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Abstract
Knowing which strings in a massive text are significant – that is, which strings are common and
distinct from other strings – is valuable for several applications, including text compression and
tokenization. Frequency in itself is not helpful for significance, because the commonest strings are the
shortest strings. A compelling alternative is net frequency, which has the property that strings with
positive net frequency are of maximal length. However, net frequency remains relatively unexplored,
and there is no prior art showing how to compute it efficiently. We first introduce a characteristic of
net frequency that simplifies the original definition. With this, we study strings with positive net
frequency in Fibonacci words. We then use our characteristic and solve two key problems related to
net frequency. First, single-nf, how to compute the net frequency of a given string of length m, in
an input text of length n over an alphabet size σ. Second, all-nf, given length-n input text, how
to report every string of positive net frequency (and its net frequency). Our methods leverage suffix
arrays, components of the Burrows-Wheeler transform, and solution to the coloured range listing
problem. We show that, for both problems, our data structure has O(n) construction cost: with
this structure, we solve single-nf in O(m + σ) time and all-nf in O(n) time. Experimentally, we
find our method to be around 100 times faster than reasonable baselines for single-nf. For all-nf,
our results show that, even with prior knowledge of the set of strings with positive net frequency,
simply confirming that their net frequency is positive takes longer than with our purpose-designed
method. All in all, we show that net frequency is a cogent method for identifying significant strings.
We show how to calculate net frequency efficiently, and how to report efficiently the set of plausibly
significant strings.
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1 Introduction

When analysing, storing, manipulating, or working with text, identification of notable (or
significant) strings is typically a key component. These notable strings could form the basis
of a dictionary for compression, be exploited by a tokenizer, or form the basis of trend
detection. Here, a text is a sequence of characters drawn from a fixed alphabet, such as a
book, collection of articles, or a Web crawl. A string is a contiguous sub-sequence of the
text; in this paper, we seek to efficiently identify notable strings.

Given a text, T , and a string, S, the frequency of S is the number of occurrences of S

in T . The frequency of a string is inherently a basis for its significance. However, frequency
is in some sense uninformative. Sometimes a shorter string is frequent only because it is part
of many different longer strings, or of a frequent longer string, or of many frequent longer
strings. That is, the frequency of a string may be inflated by the occurrences of the longer
strings that contain it. Moreover, every substring of a string of frequency f has frequency at
least f . Indeed, the most frequent string in the text has length 1.

A compelling means of identifying notable strings is via net frequency (NF), introduced
by Lin and Yu [23]. Let T = rstkstcastarstast$ be an input text. The highlighted string
st has frequency five. But to arrive at a more helpful notion of the frequency of the string st,
the occurrences of st in repeated longer strings – that is, rst and ast – should be excluded,
leaving one occurrence left (underlined). Defined precisely in Section 3, net frequency (NF)
captures this idea; indeed, the NF of st in T is 1. For now, strings with positive NF are
those that are repeated in the text and are maximal (see Theorem 4, below): if extended to
either left or right the frequency of the extended string would be 1. For the underlined st
above, the frequency of both kst (left) and stc (right) is 1.

It is worth noting the difference between a string with positive NF and a maximal
repeat [21, 33, 35]: when extending a string with positive NF, the frequency of the extended
string becomes 1, whereas when extending a maximal repeat, the frequency of the extended
string decreases, but does not necessarily become 1.

Motivation. NF has been demonstrated to be useful in tasks such as Chinese phoneme-to-
character (and character-to-phoneme) conversion, the determination of prosodic segments in
a Chinese sentence for text-to-speech output, and Chinese toneless phoneme-to-character
conversion for Chinese spelling error correction [23, 24]. NF could also be complementary
to tasks such as parsing in NLP and structure discovery in genomic strings. However, even
though the original paper on NF [23] suggested that “suitable indexing can be used to improve
efficiency”, efficient structures and algorithms for NF were not explicitly described. In this
work, we bridge this gap by delving into the properties of NF. Through these properties, we
introduce efficient algorithms for computing NF.

Problem definition. Throughout, T is our length-n input text and S a length-m string in T .
We consider two problems relating to computing NF in T : the Single-string Net Frequency
problem single-nf and the All-strings Net Frequency problem all-nf:

single-nf: given a text, T , and a query string, S, report the NF of S in T .
all-nf: given a text, T , identify each string that has positive NF in T . Concretely, the
identification could be one of the following two forms. all-nf-report: for each string of
positive NF, report one occurrence and its NF; or all-nf-extract: extract a multiset,
where each element is a string with positive NF and its multiplicity is its NF.
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Our contribution. In this work, we first reconceptualise NF through our new characteristic
that simplifies the original definition. We then apply it and identify strings with positive
NF in Fibonacci words. For single-nf, we introduce an O(m + σ) time algorithm, where
m is the length of the query and σ is the size of the alphabet. This is achieved via several
augmentation to suffix array from LF mapping to LCP array, as well as solution to the
coloured range listing problem. For all-nf, we establish a connection to branching strings
and LCP intervals, then solve all-nf-report in O(n) time, and all-nf-extract in
O(n log δ) time, where δ is a repetitiveness measure defined as δ := max {S(k)/k : k ∈ [n]}
and S(k) denotes the number of distinct strings of length k in T . The cost is bounded by
making a connection to irreducible LCP values. We also conducted extensive experiments
and demonstrated the efficiency of our algorithms empirically. The code for our experiments
is available at https://github.com/peakergzf/string-net-frequency.

2 Preliminaries

Strings. Let Σ be a finite alphabet of size σ. Given a character, x, and two strings, S

and T , some of their possible concatenations are written as xS, Sx, ST , and TS . If S is a
substring of T , we write S ≺ T or T ≻ S. Let [n] denote the set {1, 2, . . . , n}. A substring
of T with starting position i ∈ [n] and end position j ∈ [n] is written as T [i . . . j]. A substring
T [1 . . . j] is called a prefix of T , and T [i . . . n] is called a suffix of T . Let Ti denote the ith

suffix of T , T [i . . . n]. An occurrence in the text T is a pair of starting and ending positions
(s, e) ∈ [n] × [n]. We say (i, j) is an occurrence of string S if S = T [i . . . j], and i is an
occurrence of S if S = T [i . . . i + |S| − 1]. The frequency of S, denoted by f(S), is the number
of occurrences of S in T . A string S is unique if f(S) = 1 and is repeated if f(S) ≥ 2.

Suffix arrays and Burrows-Wheeler transform. The suffix array (SA) [27] of T is an array
of size n where SA[i] stores the text position of the ith lexicographically smallest suffix. For
a string S, let l and r be the smallest and largest positions in SA, respectively, where S is
a prefix of the corresponding suffixes TSA[l] and TSA[r]. Then, the closed interval ⟨l, r⟩ is
referred to as the SA interval of S. The inverse suffix array (ISA) of a suffix array SA is an
array of length n where ISA[i] = j if and only if SA[j] = i. The Burrows-Wheeler transform
(BWT) [29] of T is a string of length n where BWT [i] = T [SA[i] − 1] for SA[i] > 1 and
BWT [i] = $ if SA[i] = 1. The LF mapping is an array of length n where LF [i] = ISA[SA[i]−1]
for SA[i] > 1, and LF [i] = 1 if SA[i] = 1.

LCP arrays and irreducible LCP values. The longest common prefix array (LCP) [17, 28]
is an array of length n where the ith entry in the LCP array stores the length of the longest
common prefix between TSA[i−1] and TSA[i], which is denoted lcp

(
TSA[i−1], TSA[i]

)
. An entry

LCP[i] is called reducible if BWT [i − 1] = BWT [i] and irreducible otherwise. The sum of
irreducible LCP values was first bounded as O(n log n) [16]. Later the bound has been refined
with the development of repetitiveness measures [31]. Let r be the number of equal-letter
runs in the BWT of T . The bound on the sum of irreducible LCP values was improved [15]
to O(n log r). Let S(k) be the number of distinct strings of length k in T , and define
δ := max {S(k)/k : k ∈ [n]} [6, 20, 36]. The bound was further improved in the following
result.

▶ Lemma 1 ([18]). The sum of irreducible LCP values is at most O(n log δ).
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Coloured range listing. The coloured range listing (CRL) problem is defined as follows.
Preprocess a text T of length n such that, later, given a range i, . . . , j, list the position of
each distinct character (“colour”) in T [i . . . j]. The data structure introduced in [30] lists
each such position in O(1) time, occupying O(n log n) bits of space. Compressed structures
for the CRL problem have also been introduced [10].

3 A Fresh Examination of Net Frequency

In this section, we lay the foundation for efficient net frequency (NF) computation by
re-examining NF and proving several properties. Before we formally define NF, we first
introduce the notion of extensions. The proofs of the results in this section are postponed to
the full version.

▶ Definition 2 (Extensions). Given a string S and two symbols x, y ∈ Σ, strings xS, Sy,
and xSy are called the left, right, and bidirectional extension of S, respectively. A left or
right extension is also called a unidirectional extension. We then define the following sets
of extensions: L(S) := {x ∈ Σ : f(xS) ≥ 2} , R(S) := {y ∈ Σ : f(Sy) ≥ 2} , and B(S) :=
{(x, y) ∈ L(S) × R(S) : f(xSy) ≥ 1} .

Note that the definition of B(S) does not require that string xSy needs to repeat; only the
unidirectional extensions, xS and Sy, must do so.

▶ Definition 3 (Net frequency [23]). Given a string S in T , the NF of S is zero if it is unique
in T ; otherwise S repeats and the NF of S is defined as

ϕ(S) := f(S) −
∑

x∈L(S)

f(xS) −
∑

y∈R(S)

f(Sy) +
∑

(x,y)∈B(S)

f(xSy) .

The two subtraction terms discount the occurrences that are part of longer repeated strings
while the addition term compensates for double counting (occurrences of xS and Sy could
correspond to the same occurrence of S), an inclusion-exclusion approach. We now introduce
a fresh examination of NF that significantly simplifies the original definition and will be the
backbone of our algorithms for NF computation later.

▶ Theorem 4 (Net frequency characteristic). Given a repeated string S,

ϕ(S) = |{ (x, y) ∈ Σ × Σ : f(xS) = 1 and f(Sy) = 1 and f(xSy) = 1 }| .

In the original definition of NF and in our characteristics, extensions are limited to adding
only one character to one side of the string. It is intriguing to explore the impact of longer
extensions. Surprisingly, the analogous quantity of NF with longer extensions is equal to NF.

▶ Lemma 5. Given a repeated string S, for each k ≥ 1, we have ϕ(S) = ϕk(S) where

ϕk(S) :=
∣∣{ (X, Y ) ∈ Σk × Σk : f(XS) = 1 and f(SY ) = 1 and f(XSY ) = 1

}∣∣ .

So far the definition and properties of NF have been formulated in terms of symbols from
the alphabet. To facilitate our discussion on the properties and algorithms of NF later, we
switch our focus away from symbols and reformulate NF in terms of occurrences. Recall that
the frequency of a string S is the number of occurrences of S. Analogously, the NF of S is
the number of net occurrences of S.
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a b a a b a b a a b a a b a b a a b a b a

a b a a b a b a a b a a b a b a a b a b a
Fi−2

Fi−2 Fi−2

Fi−2Fi−3

w

Fi−5 Fi−4

x y z

j1 j2

j3

Figure 1 Illustration of proof of Theorem 8. Two factorisations of F8 are depicted with rectangles.

▶ Definition 6 (Net occurrence). An occurrence (i, j) is a net occurrence if f(T [i . . . j]) ≥ 2,
f(T [i − 1 . . . j]) = 1, and f(T [i . . . j + 1]) = 1. When i = 1, f(T [i − 1 . . . j]) = 1 is assumed
to be true; when j = n, f(T [i . . . j + 1]) = 1 is assumed to be true.

When f(xS) = 1 and f(Sy) = 1, f(xSy) is either 0 or 1. But when f(T [i − 1 . . . j]) = 1 and
f(T [i . . . j + 1]) = 1, f(T [i − 1 . . . j + 1]) must be 1 and cannot be 0. Thus, the conditions in
Definition 6 do not mention the bidirectional extension, f(T [i − 1 . . . j + 1]) = 1.

Net Frequency of Fibonacci Words: A Case Study
Let Fi be the ith (finite) Fibonacci word over binary alphabet {a, b}, where F1 := b, F2 := a,
and for each i ≥ 3, Fi := Fi−1Fi−2. Note that |Fi| = fi where fi is the ith Fibonacci number.
There has been an extensive line of research on Fibonacci words, from their combinatorial
properties [19] to lower bounds and worst-case examples for strings algorithms [14].

In this section, we examine the NF of Fibonacci words, which later will help us obtain
a lower bound on the sum of lengths of strings with positive NF in a text. Specifically, we
assume i ≥ 7, we regard Fi as our input text, and we study the net frequency of Fi−2 and
Si := Fi−1[1 . . . fi−1 − 2] in Fi.

Net Frequency of Fi−2 in Fi

We begin by introducing some basic concepts in combinatorics on words [25]. A nonempty
word u is a repetition of a word w if there exist words x, y such that w = xuky for some
integer k ≥ 2. When k = 2, the repetition is called a square. A word v that is both a prefix
and a suffix of w, with v ̸= w, is called a border of w. Stronger results on the borders and
squares of Fi have been introduced before [7, 13], but for our purposes, the following suffices.

▶ Observation 7. Fi−2 is a border and a square of Fi.

Proof. We apply the recurrence and factorise Fi as follows. Occurrences of Fi−2 as a border
or a square of Fi are underlined. Fi = Fi−1 Fi−2 = Fi−2 Fi−3 Fi−2 = Fi−2 Fi−3 Fi−3 Fi−4 =
Fi−2 Fi−3 Fi−4 Fi−5 Fi−4 = Fi−2 Fi−2 Fi−5 Fi−4. ◀

▶ Theorem 8. ϕ(Fi−2) ≥ 1.

Proof. The proof is illustrated in Figure 1. In the following two factorisations of Fi,
Fi = Fi−2 Fi−3 Fi−2 and Fi = Fi−2 Fi−2 Fi−5 Fi−4, consider j1, j2, and j3, three occurrences
of Fi−2. Let w and y be the left extension characters of j2 and j3, respectively, and let x and
z be the right extension characters of j1 and j2, respectively. Using the factorisation Fi =
Fi−2 Fi−3 Fi−2, observe that w = Fi−2[fi−2], x = Fi−2[1], and y = Fi−3[fi−3]. Using the
factorisation Fi = Fi−2 Fi−2 Fi−5 Fi−4, we have z = Fi−5[1]. Thus, x = z = a, and w ̸= y

because the last character of consecutive Fibonacci words alternates. Therefore, j1 and j2
are not net occurrences of Fi−2 in Fi and only j3 is. ◀

CPM 2024
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a b a a b a b a a b a a b a b a a b a b a

a b a a b a b a a b a a b a b a a b a b a

Fi−2

Fi−2 Fi−2

Fi−2Qi

Qi

∆(1)

Fi−3

Fi−5 Fi−4

∆(0)

Figure 2 Illustration of Lemma 10 with F8. Note that Fi−5 = ab and Fi−4 = aba.

Net Frequency of Si in Fi

In the recurrence of Fibonacci word, Fi−2 is appended to Fi−1, Fi = Fi−1 Fi−2. When we
reverse the order of the concatenation and prepend Fi−2 to Fi−1, for example, notice that
F6 F5 = abaababa|abaab and F5 F6 = abaab|abaababa only differ in the last two characters.
Such property is referred to as near-commutative in [34]. In our case, we characterise the
string that is invariant under such reversion with Qi in the following definition.

▶ Definition 9 (Qi and ∆(j)). Let Qi := Fi−5 Fi−6 · · · F3 F2 be the concatenation of i − 6
consecutive Fibonacci words in decreasing length. For j ∈ {0, 1}, we define ∆(j) := ba if
j = 0, and ∆(j) := ab otherwise.

In Figure 2, Fi−4 Fi−5 and Fi−5 Fi−4 only differ in the last two characters, and their common
prefix is Qi. The alternation between ab and ba was also observed in [8], but their focus was
on capturing the length-2 suffix appended to the palindrome Fi[1 . . . fi − 2].

Observe that Fi−3 = Fi−4 Fi−5, the invariant discussed earlier is captured as follows.

▶ Lemma 10. Fi−3 = Qi ∆ (1 − (i mod 2)) and Fi−5 Fi−4 = Qi ∆(i mod 2).

Proof. Let P (i) be the statement Fi−3 = Qi ∆(1 − (i mod 2)). We prove P (i) by strong
induction. Base case: observe that F7−3 = aba, Q7 = F2 = a, and ∆(1−(7 mod 2)) = ∆(0) =
ba. Inductive step: consider k > 7, assume that P (j) holds for every j ≤ k. We now prove
P (k + 1) holds. First, Fk−2 = Fk−3 Fk−4 = Fk−4 Fk−5 Fk−4. Then, based on our inductive
hypothesis, Fk−4 = Qk−1 ∆(1 − (k − 1) mod 2) = Fk−6 Fk−7 · · · F3 F2 ∆(1 − (k − 1) mod 2).
Substituting the second Fk−4 in Fk−2, we have Fk−2 = Fk−4 Fk−5 Fk−6 Fk−7 · · · F3 F2 ∆(1−
(k − 1) mod 2) = Qk+1 ∆(1 − (k + 1) mod 2). By induction, P (i) holds for all i. Fi−5 Fi−4 =
Qi ∆(i mod 2) is proved similarly and the proof is postponed to the full version. ◀

Previously we defined Si as the length (fi−1 − 2) prefix of Fi−1, now we can see that this is
to remove ∆ (|∆| = 2). With Lemma 10, we now present the main result on the NF of Si.

▶ Theorem 11. ϕ(Si) ≥ 2.

Proof. It follows from Lemma 10 that Fi−1 = Fi−2 Fi−3 = Fi−2 Qi ∆(1 − (i mod 2)). Then,
Si = Fi−1[1 . . . fi−1 −2] = Fi−2 Qi. Consider the two occurrences of Si, observe that the right
extension characters of these occurrences are different: ∆(1 − (i mod 2))[1] ̸= ∆(i mod 2)[1].
(In Figure 2, ∆(1)[1] ̸= ∆(0)[1].) Therefore, both occurrences are net occurrences. ◀

▶ Remark 12. Theorem 8 and Theorem 11 show that there are at least three net occurrences
in Fi (one of Fi−2 and two of Si). Empirically, we have verified that these are the only three
net occurrences in Fi for each i until a reasonably large i. Future work can be done to prove
this tightness.
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Algorithm 1 for single-nf.
Input : S ← a string;

1 ϕ← 0; // the NF of S

2 ⟨l, r⟩ ← the SA interval of S;
3 for i← CRLBWT (l, r) do
4 j ← LF [i];
5 if |S| = ℓ(i) and |S| ≥ ℓ(j) then

// see Theorem 15
6 ϕ← ϕ + 1;

7 return ϕ;

Algorithm 2 for all-nf-extract.

1 N ← ∅;
// N is a multiset of strings with positive NF.
We write N |S for the NF of S in N .

2 for i← 1, . . . , n do
3 j ← LF [i];
4 if ℓ(i) ≥ ℓ(j) then
5 S ← T [Ci]; // see Definition 16
6 N|S ← N|S + 1;

7 return N ;

4 New Algorithms for Net Frequency Computation

Our reconceptualisation of NF provides a basis for computation of NF in practice. In this
section, we introduce our efficient approach for NF computation. The proofs of the results in
this section are postponed to the full version.

4.1 SINGLE-NF Algorithm

To compute the NF of a query string S, it is sufficient to enumerate the SA interval of S

and count the number of net occurrences of S. To determine which occurrence is a net
occurrence, we need to check if the relevant extensions are unique. Locating the occurrences
of the left extensions is achieved via LF mapping and checking for uniqueness is assisted by
the LCP array. For convenience, we define the following. We then observe how to determine
the uniqueness of a string as a direct consequence of a property of the LCP array.

▶ Definition 13. For each 1 ≤ i ≤ n − 1, ℓ(i) := max(LCP[i], LCP[i + 1]).

▶ Observation 14 (Uniqueness characteristic). Let ⟨l, r⟩ be the SA interval of S, and let
l ≤ i ≤ r, then S is unique if and only if |S| > ℓ(i), and S repeats if and only if |S| ≤ ℓ(i).

Now, we present the main result that underpins our single-nf algorithm.

▶ Theorem 15 (Net occurrence characteristic). Given an occurrence (s, e) in T , let S :=
T [s . . . e], i := ISA[s], and j := LF [i]. Then, (s, e) is a net occurrence if and only if
|S| = ℓ(i) and |S| ≥ ℓ(j).

Let ⟨l, r⟩ be the SA interval of S and let f be the frequency of S. With Theorem 15, we
have an O(m + f) time single-nf algorithm by exhaustively enumerating ⟨l, r⟩. Note that
it takes O(m) time to locate ⟨l, r⟩ [1] and O(f) to enumerate the interval. However, with
the data structure for CRL, we can improve this time usage. Specifically, observe that if
we preprocess the BWT of T for CRL, then, instead of enumerating each position within
⟨l, r⟩, we only need to examine each position that corresponds to a distinct character of
BWT [l . . . r]. Observe that each such character is precisely a distinct left extension character.
We write CRLBWT (l, r) for such set of positions. Our algorithm for single-nf is presented
in Algorithm 1, which takes O(m + σ) time where σ is a loose upper bound on the number
of distinct characters in BWT [l . . . r].

CPM 2024
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4.2 ALL-NF Algorithms

From Theorem 15, observe that for each position in the suffix array, only one string occurrence
could be a net occurrence, namely, the occurrence that corresponds to a repeated string with
a unique right extension. This occurrence will be a net occurrence if the repeated string also
has a unique left extension. For convenience, we define the following.

▶ Definition 16 (Net occurrence candidate). For each i ∈ [n], let Ci := (SA[i], SA[i] + ℓ(i) − 1)
be the net occurrence candidate at position i. We write T [Ci] for the string T [SA[i] . . . SA[i] +
ℓ(i) − 1], the candidate string at position i.

In our approach for solving single-nf, Theorem 15 is applied within a SA interval. To
solve all-nf, there is an appealing direct generalisation that would apply Theorem 15 to
each candidate string in the entire suffix array. However, there is a confound: consecutive net
occurrence candidates in the suffix array do not necessarily correspond to the same string.
To mitigate this confound, we introduce a hash table representing a multiset that maps each
string with positive NF to a counter that keeps track of its NF. With this, Algorithm 2
iterates over each row of the suffix array, identifies the only net occurrence candidate Ci,
then increment the NF of T [Ci], if Ci is indeed a net occurrence.

▶ Remark 17. Algorithm 2 is natural for all-nf-extract, but cannot support all-nf-
report without the extraction first. In contrast, our second all-nf method, Algorithm 3,
which we will discuss next, supports both all-nf-extract and all-nf-report without
having to complete the other first. ⌟

We next consider the only strings that could have positive NF. A string S is branching [26]
in T if S is the longest common prefix of two distinct suffixes of T .

▶ Lemma 18. For every non-branching string S, ϕ(S) = 0.

Now, we make the following observation, which aligns with the previous result.

▶ Observation 19. Each net occurrence candidate is an occurrence of a branching string.

The SA intervals of branching strings are better known as the LCP intervals in the literature.

▶ Definition 20 (LCP interval [1]). An LCP interval of LCP value ℓ, written as ℓ-⟨l, r⟩, is an
interval ⟨l, r⟩ that satisfies the following: LCP[l] < ℓ, LCP[r + 1] < ℓ, for each l + 1 ≤ i ≤ r,
LCP[i] ≥ ℓ, and there exists l + 1 ≤ k ≤ r such that LCP[k] = ℓ,

Traversing the LCP intervals is a standard task and can be accomplished by a stack-based
algorithm: examples include Figure 7 in [17] and Algorithm 4.1 in [1]. These algorithms were
originally conceived for emulating a bottom-up traversal of the internal nodes in a suffix tree
using a suffix array and an LCP array. In a suffix tree, an internal node has multiple child
nodes and thus its corresponding string is branching.

Thus, Algorithm 3 is an adaptation of the LCP interval traversal algorithms in [1, 17]
with an integration of our NF computation. Notice that in the ith iteration of the algorithm,
we set Boolean variable for_next to true if ℓ(i) = LCP[i + 1]. That is, for_next is true if
the current net occurrence candidate that we are examining corresponds to an LCP interval
that will be pushed onto the stack in the next iteration, i + 1.

Note that the correctness of Algorithms 1–3 follows from the correctness of Theorem 15.
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Algorithm 3 for all-nf-report or all-nf-extract.

1 s← ∅;
// an empty stack; the standard stack operations used in
the algorithm are: s.push( ), s.top( ), and s.pop( )

2 s.push( ⟨0, 0, 0⟩ );
// an LCP interval len-⟨lb, rb⟩ with NF ϕ is written as
⟨len, lb, ϕ⟩; note that rb is not used in this algorithm
// ⟨0, 0, 0⟩ is the LCP interval for the empty string

3 for_next← false ;
// for_next = true indicates that the current net
occurrence is for the interval that will be pushed onto the
stack in the next iteration

4 function process_interval(I):
// I: an LCP interval

5 if I.ϕ > 0 then
6 j ← SA[I.lb];
7 S ← T [j . . . j + I .len];

// to be reported or extracted
8 ϕ(S) = I.ϕ;

9 for i← 2 . . . n do
10 lb ← i− 1;
11 while LCP[i] < s.top( ).len do
12 I ← s.pop( );
13 process_interval(I);
14 lb ← I.lb ;
15 if LCP[i] > s.top( ).len then
16 s.push( ⟨LCP[i], lb, 0 ⟩ );
17 if for_next then
18 s.top( ).ϕ← s.top( ).ϕ + 1;
19 for_next← false ;

20 j ← LF [i];
21 if ℓ(i) ≥ ℓ(j) then
22 if LCP[i] = ℓ(i) then
23 s.top( ).ϕ← s.top( ).ϕ + 1;
24 else for_next = true ;

25 while s is not empty do
26 process_interval(s.pop( ));

Analysis of the ALL-NF algorithms. When Algorithm 3 is used for all-nf-report, it
runs in O(n) time in the worst case. We can also use Algorithm 3 for all-nf-extract. To
analyse the asymptotic cost for all-nf-extract (using either Algorithm 2 or Algorithm 3),
we first define the following.

▶ Definition 21. Given an input text T , let S := {S ≺ T : ϕ(S) > 0} be the set of strings
with positive NF in T . Then, we define N :=

∑
S∈S |S| and L :=

∑
S∈S ϕ(S) · |S|.

With these definitions, we first present the following bounds.

▶ Lemma 22.
∑

S∈S ϕ(S) ≤ n and |S| ≤ n.

For all-nf-extract, when a hash table is used, Algorithm 2 takes O(L) time while
Algorithm 3 only takes O(N), both in expectation. Note that for each S ∈ S, in Algorithm 2,
S is hashed ϕ(S) times, but in Algorithm 3, S is only hashed once.

Since N ≤ L, a lower bound on N is also a lower bound on L, and an upper bound on
L is also an upper bound on N . The next two results present a lower bound on N and an
upper bound on L.

▶ Lemma 23. N ∈ Ω(n) .

Proof. We use our results on Fibonacci words. From Theorem 8 and Theorem 11, N(Fi) ≥
|Fi−2| + |Fi−2 Qi| = fi−2 +

(
fi−2 +

∑i−5
j=2 fj

)
. Using the equality

∑i
j=1 fj = fi+2 − 1, we

have L(Fi) ≥ fi−2 + (fi−2 + fi−3 − 1 − f1). With further simplification, N(Fi) ≥ fi − 2. ◀

We can similarly show that L(Fi) ≥ fi + fi−2 − 2. Next, we present an upper bound on L.

▶ Theorem 24. L ∈ O(n log δ) .

Proof. First observe that L =
∑

i∈[n] : net_occ(Ci) ℓ(i) where net_occ(Ci) denotes that Ci is a
net occurrence. Thus, L can be expressed as the sum of certain LCP values. Next, when
Ci is a net occurrence, its left extension is unique, which means LCP[i] or LCP[i + 1] is
irreducible. Notice that each irreducible LCP[i] contributes to L at most twice due to Ci or
Ci−1. It follows that L is at most twice the sum of irreducible LCP values. Using Lemma 1,
we have the desired result. ◀
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Table 1 Statistics for each dataset, T . The first three datasets are news collections. Definition 21
explains S, N , and L. As described in Section 5.1, it is practical to bound the length of each query
by 35: in parentheses, therefore, we also include the values of N and L with a length upper bound
(u.b.) of 35 on the individual strings. That is, we replace S with {S ≺ T : ϕ(S) > 0 and |S| ≤ 35}.
Also recall that L and N are used in the asymptotic costs of our all-nf algorithms.

T n (×106) |Σ| |S| N (with u.b.) L (with u.b.)
NYT 435.3 89 0.1n 1.7n (1.4n) 2.7n (2.2n)
APW 152.2 92 0.1n 1.6n (1.3n) 2.6n (2.1n)
XIE 98.9 91 0.1n 1.7n (1.4n) 2.8n (2.2n)
DNA 505.9 4 0.001n 0.5n (0.005n) 1.1n (0.007n)

5 Experiments

In this section, we evaluate the effectiveness of our single-nf and all-nf algorithms
empirically. The datasets used in our experiments are news collections from TREC 2002 [37]
and DNA sequences from Genbank [5]. Statistics are in Table 1. Relatively speaking, there
are far fewer strings with positive NF in the DNA data because, with a smaller alphabet,
the extensions of strings are less variant, and DNA is more nearly random in character
sequence than is English text. All of our experiments are conducted on a server with a
3.0GHz Intel(R) Xeon(R) Gold 6154 CPU. All the algorithms are implemented in C++ and
GCC 11.3.0 is used. Our implementation is available at https://github.com/peakergzf/
string-net-frequency.

5.1 SINGLE-NF Experiments
For the news datasets, each query string is randomly selected as a concatenation of several
consecutive space-delimited strings. We set a query-string length lower bound of 5 because
we regard very short strings as not noteworthy. We set a practical upper bound of 35 because
there are few strings longer than 35 with positive NF based on our preliminary experimental
results. For DNA, each query string is selected by randomly choosing a start and end position
from the text.

Algorithms. As discussed in Section 1, there are no prior efficient algorithms for single-
nf. Thus, we came up with two reasonable baselines, CSA and HSA, and compare their
performance against our new efficient algorithms, CRL and ASA.

CRL: presented in Algorithm 1. We implement the algorithm for coloured range listing
(CRL) following [30], which uses structures for range minimum query [9].
ASA: removing the CRL augmentation from Algorithm 1, but keeping all other aug-
mentations, hence the name augmented suffix array (ASA). Specifically, we replace
“CRLBWT (l, r)” with “⟨l, r⟩” in Line 3 of Algorithm 1.
CSA: algorithmically the same as ASA, but the data structure used is the compressed
suffix array (CSA) [32]. We use the state-of-the-art implementation of CSA from the
SDSL library (https://github.com/simongog/sdsl-lite). Specifically, their Huffman-
shaped wavelet tree [11, 12] was chosen based on our preliminary experimental results.
HSA: Hash table-augmented suffix array (HSA) is a naive baseline approach that does not
use LF, LCP, or CRL, but only augments the suffix array with hash tables to maintain
the frequencies of the extensions. These hash tables are later used to determine if an
extension is unique or not.

https://github.com/peakergzf/string-net-frequency
https://github.com/peakergzf/string-net-frequency
https://github.com/simongog/sdsl-lite


P. Guo, P. Eades, A. Wirth, and J. Zobel 16:11

Table 2 Average single-nf query time (in microseconds) over all the queries, repeated queries
(f ≥ 2), and queries with positive NF (ϕ > 0). The query set from NYT has 2× 106 queries in total,
38.3% repeated, while 1.4% have positive NF. The query set from DNA has 3× 106 queries in total,
51.9% repeated, while 2.5% have positive NF.

Dataset Algorithm All f ≥ 2 ϕ > 0

NYT

CRL 3.9 7.3 12.6
ASA 9.4 21.4 39.7
HSA 695.0 1813.9 3755.4
CSA 1002.1 2595.7 4884.3

DNA

CRL 6.8 10.1 5.5
ASA 64.9 122.4 3.3
HSA 5655.5 10884.9 11.8
CSA 6348.6 12209.0 10.9

The asymptotic running times of CRL, ASA, CSA, and HSA are O(m + σ),O(m + f),O(m +
f log σ), and O(m + f · σ), respectively, where σ is the size of the alphabet and the query
has length m and frequency f .

Comparing CRL against ASA, we expect CRL to be faster for more frequent queries as
ASA needs to enumerate the entire SA interval of the query string while CRL does not. ASA
is compared against CSA to illustrate the trade-off between query time and space usage: ASA
is expected to be faster while CSA is expected to be more space-efficient, and indeed this
trade-off is observed in our experiments. We also compare ASA against HSA to demonstrate
the speedup provided by the augmentations of LF and LCP.

Results. The average query time of each algorithm is presented in Table 2. Since the
results from the three news datasets exhibit similar behaviours, only the results from NYT
are included: henceforth, NYT is the representative for the three news datasets. Overall,
our approaches, CRL and ASA, outperform the baseline approaches, HSA and CSA, on
both NYT and DNA, but all the algorithms are slower on the DNA data because the query
strings are much more frequent. Notably, CRL outperforms the baseline by a factor of up to
almost 1000, across all queries, validating the improvement in the asymptotic cost. Since
non-existent and unique queries have zero NF by definition, we next specifically look at the
results on repeated queries.

All approaches are slower when the query string is repeated, as further NF computation
is required after locating the string in the data structure. For this reason we additionally
report results on queries with positive NF. For NYT, similar relative behaviours are observed,
but for DNA, all algorithms are significantly faster, likely because strings with positive NF
on DNA data are shorter and have much lower frequency. For the same reason of queries
being less frequent, ASA is faster than CRL on DNA queries with positive NF because the
advantage of CRL over ASA is more apparent when the queries are more frequent.

Further results on CRL and ASA. Previously we have seen that, empirically, the augmenta-
tion of CRL accelerates our single-nf algorithm, but is that the case for queries of different
frequency and length? We now investigate how query string frequency and length contribute
to single-nf query time of CRL and ASA.

For NYT we do not consider strings with frequency greater than 2000, as we observe that
these are rare outliers that obscure the overall trend. For each frequency f ∈ [0, 2000] (or
length l ∈ [5, 35]) and each algorithm A, a data point is plotted as the average time taken
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Figure 3 Average single-nf query time (in microseconds) of ASA and CRL against query string
frequency (left) and length (right) on the NYT dataset. Note that the y-axis on the right is scaled
logarithmically.
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Figure 4 Average single-nf query time (in microseconds) of ASA and CRL against query string
frequency (left) and length (right) on the DNA dataset. Note that the y-axis on the right is scaled
logarithmically.

by A over all the query strings with frequency f (or length l). Since there are far more
data points in the frequency plot than the length plot, we use a scatter plot for frequency
(left of Figure 3) while a line plot for length (right of Figure 3). For frequency, as we
anticipated, CRL is faster than ASA on more frequent queries. Empirically, on NYT, the
turning point seems to be around 700. Note that the plot for CRL seems more scattered,
likely because its time usage does not depend on frequency, but depends on query length. For
length, on very short queries, CRL is faster because these queries are highly frequent. Then,
generally, query time does not increase as the query strings become longer because they tend
to correspondingly become less frequent. This suggests that length is not as significant as
frequency in affecting the query time of these approaches.

We similarly examine the effect of frequency and length on ASA and CRL query time
using the DNA data. As the query strings are more frequent in DNA than in NYC, we
use a higher frequency upper bound of 5000 and the results are presented in Figure 4. The
most notable difference between the DNA and NYT is that the former has a much smaller
alphabet. Thus, the gap between ASA and CRL becomes more evident for more frequent
queries. Additionally, it is notable that the frequency plot for CRL on the DNA dataset
appears less scattered compared to the NYT plot, also because of a much smaller alphabet.

▶ Remark 25. Although asymptotically CRL is faster than ASA, we have seen that empirically
ASA is faster on less frequent queries. This suggests a hybrid algorithm that switches between
ASA and CRL depending on the frequency of the query string.
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Table 3 Asymptotic cost and average time (in seconds) for all-nf. Build involves building an
augmented suffix array including the off-the-shelf suffix array, the LCP array, and the LF mapping
of text T . See Definition 21 for L and N . Recall that N ≤ L and L ∈ O(n log δ).

Task Approach Cost Average time
NYT APW XIE DNA

Build prior alg. O(n) 186.7 61.3 39.0 219.6

Extract
Alg. 2 O(L) 38.8 13.6 8.6 6.6
Alg. 3 O(N) 100.1 33.2 21.9 76.2

Report
Alg. 2 O(L + n) 65.6 20.8 14.3 6.7
Alg. 3 O(n) 231.6 81.2 52.6 77.4

5.2 ALL-NF Experiments
In this section, we present the analyse and empirical results for the two tasks all-nf-report
and all-nf-extract. In this setting, each dataset from Table 1 is taken directly an as
input text, without having to generate queries. Each reported time is an average of five
runs. As seen in Table 3, for all-nf-extract, Algorithm 2 is consistently faster than
Algorithm 3 in practice, even though L ≥ N (see Definition 21). We believe this is because
Algorithm 2 is more cache-friendly and does not involve stack operations. Each algorithm is
slower for all-nf-report than all-nf-extract, likely due to random-access requirements.
For Algorithm 2, although DNA is the largest dataset, the method is faster than on other
datasets because there are far fewer strings with positive NF. However, this is not the case for
Algorithm 3, because it has to spend much time on other operations, regardless of whether
an occurrence is a net occurrence.

Comparing these results to those of the single-nf methods, observe that, for NYT,
calculation of NF for each string with ϕ > 0 takes on average 12.6 microseconds, or a total
of around 548.5 seconds for the complete set of such strings – which is only possible if the
set of these strings is known before the computation begins. Using all-nf, these NF values
can be determined in about 39 seconds for extraction and a further 65 seconds to report.

6 Conclusion and Future Work

Net frequency is a principled method for identifying which strings in a text are likely to be
significant or meaningful. However, to our knowledge there has been no prior investigation of
how it can be efficiently calculated. We have approached this challenge with fresh theoretical
observations of NF’s properties, which greatly simplify the original definition. We then use
these observations to underpin our efficient, practical algorithmic solutions, which involve
several augmentations to the suffix array, including LF mapping, LCP array, and solutions
to the colour range listing problem. Specifically, our approach solves single-nf in O(m + σ)
time and all-nf in O(n) time, where n and m are the length of the input text and a string,
respectively, and σ is the size of the alphabet. Our experiments on large texts showed that
our methods are indeed practical.

We showed that there are at least three net occurrences in a Fibonacci word, Fi, and
verified that these are the only three for each i until reasonably large i. Proving there are
exactly three is an avenue of future work. We also proved that Ω(n) ≤ N ≤ L ≤ O(n log δ).
Closing this gap remains an open problem. Another open question is determining a lower
bound for single-nf. We have focused on static text with exact NF computation in this
work. It would be interesting to address dynamic and streaming text and to consider how
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approximate NF calculations might trade accuracy for time and space usage improvements.
Future research could also explore how bidirectional indexes [2, 3, 4, 22] can be adapted for
NF computation.

References
1 Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix trees

with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–86, 2004. doi:10.1016/
S1570-8667(03)00065-0.

2 Yuma Arakawa, Gonzalo Navarro, and Kunihiko Sadakane. Bi-directional r-indexes. In 33rd
Annual Symposium on Combinatorial Pattern Matching, CPM 2022, June 27-29, 2022, Prague,
Czech Republic, volume 223 of LIPIcs, pages 11:1–11:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022. doi:10.4230/LIPICS.CPM.2022.11.

3 Djamal Belazzougui and Fabio Cunial. Smaller fully-functional bidirectional BWT indexes. In
String Processing and Information Retrieval - 27th International Symposium, SPIRE 2020,
Orlando, FL, USA, October 13-15, 2020, Proceedings, volume 12303 of Lecture Notes in
Computer Science, pages 42–59. Springer, 2020. doi:10.1007/978-3-030-59212-7_4.

4 Djamal Belazzougui, Fabio Cunial, Juha Kärkkäinen, and Veli Mäkinen. Versatile succinct
representations of the bidirectional Burrows-Wheeler Transform. In Algorithms - ESA 2013 -
21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings,
volume 8125 of Lecture Notes in Computer Science, pages 133–144. Springer, 2013. doi:
10.1007/978-3-642-40450-4_12.

5 Dennis A. Benson, Mark Cavanaugh, Karen Clark, Ilene Karsch-Mizrachi, James Ostell, Kim D.
Pruitt, and Eric W. Sayers. Genbank. Nucleic Acids Research, 46(Database-Issue):D41–D47,
2018. doi:10.1093/nar/gkx1094.

6 Anders Roy Christiansen, Mikko Berggren Ettienne, Tomasz Kociumaka, Gonzalo Navarro,
and Nicola Prezza. Optimal-time dictionary-compressed indexes. ACM Transactions on
Algorithms, 17(1):8:1–8:39, 2021. doi:10.1145/3426473.

7 Larry J. Cummings, D. Moore, and J. Karhumäki. Borders of Fibonacci strings. Journal of
Combinatorial Mathematics and Combinatorial Computing, 20:81–88, 1996.

8 Aldo de Luca. A combinatorial property of the Fibonacci words. Information Processing
Letters, 12(4):193–195, 1981. doi:10.1016/0020-0190(81)90099-5.

9 Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM Journal on Computing, 40(2):465–492, 2011. doi:10.1137/
090779759.

10 Travis Gagie, Juha Kärkkäinen, Gonzalo Navarro, and Simon J. Puglisi. Colored range queries
and document retrieval. Theoretical Computer Science, 483:36–50, 2013. doi:10.1016/j.tcs.
2012.08.004.

11 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug
and play with succinct data structures. In Experimental Algorithms - 13th International
Symposium, SEA 2014, Copenhagen, Denmark, June 29 - July 1, 2014. Proceedings, volume
8504 of Lecture Notes in Computer Science, pages 326–337. Springer, 2014. doi:10.1007/
978-3-319-07959-2_28.

12 Simon Gog and Enno Ohlebusch. Compressed suffix trees: Efficient computation and storage
of LCP-values. ACM Journal of Experimental Algorithmics, 18, 2013. doi:10.1145/2444016.
2461327.

13 Costas S. Iliopoulos, Dennis W. G. Moore, and William F. Smyth. A characterization of
the squares in a Fibonacci string. Theoretical Computer Science, 172(1-2):281–291, 1997.
doi:10.1016/S0304-3975(96)00141-7.

14 Hiroe Inoue, Yoshiaki Matsuoka, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda. Factorizing strings into repetitions. Theory of Computing Systems, 66(2):484–
501, 2022. doi:10.1007/S00224-022-10070-3.

https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.4230/LIPICS.CPM.2022.11
https://doi.org/10.1007/978-3-030-59212-7_4
https://doi.org/10.1007/978-3-642-40450-4_12
https://doi.org/10.1007/978-3-642-40450-4_12
https://doi.org/10.1093/nar/gkx1094
https://doi.org/10.1145/3426473
https://doi.org/10.1016/0020-0190(81)90099-5
https://doi.org/10.1137/090779759
https://doi.org/10.1137/090779759
https://doi.org/10.1016/j.tcs.2012.08.004
https://doi.org/10.1016/j.tcs.2012.08.004
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1145/2444016.2461327
https://doi.org/10.1145/2444016.2461327
https://doi.org/10.1016/S0304-3975(96)00141-7
https://doi.org/10.1007/S00224-022-10070-3


P. Guo, P. Eades, A. Wirth, and J. Zobel 16:15

15 Juha Kärkkäinen, Dominik Kempa, and Marcin Piatkowski. Tighter bounds for the sum of
irreducible LCP values. Theoretical Computer Science, 656:265–278, 2016. doi:10.1016/j.
tcs.2015.12.009.

16 Juha Kärkkäinen, Giovanni Manzini, and Simon J. Puglisi. Permuted longest-common-prefix
array. In Combinatorial Pattern Matching, 20th Annual Symposium, CPM 2009, Lille, France,
June 22-24, 2009, Proceedings, volume 5577 of Lecture Notes in Computer Science, pages
181–192. Springer, 2009. doi:10.1007/978-3-642-02441-2_17.

17 Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-time
longest-common-prefix computation in suffix arrays and its applications. In Combinatorial
Pattern Matching, 12th Annual Symposium, CPM 2001 Jerusalem, Israel, July 1-4, 2001
Proceedings, volume 2089 of Lecture Notes in Computer Science, pages 181–192. Springer,
2001. doi:10.1007/3-540-48194-X_17.

18 Dominik Kempa and Tomasz Kociumaka. Resolution of the Burrows-Wheeler Transform
conjecture. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS
2020, Durham, NC, USA, November 16-19, 2020, pages 1002–1013. IEEE, 2020. doi:10.
1109/FOCS46700.2020.00097.

19 Kaisei Kishi, Yuto Nakashima, and Shunsuke Inenaga. Largest repetition factorization of Fibon-
acci words. In String Processing and Information Retrieval - 30th International Symposium,
SPIRE 2023, Pisa, Italy, September 26-28, 2023, Proceedings, volume 14240 of Lecture Notes
in Computer Science, pages 284–296. Springer, 2023. doi:10.1007/978-3-031-43980-3_23.

20 Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza. Toward a definitive compressibility
measure for repetitive sequences. IEEE Transactions on Information Theory, 69(4):2074–2092,
2023. doi:10.1109/TIT.2022.3224382.

21 M. Oguzhan Külekci, Jeffrey Scott Vitter, and Bojian Xu. Efficient maximal repeat finding
using the Burrows-Wheeler Transform and wavelet tree. IEEE ACM Trans. Comput. Biol.
Bioinform., 9(2):421–429, 2012. doi:10.1109/TCBB.2011.127.

22 Tak Wah Lam, Ruiqiang Li, Alan Tam, Simon C. K. Wong, Edward Wu, and Siu-Ming Yiu.
High throughput short read alignment via bi-directional BWT. In 2009 IEEE International
Conference on Bioinformatics and Biomedicine, BIBM 2009, Washington, DC, USA, November
1-4, 2009, Proceedings, pages 31–36. IEEE Computer Society, 2009. doi:10.1109/BIBM.2009.
42.

23 Yih-Jeng Lin and Ming-Shing Yu. Extracting Chinese frequent strings without dictionary
from a Chinese corpus and its applications. Journal of Information Science and Engineer-
ing, 17(5):805–824, 2001. URL: https://jise.iis.sinica.edu.tw/JISESearch/pages/View/
PaperView.jsf?keyId=86_1308.

24 Yih-Jeng Lin and Ming-Shing Yu. The properties and further applications of Chinese frequent
strings. International Journal of Computational Linguistics and Chinese Language Processing,
9(1), 2004. URL: http://www.aclclp.org.tw/clclp/v9n1/v9n1a7.pdf.

25 M. Lothaire. Combinatorics on words, Second Edition. Cambridge mathematical library.
Cambridge University Press, 1997.

26 Moritz G. Maaß. Linear bidirectional on-line construction of affix trees. In Combinatorial
Pattern Matching, 11th Annual Symposium, CPM 2000, Montreal, Canada, June 21-23, 2000,
Proceedings, volume 1848 of Lecture Notes in Computer Science, pages 320–334. Springer,
2000. doi:10.1007/3-540-45123-4_27.

27 Udi Manber and Eugene W. Myers. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993. doi:10.1137/0222058.

28 Giovanni Manzini. Two space saving tricks for linear time LCP array computation. In
Algorithm Theory - SWAT 2004, 9th Scandinavian Workshop on Algorithm Theory, Humlebaek,
Denmark, July 8-10, 2004, Proceedings, volume 3111 of Lecture Notes in Computer Science,
pages 372–383. Springer, 2004. doi:10.1007/978-3-540-27810-8_32.

29 Burrows Michael and Wheeler David. A block-sorting lossless data compression algorithm. In
Digital SRC Research Report, 1994.

CPM 2024

https://doi.org/10.1016/j.tcs.2015.12.009
https://doi.org/10.1016/j.tcs.2015.12.009
https://doi.org/10.1007/978-3-642-02441-2_17
https://doi.org/10.1007/3-540-48194-X_17
https://doi.org/10.1109/FOCS46700.2020.00097
https://doi.org/10.1109/FOCS46700.2020.00097
https://doi.org/10.1007/978-3-031-43980-3_23
https://doi.org/10.1109/TIT.2022.3224382
https://doi.org/10.1109/TCBB.2011.127
https://doi.org/10.1109/BIBM.2009.42
https://doi.org/10.1109/BIBM.2009.42
https://jise.iis.sinica.edu.tw/JISESearch/pages/View/PaperView.jsf?keyId=86_1308
https://jise.iis.sinica.edu.tw/JISESearch/pages/View/PaperView.jsf?keyId=86_1308
http://www.aclclp.org.tw/clclp/v9n1/v9n1a7.pdf
https://doi.org/10.1007/3-540-45123-4_27
https://doi.org/10.1137/0222058
https://doi.org/10.1007/978-3-540-27810-8_32


16:16 Exploiting New Properties of String Net Frequency for Efficient Computation

30 S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proceedings of the
Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 6-8, 2002, San
Francisco, CA, USA, pages 657–666. ACM/SIAM, 2002. URL: http://dl.acm.org/citation.
cfm?id=545381.545469.

31 Gonzalo Navarro. Indexing highly repetitive string collections, part I: repetitiveness measures.
ACM Computing Surveys, 54(2):29:1–29:31, 2022. doi:10.1145/3434399.

32 Gonzalo Navarro. Indexing highly repetitive string collections, part II: compressed indexes.
ACM Computing Surveys, 54(2):26:1–26:32, 2022. doi:10.1145/3432999.

33 Julian Pape-Lange. On extensions of maximal repeats in compressed strings. In 31st Annual
Symposium on Combinatorial Pattern Matching, CPM 2020, June 17-19, 2020, Copenhagen,
Denmark, volume 161 of LIPIcs, pages 27:1–27:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPICS.CPM.2020.27.

34 Giuseppe Pirillo. Fibonacci numbers and words. Discrete Mathematics, 173(1-3):197–207,
1997. doi:10.1016/S0012-365X(94)00236-C.

35 Mathieu Raffinot. On maximal repeats in strings. Information Processing Letters, 80(3):165–
169, 2001. doi:10.1016/S0020-0190(01)00152-1.

36 Sofya Raskhodnikova, Dana Ron, Ronitt Rubinfeld, and Adam D. Smith. Sublinear algorithms
for approximating string compressibility. Algorithmica, 65(3):685–709, 2013. doi:10.1007/
s00453-012-9618-6.

37 Ellen M. Voorhees. Overview of TREC 2003. In Proceedings of The Twelfth Text REtrieval
Conference, TREC 2003, Gaithersburg, Maryland, USA, November 18-21, 2003, volume 500-
255 of NIST Special Publication, pages 1–13. National Institute of Standards and Technology
(NIST), 2003. URL: http://trec.nist.gov/pubs/trec12/papers/OVERVIEW.12.pdf.

http://dl.acm.org/citation.cfm?id=545381.545469
http://dl.acm.org/citation.cfm?id=545381.545469
https://doi.org/10.1145/3434399
https://doi.org/10.1145/3432999
https://doi.org/10.4230/LIPICS.CPM.2020.27
https://doi.org/10.1016/S0012-365X(94)00236-C
https://doi.org/10.1016/S0020-0190(01)00152-1
https://doi.org/10.1007/s00453-012-9618-6
https://doi.org/10.1007/s00453-012-9618-6
http://trec.nist.gov/pubs/trec12/papers/OVERVIEW.12.pdf

	1 Introduction
	2 Preliminaries
	3 A Fresh Examination of Net Frequency
	4 New Algorithms for Net Frequency Computation
	4.1 SINGLE-NF Algorithm
	4.2 ALL-NF Algorithms

	5 Experiments
	5.1 SINGLE-NF Experiments
	5.2 ALL-NF Experiments

	6 Conclusion and Future Work

