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Abstract
In this paper, we study for the first time the Diverse Longest Common Subsequences (LCSs) problem
under Hamming distance. Given a set of a constant number of input strings, the problem asks
to decide if there exists some subset X of K longest common subsequences whose diversity is no
less than a specified threshold ∆, where we consider two types of diversities of a set X of strings
of equal length: the Sum diversity and the Min diversity defined as the sum and the minimum
of the pairwise Hamming distance between any two strings in X , respectively. We analyze the
computational complexity of the respective problems with Sum- and Min-diversity measures, called
the Max-Sum and Max-Min Diverse LCSs, respectively, considering both approximation algorithms
and parameterized complexity. Our results are summarized as follows. When K is bounded, both
problems are polynomial time solvable. In contrast, when K is unbounded, both problems become
NP-hard, while Max-Sum Diverse LCSs problem admits a PTAS. Furthermore, we analyze the
parameterized complexity of both problems with combinations of parameters K and r, where r is the
length of the candidate strings to be selected. Importantly, all positive results above are proven in a
more general setting, where an input is an edge-labeled directed acyclic graph (DAG) that succinctly
represents a set of strings of the same length. Negative results are proven in the setting where an
input is explicitly given as a set of strings. The latter results are equipped with an encoding such a
set as the longest common subsequences of a specific input string set.
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27:2 Finding Diverse Strings and Longest Common Subsequences

1 Introduction

The problem of finding a longest common subsequence (LCS) of a set of m strings, called the
LCS problem, is a fundamental problem in computer science, extensively studied in theory and
applications for over fifty years [8, 31, 33, 38, 41]. In application areas such as computational
biology, pattern recognition, and data compression, longest common subsequences are used
for consensus pattern discovery and multiple sequence alignment [25, 41]. It is also common
to use the length of longest common subsequence as a similarity measure between two strings.
For example, Table 1 shows longest common subsequences (underlined) of the input strings
X1 = ABABCDDEE and Y1 = ABCBAEEDD.

Table 1 Longest common subsequences of two input strings X1 and Y1 over Σ = {A, B, C, D, E}.

ϵ, A, B, C, D, E, AA, AB, AC, AD, AE, BA, . . . , CD, CE, DD, EE,
ABA, ABB, ABC, ABD, . . . , CEE, ABAD, ABAE, ABBD, . . . , BCEE,

ABADD, ABAEE, ABBDD, ABBEE, ABCDD, ABCEE

The LCS problem can be solved in polynomial time for constant m ⩾ 2 using dynamic
programming by Irving and Fraser [33] requiring O(nm) time, where n is the maximum
length of m strings. When m is unrestricted, LCS is NP-complete [38]. From the view of
parameterized complexity, Bodlaender, Downey, Fellows, and Wareham [8] showed that the
problem is W[t]-hard parameterized with m for all t, is W[2]-hard parameterized with the
length ℓ of a longest common subsequence, and is W[1]-complete parameterized with ℓ and
m. Bulteau, Jones, Niedermeier, and Tantau [9] presented a fixed-paraemter tractable (FPT)
algorithm with different parameterization.

Recent years have seen increasing interest in efficient methods for finding a diverse set
of solutions [5, 20, 27, 39]. Formally, let (F , d) be a distance space with a set F of feasible
solutions and a distance d : F × F → R⩾0, where d(X, Y ) denotes the distance between two
solutions X, Y ∈ F . We consider two diversity measures for a subset X = {X1, . . . , XK} ⊆ F
of solutions:

Dsum
d (X ) :=

∑
i<j d(Xi, Xj), (Sum diversity), (1)

Dmin
d (X ) := mini<j d(Xi, Xj), (Min diversity)· (2)

For τ ∈ {sum, min}, a subset X ⊆ F of feasible solutions is said to be ∆-diverse w.r.t. Dτ
d (or

simply, diverse) if Dτ
d(X ) ⩾ ∆ for a given ∆ ⩾ 0. Generally, the Max-Sum (resp. Max-Min)

Diverse Solutions problem related to a combinatorial optimization problem Π is the
problem of, given an input I to Π and a nonnegative number ∆ ⩾ 0, deciding if there exists
a subset X ⊆ SolΠ(I) of K solutions on I such that Dsum

d (X ) ⩾ ∆ (resp. Dmin
d (X ) ⩾ ∆),

where SolΠ(I) ⊆ F is the set of solutions on I. For many distance spaces related to
combinatorial optimization problems, both problems are known to be computationally hard
with unbounded K [5, 6, 11,18,20,27–29,34,45].

In this paper, we consider the problem of finding a diverse set of solutions for longest
common subsequences of a set S of input strings under Hamming distance. The task is
to select K longest common subsequences, maximizing the minimum pairwise Hamming
distance among them. In general, a set of m strings of length n may have exponentially
many longest common subsequences in n. Hence, efficiently finding such a diverse subset of
solutions for longest common subsequences is challenging.
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Let dH(X, Y ) denote the Hamming distance between two strings X, Y ∈ Σr of the equal
length r ⩾ 0, called r-strings. Throughout this paper, we consider two diversity measures
over sets of equi-length strings, the Sum-diversity Dsum

dH
and the Min-diversity Dmin

dH
under

the Hamming distance dH . Let LCS(S) denotes the set of all longest common subsequences
of a set S of strings. Now, we state our first problem.

▶ Problem 1 (Diverse LCSs with Diversity Measure Dτ
dH

).
Input: Integers K, r ⩾ 1, and ∆ ⩾ 0, and a set S = {S1, . . . , Sm} of m ⩾ 2 strings over Σ of

length at most r ;
Question: Is there some set X ⊆ LCS(S) of longest common subsequences of S such that
|X | = K and Dτ

dH
(X ) ⩾ ∆?

Then, we analyze the computational complexity of Diverse LCSs from the viewpoints
of approximation algorithms [43] and parameterized complexity [15,22]. For proving positive
results for the case that K is bounded, actually, we work with a more general setting in
which a set of strings to select is implicitly represented by the language L(G) accepted by
an edge-labeled DAG G, called a Σ-DAG. This is motivated by the fact implicit within the
well-known algorithm for K-LCSs by Irving and Fraser [33] that the set LCS(S) can be
succinctly represented by such a Σ-DAG (see Lemma 2). In contrast, negative results will be
proven in the setting where an input is explicitly given as a set of strings.

Let τ ∈ {sum, min} be any diversity type. Below, we state the modified version of the
problem, where an input string set is an arbitrary set of equi-length strings, no longer a set
of LCSs, and it is implicitly represented by either a Σ-DAG G or the set L itself.

▶ Problem 2 (Diverse String Set with Diversity Measure Dτ
dH

).
Input: Integers K, r, and ∆, and a Σ-DAG G for a set L(G) ⊆ Σr of r-strings.
Question: Decide if there exists some subset X ⊆ L(G) such that |X | = K and Dτ

dH
(X ) ⩾ ∆.

Main results. Let K ⩾ 1, r > 0, and ∆ ⩾ 0 be integers and Σ be an alphabet. The
underlying distance is always Hamming distance dH over r-strings. In Diverse String Set,
we assume that an input string set L ⊆ Σr of r-strings is represented by either a Σ-DAG G

or the set L itself. In Diverse LCS, we assume that the number m = |S| of strings in an
input set S is assumed to be constant throughout. Then, the main results of this paper are
summarized as follows.
1. When K is bounded, both Max-Sum and Max-Min versions of Diverse String Set

and Diverse LCSs can be solved in polynomial time using dynamic programming (DP).
(see Theorem 6, Theorem 8)

2. When K is part of the input, the Max-Sum version of Diverse String Set and Diverse
LCSs admit a PTAS by local search showing that the Hamming distance is a metric of
negative type1. (see Theorem 13)

3. Both of the Max-Sum and Max-Min versions of Diverse String Set and Diverse
LCSs are fixed-parameter tractable (FPT) when parameterized by K and r (see The-
orem 15, Theorem 16). These results are shown by combining Alon, Yuster, and Zwick’s
color coding technique [1] and the DP method in Result 1 above.

4. When K is part of the input, the Max-Sum and Max-Min versions of Diverse String
Set and Diverse LCSs are NP-hard for any constant r ⩾ 3 (Theorem 17, Corollary 20).

5. When parameterized by K, the Max-Sum and Max-Min versions of Diverse String
Set and Diverse LCSs are W[1]-hard (see Theorem 18, Corollary 21).

1 It is a finite metric satisfying a class of inequalities of negative type [16]. For definition, see Sec. 4.
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27:4 Finding Diverse Strings and Longest Common Subsequences

Table 2 Summary of results on Diverse String Set and Diverse LCSs under Hamming
distance, where K, r, and ∆ stand for the number, length, and diversity threshold for a subset X of
r-strings, and α: const, param, and input indicate that α is a constant, a parameter, and part of an
input, respectively. A representation of an input set L is both of Σ-DAG and LCS otherwise stated.

Problem Type K: const K: param K: input

Max-Sum
Diverse
String Set
& LCS

Exact Poly-Time
(Theorem 8)

W[1]-hard on Σ-DAG
(Theorem 18))

W[1]-hard on LCS
(Corollary 21))

NP-hard on Σ-DAG
if r ⩾ 3:const
(Theorem 17)
NP-hard on LCS
(Corollary 20)

Approx.
or FPT

— FPT if r: param
(Theorem 16)

PTAS
(Theorem 13)

Max-Min
Diverse
String Set
& LCS

Exact Poly-Time
(Theorem 6)

W[1]-hard on Σ-DAG
(Theorem 18)

W[1]-hard on LCS
(Corollary 21)

NP-hard on Σ-DAG
if r ⩾ 3:const
(Theorem 17)
NP-hard on LCS
(Corollary 20)

Approx.
or FPT

— FPT if r: param
(Theorem 15)

Open

A summary of these results is presented in Table 2. We remark that the Diverse String
Set problem coincides the original LCS problem when K = 1. It is generally believed that a
W[1]-hard problem is unlikely to be FPT [17,22]. Future work includes the approximability of
the Max-Min version of both problems for unbounded K, and extending our results to other
distances and metrics over strings, e.g., edit distance [35,44] and normalized edit distance [21].

1.1 Related work
Diversity maximization for point sets in metric space and graphs has been studied since
1970s under various names in the literature [7,10,11,18,29,34,40,42] (see Ravi, Rosenkrantz,
and Tayi [40] and Chandra and Halldórsson [11] for overview). There are two major
versions: Max-Min version is known as remote-edge, p-Dispersion, and Max-Min Facility
Dispersion [18, 42, 45]; Max-Sum version is known as remote-clique, Maxisum Dispersion,
and Max-Average Facility Dispersion [7, 10, 29, 40]. Both problems are shown to be NP-hard
with unbounded K for general distance and metrics (with triangle inequality) [18, 29], while
they are polynomial time solvable for 1- and 2-dimensional ℓ2-spaces [45]. It is trivially
solvable in nO(k) time for bounded K.

Diversity maximization in combinatorial problems. However, extending these results for
finding diverse solutions to combinatorial problems is challenging [5, 20]. While methods
such as random sampling, enumeration, and top-K optimization are commonly used for
increasing the diversity of solution sets in optimization, they lack theoretical guarantee of
the diversity [5, 6, 20, 27]. In this direction, Baste, Fellows, Jaffke, Masarík, de Oliveira
Oliveira, Philip, and Rosamond [5, 6] pioneered the study of finding diverse solutions in
combinatorial problems, investigating the parameterized complexity of well-know graph
problems such as Vertex Cover [6]. Subsequently, Hanaka, Kiyomi, Kobayashi, Kobayashi,
Kurita, and Otachi [28] explored the fixed-parameter tractability of finding various subgraphs.
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They further proposed a framework for approximating diverse solutions, leading to efficient
approximation algorithms for diverse matchings, and diverse minimum cuts [27]. While
previous work has focused on diverse solutions in graphs and set families, the complexity of
finding diverse solutions in string problems remains unexplored. Arrighi, Fernau, de Oliveira
Oliveira, and Wolf [2] conducted one of the first studies in this direction, investigating a
problem of finding a diverse set of subsequence-minimal synchronizing words.

DAG-based representation for all LCSs have appeared from time to time in the
literature. The LCS algorithm by Irving and Fraser [33] for more than two strings can be seen
as DP on a grid DAG for LCSs. Lu and Lin’s parallel algorithm [37] for LCS used a similar
grid DAG. Hakata and Imai [26] presented a faster algorithm based on a DAG of dominant
matches. Conte, Grossi, Punzi, and Uno [12] and Hirota and Sakai [30] independently
proposed DAGs of maximal common subsequences of two strings for enumeration.

The relationship between Hamming distance and other metrics has been explored
in string and geometric algorithms. Lipsky and Porat [36] presented linear-time reductions
from String Matching problems under Hamming distance to equivalent problems under
ℓ1-metric. Gionis, Indyk, and Motwani [24] used an isometry (a distance preserving mapping)
from an ℓ1-metric to Hamming distance over binary strings with a polynomial increase
in dimension. Cormode and Muthukrishnan [14] showed an efficient ℓ1-embedding of edit
distance allowing moves over strings into ℓ1-metric with small distortion. Despite these
advancements, existing techniques haven’t been successfully applied to our problems.

2 Preliminaries

We denote by Z, N = {x ∈ Z | x ⩾ 0}, R, and R⩾0 = {x ∈ R | x ⩾ 0} the sets of all integers,
all non-negative integers, all real numbers, and all non-negative real numbers, respectively.
For any n ∈ N, [n] denotes the set {1, . . . , n}. Let A be any set. Then, |A| denotes the
cardinality of A. Throughout, our model of computation is the word RAM, where the space
is measured in Θ(log n)-bit machine words.

Let Σ be an alphabet of σ symbols. For any n ⩾ 0, Σn and Σ∗ denote the sets of all
strings of length n and all finite strings over Σ, respectively. Let X = a1 . . . an ∈ Σn be any
string. Then, the length of X is denoted by |X| = n. For any 1 ⩽ i, j ⩽ n, X[i··j] denotes
the substring ai . . . aj if i ⩽ j and the empty string ε otherwise. A string set or a language
is a set L = {X1, . . . , Xn} ⊆ Σ∗ of n ⩾ 0 strings over Σ. The total length of a string set L

is denoted by ||L|| =
∑

X∈L |X|, while the length of the longest strings in L is denoted by
maxlen(L) := maxS∈L |S|. For any r ⩾ 0, we call any string X an r-string if its length is r,
i.e., X ∈ Σr. Any string set L is said to be of equi-length if L ⊆ Σr for some r ⩾ 0.

2.1 Σ-DAGs
A Σ-labeled directed acyclic graph (Σ-DAG, for short) is an edge-labeled directed acyclic
graph (DAG) G = (V, E, s, t) satisfying: (i) V is a set of vertices; (ii) E ⊆ V × Σ× V is a
set of labeled directed edges, where each edge e = (v, c, w) in E is labeled with a symbol
c = lab(e) taken from Σ; (iii) G has the unique source s and sink t in V such that every vertex
lies on a path from s to t. We define the size of G as the number size(G) of its labeled edges.
From (iii) above, G contains no unreachable nodes. For any vertex v in V , we denote the set
of its outgoing edges by E+(v) = { (v, c, w) ∈ E | w ∈ V }. Any path P = (e1, . . . , en) ∈ En

of length n spells out a string str(P ) = lab(e1) · · · lab(en) ∈ Σn of length n, where n ⩾ 0. A
Σ-DAG G represents the string set, or language, denoted L(G) ⊆ Σ∗, as the collection of
all strings spelled out by its (s, t)-paths. Essentially, G is equivalent to a non-deterministic
finite automaton (NFA) [32] over Σ with initial and final states s and t, and without ε-edges.

CPM 2024



27:6 Finding Diverse Strings and Longest Common Subsequences

Fig. 1a shows an example of Σ-DAG representing the set of six longest common sub-
sequences of two strings in Table 1. Sometimes, a Σ-DAG can succinctly represent a string
set by its language L(G). Actually, the size of G can be logarithmic in |L(G)| in the best
case,2 while size(G) can be arbitrary larger than ||L(G)|| (see Lemma 14 in Sec. 5).

▶ Remark 1. For any set L of strings over Σ, the following properties hold: (1) there exists a
Σ-DAG G such that L(G) = L and size(G) ⩽ ||L||. (2) Moreover, G can be constructed from
L in O(||L||f(σ)) time, where f(n) is the query time of search and insert operation on a
dictionary with n elements. (3) Suppose that a Σ-DAG G represents a set of strings L ⊆ Σ∗.
If L ⊆ Σr for r ⩾ 0, then all paths from the source s to any vertex v spell out strings of the
same length, say d ⩽ r.

Proof. (1) We can construct a trie T for a set L of strings over Σ, which is a deterministic
finite automaton for recognizing L in the shape of a rooted trees and has at most O(||L||)
vertices and edges. By identifying all leaves of T to form the sink, we obtain a Σ-DAG with
||L|| edges for L. (2) It is not hard to see that the trie T can be built in O(||L|| log σ) time
from L. (3) In what follows, we denote the string spelled out by any path π in G by str(π).
Suppose by contradiction that G has some pair of paths π1 and π2 ∈ E∗ from s to a vertex v

such that |str(π1)| − |str(π2)| > 0 (*). By assumption (iii) in the definition of a Σ-DAG, the
vertex v is contained in some (s, t)-path in G. Therefore, we have some path θ that connects
v to t. By concatenating πk and θ, we have two (s, t)-paths τk = πk · θ for all k = 1, 2.
Then, we observe from claim (*) that |str(τ1)| − |str(τ2)| = |str(π1 · θ)| − |str(π2 · θ)| =
(|str(π1)|+ |str(θ)|)− (|str(π2)|+ |str(θ)|) = |str(π1)|− |str(π2)| > 0· On the other hand, we
have L(G) contains both of str(π1) and str(π2) since τ1 and τ2 are (s, t)-paths. This means
that L(G) contains two strings of distinct lengths, and this contradicts that L(G) ⊆ Σr for
some r ⩾ 1. Hence, all paths from s to v have the same length. Hence, (3) is proved. ◀

By Property (3) of Remark 1, we define the depth of a vertex v in G by the length
depth(v) of any path P from the source s to v, called a length-d prefix (path). In other
words, depth(v) = |str(P )|. Then, the vertex set V is partitioned into a collection of disjoint
subsets V0 = {s} ∪ · · · ∪ Vr = {t}, where Vd is the subset of all vertices with depth d for all
d ∈ [r] ∪ {0}.

2.2 Longest common subsequences
A string X is a subsequence of another string Y if X is obtained from Y by removing some
characters retaining the order. X is a common subsequence (CS) of any set S = {S1, . . . , Sm}
of m strings if X is a subsequence of any member of S. A CS of S is called a longest common
subsequence (LCS) if it has the maximum length among all CSs of S. We denote by CS(S)
and LCS(S), respectively, the sets of all CSs and all LCSs of S. Naturally, all LCSs in
LCS(S) have the same length, denoted by 0 ⩽ lcs(S) ⩽ minS∈S |S|. While a string set S
can contain exponentially many LCSs compared to the total length ||S|| of its strings, we
can readily see the next lemma.

▶ Lemma 2 (Σ-DAG for LCSs). For any constant m ⩾ 1 and any set S = {S1, . . . , Sm} ⊆ Σ∗

of m strings, there exists a Σ-DAG G of polynomial size in ℓ := maxlen(S) such that
L(G) = LCS(S), and G can be computed in polynomial time in ℓ.

2 For example, for any r ⩾ 1, the language L = {a, b}r over an alphabet Σ = {a, b} consists of |L| = 2r

strings, while it can be represented by a Σ-DAG with 2r edges.
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(a) An input Σ-DAG G1. (b) An example run of Algorithm 1 for K = 3.

Figure 1 Illustration of Algorithm 1 based on dynamic programming. In (a) a Σ-DAG G1

represents six LCSs in Table 1. In (b), circles and arrows indicate the states of the algorithm, which
are K-tuples of vertices of G1, and transition between them, respectively. All states are associated
with a set of K × K-weight matrices, which are shown only for the sink ttt in the figure.

Proof. By Irving and Fraser’s algorithm [33], we can construct a m-dimensional grid graph
N in O(ℓm) time and space, where (i) the source and sink are s = (0, . . . , 0) and t =
(|S1|, . . . , |Sm|), respectively; (ii) edge labels are symbols from Σ ∪ {ε}; (iii) the number of
edges is size(N) =

∏m
i=1 |Si| ⩽ O(ℓm); and (iv) all of (s, t)-paths spell out LCS(S). Then,

application of the ε-removal algorithm [32] yields a Σ-DAG G in O(|Σ| · size(N)) time and
space, where G has O(|Σ| · size(N)) = O(|Σ|ℓm) edges. ◀

▶ Remark 3. As a direct consequence of Lemma 2, we observe that if Max-Min (resp. Max-
Sum) Diverse String Set can be solved in f(M, K, r, ∆) time and g(M, K, r, ∆) space on a
given input DAG G of size M = size(G), then Max-Min (resp. Max-Sum) Diverse LCSs on
S ⊆ Σr can be solvable in t = O(|Σ| · ℓm +f(ℓm, K, r, ∆)) time and s = O(ℓm +g(ℓm, K, r, δ))
space, where ℓ = maxlen(S), since size(G) = O(ℓm).

From Remark 3, for any constant m ⩾ 2, there exist a polynomial time reduction from
Max-Min (resp. Max-Sum) Diverse LCSs for m strings to Max-Min (resp. Max-Sum)
Diverse String Set on Σ-DAGs, where the distance measure is Hamming distance.

2.3 Computational complexity

A problem with parameter κ is said to be fixed-parameter tractable (FPT) if there is an
algorithm that solves it, whose running time on an instance x is upperbounded by f(κ(x))·|x|c
for a computable function f(κ) and constant c > 0. A many-one reduction ϕ is called an
FPT-reduction if it can be computed in FPT and the parameter κ(ϕ(x)) is upper-bounded
by a computable function of κ(x). For notions not defined here, we refer to Ausiello et al. [3]
for approximability and to Flum and Grohe [22] for parameterized complexity.

3 Exact Algorithms for Bounded Number of Diverse Strings

In this section, we show that both of Max-Min and Max-Sum versions of Diverse String
Set problems can be solved by dynamic programming in polynomial time and space in the
size an input Σ-DAG and integers r and ∆ for any constant K. The corresponding results
for Diverse LCSs problems will immediately follow from Remark 3.

CPM 2024



27:8 Finding Diverse Strings and Longest Common Subsequences

3.1 Computing Max-Min Diverse Solutions
We describe our dynamic programming algorithm for the Max-Min Diverse String Set
problem. Given an Σ-DAG G = (V, E, s, t) with n vertices, representing a set L(G) ⊆ Σr of
r-strings, we consider integers ∆ ⩾ 0, r ⩾ 0, and constant K ⩾ 1. A brute-force approach
could solve the problem in O(|L(G)|K) time by enumerating all combinations of K (s, t)-paths
in G and selecting a ∆-diverse solution X ⊆ L(G). However, this is impractical even for
constant K because |L(G)| can be exponential in the number of edges.

The DP-table. A straightforward method to solve the problem is enumerating all combina-
tions of K-tuples of paths from s to t to find the best K-tuple. However, the number of such
K-tuples can be exponential in r. Instead, our DP-algorithm keeps track of only all possible
patterns of their pairwise Hamming distances. Furthermore, it is sufficient to record only
Hamming distance up to a given threshold ∆. In this way, we can efficiently computes the
best combination of K paths provided that the number of patterns is manageable.

Formally, we let d (0 ⩽ d ⩽ r) be any integer and P = (P1, . . . , PK) ∈ (Ed)K be any
K-tuple of length-d paths starting from the sink s and ending at some nodes. Then, we
define the pattern of K-tuple P by the pair Pattern(P ) = (w, Z), where

w = (w1, . . . , wK) ∈ V K
d is the K-tuple of vertices in G, called a state, such that for all

i ∈ [K], the i-th path Pi starts from the source s and ends at the i-th vertex wi of w.
Z = (Zi,j)i<j ∈ [∆ ∪ {0}]K×K is an upper triangular matrix, called the weight matrix
for P . For all 1 ⩽ i < j ⩽ K, Zi,j = min(∆, dH(str(Pi), str(Pj))) ∈ [∆ ∪ {0}] is the
Hamming distance between the string labels of Pi and Pj truncated by the threshold ∆.

Our algorithm constructs as the DP-table Weights = (Weights(w, Z))w,Z , which is a
Boolean-valued table that associates a collection of weight matrices Z to each state w such
that Z belongs to the collection if and only if Weights(w, Z) = 1. See Fig. 1 for example.
Formally, we define Weights as follows.

▶ Definition 4. Weights : V K × [∆ ∪ {0}]K×K → {0, 1} is a Boolean table such that for
every K-tuple of vertices w ∈ V K and weight matrix Z ∈ [∆ ∪ {0}]K×K , Weights(w, Z) = 1
holds if and only if (w, Z) = Pattern(P ) holds for some 0 ⩽ d ⩽ r and some K-tuple
P ∈ (Ed)K of length-d paths from the source s to w in G.

We estimate the size of the table Weights. Since Z takes at most Γ = O(∆K2
K2) distinct

values, it can be encoded in log Γ = O(K2 log ∆) bits. Therefore, Weights has at most
|V |K × Γ = O(∆K2

K2MK) entries, where M = size(G). Consequently, for constant K,
Weights can be stored in a multi-dimensional table of polynomial size in M and ∆ supporting
random access in constant expected time or O(log log(|V | ·∆)) worst-case time [13,46].

Computation of the DP-table. We denote the K-tuples of copies of the source s and sink
t by s := (s, . . . , s) and t := (t, . . . , t) ∈ V K , respectively, as the initial and final states. The
zero matrix Zero = (Zeroi,j)i<j is a special matrix where Zeroi,j = 0 for all i < j. Now, we
present the recurrence for the DP-table Weights.

▶ Lemma 5 (recurrence for Weights). For any 0 ⩽ d ⩽ r, any w ∈ V K and any Z =
(Zi,j)i<j ∈ [∆ ∪ {0}]K×K , the entry Weights(w, Z) ∈ {0, 1} satisfies the following:
(1) Base case: If w = s and Z = Zero, then Weights(w, Z) = 1.
(2) Induction case: If w ̸= s and all vertices in w have the same depth d (1 ⩽ d ⩽ r), namely,

w ∈ V K
d , then Weights(w, z) = 1 if and only if there exist
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Algorithm 1 An exact algorithm for solving Max-Min Diverse r-String problem. Given
a Σ-DAG G = (V, E, s, t) representing a set L(G) of r-strings and integers K ⩾ 1, ∆ ⩾ 0,
decide if there exists some ∆-diverse set of K r-strings in L(G).

1 Set Weights(s, Z) := 0 for all Z ∈ [∆ ∪ {0}]K×K , and set Weights(s, Zero)← 1;
2 for d← 1, . . . , r do
3 for v ← (v1, . . . , vK) ∈ (Vd)K do
4 for (v1, c1, w1) ∈ E+(v1), . . . , (vK , cK , wK) ∈ E+(vK) do
5 Set w ← (w1, . . . , wK);
6 for U ∈ [∆ ∪ {0}]K×K such that Weights(v, U) = 1 do
7 Set Z = (Zi,j)i<j with Zi,j ← min(∆, Ui,j + 1{ci ̸= cj }),∀i, j ∈ [K];
8 Set Weights(w, Z)← 1 ; ▷Update

9 Answer YES if Weights(t, Z) := 1 and Dmin
dH

(Z) ⩾ ∆ for some Z, and NO otherwise;

v = (vi)K
i=1 ∈ V K

d−1 such that each vi is a parent of wi, i.e., (vi, ci, wi) ∈ E, and
U = (Ui,j)i<j ∈ [∆ ∪ {0}]K×K such that (i) Weights(v, U) = 1, and (ii) Zi,j =
min(∆, Ui,j + 1{ci ̸= cj }) for all 1 ⩽ i < j ⩽ K.

(3) Otherwise: Weights(w, Z) = 0.

Proof. The proof is straightforward by induction on 0 ⩽ d ⩽ r. Thus, we omit the detail. ◀

Fig. 1b shows an example run of Algorithm 1 on a Σ-DAG G1 in Fig. 1a representing the
string set L(G1) = LCS(X1, Y1), where squares indicate weight matrices. From Lemma 5,
we show Theorem 6 on the correctness and time complexity of Algorithm 1.

▶ Theorem 6 (Polynomial time complexity of Max-Min Diverse String Set). For any K ⩾ 1 and
∆ ⩾ 0, Algorithm 1 solves Max-Min Diverse String Set in O(∆K2

K2MK(log |V |+log ∆))
time and space when an input string set L is represented by a Σ-DAG, where M = size(G) is
the number of edges in G.

3.2 Computing Max-Sum Diverse Solutions
We can solve Max-Sum Diverse String Set by modifying Algorithm 1 as fol-
lows. For computing the Max-Sum diversity, we only need to maintain the sum z =∑

i<j dH(str(Pi), str(Pj)) of all pairwise Hamming distances instead of the entire (K ×K)-
weight matrix Z.

The new table Weights′. For any w = (w1, . . . , wK) of the same depth 0 ⩽ d ⩽ r and any
integer 0 ⩽ z ⩽ rK, we define: Weights′(w, z) = 1 if and only if there exists a K-tuple of
length-d prefix paths (P1, . . . , PK) ∈ (Ed)K from s to w1, . . . , wK , respectively, such that
the sum of their pairwise Hamming distances is z, namely, z =

∑
i<j dH(str(Pi), str(Pj)).

▶ Lemma 7 (recurrence for Weights′). For any w = (w1, . . . , wK) ∈ V K and any integer
0 ⩽ z ⩽ rK, the entry Weights′(w, z) ∈ {0, 1} satisfies the following:
(1) Base case: If w = s and z = 0, then Weights(w, z) = 1.
(2) Induction case: If w ̸= s and all vertices in w have the same depth d (1 ⩽ d ⩽ r), namely,

w ∈ V K
d , then Weights(w, z) = 1 if and only if there exist

v = (vi)K
i=1 ∈ V K

d−1 such that each vi is a parent of wi, i.e., (vi, ci, wi) ∈ E, and
0 ⩽ u ⩽ rK such that (i) Weights(v, u) = 1, and (ii) z = min(∆, u +∑

i<j 1{ci ̸= cj }).
(3) Otherwise: Weights(w, z) = 0.
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Algorithm 2 A (1 − 2/K)-approximation algorithm for Max-Sum Diversification for a
metric d of negative type on X .

1 procedure LocalSearch(D, K, d);
2 X ← arbitrary K solutions in D;
3 for i← 1, . . . , ⌈K(K−1)

(K+1) ln (K+2)(K−1)2

4 ⌉ do
4 for X ∈ X such that D \ X ̸= ∅ do
5 Y ← argmax

Y ∈D\X

∑
X′∈X \{X}

d(X ′, Y );

6 X ← (X \ {X}) ∪ {Y };

7 Output X ;

From the above modification of Algorithm 1 and Lemma 7, we have Theorem 8. From
this theorem, we see that the Max-Sum version of Diverse String Set can be solved
faster than the Max-Min version by factor of O(∆K−1).

▶ Theorem 8 (Polynomial time complexity of Max-Sum Diverse String Set). For any constant
K ⩾ 1, the modified version of Algorithm 1 solves Max-Sum Diverse String Set under
Hamming Distance in O(∆K2MK(log |V |+ log ∆)) time and space, where M = size(G) is
the number of edges in G and the input set L is represented by a Σ-DAG.

4 Approximation Algorithm for Unbounded Number of Diverse Strings

To solve Max-Sum Diverse String Set for unbounded K, we first introduce a local search
procedure, proposed by Cevallos, Eisenbrand, and Zenklusen [10], for computing approximate
diverse solutions in general finite metric spaces (see [16]). Then, we explain how to apply
this algorithm to our problem in the space of equi-length strings equipped with Hamming
distance.

Let D = {x1, . . . , xn} be a finite set of n ⩾ 1 elements. A semi-metric is a function
d : D × D → R⩾0 satisfying the following conditions (i)–(iii): (i) d(x, x) = 0,∀x ∈ D; (ii)
d(x, y) = d(y, x),∀x, y ∈ D; (iii) d(x, z) ⩽ d(x, y) + d(y, z),∀x, y, z ∈ D (triangle inequalities).
Consider an inequality condition, called a negative inequality:

b⊤D b :=
∑

i<j bibjd(xi, xj) ⩽ 0, ∀b = (b1, . . . , bn) ∈ Zn, (3)

where b is a column vector and D = (dij) with dij = d(xi, xj). For the vector b above,
we define

∑
b :=

∑n
i=1 bi. A semi-metric d is said to be of negative type if it satisfies the

inequalities Eq. (3) for all b ∈ Zn such that
∑

b = 0. The class NEG of semi-metrics of
negative type satisfies the following properties.

▶ Lemma 9 (Deza and Laurent [16]). For the class NEG, the following properties hold: (1)
All ℓ1-metrics over Rr are semi-metrics of negative type in NEG for any r ⩾ 1. (2) The
class NEG is closed under linear combination with nonnegative coefficients in R⩾0.

In Algorithm 2, we show a local search procedure LocalSearch, proposed by Cevallos et
al. [10], for computing a diverse solution X ⊆ D with |X | = K approximately maximizing its
Max-Sum diversity under a given semi-metric d : D×D → R⩾0 on a finite metric space D of
n points. The Farthest Point problem refer to the subproblem for computing Y at Line 5.
When the distance d is a semi-metric of negative type, they showed the following theorem.
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Algorithm 3 An exact algorithm for solving the Max-Sum Farthest r-String problem.
Given a Σ-DAG G for a set L(G) ⊆ Σr, a set X = {X1, . . . , XK} ⊆ Σr, and an integer
∆ ⩾ 0, it decides if there exists a Y ∈ L(G) such that Dsum

dH
(X , Y ) ⩾ ∆.

1 Set Weights(s, z) := 0 for all z ∈ [∆]+, and Weights(s, 0) := 1;
2 for d := 1, . . . , r do
3 for v ∈ Vd and (v, c, w) ∈ E+(v) do
4 for 0 ⩽ u ⩽ ∆ such that Weights(v, u) := 1 do
5 Set Weights(w, z) := 1 for z := u +

∑
i∈[K] 1{c ̸= Xi[d]} ; ▷Update

6 Answer YES if Weights(t, ∆) = 1, and NO otherwise ; ▷Decide

▶ Theorem 10 (Cevallos et al. [10]). Suppose that d is a metric of negative type over X in
which the Farthest Point problem can be solved in polynomial time. For any K ⩾ 1, the
procedure LocalSearch in Algorithm 2 has approximation ratio (1− 2

K ).

We show that the Hamming distance actually has the desired property.

▶ Lemma 11. For any integer r ⩾ 1, the Hamming distance dH over the set Σr of r-strings
is a semi-metric of negative type over Σr.

Proof. Let Σ = [σ] be any alphabet. We give an isometry ϕ (see Sec. 1.1) from the Hamming
distance (Σr, dH) to the ℓ1-metric (W, dℓ1) over a subset W of Rm for m = rσ. For any
symbol i ∈ Σ, we extend ϕ by ϕΣ(i) := 0i−1(0·5)0σ−i ∈ {0, 0·5}σ be a bitvector with 0·5 at
i-th position and 0 at other bit positions such that for each c, c′ ∈ Σ, ||ϕΣ(c)− ϕΣ(c′)||1 =
1{c ̸= c′} · For any r-string S = S[1] . . . S[r] ∈ Σr, we let ϕ(S) := ϕΣ(S[1]) · · ·ϕΣ(S[r]) ∈W ,
where W := {0, 0·5}m and m := rσ. For any S, S′ ∈ Σr, we can show dℓ1(ϕ(S), ϕ(S′)) =
||ϕ(S)j − ϕ(S′)j ||1 =

∑
i∈[r] ||ϕΣ(S[i]) − ϕΣ(S′[i])||1 =

∑
i∈[r] 1{S[i] ̸= S′[i]} = dH(S, S′)·

Thus, ϕ : Σr → W is an isometry [16] from (Σr, dH) to ({0, 0·5}m, dℓ1). By Lemma 9,
ℓ1-metric is a metric of negative type [10,16], and thus, the lemma is proved. ◀

The remaining thing is efficiently solving the string version of the subproblem, called the
Farthest String problem, that given a set X ′ ⊆ Σr, asks to find the farthest Y from all
elements in X ′ by maximizing the sum Dsum

dH
(X ′, Y ) :=

∑
X′∈X ′ dH(X ′, Y ) over all elements

Y ∈ L(G) \ X ′. For the class of r-strings, we show the next lemma.

▶ Lemma 12 (Farthest r-String). For any K ⩾ 1 and ∆ ⩾ 0, given G and X ′ ⊆ L(G),
Algorithm 3 computes the farthest r-string Y ∈ L(G) that maximizes Dsum

dH
(X ′, Y ) over all

r-strings in L(G) in O(K∆M) time and space, where M is the number of edges in G.

Proof. The procedure in Algorithm 3 solves the decision version of Max-Sum Farthest
r-String. Since it is obtained from Algorithm 1 by fixing K − 1 paths and searching only a
remaining path in G, its correctness and time complexity immediately follows from that of
Theorem 6. It is easy to modify Algorithm 3 to compute such Y that maximizes Dsum

dH
(X ′, Y )

by recording the parent pair (v, y) of each (w, z) and then tracing back. ◀

Combining Theorem 10, Lemma 12, and Lemma 11, we obtain the following theorem on
the existence of a polynomial time approximation scheme (PTAS) [3] for Max-Sum Diverse
String Set on Σ-DAGs. From Theorem 13 and Remark 3, the corresponding result for
Max-Sum Diverse LCSs will immediately follow.
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Figure 2 Illustration of the proof for Lemma 14, where dashed lines indicates a correspondence φ.

▶ Theorem 13 (PTAS for unbounded K). When K is part of an input, Max-Sum Diverse
String Set problem on a Σ-DAG G admits PTAS.

Proof. We show the theorem following the discussion of [10, 27]. Let ε > 0 be any constant.
Suppose that ε < 2/K holds. Then, K < 2/ε, and thus, K is a constant. In this case,
by Theorem 6, we can exactly solve the problem in polynomial time using Algorithm 1.
Otherwise, 2/K ⩽ ε. Then, the (1− 2/K) approximation algorithm in Algorithm 2 equipped
with Algorithm 3 achieves factor 1 − ε since dH is a negative type metric by Lemma 11.
Hence, Max-Sum Diverse String Set admits a PTAS. This completes the proof. ◀

5 FPT Algorithms for Bounded Number and Length of Diverse Strings

In this section, we present fixed-parameter tractable (FPT) algorithms for the Max-Min
and Max-Sum Diverse String Set parameterized with combinations of K and r. Recall
that a problem parameterized with κ is said to be fixed-parameter tractable if there exists an
algorithm for the problem running on an input x in time f(κ(x)) · |x|c for some computable
function f(κ) and constant c > 0 [22].

For our purpose, we combine the color-coding technique by Alon, Yuster, and Zwick [1]
and the algorithms in Sec. 3. Consider a random C-coloring c : Σ→ C from a set C of k ⩾ 1
colors, which assigns a color c(a) chosen from C randomly and independently to each a ∈ Σ.
By applying this C-coloring to all each edges of an input Σ-DAG G, we obtain the C-colored
DAG, called a C-DAG, and denote it by c(G). We show a lemma on reduction of c(G).

▶ Lemma 14 (computing a reduced C-DAG in FPT). For any set C of k colors, there exists
some C-DAG H obtained by reducing c(G) such that L(H) = L(c(G)) and ||H|| ⩽ kr.
Furthermore, such a C-DAG H can be computed from G and C in tpre = O(kr · size(G))
time and space.

Proof. We show a proof sketch. Since L(G) ⊆ Σr, we see that the C-DAG c(G) represents
L(c(G)) ⊆ Cr of size at most ||L(c(G))|| ⩽ kr. By Remark 1, there exists a C-DAG H for
L(H) = L(c(G)) with at most kr edges. However, it is not straightforward how to compute
such a succinct H directly from G and c in O(kr · size(G)) time and space since ||L(G)|| can
be much larger than kr + size(G). We build a trie T for L(H) top-down using breadth-first
search of G from the source s by maintaining a correspondence φ ⊆ V × U between vertices
V in G and vertices U in T (Fig. 2). Then, we identify all leaves of T to make the sink t.
This runs in O(kr · size(G)) time and O(kr + size(G)) space. ◀

Fig. 2 illustrates computation of reduced C-DAG H from an input Σ-DAG G over
alphabet Σ = {A, B, C, D} in Lemma 14, which shows G (left), a random coloring c on
C = {a, b}, a colored C-DAG c(G) (middle), and a reduced C-DAG H in the form of trie T

(right). Combining Lemma 14, Theorem 6, and Alon et al. [1], we show the next theorem.
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▶ Theorem 15. When r and K are parameters, the Max-Min Diverse String Set on a
Σ-DAG for r-strings is fixed-parameter tractable (FPT), where size(G) is an input.

Proof. We show a sketch of the proof. We show a randomized algorithm using Alon et al.’s
color-coding technique [1]. Let L(G) ⊆ Σr, k = rK, and C = [rK]. We assume without loss
of generality that ∆ ⩽ r. We randomly color edges of G from C. Then, we perform two
phases below.

Preprocessing phase: Using the FPT-algorithm of Lemma 14, reduce the colored C-DAG
c(G) with size(G) into another C-DAG H with L(H) = L(c(G)) ⊆ Cr and size bounded
by (rK)r. Lemma 14 shows that this requires tpre = O((rK)r · size(G)) time and space.
Search phase: Find a ∆-diverse subset Y in L(H) of size |Y| = K from H using a modified
version of Algorithm 1 in Sec. 3 (details in footnote3). If such Y exists and c is invertible,
then X = c−1(Y) is a ∆-diverse solution for the original problem. The search phase takes
tsearch = O(K2∆K2(rK)rK) =: g(K, r) time, where ∆ ⩽ r is used.

With the probability p = (rK)!/(rK)rK ⩾ 2−rK , for C = [rK], the random C-coloring
yields a colorful ∆-diverse subset Y = c(X ) ⊆ L(H). Repeating the above process 2rK times
and derandomizing it using Alon et al. [1] yields an FPT algorithm with total running time
t = 2rKr log(rK)(tpre + tsearch) = f(K, r, ∆) · size(G), where f(K, r, ∆) = O(2rKr log(rK) ·
{(rK)r + g(K, r)}) depends only on parameters r and K. This completes the proof. ◀

Similarly, we obtain the following result for Max-Sum Diversity.

▶ Theorem 16. When r and K are parameters, the Max-Sum Diverse String Set on Σ-graphs
for r-strings is fixed-parameter tractable (FPT), where size(G) is part of an input.

Proof. The proof proceeds by a similar discussion to the one in the proof of Theorem 15.
The only difference is the time complexity of tsearch. In the case of Max-Sum diversity,
the search time of the modified algorithm in Theorem 8 is tsearch = O(∆K2MK), where
M = size(G). By substituting M ⩽ (rK)k for tsearch, we have tsearch = g′(K, r)∆, where
g′(K, r) := O(K2(rK)rK). Since g′(K, r) depends only on parameters, the claim follows. ◀

6 Hardness results

To complement the positive results in Sec. 3 and Sec. 4, we show some negative results in
classic and parameterized complexity. In what follows, σ = |Σ| is an alphabet size, K is
the number of strings to select, r is the length of equi-length strings, and ∆ is a diversity
threshold. In all results below, we assume that σ are constants, and without loss of generality
from Remark 1 that an input set L of r-strings is explicitly given as the set itself.

6.1 Hardness of Diverse String Set for Unbounded K

Firstly, we observe the NP-hardness of Max-Min and Max-Sum Diverse String Set
holds for unbounded K even for constants r ⩾ 3.

▶ Theorem 17 (NP-hardness for unbounded K). When K is part of an input, Max-Min
and Max-Sum Diverse String Set on Σ-graphs for r-strings are NP-hard even for any
constant r ⩾ 3.

3 This modification of Algorithm 1 is easily done at Line 7 of Algorithm 1 by replacing the term
1{ lab(ei) ̸= lab(ej)} with the term 1{{c(lab(ei)) ̸= c(lab(ej))} ∧ {lab(ei) ̸= lab(ej)}}.
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1
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4

12 13 14 15 23 24 25 34 35 45
S1 1 1 1 0 1 1 1 1 1 1
S2 2 2 2 2 2 2 0 2 2 2
S3 3 3 3 3 3 3 3 0 3 3
S4 4 4 4 4 4 4 4 0 4 4
S5 5 5 5 0 5 5 0 5 5 5

Figure 3 An example of reduction for the proof of Theorem 18 in the case of n = 5, consisting of
an instance G of Clique, with a vertex set V = {1, . . . , 5} and a edge set E ⊆ E = {12, 13, . . . , 45}
(left), and the associated instance F = {S1, . . . , Sn} of Diverse r-String Set, where F contains
n = 5 r-strings with r = |E| = 10 (right). Shadowed cells indicate the occurrences of symbol 0.

Proof. We reduce an NP-hard problem 3DM [23] to Max-Min Diverse String Set by
a trivial reduction. Recall that given an instance consists of sets A = B = C = [n] for
some n ⩾ 1 and a set family F ⊆ [n]3, and 3DM asks if there exists some subset M ⊆ F

that is a matching, that is, any two vectors X, Y ∈ M have no position i ∈ [3] at which
the corresponding symbols agree, i.e., X[i] = Y [i]. Then, we construct an instance of
Max-Min Diverse String Set with r = 3 with an alphabet Σ = A ∪B ∪ C, a string set
L = F ⊆ Σ3, integers K = n and ∆ = r = 3. Obviously, this transformation is polynomial
time computable. Then, it is not hard to see that for any M ⊆ F , M is a matching if and
only if Dmin

dH
(M) ⩾ ∆ holds. On the other hand, for Max-Min Diverse String Set, if

we let ∆′ =
(

K
2
)

then for any M ⊆ F , M is a matching if and only if Dsum
dH

(M) ⩾ ∆′ holds.
Combining the above arguments, the theorem is proved. ◀

We remark that 3DM is shown to be in FPT by Fellows, Knauer, Nishimura, Ragde,
Rosamond, Stege, Thilikos, and Whitesides [19]. Besides, we showed in Sec. 5 that Diverse
r-String Set is FPT when parameterized with K +r (Max-Sum) or K +r +∆ (Max-Min),
respectively. We show that the latter problem is W[1]-hard parameterized with K.

▶ Theorem 18 (W[1]-hardness of the string set and Σ-DAG versions for unbounded K). When
parameterized with K, Max-Min and Max-Sum Diverse String Set for a set L of
r-strings are W[1]-hard whether a string set L is represented by either a string set L or a
Σ-DAG for L, where r and ∆ are part of an input.

Proof. We establish the W[1]-hardness of Max-Min Diverse String Set with parameter
K by reduction from Clique with parameter K. This builds on the NP-hardness of r-Set
packing in Ausiello et al. [4] with minor modifications (see also [19]). Given a graph
G = (V, E) with n vertices and a parameter K ∈ N, where V = [n] and E ⊆ E , we let
E := { {i, j} | i, j ∈ V, i ̸= j }. We define the transformation ϕ1 from ⟨G, K⟩ to ⟨Σ, r, F, ∆⟩
and κ(K) = K as follows. We let Σ = [n] ∪ {0}, r = |E| =

(
n
2
)
, and ∆ = r. We view

each r-string S as a mapping S : E → Σ assigning symbol S(e) ∈ Σ to each unordered pair
e ∈ E . We construct a family F = { Si | i ∈ V } of r-strings such that G has a clique of K

elements if and only if there exists a subset M ⊆ F with (a) size |M | ⩾ κ(K) = K, and
(b) diversity dH(S, S′) ⩾ r = ∆ for all distinct S, S′ ∈ M (*). Each r-string Si is defined
based on the existence of the edges in E: (i) Si(e) = 0 if (i ∈ e) ∧ (e ̸∈ E), and (ii) Si(e) = i

otherwise. By definition, dH(Si, Sj) ⩽ r. We show that for any i, j ∈ E , Si and Sj have
conflicts at all positions, i.e. dH(Si, Sj) = r, if and only if {i, j} ∈ E. See Fig. 3 for example
of F . To see the correctness, suppose that e = {i, j} ̸∈ E. Then, it follows from (i) that
Si(e) = Sj(e) = 0 since (i ∈ e)∧ (j ∈ e)∧ e ̸∈ E. Conversely, if e′ = {i, j} ∈ E, the condition
(i) Si(e) = Sj(e) = 0 does not hold for any e ∈ E because if e ̸= e′, one of (i ∈ e) and (j ∈ e)
does not hold, and if e = e′, e ̸∈ E does not hold. This proves the claim (*). Since ϕ1 and κ

form an FPT-reduction. The theorem is proved. ◀
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In this subsection, we show the hardness results of Diverse LCSs for unbounded K in
classic and parameterized settings by reducing them to those of Diverse String Set
in Sec. 6.1.

▶ Theorem 19. Under Hamming distance, Max-Min (resp. Max-Sum) Diverse String
Set for m ⩾ 2 strings parameterized with K is FPT-reducible to Max-Min (resp. Max-Sum)
Diverse LCSs for two string (m = 2) parameterized with K, where m is part of an input.
Moreover, the reduction is also a polynomial time reduction from Max-Min (resp. Max-Sum)
Diverse String Set to Max-Min (resp. Max-Sum) Diverse LCSs.

We defer the proof of Theorem 19 in Sec. 6.1.1. Combining Theorem 17, Theorem 18,
and Theorem 19, we have the corollaries.

▶ Corollary 20 (NP-hardness). When K is part of an input, Max-Min and Max-Sum
Diverse LCSs for two r-strings are NP-hard, where r and ∆ are part of an input.

▶ Corollary 21 (W[1]-hardness). When parameterized with K, Max-Min and Max-Sum
Diverse LCSs for two r-strings are W[1]-hard, where r and ∆ are part of an input.

6.1.1 Proof for Theorem 19
In this subsection, we show the proof of Theorem 19, which is deferred in the previous section.
Suppose that we are given an instance of Max-Sum Diverse String Set consisting of
integers K, r ⩾ 1, ∆ ⩾ 0, and any set L = {Xi}s

i=1 ⊆ Σr of r-strings, where s = |L| ⩾ 2. We
let Ξ = { ai,j , bi,j | i, j ∈ [s] } be a set of mutually distinct symbols, and Γ = Σ ∪ Ξ be a new
alphabet with Σ ∩ Ξ = ∅. We let T = {Ti := PiXiQi}s

i=1 be the set of s strings of length
|Ti| = r + 2s over Γ, where Pi := ai1 . . . ais ∈ Γs, Qi := bi1 . . . bis ∈ Γs,∀i ∈ [s].

Now, we construct two input strings S1 and S2 over Γ in an instance of Max-Min Diverse
LCSs so that LCS(S1,S2) = T . For all i ∈ [s], we factorize each strings Ti of length (r + 2s)
into three substrings Ai, Wi, Bi ∈ Γ+, called segments, such that Ti = Ai ·Wi ·Bi such that
(i) We partition Pi into Pi = Ai · Ai, where Ai := Pi[1··s− i + 1] is the prefix with length
s− i + 1 and Ai = Pi[s− i + 2··s] is the suffix with length i−1 of Pi. (ii) We partition Qi into
Qi = Bi ·Bi, where Bi = Qi[1··s− i] is the prefix with length s− i and Bi := Qi[s− i+1··s] is
the suffix with length i of Qi. (iii) We obtain a string Wi := Ai ·Xi ·Bi with length r + s− 1
from Xi by prepending and appending Ai and Bi to Xi. Let A = {Ai }s

i=1, B = {Bi }s
i=1,

and W = {Wi }s
i=1 be the groups of the segments of the same types. See Fig. 4a for examples

of A,B, and W. Then, we define the set S = {S1, S2} of two input strings S1 and S2 of the
same length |S1| = |S2| = s(r + 2s) by:

S1 =
∏s

i=1 Ai ·
∏s

i=1 Wi ·
∏s

i=1 Bi = (A1 · · ·As) · (W1 · · ·Ws) · (B1 · · ·Bs),

S2 =
∏1

i=s Ti =
∏1

i=s(Ai ·Wi ·Bi) = (As ·Ws ·Bs) · · · (A1 ·W1 ·B1)· (4)

Fig. 4b shows an example of S for s = 4. We observe the following properties of
S: (P1) S1 and S2 are segment-wise permutations of each other; (P2) if all segments in
any group Z = {Zi}s

i=1 ∈ {A,B,W} occur one of two input strings, say S1, in the order
Z1, . . . , Zs, then they occur in the other, say S2, in the reverse order Zs, . . . , Z1; (P3) Ai’s
(resp. Bi’s) appear in S2 from left to right in the order As, . . . , A1 (resp. Bs, . . . , B1); (P4)
A and B satisfy |A1| > · · · > |As| and |B1| < · · · < |Bs|. We associate a bipartite graph
B(S) = (V = V1 ∪ V2, E) to S, where (i) Vk consists of all positions in Sk for k = 1, 2, and
(ii) E ⊆ V1 × V2 is an edge set such that e = (i1, i2) ∈ E if and only if both ends of e have
the same label S1[i1] = S2[i2] ∈ Σ. Any sequence M = ((ik, jk))ℓ

k=1 ∈ Eℓ of ℓ edges is an
(ordered) matching if i1 ̸= j1 and i2 ̸= j2, and is non-crossing if (i1 < j1) and (i2 < j2).
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T4 A4 A4 X4 B4

T3 A3 A3 X3 B3 B3

T2 A2 A2 X2 B2 B2

1 2 3 4 5 6 7 8 9 10 11

T1 A1 X1 B1 B1
W1

W2

W3

W4

P1 Q1X1

P4 Q4

P3 Q3

P2 Q2

(a) The set T .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

A1 A2 A3 A4 W1 W2 W3 W4 B1 B2 B3 B4

A4 W4 B4 A3 W3 B3 A2 W2 B2 A1 W1 B1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

S2

S1

(b) Input strings S1 and S2.

Figure 4 Construction of the FPT-reduction from Max-Min Diverse String Set to Max-Min
Diverse LCS in the proof of Theorem 19, where s = 4. We show (a) the set T of s r-strings and
(b) a pair of input strings S1 and S2. Red and blue parallelograms, respectively, indicate allowed
and prohibited matchings between the copies of blocks T3 = A3W3B3 in S1 and S2.

▶ Lemma 22. For any M ⊆ V1 × V2 and any ℓ ⩾ 0, B(S) has a non-crossing matching M

of size ℓ if and only if S1 and S2 have a common subsequence C with length ℓ of S1 and S2.
Moreover, the length ℓ = |M | is maximum if and only if C ∈ LCS(S1, S2).

Proof. If there exists a non-crossing matching M = { (ik, jk) | k ∈ [ℓ] } ⊆ E of size ℓ ⩾ 0, we
can order the edges in the increasing order such that iπ(1) < · · · < iπ(ℓ), jπ(1) < · · · < jπ(ℓ) for
some permutation π on [ℓ]. Then, the string S1(M) := S1[iπ(1)] · · ·S1[iπ(ℓ)] ∈ Σℓ (equivalently,
S2(M) := S2[j1] · · ·S2[jℓ]) forms the common subsequence associated to M . ◀

In Lemma 22, we call a non-crossing ordered matching M associated with a common
subsequence C a matching labeled with C. We show the next lemma.

▶ Lemma 23. LCS(S1, S2) = { Tj | i ∈ [s] }, where Tj = Pj ·Xj ·Qj for all j ∈ [s].

Proof. We first observe that each segment Z ∈ Σ+ in each group Z within {A,B,W} occurs
exactly once in each of S1 and S2, respectively, as a consecutive substring. Consequently,
For each Z in Z, B(S) has exactly one non-crossing matching MZ labeled with Z connecting
the occurrences of Z in S1 and S2. From (P2), we show the next claim.

▷ Claim 24. If B(S) contains any inclusion-wise maximal non-crossing matching M∗, it
connects exactly one segment Z from each of three groups A,B, and W.

From Claim 24, we assume that a maximum (thus, inclusion-maximal) non-crossing
matching M∗ contains submatches labeled with segments Ai, Wj , Bk one from each group
in any order, where i, j, k ∈ [s]. Then, M must contain Ai, Wj , Bk in this order, namely,
Ai ·Wj ·Bk ∈ CS(S1, S2) because some edges cross otherwise (see Fig. 4b). Therefore, we
have that the concatenation Tj∗ := Aj∗ ·Wj∗ ·Bj∗ belongs to CS(S1, S2), and it always has
a matching in B(S1, S2). From (P3) and (P4), we can show the next claim.

▷ Claim 25. If M∗ is maximal and contains Ai ·Wj∗ ·Bk, then i = j∗ = k holds.

From Claim 25, we conclude that Tj∗ = Aj ·Wj · Bj is the all and only members of
LCS(S1, S2) for all j ∈ [s]. Since Aj ·Wj ·Bj = Pj ·Xj ·Bj = Tj , the lemma is proved. ◀

Using Lemma 23, we finish the proof for Theorem 19.

Proof for Theorem 19. Recall that integers K, r ⩾ 1, ∆ ⩾ 0, and a string set L =
{X1, . . . , Xs} ⊆ Σr of r-strings form an instance of Max-Min Diverse String Set.
Let ∆′ := ∆ + 2s, K ′ = κ(K) := K, and S = {S1, S2} ⊆ Γ∗ be the associated instance of
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Max-Min Diverse LCS for two input strings. Since the parameter κ(K) = K depends
only on K, it is obvious that this transformation can be computed in FPT. We show that
this forms an FPT-reduction from the former problem to the latter problem. By Lemma 23,
we have the next claim.

▷ Claim 26. For any i, j ∈ [s], dH(Ti, Tj) = dH(Xi, Xj) + 2s.

Proof of Claim 26. By Lemma 23, LCS(S1, S2) = { Tj | i ∈ [K] }. By construction, Tj =
Pj · Xj · Qj and |Pj | = |Qj | = s, and dH(Pi, Pj) = dH(Qi, Qj) = s for any i, j ∈ [s], i ̸=
j. Therefore, we can decompose dH(Ti, Tj) by dH(Ti, Tj) = dH(Pi, Pj) + dH(Xi, Xj) +
dH(Qi, Qj) = dH(Xi, Xj) + 2s ◁

Suppose that Y ⊆ LCS(S1, S2) is any feasible solution such that |Y| = K ′ for Max-Sum
Diverse LCSs, where K ′ = K. From Lemma 23, we can put Y = {Tij}j∈J for some
J ⊆ [s]. From Claim 26, we can see that Dmin

dH
(Y) = Dmin

dH
(X ) + 2s, where X = {Xj}j∈J

is a solution for Max-Min Diverse String Set. Thus, Dmin
dH

(X ) ⩾ ∆ if and only if
Dmin

dH
(Y) ⩾ ∆ + 2s = ∆′. This shows that the transformation properly forms NP- and

FPT-reductions. To obtain NP- and FPT-reductions for the Max-Sum version, we keep
K and S = {S1, S2} in the previous proof, and modify ∆′ := ∆ + 2s

(
K
2
)′, where

(
K
2
)′ :=

{(i, j) ∈
(

K
2
)
| i ̸= j}. From Claim 26, we have that Dsum

dH
(Y) = Dsum

dH
(X ) + 2s

(
K
2
)′, and

the correctness of the reduction immediately follows. Combining the above arguments, the
theorem is proved. ◀
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