
Reconstructing General Matching Graphs
Amihood Amir #

Department of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
Georgia Tech, College of Computing, Atlanta, GA, USA

Michael Itzhaki #

Department of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel

Abstract
The classical pattern matching paradigm is that of seeking occurrences of one string in another,
where both strings are drawn from an alphabet set Σ. Motivated by many applications, algorithms
were developed for pattern matching where the matching relation is not necessarily the “=” relation.
Examples are pattern matching with “don’t cares”, approximate matching, less-than matching,
Cartesian-tree matching, order preserving matching, parameterized matching, degenerate matching,
function matching, and more. Some of the matchings above allow for efficient pattern matching
algorithms, while others do not.

Much work has not been done on categorization of the complexity of various string matching
queries based on the type of matching. For example, when can exact matching be done fast? When
can approximate matching be calculated fast? When can tandem or palindrome recognition be
efficiently calculated?

This paper defines the matching graph of a given string under a matching relation. We show
that the type of graph affects various string algorithms. The matching graph can also be a tool for
lower bounds. We provide a lower bound for finding palindromes in a general degenerate graph. We
also show some results in recognizing the minimum alphabet required for reconstructing a string
that presents a given matching graph.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases Pattern Matching, Matching Graphs, Reconstruction, N P-hardness

Digital Object Identifier 10.4230/LIPIcs.CPM.2024.2

Funding Amihood Amir : Partially supported by ISF grant 168/23 and BSF grant 2018-141.
Michael Itzhaki: Partially supported by ISF grant 168/23.

1 Introduction

In the classical pattern matching model, we seek occurrences of a string, or more generally,
a set of strings, in a distinguished string. All strings are comprised of symbols from an
alphabet set Σ. The basic problem in this paradigm is that of standard string matching, that
is, the problem of finding all occurrences of a pattern string of length m in a text string of
length n. This problem can be solved in O(n + m) time-independent of the alphabet size
|Σ| [15, 27,43].

While the exact matching paradigm, where a match means alphabet equality, is a
common and important one, historically, many problems were identified where a match
between symbols has a different meaning. The first such model was the pattern matching
with don’t cares, where a special symbol ϕ /∈ Σ is added, where ϕ matches every symbol
in Σ. As we will see, this changes the matching graph, and the matching relation is no
longer transitive. Fischer and Paterson [28, 34] showed that convolutions can solve this
problem efficiently. Convolutions have been useful in the case of less-than matching [8].
Here the alphabet is natural numbers, and a pattern letter p matches the text letter t if
p ≤ t. The new twist in this matching relation is that it is not symmetric. Approximate

© Amihood Amir and Michael Itzhaki;
licensed under Creative Commons License CC-BY 4.0

35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024).
Editors: Shunsuke Inenaga and Simon J. Puglisi; Article No. 2; pp. 2:1–2:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amir@cs.biu.ac.il
mailto:michaelitzhaki@gmail.com
https://doi.org/10.4230/LIPIcs.CPM.2024.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Reconstructing General Matching Graphs

matching seeks all pattern occurrences with errors. There are several algorithms for Hamming
distance errors, generally convolutions-based [1, 13], and dynamic programming algorithms
for Levenshtein edit distance [44]. In Cartesian Tree matching, two strings match if they
have the same Cartesian tree [46], and in order-preserving matching, two strings match if the
relative order of their elements is the same [30]. Parameterized Matching was introduced
by Brenda Baker [20]. In this matching, a text and pattern match if there is a bijection
that, when applied to the pattern alphabet, will match the text. In function matching, the
function applied to the pattern alphabet is a general function [14]. In degenerate string
matching, the alphabet consists of non-empty subsets of alphabet Σ [26, 31,35].

The various matchings mentioned above led to many different algorithms. The work
of [19] classifies regex-matching problems by their structure. However, except for the latter,
a systemic work on categorizing different matching types has not been performed. In this
paper, we propose a method of analyzing some matching relations, called the matching graph.
We give an example where a lower bound can be achieved due to the matching graph and
study some of the insights that the matching graph offers.

▶ Definition 1. Let M ⊆ Σ × Σ be a matching relation of elements in alphabet Σ. Let
S = S[1], ..., S[n] be a string over Σ. The Matching graph of S is the graph G = (V, E),
whose nodes are V = {1, ..., n} and where there is an edge ij if M(i, j).

▶ Example 2. For alphabet Σ = {a, b, c}, the matching graph of string S = a, a, b, a, b, b, c, c, b

is the graph consisting of the three cliques {1, 2, 4}, {3, 5, 6, 9} and {7, 8}.

▶ Example 3. Let Σ = {a, b}, and let ϕ be the don’t care symbol. Then the matching graph
of S = a, a, b, ϕ, b, a, ϕ, a can be seen in Fig. 1.

Figure 1 Matching Graph of a string with don’t cares.

Note that the graph is always a set of cliques when the matching relation is transitive, as
seen in Example 2. When the relation is symmetric, the graph is undirected; otherwise, it is
not.

Our contribution
In this paper, we consider the matching relation in a generic string. We prove that any
possible matching relation corresponds to a degenerate string, which implies lower bounds
on most degenerate string matching algorithms. We also show that the number of characters
required to reconstruct a degenerate string is tightly O(n2), as more characters introduce

A. Amir and M. Itzhaki 2:3

no new information, and some matching relations cannot be reconstructed with less than
O(n2) alphabet characters. We show that constructing a degenerate string from a matching
relation with the smallest possible alphabet is NP-hard.

2 Preliminaries

We begin with basic definitions and notation, generally following [29].
Let S = S[1]S[2] . . . S[n] be a string of length |S| = n over an ordered alphabet Σ. By ε we

denote the empty string. For two positions i and j on S, we denote by S[i..j] = S[i]S[i+1]..S[j]
the factor (sometimes called substring) of S that begins at position i and ends at position j

(it equals ε if j < i). A prefix of S is a factor that begins at position 1 (S[1..j]), and a suffix
is a factor that ends at position n (S[i..n]). We say that SR is the reversal of S, which is
S[n]S[n− 1]...S[1].

▶ Definition 4 (Index Matching Function). Let S be a string of length |S| = n. The
MS : [n]× [n]→ {0, 1} is the matching function of string S and MS(i, j) = 1 iff S[i] = S[j].
The matching function will be denoted as M if S is clear from the context.

The matching function of a standard string (as defined above) is transitive, reflexive, and
symmetric.

▶ Definition 5 (Palindrome). A palindrome is a string S that equals its reversal SR. Using
definition Definition 4, a palindrome is a string that ∀i,M(i, n− i) = 1. A palindrome factor
is a string factor P = S[i..j] such that P is a palindrome. A maximal palindromic factor
is a palindromic factor P = S[i..j] such that S[i − 1..j + 1] is either not defined or not a
palindrome.

▶ Definition 6 (Don’t care). The special character “don’t care”, denoted as ϕ is a character
that matches any other character, including itself. A string S having a don’t care at index m

satisfies ∀i < |S|,MS(m, i) =MS(i, m) = 1.

This paper addresses an interesting matching relation - equality in degenerate strings.

▶ Definition 7 (Degenerate string). Let Σ be an alphabet. S is called a degenerate string, if
S ∈ {P (Σ)/ϕ}∗, where P (Σ) is the power set of Σ.

The length of the string, n, is the number of characters (sets) within that string. The
size of the string, N , is

n∑
i=1
|S[i]|. We call the sets in S terminals and the characters in Σ,

elements. The empty set can not be a terminal.

▶ Example 8. Let Σ = [5] = {1, 2, 3, 4, 5}, and let S1 = {1, 4}{1, 5}{4}{1, 2, 3}, and
S2 = {1}{2}{5}{5}. The lengths of S1, S2, denoted respectively by n1, n2 are both 4.
However, the sizes, N1, N2 (resp.) are different, where N1 = 8 and N2 = 4.

▶ Definition 9 (Primitive terminal). Let c be a terminal of a degenerate string. We say that c

is primitive if |c| = 1.

▶ Definition 10 (Terminals equality). Let c1, c2 be two terminals of a degenerate string. We
say that c1 matches c2 if c1 ∩ c2 ̸= ∅. Throughout the paper, we denote terminals equality
between S[i] and S[j] as S[i] = S[j].

▶ Observation 11. Degenerate string matching where the only non-primitive terminal is Σ
is equivalent to string matching with don’t cares.

CPM 2024

2:4 Reconstructing General Matching Graphs

▶ Definition 12. Let G = (V, E) be an undirected graph, meaning that ∀i, j s.t. (i, j) ∈ E →
(j, i) ∈ E. An induced subgraph, or simply a subgraph G′ = (V ′, E′) of G is formed from a
subset of the vertices of the original graph, and all of the edges that connect vertices in the
subset. Formally, V ′ ⊆ V , ∀i, j, i ∈ V ′ ∧ j ∈ V ′ if and only if (i, j) ∈ E′.
A clique is a subgraph G′ = (V ′, E′) such that ∀i ̸= j ∈ V ′, (i, j) ∈ E′.

▶ Definition 13. The complete graph Kn is a clique with n vertices. A bipartite graph
G = (V1 ∪ V2, E) is a graph such that all vertices in E connect a vertex in V1 with a vertex
from V2, formally, ∀(i, j) ∈ E, either i ∈ V1, j ∈ V2 or i ∈ V2, j ∈ V1. The complete bipartite
graph Kn,m is a bipartite graph G = (V1 ∪ V2, E) such that |V1| = n, |V2| = m and E has all
possible edges under the bipartite restriction. Bipartite graphs have no odd-length cycles, and
therefore K3 is not a subgraph of Kn,m, for any n and m.

▶ Definition 14 (Edge Clique Cover). Let G = (V, E) be a graph. An edge clique cover of
G is a set of subgraphs of G, {(V1, E1), (V2, E2), ..., (Vm, Em)} such that E =

⋃m
i=1 Ei. The

edge clique cover number is the size of the smallest possible set that covers G. Deciding if a
graph can be covered with less than k cliques is NP-hard, and also hard to estimate.

3 Matching function in Pattern Matching

The standard definition of a string defines a string as an ordered array of characters, i.e.,
S ∈ Σ∗. However, the alphabet is not crucial for most string algorithms and can be replaced
by the numbers 1, 2, ..., |Σ|. This possible replacement is because most algorithms only
consider whether two characters are equal. This would not be true for algorithms considering
a more complicated relation between the characters, for example, DNA algorithms that can
predict a particular illness from a specific DNA subsequence or algorithms concerning the
value of the characters, for example, ordered matching or Cartesian tree matching.

We call algorithms that only concern characters equality alphabet comparison algorithms.
We may perceive the input to such algorithms as matching oracle M rather than a string S.

▶ Definition 15. A matching oracle M is a function M : [n] × [n] → {0, 1}, where ∀i, j

M(i, j) = 1 iff S[i] = S[j].

3.1 Matching Oracle Properties

While many algorithms claim to be comparison-based, most make additional assumptions
about the matching function. The most common assumption is for the the function M(i, j)
to define an equivalence relation, i.e.:
1. M(i, j) = M(j, i) (symmetric)
2. M(i, i) = 1 (reflexive)
3. M(i, j) = 1 ∧M(j, k) = 1→M(i, k) = 1 (transitive)

These assumptions work very well for standard equality. However, the last few decades
have prompted the evolution of pattern matching from a combinatorial solution of the
exact string matching problem to an area concerned with approximate matching of various
relationships motivated by computational molecular biology, computer vision, and complex
searches in digitized and distributed multimedia libraries [16,32].

A. Amir and M. Itzhaki 2:5

3.1.1 Parameterized strings
An important type of non-exact matching is the parameterized matching problem, which
was introduced by Baker [21,22]. Her main motivation lay in software maintenance, where
program fragments are to be considered “identical” even if variable names are different.
Therefore, strings under this model are comprised of symbols from two disjoint sets Σ and Π
containing fixed symbols and parameter symbols respectively. In this paradigm, one seeks
parameterized occurrences, i.e., exact occurrences up to renaming the pattern string parameter
symbols in the respective text location. This renaming is a bijection b : Π→ Π. An optimal
algorithm for exact parameterized matching appeared in [9]. It uses the KMP automaton for
a linear-time solution over fixed finite alphabet Σ. Approximate parameterized matching
was investigated in [17, 21, 37]. Idury and Schäffer [40] considered multiple matching of
parameterized patterns.

Parameterized matching has proven useful in other contexts as well. An interesting
problem is searching for images (e.g. [7, 18,47]). Assume, for example, that we are seeking
a given icon in any possible color map. If the colors were fixed, then this is an exact
two-dimensional pattern matching [6]. However, if the color map is different , the exact
matching algorithm will not find the pattern. A parameterized two-dimensional search is
precisely the algorithm needed. If, in addition, one is also willing to lose resolution, then a
two-dimensional function matching search should be used, where the renaming function is
not necessarily a bijection [5,14]. Another degenerate parameterized condition appears in
DNA matching. Because of the base pair bonding, exchanging A with T and C with G, in
both text and pattern, produces a match [38].

As defined, Parameterized matching is not an alphabet comparison matching. However,
it has been shown to be equivalent to exact matching on a prev array, which is a transitive
alphabet comparison matching. A prev is an array defined on a string S, where A[i] =
maxj<i{j | S[j] = S[i]}, or 0 if no such index exists [21].

3.1.2 Don’t cares
Pattern Matching with don’t cares is indeed an alphabet comparison matching. It can be
defined via a matching oracle, where the don’t care symbol ϕ satisfies ∀i, j s.t. S[i] = ϕ,
M(i, j) = 1. However, this relation is not an equivalence relation. M is not transitive.

▶ Example 16. Let S = aϕb. M(1, 2) = 1, M(2, 3) = 1 but M(1, 3) = 0.

However, the matching function is still quite structured even if the transitivity property
is omitted. For example, let i, j, k, w be distinct indices such that M(i, j) = M(j, k) =
M(k, w) = 1. In the don’t care settings, we know that M(i, k) = 1 or M(j, w) = 1. This is
true, because if M(i, k) = 0, then both S[i], S[k] ̸= ϕ, S[i] ̸= S[k], which means that S[j] = ϕ

and therefore M(j, w) = 1. Pattern matching with don’t cares has efficient solutions using
convolutions [28,34].

3.1.3 Less-than Matching
The matching with don’t cares is an example of a non-transitive alphabet comparison
matching relation. We do not know of any matching relation that is not reflexive.

Some non-symmetric alphabet comparison matching relations have been researched.
Subset matching [12] and less-than matching [8]. The less-than matching problem is:
Input: Text string T = T [1], ..., T [n] and pattern string P = P [1], ..., P [m] where T [i], P [i] ∈

N (the set of natural numbers).
Output: All locations i in T where T [i + k] ≥ P [k], k = 1, ..., m.

CPM 2024

2:6 Reconstructing General Matching Graphs

In words, every matched element of the pattern is not greater than the corresponding text
element. If the text and pattern are drawn schematically, we are interested in all positions
where the pattern lies below the text.

It turns out that convolutions could be used for efficient matching less-than matching.
However, by giving up the symmetry requirement, we may ambiguate some basic strings’
constructs - such as periods and palindromes. Therefore, in the remainder of this paper, we
will only consider symmetric matching functions.

In the next section, we consider the degenerate string matching problem, which generalizes
the don’t care matching problem.

4 Degenerate string detection

Generalized degenerate strings and elastic degenerate strings are motivated by problems in
Computational Biology. Much work has been done on efficient algorithms for matching as well
as lower bounds [2–4,23–26,31,35,41]. In this section we will focus on detecting a degenerate
string from a matching function. We will show that every symmetric matching graph has a
corresponding degenerate string. We will also show that reconstructing a degenerate string
from a matching function over a minimal alphabet is NP-hard, and we will eventually show
that for certain matching graphs, the degenerate string alphabet Σ is of quadratic order.
The following two theorems will be proven in this section.

▶ Definition 17. A degenerate string S is said to reconstruct a matching graph G if the
matching graph of S equals to G 1.

▶ Theorem 18. Every symmetric matching graph has a corresponding degenerate string.

▶ Theorem 19. Recovering a degenerate string over minimal alphabet from a symmetric
matching graph is NP-hard.

4.1 Matching graph representation
As we have seen, the matching function can be represented as a graph. One of the standard
representations of a dense graph is by storing an adjacency matrix. Storing the list of
neighbors for each vertices is more efficient if the graph is sparse. As we consider a symmetric
function, the graph is undirected.

Because each symmetric matching function is equivalent to an undirected graph, we
consider the problem of reconstructing a degenerate string from an arbitrary undirected
graph. We begin by showing the existence of such a reconstruction. We later prove that
finding a minimal alphabet is a hard problem.

4.2 Reconstructing a degenerate string from an undirected graph
There has been much work recently on reverse engineering data structures [10, 11, 33, 36,
39, 42, 45]. Reverse engineering determines whether a given input is a valid instance of a
particular data structure. We also refer to this as reconstructing the data structure. As we
have seen, reconstructing the string from a matching graph for simple equality matching is
simple. Each clique gives the indices of a unique symbol. Any graph that is not a collection
of disjointed cliques is an illegal data structure. The matching graph of a degenerate string
has the particular property that every undirected graph is legal. We now describe how, given
an undirected graph G, we reconstruct a degenerate string whose matching graph is G.

1 Not isomorphic, as nodes have significance

A. Amir and M. Itzhaki 2:7

1 2 3

4 5

6

7

(a) Matching graph, S is initialized
S = {}{}{}{}{}{}{}.

1 2 3

4 5

6

7

a b

c de

f
(b) All edges are labeled with a character
S = {a, c, e}{a, b, d}{b}{c, f}{d, e, f}{}{}.

1 2 3

4 5

6

7

a b

c de

f
(c) Empty sets are reconstructed
S = {a, c, e}{a, b, d}{b}{c, f}{d, e, f}{g}{h}.

Figure 2 Reconstructing a degenerate string from the matching graph using Algorithm 1. We
reconstruct with characters and not numbers to avoid confusion between edges and nodes.

Let G = (V, E) be an undirected graph, where V = [n] = {1, 2, ..., n} represent the indices
of the degenerate string, and an edge (i, j) exists if and only if the reconstructed string
matches between indices i and j, denoted as S[i] = S[j].

Algorithm 1 Reconstruct a degenerate string from an undirected graph.

Data: Undirected graph G = (V, E)
Result: Degenerate string S

1 S ← {{}, {}, ...{}} // Initialize the output degenerate string with |V |
empty sets

2 c← 1 for e = (i, j) ∈ E do
3 S[i].add(c)
4 S[j].add(c)
5 c← c + 1
6 for each empty s set in S do
7 s.add(c)
8 c← c + 1

The second For loop is necessary for the following reason. At the end of the first For
loop, we may have empty sets for any node that does not match any other node, and empty
sets are not allowed in degenerate strings. Thus, we finish the algorithm by adding a new
character for every such node, which is the only symbol in that set and does not occur
anywhere else. An example can be found at Figure 2.

▶ Lemma 20. Algorithm 1 reconstructs a degenerate string S with the same matching graph
as the input G = (V, E).

CPM 2024

2:8 Reconstructing General Matching Graphs

1 2 3

4 5

6

7

$1$1

$1

(a) First clique is colored
S = {$1}{}{}{$1}{$1}{}{}.

1 2 3

4 5

6

7

$2

$1

$2 $2$1

$1

(b) Second clique is colored
S = {$1, $2}{$2}{}{$1}{$1, $2}{}{}.

1 2 3

4 5

6

7

$2

$1

$2 $2

a

$1

$1

(c) Third trivial clique is colored with a regular
label, to distinguish it from non trivial cliques.
S = {$1, $2}{$2, a}{a}{$1}{$1, $2}{}{}.

1 2 3

4 5

6

7

$2

$1

$2 $2

a

$1

$1

(d) Empty sets are reconstructed
S = {$1, $2}{$2, a}{a}{$1}{$1, $2}{b}{c}.

Figure 3 Reconstructing a degenerate string from the matching graph of Figure 2, using cliques.

Proof. We show that S[i] = S[j] iff (i, j) ∈ E.
We first prove that for every edge (i, j), the terminals S[i] and S[j] match. If (i, j) is an

edge, then S[i] and S[j] both have the same character c, and therefore S[i] ∩ S[j] ̸= ϕ, hence
S[i] matches S[j].

We now prove that for every pair of indices i, j where S[i] matches S[j], the edge (i, j)
exists. If S[i] matches S[j], it means that S[i] ∩ S[j] ̸= ϕ. Let c ∈ S[i] ∩ S[j]. c was either
added to the algorithm in the first For loop or the second. It is clear that if c was added in
the first For loop, then (i, j) is an edge, but in the second loop, all the characters added are
unique, so it is impossible that both S[i] and S[j] have the same character that was added
in that loop. ◀

The above reconstruction algorithm is simple and linear on the input size but does not
produce a degenerate string with a minimal alphabet. Some graphs can be reconstructed to
a degenerate string over an alphabet of constant size, while the algorithm will produce a
quadratic size.

▶ Example 21. Consider the degenerate string {a}n, of length n and of size N = n. The
corresponding matching graph G is a clique of size n. However, after running Algorithm 1 on
a clique of size n, the resulting degenerate string will be {{1, 2, ..., n}, {1, n + 2, ...}, {2, n +
2, 2n + 3, ...}, ...}, a string of length n but of size N = n2.

Is there an efficient algorithm to reconstruct G = (V, E) using a minimal alphabet? The
answer is probably no, as we show that this problem is an NP-hard problem.

▶ Lemma 22. Let G = (V, E) be a matching graph, and let G′ = (V ′, E′) be an arbitrary
sub-clique of G. Applying Algorithm 1 on G′′ = (V, E/E′) and then adding a new character
$ for all vertices in V ′ is a valid degenerate string reconstruction.

A. Amir and M. Itzhaki 2:9

Proof. We will use Lemma 20 again. We need to prove that ∀i, j, S[i] = S[j] iff (i, j) ∈ E.
Lemma 20 shows that for every (i, j) ∈ E/E′, S[i] = S[j]. Also, for every (i, j) ∈ E′, we have
S[i] = S[j], as we required all of the characters participating in the clique to have a unique
new character $i. We handle the other side similarly. We have a common character for every
i, j where S[i] = S[j]. If the character is some $i, there must be an edge between S[i] and
S[j], as they participate in the same clique. Otherwise, the terms proof in Lemma 20 holds,
which completes the proof. ◀

▶ Lemma 23. Let G = (V, E) be a matching graph, and let G′ = (V ′, E′) be a subgraph of
G which is not a clique. If the reconstruction algorithm assigns the same character to all
indices in V ′, then the resulting degenerate string does not have G as a matching graph.

Proof. Let G = (V, E), G′ = (V ′, E′) be a graph and a subgraph as defined in the lemma.
Let i, j be vertices such that i, j ∈ V ′ but (i, j) /∈ E′. Such a pair must exist, as a subgraph
with only one vertex must be a clique, and a subgraph with more than one edge where all
distinct vertices are connected is a clique.

If the algorithm assigns all indices i, j in the subgraph G′ with the same character c, then
c ∈ S[i] ∩ S[j], which means that S[i] = S[j], but (i, j) /∈ E. ◀

▶ Observation 24. Lemma 22 can be applied iteratively to different cliques of G.

An example of Algorithm 1 with clique coloring can be found at Figure 3.

▶ Observation 25. Algorithm 1 applies Lemma 22 iteratively to all cliques of size 2, i.e.,
cliques having exactly two nodes and one edge.

▶ Observation 26. Let G = (V, E) be a matching graph, and let e ∈ E. Every algorithm
reconstructing a degenerate string from G will output a different string to G = (V, E) and
G′ = (V, E/{e}).

▶ Lemma 27. Given a graph G = (V, E) and a degenerate string S that reconstructs it, the
string S defines an Edge-Clique-Cover for G.

Proof. Let Σ be the alphabet of S. For every character σ ∈ Σ, all string-indices i1, i2, ..., ik

whose terminals S[ij] contain σ are connected in the matching graph G (by the definition of
reconstruction) and must form a clique (Lemma 23). Also, every edge (i, j) ∈ E corresponds
to at least one character in Σ (Observation 26), and therefore every character in Σ corresponds
to a clique in G, where the vertices are all terminal indices containing σ 2. ◀

▶ Observation 28. Reconstructing a degenerate string from a matching graph with an alphabet
of size k finds a Clique-Edge-Cover of size k to the matching graph, which is NP-hard.

Degenerate string equivalence
As seen at Observation 28, reconstructing a degenerate string from a matching function over
a minimal alphabet is hard. However, reconstructing a degenerate string without limiting
the resulting alphabet size is easy. We consider two different degenerate strings that have
the same matching relation as self-equivalent. As shown in Example 21, every degenerate
string can be rewritten as an equivalent string with at most O(n2) characters and a maximal
terminal size of n− 1.

2 Some cliques can be sub-cliques of other cliques.

CPM 2024

2:10 Reconstructing General Matching Graphs

4.3 Constructing the matching function
We have defined the matching function and matching graph and will use it to prove some
lower bounds. Before we proceed, we discuss the complexity of constructing the matching
graph. We show that it is at least as hard as boolean matrix multiplication.

▶ Lemma 29. Let S be a degenerate string of length n over an ordered alphabet Σ =
{1, 2, ..., k}. Let d(S[i]) be the indicator of S[i], i.e., a binary vector w = d(S[i]) where
w[i] = 1 iff i ∈ S[i], and let D be a matrix

D =

d(S[1])
d(S[2])

...
d(S[n])

The matching graph of S is G = ({1, 2, ..., n}, E), where E = {(i, j) | (D ×DT)i,j = 1}.

Proof. The vertices of the matching graph are always defined as [n]. An edge (i, j) exists if
and only if S[i] = S[j]. The element (D ×DT)i,j equals to d(S[i]) · d(S[j]), and the boolean
inner product of binary vectors v, w equals one if the vectors are orthogonal, and in our
construction it means that S[i] = S[j]. ◀

▶ Lemma 30. If finding the matching graph of a degenerate string S of length 2n and size
O(n2) can be performed in time f(n), then Boolean Matrix Multiplication can be computed
in time O(f(n)).

Proof. Let us denote by G = (V, E) the matching graph constructed from S.
Let A, B be boolean matrices of size n × n. We want to compute C = A × B in time

f(n).
Let S be a degenerate string of length 2n over numbers alphabet [n] = {1, 2, ..., n}. We

rewrite:

A =

v1
v2
...

vn

 , B =
[
u1, un, . . . , un

]
, C = A×B =

v1 · u1, v1 · u2, . . . v1 · un

v2 · u1, v2 · u2, . . . v2 · un

...
vn · u1, vn · u2, . . . vn · un

We choose the terminals of S to be the following:

S[i] =
{

vi, if i ≤ n

ui−n, otherwise.

Regarding only the elements of v, u and not their vector type. 3

Let D be the matrix defined in Lemma 29. The edges of the matching graph of S are
described by D × DT . Moreover, (D × DT)i,n+j = vi · uj , and therefore C[i][j] = 1 iff
(i, j + n) ∈ E, hence, completing the proof. ◀

3 In the definition of S[i] the elements of A are row vectors and the elements of B are column vectors.
However, in our definition of degenerate strings, row and column vectors have exactly the same meaning,
therefore the direction can be altogether ignored.

A. Amir and M. Itzhaki 2:11

5 Palindromes and degenerate strings

In the previous section, we discussed the degenerate string matching problem and showed
that in a degenerate string S over an arbitrary alphabet, there are no restrictions on the
edges of the matching graph G, whereas, in a regular string, there is a very rigid structure to
the graph.

In this subsection, we show how the matching graph can be used to prove unconditional
lower bounds for finding maximal palindromes in a degenerate string.

▶ Lemma 31. Let S be an arbitrary degenerate string. A comparison-based algorithm A

cannot find all longest palindromes of S using less than O(n2) time.

Proof. Let us assume that we have a comparison-based algorithm A that can find all longest
palindromes in a degenerate string S using less than O(n2) time.

Let S be a degenerate string of length n such that S has palindromes of length exactly
n/4 in all centers that fit such a long palindrome. Also, let us assume that no other
palindromes exist within S. Such a construction is achievable from Theorem 18. There are
O(n) palindromes of size O(n), so comparing all indices within maximal palindromes takes
O(n2) work. However, the algorithm does not perform O(n2) work, so there is a comparison
S[i], S[j] that lays within a maximal palindrome that is not checked, so a similar string S̃

where S̃[i] ̸= S̃[j], and otherwise is identical to S. Running A on S̃ will result in the same
maximal palindromes array, but one of its palindromes is shorter. ◀

The above lemma, in effect, means that all edges in the matching graph must be examined
to find the maximum palindrome. The reason is that there are no conditions on the edges of
the graph, so one may not infer an edge by knowing other edges.

A conditional lower bound for finding all maximal palindromes from a degenerate string
was given by [3]. Recall:

▶ Theorem 32. Given a degenerate string of length 4n over an alphabet of size σ = ω(logn),
all maximal GD palindromes cannot be computed in O(n2−ϵ · σO(1)) time, for any ϵ > 0,
unless the Strong Exponential Time Hypothesis fails.

The difference between M. Alzamel et al. theorem and ours, is that theirs shows a
conditional lower bound on SETH, given a degenerate string. At the same time, we give an
unconditional lower bound given a general matching graph. Of course, our proof relies on the
fact that any general graph is a matching graph of some degenerate string. Our construction
requires a quadratic size alphabet. For fixed-sized finite alphabets, the situation may be
different. We are aware that, given a fixed finite alphabet, it is not hard to find algorithms
that run in time Õ(n2) and find all maximal palindromes [4]. However, in that later case,
the input size is not quadratic in n, but rather linear. The question is whether our lower
bound applies in this case, i.e. can general graphs be matching graphs of degenerate strings
over finite alphabets?

▶ Observation 33. Given a matching graph G = (V, E) of any degenerate string, all maximal
palindromes can be found in time O(n2) by checking maximal palindrome around all possible
centers.

We show in Lemma 31 that O(n2) work is always required in the general case, and
in Theorem 32 that O(n2) work is required under the SETH assumption. Given the matching
graph, we also see in Observation 33 that exactly O(n2) is an upper bound. Therefore,

CPM 2024

2:12 Reconstructing General Matching Graphs

building the matching graph is at least as hard as finding all maximal palindromes on the
general case and at least as hard as finding all maximal palindromes in degenerate strings
with an alphabet of size ω(logn) under the SETH assumption.

We show that a quadratic number of characters is necessary to reconstruct a general
matching graph.

▶ Lemma 34. There exist matching graphs G = (V, E) that cannot be reconstructed with
less than an alphabet Σ of size less than O(|V |2).

Proof. Consider the complete bipartite graph Kn,n. This graph is triangle-free and has
a quadratic number of edges. As every character in the reconstructed degenerate string
corresponds to a clique, and every clique has exactly one edge, there must be a quadratic
number of cliques in the clique cover of the graph, hence a quadratic number of characters in
any degenerate string S reconstructing G. ◀

The conclusion from all the above is that we have an unconditional lower bound for
finding maximal palindromes in general graphs. The bound is the number of edges in the
matching graph, O(n2). We also know that general matching graphs imply degenerate strings
over alphabets of size O(n2). It may look like we have a tight algorithm, but this is not the
case. Our algorithm has two stages:
1. Construct the matching graph G = (V, E) from the degenerate string.
2. Use the matching graph to find all palindromes in time O(|E|).
Indeed, one may construct the matching graph in linear time when the alphabet is finite,
but then we are not sure that the matching graph is general, and therefore, the lower bound
on finding the palindrome does not apply. Consider the following example:

▶ Example 35. Let S be a degenerate string over binary alphabet {a, b}. Every string
element is either {a}, {b} or {a, b}. Since {a, b} matches both {a} and {b}, the problem
of finding palindromes in string S is equivalent to the problem of finding palindromes in
a regular string over binary alphabets with don’t cares. As was seen in Example 3, the
matching graph in this case is well structured. Hence, there may not be a need to traverse
all edges. We also know that pattern matching with don’t cares has efficient solutions using
convolutions. Accordingly, it may be the case that finding all palindromes in regular strings
over binary alphabets with don’t care has more efficient solutions than the quadratic.

In the case of alphabets of size O(n2) (quadratic alphabets), the lower bound applies,
and we have an O(n2) time algorithm for finding palindromes that matches the lower bound,
but that algorithm assumes a given matching graph. We have shown a conditional lower
bound for constructing the matching graph of a degenerate string over a quadratic alphabet
as bounded by the complexity of Boolean matrix multiplication, so our algorithm’s time is
now dependent on the time to construct the matching graph.

6 Conclusion and Open Problems

We have shown a simple data structure, the Matching Graph, that gives information on the
matching relation of a pattern matching problem. We can infer from the graph whether a
relation is transitive or symmetric. We also show that the graph may be useful for finding
lower bounds, as in finding palindromes in degenerate strings.

Some very interesting open problems remain. An important one is finding an optimal
algorithm for constructing the matching graph of degenerate strings. Such an algorithm will
immediately imply an optimal algorithm for finding all palindromes in a degenerate string.
This problem is especially relevant for small alphabets (O(log n)), where no lower bounds
are known.

A. Amir and M. Itzhaki 2:13

Another intriguing problem is finding optimal algorithms for finding palindromes in
degenerate strings over a fixed finite alphabet. A notorious example is finding all palindromes
in a string over a binary alphabet, with don’t cares.

Finally, given a degenerate string over a very large alphabet (Ω(n2)), we know that there
is an equivalent degenerate string over an O(n2)-size alphabet. We have shown that finding
an equivalent degenerate string with the minimal alphabet is NP-hard. However, it is easy
to construct an equivalent degenerate string over a O(n2)-size alphabet in time N + n2|Σ|.
Can it be done faster?

References
1 K. Abrahamson. Generalized string matching. SIAM J. Comp., 16(6):1039–1051, 1987.
2 M. Alzamel, L. A. K. Ayad, G. Bernardini, R. Grossi, C. S. Iliopoulos, N. Pisanti, S. P. Pissis,

and G. Rosone. Degenerate string comparison and applications. In Proc. 18th International
Workshop on Algorithms in Bioinformatics (WABI), volume 113 of LIPIcs, pages 21:1–21:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPICS.WABI.2018.21.

3 M. Alzamel, L. A. K. Ayad, G. Bernardini, R. Grossi, C. S. Iliopoulos, N. Pisanti, S. P. Pissis,
and G. Rosone. Comparing degenerate strings. Fundam. Informaticae, 175(1-4):41–58, 2020.
doi:10.3233/FI-2020-1947.

4 M. Alzamel, C. Hampson, C. S. Iliopoulos, Z. Lim, S. P. Pissis, D. Vlachakis, and S. Watts.
Maximal degenerate palindromes with gaps and mismatches. Theor. Comput. Sci., 978:114182,
2023. doi:10.1016/J.TCS.2023.114182.

5 A. Amir, A. Aumann, M. Lewenstein, and E. Porat. Function matching. SIAM Journal on
Computing, 35(5):1007–1022, 2006.

6 A. Amir, G. Benson, and M. Farach. An alphabet independent approach to two dimensional
pattern matching. SIAM J. Comp., 23(2):313–323, 1994.

7 A. Amir, K. W. Church, and E. Dar. Separable attributes: a technique for solving the
submatrices character count problem. In Proc. 13th ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 400–401, 2002.

8 A. Amir and M. Farach. Efficient 2-dimensional approximate matching of half-rectangular
figures. Information and Computation, 118(1):1–11, April 1995.

9 A. Amir, M. Farach, and S. Muthukrishnan. Alphabet dependence in parameterized matching.
Information Processing Letters, 49:111–115, 1994.

10 A. Amir, E. Kondratovsky, G. M. Landau, S. Marcus, and D. Sokol. Reconstructing paramet-
erized strings from parameterized suffix and LCP arrays. Theor. Comput. Sci., 981:114230,
2024. doi:10.1016/J.TCS.2023.114230.

11 A. Amir, E. Kondratovsky, and A. Levy. On suffix tree detection. In Proc. 30th Int. Symp.
on String Processing and Information Retrieval (SPIRE), volume 14240 of Lecture Notes in
Computer Science, pages 14–27. Springer, 2023. doi:10.1007/978-3-031-43980-3_2.

12 A. Amir, M. Lewenstein, and E. Porat. Approximate subset matching with “don’t care”s. In
Proc. 12th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 305–306, 2001.

13 A. Amir, M. Lewenstein, and E. Porat. Faster algorithms for string matching with k mismatches.
J. Algorithms, 50(2):257–275, 2004.

14 A. Amir and I. Nor. Generalized function matching. J. of Discrete Algorithms, 5(3):514–523,
2007.

15 O. Amir, A. Amir, D. Sarne, and A. Fraenkel. On the practical power of automata in pattern
matching. SN Computer Science, 2024. to appear.

16 A. Apostolico and Z. Galil (editors). Pattern Matching Algorithms. Oxford University Press,
1997.

17 A. Apostolico, M. Lewenstein, and P. Erdös. Parameterized matching with mismatches.
Journal of Discrete Algorithms, 5(1):135–140, 2007.

CPM 2024

https://doi.org/10.4230/LIPICS.WABI.2018.21
https://doi.org/10.3233/FI-2020-1947
https://doi.org/10.1016/J.TCS.2023.114182
https://doi.org/10.1016/J.TCS.2023.114230
https://doi.org/10.1007/978-3-031-43980-3_2

2:14 Reconstructing General Matching Graphs

18 G.P. Babu, B.M. Mehtre, and M.S. Kankanhalli. Color indexing for efficient image retrieval.
Multimedia Tools and Applications, 1(4):327–348, November 1995.

19 Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match?
In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, pages
457–466, December 2016. doi:10.1109/FOCS.2016.56.

20 B. S. Baker. A theory of parameterized pattern matching: algorithms and applications. In
Proc. 25th Annual ACM Symposium on the Theory of Computation, pages 71–80, 1993.

21 B. S. Baker. Parameterized pattern matching: Algorithms and applications. Journal of
Computer and System Sciences, 52(1):28–42, 1996.

22 B. S. Baker. Parameterized duplication in strings: Algorithms and an application to software
maintenance. SIAM Journal on Computing, 26(5):1343–1362, 1997.

23 G. Bernardini, E. Gabory, S. P. Pissis, L. Stougie, M. Sweering, and V. Zuba. Elastic-
degenerate string matching with 1 error. In Proc. 15th Latin American symposium on
Theoretical Informatics (LATIN), volume 13568 of Lecture Notes in Computer Science, pages
20–37. Springer, 2022. doi:10.1007/978-3-031-20624-5_2.

24 G. Bernardini, P. Gawrychowski, N. Pisanti, S. P. Pissis, and G. Rosone. Even faster
elastic-degenerate string matching via fast matrix multiplication. In Proc. 46th International
Colloquium on Automata, Languages, and Programming (ICALP), volume 132 of LIPIcs, pages
21:1–21:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.
ICALP.2019.21.

25 G. Bernardini, P. Gawrychowski, N. Pisanti, S. P. Pissis, and G. Rosone. Elastic-degenerate
string matching via fast matrix multiplication. SIAM J. Comput., 51(3):549–576, 2022.
doi:10.1137/20M1368033.

26 G. Bernardini, N. Pisanti, S. P. Pissis, and G. Rosone. Approximate pattern matching on elastic-
degenerate text. Theor. Comput. Sci., 812:109–122, 2020. doi:10.1016/J.TCS.2019.08.012.

27 R.S. Boyer and J.S. Moore. A fast string searching algorithm. Comm. ACM, 20:762–772, 1977.
28 P. Clifford and R. Clifford. Simple deterministic wildcard matching. Information Processing

Letters, 101(2):53–54, 2007.
29 M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge University

Press, 2007.
30 M. Crochemore, C. S. Iliopoulos, T. Kociumaka, M. Kubica, A. Langiu, S. P. Pissis, J. Ra-

doszewski, W. Rytter, and T. Walen. Order-preserving indexing. Theor. Comput. Sci.,
638:122–135, 2016.

31 M. Crochemore, C. S. Iliopoulos, R. Kundu, M. Mohamed, and F. Vayani. Linear algorithm
for conservative degenerate pattern matching. Eng. Appl. Artif. Intell., 51:109–114, 2016.
doi:10.1016/J.ENGAPPAI.2016.01.009.

32 M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.
33 J.P. Duval, T. Lecroq, and A. Lefebvre. Efficient validation and construction of border arrays

and validation of string matching automata. RAIRO Theor. Informatics Appl., 43(2):281–297,
2009.

34 M.J. Fischer and M.S. Paterson. String matching and other products. Complexity of Compu-
tation, R.M. Karp (editor), SIAM-AMS Proceedings, 7:113–125, 1974.

35 E. Gabory, N. M. Mwaniki, N. Pisanti, S. P. Pissis, J. Radoszewski, M. Sweering, and W. Zuba.
Comparing elastic-degenerate strings: Algorithms, lower bounds, and applications. In 34th
Symp. on Combinatorial Pattern Matching, CPM, volume 259 of LIPIcs, pages 11:1–11:20.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.CPM.2023.11.

36 P. Gawrychowski, A. Jez, and L. Jez. Validating the knuth-morris-pratt failure function, fast
and online. Theory Comput. Syst., 54(2):337–372, 2014.

37 C. Hazay, M. Lewenstein, and D. Sokol. Approximate parameterized matching. In Proc. 12th
Annual European Symposium on Algorithms (ESA 2004), pages 414–425, 2004.

38 J. Holub, W. F. Smyth, and S. Wang. Fast pattern-matching on indeterminate strings. J.
Discrete Algorithms, 6(1):37–50, 2008.

https://doi.org/10.1109/FOCS.2016.56
https://doi.org/10.1007/978-3-031-20624-5_2
https://doi.org/10.4230/LIPICS.ICALP.2019.21
https://doi.org/10.4230/LIPICS.ICALP.2019.21
https://doi.org/10.1137/20M1368033
https://doi.org/10.1016/J.TCS.2019.08.012
https://doi.org/10.1016/J.ENGAPPAI.2016.01.009
https://doi.org/10.4230/LIPICS.CPM.2023.11

A. Amir and M. Itzhaki 2:15

39 T. I, S. Inenaga, H. Bannai, and M. Takeda. Verifying and enumerating parameterized border
arrays. Theor. Comput. Sci., 412(50):6959–6981, 2011.

40 R.M. Idury and A.A Schäffer. Multiple matching of parameterized patterns. In Proc. 5th
Combinatorial Pattern Matching (CPM), volume 807 of LNCS, pages 226–239. Springer-Verlag,
1994.

41 C. S. Iliopoulos, R. Kundu, and S. P. Pissis. Efficient pattern matching in elastic-degenerate
strings. Inf. Comput., 279:104616, 2021. doi:10.1016/J.IC.2020.104616.

42 J. Kärkkäinen, M. Piatkowski, and S. J. Puglisi. String inference from longest-common-prefix
array. In Proc. 44th Intl. Coll. on Automata, Languages, and Programming, ICALP, volume 80
of LIPIcs, pages 62:1–62:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

43 D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM J. Comp.,
6:323–350, 1977.

44 G.M. Landau and U. Vishkin. Efficient string matching in the presence of errors. Proc. 26th
IEEE FOCS, pages 126–126, 1985.

45 Y. Nakashima, T. Okabe, T. I, S. Inenaga, H. Bannai, and M. Takeda. Inferring strings from
lyndon factorization. Theor. Comput. Sci., 689:147–156, 2017.

46 S.G. Park, M. Bataa, A. Amir, G.M. Landau, and K. Park. Finding patterns and periods in
cartesian tree matching. Theoretical Computer Sciencr, 845:181–197, 2020.

47 M. Swain and D. Ballard. Color indexing. International Journal of Computer Vision, 7(1):11–
32, 1991.

CPM 2024

https://doi.org/10.1016/J.IC.2020.104616

	1 Introduction
	2 Preliminaries
	3 Matching function in Pattern Matching
	3.1 Matching Oracle Properties
	3.1.1 Parameterized strings
	3.1.2 Don't cares
	3.1.3 Less-than Matching

	4 Degenerate string detection
	4.1 Matching graph representation
	4.2 Reconstructing a degenerate string from an undirected graph
	4.3 Constructing the matching function

	5 Palindromes and degenerate strings
	6 Conclusion and Open Problems

