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—— Abstract

Any function f with domain {1,...,m} and co-domain {1,...,n} induces a natural map from words
of length n to those of length m: the ith letter of the output word (1 < i < m) is given by the
f(2)th letter of the input word. We study this map in the case where f is a surjection satisfying the
condition |f(i+1)—f(¢)| < 1 for 1 <4 < m. Intuitively, we think of f as describing a “walk” on a
word u, visiting every position, and yielding a word w as the sequence of letters encountered en route.
If such an f exists, we say that u generates w. Call a word primitive if it is not generated by any
word shorter than itself. We show that every word has, up to reversal, a unique primitive generator.
Observing that, if a word contains a non-trivial palindrome, it can generate the same word via
essentially different walks, we obtain conditions under which, for a chosen pair of walks f and g,
those walks yield the same word when applied to a given primitive word. Although the original
impulse for studying primitive generators comes from their application to decision procedures in
logic, we end, by way of further motivation, with an analysis of the primitive generators for certain
word sequences defined via morphisms.

2012 ACM Subject Classification Mathematics of computing — Combinatorics on words
Keywords and phrases word combinatorics, palindrome, Rauzy morphism

Digital Object Identifier 10.4230/LIPIcs.CPM.2024.25

Related Version Full Version: https://arxiv.org/abs/2208.08913

Funding This work was supported by the Polish NCN, grant number 2018/31/B/ST6/03662.

Acknowledgements The author wishes to thank Prof. V. Berthé and Prof. L. Tendera for their
valuable help, and Mr. D. Kojelis for his many suggestions, in particular the much-improved
reformulation of Theorem 4.

1 Introduction

Take any word over some alphabet, and, if it is non-empty, go to any letter in that word.
Now repeat the following any number of times (possibly zero): scan the current letter, and
print it out; then either remain at the current letter, or move one letter to the left (if possible)
or move one letter to the right (if possible). In effect, we are going for a walk on the input
word. Since any unvisited prefix or suffix of the input word cannot influence the word we
print out, they may as well be ablated; letting u be the factor of the input word comprising
the scanned letters, and w the word printed out, we say that u generates w. It is obvious
that every word generates itself and its reversal, and that all other words it generates are
strictly longer than itself. We ask about the converse of generation. Given a word w, what
words u generate it? Call a word primitive if it is not generated by any word shorter than
itself. It is easy to see that every word must have a generator that is itself primitive. We
show that this primitive generator is in fact unique up to reversal. On the other hand, while
primitive generators are unique, the generating walks need not be, and this leads us to ask,
for a given pair of walks, whether we can characterize those primitive words w for which they
output the same word w. We answer this question in terms of the palindromes contained
in u. Specifically, for a primitive word u, the locations and lengths of the palindromes it
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(a) Example of generation. (b) The minimal leg J = [V, W] (of length ¢) of some walk.

Figure 1 Generation and minimal legs.

contains determine which pairs of walks yield identical outputs on u. As an illustration of
the naturalness of the notion of primitive generator, we consider word sequences over the
alphabet {1,...,k} generated by the generalized Rauzy morphism o, which maps the letter
k to the word 1, and any other letter ¢ (1 <i < k) to the two-letter word 1 - (i+1). Setting
agk) =1and agﬂl = U(agc)) for all n > 1, we obtain the word sequence {a,(f)}nzl. We show
that every word in this sequence from the kth onwards has the same primitive generator.

2  Principal results

Fix some alphabet . We use a,b,c... to stand for letters of ¥, and u,v,w,... to stand
for words over Y. The concatenation of two words u and v is denoted wwv, or sometimes,
for clarity, w - v. For integers i, k we write [i,k] to mean the set {j € Z | i < j < k}. If
u=aj---a, is a (possibly empty) word over X, and f: [1,m] — [1,n] is a function, we write
u’ to denote the word ag(1) - Qf(m) of length m. We think of f as telling us where in the
word u we should be at each time point in the interval [1,m]. Define a walk to be a surjection
f:[1,m] — [1,n] satisfying |f(i+1)—f(i)] <1 for all i (1 < i < m). These conditions ensure
that, as we move through the letters a1y - af(), we never change our position in u by
more than one letter at a time, and we visit every position of u at least once. If w = uf for f
a walk, we say that u generates w. We may picture a walk as a piecewise linear function, with
the generated word superimposed on the abscissa and the generating word on the ordinate.
Fig. 1a shows how u = cbadefgh generates w = abcbaaadefedadefghgf.

If u=ay---a, is a word, denote the length of u by |u| = n, and the reversal of u by
1 = an ---a1. Generation is evidently reflexive and reverse-reflexive: every word generates
both itself and its reversal. Moreover, if u generates w, then |u| < |w|; in fact, v and @ are
the only words of length |u| generated by u. We call u primitive if it is not generated by
any word shorter than itself — equivalently, if it is generated only by itself and its reversal.
For example, babcd and abcbed are not primitive, because they are generated by abed; but
abcbda is primitive. Since the composition of two walks is a walk, generation is transitive: if
u generates v and v generates w, then u generates w. Define a primitive generator of w to be
a primitive word that generates w. It follows easily from the above remarks that every word
w has some primitive generator u, and indeed, & as well, since the reversal of a primitive
generator of w is obviously also a primitive generator of w. The principal result of this paper
is that there are no others:

» Theorem 1. The primitive generator of any word is unique up to reversal.
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As an immediate consequence, if u is the primitive generator of w, and v generates w, then u
generates v. Theorem 1 is relatively surprising: let u and v be primitive words. Now suppose
we go for a walk on u and, independently, go for a walk on v; recalling the stipulation that
the two walks visit every position in the words they apply to, the theorem says that, provided
only that u # v and u # ¥, there is no possibility of coordinating these walks so that the
sequences of visited letters are the same.

A palindrome is a word u such that u = @; a non-trivial palindrome is one of length at
least 2. If u is a non-trivial palindrome, then it is not primitive. Indeed, if |u| is even, then u
has a double letter in the middle, and so is certainly not primitive (it is generated by the
word in which one of the occurrences of the doubled letter is deleted); if |u| is odd, then it is
generated by its prefix of length (Ju|+1)/2 < |u| (start at the beginning, go just over half
way, then return to the start). Call a word uniliteral if it is of the form a™ for some letter a
and some n > 0. Note that the empty word e counts as uniliteral.

» Corollary 2. FEvery uniliteral word has precisely one primitive generator; all others have
precisely two.

Proof. By Theorem 1, if w is any word, its primitive generators are of the form u and @ for
some word u. The first statement of the corollary is obvious: if w = € then v = @ = ¢; and if
u = a" for some n (n > 1), then u = @& = a. If w is not uniliteral, then |u| > 1. But since
non-trivial palindromes cannot be primitive, u # . |

Yet another way of stating Theorem 1 is to say that, for any fixed word w, the equation
u! = w has exactly one primitive solution for u, up to reversal. The same is not true, however,
of solutions for f, even if we fix the choice of primitive generator (either v or @). Indeed,
u = abebd is one of the two primitive generators of w = abebebd, but we have uf = w for

f:[1,7] — [1,5] given by either of the courses of values [1,2,3,4,3,4,5] or [1,2,3,2,3,4,5].

Let u be a primitive word. Say that u is perfect if uf = u9 implies f = g for any walks f and
g on u. Thus, abcbd is primitive but not perfect. On the other hand, it is easy to characterize
those primitive words that are perfect:

» Theorem 3. Let u be a word. Then u is perfect if and only if it contains no non-trivial
palindrome as a factor.

Theorem 3 tells us that generating walks are uniquely determined as long as the primitive
generator u does not contain a non-trivial palindrome, but gives us little information if u
does contain a non-trivial palindrome. In that case, we would like a characterization of which
pairs of walks on u yield identical words. We answer this question in terms of the positions
of the palindromes contained in u. Let u = a; - --a, be a word. We denote the ith letter of
u by u[i] = a;, and the factor of u from the ith to jth letters by u[i, j] = a; - - a;. If u[i, j]
is a non-trivial palindrome, call the ordered pair (i, j) a defect of u, and denote the set of
defects of u by A,. Regarding A, as a binary relation on the set [1,n], we write A* for its
equivalence closure, the smallest reflexive, symmetric and transitive relation including A,,.
The interplay between defects and walks is then summed up in the following theorem.

» Theorem 4. Let u be a primitive word of length n, and f, g walks with domain [1,m] and
co-domain [1,n]. Then uf =9 if and only if (f(i),g(i)) € A% for alli € [1,m)].

The motivation for the study of primitive generators comes from the study of the decision
problem in (fragments of) first-order logic, in presentations where the logical variables
are taken to be x1,x9,..., and all signatures are assumed to be purely relational. Call
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a first-order formula ¢ index-normal if, for any quantified sub-formula Qzyy of ¢, ¥
is a Boolean combination of formulas that are either atomic with free variables among
z1, ..., Tk, or have as their major connective a quantifier binding zy;. By re-indexing
variables, any first-order formula can easily be written as a logically equivalent index-normal
formula. We call an index-normal formula adjacent if, in any atomic sub-formula, the indices
of neighbouring arguments never differ by more than 1. For example, an atomic sub-formula
p(T4, 4, T5, 24, x3) is allowed, but an atomic sub-formula g(x1, 23) is not. It was shown in [1]
that the problem of determining validity for adjacent formulas is decidable. A key notion
in analysing this fragment is that of an adjacent type. Let 2 be a structure interpreting
some relational signature, and a a tuple of elements from its domain, A. Define the adjacent
type of a (in 2) to be the set of all adjacent atomic formulas ¢(z) satisfied by a in 2. If we
think now of a as a word over the (possibly infinite) alphabet A, it can easily be shown that
the adjacent type of a is determined by the adjacent type of its primitive generator. Thus,
models of formulas can be unambiguously constructed by specifying only the adjacent types
of primitive tuples, a crucial technique in establishing decidability of satisfiability.

Notwithstanding its logical genealogy, the concept of primitive generator may be of
interest in its own right within the field of string combinatorics. For illustration, consider the
sequences of words {a%k)}nzl over the alphabet {1,...,k}, defined by setting agk) =1 and

ag?_l = a(o“(lk)), where o: {1,...,k}* — {1,...,k}* is the monoid endomorphism given by

o [1G+1) i<k
o(i) =
1 ifi =k.

(Here, the operator - represents string concatenation, not integer multiplication!) For k = 2,

we obtain the so-called Fibonacci word sequence 1, 12, 121, 12112, ...; for k = 3, we obtain
the tribonacci word sequence 1, 12, 1213, 1213121, ...; and so on. A simple induction
shows that, for all £k > 2 and all n > k, o) = aﬂ“_)laﬁf_g e a;kzk. In other words, each

element of the sequence {aslk)}nzl after the kth is the concatenation, in reverse order, of
the previous k elements; for this reason, the word sequence obtained is referred to as the

k-bonacci word sequence. A simple proof also shows that a;k ) is always a left-prefix of aglkll,

so that we may speak of the infinite word w®) defined by taking the limit lim,, ;oo a;’“ ) in
the obvious sense. Thus, the infinite word w(?) = 12112--- is the (infinite) Fibonacci word,
and w® = 1213121 --- the (infinite) tribonacci word. The Fibonacci word is an example of a
Sturmian word (see, e.g. [3, Ch. 6] for an extensive treatment). The morphism yielding the
tribonacci word is sometimes called the Rauzy morphism [6, p. 149] (see also [4, Secs. 10.7
and 10.8]). Intriguingly, for a fixed k, all but the first k& elements of {a%k)}nzl share the
same primitive generator:

» Theorem 5. For all k > 2, there exists a word v such that, for all n > k, v is the
primitive generator of ozgf).

The proof of Theorem 5 exploits a feature of the words aﬁf) that is obvious when one
computes a few examples: they are riddled with palindromes. As one might then expect in
view of Theorem 4, for all £ and all n > k, the primitive generator v, generates agﬁ) via
many different walks — in fact via walks beginning at any position of v, occupied by the
letter 1.
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3 Uniqueness of primitive generators

The following terminology will be useful. (Refer to Fig. la for motivation.) Let f: [1,m] —
[1,n] be a walk, with m > 1. By a leg of f, we mean a maximal interval [i, j] C [1,m] such
that, for h in the range i < h < j, the difference d = f(h+1)—f(h) is constant. We speak
of a descending, flat or ascending leg, depending on whether d is —1, 0 or 1. The length of
the leg is j—i. A leg [i,j] is nitial if i = 1, final if j = m, terminal if it is either initial or
final, and internal if it is not terminal. A number A which forms the boundary between two
consecutive legs will be called a waypoint. We count the numbers 1 and m as waypoints by
courtesy, and refer to them as terminal waypoints; all other waypoints are internal. Thus, a
walk consists of a sequence of legs from one waypoint to another. If A is an internal waypoint
where the change is from an increasing to a decreasing leg, we call h a peak; if the change is
from a decreasing to an increasing leg, we call it a trough. Not all waypoints need be peaks
or troughs, because some legs may be flat; however, it is these waypoints that will chiefly
concern us in the sequel.

» Lemma 6. A word u is not primitive if and only if it is of any of the following forms, where
a, b are letters and x, y, z are words: (i) zaay, (i) bZaxby, (iii) ybZaxdb or (iv) yarbiaxbz.

Proof. Straightforward: see full version [5]. <

In the sequel, we shall primarily employ the if-direction of Lemma 6. It easily follows
from Cases (i) and (ii) of Lemma 6 that, over the alphabet {1,2}, there are exactly five
primitive words: €, 1, 2, 12, and 21. However, over any larger alphabet, there are infinitely
many. For example, over the alphabet {1,2,3}, the set of primitive words is easily seen to be
given by the regular expression [(e+ 3 +23)(123)*(e+1+12)]+[(e+2+32)(132)*(e+1+13)].
Over alphabets of any finite size, the set of primitive words is context-sensitive. This follows
from the fact that the four patterns of Lemma 6 define context-sensitive languages, together
with the standard Boolean closure properties of context-sensitive languages.

We shall occasionally need to consider a broader class of functions than walks. Define a
stroll to be a function f: [1,m] — [1,n] satisfying |f(i+1)—f(i)] < 1 for all i (1 < i < m).
Thus, a walk is a stroll which is surjective. Let f: [1,m] — [1,n] be a stroll. If f(i) = f(j) for
some 7, j (1 < i< j < m) define the function f': [1,m—j+i] — [1,n] by setting f'(h) = f(h)
if 1 < h <4, and f'(h) = f(h+j—i) otherwise. Intuitively, f’ is just like f, but with the
interval [i, j—1] — equivalently, the interval [i+1, j| — removed. Evidently, f’ is a also a stroll,
and we denote it by f/[¢,j]. For the cases i = 1 or j = m, we change the definition slightly,
as no analogue of the condition f(7) = f(j) is required. Specifically if 1 <14 < j < m, define
the functions f’: [1,m—j + 1] — [1,n] and f”: [1,4] — [1,n] by f'(h) = f(j+h—1) and
f"(h) = f(h). Intuitively, f’ is just like f, but with the interval [1,j—1] removed, and f” is
just like f, but with the interval [i-+1,m] removed. Again f’ and f” are also strolls, and we
denote them by f/[1,j] and f/[i, m], respectively.

With these preliminaries behind us, we give an outline sketch of the proof Theorem 1.
The proof proceeds by contradiction, supposing that u and v are primitive words such that
neither u = v nor v = 9, and w is a word generated from u by some walk f and from v by
some walk g. Write |w| = m. Crucially, we may assume without loss of generality that w
is a shortest counterexample — that is, a shortest word for which such w, v, f and g exist.
Observe that, since u and v are primitive, they feature no immediately repeated letter. So
suppose w does — i.e. is of the form w = zaay for some words x, y and letter a. Letting
i = |z|+1, we must therefore have f(i) = f(i+1) and g(i) = g(i+1). Now let ' = f/[i,i+1],
g =g/[i,i+1] and v’ = w[l,1] - w[i+2, m]. We see that f’ is surjective if f is, and similarly
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for ¢/, and moreover that w’ = uf = vgl, contrary to the assumption that w is shortest.
Hence w contains no immediately repeated letters, whence all legs of f and g are either
increasing or decreasing, and all internal waypoints are either peaks or troughs.

We claim first that at least one of f or g must have an internal waypoint. For if not, we
have w = u or w = @ and w = v or w = ¥, whence u = v or u = ¥, contrary to assumption.
It then follows that both f and g have an internal waypoint. For suppose f has an internal
waypoint (either a peak or a trough); then w is not primitive. But if g does not have an
internal waypoint, w = v or w = ¥, contrary to the assumption that v is primitive.

We use upper case letters in the sequel to denote integers in the range [1,n] which are
somehow significant for the walks f or g: note that these need not be waypoints. Let ¢
denote the minimal length of a leg on either of the walks f or g. Without loss of generality,
we may take this minimum to be achieved on a leg of f, say [V, W].

We suppose for the present that this leg is internal. Fig. 1b illustrates this situation where V'
is a peak and W a trough; but nothing essential would change if it were the other way around.
Write U = V — £ and X = W+, By the minimality of [V, W] (assumed internal), U > 1 and
X < m; moreover, f is monotone on [U, V], [V, W] and [W, X]. Now let w[U] = a, w[V] =b
and w[lU+1,V — 1] = z. Since V is a waypoint on f, w[W] = a and w[V+1,W — 1] = 7.
Similarly, w[X] = b and w[W+1,X—1] = & = . We see immediately that g must have
a waypoint in the interval [U+1, X —1], for otherwise, v (or ¥) contains a factor axbZazb,
contrary to the assumption that v is primitive (Lemma 6, case (iv)). Let Y be the waypoint
on g which is closest to either of V' or W. Replacing w by its reversal if necessary, assume
that |Y—V| < |Y — W/, and write k = |Y—V|. We consider possible values of k € [0,/—1] in
turn, deriving a contradiction in each case.

Case (i): k=0 (i.e. Y = V). For definiteness, let us suppose that Y is a peak, rather than
a trough, but the reasoning is entirely unaffected by this determination. By the minimality of
the leg [V, W], g has no other waypoints in the interval [U+1,W — 1], and g(U) = g(W). By
inspection of Fig. 1b, it is also clear from the minimality of the leg [V, W] that f’' = f/[U, W]
is surjective (and hence a walk). We see immediately that the stroll ¢’ = g/[U, W] is not
surjective. Indeed, if it were, writing w’ = w[l, U]-w[W+1, n], we would have w’ = uwl =09,
contrary to the assumption that w is a shortest counterexample. In other words, there are
positions of v which g reaches over the range [U+1, W —1]) that it does not reach outside this
range. It follows that the position g(V') = ¢g(Y) in the string v is actually terminal. (Since we
are assuming that Y is a peak, g(Y') = |v|; but the following reasoning is unaffected if Y is a
trough and ¢g(Y") = 1.) It also follows that W itself cannot be a waypoint of g. For otherwise,
the leg following W, which is of length at least ¢, covers all values in g([U, W]), thus ensuring
that ¢’ is surjective, which we have just shown to be false. However, g must have some
waypoint in [V+1, X — 1]. For if not, then g is decreasing between V and X (remember
that g(Y) = g(V) = |v|), and thus v has a suffix bZaxb, contrary to the assumption that v
is primitive (Lemma 6 case (iii)). By the minimality of the leg [V, W], we see that there is
exactly one such waypoint, say Z. Since we have already shown that Y is the only waypoint
on g in [U+1,W—1], and that W is not a waypoint on g, it follows that Z € [W+1, X —1].

Nowlet j =Z —W. (Thus, 1 < j <) Ifj > %é, we obtain the situation depicted
in Fig. 2a. Since g has a waypoint at Z and remembering that w[W+1,X — 1] = x and
w[X] = b, we see that x has the form ybzcZ for some strings y and z and some letter
¢ = w[Z]. But we also know that g(V) = g(Y') = |v|, the final position of v, so that v has
a suffix b = (ybzcz)b, and hence the suffix bzczb, contrary to the assumption that v is
primitive (Lemma 6 case (iii)). Furthermore, if j = %é, then, by the same reasoning, x has
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(a) The condition j = Z — W > 1. (b) The condition j = Z — W < 1.

Figure 2 The walk g has waypoints at Y =V and at Z.

the form zcZ and a = b. Again then, v has a suffix bzcZb, contrary to the assumption that

v is primitive. We conclude that j < %E, and we obtain the situation depicted in Fig. 2b.

Now let ¢ = w[Z] and y = w[W+1,Z—1]. By considering the waypoint Z on g, we see
that w[Z, Z+j] = cga, whence w[W, W+2j] = aycga. By considering the waypoint W on f,
we see that also w[W—2j4, W] = aycga, whence w[W —2j, W+j] = aycgayc. But there are
no waypoints of g strictly between V =Y < W—2j and Z, whence ¢ contains the factor
aycgayc, contrary to the supposition that v is primitive (Lemma 6 case (iv)).

Case (ii): 1<k < %E. We may have either Y >V or Y < V: Fig. 3a shows the former

case; however, the reasoning in the latter is almost identical. Let w[V] = b and w[Y] = c.

Furthermore, let w[V+1,Y — 1] = y. Since V is a waypoint of f, we have w[V —k] = ¢ and
w[V—k+1,V—1] = g, whence w[Y =2k, Y] = w[V—k, Y] = cfbyc. Since Y is a waypoint of
g, we have w[Y, Y +2k| = cgbyc, whence w[V, V+3k] = bycjbyc. And since ¢ > 3k, there is
no waypoint on f in the interval w[V+1, V+3k — 1], whence @ contains the factor bycjbyc,
contrary to the assumption that u is primitive (Lemma 6 case (iv)).

Case (iii): %K < k< %E. Again, in this case, we may have either Y > V or Y < V.
This time (for variety) assume the latter; however, the reasoning in the former case is
almost identical. Thus, we have the situation depicted in Fig. 3b. Let w[V] =b, w[Y] =¢
and w[Y+1,V—1] = y. Since Y is a waypoint on g, we see that w[Y — k] = b and
w[Y —k+1,Y—1] = g, whence w[V—-2k, V] = w[Y —k, V] = bjcyb. Since V is a waypoint on
f, we see that also w[V, V+2k] = bjcyb. Thus, u contains the factor bjcyb and v contains
the factor cybgc; moreover w[Y,Y +3k] = cybjcyb.

Now let Z be the next waypoint on g after Y. It is immediate that Z—Y < 3k, since
otherwise, v contains the factor cybgcyc, contrary to the assumption that v is primitive
(Lemma 6 case (iv)). We consider three possibilities for the point Z, depending on where,
exactly, Z is positioned in [V+k,V+2k] = [Y+2k,Y+3k]. The three possibilities are
indicated in Fig. 4, which shows the detail of Fig. 3b in that interval. Suppose (a) that
V+k < Z < V—|—%k. Then, by inspection of Fig. 4a, y must be of the form xdZcz for some
letter d and strings =z and z. But we have already argued that u contains the factor

bijeyb = b(xdicz) e(xdicz)b = b(Zcxdi)c(xdicz)b
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(a) Condition k < %Z; for illustration, Y > V. (b) Condition %E < k < 34 for illustration, Y < V.

Figure 3 The walk g has a waypoint at Y with k = |V — Y| > 1.

r T z

(@) Z <V + 3k. (b) Z=V + 2k. (c) Z>V+3k.

Figure 4 The location of Z with respect to V+2k in Case (iii).

and hence the factor czdZcad contrary to the assumption that u is primitive (Lemma 6 case
(iv)). Suppose (b) that Z = VJr%k. Then, by inspection of Fig. 4b, y must be of the form

xdZ for some letter d and string =, and furthermore, b = c. But in that case u contains the
factor

bijeyb = c(xdz) te(xdd)c = c(xdi)c(xdz)c
and hence the factor czdiczd again. Suppose (c) that V+3k < Z < V+2k. Then by
inspection of Fig. 4c, y must be of the form zbxdZ for some letter d and strings x and z. But
we have already argued that v contains the factor

cybijjc = c(zbrd®)b(zbxrdz) e = c(zbxdi)b(xdEbz)c

and hence the factor bxdZbzrd, again contrary to the assumption that u is primitive. This
eliminates all possibilities for the position of Z, and thus yields the desired contradiction.



. Pratt-Hartmann

a z
«
»

rza Y b

ra Yy b Yy a y b y bz

Figure 5 Distinct walks f (solid) and g (dashed and solid) on u = zaybjaz such that v/ = u9.

The remaining cases, where k > £/2, or where the shortest leg is initial or final, are omitted
because of space restrictions. See full version [5] for a complete proof.

4  Uniqueness of walks

In this short section, we prove Theorem 3, which states that a word is perfect if and only if
it contains no non-trivial palindrome as a factor.

For the only-if direction, suppose that u contains a non-trivial palindrome. If that
palindrome is odd, so that u has the form xaybgaz, then the word zaybjaybyaz is generated
via the distinct walks f and g illustrated in Fig. 5. If the contained palindrome is even, so
that u has the form zaaz, then the word xaaaz is generated via distinct walks, one of which
pauses for one step on the first a, and the other on the second.

For the converse, suppose for contradiction that u is a word of length n containing no
non-trivial palindromes, for which there exist walks f and g such that u/ = u9 but f # g.
Let u, f and g be chosen so that m = |uf| = |u9] is minimal. If f(i) = f(i + 1) for some 4, we
have g(i) = g(i + 1), since otherwise, u contains a repeated letter, and therefore a palindrome
of length 2, contrary to assumption. But if both f(i) = f(i + 1) and ¢(i) = g(i + 1), then
the functions f’ = f/[i,i+ 1] and ¢’ = g/[i, i + 1] are defined, and are obviously walks, and
moreover we have u/ = w9 and f' # ¢, contradicting the minimality of m. Hence, we
may assume that neither f nor g is ever stationary. We claim that f and g have the same
waypoints. For if 7 is an internal waypoint for f but not for g, we have f(i—1) = f(i+1),
u[g(i—1)] = u[f(i—1)] and u[g(i+1)] = u[f(i+1)], whence u[g(i—1)] = ulg(i+1)], so that
u contains an odd, non-trivial palindrome centred at g(), contrary to assumption. This
establishes the claim that f and g have the same waypoints. Since u is certainly not itself a
non-trivial palindrome and f # g, the walks f and g must have at least one internal waypoint
between them. Now take a shortest leg of f (which must also be a shortest leg of g), say
[4,7 +¢]. Suppose first that [j, 7+ ¢] is an internal leg (i.e. j < 1 and j+¥¢ < m). To visualize
the situation suppose V = j and W = j + £ in Fig. 1b. Taking into account the legs either
side, we see that f(j) = f(j + 2¢) and g(j) = g(j + 2¢), and moreover that f' = f/[j,j + 2
and ¢' = g/[j,j + 2¢] map [1,m — 2/] surjectively onto [1,n]. Clearly, v/’ = u9'. But f
and g have the same waypoints over the interval [j, j + 2¢], whence f # g implies f' # ¢/,
contradicting the minimality of m. The cases where the shortest leg is terminal are handled
similarly.
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5 Words yielding the same results on distinct walks

In this section, we sketch the ideas behind the proof of Theorem 4, allowing us to characterize
those primitive words which are solutions of a given equation u/ = u9, for walks f and g.

Let f': [1,m] — [1,n] be a walk. If 1 < j < m, then the function f: [1,m + 1] — [1,n]
given by

f'(i—1) otherwise

is also a walk, longer by one step. We call f the hesitation on [’ at j, as it arises by executing
/" up to and including the jth step, then pausing for one step, before continuing as normal.
We next proceed to define an operation of vacillation on f', also producing a strictly longer
walk. This operation has three forms, depending on whether it occurs at the start, in the
middle, or at the end of the walk. For any k (1 < k < m), we define the initial vacillation
on f" over [1,k+1] to be the walk f: [1,m+k] — [1,n] given by

) = Flk+1—(i—-1)) ifi<k+1
v f(i—k) otherwise.

Thus f arises by executing the first k& + 1 steps of f’ in reverse order and then continuing to
execute f’ from the second step as normal. Likewise, we define the final vacillation on f’
over [m—k, m] to be the walk f: [1, m+k] — [1,n] given by

f(i):{f’(i) ifi <m

f'(m—(i—m)) otherwise.

Thus f arises by executing f’ as normal and then repeating the k steps preceding the last in
reverse order. Finally, for any j (1 < j <m), and any k (1 < k < j), we define the internal
vacillation on f' over [j—k, j] to be the walk f: [1,m+2k] — [1,n] given by

f(3) ifi <j
Fa)y =9 FG-(i-j) ifj<i<j+k
(- 2k) otherwise.

Thus f arises by executing f’ up to the jth step, reversing the previous k steps back to the
(j—k)th step and then continuing from the (j — k 4 1)th step as normal. A wacillation on f’
is an initial, internal or final vacillation on f'.

Let f': [1,m] — [1,n] again be a walk. We proceed to define an operation of reflection on
/', producing a stroll (not necessarily surjective) of the same length. For any &k (1 < k < m),
we take the initial reflection on f' over [1,k+1] to be the function f defined on the domain
[1,m] by setting

) D)= (f' ()= f (k+1) ifi<k+1
1) =
f(@) otherwise.
Thus f arises by reflecting the segment of f’ over the interval [1, k+1] in the horizontal axis

positioned at height f’(k + 1), and then continuing as normal (Fig. 6a). Likewise, we take
the final reflection on f’ over [m—=k, m] to be the function f defined on [1,m] by setting

i {LlmH-0-r i 112

(@) otherwise.
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Figure 6 The stroll f (dashed and solid) is a reflection on the walk f’ (solid) over I (shaded).

Thus f arises by executing f’ as normal up to the (m—k)th step, and then thereafter reflecting
the remaining segment of f’ in the horizontal axis positioned at height f’(m—k) (Fig. 6¢).
Finally, for integers 7, k (1 < j <m, 1 <k <min(j—1,m—j)) such that f'(j—k) = f'(j+k),
the internal reflection on f’ over [j—k, j+k| is the function f defined on [1,m] by setting

fi) = {f’(j—k)—(f’(i)—f’(j—k)) if j—k <i < j+k

1) otherwise.

Thus f arises by executing f’ up to the point j—k, then reflecting the segment of f’ over the
interval [j—k, j + k| in the horizontal axis positioned at height f/'(j—k) = f'(j+k), thereafter
executing f' as normal (Fig. 6b). A reflection on f’ is an initial, internal or final reflection
on f’. As defined above, reflections can take values in the range [—n+1, 2n—1]; accordingly,
we call a reflection proper if all its values are within the interval [1,n], and in that case we
take the resulting function to have co-domain [1,n]. We shall only ever be concerned with
proper reflections in the sequel; and a proper reflection on a walk (more generally, on a stroll)
is evidently a stroll; there is no a priori requirement for it to be surjective.

Reflections are of most interest in connection with walks on words containing odd
palindromes. Let f’: [1,m] — [1,n] be a stroll, and u be a word of length n. We say that a
reflection f on f’ is admissible for w if it is either: (i) an initial reflection over [1, k+1], and
u has a palindrome of length 2k+1 centred at f’(k+1); (ii) a final reflection over [m—k, m],
and u has a palindrome of length 2k+1 centred at f’(m—k); or (iii) an internal reflection
over [j—k, j+k], and u has a palindrome of length 2k+1 centred at f'(j—k) = f'(j+k). We
see by inspection of Fig. 6 that, if f is a reflection on f’ admissible for u, then u/ = ul’.

Suppose now f’ and ¢' are walks with domain [1,m] and co-domain [1,n]. If f and g are
hesitations on f’ and ¢/, respectively, at some common point, we say that the pair of walks
(f,g) is a hesitation on the pair (f’, ¢’); similarly, if f and g are vacillations on f’' and ¢’
over some common interval, we say that the pair of walks (f, g) is a vacillation on the pair
(f',¢"). Evidently, if u is a word such that uw!" = w9 and (f,g) is a hesitation or vacillation
on (f',¢"), then u/ = u9. If now f is a reflection on f’ over some interval, we say that (f, g’)
is a reflection on (f',¢'), and also that (¢’, f) is a reflection on (¢’, f'). Evidently, if the
reflection in question is (proper and) admissible for some word u such that u/ = ugl, then
uf = u9". Note that hesitations/vacillations on pairs of strolls are hesitations/vacillations on
both of the strolls in question, while reflections on pairs of strolls are reflections on either of
the strolls in question.

Now let f’ and g’ be walks, and suppose u is a word of length m such that uwl =ud'. We
have seen that, if (f, g) is a hesitation or vacillation on (f’, ¢’), or is a reflection on (f’, ¢")
admissible for u, then uf = u?. The principal result of this section states that, for primitive
words, this is essentially the only way in which we can arrive at distinct walks f and g such
that uf/ = u9.
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» Lemma 7. Let u be a primitive word of length n, and let f and g be walks with domain
[1,m] and co-domain [1,n] such that uf =u9. Then there exist sequences of walks {fs}._,
and {gs}L_q, all having co-domain [1,n], satisfying: (i) fo = go is monotone; (ii) for all s
(0 <s<t), (for1,9s+1) is a hesitation on (fs,gs), a vacillation on (fs, gs), or a reflection
on (fs,gs) admissible for u; and (iii) fy = f and gt = g.

Proof. Similar in character to the proof of Theorem 1. See full version [5] for details. <«

Lemma 7 gives us everything we need for the proof of Theorem 4, which states that, for
a primitive word u of length n, and walks f, g: [1,m] — [1,n], we have u/ = u9 if and only
if (f(i),g(2)) € A¥ for all i € [1,m]. Recall that A% is the equivalence closure of A,, the
defect set of u.

The if-direction is almost trivial. Indeed, (j, k) € A, certainly implies u[j] = u[k], whence
(j, k) € A¥ also implies u[j] = ulk]. Thus, if (f(i),g(i)) € A% for all i € [1,m], then
u[f(i)] = u[g()] for all i € [1,m], which is to say uf = u9.

For the only-if direction, we suppose that uf = u9. By Lemma 7, we may decompose the
pair of walks (f, g) into a series {(fs, gs)}!_o such that: (i) fo = go; (ii) for all s (0 < s < t),
the pair (fst1,gs+1) is obtained by performing a hesitation, vacillation, or an admissible (for
u) reflection on (fs, gs); and (iii) (f¢, g:) = (f, g). We establish that the following holds for
all s (0<s<t):

(fs(i),gs(3))y € AZ for all ¢ in the domain of f; (= the domain of g;). (1)

Putting s = ¢ then secures the required condition.

We proceed by induction on s. For the base case, where s = 0, we have fy = gg, and
there is nothing to do. For the inductive step, we suppose (1), and show that the same holds
with s replaced by s + 1. We have three cases.

Case 1. (fs11,9s+1) is obtained by a hesitation on (fs, gs) at j. If i < j then fs11(2) = f5(4)
and gerl(i) = gs(i); and by (1)7 <fs(i)>gs(i)> € AZ If i > .7 then ferl(i) = fs(i_l) and
gs+1(1) = gs(i—1); and by (1), (fs(i—1), gs(i—1)) € A¥. Either way, (fs+1(%), gs+1(1)) € A%.

Case 2. (fsi1,9s+1) is a vacillation on (fs,gs). We consider the case of an internal
vacillation over some interval over [j—k, j]; initial and final vacillations are handled similarly.
Again, if i < j then fo41(i) = fs(i) and gs41(i) = g5(2); and by (1), (fs(i),95(1)) € Aj.
If j < i < jtk, then foy1(i) = f(j—(i—J)) and gs41(i) = gs(j—(i—4)); and by (1),
(fs(G—=(i—3)), 9s(j—(i—3))) € A%. Finally, if i > j+k, then fs11(i) = fs(i—2k) and gs11(2) =
gs(Z‘*Qk); and by (1)’ <fs(i*2k)’gs(i72k)> € ATL

Case 3. (fsi1,9s+1) is the result of a reflection on (fs, gs) over some interval [j—k, j+k],
with the reflection in question admissible for u. By exchanging f and g if necessary, we may
assume that fsi1 is a reflection on fs over [j—k, j+k], and gsy1 = gs; it does not matter
for the ensuing argument whether the reflection in question is internal, initial or final. If
i & [J_k7.7+k]7 then fs-&-l(i) = fs(z) and gs41(i) = gs(i); and by (1), <fs(i)’gs(i)> € AL
So suppose i € [j—k, k+j]. Since the reflection over [j—k, j+k| is admissible, the factor

u[fs(j—k), fs(j+k)] is a palindrome. Moreover, from the definition of reflection, either

u[fs+1(2), fs(3)] or u[fs(4), fs+1(7)] is a palindromic factor of u (depending on whether
Fos1(6) < £3(0) 01 Fora(i) > Fo(i)). That is, either (foy1 (1), fo(i)) € Ay o1 (fo(0), fora (1)) €
Ay But by (1), (fs(i), 9s(i)) = (fs(), gs+1(i)) € Af. Hence (fs41(i), gs41(i)) € A7, again
as required. This concludes the induction, and hence the proof of the only-if direction.
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» Corollary 8. Let v; and vy be primitive words of length n. Then vy and ve satisfy the same
equations uf = u9, where f and g are walks with co-domain [1,n)], if and only if A,, = A,,.

Proof. The if-direction is immediate from Theorem 4. For the only-if direction, suppose
v1 and v, satisfy the same equations u/ = w9. If v; contains a non-trivial palindrome of
(necessarily odd) length, say, 2k + 1 centred at i, let f and g be walks as depicted in Fig. 5,

diverging at ¢ and re-converging at ¢ + 2k. Thus v{ = v{ and hence vg = v3. But considering

f and g over the interval [, + k|, the equation vg = v clearly implies that v has a a
palindrome of length 2k + 1 centred at f(i) = g(i) = i, whence A,, 2 A,,. By symmetry,

A’Ul 2 A’L}Q <
For a treatment of the problem of finding palindromes in words, see [2, Ch. 8].

6 Primitive generators of some morphic words

In this section, we prove Theorem 5, which states that, for each k > 2, all elements of the
k-bonacci sequence {aé’“)}nzl from the kth onwards have the same primitive generator. In
the sequel, we employ decorated versions of «, 3, as constants denoting words.

We work with an alternative, recursive definition of the words a%k). For all k£ > 1, let
Br = B} - k, where B is recursively defined by setting ] = ¢ and 3, ,, = 3}, - k- 3 for
all k > 1. Now define, for any k > 2 the sequence {a;k)}nzl by declaring, for all n > 1:

o) = Bn if n <k, and alf) = a;k—)laik—)z T O‘gi)

 otherwise. A simple induction shows that
this definition of the a;k) coincides with that given in the introduction via morphisms. We
remark that |3 = 2571, for all & > 1.

We now define the primitive generators promised by Theorem 5. For all k > 2, let
v, = (k=1) - B,_, and v = v, - k. We remark that |y;| = 28=2+1, for all k¥ > 2. The

following two claims are easily proved by induction.

> Claim 9. For all £ > 2, 3}, is a palindrome over {1,...,k—1} containing exactly one
occurrence of k—1 (in the middle); thus i contains exactly one occurrence of k—1 (at
position |Bk|/2) and exactly one occurrence of k (at the end). For all & > 3, 44 contains
exactly one occurrence of each of k (at the end), k—1 (at the beginning) and k—2 (in the
middle).

> Claim 10. For all £ > 2, any position in the word -y is either occupied by the letter 1 or
is next to a position occupied by the letter 1.

> Claim 11. For all k£ > 2, vy is primitive.

Proof. By induction on k. Certainly, v5 = 12 is primitive. For k > 2, by Claim 9, 541 =

k-Br_q-(k—=1)-Br_q - (k4 1) contains exactly one occurrence of each of k+1, k and k—1.

Considering the forms given by the four cases of Lemma 6, we see that v;1 does not have a
prefix or suffix which is a non-trivial palindrome, and that any occurrence of either of the
patterns aa or axbZaxrb must be contained in one of the embedded occurrences of §;,_; and
hence in 7. By inductive hypothesis, 7 is primitive, and therefore does not contain either
of these patterns. But then 7,41 is primitive by Lemma 6. <

> Claim 12. Let k > 2. For all h (1 < h < |y;]) such that ~}[h] = 1, there exists a walk f
such that: (i) 8 = ()75 (ii) f(1) = h; and (iii) f(|18]) = [vi]-
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Figure 7 Proof of Claim 12: g (solid lines) is a shifted copy of a walk f on ~;, yielding f;; ¢’
(solid and dashed lines) is a final reflection on g over [J,m]; f' (solid, dashed and dotted lines) is a
walk on v, = k- B, - (k+1) yielding 81,41 = By - k - B

Proof. We proceed by induction on k. For £ = 2 and k = 3, the result is trivial, since
B =4 =1, p5 =121 and 7§ = 21. Now suppose the claim holds for the value k > 3. For
convenience, we write m = |8},| and n = |v;| = |5;._;|+1 (so m = 2n—1.). Remembering
that 8, | = Br - (k+1) - B, and v,y = k- B - (k—=1)-B5_, = k- Bj_, - 7}, we have
|Brs1l = 2m~+1 and |v;_,| = 2n. To show that the claim also holds for the value k+1, pick
any h' satisfying (1 < h' < 2n) such that v;_,[h'] = 1. We show that there exists a walk
f":[1,2m+1] — [1,2n] such that 3;  , = (WI’H_I)f/, f/(1) =", and f'(2m+1) = 2n.
Assume for the time being that A’ > n+1, that is to say, A’ is a position in v, =
k-B_q-(k—1)-pB,_, occupied by a 1 and lying in the second copy of 5;_;. Then
h = h' —n is a position in v}, = (k—1) - 5},_; occupied by a 1, so by inductive hypothesis, let
f:[1,m] = [1,n] be a walk such that g;, = (v;)/, f(1) = h, and f(m) = n. By Claim 9, /3,
contains exactly one occurrence of k—1 (this will be exactly in the middle), and ~;, likewise
contains exactly one occurrence of k—1 (this will be at the very beginning). Thus, f reaches
the value 1 at just one point, namely J = (m + 1)/2, and is otherwise strictly greater.
(In fact, it is obvious that f must be a straight line from J onwards.) We first define a
stroll g: [1,m] — [1,2n] given by g(i) = f(i)+n (Fig. 7, solid lines). Thus, g(1) = &/, and
g(m) = 2n. Moreover, g reaches the value n+1 at just one point, namely J = (m+1)/2, and
is otherwise strictly greater, as illustrated. Now let ¢’ be the (final) reflection on g over the
interval [J,m] (Fig. 7, first solid, then dashed lines). Thus, ¢’ is a stroll on v}, satisfying
g'(1) = A" and ¢'(m) = 2. Moreover, since 3, = f},_; - (k — 1) - §;,_, is a palindrome, we see
by inspection that (%Q.H)g, = (Vhs1)? = (vp) = B),. We now construct the desired walk
f[1,2m+1] — [1,2n]. For i € [1,m], we set f'(i) = ¢’(¢). Since f'(m) = g'(m) = 2, we set
f'(m+1) =1, and then proceed to define f’ over the positions to the right, corresponding
to the second copy of 3, in the word 3, , = 3, - k- ). But this we can do by drawing a
straight line, as shown in (Fig. 7). By inspection, f’ has the required properties.
Finally, we consider the case where A’ < n+1. Since v;,[h] = 1 we in fact have
2 < K < n. And since 3}, is a palindrome, we may replace ' with the value (n+1)+((n+1)—h)
(i.e. reflect in the horizontal axis at height n+1) and construct f’ as before. To re-adjust so
that f’(1) has the correct value, perform an initial reflection on f” over the interval [1, J].
<
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Figure 8 Proof~of Claim 14 (schematic drawing): thin lines depict f1, fz and fs3; thick lines
denote the results f3 and f} of performing initial reflections.

> Claim 13. Let k > 2. For all A (1 < h < |vg|) such that vy, [h] = 1, there exists a walk f
such that: (i) 7 = By (if) f(1) = h; and (iii) £(|8k]) = Iyel-

Proof. Take the walk guaranteed by Claim 12, and, noting that the final letters of 8 and
are both k, extend f by setting f(|8k|) = |v&|- <

> Claim 14. Let k > 2. For all h (1 < h < |,|) such that yx[h] = 1, and for all p (1 < p < k)

there exists a walk g such that: (i) ’yf: = BrBr—1--- Br—p and (ii) f(1) = h.

Proof. Since fB361 = 121 and 2 = 12, the claim is immediate for & = 2. Hence we
may assume k > 3. By Claim 13, let f; be a walk on v yielding g with fi1(1) = h
and f1(|Bk|]) = |vk|- Since f is a walk, and [; contains only one occurrence of k, we

have fi(|8k|—1) = |w|—1. Set g1+ = fi. By Claim 9, f5;_, is a palindrome, whence
Vi = (k=1)-B1_; -k = (k=1)- (Bp_y - (k—2) - By_s) - k = A1 - Bj_, - k. Noting that the
penultimate position of v;_; is always occupied by the letter 1, by Claim 13 let f; be a walk
on 7y_1 yielding the word S_1, with fo(1) = |y5—1|—1. By Claim 9, f5(i) = 1 only when
i = |Br-1l/2, since that is the only position of 8;_1 occupied by the letter k—2. It follows
that the function f, defined by fo(i) = |yr—1|—(f2(i)—1) is a walk on F;_; yielding the word

Br_1 with fg(l) = 2, and achieving its maximum value f(i) = |y,_1] only at i = |Br_1|/2.

Now regarding fy as a stroll on v, = Jp_1 - By _o - k, let f5 be the initial reflection on fo over
the interval [1,|Bk—1]/2]. Since v, = (k—1)-6;_; -k, with §;_; a palindrome, it follows
that the stroll fé on 7 also yields the same result as fg, namely Br_1. Now let go be the
result of appending fé to g1, as shown in the shaded part of Fig. 8. (Most of the curves
drawn schematically here will actually be straight lines, but no matter.) Formally, we define
g2 : [1,|Bk| + |Bk=1]] = [1, |7k|] to be the function:
. {gl(i) if1<i<|Byl
92(1) =475, . . .
So(i = [Bkl) if |Be| <@ < [Brl + |Br-1l-

Since g1(|Bk]) = || and f}(1) = |yx|—1, we see that go is indeed a walk on -y, as shown
(i.e. with no jumps), yielding SxS;—1. We remark that go(| 8| + |Br—1]) = 1. Notice that we
needed to invert fo to yield fa, so as to make the latter’s reflection fé join up to the end of
g1 properly.
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We now repeat the above procedure, as shown in the unshaded part of Fig. 8. By Claim 13,
and noting that the penultimate position of v;_o is occupied by the letter 1, let f3 be a walk
on 7y_s yielding the word Sj_o, with f3(1) = |yx—2|—1. By Claim 9, f5(¢) = 1 only when
i = |Br—2|/2, since that is the only position of S;_o occupied by the letter k — 3. Observing
that vx—1 = Yk—2 - B),_3 - k, and hence 4,1 = k - 512—3 - yp_2, we see that, by shifting f3
upwards by |k - f;_,|, we can regard it as a stroll on 7. This (shifted) stroll reaches its
minimum value |k - B,’C_S| + 1 exactly once in the middle of its range. Let fi be the initial
reflection on of this stroll over the interval [1,|8;—_2|/2]. Since Ax—1 = (k —1) - B_5 - (k—2)
with §;,_, a palindrome, we see by inspection that the stroll f; on -y yields the same
result as f3, namely SB;_a. Now take g5 to be the result of appending f} to g2, just as we
earlier appended fé to g1. Thus, g3 is a walk on v yielding BxSr—18k—2. Notice that fs,
unlike fo, did not need to be inverted to make its reflection f} join up to the end of go.
Evidently, this process may be continued until we obtain the desired walk g,1 on 7 yielding
BrBr—1 - Br—p, with the inversion step (producing fn from f) required only when A is even.

<

We now prove Theorem 5, establishing by induction the following slightly stronger claim.

> Claim 15. Fix k > 2. For all n > k and for all h (1 < h < |y|) such that ~,[h] = 1, there
exists a walk f such that a%k) = 'yg and f(1) = h.

Proof. If n = k, then a%’“’ = Bk, and the result is immediate from Claim 13. If n = k+1,
then aslk) = BrPr—1- - B1, and the result is immediate from Claim 14, setting p = k—1.

For the inductive step we suppose n > k42 and assume the result holds for values smaller
than n. We consider first the slightly easier case where n > 2k. Set hy = h. Writing
o) = aiﬁ_)l e ozglk_) > by inductive hypothesis, let g1 be a walk such that aif_)l =~7" and
g1(1) = hy. Now let A be the final value of g1, that is, gl(|aflk21\) = h). By Claim 10, there
exists ho such that |ho—h)| < 1, and ~¢[he] = 1. Again, by inductive hypothesis, let g2 be a
walk such that aglk_)z =7 and ¢5(1) = ha. Let hj be the final value of g, and let h3 be
such that |hs—h5| < 1, and yx[hs] = 1. Proceed in the same way, obtaining walks g3, ..., gk.
Taking f to be the result of concatenating g1, g2, g3, - - ., gk in the obvious fashion yields the
desired walk.

If 2k > n > k+2, then we have a%k) = aglk_)laff_)2 . -~o¢,(:216k/6’k,1 -+« Bg—p, where p =
2k—n. We begin as in the previous paragraph: setting h; = h, by inductive hypothesis,
Elk_)l = 7" and ¢1(1) = hy. Now let A} be the final value of
g1, that is, g1(|a51k_)1\) = h}. By Claim 10, there exists hy such that |ha—h]| < 1, and
vk[h2] = 1. Now continue as before so as to obtain walks g2, gs ..., with respective starting

let g1 be a walk such that «

points hs, hs, ..., but stopping when we have obtained g;_,—1, and the following starting
point hjy_,. Observe that concatenating g1, g2, 93, - .., gk—p—1 gives a walk on -y, which yields
the word aglkjlagkzz . -~a,(;21. By Claim 14, choose gi—, to be a walk on +; yielding the

word Bifr—1 - Pr—p and with g, (1) = hy—p. Taking f to be the result of concatenating

91,92, 93, - - -, gk—p establishes the claim. <
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