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Abstract
In this work, we consider pattern matching variants in small space, that is, in the read-only setting,
where we want to bound the space usage on top of storing the strings. Our main contribution is
a space-time trade-off for the Internal Pattern Matching (IPM) problem, where the goal is
to construct a data structure over a string S of length n that allows one to answer the following
type of queries: Compute the occurrences of a fragment P of S inside another fragment T of S,
provided that |T | < 2|P |. For any τ ∈ [1 . . n/ log2 n], we present a nearly-optimal Õ(n/τ)-size1 data
structure that can be built in Õ(n) time using Õ(n/τ) extra space, and answers IPM queries in
O(τ + log n log3 log n) time. IPM queries have been identified as a crucial primitive operation for
the analysis of algorithms on strings. In particular, the complexities of several recent algorithms for
approximate pattern matching are expressed with regards to the number of calls to a small set of
primitive operations that include IPM queries; our data structure allows us to port these results to
the small-space setting. We further showcase the applicability of our IPM data structure by using
it to obtain space-time trade-offs for the longest common substring and circular pattern matching
problems in the asymmetric streaming setting.
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1 Introduction

In the fundamental text indexing problem, the task is to preprocess a text T into a data
structure (index) that can answer the following queries efficiently: Given a pattern P , find
the occurrences of P in T . The Internal Pattern Matching problem (IPM) is a variant
of the text indexing problem, where both the pattern P and the text T are fragments of a
longer string S, given in advance.

1 Throughout this work, the Õ(·) notation suppresses factors polylogarithmic in the input-size.

© Gabriel Bathie, Panagiotis Charalampopoulos, and Tatiana Starikovskaya;
licensed under Creative Commons License CC-BY 4.0

35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024).
Editors: Shunsuke Inenaga and Simon J. Puglisi; Article No. 4; pp. 4:1–4:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gabriel.bathie@gmail.com
https://orcid.org/0000-0003-2400-4914
mailto:pcharalampo@gmail.com
https://orcid.org/0000-0002-6024-1557
mailto:tat.starikovskaya@gmail.com
https://orcid.org/0000-0002-7193-9432
https://doi.org/10.4230/LIPIcs.CPM.2024.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


4:2 Internal Pattern Matching in Small Space and Applications

Introduced in 2009 [47], IPM queries are a cornerstone of the family of internal queries
on strings. The list of internal queries, primarily executed through IPM queries, comprises
of period queries, prefix-suffix queries, periodic extension queries, and cyclic equivalence
queries; see [52, 53, 50]. Other problems that have been studied in the internal setting include
shortest unique substring [1], longest common substring [5], suffix rank and selection [9, 50],
BWT substring compression [9], shortest absent string [10], dictionary matching [32, 21, 20],
string covers [31], masked prefix sums [34], circular pattern matching [44], and longest
palindrome [61].

The primary distinction between the classical and internal string queries lies in how
the pattern is handled during queries. In classical queries, the input is explicitly provided
at query time, whereas in internal queries, the input is specified in constant space via the
endpoints of fragments of string S. This distinction enables notably faster query times in
the latter setting, as there is no need to read the input when processing the query. This
characteristic of IPM and similar internal string queries renders them particularly valuable
for bulk processing of textual data. This is especially advantageous when S serves as input
for another algorithm, as illustrated by multiple direct and indirect (via other internal
queries) applications of IPM: pattern matching with variables [56, 36], detection of gapped
repeats and subrepetitions [55, 41], approximate period recovery [2, 4], computing the longest
unbordered substring [51], dynamic repetition detection [3], computing string covers [31],
identifying two-dimensional maximal repetitions, enumeration of distinct substrings [25],
dynamic longest common substring [5], approximate pattern matching [26, 27], approximate
circular pattern matching [23, 24], (approximate) pattern matching with wildcards [11], RNA
folding [33], and the language edit distance problem for palindromes and squares [12].

Below we assume |T | < 2|P |, which guarantees that the set of occurrences of P in T

forms an arithmetic progression and can be thus represented in O(1) space.
With no preprocessing (O(1) extra space), IPM queries on a string S of length n can

be answered in O(n) time by a constant-space pattern matching algorithm (see [17] and
references therein). On the other side of the spectrum, Kociumaka, Radoszewski, Rytter,
and Waleń [52] showed that for every string S ∈ [0 . . σ]n, there exists a data structure of
size O(n/ logσ n) which answers IPM queries in optimal O(1) time and can be constructed in
O(n/ logσ n) time given the packed representation of S (meaning that S divided into blocks
of logσ n consecutive letters, and every block is stored in one machine word). The problem
has been equally studied in the compressed and dynamic settings [26, 49, 48].

1.1 Our Main Contribution: Small-space IPM
As our main contribution, we provide a trade-off between the constant-space and O(n) query
time and the O(n/ logσ n)-space and constant query time data structures. We consider
the IPM problem in the read-only setting, where one assumes random read-only access to
the input string(s) and only accounts for the extra space, that is, the space used by the
algorithm/data structure on top of the space needed to store the input.

▶ Corollary 1.1. Suppose that we have read-only random access to a n-length string S

of length n over an integer alphabet. For any integer τ = O(n/ log2 n), there is a data
structure that can be built using O(n logn/τ n + (n/τ) · log4 n log log n) time using O((n/τ) ·
log n(log log n)3) extra space and can answer the following internal pattern matching queries
in time O(τ + log n log3 log n): given p, p′, t, t′ ∈ [1 . . n] such that t′ − t ≤ 2(p′ − p), return
all occurrences of P = S[p . . p′] in T = S[t . . t′].
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Our data structure is nearly optimal: First, when n/τ is polynomial, the construction
time is linear; and secondly, the product of the query time and space of our data structure is
optimal up to polylogarithmic factors (Lemma 3.8).

Technical overview for IPM queries. Our solution relies heavily on utilizing the concept of
τ -partitioning sets, as introduced by Kosolobov and Sivukhin [57]. For a string of length n,
a τ -partitioning is a subset of O(n/τ) positions that satisfies some density and consistency
criteria. We use the positions of such a set as anchor points for identifying pattern occurrences,
provided that the pattern avoids a specific periodic structure. To detect these anchored
occurrences, we employ sparse suffix trees alongside a three-dimensional range searching
structure. In cases where the pattern does not avoid said periodic structure, we employ a
different strategy, leveraging the periodic structure to construct the necessary anchor points.

We next provide a brief comparison of the outlined approach with previous work. String
anchoring techniques have been proven very useful in and been developed for text indexing
problems, such as the longest common extension (LCE) problem, in small space [57, 16]. One
of the most technically similar works to ours is that of Ben-Nun et al. [14] who considered
the problem of computing a long common substring of two input strings in small space. They
use an earlier variant of τ -partitioning sets, due to Birenzwige et al. [16], that has slightly
worse guarantees than that of Kosolobov and Shivukhin [57]. The construction of anchors
for substrings with periodic structure is quite similar to that of Ben-Nun et al. [14]. After
computing a set of anchors, they aim to identify a synchronised pair of anchors that yields a
long common substring; they achieve this via mergeable AVL trees. As IPM queries need
to be answered in an online manner, we instead construct an appropriate orthogonal range
searching data structure over a set of points that correspond to anchors. Using orthogonal
range searching is a by-now classical approach for text indexing, see [58] for a survey.

1.2 Applications
Several internal queries reduce to IPM queries, and hence we obtain efficient implementations
of them in the small-space setting. Additionally, we port several efficient approximate pattern
matching algorithms to the small-space setting since IPM was the only primitive operation
that they rely on that did not have an efficient small-space implementation to this day. See
Section 4 for details on these applications.

Longest Common Substring (LCS). The LCS problem is formally defined as follows.

Longest Common Substring (LCS)
Input: Strings S and T of length at most n.
Output: The length of a longest string that appears as a (contiguous) fragment in
both S and T .

The length of the longest common substring is one of the most popular string-similarity
measures. The by-now classical approach to the LCS problem is to construct the suffix tree
of S and T in O(n) time and space. The longest common substring of the two strings appears
as a common prefix of a pair of suffixes of S and T and hence its length is the maximal
string-depth of a node of the suffix tree with leaf-descendants corresponding to suffixes of
both strings; this node can be found in O(n) time in a bottom-up manner.

Starikovskaya and Vildhøj [64] were the first to consider the problem in the read-only
setting. They showed that for any n2/3 < τ ≤ n, the problem can be solved in O(τ) extra
space and O(n2/τ) time. Kociumaka et al. [54] extended their bound to all 1 ≤ τ ≤ n, which
in particular resulted in a constant-space read-only algorithm running in time Õ(n2).

CPM 2024



4:4 Internal Pattern Matching in Small Space and Applications

In an attempt to develop even more space-efficient algorithms for the LCS problem, it
might be tempting to consider the streaming setting, which is particularly restrictive: in this
setting, one assumes that the input arrives letter-by-letter, as a stream, and must account for
all the space used. Unfortunately, this setting does not allow for better space complexity: any
streaming algorithm for LCS, even randomised, requires Ω(n) bits of space (Theorem 5.2).
In the asymmetric streaming setting, which is slightly less restrictive and was introduced by
Andoni et al. [7] and Saks and Seshadhri [63], the algorithm has random access to one string
and sequential access to the other. Mai et al. [60] showed that in this setting, LCS can be
solved in Õ(n2) time and O(1) space. By utilising (a slightly more general variant of) IPM
queries, we extend their result and show that for every τ ∈ [

√
n log n(log log n)3 . . n], there is

an asymmetric streaming algorithm that solves the LCS problem in O(τ) space and Õ(n2/τ)
time (Theorem 6.1). Note that these bounds almost match the bounds of Kociumaka et
al. [54], while the setting is stronger.

Circular Pattern Matching (CPM). The CPM problem is formally defined as follows.

Circular Pattern Matching (CPM)
Input: A pattern P of length m, a text T of length n.
Output: All occurrences of rotations of P in T .

The interest in occurrences of rotations of a given pattern is motivated by applications in
Bioinformatics and Image Processing: in Bioinformatics, the starting position of a biological
sequence can vary significantly due to the arbitrary nature of sequencing in circular molecular
structures or inconsistencies arising from different standards of linearization applied to
sequence databases; and in Image Processing, the contour of a shape can be represented
using a directional chain code, which can be viewed as a circular sequence, particularly when
the orientation of the image is irrelevant [8].

For strings over an alphabet of size σ, the classical read-only solution for CPM via the
suffix automaton of P · P runs in O(n log σ) time and uses O(m) extra space [59]. Recently,
Charalampopoulos et al. showed a simple O(n) time and O(m) extra space solution. The
problem has been also studied from the practical point of view [65, 40, 29] and in the text
indexing setting [45, 43, 42].

It is not hard to see that the CPM and the LCS problems are closely related: occurrences
of rotations of P in T are exactly the common substrings of P · P and T of length m.
Implicitly using this observation, we show that in the streaming setting, the CPM problem
requires Ω(m) bits of space (Theorem 5.3) and that in the asymmetric streaming setting,
for every τ ∈ [

√
m log m(log log m)3 . . m], there exists an algorithm that solves the CPM

problem in time Õ(mn/τ) using O(τ) extra space (Corollary 6.5). Finally, in the read-only
setting, we give an online O(n)-time, O(1)-space algorithm (Theorem 7.1).

2 Preliminaries

For integers i, j ∈ Z, denote [i . . j] = {k ∈ Z : i ≤ k ≤ j}, [i . . j) = {k ∈ Z : i ≤ k < j}.
We consider an alphabet Σ = {1, 2, . . . , σ} of size polynomially bounded in the length of
the input string(s). The elements of the alphabet are called letters, and a string is a finite
sequence of letters. For a string T and an index i ∈ [1 . . n], the i-th letter of T is denoted
by T [i]. We use |T | = n to denote the length of T . For two strings S, T , we use ST or
S ◦ T indifferently to denote their concatenation S[1] · · · S[|S|]T [1] · · · T [|T |]. For integers i, j,
T [i . . j] denotes the fragment T [i]T [i + 1] · · · T [j] of T if 1 ≤ i ≤ j ≤ n and the empty string ε
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otherwise. We extend this notation in a natural way to T [i . . j + 1) = T [i . . j] = T (i − 1 . . j].
When i = 1 or j = n, we omit these indices, i.e., T [. . j] = T [1 . . j] and T [i . .] = T [i . . n].
A string P is a prefix of T if there exists j ∈ [1 . . n] such that P = T [. . j], and a suffix
of T if there exists i ∈ [1 . . n] such that P = T [i . .]. We denote the reverse of a string T

by rev(T ) = T [n]T [n − 1] · · · T [2]T [1]. For an integer ∆ ∈ [1 . . n], we say that a string
T [∆ + 1 . . n] ◦ T [1 . . ∆] is a rotation of T . A fragment T [i . . j] of a string T is called an
occurrence of a string P if T [i . . j] = P ; in this case, we say that P occurs at position i

of T . A positive integer ρ is a period of a string T if T [i] = T [i + ρ] for all i ∈ [1 . . |T | − ρ].
The smallest period of T is referred to as the period of T and is denoted by per(T ). If
per(T ) ≤ |T |/2, T is called periodic.

▶ Fact 2.1 (Corollary of the Fine–Wilf periodicity lemma [37]). The starting positions of the
occurrences of a pattern P in a text T form O(|T |/|P |) arithmetic progressions with difference
per(P ).

We assume a reader to be familiar with basic data structures for string processing, see,
e.g., [59]. Recall that a suffix tree for a string S is essentially a compact trie representing the
set of all suffixes of S, whereas a sparse suffix tree contains only a subset of these suffixes.

▶ Fact 2.2 ([57, Theorem 3]). Suppose that we have read-only random access to a string S

of length n over an integer alphabet. For any integer b = Ω(log2 n), one can construct in
O(n logb n) time and O(b) space the sparse suffix tree for arbitrarily chosen b suffixes.

▶ Fact 2.3 ([17]). There is a read-only online algorithm that finds all occurrences of a
pattern P of length m in a text T of length n ≥ m in O(n) time and O(1) space.

▶ Fact 2.4 ([38, Lemma 6]). Given read-only random access to a string S of length n, one
can decide in O(n) time and O(1) space if S is periodic and, if so, compute per(S).

▶ Fact 2.5 ([35]). Given read-only random access to a string S of length n, the lexicograph-
ically smallest rotation of a string S can be computed in O(n) time and O(1) space.

Static predecessor. For a static set, a combination of x-fast tries [66] and deterministic
dictionaries [62] yields the following efficient deterministic data structure; cf. [39].

▶ Fact 2.6 ([39, Proposition 2]). A sorted static set Y ⊆ [1 . . U ] can be preprocessed in O(|Y |)
time and space so that predecessor queries can be performed in O(log log |U |) time.

Weighted ancestor queries. Let T be a rooted tree with integer weights on nodes. A
weighted ancestor query for a node u and weight d must return the highest ancestor of u

with weight at least d.

▶ Fact 2.7 ([6]). Let T be a rooted tree of size n with integer weights on nodes. Assume
that each weight is at most n, with the weight of the root being zero, and the weight of every
non-root node being strictly larger than its parent’s weight. T can be preprocessed in O(n)
time and space so that weighted ancestor queries on it can be performed in O(log log n) time.

If T is the suffix tree of a string and the weights are the string-depths of the nodes, this
result can be improved further:

▶ Fact 2.8 ([13]). The suffix tree T of a string of length n can be preprocessed in O(n) time
and O(n) space so that weighted ancestor queries on it can be performed in O(1) time.

CPM 2024



4:6 Internal Pattern Matching in Small Space and Applications

3D range emptiness. A three-dimensional orthogonal range emptiness query asks whether
a range [a1 × a2] × [b1 × b2] × [c1 × c2] is empty.

▶ Fact 2.9 ([46, Theorem 2]). There exists a data structure that answers three-dimensional
orthogonal range emptiness queries on a set of n points from a [U ] × [U ] × [U ] grid in
O(log log U + (log log n)3) time, uses O(n log n(log log n)3) space, and can be constructed in
O(n log4 n log log n) time. If the query range is not empty, the data structure also outputs a
point from it.

▶ Remark 2.10. Better space vs. query-time tradeoffs than the above are known for the 3D
range emptiness problem; cf [19] and references therein. We opted for the data structure
encapsulated of Fact 2.9 due to its efficient construction algorithm. Note that a data structure
capable of reporting all points in an orthogonal range over a [U ] × [U ] × [U ] grid with n

points in time O(Q1(U, n) + Q2(U, n) · |output|) can answer range emptiness queries, also
returning a witness in the case the range is not empty, in time O(Q1(U, n) + Q2(U, n)).

3 Internal Pattern Matching

We consider a slightly more powerful variant of IPM queries, as required by our applications.
A reader that is only interested in IPM queries can focus on the case when a = ε.

Extended IPM (Decision)
Input: A string S of length n over an integer alphabet to which we have read-only
random access.
Query: Given p, p′, t, t′ ∈ [1 . . n] and a ∈ Σ ∪ {ε}, return whether P := S[p . . p′]a
occurs in T := S[t . . t′] and, if so, return a witness occurrence.

Our solution for Extended IPM (Decision) heavily relies on a solution for the following
auxiliary problem.

Anchored IPM
Input: A string S of length n over an integer alphabet Σ to which we have read-only
random access and a set A ⊆ [1 . . n].
Query: Given p, x, p′, t, t′ ∈ [1 . . n] with p ≤ x ≤ p′, x ∈ A, and a ∈ Σ ∪ {ε}, for
P := S[p . . p′]a, decide whether there exists an occurrence of P at some position
j ∈ [t . . t′ − |P | + 1] such that j + (x − p) ∈ A and, if so, return a witness.

▶ Lemma 3.1. There exists a data structure for the Anchored IPM problem that can
be built using O(n log|A| n) + O(|A| log4 |A| log log |A|) time and O(|A| log |A|(log log |A|)3)
extra space, and answers queries in O(log3 log n) time.

Proof. For an integer y ∈ [1 . . n], denote Py := rev(S[. . y)) and Sy := S[y . .]. Consider a
family X := {(Py$, Sy$) : y ∈ A} of pairs of strings, where $ ̸∈ Σ is a letter lexicographically
smaller than all others. Using Fact 2.2, we build a sparse suffix tree RSST for the first
components of the elements of X and a sparse suffix tree SST for the second components of
the elements of X .

Consider a three-dimensional grid [1 . . n] × [1 . . n] × [1 . . n]. In this grid, create a set Π
of points, which contains, for each element (Py$, Sy$) of X , a point (rankrev(y), rank(y), y),
where rankrev(y) is the lexicographic rank of Py$ among the first components of the elements
of X and rank(y) is the lexicographic rank of Sy$ among the second components of the
elements of X .
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Upon a query, we first retrieve the leaves corresponding to Px$ and Sx$ in RSST and SST,
respectively. This can be done in O(log log n) time with the aid of Fact 2.6 built over the
elements of A, with x ∈ A storing pointers to the corresponding leaves as satellite information.
Next, we retrieve the (possibly implicit) nodes u and v corresponding to rev(S[p . . x)) in
RSST and S[x . . p′]a in SST, respectively. This can be done in O(log log n) time after an
O(|A|)-time preprocessing of (a) the two trees according to Fact 2.7 and (b) the edge-labels
of the outgoing edges of each node using Fact 2.6. Now, it suffices to check if there is some
integer j such that the leaf corresponding to Pj$ is a descendant of u, the leaf corresponding
to Sj$ is a descendant of v, and j ∈ [t + (x − p) . . t′ − (p′ + |a| − x)]. After a linear-time
bottom-up preprocessing of RSST and SST, we can retrieve in O(1) time the following ranges:

R1 = {rankrev(y) : the node of RSST corresponding to Py$ is a descendant of u};
R2 = {rank(y) : the node of SST corresponding to Sy$ is a descendant of v}.

The query then reduces to deciding whether the orthogonal range R1 ×R2 × [t+(x−p) . . t′ −
(p′ + |a| − x)] contains any point in Π, and returning a witness if it does. We can do this
efficiently by building the data structure encapsulated in Fact 2.9 for Π: the query time
is O(log3 log n), while the construction time is O(n log|A| n) + O(|A| log4 |A| log log |A|) and
the space usage is O(|A| log |A|(log log |A|)3). ◀

For an integer parameter τ , we next present a data structure for Extended IPM
(Decision) that uses Õ(n/τ) space on top of the space required to store S and answers
queries in nearly-constant time provided that P is of length greater than 5τ . We achieve
this result using the so-called τ -partitioning sets of Kosolobov and Sivukhin [57] as anchors
for the occurrences if P avoids a certain periodic structure, and by exploiting said periodic
structure to construct anchors in the remaining case.

▶ Definition 3.2 (τ -partitioning set). Given an integer τ ∈ [4 . . n/2], a set of positions
P ⊆ [1 . . n] is called a τ -partitioning set if it satisfies the following properties:
(a) if S[i−τ . . i+τ ] = S[j−τ . . j+τ ] for i, j ∈ [τ + 1 . . n−τ ], then i ∈ P if and only if j ∈ P;
(b) if S[i . . i+ℓ] = S[j . . j+ℓ], for i, j ∈ P and some ℓ ≥ 0, then, for each d ∈ [0 . . ℓ−τ),

i + d ∈ P if and only if j + d ∈ P;
(c) if i, j ∈ [1 . . n] with j − i > τ and (i . . j) ∩ P = ∅, then S[i . . j] has period at most τ/4.

▶ Theorem 3.3 ([57]). Suppose that we have read-only random access to a string S of
length n over an integer alphabet. For any integer τ ∈ [4 . . O(n/ log2 n)] and b = n/τ , one
can construct in O(n logb n) time and O(b) extra space a τ -partitioning set P of size O(b).
The set P additionally satisfies the property that if a fragment S[i . . j] has period at most τ/4,
then P ∩ [i + τ . . j − τ ] = ∅.

▶ Definition 3.4 (τ -runs). A fragment F of a string S is a τ -run if and only if |F | > 3τ ,
per(F ) ≤ τ/4, and F cannot be extended in either direction without its period changing. The
Lyndon root of a τ -run R is the lexicographically smallest rotation of R[1 . . per(R)].

The following fact follows from the proof of Lemma 10 in the full version of [22], where
the definition of τ -runs is slightly different, but captures all of our τ -runs.

▶ Fact 3.5 (cf. [22, proof of Lemma 10]). Two τ -runs can overlap by at most τ/2 positions.
The number of τ -runs in a string of length n is O(n/τ).

▶ Lemma 3.6. Suppose that we have read-only random access to a string S of length n over
an integer alphabet. For any integer τ ∈ [4 . . O(n/ log2 n)], all τ -runs in S can be computed
and grouped by Lyndon root in O(n logb n) time using O(b) extra space, where b = n/τ .
Within the same complexities, we can compute, for each τ -run, the first occurrence of its
Lyndon root in it.

CPM 2024



4:8 Internal Pattern Matching in Small Space and Applications

Proof. We first compute a τ -partitioning set P for S using Theorem 3.3. Due to Property c,
its converse that is stated in Theorem 3.3, and Fact 3.5 there is a natural injection from
the τ -runs to the maximal fragments of length at least τ that do not contain any position
in P – the τ -run corresponding to such a maximal fragment may extend for τ more positions
in each direction. We can find the period of each maximal fragment in time proportional
to its length using O(1) extra space due to Fact 2.4. We then try to extend the maximal
fragment to a τ -run using O(τ) letter comparisons. Additionally, we compute the Lyndon
root of each computed τ -run R in O(τ) = O(|R|) time by applying Fact 2.5 to R[1 . . per(R)].
The first occurrence of the Lyndon root in the τ -run can be computed in constant time since
we know which rotation of R[1 . . per(R)] equals the Lyndon root. Over all τ -runs, the total
time is O(n) due to Fact 3.5. ◀

We next prove the main result of this section.

▶ Theorem 3.7. For any ℓ ∈ [20 . . O(n/ log2 n)], there is a data structure for Extended
IPM (Decision) that can be built using O(n logn/ℓ n) + O((n/ℓ) · log4 n log log n) time and
O((n/ℓ) · log n(log log n)3) extra space given random access to S and answers queries in
O(log3 log n) time, provided that |P | > ℓ.

Proof. Let τ = ⌊ℓ/5⌋. We use Theorem 3.3 and Lemma 3.6 with parameter τ to compute a
partitioning set P of size O(n/τ) and all τ -runs in S, grouped by Lyndon root, each one to-
gether with the first occurrence of its Lyndon root. We create a static predecessor structure R
using Fact 2.6, where we insert the starting position of each run R with the following satellite
information: R’s ending position, the first occurrence of R’s Lyndon root in R, and an identifier
of its group. We additionally create a data structure Q, where, for each group of τ -runs with a
common root L, indexed by their identifiers, we construct, using Fact 2.6, a predecessor data
structure for a set QL := {(y, s, e) : S[s . . e] is the longest τ -run with a suffix L ◦ L[1 . . y]},
with the first components being the keys and the remaining components being stored as
satellite information. The sets QL can be straightforwardly constructed in O(n log n/τ) time.

Now, let L be a set that contains the ending position of each τ -run as well as the starting
(resp. ending) positions of the first (resp. last) two occurrences of the Lyndon root in this
τ -run; L can be straightforwardly constructed in O(n/τ) time given the information returned
by the application of Lemma 3.6. We then construct a set A := P ∪ L and preprocess the
string S and the set A according to Lemma 3.1.

Our query comprises of two steps.

Step 1. First, we deal with the case when both P and T have period at most τ/4. Since P

and T are of length at least 5τ , due to Fact 3.5, each of them can be only contained in the
τ -run whose starting position is closest to it in the left. We can thus check whether they both
have period at most τ/4 in O(log log n) time by performing two predecessor queries on R. If
this turns out to be the case, we then check whether the two corresponding τ -runs belong to
the same group. If they do not, then P does not occur in T due to Fact 3.5. Otherwise, let the
common Lyndon root of the two runs be L. We can compute in constant time non-negative
integers xP , xT , yP , yT < |L| and eP , eT such that P = L(|L| − xP . .] ◦ LeP ◦ L[. . yP ] and
T = L(|L| − xT . .] ◦ LeT ◦ L[. . yT ]. Note that P occurs in T if and only if at least one of the
following conditions is met: (1) eP = eT , xP ≤ xT , and yP ≤ yT ; or (2) eP = eT − 1 and
xP ≤ xT ; or (3) eP = eT − 1 and yP ≤ yT ; or (4) eP ≤ eT − 2. In each of the four cases, we
can compute an occurrence of P in T in constant time.

Step 2. In the second step of the query, we consider the case when per(T ) > τ/4 and
distinguish between two cases depending on whether per(S[p . . p + 3τ ]) ≤ τ/4. In each case,
it suffices to perform at most two anchored internal pattern matching queries.
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Case I: per(S[p . . p + 3τ ]) > τ/4. Due to Property c, [p . . p + 3τ ] ∩ P ≠ ∅. Let
x = min([p . . p + 3τ ] ∩ P). Additionally, due to Property b, for any occurrence of P in S at
position j, we have [p . . p + 3τ ] ∩ P = (p − j) + ([j . . j + 3τ ] ∩ P), and hence j + (x − p) ∈ P .
Thus, an anchored IPM query returns the desired answer in O(log3 log n) time.

Case II: per(S[p . . p + 3τ ]) ≤ τ/4. We distinguish between two subcases depending on
whether per(P ) > τ/4; we can check this in O(log log n) time with the aid of data structure R
by comparing p′ with the ending position of the τ -run that contains S[p . . p+3τ ] and checking
if a = P [|P | − per(S[p . . p + 3τ ])] if a ̸= ε.

Subcase (a): per(P ) > τ/4. In this case, for any occurrence of P in T , the ending position
of the τ -run that is a prefix of P must be aligned with the ending position of a τ -run in
T , which belongs to L ⊆ A.
Recall that P = S[p . . p′]a. If the period of S[p . . p′] is greater than τ/4, we retrieve the
ending position of the τ -run containing S[p . . p + 3τ ], which is in L ⊆ A as well and issue
an anchored internal pattern matching query. Assume now that the period of S[p . . p′ + 1]
is at most τ/4 and ε ̸= a ̸= P [|P | − per(S[p . . p′])], in which case p′ might not be in A.
In this case, we retrieve a fragment S[q . . q′] equal to S[p . . p′], such that q′ is an ending
position of a τ -run in O(log log n) time using the data structure Q, if such a fragment
exists, and use q ∈ L ⊆ A as the anchor to our internal anchor query, effectively searching
for S[q . . q′]a = P . Observe that if such a fragment S[q . . q′] does not exist, P cannot
have any occurrence in T .

Subcase (b): per(P ) ≤ τ/4. We consider an occurrence of P in the τ -run that contains P

that starts in its first per(P ) positions and one that ends in its last per(P ) positions. Let
these two occurrences be at positions p1 and p2, respectively. Each of these occurrences
contains at least one element of L; let those elements be denoted q1 for the occurrence at
p1 and q2 for the occurrence at p2.
Note that these elements can be straightforwardly computed given the endpoints of the
τ -run, the endpoints of P , and the first occurrence of the Lyndon root in the τ -run, which
we already have in hand. We then issue anchored internal pattern matching queries for
(p1, q1, p1 + |P | − 1, t, t′) and (p2, q2, p2 + |P | − 1, t, t′) as both q1 and q2 are in L. These
queries are answered in O(log3 log n) time. As we show next, if P has an occurrence in
T , this occurrence will be returned by those queries.
Consider an occurrence of P in S[t . . t′] and denote the τ -run that contains this occurrence
by R. Since per(T ) > τ/4, R does not contain S[t . . t′]. Without loss of generality, let us
assume that R does not extend to the left of S[t . . t′], the remaining case is symmetric. Let
the first occurrence of the Lyndon root L of the τ -run in P be at position i = q1 − p1 + 1
of P , noting that i ≤ per(P ). Then, in the leftmost occurrence of P in R, position i

must be aligned with either the first or the second position where L occurs in R. By the
construction of the set L, it follows that both of these positions are in L, and hence the
anchored internal pattern matching query will return an occurrence. ◀

▶ Corollary 1.1. Suppose that we have read-only random access to a n-length string S

of length n over an integer alphabet. For any integer τ = O(n/ log2 n), there is a data
structure that can be built using O(n logn/τ n + (n/τ) · log4 n log log n) time using O((n/τ) ·
log n(log log n)3) extra space and can answer the following internal pattern matching queries
in time O(τ + log n log3 log n): given p, p′, t, t′ ∈ [1 . . n] such that t′ − t ≤ 2(p′ − p), return
all occurrences of P = S[p . . p′] in T = S[t . . t′].
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Proof. If the length of P is at most max{τ, 20}, we compute its occurrences in T , whose length
is O(τ), in O(τ) time using Fact 2.3. In what follows, we assume that |P | > max{τ, 20}.

We build the Extended IPM (Decision) data structure of Theorem 3.7 for S with
ℓ = max{τ, 20}. This allows us to efficiently answer the decision version of the desired IPM
queries, also returning a witness, in O(log3 log n) time. If the query does not return an
occurrence of P in T , we are done. Otherwise, we have to compute all occurrences of P

in T represented as an arithmetic progression (cf Fact 2.1). Let the witness returned by the
data structure be S[x . . x′]. Consider the rightmost occurrence of P in S[t . . x′), or, if it does
not exist, the leftmost occurrence in S(x . . t′]. Such an occurrence can be found by binary
search. If no such occurrence exists, we are again done, as P has a single occurrence in T .
Otherwise, the occurrences of P in T form an arithmetic progression with difference equal to
the difference d of x and the starting position of the found occurrence due to Fact 2.1. We
compute the extreme values of this arithmetic progression using binary search as well: we
compute the minimum and the maximum j ∈ Z such that S[x + j · d . . x′ + j · d] = P and
t ≤ x + j · d ≤ x′ + j · d ≤ t′ using O(log n) IPM queries in total; the complexity follows. ◀

Lower Bound for an IPM data structure
We now show that the product of the query time and the space achieved in Corollary 1.1 is
optimal up to polylogarithmic factors, via a reduction from the following problem.

Longest Common Extension (LCE)
Input: A string S of length n.
Query: Given i, j ∈ [1 . . n], return the largest ℓ such that S[i . . i + ℓ] = S[j . . j + ℓ].

Bille et al. [15, Lemma 4] showed that any data structure for LCE for n-length strings
that uses s bits of extra space on top of the input has query time Ω(n/s).

▶ Lemma 3.8. In the non-uniform cell-probe model, any IPM data structure that uses s bits
of space on top of the input for a string of length n, has query time Ω(n/(s log n)).

Proof. We prove Lemma 3.8 by reducing LCE queries in a string S of length n to IPM queries
in S. Consider an IPM data structure with space s and query time q and observe that IPM
queries can be used to check substring equality since S[i . . i′] = S[j . . j′] if and only if S[i . . i′]
occurs inside the interval [j . . j′] and j′ − j = i′ − i. Using binary search, we can thus answer
any LCE query via O(log n) IPM queries. Hence, we have q log n = Ω(n/s), which concludes
the proof the lemma. ◀

Lemma 3.8 implies a similar lower bound for the word RAM model, which is weaker than
the non-uniform cell-probe model.

4 Other Internal Queries and Approximate Pattern Matching

In the PILLAR model of computation [26] the runtimes of algorithms are analysed with
respect to the number of calls made to standard word-RAM operations and a few primitive
string operations. It has been used to design algorithms for internal queries [52, 53, 50],
approximate pattern matching under Hamming distance [26] and edit distance [27], circular
approximate pattern matching under Hamming distance [24] and edit distance [28], and
(approximate) wildcard pattern matching under Hamming distance [11]. Space-efficient
implementations of the PILLAR model immediately result in space-efficient implementations
of the above algorithms.
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In the PILLAR model, one is given a family of strings X for preprocessing. The elementary
objects are fragments X[i . . j] of strings X ∈ X . Each fragment S is represented via a handle,
which is how S is passed as input to PILLAR operations. Initially, the model provides a handle
to each X ∈ X . Handles to other fragments can be obtained through an Extract operation:

Extract(S, ℓ, r): Given a fragment S and positions 1 ≤ ℓ ≤ r ≤ |S|, extract S[ℓ . . r].
Furthermore, given elementary objects S, S1, S2 the following primitive operations are sup-
ported in the PILLAR model:

Access(S, i): Assuming i ∈ [1 . . |S|], retrieve S[i].
Length(S): Retrieve the length |S| of S.
Longest common prefix LCE(S1, S2): Compute the length of the longest common prefix
of S1 and S2.
LCER(S1, S2): Compute the length of the longest common suffix of S1 and S2.
Internal pattern matching IPM(S1, S2): Assuming that |S2| < 2|S1|, compute the set of
the starting positions of occurrences of S1 in S2 represented as one arithmetic progression.

All PILLAR operations other than LCE, LCER, and IPM admit trivial constant-time and
constant-space implementations in the read-only setting. For any τ = O(n/ log2 n), Kosolobov
and Sivukhin [57] showed that after O(n logn/τ n)-time, O(n/τ)-space preprocessing, LCE
and LCER queries can be supported in O(τ) time. For IPM queries, we use Corollary 1.1.

In [52, 53, 50] it is (implicitly) shown that the following internal queries can be efficiently
implemented in the PILLAR model.

A cyclic equivalence query takes as input two equal-length fragments U = S[i . . i + ℓ] and
V = S[j . . j +ℓ], and returns all rotations of U that are equal to V . Any cyclic equivalence
query reduces to O(1) LCE queries and O(1) IPM(P, T ) queries with |T |/|P | = O(1).
A period query takes as input a fragment U = S[i . . j], and returns all periods of U . Such
a period query reduces to O(log |U |) LCE queries and O(log |U |) IPM(P, T ) queries with
|T |/|P | = O(1).
A 2-period query takes as input a fragment U = S[i . . j], checks if U is periodic and, if so,
it also returns U ’s period. Such a query reduces to O(1) LCE queries and O(1) IPM(P, T )
queries with |T |/|P | = O(1).

▶ Corollary 4.1. Suppose that we have read-only random access to a string S of length n over
an integer alphabet. For any integer τ = O(n/ log2 n), there is a data structure that can be
built using O(n logn/τ n + (n/τ) · log4 n log log n) time and O((n/τ) · log n(log log n)3) extra
space and can answer cyclic equivalence and 2-period queries on S in O(τ + log n log3 log n)
time, and period queries on S in O(τ log n + log2 n log3 log n) time.

By plugging this implementation of the PILLAR model into [26, 27, 24, 11, 28], we obtain
the following:

▶ Corollary 4.2. Suppose that we have read-only random access to a text T of length n, a
pattern P of length m over an integer alphabet. Given an integer threshold k, for any integer
τ = O(m/ log2 m), we can compute:

the approximate occurrences of P in T under the Hamming distance in Õ(n + k2τ · n/m)
time using Õ(m/τ + k2) extra space;
the approximate occurrences of P in T under the edit distance in Õ(n + k3.5τ · n/m) time
using Õ(m/τ + k3.5) extra space;
the approximate occurrences of all rotations of P in T under the Hamming distance in
Õ(n + k3τ · n/m) time using Õ(m/τ + k3) extra space;
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the approximate occurrences of all rotations of P in T under the edit distance in Õ(n +
k5τ · n/m) time using Õ(m/τ + k5) extra space;
in the case where P has D wildcard letters arranged in G maximal intervals, the approx-
imate occurrences of P in T under the Hamming distance in Õ(n+(D +k)(G+k)τ ·n/m)
time using Õ(m/τ + (D + k)(G + k)) extra space.

To the best of our knowledge, the only work that has considered approximate pattern
matching in the read-only model is due to Bathie et al. [12]. They presented online algorithms
both for the Hamming distance and the edit distance; for the Hamming distance their
algorithm uses O(k log m) extra space and O(k log m) time per letter of the text, and for the
edit distance Õ(k4) bits of space and Õ(k4) amortised time per letter.

5 LCS and CPM in the Streaming Setting

In the streaming setting, we receive a stream composed of the concatenation of the input
strings, e.g., the pattern and the text in the case of CPM. We account for all the space used,
including the space needed to store any information about the input strings. We exploit
the well-known connection between streaming algorithms and communication complexity to
prove linear-space lower bounds for streaming algorithms for LCS and CPM.

Lower Bounds for Streaming Algorithms
Our streaming lower bounds are based on a reduction from the following problem:

Augmented Index
Alice holds a binary string S of length n.
Bob holds an index i ∈ [1 . . n] and the string S[. . i − 1].
Output: Bob is to return the value of S[i].

In the one-way communication complexity model, Alice performs an arbitrary computation
on her input to create a message M and sends it to Bob who must compute the output using
this message and his input. The communication complexity of a protocol is the size of M in
bits. The protocol is randomised when either Alice or Bob use randomised computation.

▶ Theorem 5.1 ([18, Theorem 2.3]). The randomised one-way communication complexity of
Augmented Index is Ω(n) bits.

▶ Theorem 5.2. In the streaming setting, any algorithm for LCS for strings of length at
most n uses Ω(n) bits of space.

Proof. We show the bound by a reduction from the Augmented Index problem. Consider
an input S, (i, S[. . i − 1]) to the Augmented Index problem, where |S| = n. We observe
that for A = 0n$S and B = 0n$S[. . i−1]1, where $ /∈ {0, 1}, we have LCS(A, B) = n+ i+1 if
and only if S[i] = 1. Now, if we have a streaming algorithm for LCS that uses b bits of space,
we can develop a one-way protocol for the Augmented Index problem with message size b

bits as follows. Alice runs the algorithm on A. When she reaches the end of A, she sends
the memory state of the algorithm and n (in binary) to Bob. Bob continues running the
algorithm on B, which he can construct knowing n and S[. . i − 1], and returns 1 if and only if
LCS(A, B) = n + i + 1. Theorem 5.1 implies that b + log n = Ω(n), and hence b = Ω(n). ◀

▶ Theorem 5.3. In the streaming setting, any algorithm for CPM uses Ω(m) bits of space,
where m is the size of the pattern.
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Proof. We show the bound by a reduction from the Augmented Index problem. Consider
an input S, (i, S[. . i − 1]) to the Augmented Index problem, where |S| = m. Let A = S$
and B = S$S[. . i − 1]1, where $ /∈ {0, 1}. B ends with an occurrence of a rotation of A if and
only if S[i] = 1. Now, if we have a streaming algorithm for CPM that uses b bits of space, we
can develop a one-way protocol for the Augmented Index problem with message size b

bits as follows. Alice runs the algorithm on the pattern A = S$ and the first |S| + 1 letters
of the string B. She then sends the memory state of the algorithm to Bob. Bob continues
running the algorithm on the remainder of B, i.e., on S[1 . . i − 1]1, and returns 1 if and only
if the algorithm reports an occurrence of a rotation of A ending at position n + i + 1. By
Theorem 5.1, we have b = Ω(m). ◀

6 LCS and CPM in the Asymmetric Streaming Setting

In this section, we use Theorem 3.7 to show that for any τ ∈ [Ω̃(
√

m) . . O(m/ log2 m)], there
are asymmetric streaming algorithms for LCS and CPM that use O(τ) space and Õ(m/τ)
time per letter. We start by giving an algorithm for a generalization of the LCS problem
that can be used to solve both LCS and CPM. For two strings S, T , a fragment T [t . . t′] is
a T -maximal common substring of S and T if it is a occurs in S and neither T [t − 1 . . t′]
(assuming t > 1) nor T [t . . t′ + 1] (assuming t′ < n) occurs in S.

▶ Theorem 6.1. Assume to be given read-only random access to a string S of length m and
streaming access to a string T of length n over an integer alphabet, where n ≥ m. For all
τ ∈ [

√
m log m(log log m)3 . . O(m/ log2 m)], there is an algorithm that reports all T -maximal

common substrings of S and T using O(τ) space and O(nm/τ · log log σ) time.

Proof. We cover T with windows of length 2τ (except maybe for the last) that overlap by τ

letters: there are O(n/τ) such windows. After reading such a window W , we apply the
procedure encapsulated in the following claim with A = W and B = S:

▷ Claim 6.2. Let A, B be strings of respective lengths a and b, where a < b < aO(1), over
an integer alphabet of size σ. Given read-only random access to A and B, we can compute
all B-maximal common substrings of A and B, and the length LCSuf(A, B) of the longest
suffix of A that occurs in B in O(b log log σ) time using O(a) extra space.

Proof. We start by building the suffix tree for A and preprocessing it for constant-time
weighted ancestor queries: this takes O(a) time (see Fact 2.2 and Fact 2.8). Additionally,
we preprocess the labels of edges outgoing from each node according to Fact 2.6. Then, the
algorithm traverses the tree maintaining the following invariant: at every moment, it is at a
node (maybe implicit) corresponding to a substring B[i . . j] of B. It starts at the root of the
tree with i = 1 and j = 0. In each iteration, the algorithm tries to go down the tree from the
current node using B[j + 1]; this takes O(log log σ) time. If it succeeds, it increments j and
continues. Otherwise, it considers two cases. If it is at the root, it increments both i and j.
Otherwise, it jumps to the node corresponding to B[i + 1 . . j] via a weighted ancestor query
in O(1) time and increments i. The nodes reached by an edge traversal and abandoned with
the use of a weighted ancestor query in the next iteration are in one-to-one correspondence
with the B-maximal common substrings of A and B. The LCSuf of A and B is the depth of
the deepest visited node that corresponds to a suffix of A. As at least one of the indices i, j

gets incremented at every step of the traversal, the total runtime is O(b log log σ). ◁

The above sliding-window procedure takes O(m log log σ) time per window and uses O(τ)
space, which adds up to O(nm/τ · log log σ) time in total, and finds all T -maximal common
substrings of S and T that have length at most τ .
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We run another procedure in parallel in order to compute T -maximal common substrings
of length at least τ . During preprocessing, we build the Extended IPM (Decision) data
structure (Theorem 3.7) for the string S with ℓ = τ − 2 in O(m logm/τ m) = O(nm/τ) time
using O((m/τ) · log m(log log m)3) = O(τ) space.

Assume that while reading a window W = T [ℓ . . r], the sliding-window procedure found
an LCSuf T [i . . r] of length at least τ . We start a search for a common substring starting
in W . Let j ≥ r be the current letter of T , and T [i . . j], ℓ ≤ i ≤ r, be the longest suffix
of T [ℓ . . j] that occurs in S. We assume that we know a position where T [i . . j] occurs
in S, which is the case for j = r. When T [j + 1] arrives, we update i using the following
observation:

▶ Observation 6.3. If T [i . . j] is the longest suffix of T [1 . . j] that occurs in S, and T [i′ . . j+1]
is the longest suffix of T [1 . . j + 1] that occurs in S, then i ≤ i′.

By using binary search and IPM queries, we can find the smallest i ≤ i′ such that
T [i′ . . j + 1] occurs in S and a witness occurrence, if the corresponding string has length at
least τ : namely, if S[x . . x′] is a witness occurrence of T [i . . j] in S, we search for occurrences
of P = S[x + (i′ − i) . . x′]T [j + 1] in S. If j − i′ < τ , we stop the search, and otherwise we
set i′ = i and continue. It is evident that all T -maximal common substrings of S and T that
are of length greater than τ can be extracted during the execution of the above procedure: a
maintained suffix of length greater than τ is such a fragment if the last update to it was an
increment of its right endpoint, while the next update is an increment of its left endpoint.
For every letter, we run at most one binary search which uses O(log m) IPM queries and
hence takes O(log m(log log m)3) time. As τ = O(m/ log2 m), the m/τ term dominates the
per-letter running time. The correctness of the described procedure follows from the fact
that any substring of T of length greater than τ is either fully contained in the first window
or crosses the boundary of some window. ◀

▶ Corollary 6.4. Assume to be given random access to an m-length string S and streaming ac-
cess to a n-length string T , where n ≥ m. For all τ ∈ [

√
m log m(log log m)3 . . O(m/ log2 m)],

there is an algorithm that computes LCS(S, T ) using O(nm/τ · log log σ) time and O(τ) space.

Proof. Note that the longest common substring of S and T is a T -maximal substring of S

and T . We use the algorithm of Theorem 6.1 with the same value of τ to iterate over all
T -maximal common substrings T [t . . t′] of S and T , and store the pair of indices t, t′ that
maximizes t′ − t. ◀

▶ Corollary 6.5. Assume to be given random access to an m-length pattern P and streaming ac-
cess to an n-length text T , where n ≥ m. For all τ ∈ [

√
m log m(log log m)3 . . O(m/ log2 m)],

there is an algorithm that solves the CPM problem for P, T using O(m/τ · log log σ) time per
letter of T and O(τ) space.

Proof. We use the algorithm of Theorem 6.1 with threshold τ on the string P · P , to which
we have random access, and a streaming string T . The occurrence of any rotation of P

in T implies a common substring of P · P and T of length m ≥ 2τ . The algorithm of
Theorem 6.1 allows us to find such occurrences in O(m/τ · log log σ) amortized time per
letter of T using O(τ) space. By noticing that none of the m-length substrings are fully
contained in T (|T |−τ . . |T |], we can deamortise the algorithm using the standard time-slicing
technique, cf [30]. ◀
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7 CPM in the Read-only Setting

In this section, we present a deterministic read-only online algorithm for the CPM problem.

▶ Theorem 7.1. There is a deterministic read-only online algorithm that solves the CPM
problem on a pattern P of length m and a text T of length n using O(1) space and O(1) time
per letter of the text.

Proof. In this proof, we assume that n ≤ 2m − 1. If this is not the case, we can cover T with
2m-length windows overlapping by m − 1 letters, and process the text window by window;
the last window might be shorter. Every occurrence of a rotation of P belongs to exactly
one of the windows and hence will be reported exactly once.

We partition P into four fragments P1, P2, P3, P4, each of length either ⌊m/4⌋ or ⌈m/4⌉.2
By applying Fact 2.4, we compute the periods of each of P and Pi for i ∈ [1 . . 4], if it is are
periodic. We also compute, for each i ∈ [1 . . 4], the occurrences of Pi in P 2 using Fact 2.3,
and store them in O(1) space due to Fact 2.1. Overall, the preprocessing step takes O(m)
time and uses constant space.

We compute all occurrences of all Pi in T in an online manner using Fact 2.3. Due to
Fact 2.1, we can represent all computed occurrences of each Pi using a constant number of
arithmetic progressions with difference per(Pi) in O(1) space.

▶ Observation 7.2. Assume that T (j − m . . j] = P [∆ + 1 . . m] ◦ P [. . ∆]. There is an
occurrence of Pi at a position ℓ of T such that j − m < ℓ ≤ j − |Pi| + 1 if and only if there is
an occurrence of Pi at position p = ∆ + ℓ − j + m of P 2.

Now, note that for every rotation P ′ of P , some Pi occurs at one of the first ϕ := 2⌈m/4⌉
positions of P ′. We will use such occurrences as anchors to compute the occurrences of
rotations of P in T . Fix i such that there is an occurrence of Pi in the first ϕ positions of
T (j − m . . j]. We consider two cases depending on whether the period of Pi is large or small.

Case I: per(Pi) > |Pi|/4. By Fact 2.1, there are O(1) occurrences of Pi in each of T

and P 2. Suppose that Pi occurs at position ℓ of T . If T (j − m . . j] = P [∆ + 1 . . m] ◦ P [. . ∆]
for some ∆, then, by Observation 7.2, Pi occurs at position p = ∆ + ℓ − j + m of P 2 and we
must have that the length of the longest common suffix of T [1 . . ℓ) and P 2[1 . . p) is at least
ℓ − (j − m) and the length of the longest common prefix of T [ℓ + |Pi| . .] and P 2[p + |Pi| . .] is
at least j − ℓ − |Pi|. As we only need to consider occurrences of Pi in the first ϕ positions of
rotations of P , we can work under the assumption that ℓ − (j − m) ≤ ϕ. Hence, it suffices to
compute, for every occurrence of Pi at a position p in P 2 and every occurrence of Pi at a
position ℓ in T , values

x := max{ϕ, LCER(T [1 . . ℓ), P 2[1 . . p))}, the maximum of ϕ and the length of the longest
common suffix of T [1 . . ℓ) and P 2[1 . . p);
y := LCER(T [1 . . ℓ), P 2[1 . . p)), the length of the longest common prefix of T [ℓ + |Pi| . .]
and P 2[p + |Pi| . .].

The length y is computed naively as new letters arrive, while, in order to compute x,
we perform a constant number of letter comparisons for each letter that arrives. Since
ℓ − (j − m) = O(j − ℓ − |Pi|), we will have completed the extension to the left when the j-th
letter of the text arrives. As there is a constant number of pairs (p, ℓ) to be considered, we
perform a total number of O(1) letter comparisons per letter of the text.

2 The sole reason for partitioning P into four fragments instead of two is to guarantee that there is an
occurrence of some Pi close the the starting position of each rotation of P . This allows us to obtain a
worst-case rather than an amortised time bound for processing each letter of the text.
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Case II: per(Pi) ≤ |Pi|/4. For brevity, denote ρ = per(Pi). Below, when we talk about
arithmetic progressions of occurrences of Pi, we mean maximal arithmetic progressions
of starting positions of occurrences of Pi with difference ρ. Consider the first element ℓ

and the last element r of the rightmost computed arithmetic progression of occurrences
of Pi in T (j − m . . j]. We next distinguish between two cases depending on whether
per(T (j − m . . j]) = ρ. This information can be easily maintained in O(1) time per letter
using O(1) space as follows. In particular, for each arithmetic progression of occurrences
of Pi in T , we perform at most ρ − 1 letter comparisons to extend the periodicity to the left;
we can do this lazily upon computing the first element of each progression, by performing at
most one letter comparison for each of the next ρ − 1 letter arrivals. Further, as at most
one arithmetic progression corresponds to occurrences of Pi in T that contain a position
in (j − ρ . . j], the extensions to the right take O(1) time per letter as well.

Subcase (a): per(T (j − m . . j]) ̸= ρ. Suppose that T (j − m . . j] = P [∆ + 1 . . m] ◦ P [. . ∆]
for some ∆. Then, due to Observation 7.2, one of the two following holds:
1. ℓ and pℓ = ∆+ℓ−j +m are the first elements in arithmetic progressions of occurrences

of Pi in T (j − m . . j] and P 2, respectively;
2. r and pr = ∆+r −j +m are the last elements in arithmetic progressions of occurrences

of Pi in T (j − m . . j] and P 2, respectively.
We handle this case by considering a subset of pairs of occurrences of Pi and treating
them similarly to Case I. Namely, we consider (a) pairs that are first in their respective
arithmetic progressions in P 2 and T and (b) pairs that are last in their respective
arithmetic progressions in P 2 and T (j − m . . j]. By Fact 2.1, there are only a constant
number of such elements in P 2 and a constant number of such elements in the text at any
time (a previously last element in the text may stop being last when a new occurrence of
Pi is detected). For pairs of first elements there are no changes required to the algorithm
for Case I. We next argue that, for each pair (r, pr) of last elements, it suffices to perform
only O(ρ) letter comparisons to check how far the periodicity extends to the left, and that
this is all we need to check. Due to this, we do not restrict our attention to the case when
r ∈ (j − m . . j − m + ϕ], but rather consider all last elements of arithmetic progressions.
Let ℓ′ be the first element of the arithmetic progression in T (j − m . . m] that contains r.
If ℓ′ > ρ + j − m, we avoid extending to the left since either ℓ′ ∈ (j − m . . j − m + ϕ] and
the sought occurrence of a rotation of P , if it exists, will be computed by the algorithm
when it processes pair (ℓ′, ∆ + ℓ′ − j + m) or the sought occurrence will be computed
when processing a different arithmetic progression of occurrences of Pi or a different
Pj . Further note that the extension to the left has been already computed; either ℓ′ is
not the first element in the arithmetic progression of occurrences of Pi in T (we have
assumed that it is in T (j − m . . j]), in which case we are trivially done, or ℓ′ is the first
element of an arithmetic progression in T and hence we extended the periodicity via a lazy
computation when the occurrence of Pi at position ℓ′ was detected. As the occurrences
of Pi in T are spaced at least ρ positions away, the above procedure takes O(1) time per
letter of the text.

Subcase (b): per(T (j − m . . j]) = ρ. Using O(m) time and O(1) extra space, we can
precompute all 1 ≤ j ≤ ρ such that Q∞

i [j . . j + m) occurs in P 2, where Qi = Pi[1 . . ρ];
it suffices to extend the periodicity for each of the O(1) arithmetic progressions of
occurrences of Pi in P 2 and to perform standard arithmetic. In particular, the output
consists of a constant number of intervals. Then, if per(T (j − m . . j]) = ρ, T (j − m . . j]
equals a rotation of P if and only if ℓ − (j − m) (mod ρ) is in one of the computed
intervals and this can be checked in constant time. ◀
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