
Simplified Tight Bounds for Monotone Minimal
Perfect Hashing
Dmitry Kosolobov #

Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia

Abstract
Given an increasing sequence of integers x1, . . . , xn from a universe {0, . . . , u − 1}, the monotone
minimal perfect hash function (MMPHF) for this sequence is a data structure that answers the
following rank queries: rank(x) = i if x = xi, for i ∈ {1, . . . , n}, and rank(x) is arbitrary otherwise.
Assadi, Farach-Colton, and Kuszmaul recently presented at SODA’23 a proof of the lower bound
Ω(n min{log log log u, log n}) for the bits of space required by MMPHF, provided u ≥ n22

√
log log n

,
which is tight since there is a data structure for MMPHF that attains this space bound (and
answers the queries in O(log u) time). In this paper, we close the remaining gap by proving that, for
u ≥ (1 + ϵ)n, where ϵ > 0 is any constant, the tight lower bound is Ω(n min{log log log u

n
, log n}),

which is also attainable; we observe that, for all reasonable cases when n < u < (1 + ϵ)n, known facts
imply tight bounds, which virtually settles the problem. Along the way we substantially simplify the
proof of Assadi et al. replacing a part of their heavy combinatorial machinery by trivial observations.
However, an important part of the proof still remains complicated. This part of our paper repeats
arguments of Assadi et al. and is not novel. Nevertheless, we include it, for completeness, offering a
somewhat different perspective on these arguments.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases monotone minimal perfect hashing, lower bound, MMPHF, hash

Digital Object Identifier 10.4230/LIPIcs.CPM.2024.19

Funding This work was carried out with financial support from the Ministry of Science and Higher
Education of the Russian Federation (project 075-02-2024-1428 for the development of the regional
scientific and educational mathematical center “Ural Mathematical Center”).

1 Introduction

The monotone minimal perfect hash function (MMPHF) is a data structure built on an
increasing sequence x1 < · · · < xn of integers from a universe {0, . . . , u − 1} that answers the
following rank queries: rank(x) = i if x = xi for some i, and rank(x) is arbitrary otherwise.

The MMPHF is an important basic building block for succinct data structures (e.g.,
see [2, 6, 5, 14, 13, 9]). It turns out that the relaxation that permits to return arbitrary
answers when x does not belong to the stored sequence leads to substantial memory savings:
as was shown by Belazzougui, Boldi, Pagh, and Vigna [3], it is possible to construct an
MMPHF that occupies O(n min{log log log u, log n}) bits of space with O(log u)-time queries,
which is a remarkable improvement over the Ω(n log u

n) bits required to store the sequence
x1, . . . , xn itself.

Until very recently, the best known lower bound for the space of the MMPHF was Ω(n)
bits, which followed from the same bound for the minimal perfect hashing (see [11, 16, 17]).
In 2023, this bound was improved by Assadi, Farach-Colton, and Kuszmaul [1]: they proved
that, surprisingly, the strange space upper bound O(n min{log log log u, log n}) is actually
tight, provided u ≥ n22

√
log log n . Thus, the problem was fully settle for almost all possible u.

Their proof utilized a whole spectre of sophisticated combinatorial techniques: a “conflict
graph” of possible data structures, the fractional chromatic number for this graph, the duality
of linear programming, non-standard graph products, and intricate probabilistic arguments.

© Dmitry Kosolobov;
licensed under Creative Commons License CC-BY 4.0

35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024).
Editors: Shunsuke Inenaga and Simon J. Puglisi; Article No. 19; pp. 19:1–19:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dkosolobov@mail.ru
https://orcid.org/0000-0002-2909-2952
https://doi.org/10.4230/LIPIcs.CPM.2024.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Simplified Tight Bounds for Monotone Minimal Perfect Hashing

In this paper we simplify their proof, removing all mentioned concepts except the
intricate probabilistic arguments, and we slightly extend the result: our lower bound is
Ω(n min{log log log u

n , log n}), where u ≥ (1+ϵ)n for an arbitrary constant ϵ > 0 (the Ω hides
an ϵ log 1

ϵ factor). Further, we show that this bound is tight by devising a simple extension of
the MMPHF data structure of Belazzougui et al. [3]. We also observe that, for all reasonable
cases n < u < (1 + ϵ)n, tight bounds can be obtained using known facts.

All ingredients required for our simplification were actually already present in the paper
by Assadi et al. For instance, we eventually resort to essentially the same problem of coloring
random sequences (see below) and the same probabilistic reasoning. Our extension of the
MMPHF by Belazzougui et al. [3] is also not difficult. It seems that the simpler proof and
the extension were overlooked.

The paper is organized as follows. In Section 2, we define our notation and discuss weaker
lower bounds and tight upper bounds, including our extension of the MMPHF from [3].
Section 3 provides a short way to connect the lower bound to certain colorings of the universe.
Section 4 shows how the problem can be further reduced to the coloring of certain random
sequences on a very large universe u = 22n3

; Assadi et al. make a similar reduction but
their explanation includes unnecessary non-standard graph products and does not cover the
extended range (1 + ϵ)n ≤ u. The material in all these first sections is quite easy. Finally,
Section 5 is a core of the proof, which, unfortunately, still involves complicated arguments.
This part is exactly equivalent to Lemma 4.2 in [1], which was also the most challenging part
in [1]. For the self-containment of the paper, instead of directly citing Lemma 4.2 from [1],
we decided to offer a somewhat different view on the same arguments. Depending on their
disposition, the reader might find our exposition more preferrable or vice versa; it shares the
central idea with [1] but reaches the goal through a slightly different path.

2 Tight Upper Bounds

Denote [p..q] = {k ∈ Z : p ≤ k ≤ q}, [p..q) = [p..q−1], (p..q] = [p+1..q], (p..q) = [p+1..q−1].
Throughout the text, u denotes the size of the universe [0..u), from which the hashed sequence
x1, . . . , xn is sampled, and n denotes the size of this sequence. All logarithms have base 2.
To simplify the notation, we assume that log log log u

n = Ω(1), for any u
n > 0.

Let us overview known upper bounds for the space required by the MMPHF. The MMPHF
of Belazzougui et al. [3] offers O(n log log log u) bits of space. When n22

√
log log n ≤ u ≤ 22poly(n) ,

it is tight due to the lower bound of [1]. For larger u, we can construct a perfect hash
h : [0..u) → [1..n] that occupies O(n log n) bits and bijectively maps the hashed sequence
x1, . . . , xn onto [1..n] (e.g., it might be the classical two-level scheme [12] or a more advanced
hash [4]) and we store an array A[1..n] such that, for i ∈ [1..n], A[h(xi)] is the rank of xi.
This scheme takes O(n log n) bits, which is tight when u ≥ 22poly(n) , again due to the lower
bound of [1] since n log log log 22poly(n) = Θ(n log n). For small u (like u = Θ(n)), we can
simply store a bit array B[0..u−1] such that B[x] = 1 iff x = xi. Such “data structure” takes
u bits and can answer the rank queries for the MMPHF (very slowly). With additional
o(n) bits [8, 15], one can answer in O(1) time the rank queries on this array and, also, the
following select queries: given i ∈ [1..n], return the position of the ith 1 in the array.

The described MMPHFs give the tight space upper bound O(n min{log log log u, log n}),
for u ≥ n22

√
log log n , and an upper bound O(n), for u = O(n). Let us construct an MMPHF

that occupies O(n log log log u
n) bits, for 2n ≤ u < n22

√
log log n , which, as we show below,

is tight. (We note that a construction similar to ours was alluded in [6, 7].) We split the
range [0..u) into n buckets of length b = u

n . For i ∈ [1..n], denote by ni the number of

D. Kosolobov 19:3

elements of the sequence x1, . . . , xn that are contained in the ith bucket. We construct the
MMPHF of Belazzougui et al. for each bucket, thus consuming O(

∑n
i=1 ni log log log u

n) =
O(n log log log u

n) bits of space. Then, we build a bit array B[1..2n] such that B[
∑i−1

j=1 nj +i] =
1, for each i ∈ [1..n], and all other bits are zeros; it is convenient to view B as the concatenation
of bit strings 10ni , for i ∈ [1..n], where 0ni denotes a bit string with ni zeros. The bit array
B supports select queries and takes O(n) bits. To answer the rank query for x ∈ [0..u), our
MMPHF first calculates i = ⌊x/b⌋+1 (the index of the bucket containing x), then it computes
the position k of the ith 1 in the bit array B using the select query, and the answer is equal
to k − i plus the answer of the query rank(x − (i − 1)b) in the MMPHF associated with the
ith bucket. We, however, cannot afford to store n pointers to the MMPHFs associated with
the buckets. Instead, we concatenate the bit representations of these MMPHFs and construct
another bit array N of length O(n log log log u

n) where the beginning of each MMPHF in the
concatenation is marked by 1 (and all other bits are zeros). The array N also supports the
select queries and the navigation to the MMPHF associated with the ith bucket is performed
by finding the ith 1 in the array N using the select query.

With the described data structures, we obtain tight upper bounds for all u ≥ (1 + ϵ)n,
where ϵ > 0 is an arbitrary constant. In particular, when (1 + ϵ)n ≤ u < 2n, the upper bound
O(u) is equal to O(n) and it is known to be tight: an analysis of the minimal perfect hashing
[16, 17] implies the lower bound Ω(n) for the MMPHF, provided u ≥ (1+ ϵ)n. More precisely,
the bound is (u − n) log u

u−n − O(log n), which holds for arbitrary u > n (see [4, 16, 17]).
For illustrative purposes, we rederive this bound in a proof sketch provided in Section 4.

It remains to analyse the range n < u < (1 + ϵ)n. To this end, we restrict our attention
only to matching upper and lower bounds that are greater than Ω(log n). This is a reasonable
restriction because all these data structures are usually implemented on the word RAM
model, where it is always assumed that Θ(log n) bits are available for usage. Thus, we
analyse only the first term of the difference (u − n) log u

u−n − O(log n) assuming that it is at
least twice greater than the O(log n) term. Suppose that u = (1 + α)n, where 0 < α < 1

4 and
α is not necessarily constant. Then, we obtain (u − n) log u

u−n = nα log 1+α
α = Θ(nα log 1

α).
It is known that the bit array B[0..u−1] such that B[x] = 1, for x = xi, can be encoded
into log

(
u
n

)
bits, which can be treated as an MMPHF for the sequence x1, . . . , xn. By

the well-known entropy inequality [10], we obtain log
(

u
n

)
≤ n log u

n + (u − n) log u
u−n =

n log(1 + α) + nα log 1+α
α ≤ O(nα + nα log 1

α) = O(nα log 1
α), which coincides with the lower

bound (u − n) log u
u−n − O(log n) = Ω(nα log 1

α) (rederived in Section 4) and, thus, is tight.
In particular, for constant α = ϵ, we obtain the bound Ω(n) that hides ϵ log 1

ϵ under the Ω.
Hereafter, we assume that all presented results hold for sufficiently large u. We will

mostly consider the case u ≤ 22poly(n) , which also implies sufficiently large n.

3 From Data Structures to Colorings

Let us first consider deterministic MMPHFs. Randomized MMPHFs are briefly discussed in
Remark 2 in the end of Section 4.

Given positive integers u and n < u, the MMPHF that uses S bits of space is a data
structure that can encode any increasing sequence x1 < · · · < xn from [0..u) into S bits
to support the rank queries: for x ∈ [0..u), rank(x) = i if x = xi for some i ∈ [1..n], and
rank(x) is arbitrary otherwise. We assume a very powerful model of computation: the query
algorithm has unbounded computational capabilities and has unrestricted access to its S bits
of memory. Formally, it can be modelled as a function rank : [0..u) × {0, 1}S → [1..n] that
takes as its arguments an integer x ∈ [0..u) and the content of the S-bit memory and outputs

CPM 2024

19:4 Simplified Tight Bounds for Monotone Minimal Perfect Hashing

the rank of x in a sequence encoded in these S bits (note that the same bits might correctly
encode many different sequences); it is guaranteed that any increasing sequence x1, . . . , xn

has at least one encoding c ∈ {0, 1}S that provides correct queries for it, i.e., rank(xi, c) = i,
for i ∈ [1..n]. Our goal is to prove that such function can exist only if S ≥ Ω(n log log log u

n),
provided (1 + ϵ)n ≤ u ≤ 22poly(n) , for constant ϵ > 0.

The function rank : [0..u) × {0, 1}S → [1..n] can be viewed as a family of 2S colorings
of the range [0..u): each “memory content” c ∈ {0, 1}S colors any x ∈ [0..u) into the
color rank(x, c), one of n colors [1..n]. We say that such a coloring encodes a sequence
x1 < · · · < xn if the color of xi is i, for i ∈ [1..n]. Note that one coloring may encode many
distinct sequences and one sequence may be encoded by different colorings of [0..u).

▶ Example 1. For u = 17, the following coloring of [0..u) (the colors are both highlighted
and denoted by indices 1–5 below) encodes the sequences 3, 6, 7, 10, 14, and 1, 2, 4, 9, 12, and
1, 6, 11, 15, 16, to name a few:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 2 1 3 3 2 3 1 4 4 3 5 2 5 4 5

We thus have deduced that the MMPHF provides a family of 2S colorings that encode all
possible sequences of size n from [0..u). Now, if we prove that any such all-encoding family
must have at least C colorings, then we will have 2S ≥ C, which implies the space lower bound
S ≥ log C. In what follows, we show that C ≥ (log log u

n)Ω(n) when (1 + ϵ)n ≤ u ≤ 22poly(n) ,
hence proving the lower bound S ≥ Ω(n log log log u

n).

4 Coloring of Random Sequences

As in [1], we utilize the following probabilistic argument. Consider a random process that
generates size-n sequences from [0..u) in such a way that any fixed coloring of [0..u) encodes
the generated sequence with probability at most 1/C. Now if a family of colorings of [0..u)
is such that any size-n sequence from [0..u) can be encoded by some of its colorings (i.e., it
is an “all-encoding” family as the one provided by the MMPHF), then it necessarily contains
at least C colorings since any sequence generated by our random process is encoded with
probability 1 by one of the colorings. Let us illustrate this reasoning by sketching a proof of
a weaker lower bound for our problem (which can also serve as a proof of the space lower
bound for the minimal perfect hash function on size-n sequences from [0..u)).

Consider a process that generates all size-n sequences from [0..u) uniformly at random.
Fix an arbitrary coloring of [0..u) with colors [1..n]. Denote by ci the number of elements
x ∈ [0..u) with color i. Since the coloring might encode at most c1 · · · cn distinct size-n
sequences from [0..u), the probability that a random sequence is encoded by it is at most
c1 · · · cn/

(
u
n

)
. Since

∑n
i=1 ci = u, the maximum of c1 · · · cn is attained when all ci are equal,

so c1 · · · cn ≤ (u
n)n. Thus, we obtain c1 · · · cn/

(
u
n

)
≤ (u

n)n/
(

u
n

)
and, hence, any “all-encoding”

family must contain at least
(

u
n

)
/(u

n)n colorings, which, after applying the logarithm, implies
the space lower bound log(

(
u
n

)
/(u

n)n) for the MMPHF. Finally, the entropy inequality [10]
log

(
u
n

)
≥ n log u

n +(u−n) log u
u−n −O(log n) gives the lower bound (u−n) log u

u−n −O(log n),
which is bounded by Ω(nϵ log 1

ϵ) = Ω(n) when (1 + ϵ)n ≤ u for constant ϵ > 0.
It is evident from this sketch that our random process must be more elaborate than a

simple random pick.
In what follows we essentially repeat the scheme from [1]. Namely, for the special case

u = 22n3

, we devise a random process generating size-n sequences from [0..u) such that any
fixed coloring encodes its generated sequence with probability at most 1/nΩ(n). Hence, the

D. Kosolobov 19:5

number of colorings in the family provided by the MMPHF is at least nΩ(n), which, after
applying the logarithm, implies the space lower bound Ω(n log n) = Ω(n log log log u

n). All
other possible u are reduced to this special case. Let us start with this reduction.

Reduction of arbitrary u to very large u. Suppose that, for any n and u = 22n3

, we are
able to devise a random process that generates size-n sequences from [0..u) in such a way
that any coloring of [0..u) encodes the generated sequence with probability at most 1/nΩ(n).
Now let us fix arbitrary u and n such that (1 + ϵ)n ≤ u ≤ 22poly(n) , for constant ϵ > 0.
Case (i) u ≥ 22n3

. For this case, the same random process that generates size-n sequences
from [0..22n3

) ⊆ [0..u) gives the probability at most 1/nΩ(n), again implying the space
lower bound Ω(n log n) as above, which is equal to Ω(n log log log u

n) when 22n3

≤ u ≤
22poly(n) .

Case (ii) (1 + ϵ)n ≤ u < 228
n. Since n log log log u

n = Θ(n), the lower bound Ω(n) for
this case was obtained above.

Case (iii) 228
n ≤ u < 22n3

. The key observation is that while our hypothesised random
process cannot be applied to generate sequences of size n (since u is too small), it can
generate smaller sequences, for instance, of size n̄ ≤ (log log u)1/3 (since 22n̄3

≤ u).
Accordingly, we compose a random process that generates a size-n sequence as follows: it
splits the range [0..u) into n/n̄ equal blocks of length ū = u/(n/n̄) and independently
generates a size-n̄ sequence inside the first block, a size-n̄ sequence inside the second
block, etc. The generation inside each block is performed using our hypothesised random
process, which is possible provided ū ≥ 22n̄3

. This inquality is satisfied by putting
n̄ = ⌊(log log u

n)1/3⌋ (note that n̄ ≥ 2 since u
n ≥ 228): ū ≥ u/n = 22log log u

n ≥ 22n̄3

. Fix
an arbitrary coloring of [0..u). The probability that the generated size-n sequence is
encoded by this coloring is equal to the product of n/n̄ probabilities that its independently
generated size-n̄ subsequences are encoded by the coloring restricted to the corresponding
blocks, which gives (1/n̄Ω(n̄))n/n̄ = 1/n̄Ω(n) (note that, technically, our assumption that
gives each probability 1/n̄Ω(n̄) requires the colors in the ith block to be from (in̄..(i + 1)n̄]
but, clearly, any other colors in the ith block make the probability that the corresponding
size-n̄ subsequence is encoded by this coloring even lower.) The latter, after applying
the logarithm, yields the space lower bound Ω(n log n̄), which is Ω(n log log log u

n) when
n̄ = ⌊(log log u

n)1/3⌋.

▶ Remark 2. Using an argument akin to Yao’s principle, Assadi et al. showed that the lower
bound for randomized MMPHFs is the same as for deterministic. We repeat their argument
for completeness, albeit without their unnecessary graph products etc.

A randomized MMPHF has unrestrictedly access to a tape of random bits, which does not
take any space. Denote by X the set of all size-n sequences in [0..u). The MMPHF receives
a sequence x ∈ X and a random tape r and encodes x into a memory content dr(x) ∈ {0, 1}∗.
Thus, unlike the deterministic case, the space size depends on x ∈ X and on the randomness
r. Naturally, the space occupied by such MMPHF is defined as d = maxx∈X Er[|dr(x)|],
where the expectation is for the random r. Note that, when the tape r is fixed, the algorithm
becomes deterministic: it can be modelled as a function rankr : [0..u) × {0, 1}∗ → [1..n] that,
for any memory content c ∈ {0, 1}∗, defines a coloring of [0..u) into colors [1..n].

Denote by P a random distribution on X such that any fixed coloring of [0..u) encodes
x ∈ P with probability at most 1/C. Obviously, d = maxx∈X Er[|dr(x)|] ≥ Ex∈P Er[|dr(x)|] =
ErEx∈P [|dr(x)|]. By the averaging argument, there is a tape r∗ such that ErEx∈P [|dr(x)|] ≥
Ex∈P [|dr∗(x)|]. Therefore, Ex∈P [|dr∗(x)|] ≤ d. By Markov’s inequality, Prx∈P (|dr∗(x)| ≤

CPM 2024

19:6 Simplified Tight Bounds for Monotone Minimal Perfect Hashing

2d) ≥ 1
2 . Denote by M all possible memory contents dr∗(x) for all x ∈ P such that

|dr∗(x)| ≤ 2d. Evidently, we have the lower bound 1
2 log |M | ≤ d and Prx∈P (dr∗(x) ∈ M) ≥ 1

2 .
Each c ∈ M determines a coloring of [0..u). Since the probability that a random x ∈ P is
encoded by this coloring is 1

C , we have Prx∈P (dr∗(x) ∈ M) ≤ |M |
C . Thus, we obtain |M | ≥ C

2 ,
which implies the space bound d ≥ Ω(log C), the same as in the deterministic case.

5 Random Sequences on Large Universes

In this section, we always assume that u = 22n3

and n ≥ 2. Our random process generating
size-n sequences from [0..u) is essentially a variation of the process by Assadi et al. [1]. Unlike
the previous sections, it is not precisely a simplification of the arguments from [1], rather a
different perspective on them. We first overview main ideas of Assadi et al. and, then, define
our process by modifying them.

5.1 Definition of the random process
Let us fix an arbitrary coloring of the range [0..u) into colors [1..n]. On a very high level, the
random process devised by Assadi et al. is as follows: choose n − 1 lengths b2 > · · · > bn,
then pick uniformly at random x1 from [0..u), then pick uniformly at random x2 from
(x1..x1+b2), then x3 from (x2..x2+b3), etc. Intuitively, if it is highly likely that at least n

2 of
the picks xi ∈ (xi−1..xi−1+bi) were such that the fraction of elements with color i in the range
(xi−1..xi−1+bi) is at most O(1

n), then the probability that the randomly generated sequence
x1, . . . , xn is encoded by our fixed coloring is at most O(1

n)n/2 = 1
nΩ(n) . Unfortunately, for

any b2, . . . , bn, there are colorings where this is not true. However, as it was shown in [1],
when picking b2, . . . , bn randomly from a certain distribution such that b2 ≫ · · · ≫ bn, one
might guarantee that, whenever we encounter a “dense” range (xi−1..xi−1+bi) where at least
an Ω(1

n) fraction of colors are i, the final range (xn−1..xn−1+bn) with very high probability
will contain at least a 2

n fraction of colors i. Therefore, it is highly likely that such “dense”
ranges appear less than n

2 times since otherwise the range (xn−1..xn−1+bn) has no room
for the color n of element xn as it already contains n

2 colors from [1..n), each occupying a
2
n fraction of the range. Hence, with very high probability, the random process generating
the size-n sequence will encounter such “dense” ranges (xi−1..xi−1+bi) at most n

2 times
and at least n

2 ranges will contain an O(1
n) fraction of the picked color, which leads to the

probability 1
nΩ(n) that the generated sequence will be encoded by our fixed coloring.

We alter the outlined scheme introducing a certain “rigid” structure into our random
process. The range [0..u) is decomposed into a hierarchy of blocks with L = nn2−n levels
(the choice of L is explained below): [0..u) is split into nn equal blocks, which are called the
blocks of level 1, each of these blocks is again split into nn equal blocks, which are the blocks
of level 2, and so on: for ℓ < L, each block of level ℓ is split into nn equal blocks of level ℓ + 1.
Thus, we have (nn)L = nnn2−n+1 blocks on the last level L. Observe that (nn)L ≤ u since
log log((nn)L) = Θ(n2 log n) ≪ n3 = log log u. For simplicity, we assume that (nn)L divides
u (otherwise we could round u to the closest multiple of (nn)L, ignoring some rightmost
elements of [0..u)). The length of the last level blocks is set to u/(nn)L (their length will not
play any role, it is set to this number just to make everything fit into u).

Our random process consists of two parts: first, we pick a sequence of levels ℓ2 < · · · < ℓn;
then, we pick the elements x1, . . . , xn. The chosen levels ℓ2, . . . , ℓn will determine the sizes
of n nested blocks from which the elements x1, . . . , xn are sampled. Formally, it is as follows
(see Fig. 1):

D. Kosolobov 19:7

1. The levels ℓ2, . . . , ℓn are chosen by consecutively constructing a sequence of nested
intervals [ℓ2..ℓ′

2) ⊃ · · · ⊃ [ℓn..ℓ′
n): whenever [ℓi..ℓ

′
i) is already chosen, for i ∈ [1..n)

(assuming [ℓ1..ℓ′
1) = [0..L)), we split [ℓi..ℓ

′
i) into nn equal disjoint intervals and pick as

[ℓi+1..ℓ′
i+1) one of them uniformly at random, except the first one containing ℓi.

2. The elements x1, . . . , xn are chosen by consecutively constructing a sequence of nested
blocks [b2..b′

2) ⊃ · · · ⊃ [bn..b′
n) from levels ℓ2, . . . , ℓn, respectively: whenever [bi..b

′
i)

is already chosen, for i ∈ [1..n) (assuming [b1..b′
1) = [0..u)), we pick xi uniformly at

random from the range [bi..b
′
i−b), where b is the block length for level ℓi+1 (recall that

b = u/(nn)ℓi+1), and choose as [bi+1..b′
i+1) the block [kb..(k+1)b) closest to the right of

xi, i.e., (k−1)b ≤ xi < kb; the element xn is chosen uniformly at random from [bn..b′
n).

ℓ1

ℓ2

ℓ3

...
...

...
...

. . .

. . .

. . .

. . .

x1

0 ux1

x2

x2

[b1..b
′
1)︷ ︸︸ ︷

︷ ︸︸ ︷[b2..b
′
2)

[b3..b
′
3)

. . .

. . .

. . .

...
...

...
...

...

...
...

...

︷︸︸︷
ℓ′2

ℓ′3

...

...

...

...

Figure 1 A schematic image of the first intervals [ℓ1..ℓ′
1), [ℓ2..ℓ′

2), [ℓ3..ℓ′
3), the first blocks [b1..b′

1),
[b2..b′

2), [b3..b′
3), and the first elements x1, x2 generated by our process. The set [0..u) is depicted as

the line at the bottom. The left vertical “ruler” depicts some levels (not all): the larger divisions
denote the levels that could be chosen as ℓ2 and the smaller divisions could be chosen as ℓ3. The
intervals [ℓ2..ℓ′

2) and [ℓ3..ℓ′
3) are painted in two shades of gray. For i ∈ [1..3], each block [bi..b

′
i) is

associated with a rectangle that includes all subblocks of [bi..b
′
i) from levels [ℓi..ℓ

′
i); the rectangles

are painted in shades of blue; we depict inside the rectangle of [bi..b
′
i) lines corresponding to levels

that could be chosen as ℓi+1 and we outline contours of blocks from the level ℓi+1. The elements
x1, x2 are chosen from [0..u) but it is convenient to draw them also on the lines corresponding to
the respective levels ℓ2 and ℓ3, so it is easier to see that the frist level-ℓ2 block to the right of x1 is
[b2..b′

2) and the first level-ℓ3 block to the right of x2 is [b3..b′
3).

We say that the process reaches a block B (respectively, a level ℓ) on the ith stage of
recursion if it assigns [bi..b

′
i) = B (respectively, ℓi = ℓ) during its work. Note that the length

of [ℓi+1..ℓ′
i+1) is L

(nn)i . Hence, the number L = nn2−n = (nn)n−1 is large enough to allow the
described n − 1 recursive splits of [0..L). We have ℓ1 < ℓ2 < · · · < ℓn (assuming ℓ1 = 0) since,
while choosing [ℓi+1..ℓ′

i+1) from [ℓi..ℓ
′
i), the process excludes from consideration the first

interval [ℓi..ℓi+ L
(nn)i). Note that, as a byproduct, many levels from [0..L) are not reacheable.

The process can be viewed as a variation on the design of Assadi et al. restrained to the
introduced block structure. Alternatively, it can be viewed as a recursion: for i ∈ [1..n), it
takes as its input an interval [ℓi..ℓ

′
i) and a block [bi..b

′
i) from level ℓi (assuming [ℓ1..ℓ′

1) = [0..L)
and [b1..b′

1) = [0..u)), chooses randomly ℓi+1 from a set of nn − 1 evenly spaced levels in

CPM 2024

19:8 Simplified Tight Bounds for Monotone Minimal Perfect Hashing

... . . .

. . .

...
...

...
...

. . .

. . .

. . .

.

0

L/ (nn)i

2L/ (nn)i

3L/ (nn)i

4L/ (nn)i
...

Figure 2 A schematic partition of all blocks into disjoint subsets for a fixed i ∈ [1..n).

(ℓi..ℓ
′
i), then picks xi, and invokes the recursion to generate the elements xi+1, . . . , xn inside

the closest level-ℓi+1 block to the right of xi, setting [ℓi+1..ℓ′
i+1) as the next interval of levels.

In this view, the process is not split into two parts and it constructs the levels and blocks
simultaneously, which is possible since the levels are chosen independently of the blocks.

The nestedness of the intervals [ℓi..ℓ
′
i) and the blocks [bi..b

′
i) implies that, whenever

the process reaches a block [bn..b′
n) on level ℓn, we can uniquely determine the sequence

of intervals [ℓ2..ℓ′
2), . . . , [ℓn..ℓ′

n) and blocks [b2..b′
2), . . . , [bn..b′

n) that were traversed. It is
instructive to keep in mind the following view (Fig. 2). Fix i ∈ [1..n). Split [0..L) into (nn)i

equal disjoint intervals: I = {[k L
(nn)i ..(k + 1) L

(nn)i)}k∈[0..(nn)i). The set of all blocks can be
partitioned into disjoint subsets as follows: each subset is determined by an interval [ℓ..ℓ′)
from I and a level-ℓ block [b..b′) and consists of all subblocks of [b..b′) from levels [ℓ..ℓ′)
(including [b..b′) itself). Then, the (i+ 1)th recursive invocation of our process (which chooses
xi+1) necessarily takes as its input an interval [ℓ..ℓ′) from I and a level-ℓ block [b..b′), and
subsequently it can reach only subblocks from the corresponding set in the partition. Note,
however, that not all subblocks are reachable since, first, some levels are unreachable, as was
noted above, and, second, the process ignores the leftmost subblock of its current block when
it chooses the next block (since this subblock is not located to the right of any element x in
the block). For the same reason, not all intervals [ℓ..ℓ′) ∈ I and level-ℓ blocks [b..b′) might
appear as inputs of the recursion.

5.2 Analysis of the random process
Fix an arbitrary coloring of [0..u) into colors [1..n], which will be used untill the end of this
section. We call a subset of [0..u) dense for color i if at least a 2

n fraction of its elements have
color i; we call it sparse otherwise. The color is not specified if it is clear from the context.

Analysis plan. For each i ∈ [1..n) and each block [bi..b
′
i) that might appear on the ith

stage of our recursion, we show that whenever the process reaches [bi..b
′
i), the level ℓi+1 it

randomly chooses (among nn − 1 choices) admits, with high probability 1 − 1
nΩ(n) , a partition

of all level-ℓi+1 blocks inside [bi..b
′
i) into two disjoint families (see Fig. 3): a “sparse” set S̄,

whose union is sparse for color i, and an “inherently dense” set D̄ of blocks, each of which is
dense for color i and almost all subblocks of D̄ on each subsequent level ℓ ∈ [ℓi+1..ℓ′

i+1) are
dense for i too, where “almost all” means that only a 1

nΩ(n) fraction of level-ℓ subblocks of
D̄ might be sparse. Thus, whenever the process chooses xi from the “inherently dense” set
on an ith stage, it will with high probability 1 − 1

nΩ(n) end up inside a block [bn..b′
n) dense

for color i, where it picks xn in the end. Therefore, to have a room for one element xn with
color n, such hits into “inherently dense” sets could happen on less than n

2 different stages
i in the recursion, with high probability. We deduce from this, like in the scheme from [1]

D. Kosolobov 19:9

outlined above, that at least n
2 stages i of the recursion pick xi from the sparse sets S̄, with

high probability, which allows us to estimate by O(1
n) n

2 = 1
nΩ(n) the probability that the

generated sequence is correctly colored in our fixed coloring. Now let us formalize this.

λk − 1
λk

λk + 1
λk + 2

λk+1 − 1

...
...

...
...

· · ·

[bi..b
′
i)

...
...

...
...

λk+1

Figure 3 The lines depict consecutive levels [λk − 1..λk+1] inside a block [bi..b
′
i); we assume that

[ℓi+1..ℓ′
i+1) = [λk..λk+1). The red regions denote the dense sets Dℓ, for ℓ ∈ [λk − 1..λk+1). The

image is supposed to show the case when each such Dℓ takes a large portion of Dλk−1 , so that
Dλk−1 might (approximately) serve as our “inherently dense” set D̄k for level λk in the block.

Constructing S̄ and D̄. Fix i ∈ [1..n). Let H = [ℓi..ℓ
′
i) and B = [bi..b

′
i) be, respectively, an

interval of levels and a level-ℓi block that could be reached by our process on the ith stage of
recursion (assuming that [ℓ1..ℓ′

1) = [0..L) and [b1..b′
1) = [0..u)). For ℓ ∈ H, denote by Sℓ the

union of all sparse blocks from levels [ℓi..ℓ] that are subsets of B. Due to the nestedness of
blocks, Sℓ is equal to the union of Sℓ−1 (assuming Sℓ−1 = ∅ for ℓ = ℓi) and all sparse level-ℓ
blocks that are subsets of B disjoint with Sℓ−1. Obviously, the set Sℓ is sparse. Denote
Dℓ = B \ Sℓ, the complement of Sℓ, which is equal to the union of all dense level-ℓ blocks
that are subsets of B disjoint with Sℓ (note that some dense level-ℓ blocks could be subsets
of Sℓ if they were covered by larger sparse blocks). Consult Figure 3 in what follows.

Denote λ0 = ℓi and λk = λk−1 + |H|
nn , for k ∈ [1..nn]. The intervals [λk..λk+1), for all

k ∈ [1..nn), are all possible choices for the random interval [ℓi+1..ℓ′
i+1). To choose the interval

is to choose k ∈ [1..nn). We slightly relax the scheme outlined in the plan: for each of the
choices k ∈ [1..nn), we define a set S̄k that will contain a 2

n + 1
2n/8 fraction of colors i, so it

might be not precisely sparse as in the plan. We call sets with this fraction of a given color
almost sparse. If B itself is almost sparse, we define S̄k = B and D̄k = ∅, for all k ∈ [1..nn).
Otherwise, i.e., when B is not almost sparse, we are to prove that, for a randomly chosen
level ℓi+1, with high probability 1 − 1

nΩ(n) not only the blocks composing Dℓi+1 are dense
but also most of their subblocks on levels ℓ ∈ [ℓi+1..ℓ′

i+1) are dense for color i. The sets D̄k

will be constructed using the sets Dℓi+1 with this property. So, assume that B is not almost
sparse.

Let Dℓi−1 = B. Since the sets Dℓ are nested (i.e., Dℓ−1 ⊇ Dℓ), the “fraction of space”
which any Dℓ+δ occupies inside any Dℓ is |Dℓ+δ|

|Dℓ| (a number between 0 and 1). Therefore, for
k ∈ [0..nn), the fraction of space which each of the sets Dλk

, Dλk+1, . . . , Dλk+1−1 occupies
inside the set Dλk−1 is at least qλk

= |Dλk+1−1|
|Dλk−1| . Observe that

∏nn−1
k=0 qλk

is equal to the
fraction of space that Dℓ′

i
−1 occupies in B. This product is greater than 1

2n/8 since otherwise
the fraction of colors i in B = Sℓ′

i
−1 ∪ Dℓ′

i
−1 is at most 2

n + 1
2n/8 , contrary to our assumption

that B is not almost sparse. Hence,
∏nn−1

k=0 qλk
> 1

2n/8 . The product with this many (namely
nn) factors cannot contain many even mildly small values qλk

provided the result is as large
as 1

2n/8 : indeed, if we have at least nn/2 factors that are at most 1 − 1
nn/4 , then we already

obtain (1 − 1
nn/4)nn/2 = ((1 − 1

nn/4)nn/4)nn/4 = O(1
enn/4), much smaller than 1

2n/8 . Thus,
less than nn/2 numbers qλ1 , . . . , qλnn−1 can be less than 1 − 1

nn/4 and, for most k ∈ [1..nn),

CPM 2024

19:10 Simplified Tight Bounds for Monotone Minimal Perfect Hashing

we have qλk
≥ 1 − 1

nn/4 . Therefore, the probability that qℓi+1 < 1 − 1
nn/4 , where ℓi+1 is

chosen uniformly at random among the levels λ1, . . . , λnn−1, is at most nn/2

nn−1 = O(1
nn/2). For

k ∈ [1..nn), we call the level λk abnormal for B if qλk
< 1 − 1

nn/4 , and normal otherwise.
Let us define, for each normal level λk with k ∈ [1..nn), a partition of B into an almost

sparse set S̄k and an “inherently dense” set D̄k that were announced above. One might suggest
that D̄k can be defined as Dλk

. Indeed, it seems to have the alluded property. However,
observe that even when the randomly chosen xi+1 “hits” Dλk

, the block [bi+1..b′
i+1), which

is the first level-λk block to the right of xi+1, might not be a subset of Dλk
. So, there is

no “inheritance” after hitting Dλk
. Our trick is to define D̄k as Dλk−1 minus the rightmost

blocks from level λk on each maximal interval in Dλk−1 (see Fig. 4). This trick is the
reason why we defined the number qλk

as the fraction of space that Dλk+1−1 occupies in
Dλk−1, not in Dλk

. To formalize this, let us decompose Dλk−1 into maximal intervals:
Dλk−1 = [d1..d′

1) ∪ · · · ∪ [dt..d
′
t), where d′

j < dj+1 for j ∈ [1..t). All the intervals are aligned
on block boundaries for blocks from both levels λk − 1 and λk. Denote by b the block length
on level λk. Since the block length on level λk −1 is nnb, the length of each interval is at least
nnb and the distance between the intervals is at least nnb. If Dλk−1 = B, define D̄k = B

and S̄k = ∅; otherwise, define D̄k = [d1..d′
1−b) ∪ · · · ∪ [dt..d

′
t−b) and S̄k = B \ D̄k. Hence,

S̄k is Sλk−1 plus t blocks of size b. Since S̄k contains at least t − 1 disjoint intervals each
with length at least nnb (those intervals are the distances between the intervals of Dλk−1),
these added blocks constitute at most a 2 b

nnb = 2
nn fraction of the size of Sλk−1. Hence, the

fraction of colors i in S̄k is at most 2
n + 2

nn , which is enough for S̄k to be almost sparse.

...
...

...
...

Dk
λk − 1
λk

λk + 1
λk + 2

λk+1 − 1
· · ·

λk+1

[bi..b
′
i)

...
...

...
...

Figure 4 The lines depict consecutive levels [λk − 1..λk+1] inside a block [bi..b
′
i). The level λk is

emphasized by the blue color. The red region under line representing level ℓ depicts Dℓ. The set
Dλk−1 consists of three maximal intervals; accordingly, D̄k is drawn as three thick red lines over
Dλk−1 (the gap to the right of each line represents the lacking rightmost block from level λk).

For each abnormal level λk in the block B, we call all subblocks of B from levels [λk..λk+1)
abnormal; for each normal level λk with k ∈ [1..nn), we call all sparse subblocks of Dλk−1
from levels [λk..λk+1) abnormal. Thus, for the fixed i ∈ [1..n) and the fixed level-ℓi block B

that could be reached by our process on the ith stage of recursion, we have defined abnormal
levels, abnormal blocks, and the sets D̄k and S̄k, for all normal levels λk that could be chosen
as ℓi+1 for the (i + 1)th stage of recursion. Analogously, for all i ∈ [1..n), we define abnormal
levels, abnormal blocks, and sets D̄k and S̄k for all blocks B that could possibly be reached
by our process on the ith stage of recursion. All non-abnormal blocks are called normal.
▶ Remark 3. The crucial observation about the normal blocks is as follows: if the last block
[bn..b′

n) reached by our process on the nth stage is normal, then, for each i ∈ [1..n), this last
block can be sparse for color i only if the element xi was chosen by the process from an
almost sparse set S̄k defined in the corresponding block B = [bi..b

′
i) for level ℓi+1 = λk (this

level λk must be normal for B since the last block is normal). This behaviour corresponds to
our expectations outlined in the beginning of this section: whenever xi “hits” an “inherently
dense” set D̄ corresponding to the level ℓi+1 in the block B, it is guaranteed that the last

D. Kosolobov 19:11

block [bn..b′
n) will be dense for color i, provided this last block is normal. The idea is that

the abnormal blocks are unlikely to appear as last blocks in the process and we will be able
to restrict our attention only to normal blocks.

Probability to end up in an abnormal block. For i ∈ [1..n), denote by Bi all blocks that
could possibly be reached by the process on the ith stage of recursion. Let us estimate the
probability that the last block [bn..b′

n) produced by our process is abnormal as follows:
n−1∑
i=1

∑
B∈Bi

Pr
(

the process
reaches block B

)
· Pr

(
[bn..b′

n) ends up being abnormal
after the process reaches B

)
.

For each fixed i, the second sum is through disjoint events “the process reaches block B”, for
B ∈ Bi; thus, the sum of the probabilities for these events (with the fixed i) is 1. Therefore,
if we prove that, for the fixed i and any fixed B ∈ Bi, the probability of the event “[bn..b′

n)
ends up being abnormal after the process reaches B” is at most O(1

nn/4), then the total sum
is bounded as follows:
n−1∑
i=1

∑
B∈Bi

Pr
(

the process
reaches block B

)
·O

(
1

nn/4

)
=

n−1∑
i=1

O

(
1

nn/4

)
= O

(n

nn/4

)
≤ O

(
1

nn/8

)
. (1)

Suppose that the process reaches a block B on the ith stage of recursion. Case (i): it may
end up in an abnormal block [bn..b′

n) if ℓi+1 happens to be an abnormal level. The probability
of this is O(1

nn/2) since, as was shown, less than nn/2 of nn − 1 possible choices for the level
ℓi+1 are abnormal and ℓi+1 is chosen uniformly at random. Case (ii): the probability that
[bn..b′

n) ends up being abnormal while ℓi+1 is normal can be estimated as follows (the sum is
taken over all normal levels among λ1, . . . , λnn−1 defined for our fixed block B):∑

ℓ ∈ [λk..λk+1)
for normal λk

Pr(ℓn = ℓ) · Pr
(

[bn..b′
n) is abnormal

block of level ℓ

)
. (2)

Since the events “ℓn = ℓ” are disjoint, the sum of Pr(ℓn = ℓ) is 1 (note that Pr(ℓn = ℓ) = 0,
for ℓ unreachable on the nth stage). Therefore, if, for any normal λk and ℓ ∈ [λk..λk+1), we
estimate by O(1

nn/4) the probability that [bn..b′
n) ends up being an abnormal subblock of B

on level ℓ, then the sum (2) is upperbounded by O(1
nn/4).

Our random process is designed in such a way that, for any ℓ ∈ [λk..λk+1), it reaches on
the nth stage any reacheable level-ℓ subblock of B with equal probability. Since, for any
normal level λk, we have qλk

≥ 1 − 1
nn/4 , the fraction of abnormal subblocks of B on any

level ℓ ∈ [λk..λk+1) is at most 1
nn/4 . However, not all level-ℓ subblocks are reachable since the

process always ignores the leftmost block when it chooses the block for the next stage (for
instance, when we uniformly at random pick one of level-λk subblocks of B for the recursion
to stage i + 1, we cannot choose the leftmost subblock, as it is not located to the right of any
xi ∈ B). Since the number of subblocks for the choice is always at least nn, the dismissed
leftmost subblock renders unreachable at most a 1

nn fraction of level-ℓ subblocks of B. Such
dismissals happen for each of the stages i, i + 1, . . . , n − 1. Hence, the fraction of unreachable
level-ℓ subblocks of B is at most n

nn . Consequently, the probability that one of the (equally
probable) reachable level-ℓ subblocks of B is abnormal is at most 1

nn/4 /(1 − n
nn) = O(1

nn/4).
Adding cases (i) and (ii), we obtain the probability O(1

nn/2 + 1
nn/4) = O(1

nn/4) to reach
an abnormal block after reaching the block B, which, due to the sum (1), leads to the total
probability O(1

nn/8) that the last block [bn..b′
n) in the process ends up being abnormal.

CPM 2024

19:12 Simplified Tight Bounds for Monotone Minimal Perfect Hashing

Probability of correct coloring. Now we estimate the probability that the increasing size-n
sequence x1, . . . , xn generated by our process is correctly encoded by our fixed coloring of
[0..u), i.e., the color of xi is i, for each i ∈ [1..n]. Suppose that the process generates a sequence
x1, . . . , xn and, during its work, reaches levels ℓ1, . . . , ℓn and blocks [b1..b′

1), . . . , [bn..b′
n) such

that the block [bn..b′
n) is normal. For each i ∈ [1..n), let [bi..b

′
i) = S̄i ∪ D̄i be the described

above partition of level-ℓi+1 subblocks of [bi..b
′
i) into an almost sparse set S̄i and an “inherently

dense” set D̄i (we use the upper indices to avoid confusion with the notation S̄k, D̄k used
for the partitions on different levels ℓi+1, not on different stages as we do now). Then, the
sequence x1, . . . , xn might be correctly encoded by our fixed coloring of [0..u) only if we had
xi ∈ S̄i, for at least n

2 stages i ∈ [1..n), since otherwise the whole block [bn..b′
n) will be dense

for at least n
2 different colors from [1..n), lacking a room for color n to paint xn ∈ [bn..b′

n)
(here we rely on Remark 3 about normal blocks above).

According to this observation, the probability that the generated sequence is correctly
encoded can be estimated by the sum of the following numbers (a) and (b):
(a) the probability that [bn..b′

n) is abnormal,
(b) the probability that the sequence x1, . . . , xn is correctly encoded, subject to the condition

that xi ∈ S̄i, for at least n
2 stages i ∈ [1..n) of the process that produced x1, . . . , xn.

This estimation covers all possible generated sequences except those for which the process
ended up in a normal block [bn..b′

n) but less than n
2 stages i ∈ [1..n) had xi ∈ S̄i; but this

case can be dismissed since the probability for such sequences to be correctly encoded is zero,
as was observed above (they have no room for color n in [bn..b′

n)). We have already deduced
that (a) is O(1

nn/8). It remains to estimate (b) as 1
nΩ(n) .

Fix M ⊆ [1..n) such that |M | ≥ n
2 . Let us estimate the probability pM that the generated

sequence x1, . . . , xn is correctly encoded and satisfies the following condition: xi ∈ S̄i, for
i ∈ M , and xi ∈ D̄i, for i ̸∈ M , where i ∈ [1..n) are the stages of the process that produced
x1, . . . , xn. We then can upperbound (b) by

∑
M pM , where the sum is through all M ⊆ [1..n)

such that |M | ≥ n
2 . If we show that pM < 1

nΩ(n) , then this sum can be bounded by 2n

nΩ(n) ,
which is equal to 1

nΩ(n) . Indeed, for a fixed M and i ∈ M , when the process reaches the ith
stage of recursion, the probability that the randomly chosen xi belongs the set S̄i and has
color i is at most 2

n + 1
2n/8 ≤ 3

n since the set S̄i is almost sparse (note that the probability is
zero if S̄i = ∅). Then, the probability that xi belongs to S̄i and has color i, for all i ∈ M , is
at most (3

n)|M | ≤ (3
n)n/2 = 1

nΩ(n) .

References
1 S. Assadi, M. Farach-Colton, and W. Kuszmaul. Tight bounds for monotone minimal perfect

hashing. In Proc. Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
456–476. SIAM, 2023. doi:10.1137/1.9781611977554.ch2.

2 D. Belazzougui. Linear time construction of compressed text indices in compact space. In
Proceedings of the forty-sixth Annual ACM Symposium on Theory of Computing, pages 148–193,
2014. doi:10.1145/2591796.2591885.

3 D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Monotone minimal perfect hashing: searching
a sorted table with O(1) accesses. In Proc. SODA, pages 785–794. SIAM, 2009. doi:
10.1137/1.9781611973068.86.

4 D. Belazzougui, F. C. Botelho, and M. Dietzfelbinger. Hash, displace, and compress.
In European Symposium on Algorithms, pages 682–693. Springer, 2009. doi:10.1007/
978-3-642-04128-0_61.

5 D. Belazzougui, F. Cunial, J. Kärkkäinen, and V. Mäkinen. Linear-time string indexing
and analysis in small space. ACM Transactions on Algorithms (TALG), 16(2):1–54, 2020.
doi:10.1145/3381417.

https://doi.org/10.1137/1.9781611977554.ch2
https://doi.org/10.1145/2591796.2591885
https://doi.org/10.1137/1.9781611973068.86
https://doi.org/10.1137/1.9781611973068.86
https://doi.org/10.1007/978-3-642-04128-0_61
https://doi.org/10.1007/978-3-642-04128-0_61
https://doi.org/10.1145/3381417

D. Kosolobov 19:13

6 D. Belazzougui and G. Navarro. Alphabet-independent compressed text indexing. ACM
Transactions on Algorithms (TALG), 10(4):1–19, 2014. doi:10.1145/2635816.

7 D. Belazzougui and G. Navarro. Optimal lower and upper bounds for representing sequences.
ACM Transactions on Algorithms (TALG), 11(4):1–21, 2015. doi:10.1145/2629339.

8 D. Clark. Compact pat trees. PhD thesis, University of Waterloo, 1997.
9 R. Clifford, A. Fontaine, E. Porat, B. Sach, and T. Starikovskaya. Dictionary matching

in a stream. In Proc. ESA, volume 9294 of LNCS, pages 361–372. Springer, 2015. doi:
10.1007/978-3-662-48350-3_31.

10 T. M. Cover and J. A. Thomas. Information theory and statistics. Elements of Information
Theory, 1(1):279–335, 1991. doi:10.1002/0471200611.

11 M. L. Fredman and J. Komlós. On the size of separating systems and families of perfect hash
functions. SIAM Journal on Algebraic Discrete Methods, 5(1):61–68, 1984. doi:10.1137/
0605009.

12 M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst case
access time. Journal of the ACM, 31(3):538–544, 1984. doi:10.1145/828.1884.

13 T. Gagie, G. Navarro, and B. Prezza. Fully functional suffix trees and optimal text searching
in bwt-runs bounded space. Journal of the ACM (JACM), 67(1):1–54, 2020. doi:10.1145/
3375890.

14 R. Grossi, A. Orlandi, and R. Raman. Optimal trade-offs for succinct string indexes. In
Automata, Languages and Programming: 37th International Colloquium, ICALP 2010, Bor-
deaux, France, July 6-10, 2010, Proceedings, Part I 37, pages 678–689. Springer, 2010.
doi:10.1007/978-3-642-14165-2_57.

15 G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th Annual Symposium on
Foundations of Computer Science (FOCS), pages 549–554. IEEE, 1989. doi:10.1109/SFCS.
1989.63533.

16 K. Mehlhorn. On the program size of perfect and universal hash functions. In 23rd Annual
Symposium on Foundations of Computer Science (SFCS 1982), pages 170–175. IEEE, 1982.
doi:10.1109/SFCS.1982.80.

17 J. Radhakrishnan. Improved bounds for covering complete uniform hypergraphs. Information
Processing Letters, 41(4):203–207, 1992. doi:10.1016/0020-0190(92)90181-T.

CPM 2024

https://doi.org/10.1145/2635816
https://doi.org/10.1145/2629339
https://doi.org/10.1007/978-3-662-48350-3_31
https://doi.org/10.1007/978-3-662-48350-3_31
https://doi.org/10.1002/0471200611
https://doi.org/10.1137/0605009
https://doi.org/10.1137/0605009
https://doi.org/10.1145/828.1884
https://doi.org/10.1145/3375890
https://doi.org/10.1145/3375890
https://doi.org/10.1007/978-3-642-14165-2_57
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1109/SFCS.1982.80
https://doi.org/10.1016/0020-0190(92)90181-T

	1 Introduction
	2 Tight Upper Bounds
	3 From Data Structures to Colorings
	4 Coloring of Random Sequences
	5 Random Sequences on Large Universes
	5.1 Definition of the random process
	5.2 Analysis of the random process

