be adapted to the PBWT. Later Cozzi et al. [3] and Bonizzoni et al. [1]
proposed various data structures to efficiently store and query a run-length encoded PBWT
(RLPBWT). In the context of the PBWT, the number of runs is equal to the number of
length-maximal substrings of equal symbols that appear in the columns of the PBWT. Given
rj as the number of runs in RLPBWT column j, we denote r as

∑
1≤j≤w rj .

Here, we consider the RLPBWT implementation of Cozzi et al., which is referred to as
µ-PBWT. Similar to the conventional BWT, the SMEMs-finding problem can be solved by
computing Matching Statistics for a pattern P against a set of sequences S in a run-length
manner.

▶ Definition 4 (Matching Statistics in the PBWT). Given a binary panel composed by h

sequences S = {S1, . . . , Sh} of length w and a pattern P [1..w], we define the Matching
Statistics of P with respect to S as an array MS[1..w] of (row, len) pairs such that, for each
position 1 ≤ j ≤ w:

SMS[j].row[j − MS[j].len + 1..j] = P [j − MS[j].len + 1..j] (having a match of length
MS[j].len shared between P and MS[j].row that ends in j)
P [j −MS[j].len..j] does not occur as a suffix ending in the j-th column in any sequences
of S (left maximality)
MS[j].row = − and MS[j].len = 0 iff P [j] does not occur in column j

Observe that SMEM are computed from the Matching Statistics array. More precisely,
a SMEM of length MS[j].len occurs between P and row MS[j].row, starting from position
j −MS[j].len + 1 in P , if MS[j].len ̸= 0 and either j = w or MS[j].len ≥MS[j + 1].len. In
fact, we cannot extend to the right the considered longest common suffix shared by P and
any sequence in S, guaranteeing the right maximality.

As in [3], µ-PBWT computes the Matching Statistics array in O(r) space by storing only
the following data:

a mapping structure to support in constant time the FL (First-to-Last) function used
to follow a row in the permutation induced by the PBWT from left to right. Note that
µ-PBWT can perform in logarithmic time the reverse of this mapping, following a row
from right to left;
the PA samples at run boundary;
the set of thresholds, that identify the positions of the first minimum DA value in the
range of each run.

µ-PBWT also stores a small successor data structure, called Φ data structure, that is
used to identify the location of the SMEMs in O(r) space. Using the Φ data structure, we
retrieve the previous/next PA/DA value from given a PA/DA value in O(log n/r) time [3].
We refer readers to Cozzi et al. paper and to Bonizzoni et al. paper to recall the methods
used to compute the Matching Statistics array and the SMEMs.

CPM 2024
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3 Methods

In this section, we first present a method to extend the Matching Statistics computation to
be able to detect k-SMEMs. We then present a novel approach using Matching Statistics to
solve some variants of the MPSC problem. The principle underlying our approach is that
addressing the k-SMEM problem is essential for dealing with the k-MPSC problem.

3.1 From MS and SMEMs to k-MS and k-SMEMs
In 2023, Tatarnikov et al. [12] extended MONI [9] (an efficient RLBWT [8] and r-index [5, 6]
implementation) to demonstrate its capability in computing k-MEMs – which are defined as
maximal exact matches of a pattern against a text T that occur at least k time in T .

We recall that FL is the function used to trace from left to right the position of a given
row when it is changed by the reordering of rows induced by the PBWT, i.e., computing
the position of the bit corresponding to a certain row in a column in the PBWT from the
previous one.

▶ Definition 5 (k-support values). Given an index column j, a run endpoint index b in the
(j − 1)-th column and the corresponding k-interval DAj [FL(b) − k + 2..FL(b) + k − 1], we
define (offb, Lb) as its k-support values, where:

offb stores the offset from FL(b) to get the beginning of the sub-interval of size k− 1 of the
k-interval that maximizes the minimum divergence array value d across all the possible
sub-intervals of size k − 1. If this interval starts in FL(b) + 1, we have offb = −1
Lb = d

In other words, k-support values determine, for a run endpoint b, the sub-interval of size
k − 1 of DAj [FL(b)− k + 2..FL(b) + k − 1] which has the longest possible common suffix (of
length d) shared by all the k − 1 rows (plus the previous one by DA array definition) stored
in the same sub-interval in PAj . In addition, due to the definition of DAj , we can include
the row that precedes the interval in this set of rows. In Figure 1 we illustrate an example of
k-interval and k-support values.

We can compute the k-support values or at indexing time, accessing the entire PA/DA in
constant time, or at querying time using the Φ data structure.

▶ Theorem 6. Given k and DAj [1..h] as an array with random access in constant time,
we can compute the k-support values in O(k) time. Instead, if we consider the µ-PBWT Φ
functions to access DAj, these values can be computed in O(k log n/r) time.

The following result shows that adding the computation of the k-support to µ-PBWT
does not change the space complexity.

▶ Lemma 7. Given k and the µ-PBWT for a panel of size n = hw, we can store all the
k-support values in a O(r) space, having two additional integers at each run boundary.

Next, to efficiently compute k-SMEMs in a run-length manner, we generalize the definition
of Matching Statistics to the k-MS.

▶ Definition 8 (k-Matching Statistics in the PBWT). Given a binary panel composed by
h sequences S = {S1, . . . , Sh} of length w, a pattern P [1..w] and a value k, we define the
k-Matching Statistics of P with respect to S as an array k-MS[1..w] of (row, len) pairs such
that, for each position 1 ≤ j ≤ w:
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DA6 1 2 3 4 5 col(PBWT)6

1 0 0 0 0 1 0 0
2 3 0 1 0 1 0 1
3 5 0 1 0 1 0 1
4 5 0 1 0 1 0 0
5 1 0 1 0 0 0 0
6 4 1 1 0 0 0 1
7 1 1 0 0 1 0 0
8 3 0 1 0 1 0 1

Figure 1 k-support values example with k = 4. The figure shows the co-lexicographical ordering
up to column 5 used to compute col(PBWT)6 and DA6. Suppose that some run boundary b in
col(PBWT)5 is mapped to col(PBWT)6[4] (the green 0 in the col(PBWT)6 column). We consider
the 4-interval DA6[FL(b)− k + 2..FL(b) + k− 1] = DA6[2..7], circled in green in the DA6 column. We
now consider all the possible subintervals of size k− 1, here 3, considering their minimum divergence
array value. By definition DAj [i] compares row i e row i− 1 in the co-lexicographical ordering so,
with k = 3, we are considering four rows. For example, with DA6[2] we are taking into account also
row 1 to compute that divergence array value. These subintervals, including the additional rows, are
identified by circles in the panel. We are interested in the optimal possible subinterval, so the one
that involves the maximum common extension to the left d. In this example, the orchid one, i.e.
DA6[2..4], is the optimal one, with d = 3. In conclusion, we store the offset offb = 2 and Lb = 3.

Sk-MS[j].row[j − k-MS[j].len + 1..j] = P [j − k-MS[j].len + 1..j] (there exists a match of
length k-MS[j].len shared between P , k-MS[j].row and at least other k− 1 rows in S that
ends in j)
P [j − k-MS[j].len..j] does not occur as a suffix ending in the j-th column in any subset
S′ of sequences of S with |S′| greater or equal of k (left maximality of the match)
k-MS[j].row = − and k-MS[j].len = 0 iff P [j] does not occur at least k time in column j

Given µ-PBWT, as described in Section 2.3, we can extend it with the k-support values
and solve the k-SMEMs problem in a run-length encoding manner. Note that the k-support
values can be pre-computed and queried in constant time, or they can be retrieved each
time according to the complexity in Theorem 6. Observe that the computation of k-MS.len
array involves updating column j, beginning with j = 1, and necessitates the modification of
new additional arrays: lenk and lent. We add a support index sj , which is a position in the
column j to verify whether at least k rows have the same left-maximal match up to the j-th
column. Then:

lenk stores in position j the length of the left-maximal matches shared by at least k rows
(defined by the sub-interval that we get from sj) in the panel
lent acts as the classical MS.len array. In column j, lent[j] stores the length of the
semi-left maximal match shared between k-MS[j].row and a row in the input panel S.
We say semi-left maximal because, unlike classical the MS array, we cannot extend to the
left a match if a column i, such that 1 ≤ i < j, does not contain at least k symbols P [i],

We do not need to store these arrays in (entirely) memory – rather we store two variables
with their values in column j. See Figure 2 for an example of lenk and lent.

3.1.1 Computing k-MS and k-SMEMs
The computation of the k-MS array involves iterating starting from position j = 1 within
both the array and the pattern P . Initially, if the first column contains at least k occurrences
of the symbol P [1], then we assign the values k-MS[1].row = s and k-MS[1].len = 1, where

CPM 2024



12:8 Solving the Minimal Positional Substring Cover Problem in Sublinear Space

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1
2 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1
3 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1
4 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1
5 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1
6 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1
7 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1
8 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1
9 0 1 0 0 1 0 0 0 0 1 1 1 0 0 1
10 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1
11 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1
12 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0
13 0 1 0 0 1 0 0 0 1 0 1 1 0 0 1
14 0 1 0 0 1 0 0 0 1 0 1 1 0 0 1
15 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1
16 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1
17 0 1 0 1 0 0 0 0 0 0 0 1 1 0 1
18 1 1 0 0 0 1 0 0 0 0 0 1 1 0 1
19 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1
20 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P 0 1 0 0 1 0 1 0 0 0 1 1 1 0 1

row 17 17 17 16 14 14 − 19 12 12 12 12 18 18 18
lent 1 2 3 4 5 6 0 1 2 3 4 5 2 3 4
len3 1 2 3 4 5 6 0 5 6 5 2 3 7 8 9
len 1 2 3 4 5 6 0 1 2 3 2 3 2 3 4

Figure 2 Example of 3-SMEMs results. We consider an input matrix M that represents a set of
20 sequences of length 15 and a pattern P of the same length. We show the 3-SMEMs using the
same colour in M and P . In addition, we show the k-MS array (with underlined all the values that
represent a SMEM), the len3 array, and the lent array.

s belongs to the set S with the condition that Ss[1] = P [1]. If this condition is not met –
that is, if there are fewer than k instances of P [1] in the first column – we set k-MS[1].row
to a placeholder value (indicated by −) and k-MS[1].len to 0.

We now describe how to update k-MS[j] from k-MS[j − 1] for j > 1. To update the
column of k-MS for j we need to follow k-MS[j − 1].row in the permutation induced by
PAj to extend to column j the left-maximal match obtained in column j − 1 if it is possible.
Given that k-MS[j − 1].row is mapped in row i of the column j (via the FL function) in the
PBWT, there are two cases that we have to consider: (1) we have a mismatch between the
pattern P and row i in the j-th column, and (2) we have a match between the pattern P

and row i in the j-th column. Within these two cases, there are some additional sub-cases
that we have to consider. In what follows, we describe how to address these cases, and then,
we show how to use lenk and lent to compute k-MS and k-SMEMs.

Case 1: A mismatch occurs

We assume that we have a mismatch in the j-th column, i.e., col(PBWT)j [i] ̸= P [j]. If
col(PBWT)j does not contain at least k occurrences of the symbol P [j] then we have a complete
mismatch. We represent this with k-MS[j].row = − and lent[j] = lenk[j] = 0, resetting the



P. Bonizzoni, C. Boucher, D. Cozzi, T. Gagie, and Y. Pirola 12:9

k-MS computation in the next column – implying that we restart the computation from
column j + 1 as we were in column 1. Otherwise, if k-MS[j].row (where k-MS[j].row and
MS[j].row are equal) and lent[j] (which corresponds to the traditional MS[j].len value), then
we apply the approach of Cozzi et al. [3]. This update involves the selection of a new run
boundary b. We use the k-support values to update lenk[j] and sj+1 as follows: lenk[j] = Lb

and sj+1 = FL(b) − offb. In this way, we consider the sub-interval of size k, consisting of
rows that share the longest common suffix of length Lb up to column j.

Case 2: A match occurs

Next, we assume that we have a match in the j-th column, i.e., col(PBWT)j [i] = P [j]. If
col(PBWT)j does not contain at least k occurrences of the symbol P [j] we have an unfeasible
match. We handle this case as in the complete mismatch case described above. We recall
that we use the support index sj to identify the starting position of the sub-interval of size k

in column j of the PBWT in which the rows share the longest common suffix up to column
j. Observe that if we have col(PBWT)j [sj ] = · · · = col(PBWT)j [sj + k − 1] = P [j] then we
have a left-maximal match shared by at least k rows. It follows that we can update the
Matching Statistics in the same manner as in the µ-PBWT: k-MS[j].row = k-MS[j− 1].row,
sj+1 = FL(sj), lent[j] = lent[j − 1] + 1, and lenk[j] = lenk[j − 1] + 1. Informally, we
follow the same sub-interval (by FL function) in column j + 1, updating all the length
values by 1 (due to the match) to consider the next column. We note that the condition
col(PBWT)j [sj ] = · · · = col(PBWT)j [sj + k − 1] = P [j] can be checked without scanning
entirely col(PBWT)j [sj ..sj + k − 1]. In fact, the condition is satisfied iff col(PBWT)j [sj ] and
col(PBWT)j [sj + k − 1] lay in the same run and we can test this fact in logarithmic time (in
the number of runs of the column j-th).

Finally, it is necessary to address the sub-cases that arise when there are symbols within
col(PBWT)j [sj ..sj + k − 1] that do not match P [j]. Again, this fact can be checked by
looking at the runs of the first and the last symbols in this interval. If col(PBWT)j [sj ]
and col(PBWT)j [sj + k − 1] lay on different runs it means that we have at least a run of
symbols that differ from P [j] between these two runs. Thus, we need to use a different
support index. To identify the new support index sj+1 it is necessary to trace a new row.
Recall that all the information used to update the k-MS are stored at a run boundary, and
therefore, we need to select a new run boundary b such that colj(PBWT)[b] = P [j]. This b is
selected as in the mismatch case, assuming to consider i as the index of the first mismatch in
col(PBWT)j [sj ..sj +k−1]. At this point we can update lent[j]. For this purpose, we compute
the length of the common suffix up to the j-th column between k-MS[j− 1].row (that we are
currently following due to the match) and PAj [b] and compare it to lent[j − 1] + 1. We select
the minimum of these two lengths to retain only the suffix that encompasses k rows. So, if
we denote lcsj(A, B) as the longest common suffix up to the j-th column shared by rows
A and B, then we have lent[j] = min(lcsj(k-MS[j − 1].row, PAj [b]), lent[j − 1] + 1). Then
we update k-MS[j].row using the prefix array samples as in µ-PBWT. Moreover, to update
sj+1 and lenk[j] we use the k-support values as follows: lenk[j] = Lb and sj+1 = FL(b)− offb.
In every case mentioned that requires jumping to a new row, we note that if there is no
run available for the jump (for instance, when there are only two runs), then the algorithm
followed is akin to what is done in the case of a complete mismatch.
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Filling the k-MS array and computing k-SMEMs

To account for the lengths of all matches, we formulate the k-MS.len as follows: k-MS[j].len =
min(lent[j], lenk[j]), for all j = 1..w. This step can be performed after processing each column
j. Finally, similar to the computation of SMEMs [1, 3], a k-SMEM of length k-MS[j].len
occurs between P and row k-MS[j].row, starting from position j − k-MS[j].len + 1 in P , if
k-MS[j].len ̸= 0 and either j = w or k-MS[j].len ≥ k-MS[j + 1].len.

▶ Theorem 9. Given a set S of h sequences of length w, an integer k, and query z of size
w, we can compute the k-SMEMs for z using O(r) space.

Providing a similar bound for the time complexity of computing k-SMEM in the µ-PBWT is
an open problem that warrants consideration. We conjecture that it can be done in O(w log r)
time. Lastly, we illustrate the results of computing 3-SMEMs in Figure 2.

3.1.2 From k-MS to k-MPSC
We show now that we can build a solution for k-MPSC by using the k-MS array. We recall
that each positional substring that belongs to a k-MPSC is contained in a k-SMEM. By the
non-inclusion property of k-SMEM, each starting position of a k-SMEM is covered by one
and only one k-SMEM. Combining the above two properties, it follows that there exists a
k-MPSC in which each substring is a prefix of a k-SMEM. In addition, there exists only
one k-SMEM that covers P [w]. Therefore, we can start building a solution to k-MPSC by
adding this k-SMEM as a positional substring. We can now proceed iterating the process
of including each time the single left-maximal match (covered by at least k rows in S) that
ends in the column j prior to the starting column j + 1 of the last positional substring added
to k-MPSC. This left-maximal match is represented by k-MS values in position j, and it is
unique according to the definition of k-MS. The minimality condition is guaranteed by the
fact that we cannot have a better solution, i.e., a single left-maximal match γ that covers
two of the left-maximal matches, α and β, that were already added to k-MPSC. To see
this, consider that if such a γ exists, it must begin prior to α owing to the left-maximal
property and extend at least up to the identical ending position β at the j-th index. In this
case, the definition of k-MS property implies that γ should be identified in position j of the
k-MS array. This is a contradiction because in position j of k-MS array we already selected
the left-maximal match β. Notice that this procedure extends Algorithm 1 to k-MPSC, as
demonstrated in the following section where we prove its efficacy in computing the leftmost
MPSC.

3.2 Solving the Leftmost, Rightmost, and Length-maximal MPSC
Problems with MS and SMEMs

We now show how to use MS and SMEMs to solve the leftmost, rightmost, and length maximal
MPSC problems. We first show that Algorithms 1 and 2 solve the leftmost (Lemma 10) and
rightmost (Lemma 11) MPSC problems, respectively, in sublinear space. We recall that r

denotes the number of runs in the PBWT of a set S of h sequences of length w, which is
upper bounded by their size n = h ·w. The proofs of Lemma 10 and Lemma 11 are based on
the non-inclusion property of SMEMs, which implies that the starting positions and ending
positions of the set of SMEMs are unique. In other words, there cannot exist two SMEMs
that start in the same position in the pattern P and two SMEMs that end in the same
position in the pattern P .
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Algorithm 1 Leftmost MPSC by MS.

1: function LeftMost(MS)
2: j ← w ▷ |MS| = w

3: j′ ← 0
4: while j ̸= 0 do
5: j′ ← j −MS[j].len
6: report (j′ + 1, j, MS[j].row)
7: j ← j′

Algorithm 2 Rightmost MPSC by MS.

1: function RightMost(MS)
2: i← 1 ▷ |MS| = w

3: for j = 1→ w − 1 do
4: if MS[j].len ≥MS[j+1].len then
5: report (i, j, MS[j].row)
6: i← j + 1
7: report (i, w, MS[w].row)

▶ Lemma 10 (Leftmost MPSC). Given a panel S and the MS array of a pattern P with
respect to S, Algorithm 1 computes the leftmost MPSC C of P by S in time O(|C|) and O(r)
space.

Proof. We seek a MPSC such that each i-th positional substrings starts not after any other
i-th positional substring in a MPSC. It is easy to see that a leftmost MPSC is composed of
positional substrings that are prefixes of SMEMs – or, in other words, that are left-maximal.
Otherwise, we can extend the positional substring to the left, contradicting the assumption
of having a leftmost MPSC. Scanning the MS array from right to left, we consider the
SMEM that ends in the last position of the pattern. This SMEM is in the set of the leftmost
MPSC by definition, and the fact that it is the only one that includes position w. We can
compute its starting position j as w −MS [w].len + 1 and we can add (j, w, MS [w].row) to
the set C. The set C is a leftmost MPSC of the columns j to w. A leftmost MPSC of
columns 1 to j − 1 must include the left-maximal match that ends at j − 1. Given that
j′ = (j − 1)−MS[j − 1].len + 1, by definition of SMEM, it follows that we cannot have a
SMEM that includes MS [j − 1].row in position j − 1 and starts before j′. Thus j′ is the
starting position of the next positional substring (of length MS [j − 1].len) in the leftmost
MPSC C of the columns j′ to w. Iterating the previous procedure until reaching column
1 gives the leftmost MPSC. Since each iteration adds a positional substring to the cover
with a single constant-time access of the MS array, the algorithm runs in time proportional
to |C|. ◀

▶ Lemma 11 (Rightmost MPSC). Given a panel S of w-length strings and the MS array of
a pattern P with respect to S, Algorithm 2 computes the rightmost MPSC of P by S in time
O(w) and O(r) space.

Proof. We are interested in a MPSC where each i-th positional substring ends no earlier
than any other i-th positional substring within it. Symmetrically to the leftmost MPSC, the
positional substrings of a rightmost MPSC are suffixes of SMEMs. Given the MS array, a
position j is the ending position of a SMEM iff MS[j].len ≥ MS[j + 1].len or j = w. For
simplicity, in this proof we assume that MS[w+1].len = 0. The construction of the rightmost
MPSC is symmetric to that of the leftmost MPSC. As in the leftmost MPSC, we are not
interested in overlaps between positional substrings. To compute the rightmost MPSC, we
scan from left to right the MS array. By definition, the SMEM that starts in the first column
is in the set of rightmost MPSC, being the only one that includes the first position. Denoting
j as the ending position of this SMEM, we add the positional substring (1, j, MS[j].row)
to the set C of the rightmost MPSC. At each position j where MS[j].len ≥MS[j + 1].len,
there are no other right-maximal matches, meaning there cannot exist an SMEM containing
MS[j].row at position j that extends beyond position j. Thus, js are the ending position
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M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0
2 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0
3 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0
4 1 1 1 0 1 1 1 1 0 0 1 0 0 0 0
5 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1
6 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0

MS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0

row 6 4 4 4 4 3 1 1 1 1 6 6 3 3 3
len 1 2 3 4 5 4 5 6 7 8 5 6 2 3 4

(a) Splitting of a SMEM into substrings from leftmost/rightmost MPSC. We show a panel M and a
pattern P with the corresponding MS array. In the panel, we have dashed circles for the leftmost MPSC
and dotted circles for the rightmost MPSC. With the same colour, we identify a SMEM.

MS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0

row 6 4 4 4 4 3 1 1 1 1 6 6 3 3 3
len 1 2 3 4 5 4 5 6 7 8 5 6 2 3 4
j/j′ ← 2 ← ← ← 6 ← ← ← ← 11 ← ← ← 15

(b) Example of computing leftmost MPSC (identified by circles in the P row) by the MS array. In the
last line we show the jumps used to skip the overlaps as in Algorithm 1.

MS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0

row 6 4 4 4 4 3 1 1 1 1 6 6 3 3 3
len 1 2 3 4 5 4 5 6 7 8 5 6 2 3 4
i 1 − − − − 6 − − − − 11 − 13 − −

(c) Example of computing rightmost MPSC (identified by circles in the P row) by the MS array. For the
sake of simplicity, in the last line, we show the updating of value i as in Algorithm 2.

Figure 3 Example of the relationship between leftmost/rightmost MPSC and SMEMs on the
same set of sequences of [11].

of any other positional substring (i + 1, j, MS[j].row) in the set C, where i is the ending
column of the last substring added to C. Since each position of the MS array is scanned
once, and as each iteration requires only a single constant-time access of the MS array, the
algorithm runs in time proportional to w. ◀

Figure 3 shows how our algorithms compute the leftmost and the rightmost MPSC.
We now consider the problem of finding a length-maximal MPSC. Sanaullah et al. [11]

showed the length-maximal MPSC problem can be solved in O(n + |Q|) space given that
the leftmost MPSC, the rightmost MPSC, and the set Q of SMEMs have been computed in
O(n) space, while the algorithm used to combine all of them to find a length-maximal MPSC
requires O(|Q|) space. We showed that we can compute the leftmost and the rightmost
MPSCs in O(r) space (Lemma 10 and Lemma 11) from the MS array. We also showed in
Section 2.3 that the MS array and the set of SMEMs can be computed in O(r) space using
the µ-PBWT. As a consequence, the following lemma holds.

▶ Lemma 12. Given µ-PBWT for a set S of h strings of length w, a string P of length
w, and the set Q of SMEMs shared by S and P , a length-maximal MPSC of P by S can be
computed in O(r + |Q|) space.



P. Bonizzoni, C. Boucher, D. Cozzi, T. Gagie, and Y. Pirola 12:13

4 Results

We implemented our methods for computing k-MS and k-SMEMs with and without pre-
computed k-support values, and compared these to the k-MPSC implementation by Sanaullah
et al. [11]. Hereon, we refer to this method as k-MPSC.

4.1 Datasets
We evaluated the execution time and maximum memory usage for indexing and querying
of all these methods using biallelic chromosome panels from the 1000 Genomes Project
(1KGP) [13]. All the data is publicly available at https://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/release/20130502/. We selected the panels for chromosomes 22, 18, and 2.
These panels have 5,008 samples/rows and between 1M and 6M variations/columns. From
these panels, we extracted 30 rows to use them as queries, hence we consider input panels
with 4978 rows. The performance metrics were computed using /usr/bin/time on a machine
equipped with an Intel Xeon CPU E5-4610 v2 (2.30GHz), 256GB RAM and 8GB of swap,
running Ubuntu 20.04.6 LTS.

4.2 Implementation Details and Experimental Setup
We augmented µ-PBWT implementation with the algorithms to compute k-SMEMs. We made
all source code publicly avaliable at https://github.com/dlcgold/muPBWT/tree/k-smem
(with pre-computed k-support values) and https://github.com/dlcgold/muPBWT/tree/
k-smem-live (without pre-computed k-support values).

k-MPSC is written in C++14 and necessitated a few modifications to the code. It was not
possible to index panels as large as the ones from the 1KGP due to design choices on the
dynamics allocation of the data structure. Moreover, k-MPSC implementation halted if an
unfeasible column was encountered (a column with less than k symbols), which frequently
occurred only after very few columns. To make a meaningful comparison, we edited the
source code to solve the allocation issue and to restart the computation after an unfeasible
column is encountered.

Empirical experimental performances for the computation of a leftmost MPSC, a rightmost
MPSC, and a length-maximal MPSC (from the MS array and the set of SMEM) are directly
proportional to the experimental results in Cozzi et al. [3]. Therefore, no additional dedicated
experiments were conducted.

4.3 Results on 1000 Genomes Project Data
Table 1 reports the results of the indexing task and of the querying task with 30 queries. As
anticipated, pre-computing the k-support values leads to an increase in computation times
by up to approximately 100% compared to the variant without pre-computed values. We
note that, due to the average number of runs in each column, we only need to store short
bit-compressed integer vectors for the k-support values, implying that only a ∼5% increase
in memory usage is needed for the implementation without these values stored. A fairly
obvious note that warrants comment is that for k = 1, we do not require k-support values,
thus the memory usage remains the same both with and without them. Regarding k-MPSC,
the indexing phase consists of the PBWT computation of both panel and queries. Since
k-MPSC needs a full PBWT, it requires almost two orders of magnitude more memory than
both of our approaches. This is unsurprising in light of the work of Durbin [4], which stated
that the whole set of data structures for PBWT require 13n bytes to be queried.
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Table 1 Indexing and querying wall clock time and max memory usage comparison on chromo-
somes 2/18/22 panels from 1KGP, with 4978 rows and 30 queries.

Wall Clock Time (seconds) Max Memory usage (GB)

µ-PBWT µ-PBWT

Chr. Task k (pre) (no-pre) k-MPSC (pre) (no-pre) k-MPSC

2

Index
1 1381 1384 - 6.45 6.45 -
50 1643 1387 - 6.62 6.45 -
200 2798 1418 - 6.62 6.45 -

Querying
1 254 247 - 5.87 5.87 -
50 1687 2471 - 6.57 6.42 -
200 3563 11834 - 8.45 8.31 -

18

Index
1 425 424 5750 3.26 3.26 168.58
50 697 450 5750 3.36 3.26 168.58
200 807 429 5750 3.36 3.26 168.58

Querying
1 70 70 128 1.92 1.92 171.19
50 739 817 229 2.13 2.08 171.30
200 1740 4263 119 2.74 2.71 171.22

22

Index
1 191 189 2616 1.77 1.77 79.01
50 304 193 2616 1.84 1.77 79.01
200 400 194 2616 1.84 1.77 79.01

Querying
1 31 32 130 0.98 0.98 82.31
50 336 392 171 1.11 1.07 82.85
200 726 2054 133 1.47 1.44 82.48

Regarding the querying performance results, the computation of k-support values during
query time leads to an increase in execution time, which scales with the value of k due to the
use of the Φ data structure. When k was equal to 200, the k-SMEMs computation requires
up to a third of the time with the pre-computed values. Regarding k-MPSC, with random
access in constant time to the complete set of data structures of the PBWT, we observe
that it runs up to 20 times faster than µ-PBWT with pre-computed values and up to 60
times faster than the variant with query-time k-support values computation. Moreover, the
experiments confirm that the k-MPSC algorithm does not linearly scale on k, as explained
in Section 2.1. Regarding memory usage for querying, a similar analysis apply as for the
indexing phase with the additional factor that we also have in memory the queries for the
µ-PBWT. In addition, we suspect that the slight increase in memory usage with larger k

values is due to the support variables used. Since in instances where the computation of
MS requires pointer adjustments because there are not k equivalent values in a designated
interval, we have to compute lcs(A, B).

Due to the memory usage of k-MPSC, we were unable to evaluate the performance on the
larger panels, such as the one related to the chromosome 2 in the 1000 Genomes Project data.
To ensure a comprehensive overview, Table 1 includes the outcomes achieved by µ-PBWT
on the largest dataset (chromosome 2), which k-MPSC could not process within the allocated
memory constraints. This demonstrates the advantages of using µ-PBWT which requires a
sublinear amount of memory.
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5 Conclusions

In this paper, we address the theoretical aspects of the haplotype threading problem, primarily
aiming to offer practical solutions capable of scaling to the large biological datasets currently
stored in biobanks. In particular, we presented two distinct results. First, we adapted
the run-length encoding paradigm for the PBWT to compute k-Matching Statistics (k-MS)
and the k-SMEMs in sublinear space. Next, we show that computing k-MS provides a
theoretical framework to solving the k-Minimal Positional Substring Cover problem as well
as all the variants of the MPSC problem in sublinear space. Our experimental results
decisively show that our method achieves a significant reduction in memory usage for
computing the k-MPSC problem, reducing it by no less than two orders of magnitude
relative to the approach by Sanaullah et al. [11]. This enables our approach to scale to large
datasets collected in contemporary biobanks. In turn, the development of µ-PBWT opens
up unprecedented opportunities for comprehensive genetic studies – e.g., for genotyping and
imputation workflows [14] – and exploration on a large scale.
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