
A Data Structure for the Maximum-Sum Segment
Problem with Offsets
Yoshifumi Sakai #

Graduate School of Agricultural Science, Tohoku University, Japan

Abstract
Consider a variant of the maximum-sum segment problem for a sequence X0 of n real numbers,
which asks an arbitrary contiguous subsequence of Xa that maximizes the sum of its elements for
any given real number a, where Xa is the sequence obtained by subtracting a from each element
in X0. Although this problem can be solved in O(n) time from scratch for any given X0 and a,
appropriate data structures for X0 could support efficient queries of the solution for arbitrary a. We
propose an O(n log2 n)-time, O(n)-space algorithm that takes X0 as input and outputs such a data
structure supporting O(log n)-time queries.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases algorithms, sequence of real numbers, maximum-sum segment

Digital Object Identifier 10.4230/LIPIcs.CPM.2024.26

Funding This work was supported by JSPS KAKENHI Grant Number JP23K10975.

1 Introduction

Given a sequence of real numbers, the maximum-sum segment (MSS) problem, also known as
the maximum subarray problem, is to find an arbitrary segment (contiguous subsequence) of
the sequence that maximizes the sum of its elements, which we call an MSS of the sequence.
This problem has many applications in various industrial and academic fields such as image
processing [7], pattern recognition [12], and biological sequence analysis [16]. For example,
in biological sequence analysis, when the similarity between amino acids at corresponding
positions in multiple amino acid sequences encoding homologous proteins is given as a score,
the most highly conserved region of the sequences that is expected to play an important
role [15] can be found by solving this problem [16].

The MSS problem is solvable in linear time by Kadane’s algorithm, as surveyed in [2].
Due to the existence of applications in biological sequence analysis, various variants and
related problems of the MSS problem have also been considered. Chen and Chao [3] designed
a linear-time constructible data structure that supports constant-time queries of an MSS for
any segment of the sequence. A maximal local MSS is a local MSS that is not a segment of
any local MSS other than it, where a local MSS is a segment that has itself as its only MSS.
Ruzzo and Tompa [13] showed that all distinct maximal local MSSs can be determined in
linear time, and Sakai [14] designed a linear-time constructible data structure supporting
constant-time queries of the maximal local MSS of any given segment that contains any
given position. Bangtsson and Chen [1] showed that an arbitrarily given number of non-
overlapping segments that maximize the sum of all their elements can be found in linear
time. Yu et al. [17] considered the MSS problem where each element of the input sequence is
uncertain within a specific interval and proposed a linear-time algorithm for this problem.
The density of a segment is defined as the mean of all elements in the segment. Cheng et
al. [4] considered the MSS problem with the condition that the density of the segment to be
found is between given lower and upper bounds and showed that the problem is solvable
in linearithmic time, or in linear time if we do not adopt the upper bound condition. The

© Yoshifumi Sakai;
licensed under Creative Commons License CC-BY 4.0

35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024).
Editors: Shunsuke Inenaga and Simon J. Puglisi; Article No. 26; pp. 26:1–26:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yoshifumi.sakai.c7@tohoku.ac.jp
https://orcid.org/0009-0007-5581-8036
https://doi.org/10.4230/LIPIcs.CPM.2024.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


26:2 A Data Structure for the Maximum-Sum Segment Problem with Offsets

Figure 1 Part of an alignment of a pair of homologous amino acid sequences, the score sequence
by BLOSUM62 for it, and the same score sequence with offset 2, where thick frames represent the
MSSs of the score sequences.

maximum-density segment problem [8, 10, 11] consists of finding an arbitrary segment of
length between given lower and upper bounds that maximizes the density. Chung and Lu [5]
showed that this problem is solvable in linear time.

The present article considers another variant of the MSS problem. Before presenting
the definition, we discuss the motivation that led us to conceive this new variant. As an
application of the MSS problem, consider finding a highly conserved region in a given pair
of homologous amino acid sequences u1u2 · · · un and v1v2 · · · vn with the ith amino acids
ui and vi appearing at the corresponding positions. For any pair of amino acids u and
v, let score(u, v) be the logarithm of the ratio of the observed frequency to the expected
frequency of u appearing U and v appearing V at the corresponding positions over all
pairs of homologous amino acid sequences U and V . From this definition, score(u, v) can be
regarded as representing the similarity between amino acids u and v based on the likelihood of
substitution as an accepted mutation. Tables designed to consist of score(u, v) approximations
are available as typical amino acid substitution matrices, including PAM matrices [6] and
BLOSUMs [9]. Since the larger score(u, v) is, the more similar amino acids u and v are, one
might think that finding an MSS of score(u1, v1)score(u2, v2) · · · score(un, vn) would yield a
highly conserved region with respect to u1u2 · · · un and v1v2 · · · vn. However, the obtained
MSS may be unnecessarily large due to the low threshold level for treating amino acids u and
v as sufficiently similar. To resolve this undesirable situation, we can raise the low threshold
level as we wish by treating the score(u, v) value as decreased by a specific value that is set
as an offset. Figure 1 shows an example of how introducing such an offset changes the MSS,
in which, instead of score(u, v)s, values from BLOSUM62, one of BLOSUMs [9], are used.
To obtain a highly conserved region as desired, it will be necessary to carefully adjust the
offset, in some cases by more of a trial-and-error approach. It is possible to obtain the MSS
by running Kadane’s algorithm for each offset that is assumed to be appropriate. However, if
a more efficient way to obtain the MSS for any given offset is available, this is the way to go.

The new variant of the MSS problem we consider is as follows. Let an offset-MSS data
structure for a sequence X0 of n real numbers be a data structure that supports queries of an
arbitrary MSS of Xa for any real number a, where Xa denotes the sequence obtained from
X0 by subtracting a from each element. This type of query can arise when no firm meaning
is evident in the value of each element in X0 compared to 0 and only the relative differences
in the values of elements are meaningful. This is because the MSS found can vary depending
on the threshold level that separates positive from negative. For example, as mentioned
earlier, in biological sequence analysis, by adjusting the criteria that separate whether each
pair of amino acids is treated as similar or dissimilar, new regions may be identified as highly
conserved in homologous amino acid sequences. In this article, we propose a straightforward
O(n)-space offset-MSS data structure for X0 supporting O(log n)-time queries and design an
O(n log2 n)-time, O(n)-space algorithm that constructs this data structure.



Y. Sakai 26:3

2 Preliminaries

Let n be an arbitrary positive integer and let X0 be an arbitrary sequence of n real numbers.
For any real number a, let Xa denote the sequence obtained by replacing each element x

of X0 with x − a. For any index pair (i, j) with 1 ≤ i ≤ j + 1 ≤ n + 1, let Xa(i, j) denote
the contiguous subsequence consisting of the ith through jth elements of Xa. Note that
Xa(i, j) is non-empty (resp. empty), if i ≤ j (resp. i = j + 1). Let Sa(i, j) denote the sum
of all elements in Xa(i, j), if i ≤ j, or 0, otherwise. A maximum-sum segment (an MSS) of
Xa(i, j) is an arbitrary index pair (g, h) with i ≤ g ≤ h + 1 ≤ j + 1 that maximizes Sa(g, h).
We define an offset-MSS data structure for X0 as a data structure that supports queries of
an arbitrary MSS of Xa for any real number a. Our aim is to design an efficient algorithm
that outputs an efficient offset-MSS data structure for X0. We assume that X0 is given as an
array of the sums S0(1, k) for all indices k with 0 ≤ k ≤ n in ascending order of k, so that
S0(i, j) can be determined as S0(1, j) − S0(1, i − 1) in O(1) time.

As an efficient offset-MSS data structure for X0, we consider a partition of the whole set
of real numbers into several intervals each with a common MSS. More precisely, our goal is
to design an efficient algorithm that finds a sequence consisting of O(n) pairs (θ, (i, j)) of a
real number θ and an index pair (i, j) with 1 ≤ i ≤ j + 1 ≤ n + 1 in descending order of θ

such that for any real number a, if (θ, (i, j)) is the last element with θ > a in the sequence,
then (i, j) is an MSS of Xa. Let OMSSX0 denote an arbitrary such sequence. Apparently,
OMSSX0 can be used as an offset-MSS data structure, which supports O(log n)-time queries
by performing a binary search.

Below we introduce the terminology and notations used to design our algorithm. For any
real number a and any index pair (i, j) with 1 ≤ i ≤ j + 1 ≤ n + 1, let Xa(i, j) be called
pref/suff-positive, if both Sa(i, k) and Sa(k, j) are positive for any index k with i ≤ k ≤ j.
Let α(i, j) denote the least real number such that Xα(i,j)(i, j) is not pref/suff-positive, if
i ≤ j, or ∞, otherwise. Let κ(i, j) denote an arbitrary index k with i ≤ k ≤ j such that
at least one of Sα(i,j)(i, k) = 0 or Sα(i,j)(k, j) = 0, if i ≤ j, or be undefined, otherwise. For
any index pair (i, j) with 1 ≤ i ≤ j ≤ n, let δ(i, j) denote the real number a such that
Sa(i, j) = 0, which is given as the density of X0(i, j), i.e., the mean S0(i, j)/(j − i + 1) of
all elements in X0(i, j). As demonstrated in [10], it is useful to incorporate a geometric
perspective when dealing with density and considering convex hulls. For any set P of distinct
points (p, w) in the two-dimensional plane, we define the lower (resp. upper) convex hull of
P to be the polygonal chain with the smallest number of points in P as vertices such that
for any point (p, w) in P , there exists a pair of consecutive vertices the straight line between
which passes through a point (p, w′) with w′ ≤ w (resp. w′ ≥ w).

3 Algorithm constructing an offset-MSS data structure

In this section, we show that OMSSX0 exists and design Algorithm findOMSS as an algorithm
that finds OMSSX0 in O(n log2 n) time and O(n) space.

Algorithm findOMSS finds OMSSX0 based on a technique that divides the problem of
finding an MSS into two subproblems, which is presented in the following lemma.

▶ Lemma 1. For any real number a and any index pair (i, j) with 1 ≤ i ≤ j ≤ n, if Xa(i, j)
is pref/suff-positive, then (i, j) is the only MSS of Xa(i, j); otherwise, at least one of an
arbitrary MSS of Xa(i, κ(i, j) − 1) and an arbitrary MSS of Xa(κ(i, j) + 1, j) is an MSS of
Xa(i, j).

CPM 2024



26:4 A Data Structure for the Maximum-Sum Segment Problem with Offsets

Table 1 Notations used in Section 3.1.

Notation Definition

κ′(i, j) An arbitrary index k with i ≤ k ≤ j that minimizes δ(i, k)
κ′(i, g, h) An arbitrary index k with g ≤ k ≤ h that minimizes δ(i, k)

H(g, h) The lower convex hull for all two-dimensional points (k, S0(1, k)) with
g ≤ k ≤ h

K′(g, h) The sequence of all indices k with g ≤ k ≤ h such that (k, S0(1, k)) is a
vertex of H(g, h) in ascending order

K′ The set of sequences K′(g, h) for all canonical index pairs (g, h), where
(g, h) is canonical if 1 ≤ g ≤ h ≤ n, h − g + 1 is a power of two, and
both g − 1 and h are divisible by h− g + 1

k(g, h⋆) The greatest index that is shared by K′(g, h) and K′(g, h⋆), where (g, h)
is a canonical index pair with g < h and h⋆ = (g + h− 1)/2

k(g⋆, h) The greatest index that is shared by K′(g, h) and K′(g⋆, h), where (g, h)
is a canonical index pair with g < h and g⋆ = (g + h + 1)/2

K′ The forest of binary trees such that the set of vertices consists of all
canonical index pairs (g, h) and each vertex (g, h) with g < h has as
children (g, h⋆) with label k(g, h⋆) and (g⋆, h) with label k(g⋆, h), which
is the O(n)-time constructible data structure that supports O(log2 n)-
time queries of κ′(i, j) for any index pair (i, j) with 1 ≤ i ≤ j ≤ n we
propose

K′ An implementation of K′, which is defined as the array of arrays K′[l]
with 0 ≤ l ≤ ⌊log2 n⌋ − 1, where K′[l] consists of elements K′[l][m]
with 1 ≤ m ≤ 2⌊n/2l+1⌋, each containing the label of the vertex
(2l(m− 1) + 1, 2lm) of K′

Proof. Let (g, h) be an arbitrary index pair with i ≤ g ≤ h ≤ j. If Xa(i, j) is pref/suff-
positive and i < g (resp. h < j), then Sa(i, g − 1) is positive (resp. non-negative) and
Sa(h + 1, j) is non-negative (resp. positive), implying that Sa(i, j) > Sa(g, h). Suppose that
Xa(i, j) is not pref/suff-positive and g ≤ κ(i, j) ≤ h. By symmetry, it suffices to show that
if Sα(i,j)(i, κ(i, j)) = 0, then Sa(κ(i, j) + 1, h) ≥ Sa(g, h). Since Sα(i,j)(i, g − 1) ≥ 0 due to
definition of α(i, j), Sα(i,j)(g, κ(i, j)) ≤ 0. Therefore, Sα(i,j)(κ(i, j) + 1, h) ≥ Sα(i,j)(g, h),
which implies that Sa(κ(i, j) + 1, h) ≥ Sa(g, h) due to a ≥ α(i, j). ◀

Whenever applying Lemma 1, we need α(i, j) to investigate whether Xa(i, j) is pref/suff-
positive, and κ(i, j) if it is not. To support time-efficient queries of α(i, j) and κ(i, j), one
might think of a lookup table as a naive data structure, which supports O(1)-time queries.
However, it takes O(n2) time to construct it and also requires O(n2) space to store it. We
design another data structure by taking a different approach to reduce preprocessing time
and space requirement to O(n) but manage to achieve O(log2 n)-time queries.

The remaining part of this section is organized as follows. We first propose an O(n)-time
constructible data structure that supports O(log2 n)-time queries of α(i, j) and κ(i, j) for
any index pair (i, j) with 1 ≤ i ≤ j ≤ n in Section 3.1, and then design Algorithm findOMSS
using this data structure in Section 3.2.

3.1 Data structure supporting queries of α(i, j) and κ(i, j)
The data structure we propose to support queries of α(i, j) and κ(i, j) consists of two
symmetric components, K ′ and K ′′. This symmetry is based on the following reduction
of the problem of determining α(i, j) into two symmetric subproblems. Let κ′(i, j) (resp.



Y. Sakai 26:5

Figure 2 Lower convex hulls H(1, 4), H(5, 8), H(9, 12), H(13, 16), and H(17, 20) for a concrete
example of X0 shown at the bottom, where each point (k, S0(1, k)) with 1 ≤ k ≤ 20 is indicated by
a solid bullet, if it is a vertex of the hulls, or an open bullet, otherwise.

κ′′(i, j)) denote an arbitrary index k with i ≤ k ≤ j that minimizes δ(i, k) (resp. δ(k, j)).
Hence, α(i, j) is equal to the minimum of δ(i, κ′(i, j)) and δ(κ′′(i, j), j). Furthermore, if
δ(i, κ′(i, j)) = α(i, j) (resp. δ(κ′(i, j), j) > α(i, j)), then κ′(i, j) (resp. κ′′(i, j)) satisfies the
condition of κ(i, j). Based on this reduction, if K ′ supports O(log2 n)-time queries of κ′(i, j)
and K ′′ supports O(log2 n)-time queries of κ′′(i, j), then α(i, j) and κ(i, j) can be determined
in O(log2 n) time. By symmetry, we will henceforth focus only on designing K ′ as a data
structure that can be constructed in O(n) time and supports O(log2 n)-time queries of κ′(i, j)
for any index pair (i, j) with 1 ≤ i ≤ j ≤ n.

This section introduces many other notations besides κ′(i, j) and K ′. Table 1 summarizes
such notations.

Our strategy to achieve O(log2 n)-time queries of κ′(i, j) is to reduce the problem of
finding κ′(i, j) to the subproblems of finding certain O(log n) candidates from which κ′(i, j)
can be found and to design a data structure that supports O(log n)-time queries of the
candidate. For any index pair (g, h) with 1 ≤ g ≤ h ≤ n, let K ′(g, h) denote the sequence of
all indices k with g ≤ k ≤ h such that (k, S0(1, k)) is a vertex of H(g, h) in ascending order,
where H(g, h) denotes the lower convex hull for all two-dimensional points (k, S0(1, k)) with
g ≤ k ≤ h (see Figure 2). Below is a key lemma that will serve as the foundation for our
strategy.

▶ Lemma 2. For any indices i, g, and h with 1 ≤ i ≤ g ≤ h ≤ n, a binary search of K ′(g, h)
finds an index k with g ≤ k ≤ h that minimizes δ(i, k).

Proof. For any index k with g ≤ k ≤ h, δ(i, k) is equal to the slope (S0(1, k) − S0(1, i −
1))/(k −(i−1)) of the straight line passing through points (i−1, S0(1, i−1)) and (k, S0(1, k)).
Thus, the lemma follows from the fact that for any index k with g ≤ k ≤ h that minimizes
δ(i, k), the line passing though (i, S0(1, i−1)) is tangent to H(g, h) at vertex (k, S0(1, k)). ◀

CPM 2024



26:6 A Data Structure for the Maximum-Sum Segment Problem with Offsets

Figure 3 Set K′ for the same X0 as Figure 2 shown at the bottom, where all elements in K′(g, h)
for each canonical index pair (g, h) are presented as indices in the rectangle lying between positions
g and h and, for example, the highlighted indices represent κ′(7, 7, 8), κ′(7, 9, 16), and κ′(7, 17, 20),
which are obtained as candidates for determining κ′(7, 20) (= 12).

A naive data structure immediately suggested by Lemma 2, which consists of sequences
K ′(i, j) for all index pairs (i, j) with 1 ≤ i ≤ j ≤ n, supports O(log n)-time queries of
κ′(i, j) but consumes O(n3) space. Thus, we cannot adopt this naive data structure as is.
However, by carefully choosing its particular subset, we can obtain an O(n log n)-space data
structure that supports O(log2 n)-time queries. This subset, which we denote by K′, consists
of sequences K ′(g, h) for all index pairs (g, h) with 1 ≤ g ≤ h ≤ n such that h − g + 1 is a
power of two and both g − 1 and h are divisible by h − g + 1 (see Figure 3). We call any
such index pair (g, h) canonical. Note that K′ can be stored in O(n log n) space because
for any power ℓ of two with 1 ≤ ℓ ≤ n, there exist at most n/ℓ canonical pairs (g, h) such
that h − g + 1 = ℓ, each having K ′(g, h) that can be stored in O(ℓ) space. The interval of
indices represented by any index pair (i, j) with 1 ≤ i ≤ j ≤ n is partitioned into O(log n)
intervals each represented by a canonical index pair (g, h). By applying Lemma 2 to each of
such O(log n) canonical index pairs (g, h), we can obtain O(log n) candidates κ′(i, g, h) in
O(log2 n) time, where κ′(i, g, h) denotes an arbitrary index k with g ≤ k ≤ h that minimizes
δ(i, k). Any of the candidates κ′(i, g, h) that minimizes δ(i, κ′(i, g, h)) satisfies the condition
of κ′(i, j).

The only reason that K′ cannot be adopted as K ′ is that the space required to store it is
O(n log n), not O(n). To resolve this issue, we define K ′ by removing duplicate information
from K′. We do this based on the fact that K ′(g, h) for any canonical index pair (g, h)
with g < h can recursively be represented by K ′(g, h⋆), K ′(g⋆, h), and two specific indices,
where h⋆ = (g + h − 1)/2 and g⋆ = (g + h + 1)/2 (= h⋆ + 1). One of the specific indices
is the greatest element of K ′(g, h⋆) that is shared by K ′(g, h) and the other is the least
element of K ′(g⋆, h) that is shared by K ′(g, h). Let k(g, h⋆) and k(g⋆, h) denote these indices,
respectively. Note that the concatenation of the prefix of K ′(g, h⋆) with k(g, h⋆) as the
last element followed by the suffix of K ′(g⋆, h) with k(g⋆, h) as the first element constitutes
K ′(g, h). This can be verified because K ′(g, h), K ′(g, h⋆), and K ′(g⋆, h) are defined to
represent all vertices of the lower convex hulls H(g, h), H(g, h⋆), and H(g⋆, h), respectively.
For example, if X0 is the same as Figure 2, then K ′(1, 8) = ⟨1, 3, 8⟩ can be represented by
K ′(1, 4) = ⟨1, 3, 4⟩, K ′(5, 8) = ⟨5, 8⟩, k(1, 4) = 3, and k(5, 8) = 8 in this manner. Thus, in our
recursive representation, the only information that must be explicitly retained with respect
to (g, h) to recover K ′(g, h) is indices k(g, h⋆) and k(g⋆, h).



Y. Sakai 26:7

Figure 4 Forest K′ for the same X0 as Figure 2 shown at the bottom, where each rectangle lying
between positions g and h indicates vertex (g, h), the position of each edge represents its label, and the
shaded areas indicate the ranges between k⊢ and k⊣ when tracing paths by Algorithm determineKappa
presented in Algorithm 2 to determine κ′(7, 20).

Based on the ideas discussed above, we define K ′ as a forest of binary trees as follows
(see also Figure 4). The set of vertices in K ′ consists of all canonical index pairs (g, h) with
1 ≤ g ≤ h ≤ n. Each vertex (g, h) with g < h has two children, (g, h⋆) and (g⋆, h), where
h⋆ = (g + h − 1)/2 and g⋆ = (g + h + 1)/2. Furthermore, the edge between (g, h) and
(g, h⋆) is labeled with k(g, h⋆), the greatest index in K ′(g, h⋆) that is shared by K ′(g, h).
Analogously, the edge between (g, h) and (g⋆, h) is labeled with k(g⋆, h), the least index in
K ′(g⋆, h) that is shared by K ′(g, h). Any vertex (g, h) with g = h is a leaf. Since the number
of all canonical index pairs is O(n), K ′ can be stored in O(n) space, unlike the case of K′,
which requires O(n log n) space.

We implement K ′ as an array K′ of arrays K′[l] with 0 ≤ l ≤ ⌊log2 n⌋ − 1, where K′[l]
consists of elements K′[l][m] with 1 ≤ m ≤ 2⌊n/2l+1⌋, each containing the label of the edge
between vertex (2l(m − 1) + 1, 2lm) and its parent. Algorithm 1 presents a pseudo-code of
Algorithm constructK, which we propose as an algorithm that constructs K′ in O(n) time.
The correctness of the algorithm and the execution time are shown in the following lemma.

▶ Lemma 3. Algorithm constructK outputs K′ in O(n) time as an implementation of forest
K ′.

Proof. For any index l with 0 ≤ l ≤ ⌊log2 n⌋, let K′
l denote the array of sequences K ′(g, h)

for all of the ⌊n/2l⌋ canonical index pairs (g, h) with 1 ≤ g ≤ h ≤ n and h − g + 1 = 2l

in ascending order of g. To construct K′ in O(n) time, Algorithm constructK initializes K∗
to K′

0 (by line 2) and updates it from K′
l−1 to K′

l (by lines 4 through 15) for each index l

from 1 to ⌊log2 n⌋. In this process, when K ′(g, h⋆) and K(g⋆, h) in K′
l−1 are merged into

K ′(g, h) in K′
l, two labels k(g, h⋆) and k(g⋆, h) are also obtained, where (g, h⋆) and (g⋆, h)

are children of (g, h). Let l and m be the indices such that h = 2lm (= 2l−1 · 2m) and hence
h⋆ = 2l−1(2m − 1). The loop executed by lines 5 through 13 for l and m repeatedly deletes
the last element k−1 of the current prefix of K ′(g, h⋆) stored in K∗[2m−1], if (k−1, S0(1, k−1))
is not a vertex of H(g, h), or the first element k1 of the current suffix of K ′(g⋆, h) stored
in K∗[2m], otherwise, until both (k−1, S0(1, k−1)) and (k1, S0(1, k1)) are vertices of H(g, h).
If the condition of line 8 holds, then (k−1, S0(1, k−1)) is not a vertex of H(g, h) because it
is on or above the straight line passing through (k−2, S0(1, k−2)) and (k1, S0(1, k1)). The
analogy holds for k1. Furthermore, if neither of the conditions in lines 8 and 10 holds,

CPM 2024



26:8 A Data Structure for the Maximum-Sum Segment Problem with Offsets

Algorithm 1 A pseudo-code of Algorithm constructK.

1 K′ ← an array of arrays K′[l] with 0 ≤ l ≤ ⌊log2 n⌋ − 1 each consisting of elements K′[l][m]
with 1 ≤ m ≤ 2⌊n/2l+1⌋;

2 K∗ ← an array of n elements K∗[k] with 1 ≤ k ≤ n each initialized to a bidirectional linked
list consisting of a single element k;

3 foreach l from 1 to ⌊log2 n⌋ do
4 foreach m from 1 to ⌊n/2l⌋ do
5 while not broken do
6 k−1, k−2 ← the last and second last elements of K∗[2m− 1], respectively;
7 k1, k2 ← the first and second elements of K∗[2m], respectively;
8 if k−2 exists and δ(k−2 + 1, k−1) ≥ δ(k−2 + 1, k1) then
9 delete k−1 from K∗[2m− 1]

10 else if k2 exists and δ(k−1 + 1, k2) ≥ δ(k1 + 1, k2) then
11 delete k1 from K∗[2m]
12 else
13 break

14 K′[l − 1][2m− 1]← k−1; K′[l − 1][2m]← k1;
15 K∗[m]← the concatenation of K∗[2m− 1] followed by K∗[2m]

16 output K′ as an implementation of K′

then both (k−1, S0(1, k−1)) and (k1, S0(1, k1)) are vertices of H(g, h). This is because the
lower convex hull for the existing (k−2, S0(1, k−2)), (k−1, S0(1, k−1)), (k1, S0(1, k1)), and
(k2, S0(1, k2)) has all of them as vertices. Thus, just after the loop is broken by line 13,
k−1 = k(g, h⋆) and k1 = k(g⋆, h), which are respectively stored as appropriate elements of
K′ by line 14. In addition, the concatenation of the eventual prefix of K ′(g, h⋆) followed
by the eventual suffix of K ′(g⋆, h) constitutes K ′(g, h), which is stored in K∗[m] by line 15.
Therefore, Algorithm constructK outputs K′ correctly.

Each element of K∗ is implemented as a bidirectional linked list and line 15 directly
concatenates the lists pointed to by K∗[2m−1] and K∗[2m], respectively, and sets the resulting
list to the one pointed to by K∗[m] in O(1) time. Hence, the algorithm runs in time linear in
the sum of the number of canonical index pairs and the number of indices deleted by lines 9
and 11, both of which are O(n). ◀

As an algorithm that allows array K′ to support O(log2 n)-time queries of κ′(i, j), we
propose Algorithm determineKappa(i, j) a pseudo-code of which is presented in Algorithm 2.

▶ Lemma 4. Forest K ′, implemented as array K′, supports O(log2 n)-time queries of κ′(i, j)
for any index pair (i, j) with 1 ≤ i ≤ j ≤ n by executing Algorithm determineKappa(i, j).

Proof. Algorithm determineKappa(i, j) consists of two phases.
The first phase is executed by lines 1 through 7 to decompose (i, j) into a sequence C of

O(log n) canonical index pairs (g, h) in a straightforward way. Obviously, this phase runs in
O(log n) time.

The second phase determines indices κ′(i, g, h) for all canonical index pairs (g, h) in C
to determine κ′(i, j) by executing lines 8 through 19. For each such (g, h), lines 10 through
16 determine κ′(i, g, h) based on Lemma 2 without having K ′(g, h) explicitly. The binary
search in Lemma 2 is done by tracing the path from (g, h) to (κ′(i, g, h), κ′(i, g, h)). In this
tracing process, two indices k⊢ and k⊣ are maintained so that whenever an internal vertex
(e, f) is visited, for any index k with e ≤ k ≤ f , k is an element of K ′(g, h) if and only if



Y. Sakai 26:9

Algorithm 2 A pseudo-code of Algorithm determineKappa(i, j).

1 C← an empty sequence;
2 ȷ̃← 2⌊log2 n⌋; ı̃← 2⌊log2 n⌋ + 1;
3 foreach l from ⌊log2 n⌋ to 1 in descending order do
4 if i ≤ ȷ̃− 2l + 1 and ȷ̃ ≤ j then append (ȷ̃− 2l + 1, ȷ̃) to C;
5 if i ≤ ȷ̃− 2l + 1 then ȷ̃← ȷ̃− 2l;
6 if i ≤ ı̃ and ı̃ + 2l − 1 ≤ j then append (̃ı, ı̃ + 2l − 1) to C;
7 if ı̃ + 2l − 1 ≤ j then ı̃← ı̃ + 2l;
8 δ ←∞;
9 foreach (g, h) in C do

10 l← log2(h− g + 1); m← h/2l; k⊢ ← g; k⊣ ← h;
11 while l > 0 do
12 k◁ ← K′[l − 1][2m− 1]; k▷ ← K′[l − 1][2m];
13 if k⊣ < k▷ or (k⊢ ≤ k◁ and δ(i, k◁) ≤ δ(i, k▷)) then
14 k⊣ ← min(k⊣, k◁); l← l − 1; m← 2m− 1
15 else
16 k⊢ ← max(k⊢, k▷); l← l − 1; m← 2m

17 if δ(i, m) < δ then
18 κ′ ← m; δ ← δ(i, m)

19 output κ′ as κ′(i, j)

k⊢ ≤ k ≤ k⊣ and k is an element of K ′(e, f). Obviously, we can maintain k⊢ and k⊣ by
initializing k⊢ and k⊣ to g and h, respectively, and updating k⊣ (resp. k⊢) to the minimum
(resp. maximum) of k⊣ (resp. k⊢) and k(e, f⋆) (resp. k(e⋆, f)), if (e, f⋆) (resp. (e⋆, f)) is
chosen as the next vertex to visit after (e, f), where f⋆ = (e+f −1)/2 and e⋆ = (e+f +1)/2.
To guarantee that e ≤ κ′(i, g, h) ≤ f for any vertex (e, f) visited in the trace, the next
vertex to visit after (e, f) is chosen as follows. If k⊣ < k(e⋆, f) (resp. k(e, f⋆) < k⊢),
then (e, f⋆) (resp. (e⋆, f)) is chosen, because K ′(e⋆, f) (resp. K ′(e, f⋆)) shares no element
with K ′(g, h). On the other hand, if both k⊢ ≤ k(e, f⋆) and k(e⋆, f) ≤ k⊣, then k(e, f⋆)
and k(e⋆, f) are consecutive elements in K ′(g, h). Therefore, in such cases, it follows from
Lemma 2 that we can choose (e, f⋆), if δ(i, k(e, f⋆)) ≤ δ(i, k(e⋆, f)), or (e⋆, f), otherwise. If
we represent (e, f) by indices l = log2(f − e + 1) and m = f/2l, then (e, f⋆) (resp. (e⋆, f))
is represented by l − 1 and 2m − 1 (resp. 2m), implying that k(e, f⋆) = K′[l − 1][2m − 1]
(resp. k(e⋆, f) = K′[l − 1][2m]). Adopting this representation, lines 10 through 16 trace
the path from (g, h) to (κ′(i, g, h), κ′(i, g, h)) in the manner described above, and hence the
resulting m represents κ′(i, g, h). After this trace, κ′ and δ are updated by lines 17 and
18 so that δ represents the maximum value of δ(i, κ′(i, g, h)) for κ′(i, g, h) obtained so far
and κ′ represents the first κ′(i, g, h) found that satisfies δ(i, κ′(i, g, h)) = δ. Thus, line 19
outputs κ′(i, j) correctly. The execution time of this phase is O(log2 n) because the number
of elements (g, h) in C is O(log n) and the number of vertices in the path from each such
(g, h) to (κ′(i, g, h), κ′(i, g, h)) is O(log n). ◀

We define K ′′ as the forest K ′ for the reversed X0, which can be constructed in O(n)
time due to Lemma 3. Since κ′(i, j) for the reversed X0 represents κ′′((n + 1) − j, (n + 1) − i)
for the original X0 by symmetry, Lemmas 4 implies that K ′′ can support O(log2 n)-time
queries of κ′′(i, j) for any index pair (i, j) with 1 ≤ i ≤ j ≤ n. Thus, the following theorem
immediately follows from Lemmas 3 and 4.

CPM 2024



26:10 A Data Structure for the Maximum-Sum Segment Problem with Offsets

Figure 5 Tree τ(1, 18) for the same X0 as Figure 2 shown at the bottom, where each vertex (g, h)
with g ≤ h is indicated by a rectangle lying between positions g and h with α(g, h) as the label and
each vertex (g, h) with g = h + 1 is represented as a bullet between positions h and g.

▶ Theorem 5. Forests K ′ and K ′′ can be constructed in O(n) time and support O(log2 n)-time
queries of α(i, j) and κ(i, j) for any index pair (i, j) with 1 ≤ i ≤ j ≤ n.

3.2 Offset-MSS data structure supporting O(log n)-time queries
To design Algorithm findOMSS, we consider a tree T from which a vertex (i, j) can be chosen
as an MSS of Xa for any real number a. After defining T based on Lemma 1, we analyze
how the vertices of T used to construct OMSSX0 can be chosen.

Lemma 1 gives us the MSS of Xa specifically if a < α(1, n), but only inductive candidates
otherwise. We define T as a tree that presents explicit rather than inductive candidates,
even if a ≥ α(1, n). More precisely, T is defined as a tree such that all vertices (g, h) with
α(i, j) ≤ a < α(g, h) constitute the set of candidates, where (i, j) is the parent of (g, h).
Our idea to realize such a tree T is to divide the problem of finding an MSS of Xa(i, j) for
any real number a with a ≥ α(i, j) into the problems of finding an MSS of Xa(g, h) with
α(g, h) > α(i, j) by applying Lemma 1 incrementally to define the set of children (g, h) of
each internal vertex (i, j). Thus, formally, the set of children of any internal vertex (i, j)
in T is defined as the set of leaves of the tree τ(i, j) introduced below. For any index pair
(i, j) with 1 ≤ i ≤ j ≤ n, let τ(i, j) denote the tree such that (i, j) is the root, any vertex
(g, h) with g ≤ h such that Xα(i,j)(g, h) is not pref/suff-positive (i.e., α(g, h) ≤ α(i, j)) has
two children (g, κ(g, h) − 1) and (κ(g, h) + 1, h), and any other vertex is a leaf (see Figure 5).
Although the topology of τ(i, j) is not uniquely defined in general due to the ambiguity of
κ(g, h), it is not difficult to verify that the set of leaves is unique. Let T denote the tree
such that the root is (1, n), any vertex (i, j) with i ≤ j has all leaves of τ(i, j) as its children,
and any other vertex is a leaf (see Figure 6). The following lemma claims that T has the
property we intend.

▶ Lemma 6. For any real number a, if a < α(1, n), then (1, n) is an MSS of Xa; otherwise,
any vertex (g, h) with α(i, j) ≤ a < α(g, h) in T that maximizes Sa(g, h) is an MSS of Xa,
where (i, j) is the parent of (g, h).

Proof. If a < α(1, n), then the lemma immediately follows from Lemma 1. Suppose that
a ≥ α(1, n). Consider an arbitrary series C of sets C of vertices in T such that

the first set consists only of (1, n),
any set C containing at least one internal vertex (i, j) with α(i, j) ≤ a as an element is
followed by the set obtained from C by replacing arbitrary such element (i, j) with all
children of τ(i, j), and
any element (g, h) in the last set satisfies that α(g, h) > a.



Y. Sakai 26:11

Figure 6 Tree T for the same X0 as Figure 5 shown at the bottom, drawn in the same manner
as Figure 5.

Since α(g, h) > α(i, j) for any leaf (g, h) of τ(i, j), the last set of C exists and consists of
all vertices (g, h) in T such that α(i, j) ≤ a < α(g, h), where (i, j) is the parent of (g, h). It
follows from Lemma 1 that any element (g, h) in the last set of C is the only MSS of Xa(g, h).
Thus, if the last set in C has an element (g, h) such that any MSS of Xa(g, h) is an MSS of
Xa, then the lemma holds. For any index pair (i, j) with 1 ≤ i ≤ j ≤ n, if a ≥ α(i, j), then
there exists a leaf (g, h) of τ(i, j) such that any MSS of Xa(g, h) is an MSS of Xa(i, j). This
implies by induction that any set in C has an element (g, h) such that any MSS of Xa(g, h)
is an MSS of Xa. ◀

Lemma 6 provides a set of vertices in T from which we can find an MSS of Xa. However,
this candidate set varies with a. Furthermore, even if the same set is given for different real
numbers a, the vertex (g, h) that is an MSS of Xa may differ from each other. For example,
if we consider X0 in Figure 6, then Lemma 6 claims that an MSS of X12.4 and an MSS
of X12.6 can be found from the same candidates (4, 6), (8, 8), and (14, 18) (ignoring empty
candidates such as (1, 0)) and we can verify that (14, 18) is the only MSS of X12.4 while (4, 6)
is the only MSS of X12.6. Instead of adopting the set of candidates suggested by Lemma 6
as is, we can consider a specific set of candidates that is not altered by a. Those candidates
are introduced below. Let P denote the set of all lengths p with 0 ≤ p ≤ n such that T

has at least one vertex (i, j) with j − i + 1 = p. For any length p in P , let wp denote the
maximum of S0(i, j) over all vertices (i, j) in T such that j − i + 1 = p and let (ip, jp) denote
an arbitrary such vertex (i, j) in T that achieves wp. The following lemma claims that these
vertices (ip, jp) can be thought of as the candidates.

▶ Lemma 7. For any real number a and any length p in P that maximizes Sa(ip, jp), (ip, jp)
is an MSS of Xa.

Proof. It imediately follows from Lemma 6 that any vertex (g, h) in T that maximizes
Sa(g, h) is an MSS of Xa. For any such vertex (g, h), (ip, jp) is also an MSS of Xa, where
p = h − g + 1, because Sa(g, h) = S0(g, h) − ap ≤ wp − ap = S0(ip, jp) − ap = Sa(ip, jp). ◀

CPM 2024



26:12 A Data Structure for the Maximum-Sum Segment Problem with Offsets

Figure 7 Two-dimensional points (p, wp) with (ip, jp) as the label for all lengths p in P used
to determine OMSSX0 as the sequence of (∞, (1, 0)), (21, (15, 15)), (29/2, (4, 6)), (25/2, (14, 18)),
(32/3, (1, 8)), (10, (1, 18)), and (16/3, (1, 21)) in this order, where X0 is the same as Figure 5 and each
pair of adjacent vertices (q, wq) and (p, wp) of H is connected by a line with its slope (wp−wq)/(p−q)
as the label.

We are now ready to define OMSSX0 as the offset-MSS data structure we propose. Recall
that OMSSX0 is a sequence of O(n) pairs (θ, (i, j)) in descending order of θ such that for
any real number a, if (θ, (i, j)) is the last element with θ > a, then (i, j) is an MSS of Xa.
As (i, j) of each such element (θ, (i, j)), we adopt (ip, jp) for an appropriate length p in P .
To find such lengths p, we treat (p, wp) for any length p in P as a two-dimensional point and
consider the upper convex hull H for all the points (p, wp) (see Figure 7). Note that (0, 0) is
a vertex of H. We define OMSSX0 as consisting of pairs (θp, (ip, jp)) for all vertices (p, wp)
of H. As threshold θp, we adopt ∞, if p = 0, or (wp − wq)/(p − q), otherwise, where (q, wq)
is the vertex of H that is adjacent to (p, wp) such that q < p. The following theorem shows
the correctness of OMSSX0 as an offset-MSS data structure.

▶ Theorem 8. For any real number a, (ip, jp) is an MSS of Xa, where (θp, (ip, jp)) is the
last element in OMSSX0 such that θp > a.

Proof. Let q be arbitrary length in P such that q < p. Since (p, wp) is a vertex of H, the
slope (wp − wq)/(p − q) of the straight line passing through (q, wq) and (p, wp) is greater
than a. This implies that Sa(iq, jq) = wq − aq < wp − ap = Sa(ip, jp). Analogously, for any
length q in P such that q > p, Sa(iq, jq) ≤ Sa(ip, jp) because (wq − wp)/(q − p) ≤ a. Thus,
the theorem follows from Lemma 7. ◀

Algorithm findOMSS can be designed according to definition of OMSSX0 . Algorithm 3
presents a pseudo-code of the algorithm, excluding the data structure proposed in Section 3.1
to support O(log2 n)-time queries of α(i, j) and κ(i, j). The algorithm consists of the following
two phases.

The first phase. Lines 1 through 13 determine pairs (ip, jp) for all lengths p in P by
enumerating all internal vertices (i, j) in T . During the enumeration, element W[p] of array
W for any length p with 1 ≤ p ≤ n is used to store the maximum of S0(i, j) over all vertices



Y. Sakai 26:13

Algorithm 3 A pseudo-code of Algorithm findOMSS.

1 W, I, J← arrays of n elements each initialized to 0;
2 T← a stack containing a single element (1, n);
3 while T is non-empty do
4 pop (i, j) from T;
5 if W[p] < w, where p = j − i + 1 and w = S0(i, j), then
6 W[p]← w; I[p]← i; J[p]← j

7 tau← a stack containing a single element (i, j);
8 while tau is non-empty do
9 pop (g, h) from tau;

10 if α(g, h) ≤ α(i, j) then
11 push (g, κ(g, h)− 1) to tau; push (κ(g, h) + 1, h) to tau
12 else if g ≤ h then
13 push (g, h) to T

14 H← a sequence consisting of a single element (0, 0);
15 foreach p from 1 to n do
16 if W[p] > 0 then
17 while H has more than one element and (W[p]− wq)/(p− q) ≥ (W[p]− wr)/(p− r),

where (q, wq) and (r, wr) are the last and second last elements in H, respectively, do
18 delete the last element (q, wq) from H
19 append (p, W[p]) to H

20 OMSS← a sequence consisting of a single element (∞, (1, 0));
21 foreach (p, wp) in H from the second element to the last in this order do
22 append ((wp − wq)/(p− q), (I[p], J[p])) to OMSS, where (q, wq) is the element

immediately followed by (p, wp) in H
23 output OMSS as OMSSX0

(i, j) with j − i + 1 = p in T enumerated up to the present time, if any, or 0, otherwise. In
addition, elements I[p] of array I and J[p] of array J are used to indicate the first vertex (i, j)
achieving W[p]. Therefore, after executing this phase, for any length p with 1 ≤ p ≤ n, if p is
an element of P , then W[p], I[p], and J[p] represent wp, ip, and jp, respectively; otherwise
W[p] = 0. To enumerate all internal vertices in T , two stacks T and tau are used. Since there
is no need to maintain the topology of T , T is used to store all internal vertices of T already
found but whose children are not yet determined. After initializing T to a stack containing
(1, n) as the only element (by line 2), each such internal vertex (i, j) of T is popped from
T (by line 4), treated as a new vertex found to update W, I, and J (by lines 5 and 6), and
decomposed into its children (by lines 7 through 13). To decompose (i, j) into its children,
tau is used to store all vertices of τ(i, j) that have found but not yet been determined to
be leaves or not. After initializing tau to a stack containing (i, j) as the only element (by
line 7), each element (g, h) is popped from tau (by line 9) and if (g, h) is not a leaf of τ(i, j),
then its children are pushed to tau (by lines 10 and 11); otherwise, if (g, h) is an internal
node of T , then (g, h) is pushed to T (by lines 12 and 13). For any internal vertex (i, j) of
T and any internal vertex (g, h) of τ(i, j), there exists a distinct index k with 1 ≤ k ≤ n

that corresponds to (g, h). Thus, it follows from Lemma 4 that this phase is executed in
O(n log2 n) time.

The second phase. Lines 14 through 23 determine H to construct OMSSX0 . For any length
p with 1 ≤ p ≤ n, let Hp be the upper convex hull for points (q, wp) for all lengths q in P

such that q ≤ p, so that Hn = H. The sequence of all vertices (q, w) of Hp in ascending order

CPM 2024



26:14 A Data Structure for the Maximum-Sum Segment Problem with Offsets

of q for each length p from 0 to n is inductively constructed as sequence H. After initializing
H to a sequence consisting of (0, w0) as the only element (by line 14), for any length p in
P other than 0 in ascending order, each element (q, wq) in H that is not a vertex of Hp is
removed one by one in descending order of q (by lines 17 and 18) and (p, wp) is appended
to H (by line 19). Since the sequence of all vertices (p, w) of H is eventually obtained as H,
OMSSX0 is constructed as sequence OMSS in a straightforward manner (by lines 20 through
22). To update H from H0 to Hn, (p, W[p]) for any index p in P is appended to H exactly
once and any such element is deleted from H at most once. Therefore, this phase is executed
in O(n) time.

Due to the above, together with Lemma 3, we immediately have the following theorem.

▶ Theorem 9. Algorithm findOMSS, including the data structure supporting O(log2 n)-time
queries of α(i, j) and κ(i, j) proposed in Section 3.1, outputs OMSSX0 as an O(n)-space
offset-MSS data structure for X0 supporting O(log n)-time queries in O(n log2 n) time and
O(n) space.

4 Conclusive remarks

The present article considered the offset maximum-sum segment problem, a variant of the
maximum-sum segment problem for a sequence X0 of n real numbers, which asks an arbitrary
contiguous subsequence of Xa that maximizes the sum of its elements for any given real
number a, where Xa is the sequence obtained by subtracting a from each element in X0. An
O(n log2 n)-time, O(n)-space algorithm that outputs a data structure supporting O(log n)-
time queries of the solution of the offset maximum-sum segment problem was proposed.
Further improvements in query time would be unlikely. This is because the data structure
output by the proposed algorithm partitions the entire set of real numbers into O(n) intervals,
and the offset maximum-sum problem has a distinct solution in common for all real numbers
a in each interval. It remains to be clarified whether or not the upper bound on the time
complexity of finding such a data structure can be improved from O(n log2 n).

References

1 Fredrik Bengtsson and Jingsen Chen. Computing maximum-scoring segments optimally. Luleå
tekniska universitet, 2007.

2 Jon Bentley. Programming pearls: algorithm design techniques. Communications of the ACM,
27(9):865–871, 1984.

3 Kuan-Yu Chen and Kun-Mao Chao. On the range maximum-sum segment query problem.
Discrete Applied Mathematics, 155(16):2043–2052, 2007. doi:10.1016/j.dam.2007.05.018.

4 Chih-Huai Cheng, Hsiao-Fei Liu, and Kun-Mao Chao. Optimal algorithms for the average-
constrained maximum-sum segment problem. Information Processing Letters, 109(3):171–174,
2009. doi:10.1016/j.ipl.2008.09.024.

5 Kai-Min Chung and Hsueh-I Lu. An optimal algorithm for the maximum-density segment prob-
lem. SIAM Journal on Computing, 34(2):373–387, 2005. doi:10.1137/S0097539704440430.

6 Margaret Dayhoff, R Schwartz, and B Orcutt. A model of evolutionary change in proteins.
Atlas of protein sequence and structure, 5:345–352, 1978.

7 Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama. Data mining
with optimized two-dimensional association rules. ACM Transactions on Database Systems
(TODS), 26(2):179–213, 2001. doi:10.1145/383891.383893.

https://doi.org/10.1016/j.dam.2007.05.018
https://doi.org/10.1016/j.ipl.2008.09.024
https://doi.org/10.1137/S0097539704440430
https://doi.org/10.1145/383891.383893


Y. Sakai 26:15

8 Michael H Goldwasser, Ming-Yang Kao, and Hsueh-I Lu. Fast algorithms for finding maximum-
density segments of a sequence with applications to bioinformatics. In Algorithms in Bioin-
formatics: Second International Workshop, WABI 2002 Rome, Italy, September 17–21, 2002
Proceedings 2, pages 157–171. Springer, 2002. doi:10.1007/3-540-45784-4_12.

9 Steven Henikoff and Jorja G Henikoff. Amino acid substitution matrices from protein blocks.
Proceedings of the National Academy of Sciences, 89(22):10915–10919, 1992. doi:10.1073/
pnas.89.22.10915.

10 Sung Kwon Kim. Linear-time algorithm for finding a maximum-density segment of a sequence.
Information Processing Letters, 86(6):339–342, 2003. doi:10.1016/S0020-0190(03)00225-4.

11 Yaw-Ling Lin, Tao Jiang, and Kun-Mao Chao. Efficient algorithms for locating the length-
constrained heaviest segments with applications to biomolecular sequence analysis. Journal of
Computer and System Sciences, 65(3):570–586, 2002. doi:10.1016/S0022-0000(02)00010-7.

12 Kalyan Perumalla and Narsingh Deo. Parallel algorithms for maximum subsequence
and maximum subarray. Parallel Processing Letters, 5(03):367–373, 1995. doi:10.1142/
S0129626495000345.

13 Walter L Ruzzo and Martin Tompa. A linear time algorithm for finding all maximal scoring
subsequences. In ISMB, volume 99, pages 234–241, 1999. URL: http://www.aaai.org/
Library/ISMB/1999/ismb99-027.php.

14 Yoshifumi Sakai. A maximal local maximum-sum segment data structure. IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences, 101(9):1541–1542,
2018. doi:10.1587/transfun.E101.A.1541.

15 Nikola Stojanovic, Liliana Florea, Cathy Riemer, Deborah Gumucio, Jerry Slightom, Morris
Goodman, Webb Miller, and Ross Hardison. Comparison of five methods for finding con-
served sequences in multiple alignments of gene regulatory regions. Nucleic Acids Research,
27(19):3899–3910, 1999. doi:10.1093/nar/27.19.3899.

16 Lusheng Wang and Ying Xu. Segid: Identifying interesting segments in (multiple) sequence
alignments. Bioinformatics, 19(2):297–298, 2003. doi:10.1093/bioinformatics/19.2.297.

17 Hung-I Yu, Tien-Ching Lin, and DT Lee. Finding maximum sum segments in sequences with
uncertainty. Theoretical Computer Science, 850:221–235, 2021. doi:10.1016/j.tcs.2020.11.
005.

CPM 2024

https://doi.org/10.1007/3-540-45784-4_12
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1016/S0020-0190(03)00225-4
https://doi.org/10.1016/S0022-0000(02)00010-7
https://doi.org/10.1142/S0129626495000345
https://doi.org/10.1142/S0129626495000345
http://www.aaai.org/Library/ISMB/1999/ismb99-027.php
http://www.aaai.org/Library/ISMB/1999/ismb99-027.php
https://doi.org/10.1587/transfun.E101.A.1541
https://doi.org/10.1093/nar/27.19.3899
https://doi.org/10.1093/bioinformatics/19.2.297
https://doi.org/10.1016/j.tcs.2020.11.005
https://doi.org/10.1016/j.tcs.2020.11.005

	1 Introduction
	2 Preliminaries
	3 Algorithm constructing an offset-MSS data structure
	3.1 Data structure supporting queries of alpha(i, j) and kappa(i, j)
	3.2 Offset-MSS data structure supporting O(log n)-time queries

	4 Conclusive remarks

