
Algorithms for Galois Words: Detection,
Factorization, and Rotation
Diptarama Hendrian #

Tokyo Medical and Dental University, Japan

Dominik Köppl #

University of Yamanashi, Japan

Ryo Yoshinaka #

Tohoku University, Japan

Ayumi Shinohara #

Tohoku University, Japan

Abstract
Lyndon words are extensively studied in combinatorics on words – they play a crucial role on upper
bounding the number of runs a word can have [Bannai+, SIAM J. Comput.’17]. We can determine
Lyndon words, factorize a word into Lyndon words in lexicographically non-increasing order, and find
the Lyndon rotation of a word, all in linear time within constant additional working space. A recent
research interest emerged from the question of what happens when we change the lexicographic
order, which is at the heart of the definition of Lyndon words. In particular, the alternating order,
where the order of all odd positions becomes reversed, has been recently proposed. While a Lyndon
word is, among all its cyclic rotations, the smallest one with respect to the lexicographic order, a
Galois word exhibits the same property by exchanging the lexicographic order with the alternating
order. Unfortunately, this exchange has a large impact on the properties Galois words exhibit, which
makes it a nontrivial task to translate results from Lyndon words to Galois words. Up until now, it
has only been conjectured that linear-time algorithms with constant additional working space in the
spirit of Duval’s algorithm are possible for computing the Galois factorization or the Galois rotation.

Here, we affirm this conjecture as follows. Given a word T of length n, we can determine
whether T is a Galois word, in O(n) time with constant additional working space. Within the same
complexities, we can also determine the Galois rotation of T , and compute the Galois factorization
of T online. The last result settles Open Problem 1 in [Dolce et al., TCS 2019] for Galois words.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Galois Factorization, Alternating Order, Word Factorization Algorithm,
Regularity Detection

Digital Object Identifier 10.4230/LIPIcs.CPM.2024.18

Supplementary Material Software (Source code): https://github.com/koeppl/galoisword

Funding Dominik Köppl: JSPS KAKENHI Grant Number 23H04378
Ryo Yoshinaka: JSPS KAKENHI Grant Numbers 18K11150 and 20H05703
Ayumi Shinohara: JSPS KAKENHI Grant Number 21K11745

1 Introduction

A Galois word is a word that is strictly smaller than all its cyclic rotations with respect to
the so-called alternating order, where symbols at odd positions are compared in the usual
lexicographic order, but symbols at the remaining positions in the opposite order. While aab
is clearly the smallest word among all its cyclic rotations aba and baa under the lexicographic
order, aab is larger than aba under the alternating order because the b in the second position
is smaller than a. In fact, aba is a Galois word. Readers familiar with Lyndon words may

© Diptarama Hendrian, Dominik Köppl, Ryo Yoshinaka, and Ayumi Shinohara;
licensed under Creative Commons License CC-BY 4.0

35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024).
Editors: Shunsuke Inenaga and Simon J. Puglisi; Article No. 18; pp. 18:1–18:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diptarama.hendrian@tmd.ac.jp
https://orcid.org/0000-0002-8168-7312
mailto:dkppl@yamanashi.ac.jp
https://orcid.org/0000-0002-8721-4444
mailto:ryoshinaka@tohoku.ac.jp
https://orcid.org/0000-0002-5175-465X
mailto:ayumis@tohoku.ac.jp
https://orcid.org/0000-0002-4978-8316
https://doi.org/10.4230/LIPIcs.CPM.2024.18
https://github.com/koeppl/galoisword
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Algorithms for Galois Words: Detection, Factorization, and Rotation

identify aab to be, nevertheless, a Lyndon word because it is strictly smaller than all its
cyclic rotations with respect to the lexicographic order. While the definition of Lyndon and
Galois words only differ by the used order, the combinatorial differences are astonishing. For
instance, on the one hand, Lyndon words cannot have proper borders, i.e., factors appearing
both as a prefix and as a suffix (but shorter than the word itself). On the other hand, Galois
words such as aba can have proper borders of odd lengths [16, Proposition 3.1].

The name Galois word has been coined by Reutenauer [16], who introduced these words
and derived the naming by a bijection of Galois words and homographic classes of Galois
numbers. In the same paper [16], Reutenauer defined a unique factorization of a generalization
of Lyndon words, a class of words covering Galois words. Here, we call this factorization Galois
factorization since we only cover Galois words within the scope of this paper. The Galois
factorization is a factorization of a word into a sequence of non-increasing Galois words. Later,
Dolce et al. [5] could characterize the first factor of the Galois factorization [5, Theorem 33],
and also provide a characterization of Galois words by their prefixes [5, Theorem 32]. However,
Dolce et al. left it as an open problem ([5, Open Problem 1]) to find a computation algorithm
similar to Duval’s algorithm [7] computing the Lyndon factorization. In this paper, we solve
this problem by introducing a factorization algorithm (Algorithm 2 and Theorem 32) in the
spirit of Duval’s algorithm, computing the Galois factorization in linear time with constant
additional working space online.

Asides from the above results, we are only aware of the following two articles dealing
with Galois words. First, Dolce et al. [6] studied generalized Lyndon-words, among them
also Galois words, with respect to infinite orders. Finally, Burcroff and Winsor [3] gave a
characterization of infinite generalized Lyndon words, and properties of how finite generalized
Lyndon words can be infinitely extended.

2 Related Work

While we covered, to the best of our knowledge, all published results explicitly dealing
with Galois words above, Galois words have a strong relation with Lyndon words and the
alternating order.

Lyndon. Regarding the former, an exhaustive list of results would go beyond the scope of
this paper. We nevertheless highlight that the Lyndon factorization (the aforementioned
factorization when outputting factors that are Lyndon words) can be computed in linear
time with constant additional space with Duval’s algorithm [7]. The same algorithm allows
us to judge whether a word is Lyndon. Shiloach [17] gave a linear-time algorithm computing
the Lyndon rotation of a primitive word T , i.e., its cyclic rotation that is Lyndon, in constant
additional working space.

Alternating Order. Regarding the latter, much work focused on implementing a Burrows–
Wheeler transform (BWT) [4] based on the alternating order. While the classic BWT sorts all
cyclic rotations of a given input word in lexicographic order, the alternating BWT [11] sorts
the cyclic rotations with respect to the alternating order. Gessel et al. [11] not only introduced
this BWT variant, but also gave an inversion to restore the original word. Subsequently,
Giancarlo et al. [12] gave a linear-time algorithm for computing the alternating BWT. To
this end, they compute the Galois rotation of the input word T , i.e., the cyclic rotation of T

that is Galois. However, their algorithm computing the Galois rotation needs an auxiliary
integer array of length n. Compared to space-efficient algorithms computing the classic

D. Hendrian, D. Köppl, R. Yoshinaka, and A. Shinohara 18:3

BWT (e.g. [15] with linear time and space linear in the bit size of the input text), this is
a major bottleneck, but a necessary precomputation step of their algorithm constructing
the alternating BWT. Giancarlo et al. [12] also showed how to invert the alternating BWT
in linear time. In a follow-up [13], Giancarlo et al. put their discovered properties of the
alternating BWT into larger context by covering BWT variants based on a generalized
ordering. In that article, they also showed that the alternating BWT can be turned into a
compressed self-index that supports pattern counting queries in time linear in the pattern
length. The space of the index can be related with the number of symbol runs even when
augmented for queries to locate all pattern occurrences in the text, by adapting r-indexing [10]
techniques to the alternating BWT.

Our Contribution. This paper makes three contributions to the research on Galois words.
First, we give an algorithm (Theorem 25 and Algorithm 1) in Section 5 that checks, for a
given word of length n, whether this word is Galois, in O(n) time with constant additional
working space. Second, we give an algorithm (Theorem 32 and Algorithm 2) in Section 6
that computes the Galois factorization in O(n) time with constant additional working space
online. Finally, we show how to find the Galois rotation (Theorem 36 and Algorithm 3) in
Section 7 that in O(n) time with constant additional working space online, paving the way
for constructing the alternating BWT in o(n) working space.

We stress that, having an efficient Galois factorization algorithm allows us to merge
indexing techniques for the alternate BWT with the bijective BWT [14, 1] to give rise to a
BWT-variant that indexes Galois words, whose indexing capabilities are left as future work.

3 Preliminaries

Let Σ be a set of symbols called an alphabet. The set of words over Σ is denoted by Σ∗. The
empty word is denoted by ε. The length of a word W ∈ Σ∗ is denoted by |W |. The i-th
symbol of a word W is denoted by W [i] for 1 ≤ i ≤ |W | and the factor of W that begins at
position i and ends at position j is W [i..j] for 1 ≤ i ≤ j ≤ |W |. We define W [i..j] = ε if i > j.
A word B is a border of W if B is a prefix and a suffix of W . We say a border B of W is
proper if B ̸= W . For a word T we call an integer p ∈ [1..|T |] a period of T if T [i + p] = T [i]
for all i ∈ [1..|T | − p]. In particular, |T | is always a period of T . Let Pero(W) and Pere(W)
be the shortest odd and even period of W if any, respectively. We set Pero(W) = |W | + 1 or
Pere(W) = |W | + 1 if W does not have an odd or an even period, respectively. Since the
length of a word itself is a period, a word of odd length always has an odd period and a
word of even length always has an even period. For a rational number α, let W α be the
word obtained by concatenating W α times. Let W ω be the infinite repetition of W . We
call a word V ∈ Σ∗ primitive if the fact V = Uk for some word U ∈ Σ∗ and an integer k ≥ 1
implies V = U and k = 1. We say that two words X and Y have the same length-parity if
|X| mod 2 = |Y | mod 2, i.e., their lengths are both either odd or even.

We denote the standard lexicographic order over words with ≺lex. We define the alternating
order on words as follows: Given two distinct words S and T such that Sω ≠ T ω, with the first
mismatching symbol pair at a position j, i.e., Sω[1..j − 1] = T ω[1..j − 1] and Sω[j] ̸= T ω[j],
we write S ≺alt T if either (a) j is odd and Sω[j] < T ω[j], or (b) j is even and Sω[j] > T ω[j].
In addition we denote by S =alt T if Sω = T ω. For instance, aba ≺alt aab but aab ≺lex aba;
b ≺lex bba but bba ≺alt b; aba =alt abaaba. We define ε ≻alt X for all X ∈ Σ+. We denote
by S ⪯alt T if either S ≺alt T or S =alt T . We further write S ⊏alt T if S ≺alt T but neither
S is a prefix of T nor vice versa.

CPM 2024

18:4 Algorithms for Galois Words: Detection, Factorization, and Rotation

We introduce S ⊏alt T for the following reason: For two words S and T with S ≺alt T , it
is generally not true that SU ≺alt TU for all words U (e.g., ab ≺alt aba but abac ≺alt abc).
However, for ⊏alt we have:

▶ Fact 1. For two words S and T with S ⊏alt T , it holds that SU ⊏alt TU for all words U .

We also make use of the following additional facts:

▶ Fact 2. For two words S and T with Sω = T ω, there exists a primitive word U integers a

and b such that S = Ua and T = U b.

▶ Fact 3. T is non-primitive if and only if |T |/p is an integer of at least two for p being T ’s
smallest period. If Pero(T) = |T |, then T is primitive.

▶ Example 4. We cannot switch Pero with Pere in Fact 3. A counter-example is the non-
primitive word T1 = abaaba, for which we have Pero(T1) = 3 but Pere(T1) = 6. Also, for
T2 = aa we have Pero(T2) = 1 but Pere(T2) = 2.

The following property holds for any two periods of a word.

▶ Lemma 5 ([9]). Let p and q be periods of a word T . If p + q − r ≤ |T |, then r is also a
period of T , where r is the greatest common divisor of p and q.

A word is called Galois if it is, among all its cyclic rotations, the smallest with respect to
≺alt. By definition, a Galois word has to be primitive (otherwise, it has an identical cyclic
rotation that is not strictly larger). The following properties hold of Galois words.

▶ Lemma 6 ([5, Theorem 14]). A primitive word T is Galois if and only if T is smaller than
all its suffixes, with respect to ≺alt.

▶ Lemma 7 ([5, Theorem 32]). A word T is Galois if and only if for any factorization
T = UV with U, V ∈ Σ+, one of the following condition holds: (1) U ≺alt T if |U | is even;
(2) U ≻alt T if |U | is odd.

▶ Lemma 8 ([5, Lemma 35], [16, Proposition 3.1]). If a Galois word T has a proper border
B, then the length of B is odd.

For example aba and abba are Galois words with a proper border. Unlike for Lyndon
words (cf. [7, Proposition 1.3]), it does not hold that, if U and V are Galois words then UV

is Galois if U ≺alt V . For instance, aba ≺alt c but abac is not Galois because ac ≺alt abac.

4 Characteristics of Pre-Galois Words

In this section, we define pre-Galois words and study their properties. The observations we
make here will lead us to helpful tools that we will leverage for proposing the three algorithms
in the subsequent sections, namely 1. determining Galois words, 2. computing the Galois
factorization, and 3. computing the Galois rotation of a word.

▶ Definition 9 (Pre-Galois word). A word T is a pre-Galois word if every proper suffix S of
T satisfies one or both of the following conditions: (1) S is a prefix of T ; (2) S ≻alt T .

In particular, a Galois word is pre-Galois. However, the converse is in general not true;
for example T = abaab is pre-Galois but not Galois because ab ≺alt abaab. In what follows,
we introduce a basic property of pre-Galois words.

D. Hendrian, D. Köppl, R. Yoshinaka, and A. Shinohara 18:5

po + 1

T
U V

Sα c S
S U

Sα c

even

G1 X
G2

X X

Figure 1 Left: Sketch of the proofs of Lemma 11 and Lemma 12. Right: Sketch of the proof of
Lemma 14. As both Galois roots are prefixes of T , we obtain a border X of G2 with even length
which contradicts Lemma 8.

▶ Lemma 10. Let U be a word that is not pre-Galois. Then, for any word V , UV is not
pre-Galois. The contraposition is that any prefix of a pre-Galois word is pre-Galois.

Proof. By definition there exists a proper suffix S of U such that S ⊏alt U . By Fact 1,
S · V ⊏alt U · V holds. ◀

Next, we study properties of periods of pre-Galois words.

▶ Lemma 11. Let T be a pre-Galois word that has an odd period. Let po = Pero(T) be the
shortest odd period of T . Then T [1..po] is Galois.

Proof. Let U = T [1..po] and T = UV . By Lemma 10, U is pre-Galois. Assume U is not
Galois. Then there exists a proper suffix S of U such that S is a prefix of U and S ⪯alt U .
Since po is odd and the shortest odd period of T , U is primitive according to Fact 3, and
we obtain two observations: First, by Fact 2, if Sω = Uω then S = U , a contradiction to S

being proper. Hence, S ≺alt U must hold.
Second, there exists a rational number α ≥ 1 and a symbol c ∈ Σ such that Sαc is a

prefix of U , Sω[1..|Sαc|] ≺alt Sαc, and |Sαc| < |U |. See the left of Figure 1 for a sketch. By
definition, we have Sα−1 = U [1..|Sα−1|]. If |S| is odd, we have T [|S| + 1..|T |] ⊏alt T , which
implies that T is not pre-Galois. Otherwise, if |S| is even, |U | + |Sα−1c| ≤ |T | since po is
the shortest odd period of T and therefore |T | ≥ 2|U | with |U | ≥ |Sα−1c|. Here, we have
T [|U | − |S| + 1..|U | + |Sα−1c|] = Sω[1..|Sαc|]. Therefore, T [|U | − |S| + 1..|U | + |Sα−1c|] ⊏alt
T [1..|Sαc|], which implies T is not pre-Galois. ◀

A similar property also holds for even periods.

▶ Lemma 12. Let T be a pre-Galois word that has an even period. Let pe = Pere(T) be the
shortest even period of T . Then T [1..pe] is Galois if primitive.

Proof. We follow the proof of Lemma 11 by replacing U there with T [1..pe]. We also give
there pe the role of po. We can do that because we assume that U is primitive, so we obtain
a proper border S of U like in the previous proof. ◀

We are in particular interested in prefixes of pre-Galois words that are Galois. To formalize
this idea, we define Galois roots of a pre-Galois word as follows.

▶ Definition 13 (Galois root). Let P be a prefix of a pre-Galois word T . We call P a Galois
root of T if |P | is a period of T and P is Galois.

CPM 2024

18:6 Algorithms for Galois Words: Detection, Factorization, and Rotation

In addition to our aforementioned example T = abaab, aba is a Galois root of T . Also,
the words T [1..po] in Lemma 11 and T [1..pe] Lemma 12, are Galois roots of T if they are,
respectively, primitive. Note that a pre-Galois word T has at least one Galois root, namely
T ’s prefix of length equal to T ’s shortest period. While a pre-Lyndon word has exactly one
Lyndon root, a pre-Galois word can have two different Galois roots:

▶ Lemma 14. A pre-Galois word T can have at most two Galois roots, and their lengths
have different parities.

Proof. Assume that there are two Galois roots G1 and G2 with the same length-parity.
Then the length difference of G1 and G2 is even. Without loss of generality, suppose
that |G1| < |G2|. Then the suffix X = G2[|G1| + 1..] of G2 is also a prefix of G2 since
T = Gα

1 = Gβ
2 for rational numbers α and β. Hence, X is a border of G2 with even length,

which is impossible due to Lemma 8. See the right of Figure 1 for a sketch. ◀

In what follows, we name the odd-length and the even-length Galois root, if they exist,
by Go and Ge, respectively. By Lemma 14, they are well-defined. For example, consider
T = aba. The two prefixes ab and aba are both Galois, for which T = (ab)3/2 = (aba)1.

From Lemma 12, T [1..pe] is Galois only when it is primitive. Next, we consider the case
where T [1..pe] is not primitive.

▶ Lemma 15. Let T be an even-length pre-Galois word with no even-length Galois root, i.e.,
T [1..pe] is not primitive, where pe = Pere(T). Then there exists Go = T [1..po] such that
T = Gk

oG′
o with k ≥ 2, where po = Pero(T) and G′

o is a prefix of Go.

Proof. Since |T | is even, T has a period of even length. Let pe be the shortest even period
of T . By Lemma 12, U = T [1..pe] is Galois if U is primitive. Since U is not primitive and pe

is the smallest even period of T , we have Pero(T) = po = pe/2. Thus, there is an odd-length
prefix Go = T [1..po] of U such that U = G2

o. ◀

▶ Lemma 16. Let Go be an odd-length Galois root of a pre-Galois word T = Gk
oG′

o with
k ≥ 2 and G′

o is a prefix of Go. Then T has no even-length Galois root.

Proof. Since T = Gk
oG′

o, 2|Go| is a period of T . Assume that T has a shorter even period
pe < 2|Go|. By Lemma 8, Go does not have a proper border of even length. Because the
two conditions (a) GoGo has even length and (b) pe ∈ [|Go| + 1..2|Go| − 1] would imply that
GoGo (and thus Go due to the length of pe) has a border of even length, pe must be less
than |Go|. However, by the periodicity lemma (Lemma 5), there exists an odd period shorter
than Go, which contradicts that |Go| is the shortest odd-length Galois period of T . ◀

▶ Example 17. Let T = abaa be an even-length Galois word. T has the odd-length Galois
root aba. By appending b to T , we obtain abaab, which is pre-Galois with no even-length
Galois root. T · b can be written as (aba)5/3, a fractional repetition of aba.

By Lemmas 15 and 16, if T has an even period, T [1..pe] is either Ge or G2
o.

5 Determining Galois Words

The algorithm we propose checks if a word T is Galois by reading T from left to right. For
that, we want to maintain the Galois roots of the prefix of T read so far. To this end, we
study the Galois roots of T ′ = T · z, i.e., when appending a symbol z to T . Our main
observation can be stated as follows:

D. Hendrian, D. Köppl, R. Yoshinaka, and A. Shinohara 18:7

T z

T ′

S x S y S z

pe

Figure 2 Sketch of the proof of Lemma 20. The caption pe can be also considered as po for the
latter case.

▶ Theorem 18. Let T be a pre-Galois word, po = Pero(T), and pe = Pere(T). Given
a symbol z, the extension T ′ = T · z is a pre-Galois word if and only if both conditions
T ′[1..|T | − po + 1] ⪯alt T ′[po + 1..|T | + 1] and T ′[1..|T | − pe + 1] ⪯alt T ′[pe + 1..|T | + 1] hold.

In what follows, we break down the statement of this theorem into two lemmas for each
direction. First, we consider the case where T ′ cannot be a pre-Galois word.

▶ Lemma 19. Let T be a pre-Galois word, po = Pero(T), and pe = Pere(T). Consider a
symbol z and the extension T ′ = T ·z, such that either T ′[1..|T |−po +1] ≻alt T ′[po +1..|T |+1]
or T ′[1..|T | − pe + 1] ≻alt T ′[pe + 1..|T | + 1]. Then the extension T ′ is not a pre-Galois word.

Proof. We treat here only the case involving po because the other case involving pe can be
proved similarly. If po = |T |+1, T ′[1..|T |−po+1] = T ′[po+1..|T |+1] = ε. Thus, this case does
not meet the requirements of the lemma statement. It remains to consider po ≤ |T |. For that,
suppose T ′[1..|T |−po +1] ≻alt T ′[po +1..|T |+1]. Since T ′[1..|T |−po +1] ̸= T ′[po +1..|T |+1],
T ′[po + 1..|T | + 1] not a prefix of T ′. Thus, T ′ is not pre-Galois. ◀

For all other cases, we show that T ′ is a pre-Galois word.

▶ Lemma 20. Let T be a pre-Galois word, po = Pero(T), and pe = Pere(T). Consider a
symbol z and the extension T ′ = T · z, such that T ′[1..|T | − po + 1] ⪯alt T ′[po + 1..|T | + 1]
and T ′[1..|T | − pe + 1] ⪯alt T ′[pe + 1..|T | + 1]. Then the extension T ′ is a pre-Galois word.

Proof. We prove the contraposition, i.e., if T ′ is not a pre-Galois word, either T ′[1..|T | −
po + 1] ≻alt T ′[po + 1..|T | + 1] or T ′[1..|T | − pe + 1] ≻alt T ′[pe + 1..|T | + 1] holds.

Suppose T ′ is not a pre-Galois word. Since T is pre-Galois and T ′ is not pre-Galois,
there exists a suffix S of T such that S is a prefix of T but S · z is not a prefix of T ′ and
S · z ≺alt T ′, i.e., S = T ′[1..|S|] and S · z ⊏alt T ′[1..|S| + 1]. In what follows we consider
three cases. The first case is that S is the empty word. But then z ≺alt T ′[1], and therefore
T ′ is not pre-Galois. The other cases concern the length-parity of T and S.

Consider T and S have the same length-parity. Since pe is even, T ′[1..|T | − pe] and S also
have the same length-parity. Since S is a proper border of T , pe ≤ |T | − |S|. Here we have
S = T ′[1..|S|] = T ′[|T |−pe −|S|+1..|T |−pe]. Let x = T ′[|S|+1] and y = T ′[|T |−pe +1]. See
Figure 2 for a sketch. Since |T | is pre-Galois, we have S ·y ⪰alt S ·x. Moreover, S ·x ≻alt S ·z
holds by T ′[1..|S| + 1] ≻alt S · z. Thus we have S · y ≻alt S · z. Since T ′[1..|T | − pe] and |S|
have the same parity, we have T ′[1..|T | − pe + 1] ≻alt T ′[pe + 1..|T | + 1].

Consider T and S have different length-parity. Since po is odd, T ′[1..|T | − po] and |S|
have the same parity. Note that S is a proper border of T thus po ≤ |T | − |S|. Here we have
S = T ′[1..|S|] = T ′[|T |−po−|S|+1..|T |−po]. Let x = T ′[|S|+1] and y = T ′[|T |−po+1]. Since
|T | is pre-Galois, we have S ·y ⪰alt S ·x. Moreover S ·x ≻alt S ·z holds by T ′[1..|S|+1] ≻alt S ·z.
Thus we have S · y ≻alt S · z. Since T ′[1..|T | − po] and |S| have the same parity, we have
T ′[1..|T | − po + 1] ≻alt T ′[po + 1..|T | + 1]. ◀

CPM 2024

18:8 Algorithms for Galois Words: Detection, Factorization, and Rotation

Next we show how periods change when we append a symbol to a pre-Galois word T .
Here, we focus on po first. The cases for pe can be proven in a similar way. The claim of the
first lemma follows by definition.

▶ Lemma 21. Let T be a pre-Galois word and po = Pero(T). Consider a symbol z and the
extension T ′ = T · z, such that z = T ′[|T | − po + 1]. Then the extension T ′ has Pero(T ′) = po.

▶ Lemma 22. Let T be a pre-Galois word and po = Pero(T). Consider a symbol z and the
extension T ′ = T · z with T ′[1..|T | − po + 1] ≺alt T ′[po + 1..|T | + 1]. Then,

Pero(T ′) =
{

|T ′| if |T ′| is odd,
|T ′| + 1 otherwise.

Proof. If |T | has no odd period, i.e., po = |T |+1 = |T ′|, then |T | is even. Thus, |T ′| is odd and
Pero(T ′) = |T ′|. Otherwise, suppose that |T | has an odd period. Assume T ′ has odd period
p′

o < |T ′|. Thus, we have T ′[1..|T | − p′
o + 1] = T ′[p′

o + 1..|T | + 1]. Let S = T ′[1..|T | − p′
o]

and y = T ′[|T | − po + 1]. Since T is pre-Galois, we have S · z ⪯alt S · y. However, by
T ′[1..|T | − po + 1] ≺alt T ′[po + 1..|T | + 1], we have S · y ≺alt S · z, which is a contradiction.
Therefore, T ′ has no odd period p′

o with p′
o < |T ′|, which implies Pero(T ′) = |T ′| if |T ′| is

odd or Pero(T ′) = |T ′| + 1 if |T ′| is even. ◀

In a similar way, we can show the following lemmas.

▶ Lemma 23. Let T be a pre-Galois word and pe = Pere(T). Consider a symbol z and the
extension T ′ = T · z, such that z = T ′[|T | − pe + 1]. Then the extension T ′ has Pere(T ′) = pe.

▶ Lemma 24. Let T be a pre-Galois word and pe = Pere(T). Consider a symbol z and the
extension T ′[1..|T | − pe + 1] ≺alt T ′[pe + 1..|T | + 1]. Then,

Pere(T ′) =
{

|T ′| if |T ′| is even,
|T ′| + 1 otherwise.

With Algorithm 1 we give algorithmic instructions in how to verify whether an input
word T is Galois. For each position in T , the algorithm performs a constant number of
symbol comparisons on T . Storing only the two periods pe and po of the processed prefix up
so far, it thus runs in linear time with a constant number of words extra to the input word
T . We obtain the following theorem:

▶ Theorem 25. Given a word T , we can verify whether T is Galois in O(|T |) time with
O(1) working space.

6 Computing the Galois Factorization Online

In this section we present an online algorithm for computing the Galois factorization of a
given word. We first start with a formal definition of the Galois factorization, introduce a key
property called SPref(T), and then show how to compute SPref(T). The Galois factorization
of a word T is defined as follows.

▶ Definition 26 (Galois factorization). A factorization T = G1 · G2 · · · Gk is the Galois
factorization of T if Gi is Galois for 1 ≤ i ≤ k and G1 ⪰alt G2 ⪰alt · · · ⪰alt Gk holds.

It is known that every word admits just one Galois factorization (see [16, Théorème 2.1]
or [5]). We denote the Galois factorization T = G1 · G2 · · · Gk of T by GF(T) =
(G1, G2, . . . , Gk). The Galois factorization has the following property.

D. Hendrian, D. Köppl, R. Yoshinaka, and A. Shinohara 18:9

Algorithm 1 Determining whether a word is Galois, see Theorem 25.

1 Function IsGalois(T) // Assume |T | ≥ 2, otherwise always true

2 po = 1; pe = 2;
3 for i from 2 to |T | do // Loop-Invariant: T [1..i − 1] is pre-Galois

4 if i is odd then
5 if pe < i then
6 if T [i] < T [i − pe] then return False; // Lemma 19

7 else if T [i] > T [i − pe] then pe = i + 1; // Lemma 24

8 if po < i then
9 if T [i] < T [i − po] then po = i; // Lemma 22

10 else if T [i] > T [i − po] then return False; // Lemma 19

11 else
12 if pe < i then
13 if T [i] < T [i − pe] then pe = i; // Lemma 24

14 else if T [i] > T [i − pe] then return False; // Lemma 19

15 if po < i then
16 if T [i] < T [i − po] then return False; // Lemma 19

17 else if T [i] > T [i − po] then po = i + 1; // Lemma 22

18 if po = |T | then // Is T primitive?

19 return True // T is Galois by Lemma 11

20 else if pe = |T | and pe ̸= 2po then
21 return True // T is Galois by Lemma 12 and Lemma 15.

22 return False // T is pre-Galois but not primitive (hence not Galois)

▶ Lemma 27 ([5, Theorem 33]). Let GF(T) = (G1, G2, . . . , Gk) be the Galois factorization
of a word T of length n. Let P be the shortest non-empty prefix of T such that

P ⪰alt T if |P | is even and P ⪯alt T if |P | is odd. (1)

Then we have

P =
{

G2
1 if |G1| is odd, m is even, and m < k,

G1 otherwise,

where the integer m is the multiplicity of G1, i.e., Gi = G1 for i ≤ m, but Gm+1 ̸= G1.

We denote such P in Lemma 27 by SPref(T). If we can compute SPref(T) for any word
T , we can compute the Galois factorization of T by recursively computing SPref(T) from
the suffix remaining when removing the prefix SPref(T). To this end, we present a way to
compute SPref(T) by using the periods of T .

▶ Lemma 28. Let T be a pre-Galois word, po = Pero(T), and pe = Pere(T). Consider a
symbol z and the extension T ′ = T · z, such that (a) T ′[1..|T | − po + 1] ≻alt T ′[po + 1..|T | + 1]
or (b) T ′[1..|T | − pe + 1] ≻alt T ′[pe + 1..|T | + 1] hold (both (a) and (b) can hold at the same
time). Then, for any word S, we have SPref(T ′S) = T ′[1..p] such that

p =

min{po, pe} if T ′[1..|T | − po + 1] ≻alt T ′[po + 1..|T | + 1]

and T ′[1..|T | − pe + 1] ≻alt T ′[pe + 1..|T | + 1], ((a) and (b))
po if T ′[1..|T | − pe + 1] ⪯alt T ′[pe + 1..|T | + 1], ((b) but not (a))
pe otherwise. ((a) but not (b))

(2)

CPM 2024

18:10 Algorithms for Galois Words: Detection, Factorization, and Rotation

W
T ′ S
T z

T ′[1..|T | − po + 1]
x

po

T ′[po + 1..|T |+ 1]
po

pe + 1

T z

T ′

S1 x
pe pe

S2 y
p′

Figure 3 Sketch of the proof of Lemma 28 (left) and of Lemma 29 (right).

Proof. Let W = T ′S for some arbitrary word W ∈ Σ∗. Suppose T ′[1..|T | − po + 1] ≻alt
T ′[po+1..|T |+1] holds. Let x = T ′[|T |−po+1]. Since T and T ′[1..|T |−po] have different length-
parities, we have T · x ≺alt T · z, which implies T ′[1..po] ≺alt W . See the left of Figure 3 for a
sketch. Similarly, we can show that T ′[1..pe] ≺alt W if T ′[1..|T |−pe +1] ≻alt T ′[pe +1..|T |+1].

Next, we show the minimality of p. Consider a prefix X such that |X| < p. Let T [1..q] be
the longest prefix of T such that |X| is its period. Then, we have T [1..q −|X|] = T ′[|X|+1..q]
and T [1..q − |X| + 1] ̸= T ′[|X| + 1..q + 1]. Since T is pre-Galois, we have T [1..q − |X| + 1] ≺alt
T ′[|X|+ 1..q + 1]. If |X| is odd, X ≻alt T [1..q + 1], otherwise if |X| is even, X ≺alt T [1..q + 1],
which does not satisfy the condition of Equation (1) in Lemma 27. ◀

By using the property shown in Lemma 28, we can compute GF(W) by computing
SPref(W) recursively. For example, given W = UV with U = SPref(W), after computing
SPref(W) to get U , we recurse on the remaining suffix V and compute SPref(V) to get the
next factor. We can modify Algorithm 1 to output SPref(W) in O(ℓ) time, where ℓ is the
length of the longest pre-Galois prefix of W . However, it takes time if we compute GF(W)
by the recursive procedure, especially when ℓ is much larger than |SPref(W)|. To tackle this
problem, we use the following property.

▶ Lemma 29. Let T be a pre-Galois word and pe = Pere(T). Consider a symbol z and the
extension T ′ = T ·z, such that T ′[1..|T |−pe+1] ≻alt T ′[pe+1..|T |+1]. Let SPref(T ′) = T ′[1..p].
If p = pe and |T | ≥ 2p, we have SPref(T ′[p + 1..]) = T ′[p + 1..2p] = T ′[1..p].

Proof. Since T ′[1..|T | − pe] and T ′[pe + 1..|T | − pe] have the same length-parity, we have
T ′[pe+1..|T |−pe+1] ≻alt T ′[2pe+1..|T |+1]. Assume that T [pe+1..] has a period p′ < pe and
T ′[pe+1..|T |−p′+1] ≻alt T ′[pe+p′+1..|T |+1]. Since T is pre-Galois, T ′[1..pe] = T ′[pe+1..2pe]
has no even border. Thus p′ is odd. Let S1 = T ′[pe + 1..|T | − pe], S2 = T ′[pe + 1..|T | − p′],
x = T ′[|T |−pe+1], and y = T ′[|T |−p′+1]. By T ′[pe+1..|T |−p′+1] ≻alt T ′[pe+p′+1..|T |+1],
we have S2 ·y ≻alt S2 ·z. See the right of Figure 3 for a sketch. Since S1 and S2 have different
parities, we have S1 ·y ≺alt S1 ·z. Moreover, by T ′[pe +1..|T |−pe +1] ≻alt T ′[2pe +1..|T |+1],
we have S1 · x ≻alt S1 · z, which implies S1 · x ≻alt S1 · y. However, since T [pe + 1..] is
pre-Galois, S1 · x ⪯alt S1 · y, which contradicts S1 · x ≻alt S1 · y. Therefore, T [pe + 1..] has
no period p′ with p′ < pe. ◀

Let U = SPref(W), |U | is even, and W = UkV for some k ≥ 2. By Lemma 29, we know
that SPref(U jV) = U for 1 ≤ j < k without computing it explicitly. Next, we consider the
case when |SPref(W)| is odd.

D. Hendrian, D. Köppl, R. Yoshinaka, and A. Shinohara 18:11

Algorithm 2 Computing the Galois factorization, as claimed in Theorem 32.

1 Function GaloisFactorization(T)
2 Append $ to T ;
3 Fact = () empty list; i = 0;
4 while i ≤ |T | do
5 po = 1; pe = 2;
6 for j from 2 to |T | − i do
7 p = |T | + 2; p′

e = pe; p′
o = po;

8 if j is odd then
9 if pe < j then

10 if T [i + j] < T [i + j − pe] then p = min{p, pe}; // Lemma 28

11 else if T [i + j] > T [i + j − pe] then p′
e = j + 1; // Lemma 24

12 if po < j then
13 if T [i + j] < T [i + j − po] then p′

o = j; // Lemma 22

14 else if T [i + j] > T [i + j − po] then p = min{p, po}; // Lemma 28

15 else
16 if pe < j then
17 if T [i + j] < T [i + j − pe] then p′

e = j; // Lemma 24

18 else if T [i + j] > T [i + j − pe] then p = min{p, pe}; // Lemma 28

19 if po < j then
20 if T [i + j] < T [i + j − po] then p = min{p, po}; // Lemma 28

21 else if T [i + j] > T [i + j − po] then p′
o = j + 1; // Lemma 22

22 if p ̸= |T | + 2 then
23 while j > p do
24 if p = pe and pe = 2po then // Lemma 29

25 Append T [i..i + po − 1] and T [i + po..i + 2po − 1] to Fact;
26 else
27 Append T [i..i + p − 1] to Fact;
28 i = i + p; j = j − p;
29 p = pe;
30 break;
31 pe = p′

e; po = p′
o;

32 return Fact;

▶ Lemma 30. Let T be a pre-Galois word, po = Pero(T), and pe = Pere(T). Consider a
symbol z and the extension T ′ = T · z, such that T ′[1..|T | − po + 1] ≻alt T ′[po + 1..|T | + 1]. Let
P = T ′[1..p] = SPref(T ′). If p = po and |T | ≥ 3p, we have SPref(T ′[p+1..]) = T ′[p+1..3p] =
T ′[1..2p].

Proof. Since T is pre-Galois, T ′[1..po] = T ′[po + 1..2po] does not have an even border.
Thus Pero(T [po + 1..]) = po and Pere(T [po + 1..]) = 2po. Moreover, since T ′[1..|T | − po] and
T ′[po+1..|T |−po] have different parities, we have T ′[po+1..|T |−po+1] ≺alt T ′[2po+1..|T |+1].
Next, T ′[po + 1..|T | − 2po + 1] ≻alt T ′[3po + 1..|T | + 1] holds, since T ′[1..|T | − po] and
T ′[po + 1..|T | − 2po] have the same parity. Therefore, SPref(T ′[po + 1..]) = T ′[po + 1..3p] =
T ′[1..2po]. ◀

CPM 2024

18:12 Algorithms for Galois Words: Detection, Factorization, and Rotation

Let U = SPref(W), |U | is odd, and W = UkV for some k ≥ 3. By Lemmas 29 and 30,
we know that SPref(Uk−2j−1V) = U2 for 0 ≤ j < ⌈k/2⌉ without computing it explicitly.

Lemmas 28, 29, and 30 are used to factorize a pre-Galois word when we extended it.
However, we can not use the Lemmas to factorize T when T is pre-Galois but not Galois and
the input is terminated. Although we can factorize T by finding P = SPref(T) in Lemma 27,
we need an additional procedure to find such P . To simplify our algorithm, we append a
terminal symbol $ that is smaller than all symbols of Σ. In particular, all other symbols in
W are different from $.1 Here we show that the appended $ determines a Galois factor of
length one, thus it does not affect the factorization result.

▶ Lemma 31. Consider a symbol $ that does not appear in a word T and $ ≺ c for any
c ∈ Σ. Then, GF(T) = (G1, G2, . . . , Gk) iff GF(T · $) = (G1, G2, . . . , Gk, $).

Proof. Let GF(T) = (G1, G2, . . . , Gk). Here, G1 ⪰alt G2 ⪰alt . . . ⪰alt Gk. Since $ ≺ c for any
c ∈ Σ, we have G1 ⪰alt G2 ⪰alt . . . ⪰alt Gk ⪰alt $. Therefore, GF(T ·$) = (G1, G2, . . . , Gk, $).
Similarly, let GF(T · $) = (G1, G2, . . . , Gk, $). Here, G1 ⪰alt G2 ⪰alt . . . ⪰alt Gk ⪰alt $.
Therefore, GF(T) = (G1, G2, . . . , Gk). ◀

This gives us the final ingredient for introducing the algorithmic steps for computing the
Galois factorization, which we present as pseudo code in Algorithm 2.

▶ Theorem 32. The Galois factorization of a word T can be computed in O(|T |) time and
O(1) additional working space, excluding output space.

Proof. The correctness of Algorithm 2 is proven by Lemmas 28, 29, 30, and 31. Next, we
prove the time complexity of Algorithm 2. The time complexity of the algorithm is bounded
by the number of iterations of the inner loop (Line 6). The algorithm increments j until it
finds a prefix to be factorized (Line 22). Here we show that j ≤ 3ℓ + 1, where ℓ is the length
of the factorized prefix. Let p = pe. If j < 2p + 1, it is clear that j ≤ 3ℓ + 1, where ℓ = p.
Otherwise, if j ≥ 2p + 1, the algorithm factorizes the prefix recursively k times, such that
kp ≥ j and (k + 1)p > j. Thus, we have ℓ = kp which implies j ≤ 3ℓ + 1. On the other hand,
let p = po. If j < 3p + 1, its clear that j ≤ 3ℓ + 1, where ℓ = p. Otherwise, if j ≥ 3p + 1, the
algorithm factorizes the prefix recursively k times, such that kp ≥ j and (k + 2)p > j. Thus,
we have ℓ = kp which implies j ≤ 3ℓ + 1. Therefore, the number of iterations of the inner
loop is O(|T |), since the total length of the factors is |T |. ◀

7 Computing Galois rotation

While we can infer the Lyndon rotation of a word T from the Lyndon factorization of T · T ,
the same kind of inference surprisingly does not work for Galois words [5, Example 41]. Here,
we present an algorithm computing the Galois rotation, using constant additional working
space. The algorithm is a modification of Algorithm 2. We start with formally defining the
Galois rotation of a word.

▶ Definition 33. Let W be a primitive word. A rotation T = V U is a Galois rotation of
W = UV if T is Galois.

1 Without $, the last factor we report might be just pre-Galois, not Galois. So we have to break the last
factor into Galois factors. If W ends with the unique symbol $, then $ cannot be included in another
Galois factor of W ; it has to stay alone as a Galois factor of length one, and thus we cannot end with
the last factor being just pre-Galois.

D. Hendrian, D. Köppl, R. Yoshinaka, and A. Shinohara 18:13

Algorithm 3 Computing the Galois rotation of T , as claimed in Theorem 36.

1 Function GaloisRotation(T)
2 i = 0;
3 while i ≤ 3|T | do
4 po = 1; pe = 2;
5 for j from 2 to 3|T | − i do
6 p = 3|T | + 2; p′

e = pe; p′
o = po;

7 if j is odd then
8 if pe < j then
9 if T [i + j] < T [i + j − pe] then p = min{p, pe}; // Lemma 28

10 else if T [i + j] > T [i + j − pe] then p′
e = j + 1; // Lemma 24

11 if po < j then
12 if T [i + j] < T [i + j − po] then p′

o = j; // Lemma 22

13 else if T [i + j] > T [i + j − po] then p = min{p, po}; // Lemma 28

14 else
15 if pe < j then
16 if T [i + j] < T [i + j − pe] then p′

e = j; // Lemma 24

17 else if T [i + j] > T [i + j − pe] then p = min{p, pe}; // Lemma 28

18 if po < j then
19 if T [i + j] < T [i + j − po] then p = min{p, po}; // Lemma 28

20 else if T [i + j] > T [i + j − po] then p′
o = j + 1; // Lemma 22

21 if p ̸= 3|T | + 2 then
22 while j > p do
23 i = i + p; j = j − p;
24 p = pe;
25 break;
26 pe = p′

e; po = p′
o;

27 if po ≥ |T | and pe ≥ |T | then
28 return (i mod |T |) + 1;

To describe our algorithm computing Galois rotations, we study a property of the Galois
factorization for repetitions of a Galois word.

▶ Lemma 34. Let T be a Galois word and P = SPref(T k) for some rational number k ≥ 2.
Then |P | ≥ |T |.

Proof. Suppose that |P | < |T | and |P | is even. Since T is primitive, |P | is not a period of T 2

by Lemma 5. Thus, there exist a position i < 2|T | such that P ω[i] ̸= T 2[i]. Moreover, we have
P ⪰alt T k by Lemma 27, which implies P ≻alt T 2. However, we have P ≺alt T =alt T 2 by
Lemma 7, which is a contradiction. The case that |P | is odd leads to a similar contradiction,
and thus |P | ≥ |T | must hold. ◀

We then use the above property to show the following lemma, which is the core of our
algorithm.

▶ Lemma 35. Let W be the Galois rotation of a primitive word T . Given TTT = UWWV

with |U | < |T |, let GF(U) = (G1, G2, . . . , Gk) and GF(WWV) = (H1, H2, . . . , Hl). Then we
have GF(UWWV) = (G1, G2, . . . , Gk, H1, H2, . . . , Hl).

CPM 2024

18:14 Algorithms for Galois Words: Detection, Factorization, and Rotation

Proof. For U = ε, the claim trivially holds with V = W and GF(UWWV) = GF(WWV) =
(H1, H2, . . . , Hl). In the rest of the proof we assume U ̸= ε. Let GF(U) = (G1, G2, . . . , Gk)
and GF(WWV) = (H1, H2, . . . , Hl). Because W = V · U , U (and in particular Gk) is a suffix
of W . By the definition of the Galois factorization, we have G1 ⪰alt G2 ⪰alt . . . ⪰alt Gk

and H1 ⪰alt H2 ⪰alt . . . ⪰alt Hl. By showing Gk ⪰alt H1, we obtain that the factorization
(G1, G2, . . . , Gk, H1, H2, . . . , Hl) of UWWV admits the properties of the Galois factorization,
which proves the claim.

To that end, we first observe that Gk is a proper suffix of W and W is Galois, thus
Gk ≻alt W . Next, if Gk is not a prefix of W , there exists a position i ≤ |Gk| < |W | such that
Gω

k [i] ̸= W [i]. Otherwise if Gk is a prefix of W , Gk is a border of W and |W |−|Gk| is a period
of W . Assuming that |Gk| is a period of W , the greatest common divisor gcd of |Gk| and
|W | − |Gk| is a period of Gk by the periodicity lemma (Lemma 5), and gcd is a factor of |W |.
However this is impossible since W is primitive; thus |Gk| cannot be a period of W . Hence,
there exists a position i ≤ |W | such that Gω

k [i] ̸= W [i]. We therefore know that the first k

Galois factors in GF(U) and GF(UWWV) are the same since we cannot extend Gk further
without losing the property to be Galois. Moreover, W is a prefix of H1 by Lemma 34. Thus,
there exists a position j ≤ |W | ≤ |H1| such that Gω

k [j] ̸= H1[j], which implies Gk ≻alt H1.
Therefore, we have G1 ⪰alt G2 ⪰alt . . . ⪰alt Gk ⪰alt H1 ⪰alt H2 ⪰alt . . . ⪰alt Hl, which
implies GF(UWWV) = (G1, G2, . . . , Gk, H1, H2, . . . , Hl). ◀

With Lemma 35, we now have a tool to find the Galois rotation W of T in TTT by
determining H1 and knowing that W is a prefix of H1. Since we can write TTT = UWWV

with W = V U and |U | < |T |, the goal is to determine U . For U , we know that all its Galois
factors have even or odd periods shorter than |T |, so it suffices to find the first Galois factor
in TTT for which both periods are at least |T | long (cf. Lemma 34).

In detail, let G be the first factor of GF(TTT) with |G| ≥ T . From Lemma 35 we
know that the Galois rotation W of a word T is the prefix of G whose length is |T |, i.e.
W = G[1..|T |]. Algorithm 3 describes an algorithm to compute the Galois rotation of an
input word T . The algorithm scans TTT sequentially from the beginning, mimicking our
Galois factorization algorithm, except that it does not output the factors. At the time where
we set po ≥ |T | and pe ≥ |T |, we know that the length of next factor we compute is |T | or
longer. At that time, we can determine G. To this end, we output the starting position i of G

when reaching the condition that po ≥ |T | and pe ≥ |T |. In a post-processing, we determine
W = (TTT)[i..i + |T | − 1], where W is the Galois rotation of T . To keep the additional
working space constant, we do not load three copies of T into memory, but use that fact that
(TTT)[k] = T [((k − 1) mod |T |) + 1] for k > |T | when processing the input TTT .

▶ Theorem 36. The Galois rotation of a word T can be computed in O(|T |) time and O(1)
additional working space.

8 Experiments

We have implemented our algorithms in C++. The software is freely available by the link
on the title page. For a short demonstration, we computed the Galois factors of files from
the Canterbury, the Calgary [2] and the Pizza&Chili corpus [8], and depict the results in
Table 1. We have omitted those files that contain a zero byte, which is prohibited in our
implementation. The experiments run on WSL with Intel Core i7-10700K CPU. To compare
the time with a standard Lyndon factorization algorithm, we used the implementation of
Duval’s algorithm from https://github.com/cp-algorithms/cp-algorithms.

https://github.com/cp-algorithms/cp-algorithms

D. Hendrian, D. Köppl, R. Yoshinaka, and A. Shinohara 18:15

Table 1 Counting the number of Galois factors for various datasets. The alphabet size is denoted
by σ. Counts are listed in the # columns, together with a time evaluation with Duval’s algorithm
computing the Lyndon factorization. Upper part: The Canterbury and Calgary corpus datasets.
Lower part: The Pizza&Chili corpus datasets. Note that we used different time units for the upper
table (microseconds) and lower table (seconds).

Galois Lyndon

file σ size [KB] # time [µs] # time [µs]

alice29.txt 74 152 14 3070 3 192
asyoulik.txt 68 125 7 2435 2 134
bib 81 111 25 2372 6 110
book2 96 610 20 12 182 27 555
cp.html 86 24 7 544 8 21
fields.c 90 11 18 237 13 12
grammar.lsp 76 3 10 78 8 6
lcet10.txt 84 426 12 8599 6 438
news 98 377 24 7440 24 375
paper1 95 53 19 1016 9 40
paper2 91 82 14 1593 16 66
paper3 84 46 11 908 14 39
paper4 80 13 8 267 6 12
paper5 91 11 9 237 6 10
paper6 93 38 12 740 15 32
plrabn12.txt 81 481 4 9801 6 559
progc 92 39 15 788 12 36
progl 87 71 84 1423 77 63
progp 89 49 14 944 12 38
xargs.1 74 4 6 88 9 5

Galois Lyndon

file σ size [KB] # time [s] # time [s]

dblp.xml 97 296 135 3 5.969 15 0.294
dna 97 403 927 26 7.799 18 0.360
proteins 27 1 184 051 29 24.384 30 1.091
sources 230 210 866 23 4.307 35 0.179

References

1 Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, and Marcin Piątkowski. Indexing the
bijective BWT. In Proc. CPM, volume 128 of LIPIcs, pages 17:1–17:14, 2019. doi:10.4230/
LIPIcs.CPM.2019.17.

2 Timothy C. Bell, Ian H. Witten, and John G. Cleary. Modeling for text compression. ACM
Comput. Surv., 21(4):557–591, 1989. doi:10.1145/76894.76896.

3 Amanda Burcroff and Eric Winsor. Generalized Lyndon factorizations of infinite words. Theor.
Comput. Sci., 809:30–38, 2020. doi:10.1016/J.TCS.2019.11.003.

4 Michael Burrows and David J. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, Palo Alto, California, 1994.

CPM 2024

https://doi.org/10.4230/LIPIcs.CPM.2019.17
https://doi.org/10.4230/LIPIcs.CPM.2019.17
https://doi.org/10.1145/76894.76896
https://doi.org/10.1016/J.TCS.2019.11.003

18:16 Algorithms for Galois Words: Detection, Factorization, and Rotation

5 Francesco Dolce, Antonio Restivo, and Christophe Reutenauer. On generalized Lyndon words.
Theor. Comput. Sci., 777:232–242, 2019. doi:10.1016/j.tcs.2018.12.015.

6 Francesco Dolce, Antonio Restivo, and Christophe Reutenauer. Some variations on Lyndon
words (invited talk). In Proc. CPM, volume 128 of LIPIcs, pages 2:1–2:14, 2019. doi:
10.4230/LIPIcs.CPM.2019.2.

7 Jean-Pierre Duval. Factorizing words over an ordered alphabet. J. Algorithms, 4(4):363–381,
1983. doi:10.1016/0196-6774(83)90017-2.

8 Paolo Ferragina, Rodrigo González, Gonzalo Navarro, and Rossano Venturini. Compressed
text indexes: From theory to practice. ACM Journal of Experimental Algorithmics, 13:1.12:1–
1.12:31, 2008. doi:10.1145/1412228.1455268.

9 Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions. Proceedings
of the American Mathematical Society, 16(1):109–114, 1965.

10 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Optimal-time text indexing in BWT-runs
bounded space. In Proc. SODA, pages 1459–1477, 2018. doi:10.1137/1.9781611975031.96.

11 Ira M. Gessel, Antonio Restivo, and Christophe Reutenauer. A bijection between words and
multisets of necklaces. Eur. J. Comb., 33(7):1537–1546, 2012. doi:10.1016/j.ejc.2012.03.
016.

12 Raffaele Giancarlo, Giovanni Manzini, Antonio Restivo, Giovanna Rosone, and Marinella
Sciortino. The alternating BWT: An algorithmic perspective. Theor. Comput. Sci., 812:230–
243, 2020. doi:10.1016/j.tcs.2019.11.002.

13 Raffaele Giancarlo, Giovanni Manzini, Antonio Restivo, Giovanna Rosone, and Marinella
Sciortino. A new class of string transformations for compressed text indexing. Inf. Comput.,
294:105068, 2023. doi:10.1016/J.IC.2023.105068.

14 Joseph Yossi Gil and David Allen Scott. A bijective string sorting transform. ArXiv 1201.3077,
2012. arXiv:1201.3077.

15 J. Ian Munro, Gonzalo Navarro, and Yakov Nekrich. Space-efficient construction of compressed
indexes in deterministic linear time. In Proc. SODA, pages 408–424, 2017. doi:10.1137/1.
9781611974782.26.

16 Christophe Reutenauer. Mots de Lyndon généralisés. Séminaire Lotharingien de Combinatoire,
54(B54h):1–16, 2005.

17 Yossi Shiloach. Fast canonization of circular strings. J. Algorithms, 2(2):107–121, 1981.
doi:10.1016/0196-6774(81)90013-4.

https://doi.org/10.1016/j.tcs.2018.12.015
https://doi.org/10.4230/LIPIcs.CPM.2019.2
https://doi.org/10.4230/LIPIcs.CPM.2019.2
https://doi.org/10.1016/0196-6774(83)90017-2
https://doi.org/10.1145/1412228.1455268
https://doi.org/10.1137/1.9781611975031.96
https://doi.org/10.1016/j.ejc.2012.03.016
https://doi.org/10.1016/j.ejc.2012.03.016
https://doi.org/10.1016/j.tcs.2019.11.002
https://doi.org/10.1016/J.IC.2023.105068
https://arxiv.org/abs/1201.3077
https://doi.org/10.1137/1.9781611974782.26
https://doi.org/10.1137/1.9781611974782.26
https://doi.org/10.1016/0196-6774(81)90013-4

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Characteristics of Pre-Galois Words
	5 Determining Galois Words
	6 Computing the Galois Factorization Online
	7 Computing Galois rotation
	8 Experiments

