
Subsequences with Generalised Gap Constraints:
Upper and Lower Complexity Bounds
Florin Manea #

Computer Science Department and CIDAS, Universität Göttingen, Germany

Jonas Richardsen #

Computer Science Department and CIDAS, Universität Göttingen, Germany

Markus L. Schmid #

Humboldt-Universität zu Berlin, Berlin, Germany

Abstract
For two strings u, v over some alphabet A, we investigate the problem of embedding u into w as a
subsequence under the presence of generalised gap constraints. A generalised gap constraint is a
triple (i, j, Ci,j), where 1 ≤ i < j ≤ |u| and Ci,j ⊆ A∗. Embedding u as a subsequence into v such
that (i, j, Ci,j) is satisfied means that if u[i] and u[j] are mapped to v[k] and v[ℓ], respectively, then
the induced gap v[k + 1..ℓ − 1] must be a string from Ci,j . This generalises the setting recently
investigated in [Day et al., ISAAC 2022], where only gap constraints of the form Ci,i+1 are considered,
as well as the setting from [Kosche et al., RP 2022], where only gap constraints of the form C1,|u|

are considered.
We show that subsequence matching under generalised gap constraints is NP-hard, and we

complement this general lower bound with a thorough (parameterised) complexity analysis. Moreover,
we identify several efficiently solvable subclasses that result from restricting the interval structure
induced by the generalised gap constraints.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Parameterized complexity and exact algorithms; Theory of computation
→ Formal languages and automata theory

Keywords and phrases String algorithms, subsequences with gap constraints, pattern matching,
fine-grained complexity, conditional lower bounds, parameterised complexity

Digital Object Identifier 10.4230/LIPIcs.CPM.2024.22

Funding Florin Manea: Supported by the German Research Foundation (Deutsche Forschungsge-
meinschaft, DFG) in the Heisenberg programme, project number 466789228.
Markus L. Schmid: Supported by the German Research Foundation (Deutsche Forschungsgemeinsch-
aft, DFG) – project number 522576760 (gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
– Projektnummer 522576760).

1 Introduction

For a string v = v1v2 . . . vn, where each vi is a single symbol from some alphabet Σ,
any string u = vi1vi2 . . . vik

with k ≤ n and 1 ≤ i1 < i2 < . . . < ik ≤ n is called a
subsequence (or scattered factor or subword) of v (denoted by u ⪯ v). This is formalised by
the embedding from the positions of u to the positions of v, i. e., the increasing mapping
e : {1, 2, . . . , k} → {1, 2, . . . , n} with j 7→ ij (we use the notation u ⪯e v to denote that u

is a subsequence of v via embedding e). For example, the string a b a c b b a has among its
subsequences a a a, a b c a, c b a, and a b a b b a. With respect to a a a, there exists just one
embedding, namely 1 7→ 1, 2 7→ 3, and 3 7→ 7, but there are two embeddings for c b a.

This classical concept of subsequences is employed in many different areas of computer
science: in formal languages and logics (e. g., piecewise testable languages [54, 55, 29, 30,
31, 47], or subword order and downward closures [26, 38, 37, 59]), in combinatorics on

© Florin Manea, Jonas Richardsen, and Markus L. Schmid;
licensed under Creative Commons License CC-BY 4.0

35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024).
Editors: Shunsuke Inenaga and Simon J. Puglisi; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:florin.manea@cs.informatik.uni-goettingen.de
https://orcid.org/0000-0001-6094-3324
mailto:j.richardsen@stud.uni-goettingen.de
mailto:MLSchmid@MLSchmid.de
https://orcid.org/0000-0001-5137-1504
https://doi.org/10.4230/LIPIcs.CPM.2024.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Matching Subsequences with Generalised Gap Constraints

words [49, 23, 40, 39, 52, 44, 50, 51], for modelling concurrency [48, 53, 12], in database
theory (especially event stream processing [4, 25, 60, 33, 34, 24]). Moreover, many classical
algorithmic problems are based on subsequences, e. g., longest common subsequence [6] or
shortest common supersequence [43] (see [3, 22] and the survey [36], for recent results on
string problems concerned with subsequences). Note that the longest common subsequence
problem, in particular, has recently regained substantial interest in the context of fine-grained
complexity (see [10, 11, 1, 2]).

In this paper, we are concerned with the following special setting of subsequences recently
introduced in [17]. If a string u is a subsequence of a string v via an embedding e, then
this embedding e also induces |u| − 1 so-called gaps, i. e., the (possibly empty) factors
ve(i)+1ve(i)+2 . . . ve(i+1)−1 of v that lie strictly between the symbols where u is mapped to.
For example, a c b ⪯e a b a c b b a with e being defined by 1 7→ 1, 2 7→ 4, and 3 7→ 6 induces
the gaps b a and b. We can now restrict the subsequence relation by adding gap constraints
as follows. A string u is accompanied by |u| − 1 gap constraints C1, C2, . . . , C|u|−1 ⊆ Σ∗, and
u is a valid subsequence of a string v under these gap constraints, if u ⪯e v for an embedding
e that induces gaps from the gap constraints, i. e., the ith gap is in Ci.

Such gap-constrained subsequences allow to model situations for which classical sub-
sequences are not expressive enough. For example, if we model concurrency by shuffling
together strings that represent threads on a single processor, then fairness properties of a
scheduler usually imply that the gaps of these subsequences are not huge. Or assume that
we compute an alignment between two strings by computing a long common subsequence.
Then it is not desirable if roughly half of the positions of the common subsequence are
mapped to the beginning of the strings, while the other half is mapped to the end of the
strings, with a huge gap (say thousands of symbols) in between. In fact, an overall shorter
common subsequence that does not contain such huge gaps seems to induce a more reasonable
alignment (this setting is investigated in [3]). Another example is complex event processing:
Assume that a log-file contains a sequence of events of the run of a large system. Then we
might query this string for the situation that between some events of a job A only events
associated to a job B appear (e. g., due to unknown side-effects this leads to a failure of job
A). This can be modeled by embedding a string as a subsequence such that the gaps only
contain symbols from a certain subset of the alphabet, i. e., the events associated to job B

(such subsequence queries are investigated in [33, 34, 24]).
In [17], two types of gap constraints are considered: Length constraints C = {w ∈

Σ∗ | ℓ ≤ |w| ≤ k}, and regular constraints where C is just a regular language over Σ∗,
as well as combinations of both. In a related paper, [35], the authors went in a slightly
different direction, and were interested in subsequences appearing in bounded ranges, which
is equivalent to constraining the length of the string occurring between the first and last
symbol of the embedding, namely ve(1)+1ve(i)+2 . . . ve(m)−1. In this paper, we follow up on
the work of [17, 35], but significantly generalise the concept of gap constraints. Assume that
u ⪯e v. Instead of only considering the gaps given by the images of two consecutive positions
of u, we consider each string ve(i)+1ve(i)+2 . . . ve(j)−1 of v as a gap, where i, j ∈ {1, 2, . . . , |u|}
with i < j (note that these general gaps also might contain symbols from v that correspond to
images of e, namely e(i + 1), e(i + 2), . . . , e(j − 1)). For example, a b a c ⪯e b a a b b c a c c a b
with e defined by 1 7→ 2, 2 7→ 5, 3 7→ 7 and 4 7→ 9 induces the following gaps: The (1, 2)-gap
a b, the (2, 3)-gap c, the (3, 4)-gap c, the (1, 3)-gap a b b c, the (2, 4)-gap c a c, and the
(1, 4)-gap a b b c a c. In this more general setting, we can now add gap-constraints in an
analogous way as before. For example, the gap constraint C2,4 = {a, c}∗ for the (2, 4)-gap,
the gap constraint C1,4 = {w ∈ Σ∗ | 3 ≤ |w| ≤ 5} for the (1, 4)-gap and the gap constraint

F. Manea, J. Richardsen, and M. L. Schmid 22:3

C2,3 = {cn | n ≥ 1} for the (2, 3)-gap. Under these gap-constraints, the embedding e

defined above is not valid: The gap constraints C2,4 and C2,3 are satisfied, but the (1, 4)-gap
a b b c a c is too long for gap constraint C1,4. However, changing 4 7→ 9 into 4 7→ 8 yields an
embedding that satisfies all gap constraints.

Our Contribution. We provide an in-depth analysis of the complexity of the matching
problem associated with the setting explained above, i. e., for given strings u, v and a set
C of generalised gap-constraints for u, decide whether or not u ⪯e v for an embedding e

that satisfies all constraints in C. We concentrate on two different kinds of constraints:
semilinear constraints of the form {w ∈ Σ∗ | |w| ∈ S}, where S is a semilinear set, and
regular constraints.

In general, this matching problem is NP-complete for both types of constraints (demon-
strating a stark contrast to the simpler setting of gap constraints investigated in [17, 35]),
and this even holds for binary alphabets and if each semilinear constraint has constant
size, and also if every regular constraint is represented by an automaton with a constant
number of states. On the other hand, if the number of constraints is bounded by a constant,
then the matching problem is solvable in polynomial-time, but, unfortunately, we obtain
W[1]-hardness even if the complete size |u| is a parameter (also for both types of constraints).
An interesting difference in complexity between the two types of constraints is pointed out
by the fact that for regular constraints the matching problem is fixed-parameter tractable if
parameterised by |u| and the maximum size of the regular constraints (measured in the size
of a DFA), while for semilinear constraints this variant stays W[1]-hard.

We then show that structurally restricting the interval structure induced by the given
constraints yields polynomial-time solvable subclasses. Moreover, if the interval structure is
completely non-intersecting, then we obtain an interesting subcase for which the matching
problem can be solved in time O(nω|C|), where O(nω) is the time needed to multiply two
n × n Boolean matrices. We complement this result by showing that an algorithm with
running time O(|w|g|C|h) with g + h < 3 would refute the strong exponential time hypothesis.
While this is not a tight lower bound, we wish to point out that, due to the form of our
algorithm, which boils down to performing O(|C|) matrix multiplications, a polynomially
stronger lower bound would have proven that matrix multiplication in quadratic time is not
possible.

Related Work. Our work extends [17, 35]. However, subsequences with various types of
gap constraints have been considered before, mainly in the field of combinatorial pattern
matching with biological motivations (see [7, 41, 42, 27] and [5, 13] for more practical papers).

2 Preliminaries

Let N = {1, 2, . . . }, N0 = N ∪ {0}. For m, n ∈ N0 let [m, n] = {k ∈ N0 | m ≤ k ≤ n} =
{m, . . . , n} and [n] = [1, n]. For some alphabet Σ and some length n ∈ N0 we define Σn as the
set of all words of length n over Σ (with Σ0 only containing the empty word ε). Furthermore
Σ∗ :=

⋃
n∈N0

Σn is the set of all words over Σ. For some w ∈ Σ∗, |w| is the length of w, w[i]
denotes the i-th character of w and w[i..j] := w[i] . . . w[j] is the substring of w from the i-th
to the j-th character (where i, j ∈ [|w|], i ≤ j).

We use deterministic and nondeterministic finite automata (DFA and NFA) as commonly
defined in the literature; as a particularity, for the sake of having succinct representations of
automata, we allow DFAs to be incomplete: given a state q of a DFA and a letter a, the

CPM 2024

22:4 Matching Subsequences with Generalised Gap Constraints

transition from q with a may be left undefined, which means that the computations of the
DFA on the inputs which lead to the respective transition are not-accepting. For a DFA or
NFA A, we denote by size(A) its total size, and by states(A) its number of states. Note that
if A is a DFA over alphabet Σ, then we have that size(A) = O(states(A)|Σ|).

A subset L ⊆ N is called linear, if there are m ∈ N0 and x0 ∈ N0, x1, . . . , xm ∈ N, such
that L = L(x0; x1, . . . , xm) := {x0 +

∑m
i=1 kixi | k1, . . . , km ∈ N0} . For m = 0, we write

L(x0) = {x0}. We can assume without loss of generality that xi ̸= xj for i ̸= j, i, j ∈ [m]. A
set S is semilinear, if it is a finite union of linear sets (see also [46]).

We assume that each integer involved in the representation of a linear set fits into constant
memory (see our discussion about the computational model at the end of this section).
Consequently, we measure the size of a linear set L = L(x0; x1, . . . , xm) as size(L) = m + 1,
and the size of a semilinear set S = L1 ∪ L2 ∪ . . . ∪ Lk is measured as size(S) =

∑k
i=1 size(Li).

In other words, size(S) is the number of integers used for defining S.

Computational Model. For the complexity analysis of the algorithmic problems described
in this paper we assume the unit-cost RAM model with logarithmic word size (see [15]). This
means that for input size N , the memory words of the model can store log N bits. Thus,
if we have input words of length N , they are over an alphabet which has at most σ ≤ N

different characters, which we can represent using the integer alphabet Σ = [σ]. As such, we
can store each character within one word of the model. Then, it is possible to read, write
and compare single characters in one unit time.

Complexity Hypotheses. Let us consider the Satisfiability problem for formulas in conjunct-
ive normal form, or CNF-Sat for short. Here, given a boolean formula F in conjunctive nor-
mal form, i.e., F = {c1, . . . , cm} and ci ⊆ {v1, . . . , vn, ¬v1, . . . , ¬vn} for variables v1, . . . , vn,
it is to be determined whether F is satisfiable. This problem was shown to be NP-hard [14].
By restricting |ci| ≤ k for all i ∈ [m] we obtain the problem of k-CNF-Sat. We will base
our lower bound on the following algorithmic hypothesis:

▶ Hypothesis 1 (Strong Exponential Time Hypothesis (SETH) [28]). For any ε > 0, there
exists a k ∈ N, such that k-CNF-Sat cannot be solved in O(2n(1−ε) poly(m)) time, where
poly(n) is an arbitrary (but fixed) polynomial function.

The Clique problem, Clique, asks, given a graph G and a number k ∈ N, whether G has
a k-clique. Hereby, a k-clique is a subset of k pairwise adjacent vertices, i.e., there is an edge
between any pair of vertices in the subset. Since CNF-Sat can be reduced to Clique [32],
the latter is also NP-hard.

The k-Orthogonal Vectors problem, k-OV, receives as inputs k sets V1, . . . , Vk each con-
taining n elements from {0, 1}d for some d ∈ ω(log n), i.e., d-dimensional boolean vectors.
The question is, whether one can select vectors v⃗i ∈ Vi for i ∈ [k] such that the vectors are
orthogonal:

∑n
j=1

∏k
i=1 v⃗i[j] = 0. It is possible to show the following lemma ([58, 57]):

▶ Lemma 2. k-OV cannot be solved in nk−ε poly(d) time for any ε > 0, unless SETH fails.

This lemma will later form the basis for the conditional lower bound in the case of
non-intersecting constraints.

3 Subsequences with Gap Constraints

An embedding is any function e : [k] → [ℓ] for some k, ℓ ∈ N with k ≤ ℓ, such that
e(1) < e(2) < . . . < e(k) (note that this also implies that 1 ≤ e(1) and e(k) ≤ ℓ). Let
Σ be some alphabet. For a string v = v1v2 . . . vn, where vi ∈ Σ for every i ∈ [n], any

F. Manea, J. Richardsen, and M. L. Schmid 22:5

string u = vi1vi2 . . . vik
with k ≤ n and 1 ≤ i1 < i2 < . . . < ik ≤ n is called a subsequence

(or, altternatively, scattered factor or subword) of v (denoted by u ⪯ v). Every embedding
e : [k] → [|v|] with k ≤ |v| induces the subsequence ue = ve(1)ve(2) . . . ve(k) of v. If u is a
subsequence of v induced by an embedding e, then we denote this by u ⪯e v; we also say
that an embedding e witnesses u ⪯ v if u ⪯e v. When embedding a substring u[s..t] for some
s, t ∈ [|u|], s ≤ t, we use a partial embedding e : [s, t] → [n] and write u[s..t] ⪯e w.

For example, the string a b a c b b a has among its subsequences a a a, a b c a, c b a, and
a b a b b a. With respect to a a a, there exists just one embedding, namely 1 7→ 1, 2 7→ 3, and
3 7→ 7, but there are two different embeddings for c b a.

Let v ∈ Σ∗ and let e : [k] → [|v|] be an embedding. For every i, j ∈ [k] with i < j, the
string v and the embedding e induces the (i, j)-gap, which is the factor of v that occurs
strictly between the positions corresponding to the images of i and j under the embedding e,
i. e., gapv,e[i, j] = v[e(i) + 1..e(j) − 1]. If v and e are clear from the context, we also drop
this dependency in our notation, i. e., we also write gap[i, j].

As an example, consider v = a b c b c a b c a b a c and u = a c a b a. There are several
embeddings e : [|u|] → [|v|] that witness u ⪯ v. Each such embedding also induces an (i, j)-gap
for every i, j ∈ [5] with i < j. For the embedding e with e(1) = 1, e(2) = 3, e(3) = 6,
e(4) = 7, e(5) = 11 (that satisfies u ⪯e v), some of these gaps are illustrated below (note that
e is also indicated by the boxed symbols of v):

v = a

gap[1,4]︷ ︸︸ ︷
b c

gap[2,3]︷︸︸︷
b c a b

gap[4,5]︷ ︸︸ ︷
c a b︸ ︷︷ ︸

gap[1,5]

a c

A gap-constraint for a string u ∈ Σ∗ is a triple C = (i, j, L) with 1 ≤ i < j ≤ |u| and
L ⊆ Σ∗. A gap-constraint C = (i, j, L) is also called an (i, j)-gap-constraint. The component
L is also called the gap-constraint language of the gap-constraint (i, j, L). We say that a
string v and some embedding e : [|u|] → [|v|] satisfies the gap-constraint C if and only if
gapv,e[i, j] ∈ L.

As an example, let us define some gap-constraints for the string u = a c a b a: (1, 4, Σ∗),
(1, 5, {w1 c w2 c w3 | w1, w2, w3 ∈ Σ∗}), (2, 3, {w ∈ Σ∗ | |w| ≥ 5}) and (4, 5, {w ∈ Σ∗ | |w| ≤
4}). It can be easily verified that the gaps induced by the string v and the embedding
e defined above (and illustrated by the figure) satisfy all of these gap constraints, except
(2, 3, {w ∈ Σ∗ | |w| ≥ 5}) since |gapv,e[2, 3]| = 2 < 5. However, the embedding e′ defined
by e′(1) = 1, e′(2) = 3, e′(3) = 9, e′(4) = 10 and e′(5) = 11 is such that v and e′ satisfy
all of the mentioned gap-constraints (in particular, note that |gapv,e′ [2, 3]| = 5 and that
gapv,e′ [4, 5] = ε).

A set of gap-constraints for u is a set C that, for every i, j ∈ N with i < j, may contain at
most one (i, j)-gap-constraint for u. A string v and some embedding e : [|u|] → [|v|] satisfy C
if v and e satisfy every gap-constraint of C.

For strings u, v ∈ Σ∗ with |u| ≤ |v|, and a set C of gap-constraints for u, we say that u is
a C-subsequence of v, if u ⪯e v for some embedding e such that v and e satisfy C. We shall
also write u ⪯C v to denote that u is a C-subsequence of v.

The Matching Problem. The central decision problem that we investigate in this work is
the following matching problem, Match, for subsequences with gap-constraints:

Input: Two strings w ∈ Σ∗ (also called text), with |w| = n, and p ∈ Σ∗ (also called
pattern), with |p| = m ≤ n, and a non-empty set C of gap-constraints.
Question: Is p a C-subsequence of w?

CPM 2024

22:6 Matching Subsequences with Generalised Gap Constraints

Obviously, for this matching problem it is vital how we represent gap-constraints (i, j, L),
especially the gap-constraint language L. Moreover, since every possible language membership
problem “v ∈ L?” can be expressed as the matching problem instance w = #v#, p = ##
and C = (1, 2, L), where # /∈ Σ, we clearly should restrict our setting to constraints (i, j, L)
with sufficiently simple languages L. These issues are discussed next.

Types of Gap-Constraints. A gap-constraint C = (i, j, L) (for some string) is a
regular constraint if L ∈ REG. We represent the gap-constraint language of a regular
constraint by a deterministic finite automaton (for short, DFA). In particular, size(C) =
size(L) = size(A) and states(C) = states(L) = states(A).
semilinear length constraint if there is a semi-linear set S, such that L = {w ∈ Σ∗ |
|w| ∈ S}. We represent the gap-constraint language of a semi-linear length constraint
succinctly by representing the semilinear set S in a concise way (i. e., as numbers in
binary encoding). In particular, size(C) = size(L) = size(S).

For a set C of gap constraints, let size(C) =
∑

C∈C size(C) and gapsize(C) = max{size(C) |
C ∈ C}. We have size(C) ≤ |C|gapsize(C).

Obviously, {v ∈ Σ∗ | |v| ∈ S} is regular for any semilinear set S. However, due to our
concise representation, transforming a simple length constraint into a semilinear length
constraints, or transforming a semilinear length constraint into a DFA representation may
cause an exponential size increase.

By MatchREG and MatchSLS we denote the problem Match, where all gap constraints
are regular constraints or semilinear length constraints, respectively.

For semilinear length constraints, we state the following helpful algorithmic observation.

▶ Lemma 3. For a semilinear set S and an n ∈ N, we can compute in time O(n size(S)) a
data structure that, for every x ∈ [n], allows us to answer whether x ∈ S in constant time.

A similar result can be stated for regular constraints.

▶ Lemma 4. For a regular language L ⊆ Σ∗, given by a DFA A, accepting L, and a word
w ∈ Σ∗, of length n, we can compute in time O(n2 log log n + size(A)) a data structure that,
for every i, j ∈ [n], allows us to answer whether w[i..j] ∈ L in constant time.

▶ Remark 5. For every instance (p, w, C) of MatchSLS, we assume that size(C) ≤ |w| for
every C ∈ C. This is justified, since without changing the solvability of the MatchSLS
instance, any semilinear constraint defined by some semilinear set S can be replaced by a
semilinear constraint defined by the semilinear set S ∩ {0, 1, 2, . . . , |w|}, which is represented
by at most |w| integers.

Moreover, we assume size(C) ≤ |w|2 for every regular constraint C for similar reasons.
More precisely, a regular constraint defined by a DFA M can be replaced by a constraint
defined by a DFA M ′ that accepts {w′ ∈ L(M) | w′ is a factor of w}. The number of states
and, in fact, the size of such a DFA M ′ can be upper bounded by |w|2. For instance, the
DFA M ′ can be the trie of all suffixes of w (constructed as in [19]), with the final states used
to indicate which factors of w are valid w.r.t. C.

We emphasise that working under these assumptions allows us to focus on the actual
computation done to match constrained subsequences rather than on how to deal with
over-sized constraints.

F. Manea, J. Richardsen, and M. L. Schmid 22:7

4 Complexity of the Matching Problem: Initial Results

As parameters of the problem Match, we consider the length |p| of the pattern p to be
embedded as a subsequence, the number |C| of gap constraints, the gap description size
gapsize(C) = max{size(C) | C ∈ C}, and the alphabet size |Σ|. Recall that, by assumption, C
is always non-empty, which means that neither |C| nor gapsize(C) can be zero.

For any Match-instance, we have that |C| ≤ |p|2. Consequently, if |p| is constant or
considered a parameter, so is |C|. This means that an upper bound with respect to parameter
|C| also covers the upper bound with respect to parameter |p|, and a lower bound with respect
to parameter |p| also covers the lower bound with respect to parameter |C|. Consequently, it
is always enough to just consider at most one of these parameters.

For all possible parameter combinations, we can answer the respective complexity for
MatchREG and MatchSLS (both when the considered parameters are bounded by a constant,
or treated as parameters in terms of parameterised complexity).

From straightforward brute-force algorithms, we can conclude the following upper bounds.

▶ Theorem 6. MatchREG and MatchSLS can be solved in polynomial time for con-
stant |C|. Moreover, MatchREG is fixed parameter tractable for the combined parameter
(|p|, gapsize(C)).

These upper bounds raise the question whether MatchREG and MatchSLS are fixed
parameter tractable for the single parameter |p|, or whether MatchSLS is at least also
fixed parameter tractable for the combined parameter (|p|, gapsize(C)), as in the case of
MatchREG. Both these questions can be answered in the negative by a reduction from the
Clique problem.

For the k-Clique problem, we get an undirected graph G = (V, E) and a number
k ∈ [|V |], and we want to decide whether there is a clique of size at least k, i. e., a set
K ⊆ V with |K| ≥ k and, for every u, v ∈ K with u ̸= v, we have that {u, v} ∈ E. It is a
well-known fact that k-Clique is W[1]-hard. We will now sketch a parameterised reduction
from k-Clique to |p|-MatchSLS and to |p|-MatchREG.

Let G = (V, E) with |V | = n be a graph represented by its adjacency matrix A =
(ai,j)1≤i,j≤n (we assume that ai,i = 1 for every i ∈ [n]), and let k ∈ [|V |]. It can be
easily seen that G has a k-clique, if the k × k matrix containing only 1’s is a principal
submatrix of A, i.e., a submatrix where the set of remaining rows is the same as the set of
remaining columns. This can be described as embedding p = 01k20 as a subsequence into
w = 0a1,1a1,2 · · · a1,na2,1 · · · a2,n · · · an,1 · · · an,n0. However, the corresponding embedding e

must be such that the complete ith (1k)-block of p is embedded in the same asi,1asi,2 · · · asi,n

block of w, for some si. Furthermore, for every i ∈ [k], the first 1 of the ith (1k)-block must be
mapped to the (s1)th 1 of asi,1asi,2 · · · asi,n, the second 1 of the ith (1k)-block must be mapped
on the (s2)th 1 of asi,1asi,2 · · · asi,n, and so on. In other words, 1 ≤ s1 < s2 < . . . < sk ≤ n

are the rows and columns where we map the “all-1”-submatrix; thus, {vs1 , vs2 , . . . , vsk
}

is the clique. Obviously, we have to use the semilinear length constraints to achieve this
synchronicity.

We first force e(1) = 1 and e(k2 + 2) = n2 + 2 by constraint (1, k2 + 2, L(n2)). In the
following, we use (i, j)k and (i, j)n to refer to the position of the entries in the i-th row and
j-th column of the flattened matrices in p or w respectively (e. g. w[(i, j)n] = aij). In order
to force that e((i, i)k) = (si, si)n for every i ∈ [k] and some si ∈ [n], we use constraints
(1, (i, i)k, L(0; n + 1)), i ∈ [k] (i. e., the first 0 of p is mapped to the first 0 of w, and then
we allow only multiples of n + 1 between the images of (i, i)k and (i + 1, i + 1)k). Next, we
establish the synchronicity between the columns by requiring that the gap between e((i, j)k)

CPM 2024

22:8 Matching Subsequences with Generalised Gap Constraints

and e((i + 1, j)k) has a size that is one smaller than a multiple of n, which is done by
constraints ((i, j)k, (i + 1, j)k, L(n − 1; n)), i ∈ [k − 1], j ∈ [k]. Finally, the constraints
((i, 1)k, (i, k)k, {0} ∪ [n − 1]), i ∈ [k], force all e((i, 1)k), e((i, 2)k), . . . , e((i, k)k) into the same
block asi,1asi,2 · · · asi,n. Note that in order to show the last step, we also have to argue with
the previously defined constraints for synchronising the columns (more precisely, we have to
show that the e((i, 1)k), . . . , e((i, k)k) cannot overlap from one row in the next one).

This is a valid reduction from k-Clique to |p|-MatchSLS (note that |p| = k2 + 2). We
can strengthen the reduction in such a way that all constraints have even constant size (note
that the constraints ((i, 1)k, (i, k)k, {0} ∪ [n − 1]) are the only non-constant sized constraints,
since {0} ∪ [n − 1] is a semilinear set of size n). To this end, we observe that for fixed s1
and sk, all gap sizes e((i, k)k) − e((i, 1)k) are the same, independent from i, namely sk − s1.
Thus, we can turn the reduction into a Turing reduction by guessing this value d = sk − s1
and then replace each non-constant ((i, 1)k, (i, k)k, {0} ∪ [n − 1]) by ((i, 1)k, (i, k)k, L(d)).

In order to obtain a reduction to MatchREG, we can simply represent all semilinear
constraints as regular constraints. Obviously, the corresponding DFAs are not of constant
size anymore. In summary, this yields the following result.

▶ Theorem 7. MatchSLS parameterised by |p| is W[1]-hard, even for constant gapsize(C)
and binary alphabet Σ, and MatchREG parameterised by |p| is W[1]-hard, even for binary
alphabet Σ.

The lower bound for MatchREG is weaker, since the parameter gapsize(C) is not constant
in the reduction. At least for a reduction from k-Clique, this is to be expected, due to the
fact that MatchREG is fixed parameter tractable with respect to the combined parameter
(|p|, gapsize(C)). So this leaves one relevant question open: Can MatchREG be solved in
polynomial time, if the parameter gapsize(C) is bounded by a constant? We can answer this
in the negative by a reduction from a variant of the SAT-problem, which we shall sketch
next.

For the problem 1-in-3-3SAT, we get a set A = {x1, x2, . . . , xn} of variables and clauses
c1, c2, . . . , cm ⊆ A with |ci| = 3 for every 1 ≤ i ≤ m. The task is to decide whether there is
a subset B ⊆ A such that |ci ∩ B| = 1 for every 1 ≤ i ≤ m. For the sake of concreteness,
we also set cj = {xℓj ,1, xℓj ,2, xℓj ,3} for every j ∈ [m], and with xℓj ,1 < xℓj ,2 < xℓj ,3 for some
order “<” on A.

We transform such an 1-in-3-3SAT-instance into two strings uA = (b #)n(b #)m and
vA = (b2 #)n(b3 #)m. For every i ∈ [n], the ith b-factor of uA and the ith b2-factor of vA are
called xi-blocks. Analogously, we denote the last m b-factors of uA and the last m b3-factors
of vA as cj-blocks for j ∈ [m].

Obviously, if uA ⪯e vA for some embedding e : [|uA|] → [|vA|], then the single b of uA’s
xi-block is mapped to either the first or the second b of vA’s xi-block, and the single b of
uA’s cj-block is mapped to either the first or the second or the third b of vA’s cj-block.
Thus, the embedding e can be interpreted as selecting a set B ⊆ A (where mapping uA’s
xi-block to the second b of vA’s xi-block is interpreted as xi ∈ B), and selecting either the
first or second or third element of cj (depending on whether uA’s cj-block is mapped to
the first, second or third b of vA’s cj-block). We can now introduce a set of regular gap
constraints that enforce the necessary synchronicity between B and the elements picked
from the clauses: Assume that xi is the pth element of cj . If e maps uA’s xi-block to the
second b of vA’s xi-block, then e must map uA’s cj-block to the pth b of vA’s cj-block,
and if e maps uA’s xi-block to the first b of vA’s xi-block, then e must map uA’s cj-block
to the qth b of vA’s cj-block for some q ∈ {1, 2, 3} \ {p}. For example, if xℓj ,2 = xi for
some i ∈ [n] and j ∈ [m], i. e., the second element of cj is xi, then we add a regular gap

F. Manea, J. Richardsen, and M. L. Schmid 22:9

constraint (i′, j′, Li′,j′), where i′ and j′ are the positions of uA’s xi-block and uA’s cj-block,
and Li′,j′ = {b w#, #w# b, b w# b b | w ∈ {b, #}∗}. If e maps uA’s xi-block to the second b
of vA’s xi-block, then the gap between positions i′ and j′ must start with #; thus, due to the
gap constraint, it must be of the form #w# b, which is only possible if e maps uA’s cj-block
to the second b of vA’s ci-block. If e maps uA’s xi-block to the first b of vA’s xi-block,
then the gap must be of the form b w# or b w# b b, which means that e must map uA’s
cj-block to the first or third b of vA’s ci-block. Similar gap constraints can be defined for
the case that xi is the first or third element of cj . Hence, we can define gap constraints
such that there is an embedding e : [|uA|] → [|vA|] with uA ⪯e vA and e satisfies all the gap
constraints if and only if the 1-in-3-3SAT-instance is positive. Independent of the actual
1-in-3-3SAT-instance, the gap languages can be represented by DFAs with at most 8 states.
This shows the following result.

▶ Theorem 8. MatchREG is NP-complete, even for binary alphabet Σ and with gap-
constraints that can be represented by DFAs with at most 8 states.

5 Complexity of the Matching Problem: A Finer Analysis

Two representations of constraints. We start by defining two (strongly related) natural
representations of the set of constraints which is given as input to the matching problem.
Intuitively, both these representations facilitate the understanding of a set of constraints.
Then, we see how these representations can be used to approach the Match problem.

The Interval Structure of Sets of Constraints. For a constraint C = (a, b, L) we define
interval(C) := [a, b− 1]. If we have another constraint C ′ = (a′, b′, L′) (with a ̸= a′ or b ̸= b′),
we say that C is contained in C ′, written C ⊏ C ′, if interval(C) ⊊ interval(C ′). Because
this order is derived from the inclusion order ⊊, it is also a strict partial order. We denote
the corresponding covering relation with ⊏· . Furthermore, we say that C and C ′ intersect, if
interval(C) ∩ interval(C ′) ̸= ∅, and they are not comparable w.r.t. ⊏, i.e., neither of them
contains the other. Importantly, because we have b /∈ interval(C), in the case b = a′, the
constraints C and C ′ do not intersect.

The Graph Structure of Sets of Constraints. For a string p, of length m, and a set of
constraints C on p, we define a graph Gp = (Vp, Ep) as follows. The set of vertices Vp of Gp

is the set of numbers {1, . . . , m}, corresponding to the positions of p. We define the set of
undirected edges Ep as follows: Ep = {(a, b) | (a, b, L) ∈ C}∪{(i, i+1) | i ∈ [m−1]}∪{(1, m)}.
Note that in the case when we have a constraint C = (i, i + 1, L), for some i ∈ [m − 1] and L

(respectively, a constraint C(1, m, L)) we will still have a single edge connecting the nodes
i and i + 1 (respectively, 1 and m) as Ep is constructed by a set union of two sets, so the
elements in the intersection of the two sets are kept only once in the result. Moreover, we can
define a labelling function on the edges of G by the following three rules: label((i, j)) = C, if
there exists C ∈ C with C = (i, j, L); label((i, i + 1)) = (i, i + 1, Σ∗), for i ∈ [m − 1], if there
exists no C ∈ C such that C = (i, i + 1, L); and label((1, m)) = (1, m, {w ∈ Σ∗||w| ≥ m − 2}),
if there exists no C ∈ C such that C = (1, m, L). Clearly, all respective labels can be
expressed trivially both as regular languages or as semilinear sets. Intuitively, the edges of
G which correspond to constraints of C are labelled with the respective constraints. The
other edges have trivial labels: the label of the edges of the form (i, i + 1) express that, in an
embedding of p in the string v (as required in Match), the embedding of position i + 1 is

CPM 2024

22:10 Matching Subsequences with Generalised Gap Constraints

to the right of the embedding of position i; the label of edge (1, m) simply states that at
least m − 2 symbols should occur between the embedding of position 1 and the embedding
of position m, therefore allowing for the entire pattern to be embedded.

Further, it is easy to note that this graph admits a Hamiltonian cycle, which traverses the
vertices 1, 2, . . . , m in this order. In the following, we also define two-dimensional drawing of
the graph Gp as a half-plane arc diagram: the vertices 1, 2, . . . , m are represented as points
on a horizontal line ℓ, with the edges (i, i + 1), for i ≤ m − 1 being segments of unit-length
on that line, spanning between the respective vertices i and i + 1; all other edges (i, j) are
drawn as semi-circles, whose diameter is equal to the length of (j − i), drawn in the upper
half-plane with respect to the line ℓ. In the following, we will simply call this diagram
arc-diagram, without explicitly recalling that all semicircles are drawn in the same half-plane
with respect to ℓ. In this diagram associated to Gp, we say that two edges cross if and only
if they intersect in a point of the plane which is not a vertex of Gp. See also [18] and the
references therein for a discussion on this representation of graphs.

In Figure 1 we see an example: We have p = xyzyx and C = {C = (1, 3, L1), C ′ =
(1, 4, L1), C ′′ = (3, 5, L2)}. Thus, |p| = 5 and Gp has the vertices {1, . . . , 5} and the edges
(1, 3), (1, 4), (3, 5) corresponding to the constraints of C, as well as the edges (1, 2), (2, 3), (3, 4),
(4, 5), (1, 5) (note that the edges are undirected, and the trivial labels are omitted for the sake
of readability). The figure depicts the arc diagram associated to this graph (with the semi-
circles flattened a bit, for space reasons). In the interval representation of these constraints, we
can see that C is contained in C ′ (as interval(C) = [1, 2] ⊊ interval(C ′) = [1, 3]). Furthermore,
C ′ and C ′′ intersect ([1, 3] ∩ [3, 4] ̸= ∅), while C and C ′′ do not ([1, 2] ∩ [3, 4] = ∅). Note
that two constraints (such as C and C ′′ in our example) might not intersect (according
to the interval representation), although the edges that correspond to them in the graph
representation share a common vertex; in particular, two constraints intersect if and only if
the corresponding edges cross.

p = 1
x

2
y

3
z

4
y

5
x

C

C′

C′′

Figure 1 Relations between constraints.

The two representations defined above are clearly very strongly related. However, the
graph-representation allows us to define a natural structural parameter for subsequences with
constraints, while the interval-representation will allow us to introduce a class of subsequences
with constraints which can be matched efficiently.

In the following, by MatchL,G we denote the problem Match, where all gap constraints
are from the class of languages L, with L ∈ {REG, SLS}, and the graphs corresponding to
the input gap constraints are all from the class G.

Vertex separation number and its relation to Match. Given a linear ordering σ =
(v1, . . . , vm) of the vertices of a graph G with m vertices, the vertex separation number of σ

is the smallest number s such that, for each vertex vi (with i ∈ [m]), at most s vertices of
v1, . . . , vi−1 have some vj , with j ≥ i, as neighbour. The vertex separation number vsn(G)
of G is the minimum vertex separation number over all linear orderings of G. The vertex
separation number was introduced in [20] (see also [21] and the references therein) and was
shown (e.g., in [9]) to be equal to the pathwidth of G.

F. Manea, J. Richardsen, and M. L. Schmid 22:11

Let us briefly overview the problem of computing the vertex separation number of graphs.
Firstly, we note that checking, given a graph G with n vertices and a number k, whether
vsn(G) ≤ k is NP-complete, as it is equivalent to checking whether the pathwidth of G is at
most k. We can show that this problems remains intractable even when we restrict it to the
class of graphs with a Hamiltonian cycle, and this cycle is given as input as well.

However, this problem is linear fixed parameter tractable w.r.t. the parameter k: deciding,
for a given graph G with n vertices and a constant number k, if vsn(G) ≤ k and, if so,
computing a linear ordering of the vertices with vertex separation number at most k can be
solved in O(n) time, where the constant hidden by the O-notation depends superexponentially
on k. This follows from the results of [9], where the relation between pathwidth and vertex
separation number is established, and [8], where it is shown that, for constant k, one can
check in linear time O(n) if a graph with n vertices has pathwidth at most k, and, if so,
produce a path decomposition of that graph of width at most k.

For a constant k, let Vk be the class of all graphs G with vsn(G) ≤ k. We can show the
following meta-theorem.

▶ Theorem 9. Let k ≥ 1 be a constant integer and let L ∈ {SLS, REG}. Then, MatchL,Vk

can be solved in polynomial time: O(m2nk+1), in the case of SLS-constraints, and O(m2nk+1+
m2n2 log log n), in the case of REG-constraints. Moreover, MatchL,Vk

parameterised by k

is W[1]-hard.

Due to space restrictions, we only sketch the proof. The matching algorithm implements
a dynamic programming approach. We choose an ordering of the vertices of the graph
representing C, with vsn at most k. These vertices are, in fact, positions of p, so we find, for
q from 1 to m, embeddings for the first q positions of this ordering in w, such that all the
constraints involving only these positions are fulfilled. Given that the vsn of the respective
ordering is bounded by k, we can compute efficiently the embeddings of the first q positions
by extending the embeddings for the first q − 1 positions, as, when considering a new position
of our ordering, and checking where it can be embedded, only k of the previously embedded
positions are relevant. As such, the embeddings of the first q − 1 positions of the ordering,
which are relevant for computing the embeddings of its first q positions, can be represented
using an O(nk) size data-structure, and processed in O(nk poly(n, m)) time. This leads to a
polynomial time algorithm, with a precise runtime as stated above. The lower bound follows
from the reduction showing Theorem 7.

Non-intersecting constraints and Match. We have shown that Match can be solved
efficiently if the input gap constraints are represented by graphs with bounded vsn. However,
while this condition is sufficient to ensure that Match can be solved efficiently (as long as
the constraint-languages are in P), it is not necessary. We will exhibit in the following a
class H of gap constraints, which contains graphs with arbitrarily large vsn, and for which
MatchL,H can be solved in polynomial time, for L ∈ {REG, SLS}.

More precisely, in the following, we will consider the class H of non-intersecting gap
constraints. That is, we consider Match where the input consists of two strings v ∈ Σ∗

and p ∈ Σ∗ and a non-empty set C of gap constraints, where for any C, C ′ ∈ C we have
that interval(C) ∩ interval(C ′) ∈ {interval(C), interval(C ′), ∅}. It is immediate that H, the
class of non-intersecting gap constraints, can be described as the class of gap constraints
which are represented by outerplanar graphs which have a Hamiltonian cycle: the arc
diagram constructed for these gap constraints is already outerplanar: if C = (a, b, L) and
C ′ = (a′, b′, L′) are two non-intersecting constraints of some set of constraints C, then, in the
graph representation of this set of constraints based on arc diagrams, the edges (a, b) and
(a′, b′) do not cross (although they might share a common vertex).

CPM 2024

22:12 Matching Subsequences with Generalised Gap Constraints

Moreover, an outerplanar graph which admits a Hamiltonian cycle can be represented
canonically as an arc diagram of a set of non-intersecting gap constraints. It is a folklore result
that if an outerplanar graph has a Hamiltonian cycle then the outer face forms its unique
Hamiltonian cycle. Moreover, every drawing of a graph in the plane may be deformed into
an arc diagram without changing its number of crossings [45], and, in the case of outerplanar
graphs this means the following. For an outerplanar graph G, we start with a drawing of
G witnessing its outerplanarity. Assume that, after a potential renaming, there exists a
traversal of the Hamiltonian cycle of the outerplanar graph (i.e., of its outer face) which
consists of the vertices 1, 2, . . . , n, in this order. We simply reposition these vertices, in the
same order 1, 2, . . . , n, on a horizontal line ℓ, such that consecutive vertices on the line are
connected by edges of length 1, and then the edge (1, n) is deformed so that it becomes
a semicircle of diameter n − 1 connecting the respective vertices, in the upper half-plane
w.r.t. ℓ. Further, each edge (a, b) is deformed to become a semicircle above the line of the
vertices, whose diameter equals the distance between vertex a and vertex b. By the result
of [45], the edges of this graph do not cross in this representation, as the initial graph was
outerplanar. But the resulting diagram is, clearly, the arc diagram corresponding to a set of
non-intersecting gap constraints.

Based on the above, we can make a series of observations. Firstly, as one can recognize
outerplanar graphs in linear time [56], we can also decide in linear time whether a set of
constraints is non-crossing. Secondly, according to [16], there are outerplanar graphs with
arbitrarily large pathwidth, so with arbitrarily large vsn. This means that there are sets of
non-intersecting gap constraints whose corresponding graph representations have arbitrarily
large vsn. Thirdly, the number of constraints in a set of non-intersecting gap constraints
is linear in the length of the string constrained by that set (as the number of edges in an
outerplanar graph with n vertices is at most 2n − 3).

We can show the following theorem (here we just sketch the proof, and only in the case
of SLS-constraints, as the REG-constraints case is identical.

▶ Theorem 10. MatchSLS,H can be solved in time O(nωK) and MatchREG,H can be solved
in time O(nωK + n2K log log n), where K is the number of constraints in the input set of
constraints C and O(nω) is the time needed to multiply two boolean matrices of size n × n.

As said, we sketch the algorithm solving MatchSLS,H in the stated complexity. Assume that
the input words are w ∈ Σn and p ∈ Σm, and C = (C1, . . . , CK), with Ci = (ai, bi, Li) for
i ∈ [K]. Firstly, we add a constraint C = (1, m, L(m − 2, 1)) to C if it does not contain any
constraint having the first two components (1, m). So, in the following, we will assume w.l.o.g.
that such a constraint (1, m, ·) always exists in C. Moreover, the number of constraints in C
is O(m) (as the graph representation of C is outerplanar).

As a first phase in our algorithm, we build the data structures from Lemma 3. Hence, by
Remark 5, after an O(n2K)-time preprocessing we can answer queries “is w[i..j] ∈ Lk?” in
O(1) time, for all i, j ∈ [n], k ∈ [K].

After this, the algorithm proceeds as follows. Because the set of constraints C is non-
intersecting, one can build in linear time the Hasse-diagram of the set of intervals associated
with the set of constraints C (w.r.t. the interval-inclusion relation), and this diagram is a tree,
whose root corresponds to the single constraint of the form (1, m, ·). Further, the algorithm
uses a dynamic programming strategy to find matches for the constraints of C in a bottom-up
fashion with respect to the Hasse-diagram of this set. The algorithm maintains the matches
for each constraint C = (a, b, L) as a Boolean n × n matrix, where the element on position
(i, j) of that matrix is true if and only if there exists a way to embed p[a..b] in w[i..j], such
that p[a] is mapped to w[i] and p[b] to w[j] in the respective embedding, and this embedding

F. Manea, J. Richardsen, and M. L. Schmid 22:13

also fulfils C and all the constraints occurring in the sub-tree of root C in the Hasse-diagram.
This matrix can be computed efficiently, by multiplying the matrices corresponding to the
children of C (and a series of matrices corresponding to the unconstrained parts of p[a..b]).
As the number of nodes in this tree is O(K), the whole process of computing the respective
matrices for all nodes of the tree requires O(K) matrix multiplications, i.e., O(nωK) time in
total. Finally, one needs to see if there is a match of p[1..m] to some factor of v, which can
be checked in O(n2) by simply searching in the matrix computed for the root of the diagram.

The following lower bound is shown by a reduction from 3-OV.

▶ Theorem 11. For L ∈ {REG, SLS}, then MatchL,H, cannot be solved in O(|w|g|C|h)
time with g + h < 3, unless SETH fails.

The reduction proving this hardness result works as follows. In 3-OV, we are given three sets
A = {a⃗1, . . . , a⃗n}, B = {⃗b1, . . . , b⃗n} and C = {c⃗1, . . . , c⃗n} with elements from {0, 1}d, and
want to determine whether there exist i∗, j∗, k∗ ∈ [n], such that

∑j
ℓ=1 a⃗i∗ [ℓ] · b⃗j∗ [ℓ] · c⃗k∗ [ℓ] =

0. This is achieved by encoding our input sets over a constant size alphabet, via two
functions Cp and Cw, into a pattern p and a text w, respectively, as well as a set of
constraints C, such that the answer to the 3-OV problem is positive if and only if p is a
C-subsequence of w. Basically, the encoding of each d-dimensional vector of A (respectively,
B and C) is done via Cp (respectively, Cw), in such a way that (when no constraints are
considered) Cp(v⃗) is a subsequence of Cw(v⃗′) for any v⃗, v⃗′ ∈ {0, 1}d. Further, Cp and Cw

are mirrored versions of these encodings (both for bits and vectors), where the order of
the characters in the output is inverted. We can then use the original encoding for one
part of the pattern and the text and the mirrored encoding for the other part. Then,
we encode the set A in p := Cp(⃗an) . . . Cp(⃗a1) § Cp(⃗a1) . . . Cp(⃗an) and the sets B and C

in w := w0 # Cw(c⃗n) . . . Cw(c⃗1) # w0 § w0 # Cw (⃗b1) . . . Cw (⃗bn) # w0 (where x denotes the
mirror image of x, and w0 is a suitably choosen padding). To finalise our construction, we can
define constraints which ensure that an embedding of p in w is possible if and only if there
exist some i∗, j∗, k∗ such that Cp(ai∗) is embedded in Cw(bj∗), and Cp(ai∗) in Cp(ck∗), while
all the other strings Cp(at) are embedded in the paddings. Moreover, additional constraints
ensure that the simultaneous embedding of Cp(ai∗) in Cw(bj∗) and of Cp(ai∗) in Cp(ck∗)
is only possible if and only if for each component u ∈ [d] with ai∗ [u] ̸= 0, we have that
bj∗ [u] = 0 or ck∗ [u] = 0.

We conclude by noting that, while this is not a tight lower bound with respect to the upper
bound shown in Theorem 10, finding a polynomially stronger lower bound (i.e., replacing
in the statement of Theorem 11 the condition g + h < 3 with g + h < 3 + δ, for some
δ > 0) would show that matrix multiplication in quadratic time is not possible, which in
turn would solve a well-researched open problem. Indeed, the algorithm from Theorem 10
consists in a reduction from MatchL,H to O(|C|) instances of matrix multiplication, for
quadratic matrices of size |w|, so a better lower bound would mean that at least one of these
multiplications must take more than quadratic time.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for

LCS and other sequence similarity measures. In IEEE 56th Annual Symposium on Foundations
of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 59–78,
2015. doi:10.1109/FOCS.2015.14.

2 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster
alignment of sequences. In Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages
39–51, 2014. doi:10.1007/978-3-662-43948-7_4.

CPM 2024

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1007/978-3-662-43948-7_4

22:14 Matching Subsequences with Generalised Gap Constraints

3 Duncan Adamson, Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer. Longest
common subsequence with gap constraints. In Combinatorics on Words - 14th International
Conference, WORDS 2023, Umeå, Sweden, June 12-16, 2023, Proceedings, pages 60–76, 2023.
doi:10.1007/978-3-031-33180-0_5.

4 Alexander Artikis, Alessandro Margara, Martín Ugarte, Stijn Vansummeren, and Matthias
Weidlich. Complex event recognition languages: Tutorial. In Proceedings of the 11th ACM
International Conference on Distributed and Event-based Systems, DEBS 2017, Barcelona,
Spain, June 19-23, 2017, pages 7–10, 2017. doi:10.1145/3093742.3095106.

5 Johannes Bader, Simon Gog, and Matthias Petri. Practical variable length gap pattern match-
ing. In Experimental Algorithms - 15th International Symposium, SEA 2016, St. Petersburg,
Russia, June 5-8, 2016, Proceedings, pages 1–16, 2016. doi:10.1007/978-3-319-38851-9_1.

6 Ricardo A. Baeza-Yates. Searching subsequences. Theor. Comput. Sci., 78(2):363–376, 1991.
7 Philip Bille, Inge Li Gørtz, Hjalte Wedel Vildhøj, and David Kofoed Wind. String matching with

variable length gaps. Theor. Comput. Sci., 443:25–34, 2012. doi:10.1016/j.tcs.2012.03.029.
8 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.

SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.
9 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput.

Sci., 209(1-2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.
10 Karl Bringmann and Bhaskar Ray Chaudhury. Sketching, streaming, and fine-grained com-

plexity of (weighted) LCS. In Proc. FSTTCS 2018, volume 122 of LIPIcs, pages 40:1–40:16,
2018.

11 Karl Bringmann and Marvin Künnemann. Multivariate fine-grained complexity of longest
common subsequence. In Proc. SODA 2018, pages 1216–1235, 2018.

12 Sam Buss and Michael Soltys. Unshuffling a square is NP-hard. J. Comput. Syst. Sci.,
80(4):766–776, 2014. doi:10.1016/j.jcss.2013.11.002.

13 Manuel Cáceres, Simon J. Puglisi, and Bella Zhukova. Fast indexes for gapped pattern matching.
In SOFSEM 2020: Theory and Practice of Computer Science - 46th International Conference
on Current Trends in Theory and Practice of Informatics, SOFSEM 2020, Limassol, Cyprus,
January 20-24, 2020, Proceedings, pages 493–504, 2020. doi:10.1007/978-3-030-38919-2_40.

14 Stephen A. Cook. The complexity of theorem-proving procedures. In Michael A. Harrison,
Ranan B. Banerji, and Jeffrey D. Ullman, editors, Proceedings of the 3rd Annual ACM
Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA, pages
151–158. ACM, 1971. doi:10.1145/800157.805047.

15 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009. URL: http://mitpress.mit.edu/books/
introduction-algorithms.

16 David Coudert, Florian Huc, and Jean-Sébastien Sereni. Pathwidth of outerplanar graphs. J.
Graph Theory, 55(1):27–41, 2007. doi:10.1002/JGT.20218.

17 Joel D. Day, Maria Kosche, Florin Manea, and Markus L. Schmid. Subsequences with gap
constraints: Complexity bounds for matching and analysis problems. In 33rd International
Symposium on Algorithms and Computation, ISAAC 2022, December 19-21, 2022, Seoul,
Korea, pages 64:1–64:18, 2022. doi:10.4230/LIPICS.ISAAC.2022.64.

18 Hristo N. Djidjev and Imrich Vrto. Crossing numbers and cutwidths. J. Graph Algorithms
Appl., 7(3):245–251, 2003. doi:10.7155/JGAA.00069.

19 Shiri Dori and Gad M. Landau. Construction of aho corasick automaton in linear time for
integer alphabets. Inf. Process. Lett., 98(2):66–72, 2006. doi:10.1016/J.IPL.2005.11.019.

20 John A. Ellis, Ivan Hal Sudborough, and Jonathan S. Turner. Graph separation and search
number. In Proc. 1983 Allerton Conf. on Communication, Control, and Computing, 1983.

21 John A. Ellis, Ivan Hal Sudborough, and Jonathan S. Turner. The vertex separation and
search number of a graph. Inf. Comput., 113(1):50–79, 1994. doi:10.1006/INCO.1994.1064.

https://doi.org/10.1007/978-3-031-33180-0_5
https://doi.org/10.1145/3093742.3095106
https://doi.org/10.1007/978-3-319-38851-9_1
https://doi.org/10.1016/j.tcs.2012.03.029
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/j.jcss.2013.11.002
https://doi.org/10.1007/978-3-030-38919-2_40
https://doi.org/10.1145/800157.805047
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1002/JGT.20218
https://doi.org/10.4230/LIPICS.ISAAC.2022.64
https://doi.org/10.7155/JGAA.00069
https://doi.org/10.1016/J.IPL.2005.11.019
https://doi.org/10.1006/INCO.1994.1064

F. Manea, J. Richardsen, and M. L. Schmid 22:15

22 Pamela Fleischmann, Sungmin Kim, Tore Koß, Florin Manea, Dirk Nowotka, Stefan Siemer,
and Max Wiedenhöft. Matching patterns with variables under simon’s congruence. In
Reachability Problems - 17th International Conference, RP 2023, Nice, France, October 11-13,
2023, Proceedings, pages 155–170, 2023. doi:10.1007/978-3-031-45286-4_12.

23 Dominik D. Freydenberger, Pawel Gawrychowski, Juhani Karhumäki, Florin Manea, and
Wojciech Rytter. Testing k-binomial equivalence. In Multidisciplinary Creativity, a collection
of papers dedicated to G. Păun 65th birthday, pages 239–248, 2015. available in CoRR
abs/1509.00622.

24 André Frochaux and Sarah Kleest-Meißner. Puzzling over subsequence-query extensions:
Disjunction and generalised gaps. In Proceedings of the 15th Alberto Mendelzon International
Workshop on Foundations of Data Management (AMW 2023), Santiago de Chile, Chile, May
22-26, 2023, 2023. URL: https://ceur-ws.org/Vol-3409/paper3.pdf.

25 Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligiannakis, and Minos N.
Garofalakis. Complex event recognition in the big data era: a survey. VLDB J., 29(1):313–352,
2020. doi:10.1007/s00778-019-00557-w.

26 Simon Halfon, Philippe Schnoebelen, and Georg Zetzsche. Decidability, complexity, and
expressiveness of first-order logic over the subword ordering. In Proc. LICS 2017, pages 1–12,
2017.

27 Costas S. Iliopoulos, Marcin Kubica, M. Sohel Rahman, and Tomasz Walen. Algorithms
for computing the longest parameterized common subsequence. In Combinatorial Pattern
Matching, 18th Annual Symposium, CPM 2007, London, Canada, July 9-11, 2007, Proceedings,
pages 265–273, 2007. doi:10.1007/978-3-540-73437-6_27.

28 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

29 Prateek Karandikar, Manfred Kufleitner, and Philippe Schnoebelen. On the index of Simon’s
congruence for piecewise testability. Inf. Process. Lett., 115(4):515–519, 2015.

30 Prateek Karandikar and Philippe Schnoebelen. The height of piecewise-testable languages with
applications in logical complexity. In Proc. CSL 2016, volume 62 of LIPIcs, pages 37:1–37:22,
2016.

31 Prateek Karandikar and Philippe Schnoebelen. The height of piecewise-testable languages
and the complexity of the logic of subwords. Log. Methods Comput. Sci., 15(2), 2019.

32 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

33 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, and Matthias
Weidlich. Discovering event queries from traces: Laying foundations for subsequence-queries
with wildcards and gap-size constraints. In 25th International Conference on Database Theory,
ICDT 2022, 29th March-1st April, 2022 Edinburgh, UK, 2022.

34 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, and Matthias
Weidlich. Discovering multi-dimensional subsequence queries from traces - from theory to
practice. In Datenbanksysteme für Business, Technologie und Web (BTW 2023), 20. Fachtagung
des GI-Fachbereichs „Datenbanken und Informationssysteme" (DBIS), 06.-10, März 2023,
Dresden, Germany, Proceedings, pages 511–533, 2023. doi:10.18420/BTW2023-24.

35 Maria Kosche, Tore Koß, Florin Manea, and Viktoriya Pak. Subsequences in bounded ranges:
Matching and analysis problems. In Anthony W. Lin, Georg Zetzsche, and Igor Potapov,
editors, Reachability Problems - 16th International Conference, RP 2022, Kaiserslautern,
Germany, October 17-21, 2022, Proceedings, volume 13608 of Lecture Notes in Computer
Science, pages 140–159. Springer, 2022. doi:10.1007/978-3-031-19135-0_10.

CPM 2024

https://doi.org/10.1007/978-3-031-45286-4_12
https://ceur-ws.org/Vol-3409/paper3.pdf
https://doi.org/10.1007/s00778-019-00557-w
https://doi.org/10.1007/978-3-540-73437-6_27
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.18420/BTW2023-24
https://doi.org/10.1007/978-3-031-19135-0_10

22:16 Matching Subsequences with Generalised Gap Constraints

36 Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer. Combinatorial algorithms for
subsequence matching: A survey. In Henning Bordihn, Géza Horváth, and György Vaszil,
editors, Proceedings 12th International Workshop on Non-Classical Models of Automata and
Applications, NCMA 2022, Debrecen, Hungary, August 26-27, 2022, volume 367 of EPTCS,
pages 11–27, 2022. doi:10.4204/EPTCS.367.2.

37 Dietrich Kuske. The subtrace order and counting first-order logic. In Proc. CSR 2020, volume
12159 of Lecture Notes in Computer Science, pages 289–302, 2020.

38 Dietrich Kuske and Georg Zetzsche. Languages ordered by the subword order. In Proc.
FOSSACS 2019, volume 11425 of Lecture Notes in Computer Science, pages 348–364, 2019.

39 Marie Lejeune, Julien Leroy, and Michel Rigo. Computing the k-binomial complexity of the
Thue-Morse word. In Proc. DLT 2019, volume 11647 of Lecture Notes in Computer Science,
pages 278–291, 2019.

40 Julien Leroy, Michel Rigo, and Manon Stipulanti. Generalized Pascal triangle for binomial
coefficients of words. Electron. J. Combin., 24(1.44):36 pp., 2017.

41 Chun Li and Jianyong Wang. Efficiently mining closed subsequences with gap constraints. In
SDM, pages 313–322. SIAM, 2008.

42 Chun Li, Qingyan Yang, Jianyong Wang, and Ming Li. Efficient mining of gap-constrained
subsequences and its various applications. ACM Trans. Knowl. Discov. Data, 6(1):2:1–2:39,
2012.

43 David Maier. The complexity of some problems on subsequences and supersequences. J. ACM,
25(2):322–336, April 1978.

44 Alexandru Mateescu, Arto Salomaa, and Sheng Yu. Subword histories and Parikh matrices. J.
Comput. Syst. Sci., 68(1):1–21, 2004.

45 T.A.J. Nicholson. Permutation procedure for minimising the number of crossings in a network.
Proceedings of the Institution of Electrical Engineers, 115:21–26(5), January 1968.

46 Rohit J Parikh. Language generating devices. Quarterly Progress Report, 60:199–212, 1961.
47 M. Praveen, Philippe Schnoebelen, Julien Veron, and Isa Vialard. On the piecewise complexity

of words and periodic words. In SOFSEM 2024: Theory and Practice of Computer Science -
48th International Conference on Current Trends in Theory and Practice of Computer Science,
SOFSEM 2024, Cochem, Germany, February 19-23, 2024, Proceedings, pages 456–470, 2024.
doi:10.1007/978-3-031-52113-3_32.

48 William E. Riddle. An approach to software system modelling and analysis. Comput. Lang.,
4(1):49–66, 1979. doi:10.1016/0096-0551(79)90009-2.

49 Michel Rigo and Pavel Salimov. Another generalization of abelian equivalence: Binomial
complexity of infinite words. Theor. Comput. Sci., 601:47–57, 2015.

50 Arto Salomaa. Connections between subwords and certain matrix mappings. Theoret. Comput.
Sci., 340(2):188–203, 2005.

51 Philippe Schnoebelen and Julien Veron. On arch factorization and subword universality for
words and compressed words. In Combinatorics on Words - 14th International Conference,
WORDS 2023, Umeå, Sweden, June 12-16, 2023, Proceedings, pages 274–287, 2023. doi:
10.1007/978-3-031-33180-0_21.

52 Shinnosuke Seki. Absoluteness of subword inequality is undecidable. Theor. Comput. Sci.,
418:116–120, 2012. doi:10.1016/J.TCS.2011.10.017.

53 Alan C. Shaw. Software descriptions with flow expressions. IEEE Trans. Software Eng.,
4(3):242–254, 1978. doi:10.1109/TSE.1978.231501.

54 Imre Simon. Hierarchies of events with dot-depth one — Ph.D. thesis. University of Waterloo,
1972.

55 Imre Simon. Piecewise testable events. In Autom. Theor. Form. Lang., 2nd GI Conf., volume 33
of LNCS, pages 214–222, 1975.

56 Manfred Wiegers. Recognizing outerplanar graphs in linear time. In Gottfried Tinhofer
and Gunther Schmidt, editors, Graphtheoretic Concepts in Computer Science, International
Workshop, WG ’86, Bernried, Germany, June 17-19, 1986, Proceedings, volume 246 of Lecture
Notes in Computer Science, pages 165–176. Springer, 1986. doi:10.1007/3-540-17218-1_57.

https://doi.org/10.4204/EPTCS.367.2
https://doi.org/10.1007/978-3-031-52113-3_32
https://doi.org/10.1016/0096-0551(79)90009-2
https://doi.org/10.1007/978-3-031-33180-0_21
https://doi.org/10.1007/978-3-031-33180-0_21
https://doi.org/10.1016/J.TCS.2011.10.017
https://doi.org/10.1109/TSE.1978.231501
https://doi.org/10.1007/3-540-17218-1_57

F. Manea, J. Richardsen, and M. L. Schmid 22:17

57 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

58 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity,
pages 3447–3487. World Scientific, 2018. doi:10.1142/9789813272880_0188.

59 Georg Zetzsche. The complexity of downward closure comparisons. In Proc. ICALP 2016,
volume 55 of LIPIcs, pages 123:1–123:14, 2016.

60 Haopeng Zhang, Yanlei Diao, and Neil Immerman. On complexity and optimization of
expensive queries in complex event processing. In International Conference on Management
of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages 217–228, 2014. doi:
10.1145/2588555.2593671.

CPM 2024

https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1142/9789813272880_0188
https://doi.org/10.1145/2588555.2593671
https://doi.org/10.1145/2588555.2593671

	1 Introduction
	2 Preliminaries
	3 Subsequences with Gap Constraints
	4 Complexity of the Matching Problem: Initial Results
	5 Complexity of the Matching Problem: A Finer Analysis

