
Minimizing the Minimizers via Alphabet Reordering
Hilde Verbeek #

CWI, Amsterdam, The Netherlands

Lorraine A.K. Ayad #

Brunel University London, London, UK

Grigorios Loukides #

King’s College London, London, UK

Solon P. Pissis #

CWI, Amsterdam, The Netherlands
Vrije Universiteit, Amsterdam, The Netherlands

Abstract
Minimizers sampling is one of the most widely-used mechanisms for sampling strings [Roberts et al.,
Bioinformatics 2004]. Let S = S[1] . . . S[n] be a string over a totally ordered alphabet Σ. Further let
w ≥ 2 and k ≥ 1 be two integers. The minimizer of S[i . . i + w + k − 2] is the smallest position in
[i, i + w − 1] where the lexicographically smallest length-k substring of S[i . . i + w + k − 2] starts.
The set of minimizers over all i ∈ [1, n − w − k + 2] is the set Mw,k(S) of the minimizers of S.

We consider the following basic problem:

Given S, w, and k, can we efficiently compute a total order on Σ that minimizes |Mw,k(S)|?

We show that this is unlikely by proving that the problem is NP-hard for any w ≥ 3 and k ≥ 1.
Our result provides theoretical justification as to why there exist no exact algorithms for minimizing
the minimizers samples, while there exists a plethora of heuristics for the same purpose.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases sequence analysis, minimizers, alphabet reordering, feedback arc set

Digital Object Identifier 10.4230/LIPIcs.CPM.2024.28

Related Version Extended Version: https://arxiv.org/abs/2405.04052

Funding Hilde Verbeek: Supported by a Constance van Eeden Fellowship.
Solon P. Pissis: Supported by the PANGAIA and ALPACA projects that have received funding
from the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreements No 872539 and 956229, respectively.

1 Introduction

The minimizers sampling mechanism has been introduced independently by Schleimer et
al. [17] and by Roberts et al. [16]. Since its inception, it has been employed ubiquitously in
modern sequence analysis methods underlying some of the most widely-used tools [11, 12, 19].

Let S = S[1] . . . S[n] be a string over a totally ordered alphabet Σ. Further let w ≥ 2
and k ≥ 1 be two integers. The minimizer of the fragment S[i . . i + w + k − 2] of S is the
smallest position in [i, i + w − 1] where the lexicographically smallest length-k substring of
S[i . . i + w + k − 2] starts. We then define the set Mw,k(S) of the minimizers of S as the set
of the minimizers positions over all fragments S[i . . i + w + k − 2], for i ∈ [1, n − w − k + 2].
Every fragment S[i . . i + w + k − 2] containing w length-k fragments is called a window of S.

▶ Example 1. Let S = aacaaacgcta, w = 3, and k = 3. Assuming a < c < g < t, we have
that Mw,k(S) = {1, 4, 5, 6, 7}. The minimizers positions are colored red: S = aacaaacgcta.

© Hilde Verbeek, Lorraine A.K. Ayad, Grigorios Loukides, and Solon P. Pissis;
licensed under Creative Commons License CC-BY 4.0

35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024).
Editors: Shunsuke Inenaga and Simon J. Puglisi; Article No. 28; pp. 28:1–28:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hilde.verbeek@cwi.nl
https://orcid.org/0000-0002-2399-3098
mailto:lorraine.ayad@brunel.ac.uk
https://orcid.org/0000-0003-0846-2616
mailto:grigorios.loukides@kcl.ac.uk
https://orcid.org/0000-0003-0888-5061
mailto:solon.pissis@cwi.nl
https://orcid.org/0000-0002-1445-1932
https://doi.org/10.4230/LIPIcs.CPM.2024.28
https://arxiv.org/abs/2405.04052
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Minimizing the Minimizers via Alphabet Reordering

Note that by choosing the smallest position in [i, i + w − 1] where the lexicographically
smallest length-k substring starts, we resolve ties in case the latter substring has multiple
occurrences in a window.

It is easy to prove that minimizers samples enjoy the following three useful properties [23]:
Property 1 (approximately uniform sampling): Every fragment of length at least
w + k − 1 of S has at least one representative position sampled by the mechanism.
Property 2 (local consistency): Exact matches between fragments of length at least
ℓ ≥ w + k − 1 of S are preserved by means of having the same (relative) representative
positions sampled by the mechanism.
Property 3 (left-to-right parsing): The minimizer selected by any fragment of length
w + k − 1 comes at or after the minimizers positions selected by all previous windows.

Since Properties 1 to 3 hold unconditionally, and since the ordering of letters does not
affect the correctness of algorithms using minimizers samples [6, 18, 14, 1], one would like to
choose the ordering that minimizes the resulting sample as a means to improve the space
occupied by the underlying data structures; contrast Example 1 to the following example.

▶ Example 2. Let S = aacaaacgcta, w = 3, and k = 3. Assuming c < a < g < t, we have
that Mw,k(S) = {3, 6, 7}. The minimizers positions are colored red: S = aacaaacgcta. In
fact, this ordering is a best solution in minimizing |Mw,k(S)|, together with the orderings
c < g < t < a and c < g < a < t, which both, as well, result in |Mw,k(S)| = 3.

Our Problem. We next formalize the problem of computing a best such total order on Σ:

Minimizing the Minimizers
Input: A string S ∈ Σn and two integers w ≥ 2 and k ≥ 1.
Output: A total order on Σ that minimizes |Mw,k(S)|.

Motivation. A lot of effort has been devoted by the bioinformatics community to designing
practical algorithms for minimizing the resulting minimizers sample [3, 4, 15, 21, 8, 22, 7].
Most of these approaches consider the space of all orderings on Σk (the set of all possible
length-k strings on Σ) instead of the ones on Σ; and employ heuristics to choose some ordering
resulting in a small sample (see Section 3 for a discussion). To illustrate the impact of
reordering on the number of minimizers, we considered two real-world datasets and measured
the difference in the number of minimizers between the worst and best reordering, among
those we could consider in a reasonable amount of time. The first dataset we considered is
the complete genome of Escherichia coli str. K-12 substr. MG1655. For selecting minimizers,
we considered different orderings on Σk. We thus mapped every length-k substring to its
lexicographic rank in {A,C,G,T}k (assuming A < C < G < T) constructing a new string S

over [1, |Σ|k]. We then computed |Mw,1(S)| for different values of (w, k) and orderings on
[1, |Σ|k]. It should be clear that this corresponds to computing the size of Mw,k for the
original sequence over {A,C,G,T}. The second dataset is the complete genome of SARS-
CoV-2 OL663976.1. Figure 1 shows the min and max values of the size of the obtained
minimizers samples. The results in Figure 1 clearly show the impact of alphabet reordering
on |Mw,1(S)|: the gap between the min and max is quite significant as in all cases we have
2 min < max. Note that we had to terminate the exploration of the whole space of orderings
when 2 min < max was achieved; hence the presented gaps are not even the largest possible.

This begs the question:

Given S, w, and k, can we efficiently compute a total order on Σ that minimizes |Mw,k(S)|?

H. Verbeek, L. A. Ayad, G. Loukides, and S. P. Pissis 28:3

(a) Complete genome of Escherichia coli. (b) Complete genome of SARS-CoV-2.

Figure 1 The min and max values of the size of the minimizers sample, among some of the
possible orderings of [1, |Σ|k], on two real datasets using a range of (w, k) parameter values.

Our Contribution. We answer this basic question in the negative. Let us first define the
decision version of Minimizing the Minimizers.

Minimizing the Minimizers (Decision)
Input: A string S ∈ Σn and three integers w ≥ 2, k ≥ 1, and ℓ > 0.
Output: Is there a total order on Σ such that |Mw,k(S)| ≤ ℓ?

Our main contribution in this paper is the following result.

▶ Theorem 3. Minimizing the Minimizers (Decision) is NP-complete if w ≥ 3 and
k ≥ 1.

Theorem 3 provides theoretical justification as to why there exist no exact algorithms for
minimizing the minimizers samples, while there exists a plethora of heuristics for the same
purpose. Notably, Theorem 3 almost completes the complexity landscape of the Minimizing
the Minimizers problem – the only exception is the case w = 2 and k ≥ 1. To cover all
practically interesting combinations of input parameters w and k (i.e., for any w ≥ 3 and
k ≥ 1), we design a non-trivial reduction from the feedback arc set problem [9].

The reduction we present is specifically for the case in which the size of the alphabet Σ
is variable. If |Σ| is bounded by a constant, the problem can be solved in polynomial time:
one can simply iterate over the |Σ|! permutations of the alphabet, compute the number of
minimizers for each ordering in linear time [13], and output a globally best ordering.

Other Related Work. Choosing a best total order on Σ is generally not new; it has also
been investigated in other contexts, e.g., for choosing a best total order for minimizing
the number of runs in the Burrows-Wheeler transform [2]; for choosing a best total order
for minimizing (or maximizing) the number of factors in a Lyndon factorization [5]; or for
choosing a best total order for minimizing the number of bidirectional string anchors [14].

Paper Organization. Section 2 presents the proof of Theorem 3. Section 3 presents a
discussion on orderings on Σk in light of Theorem 3. Final remarks are presented in Section 4.

CPM 2024

28:4 Minimizing the Minimizers via Alphabet Reordering

2 Minimizing the Minimizers is NP-complete

We show that the Minimizing the Minimizers problem is NP-hard by a reduction from the
well-known Feedback Arc Set problem [9]. Let us first formally define the latter problem.

Feedback Arc Set
Input: A directed graph G = (V, A).
Output: A set F ⊆ A of minimum size such that (V, A \ F) contains no directed cycles.

We call any such F ⊆ A a feedback arc set. The decision version of the Feedback Arc
Set problem is naturally defined as follows.

Feedback Arc Set (Decision)
Input: A directed graph G = (V, A) and an integer ℓ′ > 0.
Output: Is there a set F ⊆ A such that (V, A \ F) contains no directed cycles and
|F | ≤ ℓ′?

An equivalent way of phrasing this problem is to find an ordering on the set V of the
graph’s vertices, such that the number of arcs (u, v) with u > v is minimal [20]. Then this is
a topological ordering of the graph (V, A \ F), and will be analogous to the alphabet ordering
in the Minimizing the Minimizers problem; see [14] for a similar application of this idea.1
If Minimizing the Minimizers is then solved on the instance constructed by our reduction,
producing a total order on V , taking all arcs (u, v) with u > v should produce a feedback
arc set of minimum size, solving the original instance of the Feedback Arc Set problem.

2.1 Overview of the Technique
Given any instance G = (V, A) of Feedback Arc Set, we will construct a string S over
alphabet V and of length polynomial in |A|. Specifically, we define string S as follows:

S =
∏

(a,b)∈A

T q+4
ab ,

where Tab is a string consisting of the letters a and b, whose length depends only on w and k,
and q is an integer polynomial in |A|, both of which will be defined later. The product

∏
of

some strings is defined as their concatenation, and Xq denotes q concatenations of string X

starting with the empty string; e.g., if X = ab and q = 4, we have Xq = (ab)4 = abababab.
String Tab will be designed such that each occurrence, referred to as a block, will contain

few minimizers if a < b in the alphabet ordering, and many minimizers if b < a, analogous to
the “penalty” of removing the arc (a, b) as part of the feedback arc set. We denote by Ma<b

the number of minimizers starting within some occurrence of Tab in S, provided that this
Tab is both preceded and followed by at least two other occurrences of Tab (i.e., the middle q

blocks), when a < b in the alphabet ordering. We respectively denote by Mb<a the number
of minimizers starting in such a block when b < a in the alphabet ordering. This will allow
us (see Figure 2) to express the total number of minimizers in S in terms of |F |, the size of
the feedback arc set, minus some discrepancy denoted by λ. This discrepancy is determined
by the blocks Tab that are not preceded or followed by two occurrences of Tab itself; namely,
those that occur near some Tcd, for another arc (c, d), or those that occur near the start or
the end of S.

1 Our proof is more general and thus involved because it works for any values w ≥ 3 and k ≥ 1, whereas
the reduction from [14] works only for some fixed parameter values.

H. Verbeek, L. A. Ayad, G. Loukides, and S. P. Pissis 28:5

Tab Tab Tab Tab Tab Tab Tab Tab Tab Tab

q

arc (a, b)
Tcd Tcd Tcd Tcd Tcd Tcd Tcd Tcd Tcd Tcd

q

arc (c, d)
Tef Tef Tef Tef Tef Tef Tef Tef Tef Tef

q

arc (e, f)

Figure 2 Illustration of the structure of string S, with the different gadgets for different arcs in
G. The highlighted blocks are the ones for which the minimizers are counted in Ma<b and Mb<a.

Let us start by showing an upper and a lower bound on the discrepancy λ.

▶ Lemma 4. |A| − 1 ≤ λ ≤ 4 · |A| · |Tab| if |Tab| ≥ 1
4 (w + k − 1).

Proof. We are counting the number of minimizers in q blocks of Tab, for each arc (a, b). Note
that we ignore four blocks for each arc, which is 4 · |A| blocks of length |Tab| in total. This is
4 · |A| · |Tab| positions in total, which gives the upper bound on the number of disregarded
minimizers. For the lower bound, note that, by hypothesis, four consecutive blocks are at
least as long as a single minimizer window, meaning at least one minimizer must be missed
among the four blocks surrounding the border between each pair of consecutive arcs. The
lower bound follows by the fact that for |A| arcs we have |A| − 1 such borders. ◀

Given the values Ma<b, Mb<a, and λ, we can express the total number of minimizers as
a function of some feedback arc set F : if an arc (a, b) is part of the feedback arc set, this
corresponds to b < a in the alphabet ordering, so the corresponding blocks Tab will each
have Mb<a minimizers, whereas if (a, b) is not in F , we have a < b and the blocks will each
have Ma<b minimizers. Using these values, we can define the number of minimizers in S

given some feedback arc set F as

Mw,k(S, F) = q · Mb<a · |F | + q · Ma<b · (|A| − |F |) + λ

= q · (Mb<a − Ma<b) · |F | + q · Ma<b · |A| + λ. (1)

With this in mind, we can prove the following relationship between Mw,k(S, F) and |F |:

▶ Lemma 5. Let ℓ′ be some positive integer and let ℓ = q ·(Mb<a−Ma<b)·(ℓ′+1)+q ·Ma<b ·|A|.
If Mb<a > Ma<b, |Tab| ≥ 1

4 (w + k − 1), and q is chosen such that λ < q · (Mb<a − Ma<b),
then Mw,k(S, F) ≤ ℓ if and only if |F | ≤ ℓ′.

Proof. By hypothesis, Mb<a − Ma<b is positive, thus, by Equation 1, Mw,k(S, F) grows
linearly with |F |. Suppose we have a feedback arc set F with |F | ≤ ℓ′. Consider the
alphabet ordering inducing F and let λ be the corresponding discrepancy for Mw,k(S, F).
By hypothesis, we have λ < q · (Mb<a − Ma<b). Substituting the bounds on |F | and λ into
Equation 1 gives

Mw,k(S, F) ≤ q · (Mb<a − Ma<b) · ℓ′ + q · Ma<b · |A| + q · (Mb<a − Ma<b)
= q · (Mb<a − Ma<b) · (ℓ′ + 1) + q · Ma<b · |A| = ℓ,

completing the proof in one direction.
For the other direction, suppose we have picked F such that Mw,k(S, F) ≤ ℓ and assume

that |F | ≥ ℓ′ + 1 towards a contradiction. Then we have the following two inequalities:

Mw,k(S, F) ≤ ℓ = q · (Mb<a − Ma<b) · (ℓ′ + 1) + q · Ma<b · |A|
Mw,k(S, F) ≥ q · (Mb<a − Ma<b) · (ℓ′ + 1) + q · Ma<b · |A| + λ. (by Equation 1)

By Lemma 4, for any non-trivial instance with |A| > 1, λ is strictly positive, meaning these
inequalities are contradictory. Therefore, if Mw,k(S, F) ≤ ℓ, it must be that |F | ≤ ℓ′. ◀

CPM 2024

28:6 Minimizing the Minimizers via Alphabet Reordering

Given w and k, we must determine a string Tab such that Mb<a > Ma<b and |Tab| ≥
1
4 (w + k − 1). We then simply have to choose some q, which is polynomial in |A|, satisfying
λ < q · (Mb<a − Ma<b). At that point we will have constructed a string S for which it holds
that the feedback arc set induced by the minimum set of minimizers is also a minimum
feedback arc set on G, thus completing the reduction.

The following three subsections address the Tab construction:
Section 2.2: w ≥ k + 2 (Case A);
Section 2.3: w = 3 and k ≥ 2 (Case B);
Section 2.4: 3 < w < k + 2 (Case C).

It should be clear that the above sections cover all the cases for w ≥ 3 and k ≥ 1.
Section 2.5 puts everything together to complete the proof.

2.2 Case A: w ≥ k + 2
▶ Lemma 6. Let Tab = abw−1, for w ≥ k + 2. Then Ma<b = 1 and Mb<a = w − k.

Proof. The block has length w; inspect Figure 3. Recall that, for the window starting at
position i, the candidates for its minimizer are the length-k fragments starting at positions
[i, i + w − 1]. Therefore, for every window starting in a block Tab (provided it is succeeded
by another Tab), a candidate minimizer is abk−1; so if a < b, each Tab will contain just one
minimizer. Thus we have Ma<b = 1.

For b < a, consider that Tab contains w − k occurrences of bk, and that for each window,
at least one of the candidates for its minimizer is bk. Since there is no length-k substring that
is lexicographically smaller than bk, each occurrence of bk (and nothing else) is a minimizer,
so it follows that Mb<a = w − k. Note that Mb<a > Ma<b only if w ≥ k + 2. ◀

a b b b b b b a b b b b b ba b b b b b b

k

Figure 3 Illustration of 3 copies of Tab in S for w = 7 and k = 4, along with its respective
minimizers when a < b (top) and when b < a (bottom). It can be seen that Ma<b = 1 and Mb<a = 3.

2.3 Case B: w = 3 and k ≥ 2
▶ Lemma 7. Let Tab = (ab)tbb with t =

⌈
w+k

2
⌉
, for w = 3 and k ≥ 2. Then Ma<b =

⌊
k
2
⌋

+3
and Mb<a =

⌊
k
2
⌋

+ 4.

Proof. Since w = 3, for every window, the minimizer is one out of three length-k fragments;
inspect Figure 4. Every a in the block has a b before it. For any window starting at a
position preceding an a, two of the candidates start with a b and the other starts with an a.
As an example consider the window babab preceding an a in Figure 4. We have that the first
and the third candidates start with a b and the second starts with an a. Therefore, if a < b,
the candidate starting with an a will be chosen and every a in Tab is a minimizer. Only
the window starting at the third-to-last position of the block will not consider any length-k
substring starting with an a as its minimizer, as therein we have three b’s occurring in a row.
Since k ≥ 2, the last b of the block will be chosen if a < b. Thus, Ma<b counts every a and
one b, which gives:

H. Verbeek, L. A. Ayad, G. Loukides, and S. P. Pissis 28:7

Ma<b = t + 1 =
⌈

w + k

2

⌉
+ 1 =

⌈
3 + k

2

⌉
+ 1 =

⌊
k + 2

2

⌋
+ 1 + 1 =

⌊
k

2

⌋
+ 3.

For Mb<a, we apply the same logic to conclude that every b surrounded by a’s is a minimizer,
which accounts for all b’s except the final three, which occur at positions [2t, 2t + 2]:

For the window starting at position 2t, the three minimizer candidates start, respectively,
with bb, bb and ba. Since k ≥ 2, the first candidate (2t) will be the minimizer because it
is lexicographically a smallest and the leftmost (b < a).
For the window starting at position 2t + 1, the first two candidates start, respectively,
with bb and ba, and the third starts with an a. The first candidate (2t + 1) will be the
minimizer, because it is lexicographically smaller (b < a).
For the window starting at position 2t + 2, the first and third candidates start with a b
whereas the second starts with an a. The third candidate starts at the second position of
the next Tab-block. Since 2t > k + 1, this candidate consists of only baba . . . alternating
for k letters. It is equal to the first candidate, so by tie-breaking the first candidate
(2t + 2) is the minimizer as it is the leftmost.

Thus, every b in the block will be a minimizer if b < a, and we have:

Mb<a = t + 2 =
⌈

3 + k

2

⌉
+ 2 =

⌊
k

2

⌋
+ 4. ◀

a b a b a b b b a b a b a b b ba b a b a b b b

Figure 4 Tab for w = 3 and k = 3, with its respective minimizers. The last b is a minimizer even
when a < b, because w = 3. In this situation, Ma<b = 4 and Mb<a = 5.

2.4 Case C: 3 < w < k + 2
▶ Lemma 8. Let Tab = (ab)tbb with t =

⌈
w+k

2
⌉
, for 3 < w < k + 2. Then

if k is even, Ma<b = k
2 + 2 + p and Mb<a = k

2 + 3 + p, where p = (w + k) mod 2;
if k is odd, Ma<b =

⌊
k
2
⌋

+ 3 and Mb<a =
⌊

k
2
⌋

+ 4.

Proof. Every length-w fragment of the block contains at least one a and at least one b;
inspect Figure 5. Because of this, only a’s will be minimizers if a < b and only b’s if b < a
(unlike when w = 3, as shown in Section 2.3). We start by counting Ma<b. Suppose we
are determining the minimizer at position i. Every candidate we consider is a string of
alternating a’s and b’s (starting with an a), in which potentially one a is substituted by a
b (if the length-k fragment contains the bbb at the end of the block). A lexicographically
smallest length-k fragment is one in which this extra b appears the latest, or not at all.

First, we will consider the number of length-k fragments in which the extra b does not occur.
For these fragments, it is the case that no other fragment in the block is lexicographically
smaller when a < b, so it is automatically picked as minimizer at the position corresponding to
the start of the length-k fragment. The extra b appears at position 2t + 1 in the block, so this
applies to all length-k fragments starting with an a that end before position 2t+1. That is, all
a’s up to (and including) position i = 2t−(k−1) = 2

⌈
w+k

2
⌉
−k+1 = w+k+p−k+1 = w+p+1,

where p = (w + k) mod 2.

CPM 2024

28:8 Minimizing the Minimizers via Alphabet Reordering

Next, we consider the length-k fragments that do include the extra b. At any position
past i, the smallest candidate will be the first one starting with an a, unless one of the
candidates appears in the next Tab-block, in which case the minimizer will be the first position
of this next block (because this candidate does not include the extra b and is therefore
smaller than any candidate before it). Specifically, this is the case if position |Tab| + 1 is
one of the w candidates. Therefore, all windows starting at positions up to and including
j = |Tab| + 1 − w = (2⌈ w+k

2 ⌉ + 2) + 1 − w = w + k + 3 + p − w = k + p + 3 will have as
their minimizer the first position with an a, meaning that all a’s up to position j + 1 are
minimizers.

a b a b a b a b b b a b a b a b a b b ba b a b a b a b b b

k

w

i

j

Figure 5 Tab for w = 4 and k = 4, showing the positions i and j for counting Ma<b. Position i is
the final position at which the length-k fragment does not contain bb, whereas j is the final position
for which the starting position of the next Tab-block is not a candidate. When a < b, the minimizers
in the block are all a’s up to position max{i, j + 1}.

We now have that all a’s up to position i = w+p+1 and all a’s up to position j+1 = k+p+4
are minimizers. Thus we need to count the a’s up to position max{w + p + 1, k + p + 4}.
Because, by hypothesis, w < k + 2, this maximum is equal to k + p + 4. The first k + p + 4
letters of the block are alternating a’s and b’s, so we get

Ma<b =
⌈

k + p + 4
2

⌉
=

⌈
k + p

2

⌉
+ 2 =

{
k
2 + 2 + p if k is even;⌊

k
2
⌋

+ 3 if k is odd.

Next, we compute Mb<a. We start by showing that the final three b’s in Tab are all
minimizers. There is only one length-k fragment that starts with bbb and one that starts
with bba, so the first two of these final b’s will both be minimizers for the windows that start
with bbb and bba. For the window that starts at the third b, which is position |Tab|, note
that the entire window does not contain bb at all; it consists of only alternating b’s and a’s
as the window has length w + k − 1 whereas the next occurrence of bb is after w + k + p

positions. Because the window does not contain bb, none of its candidates are smaller than
baba . . . alternating, which first appears at the start of the window. Therefore, the third b
is also a minimizer.

The rest of the minimizers consist of two sets. The first set corresponds to positions
for which no candidate is smaller than baba . . . (alternating for k letters). These are all
positions with a b, up to a certain position i (to be computed later), after which there will
also be a smaller minimizer candidate, i.e., one that contains bb; inspect Figure 6. This is
the second set of minimizers: ones that start with b and contain bb at some point. These
are all positions with a b from some position j onwards.

We start by computing j. Position j is the first position such that the length-k fragment
starting at j starts with a b and contains bb. If k is odd, the fragment ends at position 2t + 2
with bbb as suffix; if k is even, the fragment ends at position 2t + 1 with bb as suffix. We
have

j =
{

2t + 1 − k + 1 = w + p + 2 if k is even;
2t + 2 − k + 1 = w + p + 3 if k is odd.

H. Verbeek, L. A. Ayad, G. Loukides, and S. P. Pissis 28:9

a b a b a b a b b b a b a b a b a b b ba b a b a b a b b b

kw

i j

Figure 6 Tab for w = 4 and k = 4, showing the positions i and j when counting Mb<a: j is the
position of the first b at which the corresponding length-k fragment contains bb; i is the last position
at which j is not a candidate for its minimizer. When b < a, the minimizers in this block are all b’s
up to position i + 1 and all b’s from position j onwards.

Note that j = w + p + 2 + (k mod 2). Every b from position j onwards is a minimizer. This
includes the three b’s at the end of the pattern (at positions 2t through 2t + 2), as well as
the ones between positions j and 2t − 1 (both inclusive). Thus we have

3 +
⌊

2t − j

2

⌋
= 3 +

⌊
w + k + p − (w + p + 2 + (k mod 2))

2

⌋
= 3 +

⌊
k − 2 − (k mod 2)

2

⌋
= 2 +

⌊
k

2

⌋
b’s from position j onwards.

Next, we compute i and count the number of b’s up to i. We take the last position
for which the length-k fragment starting at j is not a candidate. This is i = j − w. The
minimizer for the window starting at position i + 1 is the length-k fragment starting at j,
since this is the only candidate that contains bb. However, if there is a b at position i + 1,2
then i + 1 will still be a minimizer: when we take the minimizer for position i, the length-k
fragment containing bb will not be a candidate so it will take the first length-k fragment
starting with a b, which is at position i + 1. Therefore, we count all b’s that appear up to
i + 1:⌊

i + 1
2

⌋
=

⌊
j − w + 1

2

⌋
=

⌊
(w + p + 2 + (k mod 2)) − w + 1

2

⌋
=

⌊
p + 3 + (k mod 2)

2

⌋
=1 +

⌊
1 + p + (k mod 2)

2

⌋
=

{
1 + p if k is even;
2 if k is odd.

Adding the two numbers of b’s together gives (inspect Figure 7):

Mb<a = 2 +
⌊

k

2

⌋
+

{
1 + p if k is even;
2 if k is odd;

=
{

k
2 + 3 + p if k is even;⌊

k
2
⌋

+ 4 if k is odd.
◀

2.5 Wrapping up the Reduction
Proof of Theorem 3. Minimizing the Minimizers (Decision) asks whether or not there
exists some ordering on Σ such that a string S ∈ Σn has at most ℓ minimizers for parameters
w and k. Given w, k and an ordering on Σ, one can compute the number of minimizers

2 Consider the case when Tab = abababababbb with w = 5 and k = 4. For this block, we have i = 3 and
j = 8. Indeed i = j − w = 3 and at position i + 1 = 4 of the block we have a b. Position 4 will be
selected as the minimizer for the window starting at position 3.

CPM 2024

28:10 Minimizing the Minimizers via Alphabet Reordering

a b a b a b a b b b a b a b a b a b b ba b a b a b a b b b

Figure 7 Tab for w = 4 and k = 4, showing its minimizers for a < b (top) and b < a (bottom). In
this situation, Ma<b = 4 and Mb<a = 5.

for those parameters in linear time [13, Theorem 3]. Therefore, one can use an alphabet
ordering as a certificate to verify a YES instance of Minimizing the Minimizers (Decision)
simply by comparing the computed number of minimizers to ℓ. This proves that the
Minimizing the Minimizers (Decision) problem is in NP. To prove that Minimizing
the Minimizers (Decision) is NP-hard, we use a reduction from Feedback Arc Set
(Decision) (see Section 2 for definition), which is a well-known NP-complete problem [9].

We are given an instance G = (V, A) of Feedback Arc Set and an integer ℓ′, and we
are asked to check if G contains a feedback arc set with at most ℓ′ arcs. We will construct
an instance S of Minimizing the Minimizers (Decision), for given parameters w ≥ 3 and
k ≥ 1, such that: the minimum number of minimizers in S, over all alphabet orderings, is at
most some value ℓ if and only if G contains a feedback arc set of size at most ℓ′.

By Lemma 4, we have λ ≤ 4 · |A| · |Tab|. Given w and k, we must determine a string
Tab such that Mb<a > Ma<b and |Tab| ≥ 1

4 (w + k − 1), and also choose some q satisfying
λ < q · (Mb<a − Ma<b) (see Lemma 5). Let Σ = V and let S =

∏
(a,b)∈A T q+4

ab , with Tab and
q to be determined depending on w and k.

Case A: w ≥ k + 2. Let Tab = abw−1, so |Tab| = w. Since, by hypothesis, the maximal
value of k is w − 2, and since |Tab| = w, we have that 4|Tab| ≥ 2w − 3. Thus, the condition
on the length of Tab always holds. By Lemma 6, Mb<a − Ma<b = w − k − 1. We choose
q = 4 · w · |A| + 1, so that λ ≤ 4 · |A| · w < q · (w − k − 1). Thus, λ < q · (Mb<a − Ma<b).

Case B and Case C: w < k + 2. Let Tab = (ab)tbb for t =
⌈

w+k
2

⌉
. We have |Tab| =

2t + 2 = 2(
⌈

w+k
2

⌉
) + 2 = w + k + p + 2, where p = (w + k) mod 2. The condition on the

length of Tab always holds because w + k + p + 2 > w + k − 1.
If w = 3, then by Lemma 7, Mb<a − Ma<b =

⌊
k
2
⌋

+ 4 − (
⌊

k
2
⌋

+ 3) = 1.
If w > 3, then by Lemma 8:

if k is even, Mb<a − Ma<b = k
2 + 3 + p − (k

2 + 2 + p) = 1;
if k is odd, Mb<a − Ma<b =

⌊
k
2
⌋

+ 4 − (
⌊

k
2
⌋

+ 3) = 1.

In any case, Mb<a − Ma<b = 1. We choose q = 4 · |A| · (w + k + 3) + 1, so that
λ ≤ 4 · |A| · (w + k + p + 2) < q. Thus, λ < q · (Mb<a − Ma<b).

Finally, we set ℓ = q · (Mb<a − Ma<b) · (ℓ′ + 1) + q · Ma<b · |A|. By Lemma 5, we have
that Mw,k(S, F) ≤ ℓ if and only if |F | ≤ ℓ′; in other words, G contains a feedback arc set of
size at most ℓ′ if and only if S has an alphabet ordering with at most ℓ minimizers.

Hence we have shown that (G, ℓ′) is a YES instance of Minimizing the Minimizers
(Decision) if and only if (S, ℓ) is a YES instance of Feedback Arc Set (Decision).
Moreover, the length of S is (q + 4) · |A| · |Tab|, with Tab being of polynomial length, so the
reduction can be performed in polynomial time. The existence of a polynomial-time reduction
from Feedback Arc Set (Decision) to Minimizing the Minimizers (Decision) proves
our claim: Minimizing the Minimizers (Decision) is NP-complete if w ≥ 3 and k ≥ 1. ◀

H. Verbeek, L. A. Ayad, G. Loukides, and S. P. Pissis 28:11

3 Considering the Orderings on Σk

Most of the existing approaches for minimizing the minimizers samples consider the space
of all orderings on Σk instead of the ones on Σ. Such an approach has the advantage of an
easy and efficient construction of the sample by using a rolling hash function h : Σk → N,
such as the popular Karp-Rabin fingerprints [10]; this results in a random ordering on Σk

that usually performs well in practice [23]. Let us denote by Minimizing the Minimizers
(≤ Σk) the version of Minimizing the Minimizers that seeks to minimize |Mw,k(S)| by
choosing a best ordering on Σk (instead of a best ordering on Σ). It is easy to see that any
algorithm solving Minimizing the Minimizers solves also Minimizing the Minimizers
(≤ Σk) with a polynomial number of extra steps: We use an arbitrary ranking function rank
from the set of length-k substrings of S to [1, n − k + 1]. We construct the string S′ such
that S′[i] = rank(S[i . . i + k − 1]), for each i ∈ [1, n − k + 1]. Let Σ′ be the set of all letters
in S′. It should be clear that |Σ′| ≤ n because S has no more than n substrings of length
k. We then solve the Minimizing the Minimizers problem with input Σ := Σ′, S := S′,
w := w, and k := 1. It is then easy to verify that an optimal solution to Minimizing the
Minimizers for this instance implies an optimal solution to Minimizing the Minimizers
(≤ Σk) for the original instance. We thus conclude that Minimizing the Minimizers is at
least as hard as Minimizing the Minimizers (≤ Σk); they are clearly equivalent for k = 1.

▶ Example 9. Let S = aacaaacgcta, w = 3, and k = 3. We construct the string S′ =
235124687 over Σ′ = [1, 8] and solve Minimizing the Minimizers with w = 3, k = 1, and
Σ = Σ′. Assuming 1 < 3 < 5 < 6 < 2 < 4 < 7 < 8, M3,1(S′) = M3,3(S) = {2, 4, 7}. The
minimizers positions are colored red: S′ = 235124687. This is one of many best orderings.

Another advantage of Minimizing the Minimizers (≤ Σk) is that a best ordering on
Σk is at least as good as a best ordering on Σ at minimizing the resulting sample. Indeed
this is because every ordering on Σ implies an ordering on Σk but not the reverse.

Unfortunately, Minimizing the Minimizers (≤ Σk) comes with a major disadvantage.
Suppose we had an algorithm solving Minimizing the Minimizers (≤ Σk) (either exactly
or with a good approximation ratio or heuristically) and applied it to a string S of length n,
with parameters w and k. Now, in order to compare a query string Q to S, the first step
would be to compute the minimizers of Q, but to ensure local consistency (Property 2), we
would need access to the ordering output by the hypothetical algorithm. The size of the
ordering is O(min(|Σ|k, n)) and storing this defeats the purpose of creating a sketch for S.
This is when it might be more appropriate to use Minimizing the Minimizers instead.

Since Minimizing the Minimizers is NP-hard for w ≥ 3 and k = 1, Minimizing the
Minimizers (≤ Σ1) is NP-hard for w ≥ 3; hence the following corollary of Theorem 3.

▶ Corollary 10. Minimizing the Minimizers (≤ Σ1) is NP-hard if w ≥ 3.

4 Final Remarks

The most immediate open questions are:

Is Minimizing the Minimizers NP-hard for w = 2 and k ≥ 1?

Is Minimizing the Minimizers (≤ Σk) NP-hard for k > 1?

CPM 2024

28:12 Minimizing the Minimizers via Alphabet Reordering

References
1 Lorraine A. K. Ayad, Grigorios Loukides, and Solon P. Pissis. Text indexing for long patterns:

Anchors are all you need. Proc. VLDB Endow., 16(9):2117–2131, 2023. doi:10.14778/
3598581.3598586.

2 Jason W. Bentley, Daniel Gibney, and Sharma V. Thankachan. On the complexity of BWT-
runs minimization via alphabet reordering. In Fabrizio Grandoni, Grzegorz Herman, and Peter
Sanders, editors, 28th Annual European Symposium on Algorithms, ESA 2020, September
7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 15:1–15:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.ESA.2020.15.

3 Rayan Chikhi, Antoine Limasset, Shaun Jackman, Jared T. Simpson, and Paul Medvedev.
On the representation of de Bruijn graphs. J. Comput. Biol., 22(5):336–352, 2015. doi:
10.1089/CMB.2014.0160.

4 Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, and Agnieszka Debudaj-Grabysz.
KMC 2: fast and resource-frugal k-mer counting. Bioinform., 31(10):1569–1576, 2015. doi:
10.1093/BIOINFORMATICS/BTV022.

5 Daniel Gibney and Sharma V. Thankachan. Finding an optimal alphabet ordering for Lyndon
factorization is hard. In Markus Bläser and Benjamin Monmege, editors, 38th International
Symposium on Theoretical Aspects of Computer Science, STACS 2021, March 16-19, 2021,
Saarbrücken, Germany (Virtual Conference), volume 187 of LIPIcs, pages 35:1–35:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.STACS.2021.35.

6 Szymon Grabowski and Marcin Raniszewski. Sampled suffix array with minimizers. Softw.
Pract. Exp., 47(11):1755–1771, 2017. doi:10.1002/SPE.2481.

7 Minh Hoang, Hongyu Zheng, and Carl Kingsford. Differentiable learning of sequence-specific
minimizer schemes with DeepMinimizer. J. Comput. Biol., 29(12):1288–1304, 2022. doi:
10.1089/CMB.2022.0275.

8 Chirag Jain, Arang Rhie, Haowen Zhang, Claudia Chu, Brian Walenz, Sergey Koren, and
Adam M. Phillippy. Weighted minimizer sampling improves long read mapping. Bioinform.,
36(Supplement-1):i111–i118, 2020. doi:10.1093/BIOINFORMATICS/BTAA435.

9 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

10 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM J. Res. Dev., 31(2):249–260, 1987. doi:10.1147/RD.312.0249.

11 Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.
Bioinform., 32(14):2103–2110, 2016. doi:10.1093/BIOINFORMATICS/BTW152.

12 Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinform., 34(18):3094–3100,
2018. doi:10.1093/BIOINFORMATICS/BTY191.

13 Grigorios Loukides and Solon P. Pissis. Bidirectional string anchors: A new string sampling
mechanism. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, 29th Annual
European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual
Conference), volume 204 of LIPIcs, pages 64:1–64:21. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPICS.ESA.2021.64.

14 Grigorios Loukides, Solon P. Pissis, and Michelle Sweering. Bidirectional string anchors
for improved text indexing and top-k similarity search. IEEE Trans. Knowl. Data Eng.,
35(11):11093–11111, 2023. doi:10.1109/TKDE.2022.3231780.

15 Yaron Orenstein, David Pellow, Guillaume Marçais, Ron Shamir, and Carl Kingsford. Compact
universal k-mer hitting sets. In Martin C. Frith and Christian Nørgaard Storm Pedersen,
editors, Algorithms in Bioinformatics - 16th International Workshop, WABI 2016, Aarhus,
Denmark, August 22-24, 2016. Proceedings, volume 9838 of Lecture Notes in Computer Science,
pages 257–268. Springer, 2016. doi:10.1007/978-3-319-43681-4_21.

https://doi.org/10.14778/3598581.3598586
https://doi.org/10.14778/3598581.3598586
https://doi.org/10.4230/LIPICS.ESA.2020.15
https://doi.org/10.1089/CMB.2014.0160
https://doi.org/10.1089/CMB.2014.0160
https://doi.org/10.1093/BIOINFORMATICS/BTV022
https://doi.org/10.1093/BIOINFORMATICS/BTV022
https://doi.org/10.4230/LIPICS.STACS.2021.35
https://doi.org/10.1002/SPE.2481
https://doi.org/10.1089/CMB.2022.0275
https://doi.org/10.1089/CMB.2022.0275
https://doi.org/10.1093/BIOINFORMATICS/BTAA435
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1147/RD.312.0249
https://doi.org/10.1093/BIOINFORMATICS/BTW152
https://doi.org/10.1093/BIOINFORMATICS/BTY191
https://doi.org/10.4230/LIPICS.ESA.2021.64
https://doi.org/10.1109/TKDE.2022.3231780
https://doi.org/10.1007/978-3-319-43681-4_21

H. Verbeek, L. A. Ayad, G. Loukides, and S. P. Pissis 28:13

16 Michael Roberts, Wayne B. Hayes, Brian R. Hunt, Stephen M. Mount, and James A. Yorke.
Reducing storage requirements for biological sequence comparison. Bioinform., 20(18):3363–
3369, 2004. doi:10.1093/bioinformatics/bth408.

17 Saul Schleimer, Daniel Shawcross Wilkerson, and Alexander Aiken. Winnowing: Local
algorithms for document fingerprinting. In Alon Y. Halevy, Zachary G. Ives, and AnHai Doan,
editors, Proceedings of the 2003 ACM SIGMOD International Conference on Management
of Data, San Diego, California, USA, June 9-12, 2003, pages 76–85. ACM, 2003. doi:
10.1145/872757.872770.

18 Yoshihiro Shibuya, Djamal Belazzougui, and Gregory Kucherov. Space-efficient repres-
entation of genomic k-mer count tables. Algorithms Mol. Biol., 17(1):5, 2022. doi:
10.1186/S13015-022-00212-0.

19 Derrick E. Wood and Steven L. Salzberg. Kraken: ultrafast metagenomic sequence classification
using exact alignments. Genome biology, 15(3):R46, 2014.

20 Daniel H. Younger. Minimum feedback arc sets for a directed graph. IEEE Transactions on
Circuit Theory, 10(2):238–245, 1963. doi:10.1109/TCT.1963.1082116.

21 Hongyu Zheng, Carl Kingsford, and Guillaume Marçais. Improved design and analysis
of practical minimizers. Bioinform., 36(Supplement-1):i119–i127, 2020. doi:10.1093/
BIOINFORMATICS/BTAA472.

22 Hongyu Zheng, Carl Kingsford, and Guillaume Marçais. Sequence-specific minimizers via polar
sets. Bioinform., 37(Supplement):187–195, 2021. doi:10.1093/BIOINFORMATICS/BTAB313.

23 Hongyu Zheng, Guillaume Marçais, and Carl Kingsford. Creating and using minimizer sketches
in computational genomics. J. Comput. Biol., 30(12):1251–1276, 2023. doi:10.1089/CMB.
2023.0094.

CPM 2024

https://doi.org/10.1093/bioinformatics/bth408
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/872757.872770
https://doi.org/10.1186/S13015-022-00212-0
https://doi.org/10.1186/S13015-022-00212-0
https://doi.org/10.1109/TCT.1963.1082116
https://doi.org/10.1093/BIOINFORMATICS/BTAA472
https://doi.org/10.1093/BIOINFORMATICS/BTAA472
https://doi.org/10.1093/BIOINFORMATICS/BTAB313
https://doi.org/10.1089/CMB.2023.0094
https://doi.org/10.1089/CMB.2023.0094

	1 Introduction
	2 Minimizing the Minimizers is NP-complete
	2.1 Overview of the Technique
	2.2 Case A: w >= k + 2
	2.3 Case B: w = 3 and k >= 2
	2.4 Case C: 3 < w < k + 2
	2.5 Wrapping up the Reduction

	3 Considering the Orderings on
	4 Final Remarks

