
Closing the Gap: Minimum Space Optimal Time
Distance Labeling Scheme for Interval Graphs
Meng He # Ñ

Faculty of Computer Science, Dalhousie University, Halifax, Canada

Kaiyu Wu #

Faculty of Computer Science, Dalhousie University, Halifax, Canada

Abstract
We present a distance labeling scheme for an interval graph on n vertices that uses at most
3 lg n + lg lg n + O(1) bits per vertex to answer distance queries, which ask for the distance between
two given vertices, in constant time. Our labeling scheme improves the distance labeling scheme of
Gavoille and Paul for connected interval graphs which uses at most 5 lg n + O(1) bits per vertex to
achieve constant query time. Our improved space cost matches a lower bound proven by Gavoille
and Paul within additive lower order terms and is thus optimal. Based on this scheme, we further
design a 6 lg n + 2 lg lg n + O(1) bit distance labeling scheme for circular-arc graphs, with constant
distance query time, which improves the 10 lg n + O(1) bit distance labeling scheme of Gavoille and
Paul.

We give a n/2 + O(lg2 n) bit labeling scheme for chordal graphs which answers distance queries
in O(1) time. The best known lower bound is n/4 − o(n) bits.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Theory of computation → Data compression

Keywords and phrases Distance Labeling, Interval Graph, Circular-Arc Graph, Chordal Graph

Digital Object Identifier 10.4230/LIPIcs.CPM.2024.17

Funding This work was supported by NSERC.

1 Introduction

A notion closely related to that of a centralized data structure for computing a query is the
notion of a labeling scheme. Formally introduced by Peleg [29], a labeling scheme assigns
a relatively short label to each vertex (using an encoder function), and to answer a query,
uses only the labels of the vertices involved in the query (using a decoder function). Thus a
labeling scheme can be viewed as a distributed form of a data structure, where we split the
data structure among the vertices of the graph. The distributed nature of the data structure
is highly applicable in distributed settings, where the computation only has access to the
data stored at the node and not the overall topology of the network (nor the data at other
nodes). By distributing the data structure, we avoid large centralized data structures, which
are costly and often will not fit in faster levels of memory. Furthermore, the length of the
labels are important as the labels will need to be transmitted between the nodes of a network.
Thus the quality of a labeling scheme is measured as the worst case label length (i.e. we
wish to split the data structure as evenly as possible) and the worst case time to decode
the labels to answer the query. One important property to note is that a labeling scheme
can be trivially converted to a more traditional data structure, by simply storing all the
labels. Thus the total space of a labeling scheme will be at least as much as the space for an
optimal data structure. However, it is often the case that labeling schemes will use more
overall space than the optimal data structure due to the distributed nature of the model.

© Meng He and Kaiyu Wu;
licensed under Creative Commons License CC-BY 4.0

35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024).
Editors: Shunsuke Inenaga and Simon J. Puglisi; Article No. 17; pp. 17:1–17:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mhe@cs.dal.ca
https://cs.dal.ca/~mhe
https://orcid.org/0000-0003-0358-7102
mailto:kevin.wu@dal.ca
https://orcid.org/0000-0001-7562-1336
https://doi.org/10.4230/LIPIcs.CPM.2024.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Optimal Distance Labeling Scheme for Interval Graphs

Many operations on graphs and trees have been considered in the labeling model. For
instance, labeling schemes computing adjacency in general undirected graphs [8] or in trees [4]
have been considered. In subclasses of graphs, hereditary graphs classes with at least 2Ω(n2)

members have adjacency labelings that use optimal space [10]. For trees, there are many
operations that are considered, aside from adjacency. For example, labelings checking
ancestry [15], computing the lowest/least common ancestor [21], and the ancestor at any
given depth [16]. The distance operation, which returns the distance between two vertices
of a graph, has been considered for many classes, such as general graphs [19, 5], planar
graphs [22], interval graphs [17], and trees [16]. Labeling schemes for the distance operation
is highly applicable to network routing [13, 14].

The distance operation, is a fundamental operation in graphs, and has been extensively
studied outside of the labeling model. As distance queries are able to compute adjacency
queries on unweighted graphs, the space needed is at least as much as for any data structure
or labeling for the adjacency query. One solution to the distance query is to precompute
and store the distances between all pairs of vertices, which incurs a quadratic space cost,
but for general graphs, such a space cost is unavoidable. To achieve better space costs,
work has focused on designing approximate solutions [28, 1]. For instance, Patrascu and
Roditty [28] constructs a data structure occupying O(n5/3) words of space which computes
the approximate distance within a factor of 2. Other work has focused on subclasses of graphs
which admits smaller space solutions, such as planar graphs [26, 25], interval graphs [17, 23]
and chordal graphs [31, 27].

Here we consider labeling schemes for the distance query. The graph classes we consider
are unweighted interval graphs, circular arc graphs and chordal graphs. These graphs are
intersection graphs, where the edges can be encoded in the intersection structure of sets.
That is for every vertex v, we can associate it with a set sv so that two vertices u, v are
adjacent exactly when su ∩ sv ̸= ∅. We say that the collection of sets {sv; v ∈ V } is an
intersection model of the graph. An interval graph is thus a graph where we can find an
intersection model where the sets are intervals on the real line, or simply, the intersection
graph of intervals on the real line. A circular arc graph is the intersection graph of arcs
on a circle, and a chordal graph is the intersection graph of subtrees (a set of connected
nodes, rather than an entire subtree rooted at some node) in a tree. These graphs have
nice combinatorial structures where many otherwise NP-Hard problems (such as maximum
independent set, clique etc...), can be solved on them in polynomial time. They also have
applications in compiler design [30], operations research [9] and bioinformatics [34] among
others where the specific objects they study can be modeled by these classes of graphs.

Particularly for interval graphs, there is a gap between the lower and upper bounds of a
distance labeling scheme, where the lower bound is 3 lg n−O(lg lg n) bits while the upper
bound is 5 lg n + O(1) bits [17]. And one of our aims is to close this gap and give tight results
for this class of graphs.

1.1 Related Work
For the distance labeling model, many classes of graphs have been considered. For general
graphs, a distance labeling scheme occupying lg 3

2 n + o(n) bits (about 0.795n) exists [5] with
O(1) decode (i.e time to compute the query) time along with a matching Ω(n) bit lower
bound [19]. For planar graphs, A lower bound of Ω(n1/3) is shown [19]. The best labeling
scheme uses O(

√
n) bits [22], but incurs a matching O(

√
n) decode time. With a bit more

space, a labeling scheme using O(
√

n lg n) bits can be decoded in O(lg3 n) time [22]. For
interval graphs, Gavoille and Paul [17] gave a 5 lg n + O(1) bit labeling scheme with O(1)

M. He and K. Wu 17:3

decode time along with a 3 lg n− o(lg n) bit lower bound. For circular arc graphs, they gave
a 10 lg n + O(1) bit labeling scheme with O(1) decode time. For permutation graphs, Katz
et al. [24] gave a O(lg2 n) bit labeling scheme with O(lg n) decode time.

On trees, we also have a variety of queries based on the ancestor-descendant relationships,
among others:

Adjacency: determine if one vertex is the parent of another. A lg n + O(1) bit scheme
with O(1) decode time is given by Alstrup et al. [4], along with a matching lower bound.
Ancestry: determine if one vertex is an ancestor of another. A lg n + O(lg lg n) bit scheme
is given by Fraigniaud and Korman [15], and a matching lower bound is given by Alstrup
et al. [3].
Lowest common ancestor (LCA): determine the label of the lowest common ancestor of
two vertices. A 2.318 lg n + o(lg n) bit labeling scheme with O(1) decode time is given by
Gawrychowski [21], while the lower bound is 1.008 lg n bits [7]. If we also need to return
a predetermined k bit label of the lower common ancestor, then Alstrup et al. [7] gives a
labeling scheme of length (3 + k) lg n bits with O(1) decode time. If k = Θ(lg n), then a
matching Θ(lg2 n) lower bound is shown by Peleg [29].
Level ancestor: return the label of the ancestor of a vertex v at depth d. A 1

2 lg2 n+O(lg n)
bit scheme is given by Alstrup et al. [6], which matches a lower bound of 1

2 lg2 n−lg n lg lg n

of Freedman et al. [16].
Distance: return the distance between between two vertices. A 1

4 lg2 n + o(lg2 n) bit
labeling scheme is given by Freedman et al. [16], with a matching lower bound given by
Alstrup et al. [6].

We refer to the survey of Gavoille and Peleg [18], and references therein, for a survey of
labeling schemes and their applications in distributed computing.

1.2 Our Results
Our main contribution is a 3 lg n + lg lg n + O(1) bit labeling scheme for interval graphs with
O(1) decode time, which improves the 5 lg n + O(1) labeling scheme given by Gavoille and
Paul [17]. This matches the 3 lg n− o(lg n) lower bound they proved up to lower order terms.
We further note that Gavoille and Paul assumed that the interval graph is connected in
their paper, and did not discuss what do if it were disconnected, while our solution works
for general interval graphs. We also first consider connected interval graphs, and give a
3 lg n + O(1) bit distance labeling scheme with O(1) decode time, before generalizing it.

To do this, we adapt the distance algorithm on interval graphs of He et al. [23] which
uses level ancestor queries. The main advancement compared to similar structures such that
of Chen et al. [12] is the fact that a tree encoding the distances can be constructed such
that a level-order traversal of the tree gives exactly the vertices in a left to right scan of the
(left endpoints of the) intervals, and thus comparisons of these endpoints can be done by
comparing properties of the corresponding nodes of the tree. We note that Gavoille and
Paul [17] stated that such an approach using level ancestor queries was impossible, as any
labeling scheme for level ancestors queries would need Ω(lg2 n) bits [16], and this may be the
reason for the gap between upper and lower bounds (5 lg n vs 3 lg n) to exist. The key insight
for our approach is that, although we use level ancestor queries as our basis, we do not need
to compute the exact ancestor node (and thus its label), but rather some properties of that
ancestor. These properties are also not exact, but approximate (for example, rather than the
exact index of a node visited in a post-order traversal, we only need to know whether this
index is less than some integer i), which allows us to bypass the level ancestor query lower

CPM 2024

17:4 Optimal Distance Labeling Scheme for Interval Graphs

bound. This optimal scheme for interval graphs also immediately improves the distance
labeling scheme of circular arc graphs from 10 lg n + O(1) bits [17] to 6 lg n + 2 lg lg n + O(1)
bits, with O(1) decode time.

We then apply the labeling scheme for interval graphs to chordal graphs to obtain the
first distance labeling schemes for chordal graphs. We obtain a distance labeling scheme
of length n/2 + O(lg2 n) bits. We note that as the lower bound on chordal graphs data
structures is n2/4− o(n) bits via an enumeration argument [27, 33], any distance labeling
scheme will require n/4− o(n) bit label lengths.

2 Preliminaries

2.1 Definitions and Notation
We will use the standard graph theoretic notations. Let G = (V, E) be a graph. We set
n = |V | the number of vertices and m = |E| the number of edges. As is standard, we will
use the word-RAM model with ω = Θ(lg n) bit words.

We use the standard definitions of graph and tree operations. For graphs, the operations
we use are

adjacent(u, v) which tests if two vertices u and v are adjacent.
distance(u, v) which returns the (unweighted) distance between two vertices u and v.

For trees the standard operations we use are
depth(v) which returns the depth of node v.
lev_anc(v, d) which returns the ancestor of a node v at a given depth d.
parent(v) which returns the parent node of the given node v.
LCA(u, v) which returns the lowest (i.e. largest depth) common ancestor of two given
nodes u and v.
node_rankX(v) which returns the index of v in the X traversal of the tree, where X is
PRE, POST or LEVEL indicating a preorder, post-order or level-order (i.e. a breadth-first
traversal where we visit the children from left to right) traversal of the tree.

A labeling scheme is a distributed data structure, where each vertex of the graph
contains a piece of the data structure and queries must be computed using only those pieces
available at the relevant vertices. Formally, a distance labeling scheme for a graph G with
n vertices is a pair of functions (L, f) where L(G, v), typically referred to as a encoder or
marker algorithm, computes a label from a vertex v of G, and f , typically referred to as
a decoder algorithm, computes the distance between two vertices given their labels. That
is f(L(G, u), L(G, v)) = distanceG(u, v). The size or length of the labeling scheme is the
maximum length over all possible labels: maxG,v |L(G, v)|. We note that there is a dichotomy
between L and f , where L can be computed using information from the entire graph, f

cannot and can use only the labels, without further information about the original graph
that the labels come from.

2.2 Interval Graph
An interval graph is a graph where the intersection model is a set of closed interval on the
real line, where we write the interval as Iv = [lv, rv]. By sorting the endpoints (and breaking
ties such that left endpoints come before right endpoints to preserve the intersection, and
arbitrarily otherwise) we may assume that the endpoints are distinct integers in the range
[1, 2n]. We will name the vertices 1, . . . , n, in the order of their left endpoints, so that for
two vertices u < v we have lu < lv. We will now review some of the lemmas used in the
computation of distances in interval graphs.

M. He and K. Wu 17:5

1

2 3

4

5

6

1

2 3 4

5 6

1

2 3

4 5

6

Figure 1 An interval graph on 6 vertices. The intersection model is shown on the left, while the
distance tree (blue labels next to the nodes represent post-order numbers) is shown on the right.

For each vertex v, we define its parent, parent(v), to be the minimum vertex u (i.e.
the one with minimal left endpoint) adjacent to v. This can be expressed by the following
formula: arg min{lu | ru ≥ lv}.

Using this parent-child relationship (where the root of the tree is the vertex v with
1 = v = parent(v)), we may build a tree T which we will call the distance tree, where for
each internal node, its children are in sorted order (by left endpoint).

Crucial to the data structure is the index of the nodes of the tree in some traversal of the
tree denoted by node_rankX(T, v), where X is PRE, POST or LEVEL. We will omit the tree T

when the tree being referred to is clear. The main property of this tree is that the vertex
order sorted by left endpoint is exactly the vertex order obtained in a level-order traversal of
the tree:

▶ Lemma 1 (Lemma 7 of [23]). Let G be an interval graph with distance tree T (G) and
vertices u, v. Then node_rankLEVEL(u) < node_rankLEVEL(v) if and only if lu < lv.

This is quite intuitive since we ordered the children of every node of the tree by their left
endpoints, so that the property can propagate up the tree. Furthermore, by the property of
these traversals, in the case that depth(u) = depth(v), node_rankX(u) < node_rankX(v) if
and only if lu < lv for X = PRE, POST, LEVEL, as on each level of the tree, the traversals visit
the nodes from left to right; see Figure 1.

The shortest path algorithm used in previous works [12, 2, 27, 23] is the recursive algorithm
given in Algorithm 1, for two vertices in the same connected component of the interval graph.
The correctness can be summarized as the following lemma (though not explicitly stated as
a lemma in some previous papers):

▶ Lemma 2 (Lemma 8 [27], Lemma 4,6 [12]). Let G be an interval graph with dis-
tance tree T (G), and u, v be two vertices in the same connected component of G with
node_rankLEVEL(u) < node_rankLEVEL(v) (i.e. u < v). Let the node to root path of v be
v = vdepth(v), . . . , v0 = r, and i be the first (i.e. largest) index where lvi ≤ ru. Then a shortest
path from u to v is u = vdepth(v), . . . , vi, u, and furthermore, i is depth(u)− 1, depth(u) or
depth(u) + 1.

Algorithm 1 Shortest Path computation between vertices u and v with u < v.

1: path = empty
2: while true do
3: if adjacent (u, v) then
4: path = path, v, u

5: return path
6: path = path, v

7: v ← parent(v)

CPM 2024

17:6 Optimal Distance Labeling Scheme for Interval Graphs

The above lemma also allows us to compute the distance, as there are at most 3 candidates
for vi, which we may check individually using lev_anc.

3 Distance Labeling in Interval Graphs

In this section, we will consider distance labeling schemes for interval graphs. We will first
assume that our graph is connected, and then generalize it to arbitrary interval graphs. As
Gavoille and Paul [17] showed, any distance labeling scheme requires at least 3 lg n−O(lg lg n)
bits. Thus, our goal is to give a labeling scheme that uses 3 lg n + lg lg n + O(1) bits matching
their lower bound up to lower order terms. We will use the distance computation method
outlined in Lemma 2 and level ancestor queries as the basis of our scheme.

3.1 Labeling Scheme for Connected Interval Graphs
Now we consider the distance computation method outlined in Lemma 2. Given two vertices
u and v such that u < v (we assume u ≠ v as that is trivial), we computed the path to the
root in the distance tree from v as v = vdepth(v), . . . , v0 and computed the first index i such
that vi is adjacent to u. In Lemma 2, we had 3 candidates for vi. We will now narrow it
down to 2 by examining the relative positions of u and v in the tree.

▶ Lemma 3. Let G be an interval graph with distance tree T . Let u and v be two vertices of
G such that u < v. Depending on the positioning of u and v we define the ancestor w (of v)
as follows:
1. Suppose that node_rankPOST(u) < node_rankPOST(v). Let w = lev_anc(v, depth(u)).
2. Suppose that node_rankPOST(u) > node_rankPOST(v). Let w = lev_anc(v, depth(u) + 1).

Then w = vi if u and w are adjacent. Otherwise, w = vi−1.

Proof. See Figure 2 for an illustration of the two cases in the lemma statement. Define
d = depth(u) if node_rankPOST(u) < node_rankPOST(v) and d = depth(u) + 1 if
node_rankPOST(u) > node_rankPOST(v). Then w = vd as defined in this lemma. By the
definition of parent, lvj

> lvj−1 for every j. Then lvj
> lvd

> lu for all j > d. Thus for
any vj with j > d, vj cannot be adjacent to u, as otherwise lvj ≤ ru and thus u would be
considered as a possible vertex in the definition of parent(vj). But as vj−1 = parent(vj),
we must have lvd

≤ lvj−1 < lu, a contradiction.
In the case where u and w are adjacent, w = vi by definition as it is the first vertex

adjacent to u on the path towards the root (Lemma 2). Otherwise, suppose that u and w

are not adjacent. By the definition of a post-order traversal, we have node_rankPOST(w) ≥
node_rankPOST(v) since ancestors are visited later in the traversal. In the first case, since
depth(w) = depth(u) and node_rankPOST(u) < node_rankPOST(v) ≤ node_rankPOST(w), we
have lu < lw. Furthermore, since depth(parent(w)) = depth(u)− 1, lparent(w) < lu because
it comes before u in a level-order traversal (it has a smaller depth). In the second case where
node_rankPOST(u) > node_rankPOST(v), because depth(w) = depth(u) + 1, we have lw > lu.
This also implies that depth(parent(w)) = depth(u). By assumption node_rankPOST(u) >

node_rankPOST(v) which implies that node_rankPOST(u) > node_rankPOST(parent(w)), so we
have lparent(w) < lu as it comes before u in a level-order traversal.

Therefore, in either situation, we have the inequalities lparent(w) < lu < lw. By definition
of parent we have rparent(w) > lw. Therefore, lparent(w) < lu < rparent(w) and thus u and
parent(w) are adjacent. Hence parent(w) is the first vertex adjacent to u on the path
towards the root from v so w = vi−1 (Lemma 2). ◀

M. He and K. Wu 17:7

u

v

w = vdepth(u)

node rankpost(u) < node rankpost(v)

u

v

w = vdepth(u)+1

node rankpost(u) > node rankpost(v)

vdepth(u)

Figure 2 The two cases based on the relative positioning of u and vdepth(u) on the level depth(u).
In the first case, u is to the left of the ancestor of v, while in the second case, u to the right. The
node w, which will later be called the representative of v with respect to u, is the smallest depth
ancestor that is after u in a level-order traversal. In the first case, w would be on the same level as
u, while in the second w is on the next level.

The node w, which is the smallest depth ancestor with lw > lu (i.e. to the right of u

in the intersection model and in a level-order traversal of the tree) will be denoted as the
representative of v with respect to u. This is because to compute the distance between u and
v, it suffices to determine whether w is adjacent to u or not, and to compute the distance
between v and w. Since w is an ancestor of v, this distance is simply the difference in the
depths of w and v. We will rewrite Algorithm 1 as Algorithm 2 to take advantage of this
observation.

Algorithm 2 Distance computation between vertices u and v with u < v.

1: if node_rankPOST(u) < node_rankPOST(v) then
2: w ← lev_anc(v, depth(u))
3: else
4: w ← lev_anc(v, depth(u) + 1)
5: distance = depth(v)− depth(w)
6: if adjacent(u, w) then
7: distance = distance+1
8: else
9: distance = distance+2

10: return distance

To convert Algorithm 2 into an algorithm that uses only labels, we need to do the following
steps using only labels:
1. Test whether u < v

2. Compute depth(v) and depth(u)
3. Compute node_rankPOST(v) and node_rankPOST(u)
4. Compute (an approximation of) lev_anc
5. Compute adjacent using the approximation of lev_anc.

Our labeling scheme will consist of the following 3 integers for each vertex v, each using
⌈lg n⌉ bits:
1. depth(v)
2. node_rankPOST(v)
3. node_rankPOST(last(v))

CPM 2024

17:8 Optimal Distance Labeling Scheme for Interval Graphs

Here, last(v) is the rightmost neighbour of v (i.e. the neighbour with the largest left
endpoint). In the case where v is the rightmost vertex, the rightmost neighbour of v is to its
left, and we consider this to be an invalid case and set last(v) = nothing (and we will not
need it in our computation).

An important property of last(v) is

▶ Lemma 4. Let G be an interval graph with distance tree T . Let v be a vertex that is not
the rightmost vertex. Then every vertex w such that v < w ≤ last(v) is adjacent to v.

Proof. Let w be a vertex such that v < w ≤ last(v) (by our naming convention, this is also
an inequality on the left endpoints of these vertices). Since last(v) is adjacent to v, we have
lv < llast(v) < rv. Thus we have lv < lw ≤ llast(v) < rv, so w is adjacent to v. ◀

Now we show how to compute the steps using our labels.

Step 1: Decide if u < v. By Lemma 1, we have u < v exactly when node_rankLEVEL(u) <

node_rankLEVEL(v). If depth(u) < depth(v), then the inequality of node_rankLEVEL is implied.
Otherwise, if depth(u) = depth(v), then node_rankLEVEL(u) < node_rankLEVEL(v) if and only
if node_rankPOST(u) < node_rankPOST(v). If neither is the case, then we have v < u, so we
switch the two vertices in the algorithm.

Step 2,3: Compute depth(u), depth(v), node_rankPOST(u), node_rankPOST(v). This is
immediate as we store them as part of the label.

Step 4,5: Compute adjacent using the approximation of lev_anc. We will use
node_rankPOST(v) as our approximation of node_rankPOST(w) in our calculations. To compute
adjacent(u, w) using node_rankPOST(v), we will use the following lemma (see Figure 3):

▶ Lemma 5. Let G be an interval graph and T be its distance tree. Let u and v be two
vertices such that u < v. Let w be the representative of v with respect to u, as defined in
Lemma 3. The following two cases mirror the two cases used to define w:
Suppose that node_rankPOST(u) < node_rankPOST(v). Then u and w are adjacent if
and only if node_rankPOST(v) ≤ node_rankPOST(last(u)) or node_rankPOST(last(u)) <

node_rankPOST(u).
Suppose that node_rankPOST(u) > node_rankPOST(v). Then u and w are adjacent if and only
if node_rankPOST(v) < node_rankPOST(last(u)) < node_rankPOST(u).

Proof. First we examine the relationship between the post-order ranks of u and last(u) (i.e.
node_rankPOST(u) and node_rankPOST(last(u))). Since last(u) is the rightmost neighbour
of u, it comes after u in level-order, so depth(last(u)) ≥ depth(u). Since last(u) is
adjacent to u, lparent(last(u)) ≤ lu by the definition of parent. Thus depth(last(u)) =
depth(parent(last(u))) + 1 ≤ depth(u) + 1. Thus last(u) is either on the same level as
u or the level below. If it is on the same level as u, then as it is to the right of u, we
have node_rankPOST(u) ≤ node_rankPOST(last(u)). If it is on the level below u, then since
depth(parent(last(u))) = depth(u), we have

node_rankPOST(last(u)) < node_rankPOST(parent(last(u))) ≤ node_rankPOST(u)

Thus by checking the relationship between their post-order ranks we may determine the
depth of last(u) (and vice versa).

M. He and K. Wu 17:9

u

last(u)

v

w

Figure 3 To determine if w is adjacent to u, we need to check if w lies in the shaded region
between u and last(u) in level-order. To do so, we will need to compare the relative positioning of
w and last(u) when they are on the same level. If w is on the level above last(u) (so it must come
before it in level-order), then w is in the shaded region. If w is on the level below last(u) (so it
must come after it in level-order), then w cannot be in the shaded region.

In the first case, suppose that node_rankPOST(u) < node_rankPOST(v). By the definition
of the representative of v with respect to u, depth(w) = depth(u), and w is to the right of u

on that level (so we have node_rankPOST(w) > node_rankPOST(v) > node_rankPOST(u)). By
Lemma 4, u and w are adjacent if and only if

node_rankLEVEL(w) ∈ (node_rankLEVEL(u), node_rankLEVEL(last(u))]

If depth(last(u)) = depth(u) (equivalently, node_rankPOST(last(u)) > node_rankPOST(u)),
then all three nodes are on the same level, so we may translate it them to post-order numbers as
node_rankPOST(w) ∈ (node_rankPOST(u), node_rankPOST(last(u))]. The first half is satisfied
by assumption, so we are left with just node_rankPOST(w) ≤ node_rankPOST(last(u)). If
depth(last(u)) = depth(u) + 1 (equivalently, node_rankPOST(last(u)) < node_rankPOST(u)),
then the range (node_rankLEVEL(u), node_rankLEVEL(last(u))], restricted to the level depth(u)
contains all the nodes on the level depth(u) to the right of u, which w satisfies by definition
(as it is a node on level depth(u) to the right of u). Hence, in this case, u and w are adjacent
if and only if node_rankPOST(v) ≤ node_rankPOST(last(u)) or node_rankPOST(last(u)) <

node_rankPOST(u).
In the second case, we assume that node_rankPOST(u) > node_rankPOST(v). Therefore, we

have depth(w) = depth(u)+1, and node_rankPOST(w) < node_rankPOST(u) (by the properties
of a post-order traversal). Again u and w are adjacent if and only if node_rankLEVEL(w) ∈
(node_rankLEVEL(u), node_rankLEVEL(last(u))]. If depth(last(u)) = depth(u) (equivalently,
node_rankPOST(last(u)) > node_rankPOST(u)), then as depth(w) = depth(last(u)) + 1,
w comes after last(u) in level-order, so node_rankLEVEL(last(u)) < node_rankLEVEL(w).
Therefore, w cannot be adjacent to u. If depth(last(u)) = depth(u) + 1 = depth(w)
(equivalently, node_rankPOST(last(u)) < node_rankPOST(u)), then the restriction of the range
(node_rankLEVEL(u), node_rankLEVEL(last(u))] to level depth(w) = depth(last(u)) are ex-
actly the nodes on level depth(w) in the range (−∞, node_rankLEVEL(last(u))]. Converted
to a post-order traversal, this is the range (−∞, node_rankPOST(last(u))] for those nodes on
level depth(w). w satisfies this exactly when node_rankPOST(w) ≤ node_rankPOST(last(u))
(so that node_rankPOST(v) < node_rankPOST(w) ≤ node_rankPOST(last(u))). Hence, in this
case, u and w are adjacent if and only if node_rankPOST(v) < node_rankPOST(last(u)) <

node_rankPOST(u). ◀

CPM 2024

17:10 Optimal Distance Labeling Scheme for Interval Graphs

Algorithm 3 Distance computation between vertices u, v by their labels L(u), L(v).

1: if depth(v) < depth(u) or (depth(v) = depth(u) and node_rankPOST(v) <

node_rankPOST(u)) then
2: switch u and v {Now we have u < v}
3: if node_rankPOST(u) < node_rankPOST(v) then
4: distance ← depth(v)− depth(u)
5: if node_rankPOST(v) ≤ node_rankPOST(last(u)) or node_rankPOST(last(u)) <

node_rankPOST(u) then
6: distance = distance+1
7: else
8: distance = distance+2
9: else

10: distance ← depth(v)− depth(u)− 1
11: if node_rankPOST(v) < node_rankPOST(last(u)) < node_rankPOST(u) then
12: distance = distance+1
13: else
14: distance = distance+2
15: return distance

To summarize the above, the decoding function f is given by algorithm 3. Note that
line 6 and line 12 corresponds to the case in Lemma 5 where u and w are adjacent. Therefore,
we add 1 to the distance from v to w to obtain the distance from v to u. In line 8 and 14, u

and w are not adjacent, but u and parent(w) are by Lemma 3, and the distance between u

and w is 2. It is clear that algorithm 3 runs in O(1) time, using only the labels of u and v.
Regarding preprocessing, we claim that if the intervals’ endpoints are given in sorted order,

then all the labels can be constructed in O(n) time. Otherwise, we can spend O(n log n)
additional time sorting the endpoints. If the interval graph is given but not an intersection
model, we may use a linear time (O(n + m)) interval graph recognition algorithm [11] to
construct an intersection model of G in sorted order. Details for preprocessing are omitted
due to space constraints. Thus we have the main theorem for this section:

▶ Theorem 6. Let G be a connected interval graph. Then there exists a distance labeling
scheme occupying at most 3⌈lg n⌉ = 3 lg n + O(1) bits per vertex and can compute distance
in O(1) time. Furthermore, if the intervals are given in sorted order, then the labels can be
constructed in O(n) time.

3.2 General Interval Graphs
Previously, we had assumed that our interval graphs were connected. For general interval
graphs, it is possible that for two vertices u and v, their labels would be identical in two
graphs, one where u and v belong to the same connected component Gj and one where they
belong to different connected components Gj and Gj′ . Thus the labels computed previously is
insufficient to compute the distance as it cannot decide if the two vertices belong to the same
connected component. As noted, Gavoille and Paul [17] assumed the graph were connected
and did not discuss how to generalize it to the disconnected case. To generalize to general
interval graphs, it suffices to be able to determine if two vertices are in the same component
or not. One way to solve this is to add lg n bits to the label to state which component the
vertex is in, but that would make the labels too costly. Instead, we will use the fact that the
label size depends on the size of the component, and the number of components of a given
size scales inversely with that size.

M. He and K. Wu 17:11

Define the ranges [2i, 2i+1) for i = 0, . . . , ⌊lg n⌋. For each component Gj , the size of the
component nj falls into one of these ranges. For range [2i, 2i+1), the number of components
Gj falling into this range is at most n/2i. Thus, to identify the components, we need to
store i, the range that its size falls into, and ci, an identifier for which component in that
range. For a component of size nj falling in the range [2i, 2i+1), these identifiers use at most
lg(⌊lg n⌋+ 1) and lg(n/2i) bits respectively. Also as nj < 2i+1, each of the three integers
comprising of the labels of the vertices of Gj has size at most ⌈lg nj⌉ ≤ i + 1 bits. Thus in
total, for a component Gj of size nj ∈ [2i, 2i+1), a label has size at most

lg lg n + 1 + lg n− (i + 1) + 3(i + 1) = lg n + 2i + lg lg n + O(1)

Since i ≤ ⌊lg n⌋, this is at most 3 lg n + lg lg n + O(1) bits. Thus our extension to general
interval graphs is the following theorem.

▶ Theorem 7. Let G be an interval graph. Then there exists a distance labeling scheme
occupying at most 3 lg n + lg lg n + O(1) bits per vertex and can compute distance in O(1)
time. Furthermore, if the intervals are given in sorted order, then the labels can be constructed
in O(n) time.

Using this, we have an immediate application to circular arc graphs. Following the
framework of Gavoille and Paul [17], we unroll the circular arc graph twice. That is, we start
from the angle θ = 0 and sweep the circle twice, writing down the endpoints of the arcs. In
this fashion, each arc is recorded twice, once as its original [θ1, θ2], and once on the second
unroll, [θ1 + 2π, θ2 + 2π] 1. After unrolling, we obtain an interval graph, where each vertex
of the original circular arc graph corresponds to two vertices in the unrolled interval graph.
The distance can then be calculated using the following lemma:

▶ Lemma 8 (Lemma 3.5 [17]). For an circular arc graph G, unrolled twice into an interval
graph G̃. For every i < j, distanceG(xi, xj) = min{distanceG̃(x1

i , x1
j), distanceG̃(x1

j , x2
i)},

where xi are sorted by their left endpoints in increasing i and x1, x2 are the two copies of the
arc x in the interval graph.

Thus it suffices to store two (interval) vertex labels for each vertex of the circular-arc
graph, and so the length of the label is 6 lg n + 2 lg lg n + O(1) bits.

▶ Corollary 9. Let G be a circular arc graph. Then there exists a distance labeling scheme
occupying at most 6 lg n + 2 lg lg n + O(1) bits per vertex and can compute distance in O(1)
time. Furthermore, if G is connected, then 6 lg n + O(1) bit labels suffices. If the arcs are
given in sorted order, then the labels can be constructed in O(n) time.

4 Chordal Graph

4.1 Background
4.1.1 Chordal Graph Structure
One of the many equivalent definitions of chordal graph is that a chordal graph is the
intersection graph of subtrees (i.e. connected sets of nodes) in a tree [20]. Thus, for a chordal
graph G, there exists a tree T and a set of subtrees {Tv; v ∈ V } of T such that two vertices

1 Some more work need to be done for arcs which contain our origin angle.

CPM 2024

17:12 Optimal Distance Labeling Scheme for Interval Graphs

av1 av2

av3

av4

av5

v1 v2

v3

v4

v5

Figure 4 Left: The underlying tree for a chordal graph is depicted in black. Each of the leaves
has a subtree containing only that leaf (the green dots), and these correspond to vertices v1, v2, v3.
Tv4 is depicted with a red dashed segment and Tv5 in blue bold segments. The apex of each path is
labeled. Note that every subtree has a distinct apex. Right: The chordal graph generated by this
set of subtrees.

u and v are adjacent if and only if the subtrees Tu and Tv intersect (at some node). If we
further root the tree, then each subtree Tv corresponding to a vertex v has a unique smallest
depth node av, which we will denote as the apex of the subtree (and of the vertex). To create
a data structure, we would like to make some modifications to the tree T with additional
exploitable properties.

Munro and Wu [27] showed that we may choose T such that the number of nodes is
exactly n. Furthermore, this rooted tree T and the subtrees Tv corresponding to vertices has
the property that for two vertices u and v, their apexes are distinct: au ̸= av. See Figure 4
for an example. In this way, we have a bijection between vertices of the graph G and nodes
of tree T . Thus it make sense to talk about the vertex v which corresponds to a node of T ,
and we will name the nodes of T as av for the vertex v whose apex is that node.

To characterize adjacency, we look at the relationship between the apexes of the two
vertices u and v. If the subtrees rooted at au and at av are disjoint, then the subtrees Tu

and Tv do not intersect and u and v are not adjacent. Otherwise, one of au and av is an
ancestor of the other, say au is an ancestor of av. Then u and v are adjacent exactly when
the subtree Tu corresponding to u contains the node av. Thus we may define a set of vertices
Sv at each node av of T which is the set of ancestors of av, whose subtrees contain av (i.e.
the set of ancestors which are adjacent to v).

Finally, we observe that in the degenerate case that T is a path, then all subtrees Tv

become paths. By viewing T as a subset of the real number line, we see that all subtrees Tv

are intervals, and thus the graph generated is an interval graph.

4.1.2 Chordal Graph Distance Algorithm
Munro and Wu [27] gave an algorithm computing the distance between two vertices u and v.
In the case that au is an ancestor of av (or vice versa), the problem reduces to that of an
interval graph by restricting the tree T to the path from av to the root. Otherwise, if au and
av belong to different subtrees, we first compute the lowest common ancestor ah of au and
av. We then compute the distance from h to u and from h to v (with a caveat). Since ah is
an ancestor of au and av, we reduce to the interval graph case. Analogous to the distance
tree in interval graphs, Munro and Wu construct a distance tree for chordal graphs.

M. He and K. Wu 17:13

h

u v

u′ v′

parent(u′) parent(v′)

Figure 5 Left bolded (red) segment represents part of the subtree corresponding to parent(u′),
which must contain the node au′ , and the right (blue) segment for parent(v′). Here the apex au′ of
the subtree corresponding to a vertex u′ is labelled as u′. It can be seen that both parent(u′) and
parent(v′) pass through ah so they are adjacent.

We note that for a vertex v, when we restrict the tree T to the path from av to the root,
the set of vertices Sv corresponds exactly to those vertices p such that lp < lv and rp ≥ lv
(when viewing this path as a subset of the real number line, with the coordinates being
the depth of the node). Therefore, the formula (arg min{lu | ru ≥ lv}) used to define the
distance tree in interval graphs can also be applied to chordal graphs. The parent parent(v)
of a vertex v in the distance tree TD of a chordal graph is the vertex parent(v) ∈ Sv with
the smallest depth apex aparent(v). This is well-defined since the apexes are distinct.

Since this notion of parent matches the parent of an interval graph generated from T by
restricting to any path towards the root, the distance tree TD can be seen as the union of
all distance trees of interval graphs generated by taking paths from leaves of T to the root.
However, due to the multiple interval graph distance trees being unioned, we do not have
the nice ordering property in Lemma 1.

When applying the interval graph distance algorithm between u and h (and between v and
h), we reach their representatives u′ and v′, and compute distance(u, h) = distance(u, u′)+
distance(u′, h), where distance(u′, h) = 1 if u′ and h are adjacent, and distance(u′, h)
= 2 if not (a shortest path being u′, parent(u′), h, similarly for v′). Finally these two
paths must be joined. Naively, the path could be the shortest path from u to h followed
by the shortest from h to v. So depending on whether u′ and h, and v′ and h are adjacent,
the path from u′ to v′ has length either 2, 3, or 4. However, it is shown that parent(u′)
and parent(v′) are adjacent (see Figure 5), so that in the case that both u′ and v′ are not
adjacent to h, a shortest path is u′, parent(u′), parent(v′), v′ which has length 3, rather
than u′, parent(u′), h, parent(v′), v′ with length 4. Thus the distance between u′ and v′ is
either 2 or 3. Determining this distance between u′ and v′ is the bottleneck for the distance
computation as it is shown that distance(u, v) = distance(u, u′) + distance(u′, v′) +
distance(v′, v).

Munro and Wu show that the distance between u′ and v′ is 2 exactly when there exists
some vertex h′ such that h′ is adjacent to both u′ and v′ (i.e. the subtree Th′ corresponding
to h′ contains both nodes au′ and av′). See Figure 6. If u′ and v′ are both adjacent to h,
then the vertex h takes this role. However, even if u′ and v′ are not adjacent to h, such an
h′ can exist (which is independent of the adjacencies between u′ and v′ with h). Such a
vertex h′ would exist in both the sets Su′ and Sv′ , and so determining whether h′ exists is
equivalent to determining whether the intersection Su′ ∩ Sv′ = ∅.

CPM 2024

17:14 Optimal Distance Labeling Scheme for Interval Graphs

h

u v

u′ v′

h′

Figure 6 Part of the subtree corresponding to the vertex h′ is depicted. The vertex h′ is adjacent
to both u′ and v′ so that the distance between them is 2.

This problem of preprocessing sets to answer queries of the form: determine whether the
intersection of two of the given sets is empty, is the set intersection oracle problem. Thus
the chordal graph distance problem can be reduced to it. Munro and Wu further argued
that the set intersection oracle problem can also be reduced to the chordal graph distance
problem so that the two are equivalent (up to a constant factor of the input sizes). The set
intersection oracle problem is conjectured to be difficult (Conjecture 3 and some follow up
discussions of Pătraşcu and Roditty[28] state that, to solve it using O(1) time we must use
Ω(n2) space, even if the sets are small), so computing distances in chordal graphs quickly
would also be difficult. Munro and Wu’s [27] algorithm described above can be summarized
in the following lemma.

▶ Lemma 10. Let G be a chordal graph, T be the intersection model as described by Munro
and Wu [27] with exactly n nodes, and TD be the distance tree. Let u, v be two vertices,
and let au, av be their apexes. We consider the general case where au and av do not have
any ancestry relationship. Let h be the vertex such that ah = LCA(au, av). Let u′ be the
representative of u with respect to h, similarly for v′. Then the distance between u and v is
distance(u, v) = distance(u, u′) + distance(v, v′) + 2 + 1(C), where C is this condition:
there does not exist any vertex h′ such that Th′ contains both the nodes au′ and av′ .

4.2 Labeling Scheme
Using the above distance algorithm, our labeling scheme must be able to check/compute
the following steps.

Given two vertices u and v, determine whether one is an ancestor of the other, and if
not, locate h = LCA(T, u, v). In the positive case, it reduces to an interval graph distance
query.
Locate u′ and v′, the representatives of u and v with respect to h in TD.
Compute distance(u, u′) and distance(v, v′).
Decide the value of C for the exact distance.

Our labeling scheme will thus consist of the following:
depth(TD, v), node_rankPOST(TD, v).
A labeling scheme for LCA in T which can return depth(TD, h) and node_rankPOST(TD, h)
of the lowest common ancestor h of two vertices u and v.
A bitvector of length n/2. Its content will be defined later.

M. He and K. Wu 17:15

The lowest common ancestor scheme we will use is the result of Alstrup et al. [7] which
computes arbitrary labels of the lowest common ancestor of two nodes in O(1) time.

▶ Lemma 11 (Corollary 4.1 of [7]). There exists an LCA-labeling scheme for Trees with
predefined labels of fixed length k whose worst-case label size is at most (3 + k)⌊log n⌋+ 1
bits, with O(1) decode time.

As our predefined labels that we must return are of size 2 lg n + O(1) bits, this LCA-labeling
scheme uses uses 2 lg2 n + O(lg n) bits per label.

To perform step 1, we use the LCA-labeling scheme, and check if the returned node is u or v,
by checking the label node_rankPOST(TD, h) of the returned node against node_rankPOST(TD, u)
and node_rankPOST(TD, v). If one is an ancestor of the other, we revert to the interval graph
labeling scheme. However, since we do not have node_rankPOST(last(v)), we cannot decide
whether to add 1 or 2 in Algorithm 3 (lines 5-8, 11-14). To decide this we will store which term
(+1 or +2) to add in the bitvector for deciding C as described below. Otherwise, we obtain
the distance tree TD labels of u, v and h. We again note that v′ is the representative of v with
respect to h is the node w in algorithm 2. Thus distance(v, v′) is simply depth(v)−depth(v′),
and we do not need the value node_rankPOST(last(v)) in the interval graph labeling scheme.

Finally, we need to decide the condition C. As discussed earlier, the condition is equivalent
to the set intersection oracle problem. It is conjectured that to compute it in O(1) time, it is
necessary to store the result of the queries explicitly, rather than trying to compute it from
the sets. Therefore, we will pre-compute the value of C for every pair of vertices. For a pair
of vertices u and v where one is an ancestor of the other, we do not need to decide the value
of C for this pair, as the computation of the distance between this pair of vertices reduces to
the interval graph distance case. In this case, we must determine whether to add 1 or to
add 2 in Algorithm 3. We use the bitvector C to store whether to add 1 (the bit 0) or to
add 2 (the bit 1). Thus for every vertex v, for each other vertex u, either u is an ancestor or
descendant of v, so we store in C a bit for the interval graph distance computation, or u is
not an ancestor or descendant of v in which case we store a bit for the chordal graph distance
computation of u and v. For a vertex u, the index into the bitvector is node_rankPOST(TD, u).
We may distribute this bitvector more evenly by storing the value for only those vertices u

such that (node_rankPOST(TD, u)− node_rankPOST(TD, v)) mod n ≤ n/2, so that we store
n/2 bits per vertex in the worst case. For any pair of vertices u and v, this bit for the
distance computation is stored in the bitvector of one of the vertices.

The preprocessing time is dominated by the precomputation of the condition C for all
pairs of vertices. We may compute all the results of the set intersection oracle problem via
matrix multiplication. Details are omitted due to space constraints. Thus, we obtain the
following theorem:

▶ Theorem 12. Let G be a chordal graph. Then there exists a distance labeling scheme with
maximum label size n/2 + O(lg2 n) bits which can compute distance in O(1) time. The
labels can be constructed in O(nω) time where ω < 2.371552 is the matrix multiplication
exponent [32].

References
1 Ittai Abraham and Cyril Gavoille. On approximate distance labels and routing schemes with

affine stretch. In David Peleg, editor, Distributed Computing - 25th International Symposium,
DISC 2011, Rome, Italy, September 20-22, 2011. Proceedings, volume 6950 of Lecture Notes
in Computer Science, pages 404–415. Springer, 2011. doi:10.1007/978-3-642-24100-0_39.

CPM 2024

https://doi.org/10.1007/978-3-642-24100-0_39

17:16 Optimal Distance Labeling Scheme for Interval Graphs

2 Hüseyin Acan, Sankardeep Chakraborty, Seungbum Jo, and Srinivasa Rao Satti. Succinct data
structures for families of interval graphs. In Algorithms and Data Structures - 16th International
Symposium, WADS 2019, Edmonton, AB, Canada, August 5-7, 2019, Proceedings, pages 1–13,
2019. doi:10.1007/978-3-030-24766-9_1.

3 Stephen Alstrup, Philip Bille, and Theis Rauhe. Labeling schemes for small distances
in trees. SIAM Journal on Discrete Mathematics, 19(2):448–462, 2005. doi:10.1137/
S0895480103433409.

4 Stephen Alstrup, Søren Dahlgaard, and Mathias Bæk Tejs Knudsen. Optimal induced universal
graphs and adjacency labeling for trees. In 2015 IEEE 56th Annual Symposium on Foundations
of Computer Science, pages 1311–1326, 2015. doi:10.1109/FOCS.2015.84.

5 Stephen Alstrup, Cyril Gavoille, Esben Bistrup Halvorsen, and Holger Petersen. Simpler,
faster and shorter labels for distances in graphs. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’16, pages 338–350, USA, 2016. Society
for Industrial and Applied Mathematics.

6 Stephen Alstrup, Inge Li Gørtz, Esben Bistrup Halvorsen, and Ely Porat. Distance Labeling
Schemes for Trees. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and
Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and
Programming (ICALP 2016), volume 55 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 132:1–132:16, Dagstuhl, Germany, 2016. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. doi:10.4230/LIPIcs.ICALP.2016.132.

7 Stephen Alstrup, Esben Bistrup Halvorsen, and Kasper Green Larsen. Near-optimal labeling
schemes for nearest common ancestors. In Proceedings of the 2014 Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 972–982, 2014. doi:10.1137/1.9781611973402.
72.

8 Stephen Alstrup, Haim Kaplan, Mikkel Thorup, and Uri Zwick. Adjacency labeling schemes
and induced-universal graphs. SIAM Journal on Discrete Mathematics, 33(1):116–137, 2019.
doi:10.1137/16M1105967.

9 Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baruch Schieber. A
unified approach to approximating resource allocation and scheduling. In F. Frances Yao
and Eugene M. Luks, editors, Proceedings of the Thirty-Second Annual ACM Symposium on
Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 735–744. ACM, 2000.
doi:10.1145/335305.335410.

10 Marthe Bonamy, Louis Esperet, Carla Groenland, and Alex Scott. Optimal labelling schemes
for adjacency, comparability, and reachability. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2021, pages 1109–1117, New York, NY, USA,
2021. Association for Computing Machinery. doi:10.1145/3406325.3451102.

11 Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms. Journal of Computer and System
Sciences, 13(3):335–379, 1976. doi:10.1016/S0022-0000(76)80045-1.

12 Danny Z. Chen, D. T. Lee, R. Sridhar, and Chandra N. Sekharan. Solving the all-pair
shortest path query problem on interval and circular-arc graphs. Networks, 31(4):249–258,
1998. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0037%
28199807%2931%3A4%3C249%3A%3AAID-NET5%3E3.0.CO%3B2-D.

13 Lenore J Cowen. Compact routing with minimum stretch. Journal of Algorithms, 38(1):170–183,
2001. doi:10.1006/jagm.2000.1134.

14 Tamar Eilam, Cyril Gavoille, and David Peleg. Compact routing schemes with low stretch
factor. Journal of Algorithms, 46(2):97–114, 2003. doi:10.1016/S0196-6774(03)00002-6.

15 Pierre Fraigniaud and Amos Korman. An optimal ancestry labeling scheme with applications
to XML trees and universal posets. J. ACM, 63(1), February 2016. doi:10.1145/2794076.

16 Ofer Freedman, Paweł Gawrychowski, Patrick K. Nicholson, and Oren Weimann. Optimal
distance labeling schemes for trees. In Proceedings of the ACM Symposium on Principles of
Distributed Computing, PODC ’17, pages 185–194, New York, NY, USA, 2017. Association for
Computing Machinery. doi:10.1145/3087801.3087804.

https://doi.org/10.1007/978-3-030-24766-9_1
https://doi.org/10.1137/S0895480103433409
https://doi.org/10.1137/S0895480103433409
https://doi.org/10.1109/FOCS.2015.84
https://doi.org/10.4230/LIPIcs.ICALP.2016.132
https://doi.org/10.1137/1.9781611973402.72
https://doi.org/10.1137/1.9781611973402.72
https://doi.org/10.1137/16M1105967
https://doi.org/10.1145/335305.335410
https://doi.org/10.1145/3406325.3451102
https://doi.org/10.1016/S0022-0000(76)80045-1
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0037%28199807%2931%3A4%3C249%3A%3AAID-NET5%3E3.0.CO%3B2-D
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0037%28199807%2931%3A4%3C249%3A%3AAID-NET5%3E3.0.CO%3B2-D
https://doi.org/10.1006/jagm.2000.1134
https://doi.org/10.1016/S0196-6774(03)00002-6
https://doi.org/10.1145/2794076
https://doi.org/10.1145/3087801.3087804

M. He and K. Wu 17:17

17 Cyril Gavoille and Christophe Paul. Optimal distance labeling for interval graphs and related
graph families. SIAM J. Discret. Math., 22(3):1239–1258, July 2008. doi:10.1137/050635006.

18 Cyril Gavoille and David Peleg. Compact and localized distributed data structures. Distrib.
Comput., 16(2–3):111–120, September 2003. doi:10.1007/s00446-002-0073-5.

19 Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. Distance labeling in graphs.
Journal of Algorithms, 53(1):85–112, 2004. doi:10.1016/j.jalgor.2004.05.002.

20 Fǎnicǎ Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
Journal of Combinatorial Theory, Series B, 16(1):47–56, 1974. doi:10.1016/0095-8956(74)
90094-X.

21 Paweł Gawrychowski, Fabian Kuhn, Jakub Łopuszański, Konstantinos Panagiotou, and Pascal
Su. Labeling schemes for nearest common ancestors through minor-universal trees. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’18, pages 2604–2619, USA, 2018. Society for Industrial and Applied Mathematics.

22 Pawel Gawrychowski and Przemyslaw Uznanski. Better distance labeling for unweighted
planar graphs. Algorithmica, 85(6):1805–1823, 2023. doi:10.1007/S00453-023-01133-Z.

23 Meng He, J. Ian Munro, Yakov Nekrich, Sebastian Wild, and Kaiyu Wu. Distance oracles for
interval graphs via breadth-first rank/select in succinct trees. In Yixin Cao, Siu-Wing Cheng,
and Minming Li, editors, 31st International Symposium on Algorithms and Computation,
ISAAC 2020, December 14-18, 2020, Hong Kong, China (Virtual Conference), volume 181
of LIPIcs, pages 25:1–25:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.ISAAC.2020.25.

24 Michal Katz, Nir A. Katz, and David Peleg. Distance labeling schemes for well-separated
graph classes. Discrete Applied Mathematics, 145(3):384–402, 2005. doi:10.1016/j.dam.2004.
03.005.

25 Hung Le and Christian Wulff-Nilsen. Optimal approximate distance oracle for planar graphs. In
62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO,
USA, February 7-10, 2022, pages 363–374. IEEE, 2021. doi:10.1109/FOCS52979.2021.00044.

26 Yaowei Long and Seth Pettie. Planar distance oracles with better time-space tradeoffs. In
Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2517–2537. SIAM, 2021.
doi:10.1137/1.9781611976465.149.

27 J. Ian Munro and Kaiyu Wu. Succinct data structures for chordal graphs. In 29th International
Symposium on Algorithms and Computation, ISAAC 2018, December 16-19, 2018, Jiaoxi,
Yilan, Taiwan, pages 67:1–67:12, 2018. doi:10.4230/LIPIcs.ISAAC.2018.67.

28 Mihai Patrascu and Liam Roditty. Distance oracles beyond the thorup-zwick bound. SIAM J.
Comput., 43(1):300–311, 2014. doi:10.1137/11084128X.

29 David Peleg. Informative labeling schemes for graphs. Theoretical Computer Science, 340(3):
577–593, 2005. Mathematical Foundations of Computer Science 2000. doi:10.1016/j.tcs.
2005.03.015.

30 Fernando Magno Quintão Pereira and Jens Palsberg. Register allocation via coloring of chordal
graphs. In Kwangkeun Yi, editor, Programming Languages and Systems, pages 315–329, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

31 Gaurav Singh, N. S. Narayanaswamy, and G. Ramakrishna. Approximate distance oracle
in o(n 2) time and o(n) space for chordal graphs. In M. Sohel Rahman and Etsuji Tomita,
editors, WALCOM: Algorithms and Computation - 9th International Workshop, WALCOM
2015, Dhaka, Bangladesh, February 26-28, 2015. Proceedings, volume 8973 of Lecture Notes in
Computer Science, pages 89–100. Springer, 2015. doi:10.1007/978-3-319-15612-5_9.

32 Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for
matrix multiplication: from alpha to omega. In David P. Woodruff, editor, Proceedings of
the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA,
January 7-10, 2024, pages 3792–3835. SIAM, 2024. doi:10.1137/1.9781611977912.134.

CPM 2024

https://doi.org/10.1137/050635006
https://doi.org/10.1007/s00446-002-0073-5
https://doi.org/10.1016/j.jalgor.2004.05.002
https://doi.org/10.1016/0095-8956(74)90094-X
https://doi.org/10.1016/0095-8956(74)90094-X
https://doi.org/10.1007/S00453-023-01133-Z
https://doi.org/10.4230/LIPIcs.ISAAC.2020.25
https://doi.org/10.4230/LIPIcs.ISAAC.2020.25
https://doi.org/10.1016/j.dam.2004.03.005
https://doi.org/10.1016/j.dam.2004.03.005
https://doi.org/10.1109/FOCS52979.2021.00044
https://doi.org/10.1137/1.9781611976465.149
https://doi.org/10.4230/LIPIcs.ISAAC.2018.67
https://doi.org/10.1137/11084128X
https://doi.org/10.1016/j.tcs.2005.03.015
https://doi.org/10.1016/j.tcs.2005.03.015
https://doi.org/10.1007/978-3-319-15612-5_9
https://doi.org/10.1137/1.9781611977912.134

17:18 Optimal Distance Labeling Scheme for Interval Graphs

33 Nicholas C. Wormald. Counting labelled chordal graphs. Graphs and Combinatorics, 1(1):193–
200, 1985. doi:10.1007/BF02582944.

34 Peisen Zhang, Eric A. Schon, Stuart G. Fischer, Eftihia Cayanis, Janie Weiss, Susan Kistler,
and Philip E. Bourne. An algorithm based on graph theory for the assembly of contigs in
physical mapping of DNA. Computer Applications in the Biosciences, 10(3):309–317, 1994.
doi:10.1093/bioinformatics/10.3.309.

https://doi.org/10.1007/BF02582944
https://doi.org/10.1093/bioinformatics/10.3.309

	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Preliminaries
	2.1 Definitions and Notation
	2.2 Interval Graph

	3 Distance Labeling in Interval Graphs
	3.1 Labeling Scheme for Connected Interval Graphs
	3.2 General Interval Graphs

	4 Chordal Graph
	4.1 Background
	4.1.1 Chordal Graph Structure
	4.1.2 Chordal Graph Distance Algorithm

	4.2 Labeling Scheme

