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Abstract
Deterministic Finite Wheeler Automata are a natural generalisation to regular languages of the theory
of compressed data structures originated by the introduction of the Burrows-Wheeler transform.
Indeed, if we can find a Wheeler automaton recognizing a given language L, such automaton can be
used to design time and space efficient algorithms for representing and searching L.

In this paper we introduce an alternative representation of Deterministic Wheeler Automata
by showing that a natural map between strings and rational numbers in Qr0, 1q can be extended
to represent the automaton’s states as intervals in Qr0, 1q. Using this representation it emerges a
natural relationship between automata properties and some properties of real numbers. In addition,
such representation enables us to formulate problems related to automata in a numerical setting.
Although at the moment the numerical approach does not lead to time efficient algorithms, we
believe this new perspective deserves further consideration.

As a further demonstration of the convenience of this new representation, we use it to provide
a simple proof of an unexpected result on regular languages. More precisely, we compare the size
of the smallest Wheeler automaton recognizing a given language L with respect to the size of the
smallest automaton, possibly non-Wheeler, recognizing the same language. We show settings in
which there can be an exponential gap between the two sizes, and we discuss the implications of this
result on the problem of representing regular languages.
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1 Introduction

A (deterministic) automaton is a simple version of a Turing Machine, operating just moving
from left to right and using the tape just for reading a pattern (no writing). It encodes a
(very simple, testing) algorithm, operating either accepting or rejecting its input pattern. A
Wheeler automaton [1, 6] is an automaton equipped with a total order ă on its set of states
and constrained by two simple axioms that, ultimately, cast an order on the entire collection of
prefixes of accepted strings. As a matter of fact, a Wheeler automaton operates generalising to
a collection of strings the computation performed to produce the Burrows-Wheeler transform
of a string – that is, a linear and invertible permutation turning a string α into a highly
compressible and searchable equivalent [4]. Many important, practical byproducts become
available, starting with the ability to store and search the language accepted by a Wheeler
automaton in little space and time (see [5]).

A remarkable property of regular languages, not present in other settings, is that a
given language can be accepted by different automata with different properties. Hence,
a language accepted by a Wheeler automaton can be accepted also by a non-Wheeler
automaton. For an automaton A we define the width of A, widthpAq, as the minimum width
of a partial order1 on A satisfying Wheeler axioms (details given below). Since (by definition)
a Wheeler automaton Aw admits a total order, it is always widthpAwq “ 1. In [5] it is shown
that widthpAq measures the “hardness” of representing and searching A. For example, if
widthpAq “ p the automaton can be represented in Θplog pq bits per transition and there
exists a linear-space data structure solving regular expression matching in Opp2q time per
matched character.

Let L be a language accepted by a minimal (in terms of number of states) Deterministic
Finite Automaton (DFA) D as well as by a minimal Wheeler DFA (WDFA, see also Section 2)
Dw. Since either D or Dw can be used to represent the language L it is worthwhile to
compare their effectiveness for this task. To this end, in this paper we consider the problem
of bounding the size of Dw in terms of the size of D and of the width widthpDq. We prove
that even for widthpDq “ 2, a minimal Wheeler automaton Dw can have exponentially
more states than D. This result has the immediate consequence that the Wheeler automata
representation is not always the more effective: it can be algorithmically more convenient to
deal with a non-Wheeler automaton with a small width rather than working with a (minimal)
Wheeler automaton for the same language.

To provide a simple proof of the above result, we introduce a new general method for
representing automaton D (and Dw), proving that the co-lexicographic order of strings and
the ordering of a Wheeler automaton can be conveniently presented using rational numbers
and convex subsets of rational numbers in r0, 1q. This representation provides a different
perspective on some properties of automata, highlighting their connection with established
properties of real numbers. In addition, it suggests a new view for a number of problems
that we illustrate and discuss, concluding by showing that some such problems can also be
approached in an arithmetic way.

1 The width of a partial order is the maximum length of any of its anti-chains.
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2 Basics

Let Σ “ ta1, . . . , aσu denote a finite ordered alphabet of size σ. We denote by Σ˚ the set of
finite strings over Σ. The character ϵ denotes the empty string. We assume that the elements
of Σ˚ are ordered according to the co-lexicographic (co-lex) order defined as follows: given
α, β P Σ˚, we say that α is co-lex smaller than β (α ă β) if and only if α is a suffix of β or
there exist γ, α1, β1 P Σ˚ and a, b P Σ with a ă b such that α “ α1aγ and β “ β1bγ.

A Deterministic Finite-State Automaton (DFA) A “ pQ, s, δ, F q consists of a finite set
of states Q, an initial state s P Q, a set of final states F Ď Q, and a transition function
δ : Q ˆ Σ Ñ Q. We extend the transition function to words α P Σ˚ as follows: for a P Σ,
α P Σ˚, and q P Q: δpq, a ¨ αq “ δpδpq, aq, αq and δpq, ϵq “ q. For q P Q we write Iq to denote
the set of strings reaching q from the initial state: Iq “ tα P Σ˚ | q “ δps, αqu. The language
L Ď Σ˚ recognised by A is the set of strings reaching a final state from the initial state:
LpAq “

Ť

qPF Iq. We denote by PrefpLq the collection of prefixes of strings in L.
▶ Remark 1. Since we are interested in L rather than in the structure of A, we tacitly
discarded from A all states that are not relevant for the definition of L. That is, we assume
that all states of A are reachable from the initial state s and reaching at least a final state
f P F . These assumptions imply that for all q P Q it is Iq ‰ H, and Iq Ď PrefpLq.

Following the literature [1, 2], we assume that the initial state s has no incoming arcs and
that A is input-consistent: p@u, v P Qqpδpu, a1q “ δpv, a2q Ñ a1 “ a2q. These assumptions
are not too restrictive since any automaton can be converted into an equivalent input-
consistent automaton by just multiplying its size by a factor of |Σ| (it is sufficient, for each
a P Σ and q P Q, to replace q by a copy qa duplicating out-going arcs and redirecting all
a-arcs entering q to qa – possibly none).
▶ Remark 2. In an input-consistent automaton all δ-arcs reaching a given state are labelled
by the same character. Thus we may shift labels from arcs to states, obtaining an equivalent
state-labelled automaton. In the following, we will denote by λpqq P Σ the character labelling
state q. For the initial state s, which does not have any incoming arc, we set λpsq “ #,
where # R Σ is smaller than any character in Σ.
▶ Remark 3. If A “ pQ, s, δ, F q is input-consistent, on the grounds of the above observation
the second argument of the transition function δ can be safely ignored assuming that δpqq “ q1

stands for δpq, λpq1qq “ q1.

▶ Definition 4. A Wheeler DFA (WDFA) A “ pQ, s, δ, F, ăq is a DFA endowed with a
binary relation ă such that pQ, ăq is a total order having the initial state s as minimum,
and the following two (Wheeler) properties are satisfied. Let v1 “ δpu1q, and v2 “ δpu2q:

i v1 ă v2 ñ λpv1q ď λpv2q;
ii pλpv1q “ λpv2q ^ v1 ă v2q ñ u1 ă u2.

Let L Ď Σ˚ be a Wheeler language, that is, a language accepted by a deterministic
Wheeler automaton. In the rest of the paper we will consider D “ pQ, s, δ, F q defined as
the DFA with the minimum number of states accepting L, and to Dw “ pQw, s, δw, Fw, ăq

defined as the WDFA with the minimum number of states accepting L. Uniqueness of D
follows from Myhill-Nerode theorem [8, 9], while uniqueness of Dw is proven in [2]. By
definition it is always |Q| ď |Qw|, but very little else is known about the relative sizes of
Q and Qw; intuitively the ratio |Qw|{|Q| is the price one has to pay for representing the
language L with a Wheeler automaton.

Definition 4 requires ă to be a total (linear) ordering of the collection of the automaton’s
states. However, in general, D does not admit such a total order. Nevertheless D always
admits a partial order satisfying (i) and (ii) of Definition 4. Let p “ widthpDq (the width of
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23:4 The Rational Construction of a Wheeler DFA

D) be the the minimum number of linear components of a partial order satisfying (i) and (ii)
of Definition 4. In [5], plenty of arguments are given to illustrate p as a good measure for
the distance of D from being Wheeler.

As established in [2, Lemma 3.4], being Dw a Wheeler automaton, given q̄ P Qw, the set
Iq̄ Ď PrefpLq of strings reaching q̄ from the initial state is an interval Iq̄ in the linear order
pPrefpLq, ăq and the collections of intervals tIq̄ | q̄ P Qwu constitutes an equivalence relation
„Dw

partitioning PrefpLq. As a matter of fact, also tIq | q P Qu constitutes an equivalence
relation „D partitioning PrefpLq – even though the Iq’s are not, in general, intervals in
pPrefpLq, ăq – and „Dw

is a refinement of „D. Hence, for any q̄ P Qw there exists a unique
q P Q, such that Iq̄ Ď Iq. In other words, even though Iq for q P Q might not be an interval,
it is always decomposable into a finite collection of intervals Iq̄’s.

▶ Example 5. The following is an example of D of width 3 where states of Dw are indexed in
such a way that Iq̄i,j Ď Iqi . The partial order of D’s states is: q1 ă q2; q3 ă q4; q5 ă q6, with
Q1 “ tq1, q2u, Q2 “ tq3, q4u, and Q3 “ tq5, q6u being a partition of Q into linearly ordered
subsets. Notice that every state of Dw is reached by interval of strings in pPrefpLq, ăq and
any state of D is reached by a finite collection of intervals of strings.

PrefpLq

Q1
Iq̄1,1 Iq̄1,2 Iq̄1,3 Iq̄2,1 Iq̄2,2

Q2
Iq̄3,1 Iq̄3,2 Iq̄4,1 Iq̄4,2

Q3
Iq̄5,1 Iq̄6,1 Iq̄6,2

▶ Remark 6. Not being Wheeler for a language means that, for some q P Q, any attempt to
produce the previously mentioned decomposition of Iq would result in the introduction of
infinitely many sub-intervals.

3 The Rational Embedding

In this section we introduce a very simple formal tool, the rational embedding, easing the
representation and analysis of automata. We begin by embedding Σ˚ into Qr0, 1q, the
half-open interval of rational numbers between 0 and 1. In what follows, we assume, without
loss of generality, that Σ “ t1, 2, . . . , σu (with the usual order of the integers).

▶ Definition 7 (The Rational Embedding of Σ˚). The Rational Embedding of Σ˚ is the map
q : Σ˚ Ñ Qr0, 1q defined as follows. For any α “ α1 . . . αm P Σ˚:

qpαq “

m
ÿ

i“1
αi ¨ pσ ` 2q´pm´i`1q.

The above embedding sends any non-empty Σ-string to a rational in p0, 1q and the empty
word to 0. In the rest of the paper we will always write the values qpαq in base σ `2 “ |Σ| `2;
note that by construction the representation will never contain the digit 0 or the digit σ ` 1
to the right of the dot sign.

▶ Example 8. Consider the string α “ α1α2 ¨ ¨ ¨ αm P Σ˚. The value q on α is the rational
number qpαq written in base pσ ` 2q as qpαq “ 0.αm ¨ ¨ ¨ α2α1. Notice that when α P

PrefpLqztϵu, for some L “ LpAq with A input-consistent, the most significant digit of qpαq is
the label of the state reached on A reading α.
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▶ Remark 9. Avoiding 0 and σ ` 1 – i.e. the smallest and the largest digits in base σ ` 2 –
will turn out convenient in order to make the map qp¨q injective. This assumption is used in
Corollary 21 and, clearly, it does not reduce the overall applicability of the embedding.

The fundamental property of the map qp¨q, is that the co-lex order on Σ˚ corresponds to
the order among elements of the rational embeddings of Σ˚. In formulae, denoting by ă also
the (standard) natural order on Q:

α ă β (in co-lex order) if and only if qpαq ă qpβq (as rational numbers).

Based on the rational embedding of strings we can define the rational embedding of (the
states of) a DFA.

▶ Definition 10. Let IQr0,1q be the collection of non-empty convex sets of rationals in Qr0, 1q:

IQr0,1q “ tJ Ď Qr0, 1q | J ‰ H ^ p@a, c P Jqp@b P Qqpa ď b ď c ñ b P Jqu.

▶ Definition 11 (The Rational Embedding of a DFA). The Rational Embedding of A “

pQ, s, δ, F q is the map Iq : Q Ñ IQr0,1q defined as follows: for any q P Q,

Iqpqq “
č

tJ P IQr0,1q | p@α P Iqqpqpαq P Jqu.

In other words, Iqpqq is the convex closure (or convex hull) of Iq.

In the following Iqpqq will also be denoted by Iq
q and we will denote by ℓq (respectively rq)

the inf (respectively the sup) of Iq
q .

Even though determinism guarantees that q ‰ q1 implies Iq X Iq1 “ H, it might be the
case that q ‰ q1 and Iq

q X Iq
q1 ‰ H. However, [2, Theorem 4.3] implies that A is Wheeler if

and only if q ‰ q1 implies Iq
q X Iq

q1 “ H. This is shown by the following example.

▶ Example 12. As already shown in Example 5, given a D-state q P Q the co-lexicographically
ordered words in Iq can be decomposed in a finite sequence of sub-intervals that will constitute
the Dw-states. By embedding words and states in Qr0, 1q we simply reproduce this situation
on the rationals (as landscape). Below we depict the example, with intervals above referring
to states in Q and below to states in Qw:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Iq
q1

Iq
q1,1

Iq
q1,2

Iq
q1,3

Iq
q2

Iq
q2,1

Iq
q2,2

Iq
q3

Iq
q3,1

Iq
q3,2

Iq
q4

Iq
q4,1

Iq
q4,2

Iq
q5

Iq
q5,1

Iq
q6

Iq
q6,1

Iq
q6,2

Mapping each Iq to a set of real numbers Iq
q makes it possible to study automata using

tools from elementary calculus. As a first example we show that the notion of accumulation
point is related to the concept of entanglement introduced in [5, Definition 4.7]. Intuitively,
two states q and q1 are entangled when there exists an infinite co-lex-monotone sequence of
strings reaching alternatively q and q1. Below a formalization of this important notion in a
more general setting.

CPM 2024



23:6 The Rational Construction of a Wheeler DFA

▶ Definition 13. Let D be a DFA with set of states Q. A subset Q1 Ď Q is entangled if
there exists a monotone sequence pαiqiPN in PrefpLpDqq such that for all u1 P Q1 it holds
δps, αiq “ u1 for infinitely many i’s.

▶ Definition 14. We say that x P R is a left-accumulation point for a set U if there exists a
sequence of elements ui P U strictly greater than x and converging to x. Similarly, we say
that x is a right-accumulation point for U if the elements ui converging to x are all strictly
smaller than x.

▶ Lemma 15. If a value x is a left-accumulation point (resp. right-accumulation point) for
both the sets Iq

q and Iq
q1 then q and q1 are entangled.

Proof. If x is a left-accumulation point for both Iq and Iq1 from elementary calculus we
know that there exists an infinite sequence u1 ą v1 ą ¨ ¨ ¨ ui ą vi ą ¨ ¨ ¨ converging to x with
ui P Iq

q and v1
i P Iq

q1 . Hence there is a sequence of strings α1 ą β1 ¨ ¨ ¨ αi ą βi ą ¨ ¨ ¨ with
αi P Iq and βi P Iq1 and the states q and q1 are entangled according to Definition 4.7 in [5].
The case when x a right-accumulation point for both Iq

q and Iq
q1 is analogous. ◀

▶ Theorem 16. If D is the minimum DFA accepting L, and x is a left-accumulation point
(resp. right-accumulation point) for two distinct sets Iq

q and Iq
q1 then L is not Wheeler.

Proof. By Lemma 15 the states q and q1 are entangled. Since D is the minimum DFA
accepting L by [5, Theorem 4.21] any DFA recognizing L has width at least 2. ◀

▶ Example 17. Consider the two automata in Figure 1.

#start

1 2

3 q 3q1

5 6

#start

1 4

3 q 3q1

5 6

Figure 1 The language accepted by the automaton on the right is Wheeler, while the one accepted
by the automaton on the left is not.

The automaton on the right accepts a Wheeler language, while the one on the left does
not, the reason being that on the left 0.3̄ is a right-accumulation point for both Iq

q and Iq
q1

because of the sequences 0.31, 0.331, 0.3331, . . . and 0.32, 0.332, 0.3332, . . . (reaching q1): by
Theorem 16 the corresponding language is non Wheeler. In the automaton on the right 0.3̄ is
a right-accumulation point for Iq

q and a left-accumulation point for Iq
q1 and the automaton is

Wheeler with q ă q1. Note that, if in the left automaton we remove states 5 and 6 and make
q and q1 final, then 0.3̄ is still a right-accumulation point for both Iq

q and Iq
q1 but the resulting

automaton is not minimum so Theorem 16 do not apply: indeed the resulting language is
Wheeler.

We are particularly interested in the study of the extreme values ℓq “ inf Iq
q and rq “ sup Iq

q

as defined in Definition 11. We have the following preliminary results.

▶ Lemma 18. If L “ LpDq is Wheeler and D is the minimum DFA accepting L, then for
all pairwise distinct q, q1 P Q, we have:

ℓq “ ℓq1 Ñ pℓq P Iq
q _ ℓq1 P Iq

q1 q, rq “ rq1 Ñ prq P Iq
q _ rq1 P Iq

q1 q.

The same property holds if D is a WDFA accepting L.
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Proof. Assume D is the minimum DFA for the Wheeler language L. If there exist q, q1 P Q

such that ℓq “ ℓq1 and pℓq R Iq
q ^ ℓq1 R Iq

q1 q then ℓq would be a left-accumulation point for
both Iq

q and Iq
q1 which is impossible by Theorem 16.

If instead D is a WDFA accepting L observe that ℓq “ ℓq1 and pℓq R Iq
q ^ ℓq1 R Iq

q1 q implies
Iq

q X Iq
q1 ‰ H, which would contradict the hypothesis that D is Wheeler. The case rq “ rq1 is

entirely analogous for both kind of automata. ◀

▶ Lemma 19. If λq P L is such that qpλqq “ ℓq, then: ℓq P Iq
q if and only if λq P Iq. The

same result holds for rq as well.

Proof. See Appendix. ◀

Using Lemma 18 we can order the intervals Iq
q ’s according to their left ends ℓq’s (or their

right ends rq’s) breaking ties, when ℓq “ ℓq1 , by setting Iq
q less than Iq

q1 if ℓq P Iq
q and ℓq1 R Iq

q1

(we cannot have ℓq P Iq
q ^ ℓq P Iq

q1 since by Lemma 19 we would have Iq X I 1
q ‰ H). The

rationale for this tie-breaking rule is that ℓq P Iq
q ensures that there is an element in Iq

q which
is strictly smaller than all elements in Iq

q1 . However, we will see below (Corollary 21) that, in
fact, breaking ties will never be necessary.

Using the above ordering of the intervals we can derive a procedure to determine the
values ℓq and rq, for all q P Q.

▶ Lemma 20. Let L “ LpDq, with L Wheeler and D either minimum or Wheeler. For any
q P Q we have:

ℓq “ 0.aq,1 ¨ ¨ ¨ aq,haq,h`1 ¨ ¨ ¨ aq,h`j ,

with h ` j ď |Q|, and j “ 0 meaning that ℓq is not periodic. Moreover, j ą 0 if and only if
ℓq R Iq

q. An analogous characterisation holds for rq.

Proof. Let q0 “ s ă q1 ă . . . ă qn be the total order of Q induced by the order of the
intervals Iq

q mentioned above, that is

qi ă qi1

def
ðñ

´

ℓqi ă ℓqi1 _ pℓqi “ ℓqi1 ^ ℓqi1 R Iq
qi1

q

¯

. (1)

Algorithm 1 determines the digits and the (possible) periodicity of ℓq for any state q.
After a call of left_dd pqq, let P “ tqi1 , . . . , qik´1 u. It is easily seen by induction that

the digits determined aq,1 ¨ ¨ ¨ aq,k´1 are, in fact, the first k ´ 1 digits of ℓq. Upon exit of
left_dd pqq, k ´ 1 “ h ` j ă |Q| and the algorithm stops in one of the following two cases:
1. qik

“ s, or
2. qik

“ qik1 , for some k1 P t1, . . . , k ´ 1u.

In the first case h “ k ´ 1, j “ 0, and ℓq “ 0.aq,1 ¨ ¨ ¨ aq,h, as determined by left_dd pqq. In
the second case h “ k1 ´ 1, j “ k ´ k1, and our claim is that

ℓq “ 0.aq,1 ¨ ¨ ¨ aq,haq,h`1 ¨ ¨ ¨ aq,h`j .

In fact, in this case it is easy to produce a sequence of strings reaching q whose rational
embeddings converge to ℓq. Take, for example, β labelling a simple path from s to qik1 and
consider the following infinite sequence of words reaching q: for i P N,

βpaq,h`j ¨ ¨ ¨ aq,h`1qiaq,h ¨ ¨ ¨ aq,1.

CPM 2024



23:8 The Rational Construction of a Wheeler DFA

Algorithm 1 left_digits_detector (q) (left_dd (q)).

k Ð 1; // initialise a counter for visited states (and for the digits)
qik

Ð q; // set the first state (and digit)
P Ð H; // P will store visited states
while qik

‰ s and qik
R P do // stop when s or a state in P is reached

P Ð P Y tqik
u;

aq,k Ð λpqik
q;

k Ð k ` 1;
ik Ð min

␣

k1 | δpqk1 q “ qik´1

(

; // use the ordering (1)
if qik

“ s then // ℓq is not periodic
h Ð k ´ 1;
j Ð 0;

else // qik
is a previously visited state: set periodicity

let k1 ă k such that qik
“ qik1

h Ð k1 ´ 1
j Ð k ´ k1;

By construction we have that, for any i P N,

qpβpaq,h`j ¨ ¨ ¨ aq,h`1qi`1aq,h ¨ ¨ ¨ aq,1q ă qpβpaq,h`j ¨ ¨ ¨ aq,h`1qiaq,h ¨ ¨ ¨ aq,1q,

and that:

ℓq “ lim
iÑ8

qpβpaq,h`j ¨ ¨ ¨ aq,h`1qiaq,h ¨ ¨ ¨ aq,1q. ◀

Using the characterisation of ℓq and rq provided by Lemma 20 we can strengthen Lemma 18
and prove that different Iq

q ’s have always different left and right limits.

▶ Corollary 21. Let L “ LpDq, with L Wheeler and D either minimum or Wheeler. Then,
for any pairwise distinct q, q1 P Q we have: ℓq ‰ ℓq1 and rq ‰ rq1 .

Proof. See Appendix. ◀

The above corollary clarifies that any state q P Q can be uniquely characterised by a rational
number or, equivalently, by a string of at most |Q| ´ 1 characters.

▶ Theorem 22. If L “ LpDq “ LpDwq, with L Wheeler and D either minimum or Wheeler,
then for all q P Q, we have ℓq, rq P Q.

Proof. Follows directly from Lemma 20. ◀

▶ Remark 23. We can give examples of automata D such that, for some q P Q, Iq
q includes

Cauchy sequences of rational embeddings of strings converging to irrational numbers – as a
matter of fact, this easily follows from the fact that the language Σ˚ is Wheeler. However,
Theorem 22 ensures that such irrational limits of (encodings of) words will never occur
as endpoints of Iq

q ’s. In fact, Lemma 20, exploiting the linear order of the reals, used by
algorithm left_dd to direct the search, shows that – not surprisingly, being D a finite
automaton – a finite representation of the bounding elements of Iq

q ’s, can be given.
Corollary 21 immediately implies that the existence of distinct states with equal left

(right) limits guarantees non-Wheelerness. The converse of the above result is, in general,
not true as illustrated by the following example.
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▶ Example 24. The automaton in Figure 2 is such that Iq
q “ r0.51, 0.56s and Iq

q1 “ r0.52, 0.57s.
However, the value 0.5 is a left-accumulation point for both q and q1. By Theorem 16 the
accepted language is not Wheeler even if all the left and right limit are distinct.

#start

1 6 72

5q 5 q1

3 4

Figure 2 States q and q1 in the above automaton are entangled by Lemma 15; however ℓq ‰ ℓq1

and rq ‰ rq1 .

4 On the number of states of the minimum WDFA

Given Dw “ pQw, sw, δw, Fw, ăq minimum (in the number of states) WDFA accepting a
Wheeler language L “ LpDq, with D “ pQ, s, δ, F q minimum DFA accepting L, we want to
study the relationship between the size of Dw and D.

Consider the collection of intervals
␣

Iq
q | q P Qw

(

. Since Dw is Wheeler, as already
observed we have that for pairwise distinct q, q1 P Qw, Iq

q X Iq
q1 “ H. This is, in general, not

the case for D and below we prove that the size of Dw can be exponential in the size of D,
even in case widthpDq “ 2.

Below we give a simple example of automaton D1 accepting a Wheeler language but
such that the minimum WDFA D1

w has size exponential in the size of |D1|. Let D1 be the
automaton in Figure 3.

#start

1

2

3
q1

1

w1

2
s1

3
q2

. . . . . . 3
qn

1

wn

2
sn

3
t

Figure 3 The depicted DFA is accepting a Wheeler (finite) language and the minimum accepting
Wheeler DFA accepting the same language has size exponential in n.

L “ LpD1q, being finite, is Wheeler [2]. Moreover, any Wheeler automaton accepting L
must have a number of states exponential in n. In fact, given any pair of strings α, γ P It

such that qpαq ă qpγq, it is easy to find a β P Iqn
such that qpαq ă qpβq ă qpγq. Since there

are exponentially many pairwise distinct strings reaching state t, in a Wheeler automaton
the set It must be partitioned into an exponential number of sub-intervals. Hence, state t

must be “split” into exponentially many states of Dw and the size of Dw must be exponential
in n.
▶ Remark 25. The automaton D1 of Figure 3 has widthpD1q “ n. Hence, one could think
that the explosion in the number of states is exponential in the width of the minimum
automaton accepting a given language. Below we show that this is not the case, providing
an example of automaton whose width is just 2 but the explosion still occurs.
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23:10 The Rational Construction of a Wheeler DFA

Consider the DFA D2 of Figure 4, where, for example, state si labeled 5i stands for a sequence
of i states si,1, . . . , si,i, all labeled 5. That is:

5i

si

stands for 5
si,1

. . . i times . . . 5
si,i

and, analogously, for states s1
i, wi and w1

i, for i P t1, . . . , nu. Furthermore, we say that states
si,j and s1

i,j are twins – the same goes for all other states and their primed version.

#

1

3

2

4

7

q1
1

7

q1
i

6

z1
i

5i`1w1
i

6

x1
i

5i s1
i

7

q1
i`1

. . .. . . 7

q1
n

8

t1

7
q1

6
zi

7
qi

5i`1wi

6
xi

5i si

7
qi`1

. . .. . . 7
qn

8
t

Figure 4 The automaton D2. The gadget between qi and qi`1, consisting of states zi, xi, wi, si,
(and, analogously, the gadget between q1

i and q1
i`1) is deployed for i “ 1, . . . , n ´ 1. Notice that the

i-th copy consists of 2i ` 4 states overall since each label 5i expands to i states.

Table 1 Left and right limits of Iq for different kinds of states from automaton D2. Intervals of
states denoted by different letters are clearly non-intersecting except in the case of t with t1.

State type Left limit Right limit
si,j 0.5j6675i67 . . . 0.5j6675i´1667 . . .

wi,j 0.5j675i67 . . . 0.5j675i´1667 . . .

xi 0.6675i67 . . . 0.6675i´1667 . . .

zi 0.675i67 . . . 0.675i´1667 . . .

qi 0.75i67 . . . 0.75i´1667 . . .

t 0.85n67 . . . 0.8875n´1667 . . .

t1 0.875n67 . . . 0.875n´1667 . . .

Our goal is to show that D2 has width equal to 2. The following two lemmas, whose
proofs can be found in the appendix, ensure that non-empty intersection of intervals happens
only between twin states.

▶ Lemma 26. Let u, v states of any automaton. If λpuq ‰ λpvq, then Iq
u X Iq

v “ H.

▶ Lemma 27. Let D2 be the automaton in Figure 4. Let u, v be a pair of distinct states of
D2 such that λpuq “ λpvq. Then, Iq

u X Iq
v ‰ H if and only if u and v are twins.

By above lemmas it follows:
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▶ Lemma 28. Let D2 be the automaton of Figure 4. Then, widthpD2q “ 2.

D2 accepts a (finite) Wheeler language, but its minimum Wheeler automaton has expo-
nential size in n. The fact that D2

w has size exponential in n is verified observing that strings
reaching t and t1 are interleaved, analogously to D1.

▶ Theorem 29. Let L “ LpDq “ LpDwq, with L Wheeler, D minimum, Dw minimum
Wheeler, and let fp¨, ¨q be such that |Dw| “ Op fp|D|, widthpDqq q. Then, for any k, p P N,
fpn, pq R Opnk ` 2pq.

5 Left and right limits: the arithmetic way

In this section we describe an alternative way to determine the left and right limit of the
intervals defining the rational embedding of the automaton. Our starting point is the following
lemma (proof in Appendix) establishing an arithmetic relationship between the left values
ℓq’s. An analogous result holds for the right values rq’s.

▶ Lemma 30. Given D “ pQ, s, δ, F q, DFA accepting L Wheeler, and q P Qztsu, there exists
a unique q1 P Q such that δpq1q “ q and pσ ` 2q ¨ ℓq “ λpqq ` ℓq1 .

In the following we use RQ to denote the set of real-valued vectors indexed by elements
of Q. Given x P RQ and q P Q we write xq to denote the entry associated to q. Similarly we
use QQ to denote the set of rational-valued vectors. We write ℓ to denote the vector in QQ

containing the left limits ℓq with q P Q.
Lemma 30 suggests a way of computing left (and right) limits through constraint pro-

gramming [3, 11]. Formally, for the left case, we consider the problem of finding the set of
all real-valued vectors x P RQ that satisfy the following constraint satisfaction program, that
we name PLeft :

p1q xs “ 0,

p2q 0 ă xq ă 1, p@q P Qztsuq

p3q pσ ` 2q ¨ xq “ λpqq ` min
␣

xq1 | δpq1q “ q
(

, p@q P Qztsuq

We now prove that the vector ℓ P QQ of left limits is the only solution of the above
program. As a first step, we make sure that PLeft is complete, that is, the vector ℓ satisfies
constraints (1–3).

▶ Lemma 31. Let L be a Wheeler language, and D “ pQ, s, δ, F q be either minimum or
Wheeler accepting L, and let ℓ P QQ be the vector of left limits. Then, ℓ is a solution of PLeft.

Proof. First of all, notice that constraints (1) and (2) of PLeft are clearly satisfied by ℓ.
Consider the order ăQ of the states of D defined by: q ăQ q1 def

ðñ ℓq ă ℓq1 . The order is
well-defined and total in virtue of Corollary 21. By Lemma 30, for every state q ‰ s there
exists a unique q1 P δ´1pqq such that pσ ` 2q ¨ ℓq “ λpqq ` ℓq1 . Moreover, from the proof of
Lemma 20 we know that q1 “ min

ăQ

δ´1pqq. By definition of ăQ we have:

q1 “ min
ăQ

δ´1pqq ðñ ℓq1 “ min
␣

ℓq2 | q2 P δ´1pqq
(

,

thus satisfying constraint (3). ◀

To prove that ℓ is the only solution we need the notion of px, qq-min-path.
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▶ Definition 32. Let D “ pQ, s, δ, F q be a DFA, x P RQ, and q P Q. We say that an infinite
sequence of states pqiqiě1 is a px, qq-min-path in D if the following hold:
1. q1 “ q,
2. p@i ě 1qpδpqi`1q “ qi _ qi “ qi`1 “ sq,
3. p@i ě 1qpxqi`1 “ min txq1 | δpq1q “ qiu _ qi “ qi`1 “ sq.

Roughly speaking, a px, qq-min-path is a path in the automaton that follows (backward)
states whose associated x-value is minimum. It does not come as a surprise that if pq1, q2, . . . q

is a px, qq-min-path, then for every j ě 1 we have that pqj , qj`1, . . . q is a px, qjq-min-path as
well: the proof of this simple fact follows directly from Definition 32.

Furthermore, when x P RQ is a solution of PLeft , px, qq-min-paths spell out precisely xq’s
digits. Formally:

▶ Lemma 33. Let x P RQ be a solution of PLeft, q P Q, and let pqiqiě1 be any px, qq-min-path.
Then, for every j ě 1, the j-th digit of xq is λpqjq.

Proof. See Appendix. ◀

▶ Corollary 34. If x P RQ is a solution of PLeft, then for every q P Q the first digit of xq is
λpqq.

Proof. Follows immediately from Definition 32 and Lemma 33. ◀

We can now state the main result of this section.

▶ Theorem 35. Let D “ pQ, s, δ, F q be either minimum or Wheeler accepting L Wheeler,
and ℓ P QQ be the vector of left limits. Then, PLeft always admits ℓ as its unique solution.

Proof. By Lemma 31 we know that ℓ is a solution of PLeft. Let x be a generic solution of
PLeft, and denote by xq,j the j-th digit of xq. Suppose, for the sake of contradiction, that
there exists some state q P Q such that xq ‰ ℓq, let q be any for which xq and ℓq have the
shortest prefix of digits in common, and let j be the length of such prefix. By Corollary 34,
j ě 1. Let pqiqiě1 and pq1

iqiě1 be, respectively, any px, qq-min-path and pℓ, qq-min-path. By
Lemma 33 and hypothesis on q, it holds:
1. p@i ď jqpλpqiq “ xq,i “ ℓq,i “ λpq1

iqq, and
2. λpqj`1q “ xq,j`1 ‰ ℓq,j`1 “ λpq1

j`1q.
Consider the case λpqj`1q ă λpq1

j`1q (the other case is symmetric). By minimality of the
choice of q, the first j digits of both xq2 and ℓq2 are the same. Similarly, the first j digits of
both ℓq1

2
and xq1

2
are the same. Therefore, ℓq2 ă ℓq1

2
contradicting the hypothesis that pq1

iqiě1
was a pl, qq-min-path. ◀

Program PLeft can be implemented as a Mixed Integer Program, whose solution is, in
general, computationally hard to obtain [10]. The fact that a graph-oriented approach can
compute the left limits in polynomial time [7], justifies the following:

▶ Conjecture 36. There exists a linear programming model equivalent to PLeft.

We give a partial answer to Conjecture 36. Let π : Q Ñ Q be the parent function, i.e.
πpqq “ q1 if and only if q1 is the unique state mandated by Lemma 30 (with πpsq “ s). Indeed,
π is precisely what has been computed in [7, Section 4] in the form of a pruned automaton.
Consider matrix Π P t0, 1u|Q|ˆ|Q| such that Πi,j “ 1 if and only if πpiq “ j. Combining PLeft
and Theorem 35, we express the problem of computing vector ℓ of left limits given vector λ

of characters as the unique solution of:
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xs “ 0,

p@q ‰ sqp0 ă xq ă 1q,

pσ ` 2q ¨ x “ λ ` Π⊺ ¨ x

The third equation reminds of the condition for x to be an eigenvector of Π⊺, with λ acting
as a corrective term. This intuition can be made formal. In fact, if we denote by I the
|Q| ˆ |Q| identity matrix, it is easily verified that:

ˆ

Π⊺ I

0 pσ ` 2qI

˙

¨

ˆ

x

λ

˙

“ pσ ` 2q

ˆ

x

λ

˙

As already stated, we consider the above model unsatisfactory since we would need to
know Π in advance. Finally, for the right limits case, we define the constraint satisfaction
program PRight by substituting max for min in p3q of PLeft :

p3˚q pσ ` 2q ¨ xq “ λpqq ` max
␣

xq1 | δpq1q “ q
(

, p@q P Qztsuq

The discussion made for PLeft computing ℓ can be translated into a discussion for PRight
computing the vector of right limits r by exchanging min-arguments into max-arguments.
The key observation is that Lemma 33, rephrased in terms of max-paths, still holds.

6 Conclusions

One of the goals of this paper was to study the problem of building, given a Wheeler language
presented by its minimum accepting automaton, a Wheeler accepting automaton of minimum
size. Such minimum Wheeler DFA is proved to be, in general, exponential in size with
respect to the size of the minimum input DFA. The lower bound is proved by exhibiting an
example of DFA whose size explodes exponentially when we perform the “splits” necessary
to guarantee the order characterizing Wheeler-ness. Moreover, and most importantly, this
happens even when the width of the input DFA is just 2. We point out that the latter
phenomenon is a sort of exception: for most classic operations, once the width is fixed we
are able to put polynomial bounds on their complexity.

The above result is illustrated while introducing a simple view on DFAs and WDFAs, that
starts from a mapping of strings into rational numbers. According to this rational embedding,
automaton’s states can be (over)approximated by convex sets (intervals) of rational numbers
and the basic Wheeler properties turn out to be translated into ordering and non-intersecting
constraint on the collection of states-intervals. Moreover, a characterisation of the number of
digits necessary to identify left and right limits of states-intervals can be carried out analysing
the underlying automaton’s transition function and using the Wheeler order of its states.

The latter technique suggests also that the infinite alternation of strings reaching different
states (the so-called entanglement of states) can be linked with the existence, position, and
distribution of accumulation points of the collection of embedding of prefixes of strings
on the r0, 1q half-open interval of the real line. An interesting further direction of study
is the characterisation of order-types obtainable by rationals corresponding to embedding
of prefixes of general, not necessarily Wheeler, languages. The final section is devoted to
propose a further angle from which the problem of determining digits of limiting rationals
can be approached, namely constraint programming.

CPM 2024



23:14 The Rational Construction of a Wheeler DFA

References
1 Jarno Alanko, Giovanna D’Agostino, Alberto Policriti, and Nicola Prezza. Regular languages

meet prefix sorting. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages
911–930. SIAM, 2020. doi:10.1137/1.9781611975994.55.

2 Jarno Alanko, Giovanna D’Agostino, Alberto Policriti, and Nicola Prezza. Wheeler languages.
Inf. Comput., 281:104820, 2021. doi:10.1016/j.ic.2021.104820.

3 Krzysztof Apt. Principles of constraint programming. Cambridge university press, 2003.
doi:10.1017/CBO9780511615320.

4 Michael Burrows and David J Wheeler. A block-sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

5 Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, and Nicola Prezza. Co-
Lexicographically Ordering Automata and Regular Languages - Part I. J. ACM, 70(4),
August 2023. doi:10.1145/3607471.

6 Travis Gagie, Giovanni Manzini, and Jouni Sirén. Wheeler graphs: A framework for BWT-
based data structures. Theoretical Computer Science, 698:67–78, 2017. Algorithms, Strings
and Theoretical Approaches in the Big Data Era (In Honor of the 60th Birthday of Professor
Raffaele Giancarlo). doi:10.1016/j.tcs.2017.06.016.

7 Sung-Hwan Kim, Francisco Olivares, and Nicola Prezza. Faster prefix-sorting algorithms for
deterministic finite automata. In Proc. CPM 23. Schloss-Dagstuhl - Leibniz Zentrum für
Informatik, 2023. doi:10.4230/LIPIcs.CPM.2023.16.

8 John Myhill. Finite automata and the representation of events. WADD Technical Report,
57:112–137, 1957.

9 Anil Nerode. Linear automaton transformations. Proceedings of the American Mathematical
Society, 9(4):541–544, 1958.

10 Christos H Papadimitriou. On the complexity of integer programming. Journal of the ACM
(JACM), 28(4):765–768, 1981. doi:10.1145/322276.322287.

11 Francesca Rossi, Peter Van Beek, and Toby Walsh. Constraint programming. Foundations of
Artificial Intelligence, 3:181–211, 2008. doi:10.1016/S1574-6526(07)03004-0.

A Proofs

Proof of Lemma 19. Since Iq
q is the convex closure of Iq, it is Iq Ď Iq

q and the “if” implication
is immediate. If it were ℓ R Iq ^ ℓq P Iq

q , by considering U “ Iqztℓqu we would get a convex
set U Ě Iq strictly contained in Iq

q which is a contradiction. ◀

Proof of Corollary 21. We deal with left limits only since the argument for right limits is
entirely similar. If both ℓq and ℓq1 are not periodic, by Lemma 20 and the fact that D is
deterministic it must be the case that ℓq ‰ ℓq1 .

Otherwise, by Lemma 18 we have that, say, ℓq P Iq
q and ℓq1 R Iq

q1 . By Lemma 20 this means
that ℓq1 is a periodic rational while ℓq is not. Since the largest digit of Σ will never label a
state (see Remark 9), the two rational numbers ℓq and ℓq1 cannot possibly be equal. ◀

Proof of Lemma 26. Suppose, without loss of generality, that λpuq ă λpvq. It is clear that:

ru “ 0.λpuq ¨ ¨ ¨ ă 0.λpvq ¨ ¨ ¨ “ ℓv.

Thus, their respective intervals do not intersect. ◀

Proof of Lemma 27. pðq The case for t and t1 is clearly true (see Table 1). Consider two
twin states u and u1, respectively from the top and the bottom level of D2. By construction,
there exist α, β P Σ˚ such that:
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0.α1 ă 0.α2 ă 0.β3 ă 0.β4

“ “ “ “

ℓu ℓu1 ru ru1

Thus, Iq
u X Iq

u1 ‰ H.
pñq We prove the contrapositive. The case for states denoted by different letters is simple

(see again Table 1). Let u and v be two non-twin states denoted by the same letter and
different indexes, and suppose, without loss of generality, that u “ si,j and v “ si1,j1 (all
other cases are proved in a similar way). We have two cases. If j “ j1 and i ă i1, then:

rv “ 0.5j6675i5i1
´i´1667 ¨ ¨ ¨ ă 0.5j6675i67 ¨ ¨ ¨ “ ℓu

and their respective intervals do not intersect. Otherwise, if j ă j1, then:

rv “ 0.5j5j1
´j667 ¨ ¨ ¨ ă 0.5j667 ¨ ¨ ¨ “ ℓu

and, again, their respective intervals do not intersect. ◀

Proof of Lemma 30. By Lemma 20, we have:

ℓq “ 0.aq,1 ¨ ¨ ¨ aq,haq,h`1 ¨ ¨ ¨ aq,h`j “ 0.λpqqaq,2 ¨ ¨ ¨ aq,haq,h`1 ¨ ¨ ¨ aq,h`j .

Let q1 be the first state visited after q by left_dd (q), we have:

ℓq1 “

#

0.aq,2 ¨ ¨ ¨ aq,haq,h`1 ¨ ¨ ¨ aq,h`j , if h ą 0,

0.aq,2 ¨ ¨ ¨ aq,j´1λpqq, if h “ 0.

Since all the above values are expressed in base σ ` 2 it is

pσ ` 2q ¨ ℓq “ λpqq.aq,2 ¨ ¨ ¨ aq,haq,h`1 ¨ ¨ ¨ aq,h`j “ λpqq ` ℓq1

as claimed. The uniqueness of q1 follows from Corollary 21. ◀

Proof of Lemma 33. First of all, the unique px, sq-min-path is ps, s, . . . q. Therefore, the
j-th digit of xs is λpsq for every j. If q ‰ s, we prove the lemma by induction on j ě 1. In
what follows, we denote by xq,j the j-th digit of xq, and we let pqiqiě1 be any px, qq-min-path.
Base. By Definition 32 and constraints of PLeft we have λpq1q ď pσ ` 2q ¨ xq ă λpq1q ` 1.

Thus, xq,1 “ λpq1q.
Step. Let j ą 1, and suppose the property holds for every state and every j1 ă j. Sequence

pq2, q3, . . . q is a px, q2q-min-path. Thus:

xq,j “ xq2,j´1 pConstraint 3 of PLeft and Def. 32q

“ λpqjq pInduction hypothesis on q2 and j ´ 1q

◀
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