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Abstract
The well known Normalized Edit Distance (ned) [Marzal and Vidal 1993] is known to disobey the
triangle inequality on contrived weight functions, while in practice it often exhibits a triangular
behavior. Let d be a weight function on basic edit operations, and let nedd be the resulting
normalized edit distance. The question what criteria should d satisfy for nedd to be a metric is
long standing. It was recently shown that when d is the uniform weight function (all operations
cost 1 except for no-op which costs 0) then nedd is a metric. The question regarding non-uniform
weights remained open. In this paper we answer this question by providing a necessary and sufficient
condition on d under which nedd is a metric.
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1 Introduction

The question of quantifying the similarity between two strings is quite ancient [9, 11, 18, 17, 10,
19, 14]. A typical way to measure the distance between two strings, is the Levenshtein distance,
aka, edit distance (ed) [11]. The edit distance between two strings w1, w2 ∈ Σ∗ is measured as
the minimum weight of an edit path – a sequence of edit operations delete, insert, replace, or
no-op – required to transform w1 to w2. In the case of uniform weights, all edit operations cost
1 except for no-op which costs 0. For example, ed(Jane, John) = 3 since we can transform
the string Jane to John using the edit path α =no-op(J),replace(a,o),replace(n,h),replace(e,n)
which weighs 3 and there is no edit path transforming Jane to John that weighs less than
3. In many settings, a normalized version of the edit distance is required. To see why, note
that for the same argument as above the distance between JaneKennedy and JohnKennedy
is also 3 although clearly the latter pair of strings are much more similar to one another.

In [13] the well-known normalized version of the edit distance, henceforth ned, was
suggested in which the distance between two non-empty strings w1 and w2 is the minimum
cost of an edit path between w1 and w2. The cost of an edit path is the weight of edit
operations along the path, divided by the length of the path. The cost of the edit path
α above is thus 3

4 but since α′ =no-op(J),replace(a,o),insert(h),no-op(n),delete(e) also
transforms Jane to John we have that ned(Jane, John) = 3

5 . Similar arguments show that
ned(JaneKennedy, JohnKennedy) = 3

12 , thus it is now apparent that JaneKennedy and
JohnKennedy are more similar to one another (compared to Jane and John).
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14:2 When Is the Normalized Edit Distance over Non-Uniform Weights a Metric?

The above discussion concerned the case of uniform weights. However, in many ap-
plications using a normalized edit distance, such as text retrieval, signal processing, and
computational biology, non-uniform weights are used. In the case of non-uniform weights,
any basic edit operation has its own weight, e.g. delete(a), insert(a), delete(b), replace(a, b),
etc. can cost differently. A function d assigning a weight to each edit operation is assumed,
and each such function gives rise to a different version, nedd, of the normalized edit distance
of [13]. It was noted in [13] that nedd may not satisfy the triangle inequality for certain
weight functions d, though it is observed to behave well in practice often enough. The
question under which criteria on d is nedd a metric is standing since. This motivated the
introduction of other definitions of normalized edit distance, e.g., the generalized edit distance
(ged) [12], and the contextual edit distance (ced) [5]. A sufficient condition on d for gedd

to be a metric was given in [12]1 and in [5] it is shown that ced is a metric when d is the
uniform weight. It was recently shown that under the uniform weights, ned is a metric, and
that ned enjoys several nice properties that ged and ced do not [7]. The question under
which criteria nedd over a non-uniform weight function d is a metric was left unanswered.

In this paper we provide a necessary and sufficient condition on a weight function d on
edit operations, in order for nedd to be a metric. While it is reasonable to assume that d
should be a metric (in the space of edit operations) we show that this is neither a necessary
condition, nor a sufficient one. The exact criteria relaxes the requirement of the triangle
inequality, makes an additional requirement on the cost of inserts and deletes, and in general
concerns only edit operations we term essentials. We term d that satisfies these criteria fine.
The proof that d being fine is also a sufficient condition for nedd to be a metric generalizes
and significantly simplifies the proof that nedd is a metric in the uniform case [7].

The main result of the paper is the following theorem.

▶ Theorem 1 (Necessary and Sufficient Condition). Let d : (Σ ∪ {ε}) × (Σ ∪ {ε}) → [0, 1].
Let a, c ∈ Σ ∪ {ε} and b ∈ Σ. Let m = sup{nedd(w1, w2) : w1, w2 ∈ Σ∗}. A necessary and
sufficient condition for nedd to be a metric is that d satisfies the following properties after
removing inessential edit operations.
1. d(a, c) = 0 iff a = c

2. d(a, c) = d(c, a)
3. d(a, b) + d(b, c) ≥ min{d(a, c), d(a, ε) + d(ε, c)}
4. d(ε, b) = d(b, ε) ≥ m

2

The rest of the paper is organized as follows. We provide some preliminaries in §2. In §3
we show that d being a metric is neither a necessary condition nor a sufficient one. In §4
we gradually develop the necessary condition on d, we term a weight function d satisfying
these conditions fine. In §5 we show that d being fine is a sufficient condition for nedd to be
a metric. In §6 we provide some natural examples for weight functions that are fine, and
discuss applications of nedd in formal verification. Due to lack of space, the proofs regarding
the examples in §6 are deferred to the full version of the paper.

2 Notations

Metric spaces

A metric space is an ordered pair (M, d) where M is a set and d : M × M → R is a metric,
i.e., it satisfies the following properties for all m1,m2,m3 ∈ M:

1 The condition is that d is a metric and all delete and insert operations cost the same.
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1. d(m1,m2) = 0 iff m1 = m2;
2. d(m1,m2) = d(m2,m1);
3. d(m1,m3) ≤ d(m1,m2) + d(m2,m3).
The first condition is referred to as identity of indiscernibles, the second as symmetry, and
the third as the triangle inequality.

Words and Edit Operations

Let Σ be an alphabet and Σ∗ (Σ+) denote all the finite (non-empty) strings over Σ. The
length of word w = σ1σ2...σn, denoted |w|, is n. We use w[i] to denote the i-th letter of w,
and w[..i] for the prefix of w ending at the i-th letter. We denote the empty word by ε. Let
a, b ∈ Σ. The usual edit operations are delete a, insert a, replace a with b, and no-op a. We
use the following notations for them. Let Γ̂ = (Σ ∪ {ε})2. We use [ a

b ] to represent the pair
(a, b). An edit operation is a letter in Γ = Γ̂ \ {[ ε

ε ]}. The letter [ a
b ] denotes replace a with b,

the letter [ a
a ] denotes no-op a, the letter [ a

ε ] denote delete a, and the letter [ ε
a ] denotes insert

a. This style of notation will come in handy in §5 when we prove the sufficient condition.

Edit Paths

An edit path between words w1 and w2 over Σ is a sequence
[ a1

b1

] [ a2
b2

]
. . .

[ am

bm

]
of elements

in Γ satisfying that a1a2 . . . am = w1 and b1b2 . . . bm = w2. For instance, take w1 = aaa and
w2 = bb then α = [ a

b ] [ a
ε ] [ a

b ] is an edit path between w1 and w2, and α′ = [ ε
b ] [ a

b ] [ a
ε ] [ a

ε ] is
another edit path between w1 and w2. It is sometimes convenient to represent these edit
paths as aaa 7→ b_b and _aaa 7→ bb__, respectively. In standard terminology the first edit
path would correspond to replace a with b, delete a, replace a with b and the second to insert
b, replace a with b, delete a, delete a. In §5 we use also strings over Γ̂ which we refer to as
extended edit-paths.

We use πi for the projection of a tuple or a sequence of tuples on its i-th component.
E.g. if α = [ ε

b ] [ a
b ] [ a

ε ] [ a
ε ] then π1(α) = εaaa and π2(α) = bbεε. Let α = a1a2 . . . ak be a

sequence of symbols over Σ ∪ {ε}. We use word(α) for the word obtained by concatenating
these letters. For instance, word(π1(α)) = aaa. Let w1, w2 ∈ Σ∗. Let α be an (extended)
edit path between w1, w2. Then word(π1(α)) = w1 and word(π2(α)) = w2. We use input(α)
for word(π1(α)) and output(α) for word(π2(α)).

Weight, Length and Costs of Edit Paths

Let d : Γ → [0, 1] be a function assigning cost for the basic edit operations. Although [ ε
ε ]

is not an edit operation, it is sometimes convenient to assume d is defined on it as well,
namely d : Γ̂ → [0, 1]. When this is the case we simply assume d(ε, ε) = 0. Let w1 ∈ Σ∗ and
w2 ∈ Σ+. Let α =

[ a1
b1

] [ a2
b2

]
. . .

[ an

bn

]
be an edit path between w1 and w2. We say that the

length of α is n, and that the weight of α is
∑n

i=1 d(ai, bi). We denote them by len(α) and
wgt(α) respectively. The cost of an edit path α, denoted cost(α) is defined as wgt(α)

len(α) . 2

2 Note that it is well defined since w2 ∈ Σ+ guarantees that len(α) ̸= 0. To obtain a definition that works
also for w1 ∈ Σ+ and w2 ∈ Σ∗ we can consider also edit paths from w2 to w1.

CPM 2024
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The Normalized Edit Distance (NED)

Let Σ be an alphabet and d : Γ → [0, 1]. Note that d may depend on the exact letters, and
it could be that e.g. d(a, b) ̸= d(b, d) or that d(ε, b) ̸= d(ε, d). The Levenstein distance [11]
(ed) and the Normalized Edit Distance [13] (ned) between w1 and w2 (with respect to d)
can be defined as follows:

edd(w1, w2) = min {wgt(α) : α is an edit path between w1 and w2 } .

nedd(w1, w2) = min {cost(α) : α is an edit path between w1 and w2 } .

The edd distance looks for an edit path with minimum weight, whereas nedd looks for
an edit path with minimum cost.

▶ Example 2 (edd and nedd). For instance, consider the words w1 = abaad, w2 = baaadc over
Σ = {a, b, c, d}. Then both α1 = [ a

ε ]
[

b
b

]
[ a

a ] [ a
a ] [ ε

a ]
[

d
d

]
[ ε

c ] and α2 = [ a
b ] [ b

a ] [ a
a ] [ a

a ]
[

d
d

]
[ ε

c ]
are edit paths between w1 and w2. Consider first the setting of uniform weights, namely
d : Γ → [0, 1] is defined as d(σ, σ) = 0 and d(σ, σ′) = 1 if σ ̸= σ′. In this setting, we have
that wgt(α1) = 1 + 0 + 0 + 0 + 1 + 0 + 1 = 3 and wgt(α2) = 1 + 1 + 0 + 0 + 0 + 1 = 3, so
using ed α1 and α2 are equally good. However len(α1) = 7 and len(α2) = 6 so cost(α1) = 3

7
and cost(α2) = 3

6 thus using ned, α1 is preferable.
Consider now the non-uniform weights d(σ, σ′) = 0.5 for every σ ̸= σ′, and d(σ, σ) = 0,

d(σ, ε) = d(ε, σ) = 1 for every σ, σ′ ∈ Σ. We get that wgt(α1) = 1 + 0 + 0 + 0 + 1 + 0 + 1 = 3
and wgt(α2) = 0.5 + 0.5 + 0 + 0 + 0 + 1 = 2 and so cost(α1) = 3

7 and cost(α2) = 2
6 , thus α2

is preferable.

▶ Definition 3. An edit path α is termed optimal if cost(α) = nedd(input(α), output(α)).

3 A metric weight function is neither necessary nor sufficient

Let d : Γ → [0, 1] we are interested in finding a necessary and sufficient condition on d for
nedd to be a metric. A reasonable conjecture is that d is a metric on the space Γ. We show
that this is neither a sufficient nor a necessary condition.

We first show that d being a metric is not a sufficient condition for nedd to be a metric.

▷ Claim 4. There exists d which is a metric while nedd is not.

Proof. Let Σ = {a, b} and let d(σ, σ) = 0 for every σ ∈ Σ. Let d(a, b) = d(b, a) = 1,
d(a, ε) = d(ε, a) = 0.1 and d(b, ε) = d(ε, b) = 1. It is easy to verify that d is a metric.

We show now that nedd breaks the triangle inequality. Take w1 = a and w3 = b. Then
nedd(a, b) = 0.55 via the edit path that deletes a and inserts b namely [ a

ε ] [ ε
b ]. Its weight is

0.1 + 1 and its lengths is 2. Thus it costs 1.1
2 = 0.55.

Consider now going via w2 = baaaa. Then α1,2 = [ a
b ] [ ε

a ] [ ε
a ] [ ε

a ] [ ε
a ] is an edit path between

w1 and w2 and α2,3 =
[

b
b

]
[ a

ε ] [ a
ε ] [ a

ε ] [ a
ε ] is an edit path between w2 and w3. Notice that

nedd(w1, w2) ≤ 1+4(0.1)
5 and nedd(w2, w3) ≤ 4(0.1)

5 . Thus, nedd(w1, w2) + nedd(w2, w3) ≤
1.8
5 = 0.36 < 0.55 = nedd(w1, w3). Hence, the triangle inequality for nedd breaks. ◁

▶ Corollary 5. d being a metric is not a sufficient condition for nedd to be a metric.

Next we show that d being a metric is not a necessary condition for nedd to be a metric:
nedd can be a metric although d breaks the triangle inequality or the symmetry condition.

▷ Claim 6. There exists nedd which is a metric while d breaks the triangle inequality.
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Proof. Let Σ = {a, b} and let d(σ, σ) = 0 for every σ ∈ Σ. Let d(a, b) = d(b, a) = 1,
d(ε, a) = d(a, ε) = 0.4 and d(ε, b) = d(b, ε) = 0.5. Then d is not a metric since going from
a to b via ε is less costly than going directly (0.9 vs. 1). However, nedd is a metric. It is
easy to see that the first two requirements of a metric hold for nedd. Regarding the triangle
inequality, while it seems at first that it breaks in going from a to b (as it does for d) this
is not the case. The optimal edit path from a to b is [ a

ε ] [ ε
b ] whose cost is 0.5+0.4

2 = 0.45
which is smaller than going via ε which costs nedd(a, ϵ) + nedd(ϵ, b) = 0.4 + 0.5. The proof
that nedd is a metric follows from the fact that it adheres to the sufficient and necessary
conditions we provide. We come back to this in Remark 33. ◁

▷ Claim 7. There exists nedd which is a metric while d breaks symmetry.

Proof. Let Σ = {a, b} and let d(σ, σ) = 0 for every σ ∈ Σ. Let d(a, b) = 1, d(b, a) =
0.9, d(ε, a) = d(a, ε) = 0.4 and d(ε, b) = d(b, ε) = 0.45. Then d is not a metric since
d(a, b) ̸= d(b, a) breaks symmetry. However, nedd is a metric. Indeed, the symmetry of
nedd does not break since it never uses in an optimal path the operation [ a

b ] or [ b
a ]. For

example, consider w1 = a and w2 = b. Then nedd(w1, w2) = wgt([ a
ε ] [ ε

b ])/2 = 0.425 and
nedd(w2, w1) = wgt([ b

ε ] [ ε
a ])/2 = 0.425 (and the fact that d(b, a) = 0.9 ̸= d(b, a) = 1 doesn’t

come in the way). Here as well the proof that nedd is a metric is deferred to Remark 33.
◁

▶ Corollary 8. d being a metric is not a necessary condition for nedd to be a metric.

4 Necessary condition

We turn to extract necessary conditions on d for nedd to be a metric. We start by showing
that, as expected, if nedd is a metric then d satisfies the first requirement of a metric. The
proof relies on the following simple observation.

▷ Claim 9. Let a, b ∈ Σ. Then
1. nedd(a, ε) = d(a, ε) and nedd(ε, a) = d(ε, a)
2. nedd(a, b) = min{d(a, b), 1

2 (d(a, ε) + d(ε, b))}

Proof. The first item holds since there is a single edit path from ε to a ∈ Σ: the edit path
[ ε

a ]. Hence nedd(a, ε) = d(a,ε)
1 . The claim on nedd(ε, a) is symmetric.

The second item holds since there are exactly two edit paths from a to b: either [ a
b ] or

[ a
ε ] [ ε

b ]. Thus ned(a, b) = min{ d(a,b)
1 , d(a,ε)+d(ε,b)

2 }. ◁

▷ Claim 10. If nedd is a metric then d must satisfy the identity of indiscernibles condition.

Proof. Let a, b ∈ Σ. By Claim 9, nedd(a, ε)=d(a, ε) and nedd(ε, a)=d(ε, a). Thus, nedd(a, ε)
> 0 implies d(a, ε) > 0. By symmetry we get d(ε, a) > 0. Consider now the case where b = a.
We have 0 = nedd(a, a) = min{d(a, a), 1

2 (d(a, ε) + d(ε, a))}. Since we have shown that the
second argument is non-zero it follows that d(a, a) = 0. Last, consider the case where b ̸= ε

and b ̸= a. Assume towards contradiction the replace between some non-identical letters a
and b is zero, then nedd(a, b) ≤ 0 via the direct path involving this replace contradicting
that nedd satisfies the first requirement of a metric. ◁

The proof of Claim 6 shows that nedd can satisfy the condition of triangle inequality although
d does not. The reason is that in nedd there are two options for a direct path between two
letters a and b: either a replace or a delete followed by an insert. In the perspective of d a

CPM 2024
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path from a to b that takes a short detour via ε is not direct. Hence the triangle inequality
for d can be relaxed as stated below and as we show in the next section this relaxation
suffices.

▷ Claim 11 (Relaxed Triangle Inequality). If nedd satisfies the triangle inequality then d

should satisfy

d(a, b) + d(b, c) ≥ min{d(a, c), d(a, ε) + d(ε, c)}

for all b ∈ Σ and a, c ∈ Σ ∪ {ε}.

▶ Remark 12. Note that when c = ε the requirement is d(a, b)+d(b, ε) ≥ min{d(a, ε), d(a, ε)+
d(ε, ε)} and given d(ε, ε) = 0 this amounts to

d(a, b) + d(b, ε) ≥ d(a, ε)

which says that replacing and deleting cannot cost less than deleting. Similarly, when a = ε

this amounts to d(ε, b) + d(b, c) ≥ d(b, ε) which says that inserting and replacing cannot cost
less than inserting.

Proof of Claim 11. We first consider the case that c = ε. Following Remark 12, assume
towards contradiction that there exists a, b ∈ Σ such that d(a, b) + d(b, ε) < d(a, ε). Consider
w1 = a, w2 = b, w3 = ε. Let α1,3 = [ a

ε ]. Notice that it is the only possible edit path from
w1 to w3 and thus the optimal. Let α1,2 = [ a

b ] and α2,3 = [ b
ε ]. Hence cost(α1,2) = d(a, b),

cost(α2,3) = d(b, ε) and cost(α1,3) = d(a, ε). Since nedd satisfies the triangle inequality
then we know that cost(α1,2) + cost(α2,3) ≥ cost(α1,3) hence d(a, b) + d(b, ε) ≥ d(a, ε) in
contradiction to the assumption. The case where a = ε is similar.

Assume now neither a nor c is ε and assume towards contradiction that there exists
a, b, c ∈ Σ such that d(a, b) + d(b, c) < min{d(a, c), d(a, ε) + d(ε, c)}. Let i ∈ N and consider
w1 = ai+1, w2 = aib and w3 = aic. Let α1,3 ∈ Γ∗ be an optimal edit path between w1 to
w3. Notice that either α1,3 = ([ a

a ])i [ a
c ] or α1,3 = ([ a

a ])i [ a
ε ] [ ε

c ]. Consider the two edit paths
α1,2 = ([ a

a ])i [ a
b ] and α2,3 = ([ a

a ])i [ b
c ] between w1 to w2 and between w2 to w3, respectively.

Case 1: α1,3 = ([ a
a ])i [ a

c ].
Then wgt(α1,3) = d(a, c), len(α1,3) = i+ 1 and cost(α1,3) = d(a,c)

i+1 . In order for nedd to
satisfy the triangle inequality cost(α1,3) ≤ cost(α1,2) + cost(α2,3) must hold. Thus

d(a, c)
i+ 1 ≤ d(a, b)

i+ 1 + d(b, c)
i+ 1

d(a, c) ≤ d(a, b) + d(b, c)

in contradiction to the assumption.
Case 2: α1,3 = ([ a

a ])i [ a
ε ] [ ε

c ].
Then wgt(α1,3) = d(a, ε)+d(ε, c), len(α1,3) = i+2 and cost(α1,3) = d(a,ε)+d(ε,c)

i+2 . In order
for nedd to satisfy the triangle inequality cost(α1,3) ≤ cost(α1,2) + cost(α2,3) must hold.
Thus,

d(a, ε) + d(ε, c)
i+ 2 ≤ d(a, b)

i+ 1 + d(b, c)
i+ 1

(i+ 1)(d(a, ε) + d(ε, c))
i+ 2 ≤ d(a, b) + d(b, c)
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By taking i to infinity we get that

lim
i→∞

(i+ 1)(d(a, ε) + d(ε, c))
i+ 2 = d(a, ε) + d(ε, c) ≤ d(a, b) + d(b, c)

in contradiction to the assumption.
Hence either way we get that for nedd to satisfy the triangle inequality then d should satisfy

d(a, b) + d(b, c) ≥ min{d(a, c), d(a, ε) + d(ε, c)}

for every b ∈ Σ and a, c ∈ Σ ∪ {ε}. ◁

In Claim 4 we have shown that nedd fails to be a metric although d is. Intuitively, the
reason is that going through more and more insert and delete operations can decrease the
overall cost. In the following, we will show that requiring insert and delete operations to be
at least half of the costliest replace operation prevents this.

▷ Claim 13 (At least half). If nedd is a metric and m = sup{nedd(w1, w2) : w1, w2 ∈ Σ∗}.
Then d should satisfy the requirement d(ε, b) = d(b, ε) ≥ m

2 for every b ∈ Σ.

Proof. First note that if m = sup{nedd(w1, w2) : w1, w2 ∈ Σ∗} then m =
sup{nedd(σ1, σ2) : σ1, σ2 ∈ Σ}. Indeed the way to obtain the maximum cost of an edit path
is using the edit operation with maximal cost, and using more than one such operation will
not increase the total cost.

Suppose inserting/deleting some letter b costs c for some c < m
2 . Consider the words

w1 = σ1, w3 = σ3 and assume that w1 and w3 are such that nedd(w1, w3) = m. Note that
there are only two possible edit paths that transform w1 to w3. That is, either α1,3 = [ σ1

σ3 ] or
α1,3 = [ σ1

ε ] [ ε
σ3 ]. Hence nedd(w1, w3) = m implies m = min{d(σ1, σ3), 1

2 (d(σ1, ε)+d(ε, σ3))}.
This in turn implies that d(σ1, σ3) ≥ m and d(σ1, ε) + d(ε, σ3) ≥ 2m.

Consider now the word w2 = σ3 · bk for some k ∈ N where k ≥ 1. Then we can transform
w1 to w2 using the edit path α1,2 = [ σ1

σ3 ] · ([ ε
b ])k or α1,2 = [ σ1

ε ] [ ε
σ3 ] · ([ ε

b ])k. To transform w2
to w3 we can use the edit path α2,3 = [ σ3

σ3 ] ([ b
ε ])k. Then the sum of the edit paths is one of

the following:
1. In case of α1,2 = [ σ1

σ3 ] · ([ ε
b ])k:

cost(α1,2)+cost(α2,3) = d(σ1, σ3) + k · d(ε, b)
1 + k

+k · d(b, ε)
1 + k

≥ m+ k · c
1 + k

+ k · c
1 + k

= 2k · c+m

1 + k

Since nedd(w1, w3) = m and since nedd is a metric then by the triangle inequality
we require cost(α1,2) + cost(α2,3) ≥ 2k·c+m

1+k ≥ m = nedd(w1, w3). Which entails that
2k · c+m ≥ m+mk and hence c ≥ m

2 .
2. In case of α1,2 = [ σ1

ε ] [ ε
σ3 ] · ([ ε

b ])k:

cost(α1,2)+cost(α2,3) = d(σ1, ε) + d(ε, σ3) + k · d(ε, b)
2 + k

+ k · d(b, ε)
1 + k

≥ 2m+ k · c
2 + k

+ k · c
1 + k

Again, since nedd(w1, w3) = m and since nedd is a metric by the triangle inequality we
require cost(α1,2) + cost(α2,3) ≥ 2m+k·c

2+k + k·c
1+k ≥ m = nedd(w1, w3). Which entails that

(2m+ kc)(1 + k) + kc(2 + k) ≥ m(2 + k)(1 + k)

2m+ 2mk + kc+ k2c+ 2kc+ k2c ≥ 2m+ 3mk +mk2

c(2k2 + 3k) ≥ mk +mk2

c ≥ mk2 +mk

2k2 + 3k
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Taking k to infinity we get that

lim
k→∞

mk2 +mk

2k2 + 3k = m

2

Hence either way we get c ≥ m
2 . ◁

▶ Definition 14. We say that an edit operation γ ∈ Γ is essential if there exists α ∈ Γ∗ such
that α is an optimal edit path that uses γ. Otherwise γ is called inessential.

For example in the proof of Claim 7 we can see that [ a
b ] and [ b

a ] are inessential since
transforming a to b via ε is always preferable, while [ a

ε ] is essential. We show that we can
ignore inessential edit operations without changing the result.

▷ Claim 15 (Essentials suffice). Let Γ′ be the restriction of Γ to only essential edit operations
and let d′ : Γ′ → [0, 1] be the restriction of d to Γ′. Then nedd(w1, w2) = nedd′(w1, w2) for
every w1, w2 ∈ Σ∗.

Proof. Let w1, w2 ∈ Σ∗ we will show that nedd(w1, w2) = nedd′(w1, w2). From Definition 3
we know that an edit path α for which nedd(w1, w2) = cost(α) is an optimal edit path hence
every edit operation in it is essential by Definition 14. Thus, all the edit operations in α

exist in Γ′. It follows that nedd′(w1, w2) ≤ cost(α) and since Γ′ does not have additional
edit operations compared to Γ (and they agree on the costs of the mutual ones) the cost of
nedd′(w1, w2) cannot be bigger than cost(α) or else α is not optimal in contradiction. Hence
nedd′(w1, w2) = nedd(w1, w2). ◁

It follows from Claim 15 that we can assume without loss of generality that there are no
inessential operations in d.
▶ Remark 16. Note that [ a

ε ] and [ ε
a ] are essential for every a ∈ Σ. This is since there is

only one edit path from a to ε (and similarly from ε to a) and it involves these operations.
Moreover, by Claim 9 if nedd is a metric then d(a, ε) = d(ε, a).

▷ Claim 17 (A bound on the cost of an essential replace). Let a, b ∈ Σ. If [ a
b ] is an essential

edit operation then there exists i ∈ N such that d(a, b) < (d(a, ε) + d(ε, b))(1 − 1/i).

Proof. Since [ a
b ] is essential there exists an optimal edit path α that uses it. Consider the

shortest such optimal path. Note that cost(α) = wgt(α)−d(a,b)+d(a,b)
len(α) . Consider a new edit

path α′ that does the same edit operations as α apart from [ a
b ] which it will replace by

[ a
ε ] [ ε

b ]. Note that input(α) = input(α′) and output(α) = output(α′). Since α is optimal we
know cost(α) ≤ cost(α′). Moreover notice that cost(α′) = wgt(α)−d(a,b)+d(a,ε)+d(ε,b)

len(α)+1 .
Hence

cost(α) = wgt(α) − d(a, b) + d(a, b)
len(α) ≤ wgt(α) − d(a, b) + d(a, ε) + d(ε, b)

len(α) + 1 = cost(α′)

Thus

(len(α) + 1)(wgt(α) − d(a, b)) + (len(α) + 1) · d(a, b) ≤
len(α)(wgt(α) − d(a, b)) + len(α)(d(a, ε) + d(ε, b))

implying

(wgt(α) − d(a, b)) + (len(α) + 1) · d(a, b) ≤ len(α)(d(a, ε) + d(ε, b))
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Therefore

d(a, b) ≤ len(α)(d(a, ε) + d(ε, b)) − (wgt(α) − d(a, b))
len(α) + 1

≤ len(α)(d(a, ε) + d(ε, b))
len(α) + 1 = (len(α) + 1 − 1)(d(a, ε) + d(ε, b))

len(α) + 1

= d(a, ε) + d(ε, b) − d(a, ε) + d(ε, b)
len(α) + 1 = (d(a, ε) + d(ε, b))

(
1 − 1

len(α) + 1

)
hence the claim holds for i > len(α) + 1. ◁

In Claim 7 we have shown that symmetry of d is not a necessary condition for nedd to
be a metric. In Claim 9 we showed that insert and delete operations are essential and must
be symmetric. The following claim clarifies that if we restrict d to the essential operations
then symmetry must hold.

▷ Claim 18 (Symmetry of Essentials). Let a, b ∈ Σ, if [ a
b ] is an essential edit operation and

nedd is a metric then [ b
a ] is also essential and d(a, b) = d(b, a).

Proof. Assume that [ a
b ] is an essential edit operation and nedd is a metric. Assume towards

contradiction that [ b
a ] is not essential. From Claim 17 we know that there exists i ∈ N such

that d(a, b) < (d(a, ε) + d(ε, b))(1 − 1/i). Consider w1 = ai+1, w2 = aib, let α = ([ a
a ])i [ a

b ]
and α′ = ([ a

a ])i [ a
ε ] [ ε

b ]. Notice that cost(α) = d(a,b)
i+1 and cost(α′) = d(a,ε)+d(ε,b)

i+2 . Since the
only edit path that can cost less than α is α′ we can check which of them is optimal. We
argue that cost(α) < cost(α′). If this is the case then

d(a, b)
i+ 1 <

d(a, ε) + d(ε, b)
i+ 2

hence

d(a, b) < (i+ 1) · (d(a, ε) + d(ε, b))
i+ 2

and so

d(a, b) < d(a, ε) + d(ε, b) − d(a, ε) + d(ε, b)
i+ 2 = (d(a, ε) + d(ε, b)) · (1 − 1

i+ 2)

And this holds since [ a
b ] is essential and so d(a, b) < (d(a, ε) + d(ε, b))(1 − 1

i ), by Claim 17.
Hence α is optimal which means that nedd(w1, w2) = cost(α) and since nedd is a metric
we know that cost(α) = nedd(w2, w1) as well. Consider now the optional optimal edit
paths from w2 to w1. Let β = ([ a

a ])i [ b
a ] and β′ = ([ a

a ])i [ b
ε ] [ ε

a ]. We know that nedd is
a metric hence following Claim 9 we know that cost(β′) = cost(α′) hence we know that
cost(α) = nedd(w2, w1) < cost(β′). Thus cost(α) = nedd(w2, w1) = cost(β), implying [ b

a ] is
essential too and moreover d(a, b) = d(b, a). ◁

From Remark 16 we know that the only operations that can be inessential are [ a
b ] where

a, b ̸= ε. The following claim provides means to check if [ a
b ] is essential or not.

▷ Claim 19 (Essentialness Check). For every a, b ∈ Σ we have [ a
b ] is inessential iff d(a, b) ≥

d(a, ε) + d(ε, b).
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Proof. =⇒ From Claim 17 we know that if [ a
b ] is essential then there exists i ∈ N such that

d(a, b) < (d(a, ε) + d(ε, b))(1 − 1/i). Thus if such i does not exist (which means that [ a
b ] is

inessential), then for every i we have

d(a, b) ≥ (d(a, ε) + d(ε, b))(1 − 1/i)

hence d(a, b) ≥ d(a, ε) + d(ε, b).
⇐= Assume towards contradiction that d(a, b) ≥ d(a, ε) + d(ε, b) and [ a

b ] is essential. Let
n = d(a, b) and m = d(a, ε) + d(ε, b). From the definition of essential, we know that there
exists w1, w2 ∈ Σ∗ and α ∈ Γ∗ such that α is an optimal path from w1 to w2 that uses [ a

b ].
Let k denote the number of occurrences of [ a

b ] in α. Let wgt(α) = p+n ·k, and len(α) = ℓ+k.
Now notice that if we replace every occurrence of [ a

b ] with [ a
ε ] [ ε

b ] we will get path α′ from
w1 to w2 where cost(α′) = p+m·k

ℓ+2·k < p+n·k
ℓ+k in contradiction to α being an optimal path. ◁

We are now ready to state the necessary condition on d for nedd to be a metric.

▶ Corollary 20 (Necessary Condition). Let a, c ∈ Σ ∪ {ε} and b ∈ Σ. Let m =
sup{nedd(w1, w2) : w1, w2 ∈ Σ∗}. A necessary condition for nedd to be a metric is that d
satisfies the following properties after removing inessential edit operations.
1. d(a, c) = 0 iff a = c

2. d(a, c) = d(c, a)
3. d(a, b) + d(b, c) ≥ min{d(a, c), d(a, ε) + d(ε, c)}
4. d(ε, b) = d(b, ε) ≥ m

2

Indeed, the first requirement is necessary by Claim 10, the second requirement by Claim 18,
the third by Claim 11, and the forth by Claim 13.3

▶ Remark 21. Let m = sup{nedd(w1, w2) : w1, w2 ∈ Σ∗}. Note that we can assume without
loss of generality that m = 1. If this is not the case then we define d′(σ1, σ2) = 1

md(σ1, σ2).
Then d′ would satisfy that sup{nedd′(w1, w2) : w1, w2 ∈ Σ∗} = 1. In this case, it may be
that there are σ1, σ2 for which d′(σ1, σ2) are greater than 1 but such an edit operation is
inessential.

▶ Definition 22 (Fine Weight Function, Fine Metric). We call a function d : Γ → [0, 1]
satisfying the conditions of Corollary 20 fine. Note that if d is a metric it satisfies the first
three requirements. If it also satisfied the fourth requirement, we call it a fine metric.

In the next section, we show that if d : Γ → [0, 1] is fine then nedd is a metric. That is, d
being fine is a sufficient and necessary condition for nedd to be a metric.

5 Sufficient Condition

We turn to show that if d is fine then nedd is a metric. That is, that the necessary condition
provided in the previous section is also a sufficient.

▷ Claim 23. If d is fine then nedd satisfies the identity of indiscernibles requirement.

3 For ged, a sufficient condition was given in [12]. We conjecture that it is not a necessary condition, and
ged may be a metric also when deletion of different letters costs differently as in d of Claim 7.
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Proof. Assume d is fine, and let w1, w2 ∈ Σ∗.
1. Case w1 = w2. We show that nedd(w1, w2) = 0. Since d is fine we know that d(a, a) = 0

for every a ∈ Σ. Thus, we can construct an edit path α that applies no-op to each letter
which leads to that wgt(α) = 0. Hence nedd(w1, w2) = 0.

2. Case w1 ≠ w2. Let α ∈ Γ∗ be an optimal edit path that transforms w1 to w2. Notice
that α needs at least one edit operation, denote it γ, that is not no-op. Since d is fine we
know that wgt(γ) > 0. Hence nedd(w1, w2) = cost(α) = wgt(α)

len(α) ≥ wgt(γ)
len(α) > 0. ◁

▷ Claim 24. If d is fine then nedd satisfies the symmetry requirement.

Proof. Assume that d is fine and assume towards contradiction that there exists w1, w2 ∈ Σ∗

such that nedd(w1, w2) ̸= nedd(w2, w1). Assume w.l.o.g. that nedd(w1, w2) < nedd(w2, w1).
Let α1,2 be an optimal path that transforms w1 to w2. Let γ ∈ α1,2 such that γ = [ a

b ] where
a, b ∈ Σ ∪ {ε} and either a ̸= ε or b ̸= ε. From Definition 14 and Claim 18 we know that γ is
essential and so is [ b

a ]. Since d is fine we know that d(a, b) = d(b, a). We refer to [ b
a ] as the

opposite edit operation of [ a
b ]. Note that if we replace every edit operation in α1,2 with its

opposite edit operation, we will receive a new edit path α2,1 that transforms w2 to w1 and
cost(α2,1) = cost(α1,2) < nedd(w2, w1), contradicting the definition of ned. ◁

We proceed to show that the triangle inequality also holds.
The idea of the proof of [7] that ned satisfies the triangle inequality for the uniform case

is to take two edit paths α1,2 and α2,3 from words w1 to w2 and from w2 to w3 and extract
from them an edit path α1,3 from w1 to w3 that costs at most their sum. We follow that
idea but generalize and simplify the proof.

The heart of the simplification lies in finding a way to align the two edit paths so that
their composition to a new edit path from w1 to w3 is seamless, and we can easily prove that
it costs less than the sum.

We proceed by showing how to compose the two paths. The composition uses as an
intermediate step a pair of extended edit paths α′

1,2, α
′
2,3 that align the give edit paths α1,2

and α2,3, with respect to one another.4

▶ Definition 25 (Alignment of edit paths). Let α1,2 and α2,3 be such that output(α1,2) =
input(α2,3). We say that ⟨α′

1,2, α
′
2,3⟩ is the alignment of α1,2 and α2,3 if α′

1,2 and α′
2,3 are

the shortest extended edit paths satisfying that
α′

1,2 is obtained from α1,2 by inserting some [ ε
ε ] letters,

α′
2,3 is obtained from α2,3 by inserting some [ ε

ε ] letters,
and π2(α′

1,2) = π1(α′
2,3).

The first requirement guarantees that the input and output of α′
1,2 is the same as those

of α1,2, and the second requirement gives the analogous guarantees regarding α′
2,3 and α2,3.

The third requirement strengthens the connection between output(α1,2) and input(α2,3) and
demands that they agree not only on the letters of the interim word w2, but also on the
occurrences of ε. This in particular requires α′

1,2 and α′
2,3 to be of the same length. Using

the [ σ
σ′ ] notations, if we write α′

1,2 and α′
2,3 one above the other then the second and third

lines are the same.

4 Recall that an extended edit path is a string over Γ̂, namely it may use [ ε
ε ] on top of the usual edit

operations.
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▶ Example 26. Let w1 = a1a2a3, w2 = b1b2 and w3 = c1c2c3c4. Then α1,2 =
[ a1

b1

]
[ a2

ε ]
[ a3

b2

]
is an edit path between w1 and w2 and α2,3 = [ ε

c1 ]
[

b1
c2

] [
b2
c3

]
[ ε

c4 ] is an edit path between w2
and w3. Using the 7→ notation, we can write these as a1a2a3 7→ b1_b2 and _b1b2_ 7→ c1c2c3c4.

Let α′
1,2 = [ ε

ε ]
[ a1

b1

]
[ a2

ε ]
[ a3

b2

]
[ ε

ε ] and α′
2,3 = [ ε

c1 ]
[

b1
c2

]
[ ε

ε ]
[

b2
c3

]
[ ε

c4 ]. Then ⟨α′
1,2, α

′
2,3⟩ is

their alignment. Using the 7→ notations these are _a1a2a3_ 7→ _b1_b2_ and _b1_b2_ 7→
c1c2_c3c4, on which it is perhaps easier to see that the output of α′

1,2 and the input of α′
2,3

agree also on ε positions.

Note that if π2(α1,2) contains i occurrences of ε and π1(α2,3) contains j occurrences of
ε then there exist α′

1,2 and α′
2,3 of length at most w2 + i+ j such that ⟨α′

1,2, α
′
2,3⟩ is their

alignment. Moreover, the alignment can be constructed iteratively by following π2(α1,2) and
π1(α2,3) and if the current index (of the considered projections) is not the same, inserting
(ε, ε) to either α1,2 or α2,3 depending on which has advanced less (in terms of letters of w2).

We are now ready to define the composition of α1,2 and α2,3.

▶ Definition 27 (Compose). Let α1,2 and α2,3 be such that output(α1,2) = input(α2,3)
and let ⟨α′

1,2, α
′
2,3⟩ be their alignment. Assume α′

1,2 =
[ a1

b1

] [ a2
b2

]
. . .

[ ak

bk

]
and α′

2,3 =[
b1
c1

] [
b2
c2

]
. . .

[
bk
ck

]
. Let α′′

1,3 = [ a1
c1 ] [ a2

c2 ] . . . [ ak
ck

]. Let α′
1,3 be the edit path obtained from

α′′
1,3 by replacing [ a

c ] with [ a
ε ] [ ε

c ] for every a, c for which d(a, c) ≥ d(a, ε) + d(ε, c). Finally,
let α1,3 be the edit path obtained from α′

1,3 by removing the [ ε
ε ] letters.

▷ Claim 28. Let α1,2 and α2,3 be such that output(α1,2) = input(α2,3). If α1,3 is the result
of composing α1,2 and α2,3 as per Definition 27 then α1,3 is an edit path between input(α1,2)
and output(α2,3).

Proof. Let ⟨α′
1,2, α

′
2,3⟩ be the alignment of α1,2 and α2,3. Then α and α′ agree on their

input and output for α ∈ {α1,2, α2,3} since they only differ in [ ε
ε ] letters. Let α′′

1,3 and
α′

1,3 be as described in Definition 27. It is easy to see that input(α′′
1,3) = input(α′

1,2) and
output(α′′

1,3) = output(α′
2,3) since input([ a

c ]) = a = input([ a
ε ] [ ε

c ]) and similarly output([ a
c ]) =

c = output([ a
ε ] [ ε

c ]). The claim follows by transitivity of equality. ◁

The following lemma is the heart of the proof that the triangle inequality holds for nedd

given d is fine.

▶ Lemma 29. Assume d : Γ → [0, 1] is fine. Let α1,2 and α2,3 be such that output(α1,2) =
input(α2,3). Let α′′

1,3, α′
1,3 and α1,3 be as described in Definition 27. Let n be the number of

occurrences of [ ε
ε ] in α′

1,3. Then
1. len(α1,3) ≥ max{len(α1,2), len(α2,3)} − n

2. wgt(α1,3) ≤ wgt(α1,2) + wgt(α2,3) − n

3. cost(α1,3) ≤ cost(α1,2) + cost(α1,3)

The proof relies on the following fact.

▶ Fact 30. Let d, e, n ∈ N such that e ≤ d. Then e−n
d−n ≤ e

d

We can now prove Lemma 29.

Proof of Lemma 29. Let ⟨α′
1,2, α

′
2,3⟩ be the alignment of α1,2 and α2,3.

1. By the construction of the aligned edit paths there is no index i such that both α′
1,2[i] = [ ε

ε ]
and α′

2,3[i] = [ ε
ε ]. Thus for every index i of α′′

1,3 either α′
1,2[i] is an element of α1,2 or

α′
2,3[i] is an element of α2,3 (or both are). It follows that

len(α′′
1,3) ≥ max{len(α1,2), len(α2,3)}
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Since α1,3 is obtained from α′
1,3 by removing the occurrences of [ ε

ε ] and there are n such
we get that

len(α1,3) = len(α′
1,3) − n

Because len(α′
1,3) ≥ len(α′′

1,3) we get overall that

len(α1,3) = len(α′
1,3) − n ≥ len(α′′

1,3) − n ≥ max{len(α1,2), len(α2,3)} − n

as required.
2. First note that wgt(α) = wgt(α′) for all α ∈ {α1,2, α2,3, α1,3} since α and α′ differ only

by elements of the form [ ε
ε ] and since d is fine, by the first requirement, d(ε, ε) = 0.

Second, we claim that wgt(α′
1,3) ≤ wgt(α′

1,2) + wgt(α′
2,3). This holds since for every

element [ a
c ] of α′′

1,3 there exists elements [ a
b ] and [ b

c ] in α′
1,2 and α′

2,3 respectively, where
a, b, c ∈ Σ ∪ {ε}. Hence for every respective element [ a

c ] or respective two elements of
[ a

ε ] [ ε
c ] of α′

1,3 there exists elements [ a
b ] and [ b

c ] in α′
1,2 and α′

2,3 respectively. To see how
the corresponding weights relate we split into cases.
a. If both a ̸= ε and c ̸= ε then by the third requirement of being fine min{d(a, c), d(a, ε)+

d(ε, c)} ≤ d(a, b) + d(b, c) and according to the minimum [ a
c ] or [ a

ε ] [ ε
c ] occurs in α′

1,3.
b. If a ̸= ε and c = ε then by the third requirement of being fine and Remark 12 we have

d(a, b) + d(b, ε) ≥ d(a, ε).
c. If a = ε and c ̸= ε then by the third requirement of being fine and Remark 12 we have
d(ε, b) + d(b, c) ≥ d(ε, c).

Thus we get

wgt(α′
1,3) ≤ wgt(α′

1,2) + wgt(α′
2,3) = wgt(α1,2) + wgt(α2,3)

Last, we note that each occurrence of [ ε
ε ] in α′

1,3 corresponds to an occurrence of [ ε
b ] in

α1,2 and [ b
ε ] in α2,3 for some b ∈ Σ. Let b1, b2, . . . , bn be the respective letters in α1,2 or

α2,3. The weight of [ ε
ε ] in α′

1,3 is 0 whereas the original components had some non-zero
weight. Hence

wgt(α′
1,3) ≤ wgt(α1,2) + wgt(α2,3) −

n∑
i=1

(wgt([ ε
bi

]) + wgt([ bi
ε ]))

From the forth requirement of being fine we know d(ε, b) = d(b, ε) ≥ 1
2 . Thus∑n

i=1(wgt([ ε
bi

]) + wgt([ bi
ε ])) ≥ n and hence

wgt(α1,3) = wgt(α′
1,3) ≤ wgt(α1,2) + wgt(α2,3) − n

as required.
3. From items (2) and (1) we get

wgt(α1,3)
len(α1,3) ≤ wgt(α1,2) + wgt(α2,3) − n

len(α1,3) ≤ wgt(α1,2) + wgt(α2,3) − n

max{len(α1,2), len(α2,3)} − n

Applying Fact 30 we get

wgt(α1,2) + wgt(α2,3) − n

max{len(α1,2), len(α2,3)} − n
≤ wgt(α1,2) + wgt(α2,3)

max{len(α1,2), len(α2,3)}
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Assume without loss of generality that len(α1,2) ≥ len(α2,3) then

wgt(α1,2) + wgt(α2,3)
max{len(α1,2), len(α2,3)} = wgt(α1,2) + wgt(α2,3)

len(α1,2)

= wgt(α1,2)
len(α1,2) + wgt(α2,3)

len(α1,2) ≤ wgt(α1,2)
len(α1,2) + wgt(α2,3)

len(α2,3)

Overall we get

cost(α1,3) = wgt(α1,3)
len(α1,3) ≤ wgt(α1,2)

len(α1,2) + wgt(α2,3)
len(α2,3) = cost(α1,2) + cost(α1,3)

as required. ◀

With this proof in place we can conclude that d being fine is a sufficient condition for
nedd to be a metric.

▶ Theorem 31. Let d : Γ̂ → [0, 1] be fine. Then nedd is a metric.

Proof. Given d : Γ̂ → [0, 1] is fine it is easy to see that nedd satisfies the first two requirements
of a metric. To see that it also satisfies the triangle inequality, let w1, w2, w3 ∈ Σ∗. Let α1,2
be an optimal edit path between w1, w2 and α2,3 an optimal edit path between w2, w3. Let
α1,3 be the result of composing α1,2, α2,3 via Definition 27. By Claim 28, α1,3 is an edit path
between w1 and w3 and by Lemma 29, cost(α1,3) ≤ cost(α1,2) + cost(α1,3). Thus

nedd(w1, w3) ≤ cost(α1,3) ≤ cost(α1,2) + cost(α1,3) = nedd(w1, w2) + nedd(w2, w3)

as required. ◀

▶ Corollary 32. nedd is a metric if and only if d is fine.

This corollary proves Theorem 1.
▶ Remark 33. Consider d of Claim 6. The first two requirements of being fine are obviously
met. By Claim 19 the operations [ a

b ] and [ b
a ] are inessential. Hence the third requirement

clearly hold. Note that m = sup{nedd(w1, w2) : w1, w2 ∈ Σ∗} = 0.5 and m
2 = 0.25 hence

the fourth requirement holds.
Consider d of Claim 7. The first requirement of being fine clearly holds. While it breaks

symmetry, if we remove the inessential operations, namely [ a
b ] and [ b

a ] then symmetry is
maintained. Since [ a

b ] and [ b
a ] are inessentials the third requirement holds as well. Finally

the fourth requirement holds since m = 0.45 (as [ a
b ] and [ b

a ] are inessentials) and m
2 = 0.225.

6 Discussion

Now that we have a sufficient and necessary condition for d : Γ → [0, 1] for nedd to be a
metric, it is easy to verify or come up with such d’s for certain applications. We give some
examples in §6.1. In §6.2 we discuss extensions to infinite words and applications in formal
verification.

6.1 Examples for fine weight functions
Recall that given an alphabet Σ, we use Γ for Γ̂ \ {[ ε

ε ]} where Γ̂ = (Σ ∪ {ε})2. Given a
function d : Σ × Σ → [0, 1] and given c ∈ [ 1

2 , 1] we augment it to a function dc : Γ → [0, 1] as
follows:

dc(σ1, σ2) =
{
d(σ1, σ2) if σ1 ̸= ε and σ2 ̸= ε

c if σ1 = ε or σ2 = ε
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Consider the case where Σ = [0, n] for some n ∈ N, that is Σ is a finite interval of the
natural numbers, starting with 0. Then the following distance over Σ is fine.

▶ Example 34 (Distances in [0, n]). Let dn : [0, n] × [0, n] → [0, 1] be defined as follows:

dn(n1, n2) = |n1 − n2|
n+ 1

▷ Claim 35. The weight function dc
n is fine.

Consider now the case that Σ = N, i.e., Σ is the set of naturals number. We can show
that the following distance [16] is fine.

▶ Example 36 (Distances in N). Let dN : N × N → [0, 1] be defined as follows:

dN(n1, n2) = 1 − 1
|n1 − n2| + 1

▷ Claim 37. The weight function dc
N is fine.

▶ Example 38 (Distances between sets). Let Σ = 2A for some finite set of elements A. Let
dset : 2A × 2A → [0, 1] be defined as follows, where ⊕ denotes the symmetrical difference:

dset(S1, S2) = |S1 ⊕ S2|
|A|

▷ Claim 39. The weight function dc
set is fine.

In model checking [1, 2, 3], automata are defined with respect to a set AP =
{p1, p2, . . . , pk} of atomic propositions and the alphabet is Σ = 2AP . We can use dset
to measure the distance between letters, but in a setting where a noise may alter the value
of one of the atomic propositions it makes sense to define the distance between two letters as
the Hamming distance between the two letters, divided by k for normalization.5

▶ Example 40 (Distances in Σ = 2k). Let Σ = 2k. Let dprop : 2k × 2k → [0, 1] be defined as
follows:

dprop(v1, v2) = hd(v1, v2)
k

▷ Claim 41. The weight function dc
prop is fine.

The transitions in automata used in model checking, are usually expressed using Boolean
expressions over the set of atomic propositions, e.g. the Boolean expression p1 ∧ (¬p5 ∨ p7)
abbreviates the set of letters σ ∈ 2k where the first bit is 1 and either the fifth bit is zero or
the seventh bit is 1, and the rest of the bits can be anything. In general, a Boolean expression
b is a compact way to represent the set of letters {σ ∈ 2k | σ |= b}. This type of automata is
a special case of symbolic finite automata (SFA) that are defined with respect to a concrete
alphabet Σ and a symbolic alphabet Ψ of predicates over Σ (see [4] for an introduction to
SFAs). The predicates are associated with a semantic function J·K that maps a predicate ψ
to a subset of Σ that consists of the concrete letters satisfying it. The distance dpred between
predicates ψ1 and ψ2 can thus be defined using dset on Jψ1K and Jψ2K.

▶ Corollary 42. We have that neddc
n
, neddc

N
, neddc

set
, neddc

prop
and neddc

pred
are metrics.

5 The Hamming distance, hd :
⋃

k∈N(Σk × Σk) → N, is defined between two strings of the same length,
as the number of positions in which they differ [9].
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6.2 Applications in Formal Verification

The robustness question in verification, roughly speaking, asks how much a system S can
be altered so that it still satisfies its specification T . Suppose the distance between words
is given by dist, and that JSK is the set of computations induced by the system and JT K
is the set of allowed computations according to the specification T . It is noted in [6] that
the robustness question can be reduced to question of computing the distance between
the languages JSK and JT K defined as: infw1∈JSK infw2∈JφK dist(w1, w2). It is shown in [8,
Theorem 18] that when S and T are given by non-deterministic finite automata and dist is
ned over the uniform weights this can be computed in polynomial time. The proof is by
building a so called edit distance graph of two NFAs, and using the fact that the infimum of
the mean weights of paths from a set of origin nodes to a set of target nodes can be computed
in polynomial time [6]. Since the same graph can be constructed for nedd, with the only
difference that the weights of edges follow the given d rather than follow the uniform weights,
and since the proof in [6] works on any weighted graph in which the weights are rationals, we
can conclude that nedd between languages can be computed in polynomial time, if d gives
rational weights. Note that this is the case in all examples considered in §6.1.

In formal verification, systems and specifications are usually defined over infinite words.
It is thus desired to have a function dist : Σω × Σω → [0, 1] that measure the distance
between two infinite words. In [8, Thm. 6] it was shown that ω-ned(w1, w2) which is defined
as lim supi→∞ ned(w1[..i], w2[..i]) is a metric on infinite words. We can similarly define
ω-nedd(w1, w2) as lim supi→∞ nedd(w1[..i], w2[..i]) and the same proof goes through. To
compute the distance between two ultimately periodic words, 6 it is shown [8, Thm. 8] that
it suffices to consider the best rotations of the periodic parts. Thus reducing computation of
ω-ned to computation of ned, which can be done in polynomial time [13]. This proof works
also for ω-nedd if d is non-uniform and gives rational weights. To compute the distance
between S and T given by non-deterministic Büchi automata (NBA), 7 [8] requires a more
sophisticated version of the edit graph, which tracks along a cycle the number of insert and
deletes to coordinate that they are balanced, namely that the same number of letters is read
in both automata. The same technique would work in the case of non-uniform weights. We
conclude that the robustness question when S and T are NBAs and the considered distance
is ω-nedd for some fine non-uniform weight function d that gives rational weights can also
be computed in polynomial time.
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