
Online Context-Free Recognition in OMv Time
Bartłomiej Dudek #

Institute of Computer Science, University of Wrocław, Poland

Paweł Gawrychowski #

Institute of Computer Science, University of Wrocław, Poland

Abstract
One of the classical algorithmic problems in formal languages is the context-free recognition problem:
for a given context-free grammar and a length-n string, check if the string belongs to the language
described by the grammar. Already in 1975, Valiant showed that this can be solved in Õpnω

q time,
where ω is the matrix multiplication exponent. More recently, Abboud, Backurs, and Vassilevska
Williams [FOCS 2015] showed that any improvement on this complexity would imply a breakthrough
algorithm for the k-Clique problem. We study the natural online version of this problem, where the
input string wr1..ns is given left-to-right, and after having seen every prefix wr1..ts we should output
if it belongs to the language. The goal is to maintain the total running time to process the whole
input. Even though this version has been extensively studied in the past, the best known upper
bound was Opn3

{ log2 nq. We connect the complexity of online context-free recognition to that of
Online Matrix-Vector Multiplication, which allows us to improve the upper bound to n3

{2Ωp
?

log nq.

2012 ACM Subject Classification Theory of computation Ñ Grammars and context-free languages

Keywords and phrases data structures, context-free grammar parsing, online matrix-vector multipli-
cation

Digital Object Identifier 10.4230/LIPIcs.CPM.2024.13

1 Introduction

Context-free languages, introduced by Chomsky already in 1959 [3], are one of the basic
concepts considered in formal languages, with multiple applications in programming lan-
guages [2], NLP [11], computational biology [6], and databases [13]. A context-free language
is a language generated by a context-free grammar, meaning that each production rule is
of the form A Ñ α, where A is a non-terminal symbol, and α is a string of terminal and
non-terminal symbols (possibly empty). It was already established by Chomsky [3] that,
without decreasing the expressive power, we can assume that the productions are of the form
A Ñ a and A Ñ BC, where A, B, C are non-terminal symbols, and a is a terminal symbol.
From an algorithmic point of view, the natural (and very relevant with respect to the possible
applications) question is whether, given such a grammar G and a string wr1..ns, we can
efficiently check if w P LpGq. A simple application of the dynamic programming paradigm
shows that this is indeed possible in Opn3q time (ignoring the dependency on the size of the
grammar). This is usually called the Cocke–Younger–Kasami (CYK) approach [4, 12, 25]. In
1975, Valiant [23] designed a non-trivial algorithm that solves this problem in OpBMpnqq

time, where BMpnq denotes the complexity of multiplying two (Boolean) n ˆ n matrices.
Plugging in the currently best known bounds, BMpnq “ Opnωq, where ω ă 2.373 [24]. See [9]
for a somewhat more approachable description of Valiant’s algorithm, and [19] for a very
elegant simplification (achieving the same running time). This is of course a somewhat
theoretical result, and given the practical nature of the problem it is not surprising that
other approaches have been developed [5, 16,17,22], with high worst-case time complexities,
but good behaviour on instances that are relevant in practice. However, the worst-case time
complexity has not seen any improvement. In 2002, Lee [15] showed a conditional lower bound
that provides some explanation for this lack of improvement: multiplying two (Boolean)

© Bartłomiej Dudek and Paweł Gawrychowski;
licensed under Creative Commons License CC-BY 4.0

35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024).
Editors: Shunsuke Inenaga and Simon J. Puglisi; Article No. 13; pp. 13:1–13:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bartlomiej.dudek@cs.uni.wroc.pl
https://orcid.org/0000-0003-2652-995X
mailto:gawry@cs.uni.wroc.pl
https://orcid.org/0000-0002-6993-5440
https://doi.org/10.4230/LIPIcs.CPM.2024.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Online Context-Free Recognition in OMv Time

n ˆ n matrices can be reduced to parsing a string of length Opn1{3q for a grammar of size
Opn2q. This does exclude a combinatorial Opgn3´εq algorithm for parsing (more general
problem than recognition), where g is the size of the grammar, but does not contradict the
existence of e.g. Opg2nq time algorithm. However, in 2015 Abboud, Backurs, and Vassilevska
Williams [1] showed a more general conditional lower bound: even for constant-size grammars,
any improvement on the complexity of Valiant’s recognition algorithm implies a breakthrough
for the well-known k-Clique problem.

In some applications, the input string wr1..ns is given character-by-character, and for
each prefix wr1..is we should decide if it belongs to LpGq before reading the next character.
This is known as the online CFG recognition. The goal is to minimise the total time to
process all the characters. It is not hard to adapt the CYK approach to work in Opn3q total
time for this variant, but this seems difficult (or perhaps impossible) for Valiant’s algorithm.
Graham, Harrison, and Ruzzo [8] designed a (slightly) subcubic algorithm, and Rytter [19]
further improved the complexity to Opn3{ log2 nq. Surprisingly, no further improvements
were achieved. On the lower bound, it is known that on a Turing machine, Ωpn2{ log nq

steps are required [7, 20]. This is however quite far from the upper bound, and assumes a
somewhat restricted model of computation, and brings the natural question of understanding
if a faster algorithm exists.

As the complexity of the offline CFG recognition is known to be close to that of (Boolean)
matrix multiplication, it is natural to seek a connection between the complexity of its online
variant with the so-called online matrix multiplication. As a tool for unifying the complexities
of different dynamic problems, Henzinger, Krinninger, Nanongkai, and Saranurak [10]
introduced the Online Matrix-Vector Multiplication problem:

▶ Definition 1 (Online Matrix-Vector Multiplication (OMv)). Given a matrix M P t0, 1unˆn,
and a sequence of vectors v1, . . . , vn P t0, 1un, the task is to output Mvi before seeing vi`1,
for all i “ 1, . . . , n ´ 1.

and conjectured that no Opn3´ϵq time algorithm exists (with the best known upper bound
at the time being Opn3{ log2 nq):

▶ Hypothesis 2 (OMv Hypothesis [10]). Every (randomized) algorithm solving OMv must
take total time n3´op1q.

Surprisingly, Larsen and Williams [14] were soon able to construct a faster n3{2Ωp
?

log nq

time algorithm. This does not refute the OMv hypothesis, but significantly improves the
known upper bound, essentially by saying that we can shave any number of logarithms from
the time complexity.

▶ Theorem 3 ([14]). There exists a randomized algorithm for OMv that runs in total
n3{2Ωp

?
log nq time and succeeds with high probability1.

This suggests the possibility of leveraging the progress on the complexity of Online Matrix-
Vector Multiplication to improve the complexity of online CFG recognition to improve on
the Opn3{ log2 nq time complexity from 1985.

1 By succeeding with high probability we mean that there exists a constant c ą 0 such that the algorithm
succeeds with probability at least 1 ´ 1{nc.

B. Dudek and P. Gawrychowski 13:3

Our contribution. We show that it is possible to use efficient OMv multiplication to speed
up online context-free recognition:

▶ Theorem 4. Let G be a context-free grammar, and w be a length-n string, revealed one
character at a time. There exists a randomized algorithm that determines, after having seen
wrts, if wr1..ts P LpGq, in n3{2Ωp

?
log nq total time and succeeds with high probability.

Our solution is based on the classical CYK dynamic-programming approach from 1960s
[4, 12,25] in which we calculate the set of non-terminals deriving each of the infixes of w. In
order to avoid the Opn2q time for processing a new character wrts, we maintain a division
of the current prefix into segments of lengths that are powers of 2 present in the binary
representation of t. For each of the segments, we build a structure responsible for processing
suffixes wri..ts that start within the segment and end at t. We extensively use the approach
from Theorem 3 for OMv, with a slight adaptation to matrices that grow in time. More
precisely, we show that we can process a sequence of vectors v1, q1, v2, q2, . . . where |qi| “ i

in which we need to calculate pv1, . . . , viq ˆ qi online, before seeing vi`1. This requires one
more step of dividing the range of columns into segments of lengths that are powers of 2,
and applying the structure from Theorem 3 for each of the segments separately. This results
in the same running time as in the standard OMv problem, in which the matrix we multiply
with does not change.

We note that our algorithm does not need to know the value of n in advance. In fact,
our proof of Theorem 4 can be modified to show that the amortised time for processing the
t-th character is Opt2{2Ωp

?
log tqq, so in particular after having seen wrts we know whether

wr1..ts P LpGq, with the total time spent on wr1s, wr2s, . . . , wrts being Opt3{2Ωp
?

log tqq, for
every t “ 1, 2,

2 Preliminaries

Consider a context-free grammar G “ pVN , VT , P, Sq. Without loss of generality we assume
that G is in Chomsky normal form [3,21], that is every production in P is either A Ñ BC or
A Ñ c for A, B, C P VN and c P VT . By v

‹
ñ s we denote that string s can be derived from

non-terminal v in the grammar G.
We are given a string w of length n character-by-character and for each t “ 1..n need

to decide if the string wr1..ts belongs to LpGq or not. For every t, the answer should
be provided before reading the pt ` 1q-th character and we call such a procedure online.
Our algorithm will compute the set of all non-terminals that produce every infix of w:
U ri, js “ tv P VN : v

‹
ñ wri..jsu. Then the t-th bit of the output is whether S belongs to

U r1, ts or not.
Our approach has polynomial dependence on the size of the grammar G, which we omit

while stating the complexity of the parsing algorithm.
In the analysis of our algorithm we will consider sums of non-constant number of distinct

expressions containing the Ω function. Unless stated otherwise, all the Ωs within one
sum correspond to the same function, namely there exists one constant bounding all the
expressions at the same time. An example of such sum appears in the following lemma that
will be useful in the next section:

▶ Lemma 5. For any constant a ą 0, we have
řlog n

k“0 2ak´Ωp
?

kq “ na{2Ωp
?

log nq.

CPM 2024

13:4 Online Context-Free Recognition in OMv Time

Proof. Let t “ log n. As we discussed before, various Ω functions correspond to one particular
Ω function, which means that we can read the expression p˚q “

řt
k“0 2ak´Ωp

?
kq as: there

exists a constant c ą 0 such that p˚q ď
řt

k“0 2ak´c
?

k. First we show for which 0 ď k ă t we
can upper bound the k-th summand by the last element from the sum:

ak ´ c
?

k ă at ´ c
?

t

õ

cp
?

t ´
?

kq ă apt ´ kq “ ap
?

t ´
?

kqp
?

t `
?

kq

õ

c

a
´

?
t ă

?
k

So in particular, for k ě k0 “ p c
a q2 we have that ak ´ c

?
k ď at ´ c

?
t. For k ă k0 we have

2ak´c
?

k ă 2ak0 , so:

p˚q ď k0 ¨ 2ak0 `

t
ÿ

k“k0

2at´c
?

t ď Op1q ` t ¨ 2at´c
?

t “ Op2at´0.9c
?

tq “ 2at´Ωp
?

tq. ◀

3 Parsing context-free grammars online

Our algorithm processes characters from the input one-by-one. While processing the t-th
character it has already computed U ri, js for 1 ď i ď j ă t and needs to compute U ri, ts

for 1 ď i ď t. We maintain a division of the interval r1..pt ´ 1qs into c “ Oplog tq intervals:
re1, e2q, re2, e3q, . . . , rec, ec`1q where e1 “ 1, ec`1 “ t and lengths of the intervals are exactly
the powers of 2 in the binary representation of t ´ 1, in the decreasing order. On a high
level, for the j-th interval there is a data structure Xj responsible for computing U ri, ts for
ej ď i ă ej`1, based on the outputs from Xj1 for j1 ą j. We call such a data structure a
process. We say that the size of process Xj is the length of the interval it corresponds to,
that is |rej , ej`1q| “ ej`1 ´ ej . The processes are created and removed following the binary
representation of t, and a process for interval ra, a`2kq exists only for t “ a`2k, . . . a`2k`1´1.
In the following theorem we describe the calculations performed in each of the processes.

▶ Theorem 6. Let I “ rp, p ` sq be an interval of positions from w. Consider the following
sequence Q of at most s queries Qp`s, Qp`s`1, . . .: in the t-th query we are given set
Qt “ tpi, vq : v

‹
ñ wri, ts, i P rp ` s, tsu and need to compute At “ tpi, vq : v

‹
ñ wri, ts, i P Iu.

There exists a randomized algorithm answering online all queries from Q in total
s3{2Ωp

?
log sq randomized time that succeeds with high probability.

Before we prove the above theorem, we show how to apply it to obtain the algorithm for
parsing context-free grammars online.

▶ Theorem 4. Let G be a context-free grammar, and w be a length-n string, revealed one
character at a time. There exists a randomized algorithm that determines, after having seen
wrts, if wr1..ts P LpGq, in n3{2Ωp

?
log nq total time and succeeds with high probability.

Proof. We show that Algorithm 1 correctly parses all prefixes of w online, in the desired time
complexity. First, we show that the operations in Algorithm 1 satisfy the requirements on
queries described in Theorem 6. Indeed, we always create a process β with I “ rt`1´2r, t`1q

and the subsequent queries are Qt`1, Qt`2, . . ., so in particular the first query concerns the
position right after the end of I, as required. Observe that due to line 7 the sequence of sizes

B. Dudek and P. Gawrychowski 13:5

Algorithm 1 Parsing context-free grammar online.
Input: Context-free grammar G “ pVN , VT , P, Sq

1: B :“ r s Ź 1-based list of processes B1, B2, . . .

2: for t “ 1, 2, . . . do
3: Qt :“ tpt, vq : pv Ñ wrtsq P P u

4: for j “ |B| to 1 do
5: A :“ Bj .querypQtq

6: Qt :“ Qt Y A

7: let r be maximal such that
řr´1

i“0 |B|B|´i| “ 2r ´ 1
8: remove the last r processes from B

9: add new_processpI “ rt ` 1 ´ 2r, t ` 1qq to the end of B

10: output whether p1, Sq P Qt

of the processes follows the binary representation of t so we create a process of size 2k for t

such that t ” 2k pmod 2k`1q and the last query that we possibly process at β is Qt`2k , so β

is queried at most t ` 2k ´ t “ 2k “ |β| times.
Now we calculate the complexity of the algorithm. We create a new process of size 2k

exactly t n`2k

2k`1 u ă n{2k times. Each process of size 2k answers at most 2k queries so we can
directly apply Theorem 6 to bound the total running time of preprocessing and all queries
processed by the process. Hence the total running time of the algorithm is upper bounded
by:

log n
ÿ

k“0

n

2k
¨
`

2k
˘3

{2Ωp
?

kq “ n ¨

log n
ÿ

k“0
22k´Ωp

?
kq “ n3{2Ωp

?
log nq.

The last step follows by Lemma 5 and the claim holds. ◀

Proof of Theorem 6
In order to prove Theorem 6, we need to introduce some notation and insights following
Rytter’s variant of the Valiant’s offline parser of context-free grammars [19]. We will operate
on matrices of binary relations over the set of non-terminals VN and we call such matrices
relational. Formally, every element of a relational matrix is of the form t0, 1uVN ˆVN . To
simplify the notation, our relational matrices will be indexed by intervals J1, J2 Ď r1, ns

of consecutive numbers, corresponding to substrings of the input string w. We define
b-multiplication of matrices A, B with indices Ja ˆ Jc and Jc ˆ Jb respectively, as:

pA b Bqri, jsX,Y “
ł

kPJc
ZPVN

Ari, ksX,Z ¨ Brk, jsZ,Y for i P Ja, j P Jb, X, Y P VN

Similarly, we define relational vectors as vectors of subsets of VN , that is their elements
are of the form: t0, 1uVN , and matrix-vector product M b F of matrix M (indexed with
Ja ˆ Jc) and vector F (indexed with Jc) as:

pM b F qrisX “
ł

kPJc
ZPVN

M ri, ksX,Z ¨ F rksZ for i P Ja, X P VN

CPM 2024

13:6 Online Context-Free Recognition in OMv Time

▶ Lemma 7 ([18]). We can compute relational matrix-matrix b-product in |VN |3 multiplica-
tions of two Boolean matrices and relational matrix-vector b-product in |VN |2 multiplications
of a Boolean matrix and a vector. The Boolean matrices and vectors that we multiply have
the same size as the relational ones.

Proof. By definition of b-product, in order to multiply two relational matrices we iterate
over all triples of X, Y, Z of non-terminals, create Boolean matrices A1X,Z , BZ,Y where
A1X,Zri, js “ Ari, jsX,Z and B1Z,Y ri, js “ Bri, jsZ,Y and calculate A1 ¨ B1 using the standard
Boolean p`, ¨q-product. Then pA b Bqri, jsX,Y “

Ž

ZPVN
pA1X,Z ¨ B1Z,Y qri, js.

Matrix-vector b-multiplication can be calculated analogously. ◀

Now we are able to show the main theorem of this section.

▶ Theorem 6. Let I “ rp, p ` sq be an interval of positions from w. Consider the following
sequence Q of at most s queries Qp`s, Qp`s`1, . . .: in the t-th query we are given set
Qt “ tpi, vq : v

‹
ñ wri, ts, i P rp ` s, tsu and need to compute At “ tpi, vq : v

‹
ñ wri, ts, i P Iu.

There exists a randomized algorithm answering online all queries from Q in total
s3{2Ωp

?
log sq randomized time that succeeds with high probability.

Recall that G “ pVN , VT , P, Sq is the considered grammar. Whenever we refer to wri, i´1s

for any i, we mean an empty string.

Preprocessing. During the preprocessing phase we first run Rytter’s algorithm [19] on
wrp..p ` s ´ 1s and compute U ri, js for all p ď i ď j ă p ` s in Opsωq time2. Based on that
we define a relational matrix V with rows and columns p..pp ` sq by setting

V ri, jsX,Y “ 1 ðñ DZPVN

´

pX Ñ ZY q P P ^ Z
‹

ñ wri..j ´ 1s

¯

for p ď i ď j ď p ` s

Informally, this means that we can extend “to the left” every infix of w that starts at position j

and can be derived from Y to an infix that starts at position i, ends at the same position and
that can be derived from X. For empty infixes we set V ri, isX,Y “ 1 ðñ X “ Y . When
we do not specify the value of some entries of a matrix, it means that there are all zeros in
that entry. For instance, for i ą j in V we have V ri, jsX,Y “ 0 for all X, Y P VN .

Now we calculate V ‹ “ V s with exponentiation by squaring, using b-product at every step
in total Opsω log sq “ Õpsωq time, by Lemma 7. Observe that V ‹ describes all possibilities
of extending an infix “to the left” at most s times. As j ´ i ď s, we never need more than s

steps to extend an infix starting at position j to an infix starting at position i and then:

V ‹ri, jsX,Y “ 1 ðñ D k1ă...ăkr
k1“i,kr“j

Z1,...,ZrPVN

Z1“X,Zr“Y

´

@1ďeărV rke, ke`1sZe,Ze`1 “ 1
¯

for p ď i ď j ď p ` s

See Figure 1 for an illustration.

Invariant. During the process of answering queries, before receiving a subsequent query Qt,
we maintain a relational matrix H with similar properties as V , with rows p..pp ` sq, but
with columns pp ` sq..t, that is:

Hri, jsX,Y “ 1 ðñ DZPVN

´

pX Ñ ZY q P P ^Z
‹

ñ wri..j ´1s

¯

for p ď i ď p`s ď j ď t

2 In [19] is computed V ALIDpk, ℓq “
Ť

kďiďjďℓtpA, i, jq : A P U ri, jsu.

B. Dudek and P. Gawrychowski 13:7

. . .
i j

Zr = Y

Zr−1

Zr−2

Z1 = X

k2 kr−1kr−2

Figure 1 Illustration of the definition of V ‹. Note that we do not specify the endpoint of the
last string, starting at position j and derived from Y , because we are only interested in the possible
extensions “to the left” from such a string.

This matrix also describes extensions “to the left”, but from an infix starting at position
j ě p ` s to an infix starting at position i ď p ` s. In order to satisfy the invariant, at the
end of preprocessing we initialize Hri, p ` ss “ V ri, p ` ss for p ď i ď p ` s.

Query. From the input set Qt we create a relational vector F rpp ` sq..ts such that

F rjsY “ 1 ðñ Y
‹

ñ wrj..ts ðñ pj, Y q P Qt.

Let A “ H b F . Then ArisX “ 1 ùñ X
‹

ñ wri..ts for p ď i ď p ` s. However, this is
not an equivalence yet, because we need to consider a larger number of extensions “to the
left” using infixes fully contained in I “ rp, p ` sq. For that we use matrix V ‹ and compute
A1 “ V ‹ b A. Then we have A1risX “ 1 ðñ X

‹
ñ wri..ts for p ď i ď p ` s and we can

construct the desired set At that can be returned from the procedure. As the last step
of processing the query, we update matrix H by adding pt ` 1q-th column by definition:
Hri, t ` 1sX,Y “ 1 ðñ DZPVN

pX Ñ ZY q P P ^ A1risZ “ 1.

Running time. The only operations that can take more than Opsq time in the above
procedure are the matrix-vector b multiplications H b F and V ‹ b A. Recall that by
Lemma 7 it suffices to show how to perform these operations efficiently for matrices and
vectors over the Boolean semiring, not the relational ones. In the case of V ‹ b A we have one
matrix V ‹ subsequently multiplied by different vectors A, so we can directly apply Theorem 3
and process online all the queries in total s3{2Ωp

?
log sq time.

For the multiplications H bF we need a slightly different approach, because the matrix H

changes in time. Similarly as in Algorithm 1 we will divide the columns of H into intervals
following the binary representation of the width of H and split H into a number of smaller
square matrices. For each of the small matrices we will use the algorithm for OMv from
Theorem 3.

▶ Lemma 8. Consider the sequence of at most s operations, where in the j-th one we are
given a binary vector vj of length s and a binary vector qj of length j and need to calculate
xj “ Mj ¨ qj where Mj is the matrix with s rows and columns v1, . . . , vj. There exists a
randomized algorithm answering online all the queries in total s3{2Ωp

?
log sq time that succeeds

with high probability.

CPM 2024

13:8 Online Context-Free Recognition in OMv Time

Proof. Similarly as in Algorithm 1, we maintain a partition of the interval r1..js into
c “ Oplog jq intervals: Epjq “ re1, e2q, re2, e3q, . . . , rec, ec`1q where e1 “ 1, ec`1 “ j ` 1 and
lengths of the intervals follow the binary representation of j, with re1, e2q being the largest
one. Intervals correspond to subranges of columns of Mj and for an interval of length 2k we
divide its s ˆ 2k submatrix into s{2k square matrices of size 2k ˆ 2k. For each such matrix
we create a data structure for OMv multiplication, by Theorem 3.

In order to process a query, we first add the new column vj , update the structure of
intervals from Epj ´ 1q to Epjq and run preprocessing for each of the newly-created matrices.
To answer the query we divide qj according to Epjq into vectors q1

j , . . . , qc
j and multiply each

vector qi
j by all the matrices of the same size as qj and combine the results in one vector yj

of length s, see Figure 2. Then xj “
Žc

i“1 yi.

M1
1

M2
1

M1
2

M2
2

M3
2

M4
2

q13

q23

∨

M1
1 · q13

x3 =

M1
2 · q23

M3 :

q3 :

M4
2 · q23

...

y1 y2

Figure 2 Example of calculating x3 based on the results from multiplicating square matrices Mz
i

by vector qi
3 for z P r1, s{|qi

3|s.

The correctness of the approach is immediate and now we need to calculate the total
running time. While adding new columns to the considered matrix, we create a new interval
of length 2k for j such that j ” 2k pmod 2k`1q, so in total less than s{2k times. We divide
every interval into s{2k matrices of size 2k ˆ 2k and for each of them we create an OMv
data structure that answers at most 2k queries. By Theorem 3 we can process online all the
queries for a single matrix in 23k{2Ωp

?
kq total time. This gives us the following total running

time of processing all the queries:
log s
ÿ

k“0
s{2k ¨ s{2k ¨ p2kq3´Ωp

?
kq “ s2 ¨

log s
ÿ

k“0
2k´Ωp

?
kq “ s3{2Ωp

?
log sq

where the last step follows from Lemma 5. ◀

Finally, the total running time of our algorithm is Õpsωq for the preprocessing and
s3{2Ωp

?
log sq for answering all the queries, which gives s3{2Ωp

?
log sq total time. This concludes

the proof of Theorem 6.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique

algorithms are optimal, so is Valiant’s parser. In FOCS, pages 98–117. IEEE Computer Society,
2015.

2 Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley series in computer science / World student series edition. Addison-Wesley,
1986.

B. Dudek and P. Gawrychowski 13:9

3 Noam Chomsky. On certain formal properties of grammars. Inf. Control., 2(2):137–167, 1959.
4 John Cocke and Jacob T. Schwartz. Programming languages and their compilers: Preliminary

notes (technical report) (2nd revised ed. Technical report, CIMS, NYU, 1970.
5 Shay B. Cohen, Giorgio Satta, and Michael Collins. Approximate PCFG parsing using

tensor decomposition. In HLT-NAACL, pages 487–496. The Association for Computational
Linguistics, 2013.

6 Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme J. Mitchison. Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
1998.

7 Hervé Gallaire. Recognition time of context-free languages by on-line turing machines. Inf.
Control., 15(3):288–295, 1969.

8 Susan L. Graham, Michael A. Harrison, and Walter L. Ruzzo. An improved context-free
recognizer. ACM Trans. Program. Lang. Syst., 2(3):415–462, 1980.

9 M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley Longman Publishing
Co., Inc., USA, 1st edition, 1978.

10 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In STOC, pages 21–30. ACM, 2015.

11 Dan Jurafsky and James H. Martin. Speech and language processing: an introduction to natural
language processing, computational linguistics, and speech recognition, 2nd Edition. Prentice
Hall series in artificial intelligence. Prentice Hall, Pearson Education International, 2009.

12 Tadao Kasami. An efficient recognition and syntax algorithm for context-free language.
Technical Report AFCRL-65-758, Air Force Cambridge Research Lab, Bed-ford, MA., 1965.

13 Flip Korn, Barna Saha, Divesh Srivastava, and Shanshan Ying. On repairing structural
problems in semi-structured data. Proc. VLDB Endow., 6(9):601–612, 2013.

14 Kasper Green Larsen and R. Ryan Williams. Faster online matrix-vector multiplication. In
SODA, pages 2182–2189. SIAM, 2017.

15 Lillian Lee. Fast context-free grammar parsing requires fast boolean matrix multiplication. J.
ACM, 49(1):1–15, 2002.

16 Adam Pauls and Dan Klein. K-best A* parsing. In ACL/IJCNLP, pages 958–966. The
Association for Computer Linguistics, 2009.

17 Alexander M. Rush, David A. Sontag, Michael Collins, and Tommi S. Jaakkola. On dual
decomposition and linear programming relaxations for natural language processing. In EMNLP,
pages 1–11. ACL, 2010.

18 Wojciech Rytter. Fast recognition of pushdown automaton and context-free languages. Infor-
mation and Control, 67(1-3):12–22, 1985.

19 Wojciech Rytter. Context-free recognition via shortest paths computation: A version of
Valiant’s algorithm. Theor. Comput. Sci., 143(2):343–352, 1995.

20 Joel I. Seiferas. A simplified lower bound for context-free-language recognition. Inf. Control.,
69(1-3):255–260, 1986.

21 Michael Sipser. Introduction to the theory of computation. PWS Publishing Company, 1997.
22 Richard Socher, John Bauer, Christopher D. Manning, and Andrew Y. Ng. Parsing with

compositional vector grammars. In ACL (1), pages 455–465. The Association for Computer
Linguistics, 2013.

23 Leslie G. Valiant. General context-free recognition in less than cubic time. J. Comput. Syst.
Sci., 10(2):308–315, 1975.

24 Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for
matrix multiplication: from alpha to omega. In SODA, pages 3792–3835. SIAM, 2024.

25 Daniel H. Younger. Recognition and parsing of context-free languages in time n3. Inf. Control.,
10(2):189–208, 1967.

CPM 2024

	1 Introduction
	2 Preliminaries
	3 Parsing context-free grammars online

