
Random Wheeler Automata
Ruben Becker #

Ca’ Foscari University of Venice, Italy

Davide Cenzato #

Ca’ Foscari University of Venice, Italy

Sung-Hwan Kim #

Ca’ Foscari University of Venice, Italy

Bojana Kodric #

Ca’ Foscari University of Venice, Italy

Riccardo Maso #

Ca’ Foscari University of Venice, Italy

Nicola Prezza #

Ca’ Foscari University of Venice, Italy

Abstract
Wheeler automata were introduced in 2017 as a tool to generalize existing indexing and compression
techniques based on the Burrows-Wheeler transform. Intuitively, an automaton is said to be
Wheeler if there exists a total order on its states reflecting the natural co-lexicographic order of the
strings labeling the automaton’s paths; this property makes it possible to represent the automaton’s
topology in a constant number of bits per transition, as well as efficiently solving pattern matching
queries on its accepted regular language. After their introduction, Wheeler automata have been
the subject of a prolific line of research, both from the algorithmic and language-theoretic points
of view. A recurring issue faced in these studies is the lack of large datasets of Wheeler automata
on which the developed algorithms and theories could be tested. One possible way to overcome
this issue is to generate random Wheeler automata. Motivated by this observation of practical
nature, in this paper we initiate the theoretical study of random Wheeler automata, focusing our
attention on the deterministic case (Wheeler DFAs – WDFAs). We start by naturally extending the
Erdős-Rényi random graph model to WDFAs, and proceed by providing an algorithm generating
uniform WDFAs according to this model. Our algorithm generates a uniform WDFA with n states,
m transitions, and alphabet’s cardinality σ in O(m) expected time (O(m log m) time w.h.p.) and
constant working space for all alphabets of size σ ≤ m/ ln m. The output WDFA is streamed directly
to the output. As a by-product, we also give formulas for the number of distinct WDFAs and
obtain that nσ + (n − σ) log σ bits are necessary and sufficient to encode a WDFA with n states and
alphabet of size σ, up to an additive Θ(n) term. We present an implementation of our algorithm and
show that it is extremely fast in practice, with a throughput of over 8 million transitions per second.

2012 ACM Subject Classification Theory of computation → Generating random combinatorial
structures; Theory of computation → Sorting and searching; Theory of computation → Graph
algorithms analysis

Keywords and phrases Wheeler automata, Burrows-Wheeler transform, random graphs

Digital Object Identifier 10.4230/LIPIcs.CPM.2024.5

Related Version Full Version: https://arxiv.org/abs/2307.07267

Supplementary Material
Software (Source Code): https://github.com/regindex/Wheeler-DFA-generation

archived at swh:1:dir:8c1d3690d81c3e6600423dfcbe8ce8bffb769f64

© Ruben Becker, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Riccardo Maso, and Nicola Prezza;
licensed under Creative Commons License CC-BY 4.0

35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024).
Editors: Shunsuke Inenaga and Simon J. Puglisi; Article No. 5; pp. 5:1–5:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rubensimon.becker@unive.it
https://orcid.org/0000-0002-3495-3753
mailto:davide.cenzato@unive.it
https://orcid.org/0000-0002-0098-3620
mailto:sunghwan.kim@unive.it
https://orcid.org/0000-0002-1117-5020
mailto:bojana.kodric@unive.it
https://orcid.org/0000-0001-7242-0096
mailto:riccardomaso27@gmail.com
mailto:nicola.prezza@unive.it
https://orcid.org/0000-0003-3553-4953
https://doi.org/10.4230/LIPIcs.CPM.2024.5
https://arxiv.org/abs/2307.07267
https://github.com/regindex/Wheeler-DFA-generation
https://archive.softwareheritage.org/swh:1:dir:8c1d3690d81c3e6600423dfcbe8ce8bffb769f64;origin=https://github.com/regindex/Wheeler-DFA-generation;visit=swh:1:snp:2b163d473c5282eb2d1928f366f3a7173c7bc0ae;anchor=swh:1:rev:5d17f4ff2752eb75c5873ae12749d1eb0c44f91f
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Random Wheeler Automata

Funding Ruben Becker, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Nicola Prezza: Funded
by the European Union (ERC, REGINDEX, 101039208). Views and opinions expressed are however
those of the author(s) only and do not necessarily reflect those of the European Union or the
European Research Council. Neither the European Union nor the granting authority can be held
responsible for them.

1 Introduction

Wheeler automata were introduced by Gagie et al. in [11] in an attempt to unify existing
indexing and compression techniques based on the Burrows-Wheeler transform [5]. An
automaton is said to be Wheeler if there exists a total order of its states such that (i)
states reached by transitions bearing different labels are sorted according to the underlying
total alphabet’s order, and (ii) states reached by transitions bearing the same label are
sorted according to their predecessors (i.e. the order propagates forward, following pairs
of equally-labeled transitions). Equivalently, these axioms imply that states are sorted
according to the co-lexicographic order of the strings labeling the automaton’s paths. Since
their introduction, Wheeler automata have been the subject of a prolific line of research,
both from the algorithmic [7, 3, 10, 12, 9, 6, 13] and language-theoretic [2, 1, 8] points of
view. The reason for the success of Wheeler automata lies in the fact that their total state
order enables simultaneously to index the automaton for pattern matching queries and to
represent the automaton’s topology using just O(1) bits per transition (as opposed to the
general case, requiring a logarithmic number of bits per transition).

A recurring issue faced in research works on Wheeler automata is the lack of datasets of
(large) Wheeler automata on which the developed algorithms and theories could be tested.
As customary in these cases, a viable solution to this issue is to randomly generate the desired
combinatorial structure, following a suitable distribution. The most natural distribution,
the uniform one, represents a good choice in several contexts and can be used as a starting
point to shed light on the combinatorial objects under consideration; the case of random
graphs generated using the Erdős-Rényi random graph model [15] is an illuminating example.
In the case of Wheeler automata, we are aware of only one work addressing their random
generation: the WGT suite [6]. This random generator, however, does not guarantee a
uniform distribution over the set of all Wheeler automata.

Our contributions
Motivated by the lack of formal results in this area, in this paper we initiate the theoretical
study of random Wheeler automata, focusing our attention on the algorithmic generation
of uniform deterministic Wheeler DFAs (WDFAs). We start by extending the Erdős-Rényi
random graph model to WDFAs: our uniform distribution is defined over the set Dn,m,σ of all
Wheeler DFAs over the effective alphabet (i.e. all labels appear on some edge) [σ] = {1, . . . , σ},
with n states [n], m transitions, and Wheeler order 1 < 2 < . . . < n. We observe that,
since any WDFA can be encoded using O(nσ) bits [11], the cardinality of Dn,m,σ is at most
2O(nσ). On the other hand, the number of DFAs with n states over alphabet of size σ is
2Θ(nσ log n) [15]. As a result, a simple rejection sampling strategy that uniformly generates
DFAs until finding a WDFA (checking the Wheeler property takes linear time on DFAs [1])
would take expected exponential time to terminate. To improve over this naive solution, we
start by defining a new combinatorial characterization of WDFAs: in Section 3, we establish
a bijection that associates every element of Dn,m,σ to a pair formed by a binary matrix and
a binary vector. This allows us to design an algorithm to uniformly sample WDFAs, based
on the above-mentioned representation. Remarkably, our sampler uses constant working
space and streams the sampled WDFA directly to output:

R. Becker, D. Cenzato, S.-H. Kim, B. Kodric, R. Maso, and N. Prezza 5:3

▶ Theorem 1. There is an algorithm to generate a uniform WDFA from Dn,m,σ in O(m)
expected time (O(m log m) time with high probability) using O(1) words of working space, for
all alphabets of size σ ≤ m/ ln m. The output WDFA is directly streamed to the output as a
set of labeled edges.

As a by-product of our combinatorial characterization of WDFAs, in Theorem 19 we give
an exact formula for the number |Dn,m,σ| of distinct WDFAs with n nodes and m edges
labeled from alphabet [σ] and in Theorem 20 we give a tight asymptotic formula for the
number |Dn,σ| of distinct WDFAs with n nodes and any number of edges labeled from [σ],
obtaining that nσ + (n − σ) log σ bits are necessary and sufficient to encode WDFAs from
such a family up to an additive Θ(n) term.

We conclude by presenting an implementation of our algorithm, publicly available at
https://github.com/regindex/Wheeler-DFA-generation, and showing that it is very fast
in practice while using a negligible (constant) amount of working space.

2 Preliminaries and Problem Statement

With ln x and log x, we indicate the natural logarithm and the logarithm in base 2 of x,
respectively. For an integer k ∈ N+, we let [k] denote the set of all integers from 1 to
k. For a bit-vector v ∈ {0, 1}k, we denote with ∥v∥ =

∑
i∈[k] vi the L1-norm of v, i.e.,

the number of set bits in v. For an integer ℓ ≤ k, we denote with v[1 : ℓ] the bit-vector
(v1, . . . , vℓ) consisting only of the first ℓ bits of v. For a bit-matrix A ∈ {0, 1}ℓ×k and a
column index j ∈ [k], we denote the j’th column of A by Aj and the element at row i and
column j as Ai,j . We let ∥A∥ =

∑
i∈[k],j∈[ℓ] Ai,j be the L1,1-norm of A, which again counts

the number set bits in A. For a bit-vector v ∈ {0, 1}k, we use the notation rank(v, i) to
denote the number of occurrences of 1 in v[1 : i]. For completeness, we let rank(v, 0) = 0.
We generalize this function also to matrices as follows. For a bit-matrix A ∈ {0, 1}ℓ×k, we
let rank(A, (i, j)) =

∑
r∈[j−1] rank(Ar, ℓ) + rank(Aj , i). We sometimes write bit-vectors from

{0, 1}k in string form, i.e., as a sequence of k bits.
In this paper we are concerned with deterministic finite automata.

▶ Definition 2 (Determinisitic Finite Automaton (DFA)). A Determinisitic Finite (Semi-)
Automaton (DFA) D is a triple (Q, Σ, δ) where Q = [n] is a finite set of n states with 1 ∈ Q

being the source state, Σ = [σ] is the finite alphabet of size σ, and δ : Q × Σ → Q is a
transition function containing m transitions.

We omit to specify the final states of DFAs, since they do not play a role in the
context of our problem. We use the shorthand δj(v) for δ(v, j). Furthermore, we write
δout(v) := {δj(v) : j ∈ Σ} for the set of all out-neighbors of a state v ∈ Q and δin(v) :=
{u ∈ Q : ∃j ∈ Σ with v ∈ δj(u)} for the set of all in-neighbors of v. We assume DFAs
to have non-zero in-degree for exactly the non-source states, i.e., δin(v) ̸= ∅ if and only if
v > 1; This choice simplifies our exposition and it is not restrictive from the point of view
of the languages accepted by such DFAs. We do not require the transition function δ to
be complete; This choice is motivated by the fact that requiring completeness restricts the
class of Wheeler DFAs [2]. Furthermore, we do not require DFAs to be connected; Also this
choice is customary as it allows, for instance, to use our WDFA sampler to empirically study
properties such as connectivity phase transition thresholds.

We say that the alphabet Σ is effective if and only if (∀j ∈ Σ)(∃u, v ∈ Q)(δj(u) = v), i.e.
if every character of Σ labels at least one transition. We assume that the alphabet Σ = [σ] is
totally ordered according to the standard order among integers. Wheeler DFAs constitute

CPM 2024

https://github.com/regindex/Wheeler-DFA-generation

5:4 Random Wheeler Automata

a special class of DFAs that can be stored compactly and indexed efficiently due to an
underlying order on the states: the Wheeler order (see Definition 3). As said in Definition 2,
in this paper the states Q of an automaton D are represented by the integer set [n] for some
positive integer n; note that in the following definition we use the order on integers < to
denote the Wheeler order on the states.

▶ Definition 3 (Wheeler DFA [11]). A Wheeler DFA (WDFA) is a DFA D such that < is a
Wheeler order, i.e. for a, a′ ∈ Σ, u, v, u′, v′ ∈ Q:

(i) If u′ = δa(u), v′ = δa′(v), and a ≺ a′, then u′ < v′.
(ii) If u′ = δa(u) ̸= δa(v) = v′ and u < v, then u′ < v′.

We note that the source axiom present in [11], which requires that the source state is first
in the order, vanishes in our case as the ordering < on the integers directly implies that the
source state is ordered first. Notice that property (i) in Definition 3 implies that a WDFA is
input-consistent, i.e., all in-going transitions to a given state have the same label.

▶ Definition 4. With Dn,m,σ we denote the set of all Wheeler DFAs with effective alphabet
Σ = [σ], n states Q = [n], m transitions, and Wheeler order 1 < 2 < . . . < n.

Clearly, Dn,m,σ is a subset of the set An,m,σ of all finite (possibly non-deterministic)
automata over the ordered alphabet [σ] with n states [n] and m transitions.

In this paper we investigate the following algorithmic problem:

▶ Problem 5. For given n, m, and σ, generate an element from Dn,m,σ uniformly at random.

Note that, since in Definition 4 we require 1 < 2 < . . . < n to be the Wheeler order,
Problem 5 is equivalent to that of uniformly generating pairs formed by a Wheeler DFA D

and a valid Wheeler order for the states Q = [n] of D, not necessarily equal to the integer
order 1 < 2 < · · · < n. Throughout the whole paper, we assume that n − 1 ≤ m ≤ nσ and
σ ≤ n − 1 (due to input consistency), as otherwise Dn,m,σ = ∅ and the problem is trivial.

3 An Algorithm for Uniformly Generating WDFAs

Our strategy towards solving Problem 5 efficiently is to associate every element D from
Dn,m,σ to exactly one pair (O, I) of elements from On,σ,m × Im,n (see Definition 6 below)
via a function r : Dn,m,σ → On,σ,m × Im,n (“r” stands for representation). Formally, the two
sets appearing in the co-domain of r are given in the following definition.

▶ Definition 6. Let

On,σ,m :=
{

O ∈ {0, 1}n×σ : ∥O∥ = m and ∥Oj∥ ≥ 1 for all j ∈ [σ]
}

and
Im,n :=

{
I ∈ {0, 1}m : ∥I∥ = n − 1

}
.

The intuition behind the two sets On,σ,m and Im,n is straightforward: their elements
encode the outgoing labels and the in-degrees of the automaton’s states, respectively. In order
to describe more precisely this intuition, let us fix an automaton D = (Q, δ, Σ) ∈ Dn,m,σ and
consider its image r(D) = (O, I) ∈ On,σ,m × Im,n (see Figures 1 and 2 for an illustration):

The matrix O is an encoding of the labels of the out-transitions of D. A 1-bit in position
Ou,j means that there is an out-going transition from state u labeled j. Formally,

Ou,j :=
{

1 if ∃v : v = δj(u)
0 otherwise.

(1)

R. Becker, D. Cenzato, S.-H. Kim, B. Kodric, R. Maso, and N. Prezza 5:5

The vector I is a concise encoding of the in-degrees of all states. It is defined as

I := (1, 0, . . . , 0︸ ︷︷ ︸
|δin(2)|

, 1, 0, . . . , 0︸ ︷︷ ︸
|δin(3)|

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
|δin(n)|

), (2)

i.e, for all states i other than the source (that has no in-transitions), the vector contains
exactly one 1-bit followed by |δin(i)| − 1 0-bits.

1 2 3 4 5

2

1 2

2

1

2

Figure 1 Running example: a WDFA D with n = 5 states, m = 6 edges, alphabet cardinality
σ = 2, and Wheeler order 1 < 2 < 3 < 4 < 5. Note that the WDFA has two connected components.

1 2
1 0 1
2 1 0
3 0 1
4 0 1
5 1 1

2 3 4 5
1 0 1 1 0 1

Figure 2 Matrix O (left) and bit-vector I (right) forming the encoding r(D) = (O, I) of the
WDFA D of Figure 1. In matrix O, column names are characters from Σ = [σ] and row names
are states from Q = [n]. In bit-vector I, each state (except state 1) is associated with a bit set,
in Wheeler order. Cells containing a set bit are named with the name of the corresponding state.
Bits in bold highlight the states on which the character that labels the state’s incoming transitions
changes (i.e. state 2 is the first whose incoming transitions are labeled 1, and state 3 is the first
whose incoming transitions are labeled 2).

Let us proceed with two remarks.
▶ Remark 7. As ∥O∥ = m there are m transitions in total. As ∥Oj∥ ≥ 1 for all j ∈ [σ], the
alphabet is effective, i.e., every character labels at least one transition.
▶ Remark 8. The vector I does not encode the letter on which a transition is in-going to a
given state. Notice however that as D is a WDFA all these transitions have to be labeled with
the same letter and we can reconstruct this letter for a given I once we know the total number
of transitions labeled with each letter. This is because property (i) of Definition 3 guarantees
that the node order is such that the source state (that has no in-going transitions) is ordered
first followed by nodes whose in-transitions are labeled with character 1, followed by nodes
with in-transitions labeled with character 2, etc. The information on how many transitions
are labeled with each character is carried by the matrix O for which r(D) = (O, I).

Let (O, I) be a pair from the image of r, i.e, r(D) = (O, I) for some D. Then it will
always be the case that I is contained in a subset IO of Im,n that can be defined as follows.

▶ Definition 9. For a matrix O ∈ On,σ,m, let

IO :=
{

I ∈ Im,n : I1+
∑j−1

k=1
∥Ok∥ = 1 for all j ∈ [σ]

}
.

CPM 2024

5:6 Random Wheeler Automata

Using our running example of Figure 2, the bits I1+
∑j−1

k=1
∥Ok∥ that we force to be equal

to 1 are those highlighted in bold, i.e. I1 and I3: noting that bits in I correspond to edges,
those bits correspond to the leftmost edge labeled with a given character j (for any j ∈ Σ).

This leads us to define the following subset of On,σ,m × Im,n:

▶ Definition 10. Rn,m,σ := {(O, I) : O ∈ On,σ,m and I ∈ IO}.

Based on the above definition, we can prove:

▶ Lemma 11. For any D ∈ Dn,m,σ, r(D) ∈ Rn,m,σ.

Proof. Note that the integers
∑j−1

k=1 ∥Ok∥ for j ∈ [σ] correspond to the number of edges
labeled with letters 1, . . . , j − 1, hence the positions 1 +

∑j−1
k=1 ∥Ok∥ correspond to a change

of letter in the sorted (by destination node) list of edges. Recalling that WDFAs are input-
consistent (i.e., all in-transitions of a given node carry the same label) and that nodes are
ordered by their in-transition letters, positions 1+

∑j−1
k=1 ∥Ok∥ for j ∈ [σ] in I must necessarily

correspond to the first edge of a node, hence they must contain a set bit. ◀

The co-domain of the function r can thus be restricted, and the function’s signature can
be redefined, as follows: r : Dn,m,σ → Rn,m,σ.

After describing this association of a WDFA D ∈ Dn,m,σ to a (unique) pair r(D) =
(O, I) ∈ Rn,m,σ, we will argue that function r is indeed a bijection from Dn,m,σ to Rn,m,σ.
It will follow that one way of generating elements from Dn,m,σ is to generate elements from
Rn,m,σ: this will lead us to an efficient algorithm to uniformly sample WDFAs from Dn,m,σ,
as well to a formula for the cardinality of Dn,m,σ.

3.1 The Basic WDFA Sampler
Our overall approach is to (1) uniformly sample a matrix O from On,σ,m using Algorithm 2,
then (2) uniformly sample a vector I from IO using Algorithm 3 with input O, and finally
(3) build a WDFA D using O and I as input via Algorithm 4. We summarize this procedure
in Algorithm 1. A crucial point in our correctness analysis (Section 4) will be to show that
uniformly sampling from On,σ,m and IO does indeed lead to a uniform WDFA from Dn,m,σ

(besides the bijectivity of r, intuitively, this is because |IO| = |IO′ | for any O, O′ ∈ On,σ,m).
As source of randomness, our algorithm uses a black-box shuffler algorithm: given a

bit-vector B ∈ {0, 1}∗, function shuffle(B) returns a random permutation of B. To improve
readability, in this subsection we start by describing a preliminary simplified version of our
algorithm which does not assume any particular representation for the matrix-bit-vector pair
(O, I) ∈ Rn,m,σ, nor a particular shuffling algorithm (for now, we only require the shuffling
algorithm to permute uniformly its input). By employing a particular sequential shuffler,
in Subsection 3.2 we then show that we can generate a sparse representation of O and I

on-the-fly, thereby achieving constant working space and linear expected running time.

Algorithm 1 sample_D(n, m, σ).

1 O := sample_O(n, m, σ)
2 I := sample_I(O)
3 D := build_D(O, I)
4 return D

R. Becker, D. Cenzato, S.-H. Kim, B. Kodric, R. Maso, and N. Prezza 5:7

Out-transition Matrix. In order to sample the matrix O from On,σ,m, in addition to function
shuffle we assume a function reshapek,ℓ that takes a vector x of dimension k ·ℓ and outputs
a matrix A of dimension k × ℓ with the j’th column Aj being the portion x(j−1)·k+1, . . . , xj·k
of x. The algorithm to uniformly generate O from On,σ,m then simply samples a bit vector of
length nσ with exactly m 1-bits, shuffles it uniformly, reshapes it to be a matrix of dimension
n × σ and repeats these steps until a matrix is found with at least one 1-bit in each column
(rejection sampling).

Algorithm 2 sample_O(n, m, σ).

1 repeat
2 O := reshapen,σ(shuffle(1m0nσ−m))
3 until ∥Oj∥ ≥ 1 for all j ∈ [σ]
4 return O

Looking at the running example of Figures 1 and 2, the shuffler is called as shuffle(1604).
In this particular example, this bit-sequence is permuted as 0100110111 by function shuffle.
Function reshapen,σ converts this bit-sequence into the matrix O depicted in Figure 2, left.

In-transition Vector. In order to generate the vector I from Im,n, we proceed as follows.
The algorithm takes O as input and generates a uniform random element from the set IO

by first creating a “mask” that is a vector of the correct length m and contains σ 1-bits at
the points 1 +

∑j−1
k=1 ∥Ok∥ for j ∈ [σ]. These are the points in I where the character of the

corresponding transition changes and hence, by the input-consistency condition, also the
state has to change. The remaining m − σ positions in the mask are filled with the wildcard
character #. We then give this mask vector as the first argument to a function fill that
replaces the m − σ positions that contain the wildcard character # with the characters in the
second argument (in order). Formally, the function fill takes two vectors as arguments a

and b with the condition that a contains |b| times the # character and |a| − |b| times a 1-bit.
The function then returns a vector c that satisfies ci = 1 whenever ai = 1 and ci = bi−rank(a,i)
otherwise, i.e., when ai = #.

Algorithm 3 sample_I(O).

1 extract n, m, σ from O

2 mask := 1#∥O1∥−11#∥O2∥−1 . . . 1#∥Oσ∥−1

3 I := fill(mask, shuffle(1n−σ−10m−n+1))
4 return I

Going back to our running example of Figures 1 and 2, we have mask = 1#1### (that
is, all bits but the bold ones in the right part of Figure 2 are masked with a wildcard).
The shuffler is called as shuffle(1100) and, in this particular example, returns the shuffled
bit-vector 0101. Finally, function fill is called as fill(1#1###,0101) and returns the
bit-vector I =101101 depicted in the right part of Figure 2.

Building the WDFA. After sampling O and I, the remaining step is to build the output
DFA D. This is formalized in Algorithm 4. By iterating over all non-zero elements in
O, we construct the transition function δ: the i’th non-zero entry in O corresponds to an

CPM 2024

5:8 Random Wheeler Automata

in-transition at state rank(I, i) + 1 (we keep a counter named v corresponding to this rank).
The origin state of the transition is the row in which we find the i’th 1 in O when reading O

column-wise. The column itself corresponds to the label of this transition.

Algorithm 4 build_D(O, I).

1 extract n, m, σ from O, Q := [n], Σ := [σ]

2 δ := ∅, i := 1, v := 1
3 for j = 1, 2, . . . , σ do
4 for u = 1, 2, . . . , n do
5 if Ou,j = 1 then
6 if Ii = 1 then v := v + 1
7 δ := δ ∪ {((u, j), v))}, i := i + 1

8 return D = (Q, Σ, δ)

3.2 Constant-Space WDFA Sampler
Notice that our Algorithm 4 accesses the matrix O and the bit-vector I in a sequential
fashion: O is accessed column-wise and I from its first to last position. Based on this
observation, we now show how our WDFA sampler can be modified to use constant working
space. The high-level idea is to generate on-the-fly the positions of non-zero entries of O and
I in increasing order.

In order to achieve this, we employ the sequential shuffler described by Shekelyan and
Cormode [17]. Given two integers N and n, the function init_sequential_shuffler(N, n)
returns an iterator S that can be used (with a stack-like interface) to extract n uniform
integers without replacement from [N], in ascending order and using a constant number of
words of working space (that is, the random integers are generated on-the-fly upon request,
from the smallest to the largest). More specifically, function S.pop() returns the next sampled
integer, while S.empty() returns true if and only if all n integers have been extracted. The
sequential shuffling algorithm is essentially a clever modification of Knuth’s shuffle [14] (also
referred to as Fisher-Yates shuffler). Knuth’s shuffler, after going through the arbitrarily
ordered set [N], and in the i’th iteration (for i from 1 to n) swapping the i’th item with
the item at a random position [i, N], returns the first n items in the resulting permutation.
Knuth’s shuffler requires working space proportional to n as we need to remember which
elements have been swapped from lower positions (i.e., index ≤ n) into higher positions (i.e.,
index > n). The idea behind the sequential shuffler of Shekelyan and Cormode is to first
sample just the cardinality H of the set of items in higher positions that Knuth’s shuffler
would swap into lower position. Then, in a second step the algorithm samples H actual items
from higher positions with replacement, resulting in h ≤ H elements. Finally, in a third step,
n − h items are sampled from lower positions. We note that the distribution in the first step
is chosen such that the sampling in the second step can be done with replacement – sampling
duplicates simply increases the number of items sampled from lower positions. We refer the
reader to the article by Shekelyan and Cormode [17] for further details.

Algorithm Description. We now describe Algorithm 5. We recall the mask employed in
Algorithm 3: Algorithm 5 iterates, using variable i, over the ranks (i.e., i-th occurrences) of
characters # (wildcards) in the mask. Variable i′, on the other hand, stores the rank of the
next wildcard # that is replaced with a set bit by the shuffler; the values of i′ are extracted

R. Becker, D. Cenzato, S.-H. Kim, B. Kodric, R. Maso, and N. Prezza 5:9

Algorithm 5 sample_D_constant_space(n, m, σ).

1 i := 1 /* Current position in the subsequence of #’s of the mask */

2 v := 1 /* Destination state of current transition */

3 SO := init_sequential_shuffler(nσ, m)
4 SI := init_sequential_shuffler(m − σ, n − σ − 1)

5 i′ := SI .pop() /* next nonzero position in sequence of #’s in the mask */

6 j := 0 /* current column in O */

7 prev_j := 0 /* previously-visited column in O */

8 while not SO.empty() do
9 t := SO.pop()

10 (u, j) :=
((

(t − 1) mod n
)

+ 1,
(
(t − 1) div n

)
+ 1

)
/* Nonzero coordinate in O */

11 if j > prev_j + 1 then
12 clear output stream and goto line 1 /* Rejection: ∥Oprev_j+1∥ = 0 */

13 if j = prev_j + 1 /* Column of O changes */

14 then
15 v := v + 1
16 prev_j := j

17 else
18 if i = i′ then
19 v := v + 1
20 i′ := SI .pop() /* next nonzero position in sequence of #’s in the mask */

21 i := i + 1
22 output ((u, j), v) /* Stream transition to output */

23 if j ̸= σ then
24 clear output stream and goto line 1 /* Rejection: ∥Oσ∥ = 0 */

from the shuffler SI . Now, whenever i = i′, we are looking at a bit set in bit-vector I (which
here is not stored explicitly, unlike in Algorithm 4) and thus we have to move to the next
destination state v. This procedure exactly simulates Lines 6 and 7 of Algorithm 4.

The iteration (column-wise) over all non-zero entries of matrix O is simulated by the
extraction of values from the shuffler IO (one value per iteration of the while loop at Line 8):
each such value t extracted at Line 9 is converted to a pair (u, j) at Line 10. Variables j

and prev_j store the columns of the current and previously-extracted non-zero entries of
O, respectively. If j > prev_j + 1, then column number prev_j + 1 has been skipped by
the shuffler, i.e., Oprev_j+1 does not contain non-zero entries. In this case, we reject and
start the sampler from scratch (Line 12; note that we need to clear the output stream before
re-initializing the algorithm). If, on the other hand, j = prev_j+1 (Line 13), then the current
non-zero entry of O belongs to the next column with respect to the previously-extracted
non-zero entry; this means that the character labeling incoming transitions changes and we
therefore move to the next destination node by increasing v := v + 1 (Line 15). In this case
we do not increment i, since the new destination node v is the first having incoming label j

and thus it does not correspond to a character # in the mask. Variable i gets incremented
only if j = prev_j: this happens at Line 21. The other case in which we need to move to

CPM 2024

5:10 Random Wheeler Automata

the next destination node (v := v + 1) is when j = prev_j and i = i′ (Line 19). In such a
case, in addition to incrementing v we also need to extract from the shuffler SI the rank
i′ of the next mask character # that is replaced with a set bit (Line 20). After all these
operations, we write the current transition ((u, j), v) to the output stream (Line 22). The
last two lines of Algorithm 5 check if the last visited column of matrix O is indeed Oσ. If
not, ∥Oσ∥ = 0 and we need to reject and re-start the algorithm.

The remaining components of Algorithm 5 are devoted to simulate Algorithm 1, using as
input the two sequences of random pairs/integers extracted from SO and SI , respectively.
As a matter of fact, the two loops in Algorithm 4 correspond precisely to extracting the pairs
(u, j) from SO, and the check at Line 6 of Algorithm 4, together with the increment of i at
Line 7, corresponds to extracting the integers i′ from SI . The rejection sampling mechanism
(repeat-until loop in Algorithm 2) is simulated in Algorithm 5 by re-starting the algorithm
whenever the column j of the current pair (u, j) is either larger by more than one unit than
the column j_prev of the previously-extracted pair (i.e., ∥Oj_prev+1∥ = 0, Line 12), or if the
last pair extracted from SO is such that j is not the σ-th column (i.e., ∥Oσ∥ = 0, Line 24).

Running Example. To understand how the sequential shuffler is used in Algorithm 5, refer
again to the running example of Figures 1 and 2. In Algorithm 5 at Line 3, the sequential
shuffler SO is initialized as SO := init_sequential_shuffler(nσ = 10, m = 6), i.e. the
iterator SO returns 6 uniform integers without replacement from the set {1, 2, . . . , 10}. In
this particular example, function pop() called on iterator SO returns the following integers,
in this order: 2,5,6,8,9,10. Using the formula at Line 10 of Algorithm 5, these integers are
converted to the matrix coordinates (2, 1), (5, 1), (1, 2), (3, 2), (4, 2), (5, 2), i.e., precisely the
nonzero coordinates of matrix O in Figure 2, sorted first by column and then by row.

Using the same running example, the sequential shuffler SI is initialized in Line 4 of
Algorithm 5 as SI := init_sequential_shuffler(m − σ = 4, n − σ − 1 = 2), i.e. the
iterator SI returns two uniform integers without replacement from the set {1, 2, 3, 4}. In
this particular example, function pop() called on iterator SI returns the following integers,
in this order: 2,4. Using the notation of the previous subsection, this sequence has the
following interpretation: the 2-nd and 4-th occurrences of # of our mask 1#1### used
in Algorithm 3 have to be replaced with a bit 1, while the others with a bit 0. After this
replacement, the mask becomes 101101, i.e. precisely bit-vector I of Figure 2.

4 Analysis

4.1 Correctness, Completeness and Uniformity
Being Algorithm 5 functionally equivalent to Algorithm 1 (the only relevant difference between
the two being the employed data structures to represent matrix O and bit-vector I), for ease
of explanation in this section we focus on analyzing the correctness (the algorithm generates
only elements from Dn,m,σ), completeness (any element from Dn,m,σ can be generated by the
algorithm) and uniformity (all D ∈ Dn,m,σ have the same probability to be generated by the
algorithm) of Algorithm 1. These properties then automatically hold on Algorithm 5 as well.

We start with a simple lemma. The lemma says the following: Assume that r(D) = (O, I)
and O contains a 1 in position (u, j), meaning that there is a transition leaving state u,
labeled with letter j. Then this out-transition is the i = rank(O, (u, j)) bit that is set to 1 in
O and hence the entry in I corresponding to this transition can be found at I[i]. The state
to which this transition is in-going is exactly the number of 1s in I up to this point, i.e.,
rank(I, i), plus one (the offset is due to the source having no in-transitions).

R. Becker, D. Cenzato, S.-H. Kim, B. Kodric, R. Maso, and N. Prezza 5:11

▶ Lemma 12. Let D ∈ Dn,m,σ and let r(D) = (O, I). If Ou,j = 1 and rank(O, (u, j)) = i,
then δ(u, j) = rank(I, i) + 1.

Proof. First, notice that since Ou,j = 1, it is clear that there is an outgoing transition from
u labeled j. Furthermore, since rank(O, (u, j)) = i, we know that this transition corresponds
to the i-th entry in I. Now, by the definition of I, it follows that the destination state of the
considered transition is v = rank(I, i) + 1. ◀

Algorithm 4 is a deterministic algorithm and thus describes a function, say f , from the
set of its possible inputs to the set of its possible outputs. The set of its possible inputs, i.e.,
the domain of f , is exactly Rn,m,σ. The algorithm’s output is certainly a finite automaton,
i.e., the co-domain of f is An,m,σ. We will in fact show that the range of f is exactly Dn,m,σ.
We will do so by showing that f is actually an inverse of r, more precisely we show that (1)
r is surjective and (2) f is a left-inverse of r (and thus r is injective).

Surjectivity of r. We start with proving that r is surjective.

▶ Lemma 13. It holds that r : Dn,m,σ → Rn,m,σ is surjective.

Proof. Fix an element (O, I) ∈ Rn,m,σ, i.e., an O ∈ On,σ,m and I ∈ IO. We now construct
an automaton D = (Q, Σ, δ) and then show that r(D) = (O, I). We let Q = [n], Σ = [σ], and

δ = {((u, j), v) : Ou,j = 1 and v = rank(I, rank(O, (u, j))) + 1}.

Let r(D) = (O′, I ′) and let us proceed by showing that O = O′ and I = I ′. Recall the
definition of r, see Equations (1) and (2). It is immediate that O′ = O given the definition of
O′ and δ. In order to show that I ′ = I, first note that I ′ =

∏n
i=2 10|δin(i)|−1. Then, consider

the following relation between I and δin(i) for any state i ∈ [n], which uses the definition of
δ and Lemma 12:

|δin(i)| = |{(u, j) ∈ [n] × [σ] : Ou,j = 1 and rank(I, rank(O, (u, j))) + 1 = i}|
= |{k ∈ [m] : k = rank(O, (u, j)) for some (u, j) ∈ [n] × [σ] with Ou,j = 1

and rank(I, k) + 1 = i}|
= max{k ∈ [m] : rank(I, k) = i − 1} − max{k ∈ [m] : rank(I, k) = i − 2}.

Now, recall that I ∈ IO, hence the first bit in I is 1. Using the previous equality, it
now follows that the second 1-bit in I is at position |δin(2)| + 1. By using this equality
another n − 3 times, we obtain that the first

∑n−1
i=2 |δin(i)| + 1 positions of I are equal to

(10|δin(2)|−110|δin(3)|−1 . . . 10|δin(n−1)|−1)1 and thus agree with I ′. It remains to observe that
this portion of I already contains n − 1 bits that are equal to 1 and thus the remaining bits
have to be zero-bits as I ∈ I. Hence, I = I ′ and this completes the proof. ◀

Injectivity of r via Left-inverse f . In order to establish that f is the inverse of r, it remains
to prove that f is a left-inverse of r (which implies that r is injective).

▶ Lemma 14. The function f is a left-inverse of r, i.e., f(r(D)) = D for any D ∈ Dn,m,σ.

Proof. Let D = (Q, Σ, δ) ∈ Dn,m,σ and let (O, I) = r(D). We have to show that D′ = f(O, I),
i.e., the automaton D′ = (Q′, Σ′, δ′) output by Algorithm 4 on input (n, m, σ, O, I) is equal to
D. Notice that clearly Q = Q′ = [n] and Σ = [σ]. It remains to show that δ = δ′. It is clear
that Algorithm 4 adds m transitions to δ′, one in each of the m = ∥O∥ iterations. It thus

CPM 2024

5:12 Random Wheeler Automata

remains to prove that each such transition ((u, j), v) added in some iteration i is contained
in δ. Firstly, as Ou,j = 1 it is clear that D has an outgoing transition at state u with letter j,
second it is clear that the algorithm maintains the property that v = rank(I, i) + 1 and thus
due to Lemma 12 it holds that δ(u, j) = v and thus this transition is also contained in δ. ◀

We can thus denote the function f with r−1.

▶ Corollary 15. Function r : Dn,m,σ → Rn,m,σ is bijective.

The above lemma has several consequences. First, it shows that the output of Algorithm 4
is always a WDFA. Second, as the function r is bijective, this means that generating uniform
pairs from the range of r results in a uniform distribution of WDFAs from Dn,m,σ.

▶ Lemma 16. Algorithm 1 on input n, m, σ generates uniformly distributed WDFAs from
Dn,m,σ.

Proof. In the light of r being a bijection and Algorithm 4 implementing the function r−1, it
remains to argue that the statements O := sample_O(n, m, σ) and I := sample_I(O) from
Algorithm 1 in fact generate uniformly distributed pairs from the domain of r−1, i.e., from
Rn,m,σ. It is clear that sample_O(n, m, σ) results in a uniformly distributed element O from
On,σ,m and that sample_I(O) results in a uniformly distributed element I from IO. It thus
remains to observe that |IO| is identical for all O ∈ On,σ,m, namely |IO| =

(
m−σ

n−σ−1
)

for all
O ∈ On,σ,m. This completes the proof. ◀

4.2 Run-time and Space
We now analyze the number of iterations of Algorithm 2, that is, the expected number of
rejections before extracting a bit-matrix O with ∥Oj∥ > 0 for all j ∈ [σ]. Algorithm 5 is
clearly equivalent to Algorithm 1 also under this aspect, since at Lines 12 and 24 we re-start
the algorithm whenever we generate a column Oj without non-zero entries. We prove:

▶ Lemma 17. Assume that m ≥ σ ln(e ·σ). The expected number of iterations of Algorithm 2
(equivalently, rejections of Algorithm 5) is at most 1.6. Furthermore, the algorithm terminates
after O(log m) iterations with probability at least 1 − m−c for any constant c > 0.

We refer the reader to the full version of this article [4] for the proof of the above lemma.
Now assume that σ ≤ m/ ln m. This implies that e · σ ≤ m (for m larger than a constant),
which together with the initial assumption implies that σ ln(e · σ) ≤ σ ln m ≤ m. This is
exactly the condition in Lemma 17. Hence, if σ ≤ m/ ln m then the expected number of
rejections of Algorithm 5 is O(1) (or O(log m) with high probability). Our main Theorem 1
follows from the fact that the sequential shuffler of [17] uses constant space, its functions
pop() and empty() run in constant time, and the while loop at Line 8 of Algorithm 5 runs
for at most m iterations (less only in case of rejection) every time Algorithm 5 is executed.

5 Counting Wheeler DFAs

In this section, we use the WDFA characterization of Section 3.1 to give an exact formula
for the number |Dn,m,σ| of WDFAs with n nodes and m edges on effective alphabet [σ] with
Wheeler order 1 < 2 < · · · < n. All proofs of this section can be found in the full version of
the article [4]. From our previous results, all we need to do is to compute the cardinalities of
On,m,σ and IO.

R. Becker, D. Cenzato, S.-H. Kim, B. Kodric, R. Maso, and N. Prezza 5:13

▶ Lemma 18. |On,m,σ| =
∑σ

j=0(−1)j
(

σ
j

)(
n(σ−j)

m

)
.

This lemma is obtained via an inclusion-exclusion argument. From Algorithm 3, it is
immediate that |IO| =

(
m−σ

n−σ−1
)

for all O ∈ On,m,σ (see also the proof of Lemma 16). Since
r : Dn,m,σ → Rn,m,σ is bijective (Corollary 15), we obtain an exact formula for |Dn,m,σ|:

▶ Theorem 19. The number |Dn,m,σ| of WDFAs with set of nodes [n] and m transitions
labeled from the effective alphabet [σ], for which 1 < 2 < · · · < n is a Wheeler order is

|Dn,m,σ| =
(

m − σ

n − σ − 1

) σ∑
j=0

(−1)j

(
σ

j

)(
n(σ − j)

m

)
.

Using similar techniques, in the case where σ is not arbitrarily close to n, i.e., σ ≤ (1−ε)·n
for some constant ε, we moreover obtain a tight formula for the logarithm of the cardinality
of Dn,σ =

⋃
m Dn,m,σ, the set of all Wheeler DFAs with n states over effective alphabet [σ]

and Wheeler order 1 < 2 < · · · < n:

▶ Theorem 20. The following bounds hold:
1. log |Dn,σ| ≥ nσ + (n − σ) log σ − (n + log σ), for any n and σ ≤ n − 1, and
2. log |Dn,σ| ≤ nσ + (n − σ) log σ + O(n), for any n ≥ 2/ε and σ ≤ (1 − ε) · n, where ε is

any desired constant such that ε ∈ (0, 1/2].

Note that log |Dn,σ| is the information-theoretic worst-case number of bits necessary (and
sufficient) to encode a WDFA from Dn,σ. Our Theorem 20 states that, up to an additive
Θ(n) number of bits, this value is of nσ + (n − σ) log σ bits. As a matter of fact, our encoding
r(D) = (O, I) of Section 3, opportunely represented using succinct bitvectors [16], achieves
this bound up to additive lower-order terms and supports efficient navigation of the transition
relation.

6 Implementation

We implemented our uniform WDFA sampler in C++.1 We tested our implementation
by generating WDFAs with a broad range of parameters: n ∈ {106 · 2i : i = 0, . . . , 6},
m ∈ {n · 2i − 1 : i = 0, . . . , 7} and σ = 128. To analyze the impact of streaming to disk on the
running time, we tested two versions of our code: (1) We stream the resulting WDFA to disk
(SSD). (2) We stream the WDFA to a pre-allocated vector residing in internal memory. Note
that constant working space is achieved only in case (1). Our experiments were run on a
server with Intel(R) Xeon(R) W-2245 CPU @ 3.90GHz with 8 cores, 128 gigabytes of RAM,
512 gigabytes of SSD, running Ubuntu 18.04 LTS 64-bit. Working space was measured with
/usr/bin/time (Resident set size).

Figure 3 shows the running time of both variants (left: (1) streaming to SSD; right: (2)
streaming to RAM). Both versions exhibit a linear running time behavior, albeit with a
different multiplicative constant. The algorithm storing the WDFA in internal memory is
between 1.2 and 1.7 times faster than the version streaming the WDFA to the disk (the
relatively small difference is due to the fact that we used an SSD). We measured a throughput
of at least 5.466.897 and 7.525.794 edges per second for the two variants, respectively. In our
experiments we never observed a rejection: this is due to the fact that σ ≪ m, making it
extremely likely to generate bit-matrices O containing at least one set bit in each column.

1 Implementation available at https://github.com/regindex/Wheeler-DFA-generation.

CPM 2024

https://github.com/regindex/Wheeler-DFA-generation

5:14 Random Wheeler Automata

Figure 3 Wall clock time for generating random WDFAs using Algorithm 5. Left: running time
for the algorithm in case (1), i.e., streaming the resulting WDFAs to disk. Right: running time in
case (2), i.e., storing WDFAs in internal memory.

As far as space usage is concerned, version (1), i.e., streaming the WDFA to disk, always
used about 4 MB of internal memory, independently from the input size (this memory is
always required to load the C++ libraries). This confirms the constant space usage of our
algorithm, also experimentally. As expected, the space usage of version (2) is linear with
the input’s size. Nevertheless, both algorithms are extremely fast in practice: in these
experiments, the largest automaton consisting of 64 million states and more than 8 billion
edges was generated in about 15 and 10 minutes with the first and second variant, respectively.

References
1 Jarno Alanko, Giovanna D’Agostino, Alberto Policriti, and Nicola Prezza. Regular Languages

Meet Prefix Sorting. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’20, pages 911–930, USA, 2020. Society for Industrial and Applied
Mathematics.

2 Jarno Alanko, Giovanna D’Agostino, Alberto Policriti, and Nicola Prezza. Wheeler languages.
Information and Computation, 281:104820, 2021. URL: https://www.sciencedirect.com/
science/article/pii/S0890540121001504.

3 Jarno Alanko, Travis Gagie, Gonzalo Navarro, and Louisa Seelbach Benkner. Tunneling on
wheeler graphs. In 2019 Data Compression Conference (DCC), pages 122–131. IEEE, 2019.

4 Ruben Becker, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Riccardo Maso, and Nicola
Prezza. Random wheeler automata. CoRR, abs/2307.07267, 2023. doi:10.48550/arXiv.2307.
07267.

5 Michael Burrows and David J Wheeler. A block-sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

6 Kuan-Hao Chao, Pei-Wei Chen, Sanjit A Seshia, and Ben Langmead. WGT: Tools and
algorithms for recognizing, visualizing and generating Wheeler graphs. bioRxiv, pages 2022–10,
2022.

7 Alessio Conte, Nicola Cotumaccio, Travis Gagie, Giovanni Manzini, Nicola Prezza, and
Marinella Sciortino. Computing matching statistics on wheeler dfas. In 2023 Data Compression
Conference (DCC), pages 150–159, 2023. doi:10.1109/DCC55655.2023.00023.

8 Giovanna D’Agostino, Davide Martincigh, and Alberto Policriti. Ordering regular languages
and automata: Complexity. Theoretical Computer Science, 949:113709, 2023. URL: https:
//www.sciencedirect.com/science/article/pii/S0304397523000221.

9 Lavinia Egidi, Felipe A Louza, and Giovanni Manzini. Space efficient merging of de Bruijn
graphs and Wheeler graphs. Algorithmica, 84(3):639–669, 2022.

https://www.sciencedirect.com/science/article/pii/S0890540121001504
https://www.sciencedirect.com/science/article/pii/S0890540121001504
https://doi.org/10.48550/arXiv.2307.07267
https://doi.org/10.48550/arXiv.2307.07267
https://doi.org/10.1109/DCC55655.2023.00023
https://www.sciencedirect.com/science/article/pii/S0304397523000221
https://www.sciencedirect.com/science/article/pii/S0304397523000221

R. Becker, D. Cenzato, S.-H. Kim, B. Kodric, R. Maso, and N. Prezza 5:15

10 Travis Gagie. On Representing the Degree Sequences of Sublogarithmic-Degree Wheeler
Graphs. In String Processing and Information Retrieval: 29th International Symposium,
SPIRE 2022, Concepción, Chile, November 8–10, 2022, Proceedings, pages 250–256. Springer,
2022.

11 Travis Gagie, Giovanni Manzini, and Jouni Sirén. Wheeler graphs: A framework for BWT-
based data structures. Theoretical Computer Science, 698:67–78, 2017. doi:10.1016/j.tcs.
2017.06.016.

12 Daniel Gibney and Sharma V Thankachan. On the complexity of recognizing wheeler graphs.
Algorithmica, 84(3):784–814, 2022.

13 Adrián Goga and Andrej Baláž. Prefix-Free Parsing for Building Large Tunnelled Wheeler
Graphs. In 22nd International Workshop on Algorithms in Bioinformatics, 2022.

14 Donald Ervin Knuth. The art of computer programming, Volume II: Seminumerical Algorithms,
3rd Edition. Addison-Wesley, 1998. URL: https://www.worldcat.org/oclc/312898417.

15 Cyril Nicaud. Random Deterministic Automata. In Proceedings of the 39th International
Symposium on Mathematical Foundation of Computer Science (MFCS), pages 5–23, 2014.

16 Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’02, pages 233–242, USA, 2002. Society
for Industrial and Applied Mathematics.

17 Michael Shekelyan and Graham Cormode. Sequential random sampling revisited: Hidden
shuffle method. In Arindam Banerjee and Kenji Fukumizu, editors, Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of
Machine Learning Research, pages 3628–3636. PMLR, April 2021. URL: https://proceedings.
mlr.press/v130/shekelyan21a.html.

CPM 2024

https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.1016/j.tcs.2017.06.016
https://www.worldcat.org/oclc/312898417
https://proceedings.mlr.press/v130/shekelyan21a.html
https://proceedings.mlr.press/v130/shekelyan21a.html

	1 Introduction
	2 Preliminaries and Problem Statement
	3 An Algorithm for Uniformly Generating WDFAs
	3.1 The Basic WDFA Sampler
	3.2 Constant-Space WDFA Sampler

	4 Analysis
	4.1 Correctness, Completeness and Uniformity
	4.2 Run-time and Space

	5 Counting Wheeler DFAs
	6 Implementation

