
Connecting de Bruijn Graphs
Giulia Bernardini #

University of Trieste, Trieste, Italy
Huiping Chen #

University of Birmingham, Birmingham, UK

Inge Li Gørtz #

Technical University of Denmark, Lyngby,
Denmark

Christoffer Krogh #

Technical University of Denmark, Lyngby,
Denmark

Grigorios Loukides #

King’s College London, London, UK
Solon P. Pissis #

CWI, Amsterdam, The Netherlands
Vrije Universiteit, Amsterdam, The Netherlands

Leen Stougie #

CWI, Amsterdam, The Netherlands
Vrije Universiteit, Amsterdam, The Netherlands

Michelle Sweering #

CWI, Amsterdam, The Netherlands

Abstract
We study the problem of making a de Bruijn graph (dBG), constructed from a collection of strings,
weakly connected while minimizing the total cost of edge additions. The input graph is a dBG that can
be made weakly connected by adding edges (along with extra nodes if needed) from the underlying
complete dBG. The problem arises from genome reconstruction, where the dBG is constructed from
a set of sequences generated from a genome sample by a sequencing experiment. Due to sequencing
errors, the dBG is never Eulerian in practice and is often not even weakly connected. We show the
following results for a dBG G(V, E) of order k consisting of d weakly connected components:
1. Making G weakly connected by adding a set of edges of minimal total cost is NP-hard.
2. No PTAS exists for making G weakly connected by adding a set of edges of minimal total cost

(unless the unique games conjecture fails). We complement this result by showing that there
does exist a polynomial-time (2− 2/d)-approximation algorithm for the problem.

3. We consider a restricted version of the above problem, where we are asked to make G weakly
connected by only adding directed paths between pairs of components. We show that making G

weakly connected by adding d−1 such paths of minimal total cost can be done in O(k|V |α(|V |)+
|E|) time, where α(·) is the inverse Ackermann function. This improves on the O(k|V | log(|V |) +
|E|)-time algorithm proposed by Bernardini et al. [CPM 2022] for the same restricted problem.

4. An ILP formulation of polynomial size for making G Eulerian with minimal total cost.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases string algorithm, graph algorithm, de Bruijn graph, Eulerian graph

Digital Object Identifier 10.4230/LIPIcs.CPM.2024.6

Funding Giulia Bernardini: Supported by the MUR - FSE REACT EU - PON R&I 2014-2020.
Inge Li Gørtz: Supported by the Independent Research Fund Denmark (DFF-9131-00069B and
10.46540/3105-00302B).
Solon P. Pissis: Supported by the PANGAIA and ALPACA projects that have received funding
from the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreements No 872539 and 956229, respectively.
Leen Stougie: Supported by the PANGAIA and ALPACA projects (grant agreements No 872539
and 956229) and by the Netherlands Organisation for Scientific Research (NWO) under pro-
jects OCENW.GROOT.2019.015 “Optimization for and with Machine Learning (OPTIMAL)” and
Gravitation-grant NETWORKS-024.002.003.
Michelle Sweering: Supported by the Netherlands Organisation for Scientific Research (NWO) under
the Gravitation-grant NETWORKS-024.002.003.

© Giulia Bernardini, Huiping Chen, Inge Li Gørtz, Christoffer Krogh, Grigorios Loukides,
Solon P. Pissis, Leen Stougie, and Michelle Sweering;
licensed under Creative Commons License CC-BY 4.0

35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024).
Editors: Shunsuke Inenaga and Simon J. Puglisi; Article No. 6; pp. 6:1–6:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giulia.bernardini@units.it
https://orcid.org/0000-0001-6647-088X
mailto:h.chen.13@bham.ac.uk
https://orcid.org/0000-0003-1782-667X
mailto:inge@dtu.dk
https://orcid.org/0000-0002-8322-4952
mailto:chrkro@dtu.dk
https://orcid.org/0009-0007-1873-4271
mailto:grigorios.loukides@kcl.ac.uk
https://orcid.org/0000-0003-0888-5061
mailto:solon.pissis@cwi.nl
https://orcid.org/0000-0002-1445-1932
mailto:leen.stougie@cwi.nl
https://orcid.org/0000-0001-6938-8902
mailto:michelle.sweering@cwi.nl
https://orcid.org/0000-0003-1200-6015
https://doi.org/10.4230/LIPIcs.CPM.2024.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Connecting de Bruijn Graphs

1 Introduction

Let us start with some basic definitions and notation following [5]. An alphabet Σ is a finite set
of elements called letters. We consider an integer alphabet Σ = [0, σ). Let x = x[0] . . . x[n−1]
be a string of length n = |x| over Σ. By Σk we denote the set of all strings of length k > 0.
For two indices i and j ≥ i of x, x[i . . j] is the fragment of x starting at position i and
ending at position j. The fragment x[i . . j] is an occurrence of the underlying substring
p = x[i] . . . x[j]; we say that p occurs (or starts) at position i in x. A prefix of x is a substring
of the form x[0 . . j] and a suffix of x is a substring of the form x[i . . n − 1]. By xy or x · y we
denote the concatenation of strings x and y: xy = x[0] . . . x[|x| − 1]y[0] . . . y[|y| − 1]. Given
strings x and y, a suffix/prefix overlap of x and y is a suffix of x that is a prefix of y.

Let S be a collection of strings. The order-k de Bruijn graph (dBG) of S is a directed
multigraph, denoted by GS,k(V, E), such that V is the set of length-(k − 1) substrings of
the strings in S and GS,k contains an edge (u, v) with multiplicity mu,v if and only if the
string u[0] · v is equal to the string u · v[k − 2] and this string occurs exactly mu,v times in
total in the strings in S. For instance, suppose that S is generated from a genome sample by
a sequencing experiment: then any Eulerian circuit1 of GS,k(V, E) corresponds to a single
genome reconstruction [26, 23]. In this model, due to sequencing errors, GS,k would never be
Eulerian in practice [24]; and it would not even be weakly connected. One could, however,
try to make GS,k Eulerian by duplicating some of its existing edges [22] or introducing new
ones when the former do not suffice to make GS,k Eulerian [5]. A natural optimization goal
in either case would be to minimize the total cost of edge additions.

In this paper, we study the problem of making any arbitrary GS,k weakly connected by
introducing a set of new edges of minimal total cost (as well as the underlying set of new
nodes when they do not exist in GS,k). Finding a cheapest way for making GS,k weakly
connected is important because one can subsequently apply the linear-time algorithm of
Bernardini et al. [5] to balance it by adding a set of edges of minimal total cost, and thus
making the graph Eulerian. Since making the dBG directly Eulerian by adding a set of new
edges of minimal total cost is NP-hard (from the shortest common superstring problem [11]),
the connect-and-balance approach, generally, serves as a good-performing heuristic [5]. Our
work falls into a broader line of research that is concerned with algorithmic problems on
strings that can be formulated as problems on dBGs [7, 6, 8, 30, 28, 29, 31, 3, 4].

By GΣ,k(VΣ,k, EΣ,k), we denote the complete dBG of order k over alphabet Σ with
|VΣ,k| = σk−1 and |EΣ,k| = σk. Any two nodes u and v ̸= u in VΣ,k can be connected
by a super-edge whose weight wu,v is in [1, k): this is the shortest path of wu,v unit-cost
edges in GΣ,k. For example, for edge (aabc, bcac) with aabc, bcac ∈ VΣ,k and k = 5, we have
waabc,bcac = 2 corresponding to the following two unit-cost edges: aabc → abca → bcac.

We next formally define the main problem in scope; see Figure 1 for an example.

Connecting de Bruijn Graphs with Edges (Connect-DBG-E)
Input: A de Bruijn graph G(V, E) of order k over alphabet Σ = [0, σ), σ ≤ (k − 1)|V |.
Output: A set A ⊆ EΣ,k of edges and a set B ⊆ VΣ,k of nodes such that G(V ∪B, E ∪A)
is weakly connected and A is of minimum size.

Let us remark that Connect-DBG-E allows for connecting two components Ci, Cj of G

by a path directed from Ci to Cj but this needs not be the case in general; see Figure 1.

1 An Eulerian circuit is a graph cycle using each graph edge exactly once. Such a graph is called Eulerian.

G. Bernardini et al. 6:3

cgaa acga cgag

cgat

cgaa cgag

cgat

cgaa cgag

cgat

tcga

atcg

gatc

gagc

agcg

gcga

Figure 1 An input dBG of order k = 5 with d = 3 weakly connected components (left); a solution
to Connect-DBG-E with cost 3 (middle); a solution to Connect-DBG-P with cost 8 (right). The
Connect-DBG-P problem is a restricted version of the Connect-DBG-E problem allowing to
connect the graph only by means of directed paths whose endpoints are two components. In fact, the
graph on the right also shows an optimal solution to making the graph on the left semi-Eulerian.

We fix throughout a dBG G(V, E) of order k over the integer alphabet Σ = [0, σ), σ ≤
(k − 1)|V |, consisting of d weakly connected components. We show the following results:
1. Connect-DBG-E is NP-hard. We show this via a somewhat surprising and highly

non-trivial reduction from the Minimum Vertex Cover problem [15]. See Section 2.
2. No polynomial-time approximation scheme (PTAS) exists for Connect-DBG-E unless

the unique games conjecture [16] fails. We complement this result with a polynomial-
time (2 − 2/d)-approximation algorithm for Connect-DBG-E. Our strategy relies on an
existing (2−2/d)-approximation algorithm for the Minimum Steiner Tree problem [18],
where d is the number of terminals of the Steiner tree.2 See Section 3.

3. Making G weakly connected by adding a set of d−1 directed paths (between components)
of minimal total cost can be done in O(k|V |α(|V |) + |E|) time, where α(·) is the inverse
Ackermann function. We call this the Connect-DBG-P problem; see Figure 1 for an
example. Our algorithm improves the O(k|V | log(|V |)+|E|)-time algorithm by Bernardini
et al. [5]. We make use of an augmented static version of the Aho-Corasick machine [1]
to select the shortest possible paths, while keeping track of the connected components as
they are dynamically merged by using a union-find data structure [10]. See Section 4.

4. An integer linear program (ILP) formulation of polynomial size for making G Eulerian
with minimal total cost. This is a flow-based formulation inspired by the above relaxation
of connecting the d components with d − 1 paths (Connect-DBG-P). Since the graph
must also be balanced (the in- and out-degree for every node is the same), an optimal
solution can always be decomposed into such paths. We complement our ILP with proof-
of-concept experiments on real data showing that problem instances of around 900 nodes
and edges can be solved using an off-the-shelf ILP solver within 10 hours. See Section 5.

2 Hardness of Connect-DBG-E

In this section, we prove that Connect-DBG-E is NP-hard via a reduction from Minimum
Vertex Cover [15]. Recall that Minimum Vertex Cover asks, given an undirected
graph G(V, E), to find a smallest subset C of V such that every edge in E has at least one
endpoint in C. In this section, we use the term vertex instead of node for obvious reasons.

▶ Theorem 1. Connect-DBG-E is NP-hard.

2 The Steiner tree of some subset of the nodes of a graph G is a minimum-weight connected subgraph of
G that includes all the nodes.

CPM 2024

6:4 Connecting de Bruijn Graphs

Figure 2 An instance of Minimum Vertex Cover (left) and the instance of Connect-DBG-E
(right) implied by the reduction of Theorem 1.

Proof. Let IV C = G(V, E) be an instance of Minimum Vertex Cover. We reduce it to
an instance IdBG of Connect-DBG-E, consisting of a dBG G̃ of order 4 over an alphabet
Σ of size σ = |V | + |E| + 1. G̃ consists of |E| edge gadgets, plus a vertex v# = ### and
an edge (v#, v#). The edge gadget for ei = (u, v) ∈ E has the following vertices and edges:
Vi = {v1i, v2i, v3i, v4i, v5i}, with v1i = eieiei; v2i = eieiu; v3i = eieiv; v4i = eiu#; v5i = eiv#;
and Ei = {(v1i, v2i), (v1i, v3i), (v2i, v4i), (v3i, v5i)}. We call v4i and v5i the terminal vertices
of the ith component; the remaining vertices are called non-terminal. The reduction requires
polynomial time: an example is illustrated in Figure 2. Let OPT (IV C) and OPT (IdBG)
denote the size of an optimal solution to IV C and IdBG, respectively.

▷ Claim 2. A solution to IV C of size α implies a solution to IdBG of size α + |E|.

Proof. Let C be a cover of G of size α. For each v ∈ C, we add to G̃ a new vertex v##; we
then connect all the new vertices to ### using α edges in total. Since C is a vertex cover
for G, by construction, one of the two terminal vertices of each edge gadget in G̃ corresponds
to a vertex in C and it can thus be connected with a single edge to one of the newly added
vertices, using another |E| edges in total. We can thus make G̃ weakly connected by adding
α vertices and α + |E| edges. ◁

▷ Claim 3. A solution to IdBG of size β + |E| implies a solution to IV C of size at most β.

Proof. We observe that any solution to IdBG must add new vertices, as by construction, no
two gadgets can be connected with a single edge, nor can they be connected to ### with a
single edge. Moreover, any solution that adds γ new vertices must add at least γ + |E| new
edges, as this is the minimum possible number to connect |E| + γ + 1 components (the |E|
edge gadgets, the vertex ###, and the γ new vertices).

We further observe that the only way two distinct edge gadgets can be connected using
two edges is by adding an edge from one of the terminal vertices of each gadget to a newly
added vertex of the form v#λ, where λ is any letter from the alphabet and v is a letter
corresponding to a vertex of IV C that is an endpoint of both the edges corresponding to the
two gadgets. This is because any two vertices of two distinct gadgets have no suffix/prefix
overlap, thus no path of length two can connect them; and any two vertices of two distinct
gadgets have no common prefix, thus there cannot be two edges out of a new vertex that
reach two distinct gadgets. On the other hand, the terminal vertices of two distinct gadgets
can have the same suffix v# for some v and thus can be both connected to a vertex of the
form v#λ – note that when λ = # these vertices can be, in turn, connected to ###.

Now consider a solution to IdBG that adds β new vertices. We construct a cover for IV C

as follows. For every newly added vertex u#λ that is adjacent to more than one gadget,
add the corresponding vertex u to the cover: this covers all the edges corresponding to the
adjacent gadgets. For the edge gadgets that are connected to some new vertex which is not
adjacent to any other gadget, add one of the endpoints of the corresponding edge of E to
the vertex cover: this covers the remaining edges of IV C . The cover is thus of size at most β.

◁

G. Bernardini et al. 6:5

Let us now prove that OPT (IV C) = ℓ ⇐⇒ OPT (IdBG) = |E| + ℓ.
⇒) By Claim 2, an optimal solution to IV C of size ℓ implies a solution to IdBG of size

ℓ+ |E|. Suppose for a contradiction that this solution is not optimal, i.e., there exists another
solution to IdBG of size ℓ′ + |E| with ℓ′ < ℓ new vertices. By Claim 3, this would imply a
cover for IV C of size at most ℓ′ < ℓ, a contradiction.

⇐) By Claim 3, an optimal solution to IdBG of size |E| + ℓ implies a solution to IV C

of size at most ℓ. Suppose for a contradiction that OPT (IV C) = ℓ′ < ℓ: by Claim 2, this
would imply a solution to IdBG of size ℓ′ + |E|, a contradiction. ◀

The above reduction is not approximation preserving (because OPT (IV C) = ℓ ⇐⇒
OPT (IdBG) = |E| + ℓ), which would have allowed us to directly obtain a constant-factor
approximation algorithm for Connect-DBG-E from Minimum Vertex Cover [14], and
to prove its inapproximability from the inapproximability of Minimum Vertex Cover [25].

3 Approximating Connect-DBG-E

We start by proving that the existence of a PTAS for Connect-DBG-E is excluded under
the unique games conjecture [16]. To achieve this, we restrict to a specific class of graphs.

▶ Theorem 4. There exists no PTAS for Connect-DBG-E unless the unique games
conjecture fails.

Proof. Consider the same reduction as in the proof of Theorem 1. The sizes of the solutions
to the two problem instances IV C and IdBG always differ by a term of exactly |E|, implying
that the reduction preserves the inapproximability of Connect-DBG-E in the case where
the size of the minimum vertex cover is Ω(|E|). Indeed, suppose for a contradiction that
there exists a PTAS for Connect-DBG-E. Then given any instance IV C , we could obtain
a solution of size d by reducing it to IdBG, running the PTAS, and subtracting |E| from the
result. Let dOP T + |E| denote the size of an optimal solution to IdBG (thus dOP T is the size
of an optimal solution to IV C), and d + |E| the solution returned by the PTAS. We have
that d + |E| ≤ (1 + ϵ)(dOP T + |E|), for some input parameter ϵ > 0, and thus

d ≤ (1 + ϵ)(dOP T + |E|) − |E| = (1 + ϵ)dOP T + ϵ|E|. (1)

When dOP T = Ω(|E|), let c > 1 be a constant such that |E|
c ≤ dOP T ≤ |E| (as the size of any

vertex cover is bounded by |E|). From Equation 1, we obtain that d ≤ (1 + (1 + c)ϵ)dOP T ,
which contradicts the inapproximability of Minimum Vertex Cover. An example of
graphs for which the size of the minimum vertex cover is Ω(|E|) are bounded-degree graphs:
indeed, they have at most |V | · ∆/2 edges and a minimum vertex cover of size at least
|V |/(∆ + 1) = Ω(|E|), where ∆ is the bounded maximum degree. Minimum Vertex Cover
is hard to approximate (unless the unique games conjecture fails) on bounded degree graphs
to within a factor 2 − (2 + o∆(1)) log log ∆

log ∆ for a sufficiently large integer ∆ [2].
This implies that there is no PTAS for Connect-DBG-E (conditioned on the unique

games conjecture) when restricted to the very specific instances obtained, via the reduction
of Theorem 1, from instances of bounded-degree Minimum Vertex Cover. We can thus
conclude that, in general, there exists no PTAS for Connect-DBG-E conditioned on the
unique games conjecture. ◀

Motivated by Theorem 4, we next present a (2 − 2/d)-approximation algorithm for
Connect-DBG-E. Our strategy relies on an existing (2 − 2/d)-approximation algorithm
for the Minimum Steiner Tree problem, where d is the number of terminals. Recall that
Minimum Steiner Tree asks, given a graph G′(V ′, E′) with non-negative edge weights and
a subset of terminal nodes, to compute a tree of minimum weight that contains all terminals.

CPM 2024

6:6 Connecting de Bruijn Graphs

(a) (b) (c)

Figure 3 Construction of Theorem 6. The input G consists of 3 weakly connected components
shown in (a) with black solid lines; grey dashed lines represent nodes and edges of the underlying
complete dBG (only the portion directly connected to nodes of G is depicted); grey thick dashed edges
form a solution to Connect-DBG-E, which in this case would be returned by the approximation
algorithm. G′ is shown in (b): solid edges are in E, thick edges represent the same solution as in
(a). The metric closure of G′ is shown in (c): thick edges represent the same solution as in (a).

Given a dBG G(V, E) of order k consisting of d weakly connected components C1, . . . , Cd,
let G′(V ′, E′) be the graph obtained from the complete dBG GΣ,k collapsing each component
Ci into one super-node vi: an example is in Figure 3. More formally, V ′ = (VΣ,k \ V) ∪ V ,
where V = {v1, . . . , vd} is a set of unlabeled nodes s.t. vi /∈ VΣ,k corresponds to Ci for all
i ∈ [1, d]; and E′ = (EΣ,k ∩((VΣ,k \V)×(VΣ,k \V)))∪E, where EΣ,k ∩((VΣ,k \V)×(VΣ,k \V))
are simply the edges of the complete dBG connecting pairs of nodes that are both not in G;
the edges in E are s.t. there is an edge from a super-node vi to a node v ∈ (VΣ,k \ V) if and
only if at least one of the nodes of Ci would be connected to v by an edge in the complete
dBG; and likewise for edges (v, vi). Two super-nodes are connected by an edge if and only
if two nodes in the respective components would be connected by an edge in the complete
dBG. Formally, E = E1 ∪ E2 ∪ E3, where

E1 = {(vi, v) | ∃u ∈ Ci and v ∈ (VΣ,k \ V) s.t. (u, v) ∈ EΣ,k},

E2 = {(v, vi) | ∃u ∈ Ci and v ∈ (VΣ,k \ V) s.t. (v, u) ∈ EΣ,k},

E3 = {(vi, vj) | ∃u ∈ Ci and v ∈ Cj s.t. (v, u) ∈ EΣ,k}.

Inspect Figure 3(b): the edge (1011, v1) belongs to set E2; the edge (v3, 0001) belongs to E1;
no edges belong to E3 in this example.

It is easy to see that solving Connect-DBG-E for G is equivalent to solving an instance
of Minimum Steiner Tree on G′ with v1, . . . , vd as terminals. Any polynomial-time
approximation algorithm for Minimum Steiner Tree can therefore be applied to solve
Connect-DBG-E with the same approximation ratio. Unfortunately, when applied naively,
this strategy does not give a polynomial-time algorithm for Connect-DBG-E, because G′

has an exponential size and thus constructing it requires, in general, exponential time.
To overcome this issue, we focus on a specific approximation algorithm for the Minimum

Steiner Tree problem which does not require computing the whole graph G′ but rather
only its metric closure, defined as a weighted complete graph on the set of terminals v1, . . . , vd

such that the weight on edge (vi, vj) is the length of the shortest undirected path between vi

and vj in G′. An example of the metric closure of G′ is in Figure 3(c). Note, in particular,
that the length of the shortest undirected path between two nodes (i.e., a sequence of edges
that form a path if their direction is ignored) is smaller or equal to the length of the shortest
directed path: for instance, the shortest undirected path between 0110 and 0111 in Figure 3
is of length 2 (through node 1011), while the shortest directed path is of length 3 (through
nodes 1101 and 1011). In contrast to explicitly constructing the whole G′, computing only
its metric closure can be done in polynomial time, as stated by the following lemma.

G. Bernardini et al. 6:7

▶ Lemma 5. For any dBG G(V, E) of order k, computing the metric closure of G′ can be
done in O(k|V |2) time.

Proof. Let G consist of the weakly connected components C1, . . . , Cd. By the definition of
G′, computing its metric closure requires computing the length of the shortest undirected
path in GΣ,k between any pair of nodes that lie in two different components of G. An
algorithm to compute shortest undirected paths in dBGs in O(k) time per pair has been
proposed in [20]: this algorithm only relies on computing common substrings for each pair of
nodes and it does not require to construct G′.

The weight of an edge (vi, vj) in the metric closure of G′ is thus obtained by computing
the length of the shortest undirected path between every pair of nodes u ∈ Ci, v ∈ Cj

and taking the minimum over such values. Over all edges (vi, vj), this requires time
O(k

∑
i,j∈[1,d] |Ci||Cj |) = O(k|V |2). ◀

▶ Theorem 6. For any dBG G(V, E) of order k consisting of d weakly connected components,
there exists an O(k|V |2)-time (2 − 2/d)-approximation algorithm for Connect-DBG-E.

Proof. The algorithm, which is an adaptation of [18] to dBGs, consists of three steps:
(i) Construct the metric closure of G′.
(ii) Compute a minimum spanning tree of the metric closure.
(iii) Convert the minimum spanning tree into a set of nodes and a set of edges to be added

to G to make it weakly connected.
The correctness follows directly from the fact that a minimum spanning tree for the metric
closure of G′ is a (2 − 2/d)-approximation for the minimum Steiner tree [18], where d is the
number of terminals and thus the number of weakly connected components of G.

Step (i) requires O(k|V |2) time as per Lemma 5. Step (ii) can be done in O(d2) time by
applying, e.g., Prim’s algorithm [27]. Finally, Step (iii) can be done by applying again the
algorithm from [20] to compute the shortest undirected path between every pair vi, vj such
that the edge (vi, vj) is in the minimum spanning tree of the metric closure of G′ and taking
the union of the nodes and edges in such paths. This requires O(k|V |2) total time. ◀

4 Connecting de Bruijn Graphs with Paths in Essentially Optimal Time

In this section, we present an exact algorithm for a restricted version of Connect-DBG-E,
in which we are asked to make a dBG G(V, E) of order k weakly connected by adding a set
of directed paths (between components) of minimum total length. This problem was already
considered and solved in (nearly optimal) polynomial time in [5]; here we propose a much
simpler and essentially time-optimal algorithm. To formally define the restricted problem we
consider, we first need the following definition of a condensed graph of a dBG from [5].

▶ Definition 7 (Condensed Graph). Given a dBG G(V, E) of order k over an alphabet Σ with
a set C of weakly connected components, its condensed graph Ĝ(V̂ , Ê) is a weighted directed
multigraph whose nodes V̂ are in a bijection with C. The edges have integer weights in [1, k):
there is an edge (i, j) ∈ Ê for each pair of nodes ui ∈ Ci, uj ∈ Cj, with Ci, Cj ∈ C, and its
weight is the length of the shortest path from ui to uj in the complete dBG GΣ,k.

Connecting de Bruijn Graphs with Paths (Connect-DBG-P)
Input: A de Bruijn graph G(V, E) of order k over alphabet Σ = [0, σ), σ ≤ (k − 1)|V |.
Output: A minimum-weight spanning tree T of the condensed graph Ĝ of G.

CPM 2024

6:8 Connecting de Bruijn Graphs

(a) (b)

Figure 4 (a) An instance of Connect-DBG-P consisting of 3 components. (b) The modified
AC machine built in the preprocessing phase of Algorithm 1. Dashed arrows are the backward edges
of the original AC machine; solid, curved arrows are the backward edges of the modified AC machine
(backward edges to the root are omitted). Symbols close to the states represent their lists of colors.

A solution T to Connect-DBG-P naturally corresponds to a set P of paths on GΣ,k

that make G weakly connected: an edge (i, j) of T corresponds to the shortest path from
some node ui ∈ Ci to some uj ∈ Cj , and in turn, by the definition of dBG, such a path is
determined by the longest suffix/prefix overlap of ui and uj .

The algorithm for Connect-DBG-P proposed in [5] makes use of a dynamic version of
the Aho-Chorasick (AC) machine of the nodes of G to find the shortest connecting paths
and to keep track of the connected components as they are progressively united by these
paths. Here we will use an augmented but static version of the same AC machine to select
the paths, and we will keep track of the connected components as they are dynamically
merged by employing a union-find data structure.

Before describing our solution, let us recall that AC machines generalize the Knuth-
Morris-Pratt [17] algorithm for a set of strings. Informally, AC machines are finite-state
machines that resemble a trie with additional backward edges (also called failure transitions)
between the states. There is exactly one failure transition f(u) = v from each state u (except
for the root state) to some state v. Backward edges encode suffix/prefix overlaps between
the strings represented by the AC machine, as specified by the following lemma.

▶ Lemma 8 (Aho-Corasick lemma [1]). Let u and v be two strings representing two distinct
states of the AC machine, and identify the states with such strings. Then, f(u) = v if and
only if v is the longest proper suffix of u that is also a prefix of some string in the machine.

In a preprocessing step, we compute the d weakly connected components of G, choose a
representative node for each component, and assign it a unique color: we will identify each
color with the connected component and with the representative node it is associated with.
To store the weakly connected components of G, we construct a union-find data structure [10].
Union-find data structures allow to efficiently perform any sequence of operations of the
following two kinds on disjoint sets: union(A, B) merges sets A and B; and find(x) returns
the representative element of the unique set containing x.

We then construct the AC machine of the nodes of G and preprocess it as follows; see
Figure 4 for an example. We color each terminal state with the color of the connected
component of the node of G it represents. Each internal state is assigned the union of the
colors of its descendants. From each terminal state s, we follow the unique path of backward
edges to the root and, for each state u on this path, we add to the machine a backward edge
(s, u). We finally prune all the backward edges connecting two non-terminal states.

G. Bernardini et al. 6:9

Once we are done with the preprocessing phase, we start performing a reverse BFS of the
machine (which begins from the deepest internal states and proceeds level-by-level towards
the root) and check whether the overlap encoded by the backward edges incoming to each of
the visited states can be used to unite some components. This is because the deeper the
state u reached by a backward edge (s, u), the longer the overlap encoded by the edge; and
the longer the overlap, the shorter the path connecting s with all the nodes represented by
the terminal states below u. The idea is to greedily select the backward edges encoding paths
that connect two currently separate components, using the union-find data structure both to
check which components are still separate and to unite them when we select a shortest path.

Implementation Details. We associate two lists to each state u: one for the colors; and
one for the incoming backward edges. The colors of u are stored in a list LCu of ordered
pairs < c, pc >, where c is a distinct color and pc is a pointer to any terminal state of color c

below u. The backward edges incoming to u are stored using a list LEu of their tails (recall
that all the tails are terminal states). We will need to keep track of the states of the AC
machine visited during the execution of the algorithm, therefore we set up a visited/unvisited
flag for each internal state, initially set to “unvisited”.

When we visit a state u for the first time, we select the first backward edge (s, u) of
the list LEu (if any). Let c be the color of the terminal state s. For each color α in the
list LCu, we compare the representative of the current connected component of the node
associated with color c and the representative of the current connected component of the
node associated with α, that is, we compare the results of operations find(c) and find(α). If
they differ, it means that the components of the two nodes are still separate, thus we can
unite them by adding the path linking s to the node pointed by pα, and keep track of the fact
that they now constitute a single connected component by performing union(c, α) (recall that
we identify colors and connected components). If find(c) = find(α), then the two components
were united in a previous step, thus we just move on to the next color in LCu. At the end of
the scan of LCu, c and all the colors of u will represent the same connected component.

We then select each subsequent backward edge in LEu, and we compare just the color
of its tail and the first color in LCu, again by performing two find operations. We merge
the two components and add the appropriate path if they differ, or move on to the next
backward edge in LEu (or to the next state, if LEu is exhausted) if they are the same.

The whole procedure is summarized in Algorithm 1.

▶ Theorem 9. Algorithm 1 solves Connect-DBG-P in O(k|V |α(|V |) + |E|) time.

Proof.
Correctness. Algorithm 1 is essentially Kruskal’s algorithm [19] applied to the condensed
graph Ĝ. Indeed, the longest suffix/prefix overlap between any two nodes u1, u2 (which
determines the weight of the corresponding edge in Ĝ) is encoded in the AC machine by a
path of backward edges starting from u1 and ending at an ancestor of u2 [33, Theorem 4].
Thus, by construction, the backward edges we add to the AC machine encode the edges
of Ĝ (a single backward edge may correspond to multiple edges of Ĝ), plus some shorter
suffix/prefix overlaps that are discarded: they have no correspondence in Ĝ. In particular,
a backward edge (s, u) of the modified AC machine encodes overlaps of length d(u), where
d(u) is the depth of state u, i.e., the length of the string it represents [33, Lemma 3].

Algorithm 1 always returns a feasible solution. Indeed, every time a state u is visited, all
the components (i.e., nodes from V̂) descending from u are connected (Lines 9-11); since all
the components descend from the root, at the end the whole Ĝ is connected; and the union

CPM 2024

6:10 Connecting de Bruijn Graphs

Algorithm 1 Connect dBG with Paths.

1: Compute the d weakly connected components of G(V, E) and the union-find data structure over
the components; identify each component with a distinct color and each color with a node of
that component. Construct and preprocess the AC machine of V .

2: P ← ∅; comp-count← d;
3: while comp-count > 1 do
4: u← next state of the AC machine in a reverse BFS order;
5: for all (s, u) in LEu do
6: c← color(s);
7: if u is unvisited then
8: Flag u as visited;
9: for all < α, pα > in LCu do

10: if find(c) ̸= find(α) then
11: union(c, α); comp-count← comp-count− 1; P ← P ∪ {path from s to pα};
12: else
13: < α, pα >← first element of LCu;
14: if find(c) ̸= find(α) then
15: union(c, α); comp-count← comp-count− 1; P ← P ∪ {path from s to pα};
16: return P

and find operations ensure that no loop is created. Moreover, the algorithm only returns
paths corresponding to backward edges that encode maximal suffix/prefix overlaps, thus
edges of Ĝ. Suppose for a contradiction that the algorithm uses an edge (s, u) to connect s

with a descendant s′ of u using an overlap of length d(u), while the longest overlap between
s and s′ is of length ℓ > d(u). Then, by construction, there is a lower ancestor v of s′ with
d(v) = ℓ and another backward edge (s, v). Since the states are visited in a reverse BST
order, v is visited before u, (s, v) is considered before (s, u) and it is used to connect s to s′,
thus uniting their components; when u is visited afterwards and (s, u) is considered, s and s′

are already in the same component, so the shorter overlap is discarded, a contradiction.
Finally, optimality follows directly from the correctness of Kruskal’s algorithm [19].

Complexity. Computing the connected components of G and assigning each a color c ∈ [1, d]
requires O(|V | + |E|) time, where |E| is the number of distinct edges of G [13]. Building
the AC machine of V takes O(k|V |) time because each string is of length k − 1 [1, 9].
Initializing a union-find data structure for the weakly connected components of G requires
O(|V |) time [10].

During the execution of the algorithm, we perform exactly d − 1 < |V | union operations;
moreover, at each visited state u, we perform a number of find operations proportional to
the sum of the number of colors of u and the number of backward edges incoming to u. The
total size of lists LEu and LCu over all non-terminal states u is bounded by O(k|V |), because
the color of each of the |V | terminal states propagates to at most k − 2 non-terminal states
(the depth of the AC machine is k − 1), and by construction, there are up to k − 2 backward
edges from each terminal state.

Since the cost of each find and union operation amortizes to O(α(|V |)) [10], the total cost
of this procedure is O(α(|V |)(k|V | + d − 1)) = O(k|V |α(|V |)). Since the preprocessing phase
requires O(k|V | + |E|) time, the statement follows. ◀

G. Bernardini et al. 6:11

5 Making a dBG Eulerian through ILP

Let us recall some basic definitions. An Eulerian trail is a trail in a finite graph that visits
every edge exactly once allowing for revisiting nodes. An Eulerian circuit is an Eulerian trail
that starts and ends on the same node. A graph with an Eulerian circuit is called Eulerian.
A graph with an Eulerian trail but with no Eulerian circuit is called semi-Eulerian.3

Recall that, by GΣ,k(VΣ,k, EΣ,k), we denote the complete dBG of order k over alphabet
Σ. Here, we present an ILP formulation for making any arbitrary dBG G(V, E) Eulerian
(or semi-Eulerian) by adding a multiset of edges from EΣ,k; this problem is NP-hard via a
simple reduction from the shortest common superstring problem [11]. Instead of explicitly
adding nodes, we assume that any two nodes can be connected with a (super-)edge whose
cost is in [1, k), and try to make G Eulerian by adding edges with a minimum total cost.

5.1 The ILP Formulation
Let E be the set of edges (u, v) between nodes u, v ∈ V for which there is a path from u

to v in GΣ,k. This is possible for every pair of nodes in V . We define the set V−(u) of
in-neighbors of node u ∈ V as V−(u) = {v ∈ V | (v, u) ∈ E}. Similarly, we define the set
V+(u) of out-neighbors of node u ∈ V as V+(u) = {v ∈ V | (u, v) ∈ E}. We also define
a weight function W : E → Z≥0, which assigns a weight wu,v to an edge (u, v) ∈ E equal
to the length of the shortest directed path from u to v in GΣ,k. In particular, we have
wu,v = k − 1 − MO(u, v), where k is the order of G and MO(u, v) is the length of the longest
overlap between a suffix of u and a prefix of v. For example, for edge (aabc, bcac) ∈ E with
aabc, bcac ∈ V and k = 5, we have waabc,bcac = k − 1 − |bc| = 5 − 1 − 2 = 2, corresponding to
the following two unit-cost edges: aabc → abca → bcac. All Θ(|V |2) weights of the |V | nodes
can be precomputed in the optimal O(k|V | + |V |2) time [12, 21]. By Euler’s theorem, making
G Eulerian (resp. semi-Eulerian) reduces to finding a minimum weight multiset of edges A′

from E such that G′ = (V, E ∪ A′) is weakly connected and balanced (resp. semi-balanced).
To compute multiset A′, we employ the ILP formulation presented in Figure 5. Each

edge (u, v) is associated to a non-negative integer variable au,v whose value corresponds to
the increase of the multiplicity mu,v of (u, v) (where mu,v = 0 for any (u, v) ∈ E \ E). Thus,
au,v +mu,v denotes the actual multiplicity of (u, v) in G′. Each node v is associated to binary
variables xv and yv which determine if v is a source and/or a target node in an Eulerian trail
of G′, respectively. Specifically, if xv = 1, yv = 0, then v is a source node and not a target
node; if xv = 0, yv = 1 then v is a target node but not a source; and if xv = yv = 0 then v is
either (i) both a source and a target node in an Eulerian trail; or (ii) neither a source nor a
target node in an Eulerian trail. Due to the constraint in Equation (2e), it cannot be that
xv = yv = 1, and due to the constraints in Equation (2c) and Equation (2d) there is up to
one source and one target node in G′.

Since the existence of a single component in G′ is necessary for G′ to be Eulerian or
semi-Eulerian, we introduce a non-negative integer variable bu,v for each edge (u, v) ∈ E
to check the connectivity of G′, through constraints that will be explained in detail later.
Let us provide the main idea behind modeling connectedness. Suppose there are d = r + 1
components in G. We select one node from each component of G arbitrarily, such that we
have a set S = {s1, . . . , sr} of start nodes and one destination node which we denote by
dn. Let Ci be the component containing si, where i ∈ [1, r], and Cdn be the component

3 Note that both Eulerian and semi-Eulerian graphs are required to be weakly connected.

CPM 2024

6:12 Connecting de Bruijn Graphs

minimize
∑

(u,v)∈E au,v · wu,v (2a)

subject to
∑

u∈V−(v)

(au,v + mu,v)−
∑

u∈V+(v)

(av,u + mv,u) + xv − yv = 0, v ∈ V (2b)

0 ≤
∑
v∈V

xv ≤ 1, (2c)∑
v∈V

xv =
∑
v∈V

yv, (2d)

xv + yv ≤ 1, v ∈ V (2e)
bu,v ≤ r · (au,v + mu,v + av,u + mv,u), (u, v) ∈ E (2f)∑
v∈V+(si)

bsi,v −
∑

u∈V−(si)

bu,si = 1 ∀i ∈ [1, r] (2g)

∑
u∈V−(dn)

bu,dn −
∑

v∈V+(dn)

bdn,v = r (2h)

∑
u∈V−(v)

bu,v =
∑

u∈V+(v)

bv,u v ∈ V \ (S ∪ {dn}) (2i)

bu,v ∈ Z≥0, (u, v) ∈ E (2j)
au,v ∈ Z≥0, (u, v) ∈ E (2k)
xv ∈ {0, 1}, v ∈ V (2l)
yv ∈ {0, 1}, v ∈ V (2m)

Figure 5 The complete ILP formulation for making a dBG Eulerian or semi-Eulerian.

containing dn. Ci and Cdn are connected if there exists a (positive) flow from si to dn.
Assume that each connection between Ci and Cdn provides one unit of flow. There are r

start nodes in G, so dn must absorb r units of flow in total from all start nodes.
Equation (2a) seeks to minimize the cost of multiset A′ (the sum of weights for all edges

added to G to make it Eulerian or semi-Eulerian). All other equations seek to guarantee
that the graph G′ is Eulerian or semi-Eulerian by ensuring that all its nodes are balanced
(Equation (2b) to Equation (2e)) and that all its nodes with nonzero degree belong to
a single strongly connected component (Equation (2f) to Equation (2i)). Let δ−(v) and
δ+(v) denote the in- and out-degree of node v, respectively. Recall that a weakly connected
graph is Eulerian if δ−(v) = δ+(v) for each v ∈ V , and semi-Eulerian if δ−(s) = δ+(s) − 1,
δ−(t) = δ+(t) + 1, and δ−(v) = δ+(v) for each v ∈ V \ {s, t}, where s and t are the source
and target nodes, respectively. Equation (2b) enforces that G′ is Eulerian by requiring
xv = 0, yv = 0 such that δ−(v) = δ+(v) for each v ∈ V , or that G′ is semi-Eulerian by
requiring xs = 1, ys = 0 for source node, xt = 0, yt = 1 for target node and xv = 0, yv = 0
for all other nodes, respectively. Equation (2c), Equation (2d) and Equation (2e) enforce
that there exists at most only one source node and one target node in G′. Equation (2f)
bounds the value of bu,v. In particular, if nodes u and v are not connected in G′ (i.e.,
au,v + mu,v + av,u + mv,u = 0), then Equation (2f) together with Equation (2j) ensure that
both bu,v = 0 and bv,u = 0; otherwise, bu,v ≥ 0 and bv,u ≥ 0. Equation (2g) enforces that
each si provides one unit of flow; and Equation (2h) enforces that dn absorbs r units of flow
from all si’s together. Last, Equation (2i) enforces that the amount of flow that enters each
node that is not in S ∪ {dn} is equal to the amount of flow that exits this node.

G. Bernardini et al. 6:13

(a) Input graph G(V, E). (b) Computing the flow units. (c) Output graph G′.

Figure 6 An example of making the dBG on the left semi-Eulerian. The units of flow are depicted
with yellow edges and the edges we add to make the graph semi-Eulerian are colored green.

▶ Example 10. Consider the subgraph G(V, E) of the complete order-3 dBG shown in
Figure 6a, where V = {aa, ab, ba, bb} and E = {(ab, bb)}. By adding edge (bb, ba) and edge
(ba, aa) in G, we find an Eulerian trail where the source node is ab and the target node is aa.
The weights of the added edges are both 1, i.e., wbb,ba = wba,aa = 1, and the total cost of this
solution is 2, which is minimal (since anyway we must connect d = 3 connected components).

We show that the solution we found satisfies the constraints of the ILP from Figure 5.
For the source node ab, we have xab = 1, yab = 0, and it is semi-balanced since δ−(ab) −
δ+(ab) + xab − yab = 0 − 1 + 1 − 0 = 0. Similarly, for the target node aa, we have xaa = 0,
yaa = 1, and it is semi-balanced. For all other nodes, v ∈ {bb, ba}, δ−(v) = δ+(v) = 1 and
xv = yv = 0. Also, the values of xv and yv, ∀v ∈ V , satisfy Equation (2c) to Equation (2e).

Next, we show the connectivity of G′. There are d = 3 components in G (namely,
C1, C2 and Cdn). We select one node from each component arbitrarily, such that we have
S = {bb, aa} and dn = ba. The destination node dn needs to absorb two units of flow from
C1 and C2. Since aba,aa = 1 > 0, baa,ba ≥ 0, there exists a flow starting at node aa and
ending at node dn (Equation (2f)). Similarly, node dn absorbs another unit of flow from bb;
the two units of flow are represented with yellow lines in Figure 6b. Thus, the output graph
G′ is semi-Eulerian: the source node is ab and the target node is aa; see Figure 6c.

5.2 Proof-of-concept Experiments
We implemented our ILP formulation in C++ using Gurobi 9.5.2. We will refer to this algorithm
as ILP. Our code is available at https://bitbucket.org/eulerian-ext/cpm2024/.

We present proof-of-concept experiments using ILP on small samples of the Staphylococcus
aureus (STA) whole-genome shotgun benchmark dataset. This dataset is available from
http://gage.cbcb.umd.edu/data/index.html. The number of reads in the STA dataset
is 1, 294, 104 (Library 1), the average read length is 101 base pairs (bp) and the insert length
is 180bp. All experiments ran on an AMD EPYC 7702 CPU with 256GB RAM.

We first applied ILP on dBGs of varying order k. We constructed these order-k dBGs,
one for each k value, using the first 10 reads of STA. To compute the weight wu,v of each
edge given as input to ILP, we used the implementation of [32] for computing MO(u, v); and
then set wu,v = k − 1 − MO(u, v). Observe in Table 1a that, as expected, increasing k slightly
reduced the number of edges |E| of the input dBG and that it also generally increased the
number of connected components. As can be seen, making a graph with more connected
components Eulerian incurred a larger total cost and required more time. For example, for
k = 8, there are 2 components extended to an Eulerian graph with a cost of 47 in less than
30 minutes, while for k = 13, there are 10 components extended to an Eulerian graph with
a cost of 92 in about 6.5 hours. This is because when r increases, the number of distinct
possible combinations of values of the variables bu,v increases exponentially with d = r + 1,

CPM 2024

https://bitbucket.org/eulerian-ext/cpm2024/
http://gage.cbcb.umd.edu/data/index.html

6:14 Connecting de Bruijn Graphs

Table 1 Runtime of ILP on dBGs with varying k and |E| on the STA dataset. Note that the
time to compute all constants in ILP is not included in the reported runtimes.

(a) Runtime of ILP on dBGs with varying k con-
structed from the first 10 reads of the STA dataset.

k |V | |E| d Cost Time (s)
8 709 724 2 47 1,766
9 720 714 7 56 9,260
10 713 704 9 65 24,378
11 704 694 10 78 26,982
12 694 684 10 87 34,989
13 684 674 10 92 23,119

(b) Runtime of ILP on dBGs with varying num-
ber |E| of edges constructed from the first 8, 9,
10, 11, and 12 reads of the STA dataset.

k |V | |E| d Cost Time (s)
9 562 554 8 43 13,779
9 641 634 7 49 9,205
9 720 714 7 56 11,748
9 798 794 7 61 13,183
9 876 875 6 65 19,751

as each possible combination corresponds to a different weighted spanning tree of the d

components; and there are exponentially many possible spanning trees. In other words, there
are exponentially many ways to form the sums in Equations 2g, 2h, and 2i.

We then applied ILP on dBGs of fixed order k = 9 and varying number |E| of edges.
We started with a dBG G1, constructed as explained before from the first 8 reads of STA
with k = 9. G1 corresponds to the first row in Table 1b. Then, we constructed dBGs G2,
G3, G4, and G5, with a larger number of edges than G1, by adding into G1 nodes and edges
corresponding to the next 1, 2, 3, and 4 reads in STA, respectively. That is, G2 is constructed
from the first 9 reads of STA with k = 9. Observe in Table 1b that, as expected, increasing
|E| also increases |V | and generally reduces the number of components. As expected, making
a graph with more edges Eulerian, while keeping the number of components the same,
incurred a larger total cost and required more time. Indeed, the main factor that determines
the runtime is the number of components. For example, it took 50% more time to make the
dBG in the first row of Table 1b Eulerian compared to the time in the second row of the
same table because the former has more components, although it has fewer edges and nodes.

These results show that despite the NP-hardness of the problem, ILP can be used to
obtain optimal solutions for small graphs within a reasonable amount of time. These graphs
may be specific subgraphs of a much larger graph that need to be made Eulerian.

References

1 Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to bibliographic
search. Commun. ACM, 18(6):333–340, 1975. doi:10.1145/360825.360855.

2 Per Austrin, Subhash Khot, and Muli Safra. Inapproximability of vertex cover and independent
set in bounded degree graphs. In 2009 24th Annual IEEE Conference on Computational
Complexity, pages 74–80, 2009. doi:10.1109/CCC.2009.38.

3 Giulia Bernardini, Huiping Chen, Gabriele Fici, Grigorios Loukides, and Solon P. Pissis.
Reverse-safe data structures for text indexing. In Symposium on Algorithm Engineering and
Experiments (ALENEX), pages 199–213. SIAM, 2020. doi:10.1137/1.9781611976007.16.

4 Giulia Bernardini, Huiping Chen, Gabriele Fici, Grigorios Loukides, and Solon P. Pissis.
Reverse-safe text indexing. ACM J. Exp. Algorithmics, 26:1.10:1–1.10:26, 2021. doi:10.1145/
3461698.

5 Giulia Bernardini, Huiping Chen, Grigorios Loukides, Solon P. Pissis, Leen Stougie, and
Michelle Sweering. Making de Bruijn graphs Eulerian. In 33rd Annual Symposium on
Combinatorial Pattern Matching (CPM), volume 223 of LIPIcs, pages 12:1–12:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CPM.2022.12.

https://doi.org/10.1145/360825.360855
https://doi.org/10.1109/CCC.2009.38
https://doi.org/10.1137/1.9781611976007.16
https://doi.org/10.1145/3461698
https://doi.org/10.1145/3461698
https://doi.org/10.4230/LIPIcs.CPM.2022.12

G. Bernardini et al. 6:15

6 Giulia Bernardini, Alessio Conte, Estéban Gabory, Roberto Grossi, Grigorios Loukides,
Solon P. Pissis, Giulia Punzi, and Michelle Sweering. On strings having the same length-k
substrings. In 33rd Annual Symposium on Combinatorial Pattern Matching (CPM), volume
223 of LIPIcs, pages 16:1–16:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.CPM.2022.16.

7 Giulia Bernardini, Alberto Marchetti-Spaccamela, Solon P. Pissis, Leen Stougie, and Michelle
Sweering. Constructing strings avoiding forbidden substrings. In 32nd Annual Symposium
on Combinatorial Pattern Matching (CPM), volume 191 of LIPIcs, pages 9:1–9:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.CPM.2021.9.

8 Karel Břinda, Michael Baym, and Gregory Kucherov. Simplitigs as an efficient and scal-
able representation of de Bruijn graphs. Genome biology, 22:1–24, 2021. doi:10.1186/
s13059-021-02297-z.

9 Shiri Dori and Gad M. Landau. Construction of Aho Corasick automaton in linear time for
integer alphabets. Inf. Process. Lett., 98(2):66–72, 2006. doi:10.1016/j.ipl.2005.11.019.

10 Zvi Galil and Giuseppe F Italiano. Data structures and algorithms for disjoint set union
problems. ACM Computing Surveys (CSUR), 23(3):319–344, 1991. doi:10.1145/116873.
116878.

11 John Gallant, David Maier, and James A. Storer. On finding minimal length superstrings. J.
Comput. Syst. Sci., 20(1):50–58, 1980. doi:10.1016/0022-0000(80)90004-5.

12 Dan Gusfield, Gad M. Landau, and Baruch Schieber. An efficient algorithm for the all pairs
suffix-prefix problem. Inf. Process. Lett., 41(4):181–185, 1992. doi:10.1016/0020-0190(92)
90176-V.

13 John E. Hopcroft and Robert Endre Tarjan. Efficient algorithms for graph manipulation [H]
(algorithm 447). Commun. ACM, 16(6):372–378, 1973. doi:10.1145/362248.362272.

14 George Karakostas. A better approximation ratio for the vertex cover problem. ACM Trans.
Algorithms, 5(4):41:1–41:8, 2009. doi:10.1145/1597036.1597045.

15 Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a symposium
on the Complexity of Computer Computation, The IBM Research Symposia Series, pages
85–103. Plenum Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

16 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings on 34th
Annual ACM Symposium on Theory of Computing (STOC), pages 767–775. ACM, 2002.
doi:10.1145/509907.510017.

17 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323–350, 1977. doi:10.1137/0206024.

18 Lawrence T. Kou, George Markowsky, and Leonard Berman. A fast algorithm for Steiner
trees. Acta Informatica, 15:141–145, 1981. doi:10.1007/BF00288961.

19 Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956. doi:10.1090/
S0002-9939-1956-0078686-7.

20 Zhen Liu. Optimal routing in the De Bruijn networks. Research Report RR-1130, INRIA,
1990. URL: https://hal.inria.fr/inria-00075429.

21 Grigorios Loukides and Solon P. Pissis. All-pairs suffix/prefix in optimal time using Aho-
Corasick space. Inf. Process. Lett., 178:106275, 2022. doi:10.1016/J.IPL.2022.106275.

22 Paul Medvedev, Konstantinos Georgiou, Gene Myers, and Michael Brudno. Computability
of models for sequence assembly. In 7th WABI, volume 4645 of Lecture Notes in Computer
Science, pages 289–301. Springer, 2007. doi:10.1007/978-3-540-74126-8_27.

23 Paul Medvedev and Mihai Pop. What do Eulerian and Hamiltonian cycles have to do with
genome assembly? PLOS Computational Biology, 17(5):1–5, May 2021. doi:10.1371/journal.
pcbi.1008928.

24 Jason R. Miller, Sergey Koren, and Granger Sutton. Assembly algorithms for next-generation
sequencing data. Genomics, 95(6):315–327, 2010. doi:10.1016/j.ygeno.2010.03.001.

CPM 2024

https://doi.org/10.4230/LIPIcs.CPM.2022.16
https://doi.org/10.4230/LIPICS.CPM.2021.9
https://doi.org/10.1186/s13059-021-02297-z
https://doi.org/10.1186/s13059-021-02297-z
https://doi.org/10.1016/j.ipl.2005.11.019
https://doi.org/10.1145/116873.116878
https://doi.org/10.1145/116873.116878
https://doi.org/10.1016/0022-0000(80)90004-5
https://doi.org/10.1016/0020-0190(92)90176-V
https://doi.org/10.1016/0020-0190(92)90176-V
https://doi.org/10.1145/362248.362272
https://doi.org/10.1145/1597036.1597045
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/509907.510017
https://doi.org/10.1137/0206024
https://doi.org/10.1007/BF00288961
https://doi.org/10.1090/S0002-9939-1956-0078686-7
https://doi.org/10.1090/S0002-9939-1956-0078686-7
https://hal.inria.fr/inria-00075429
https://doi.org/10.1016/J.IPL.2022.106275
https://doi.org/10.1007/978-3-540-74126-8_27
https://doi.org/10.1371/journal.pcbi.1008928
https://doi.org/10.1371/journal.pcbi.1008928
https://doi.org/10.1016/j.ygeno.2010.03.001

6:16 Connecting de Bruijn Graphs

25 Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and
complexity classes. J. Comput. Syst. Sci., 43(3):425–440, 1991. doi:10.1016/0022-0000(91)
90023-X.

26 Pavel A. Pevzner, Haixu Tang, and Michael S. Waterman. An Eulerian path approach to
DNA fragment assembly. Proc Natl Acad Sci, 98(17):9748–9753, 2001. doi:10.1073/pnas.
171285098.

27 Robert C. Prim. Shortest connection networks and some generalizations. Bell System Technical
Journal, 36:1389–1401, 1957. doi:10.1002/j.1538-7305.1957.tb01515.x.

28 Amatur Rahman and Paul Medevedev. Representation of k-mer sets using spectrum-preserving
string sets. J. Comput. Biol., 28(4):381–394, 2021. doi:10.1089/CMB.2020.0431.

29 Sebastian Schmidt, Shahbaz Khan, Jarno N Alanko, Giulio E Pibiri, and Alexandru I Tomescu.
Matchtigs: minimum plain text representation of k-mer sets. Genome Biology, 24(1):136, 2023.
doi:10.1186/s13059-023-02968-z.

30 Sebastian S. Schmidt and Jarno N. Alanko. Eulertigs: minimum plain text representation
of k-mer sets without repetitions in linear time. Algorithms Mol. Biol., 18(1):5, 2023. doi:
10.1186/S13015-023-00227-1.

31 Ondřej Sladkỳ, Pavel Veselỳ, and Karel Břinda. Masked superstrings as a unified framework
for textual k-mer set representations. bioRxiv, pages 2023–02, 2023.

32 William H.A. Tustumi, Simon Gog, Guilherme P. Telles, and Felipe A. Louza. An improved
algorithm for the all-pairs suffix–prefix problem. Journal of Discrete Algorithms, 37:34–43,
2016. 2015 London Stringology Days and London Algorithmic Workshop (LSD & LAW).
doi:10.1016/j.jda.2016.04.002.

33 Esko Ukkonen. A linear-time algorithm for finding approximate shortest common superstrings.
Algorithmica, 5(3):313–323, 1990. doi:10.1007/BF01840391.

https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1089/CMB.2020.0431
https://doi.org/10.1186/s13059-023-02968-z
https://doi.org/10.1186/S13015-023-00227-1
https://doi.org/10.1186/S13015-023-00227-1
https://doi.org/10.1016/j.jda.2016.04.002
https://doi.org/10.1007/BF01840391

	1 Introduction
	2 Hardness of Connect-DBG-E
	3 Approximating Connect-DBG-E
	4 Connecting de Bruijn Graphs with Paths in Essentially Optimal Time
	5 Making a dBG Eulerian through ILP
	5.1 The ILP Formulation
	5.2 Proof-of-concept Experiments

