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Abstract
The Burrows-Wheeler transform (BWT) is a famous text transformation that rearranges the symbols
of the input strings so that occurrences of a same symbol tend to occur in runs. The number of
runs is an important parameter in the BWT output string, historically associated with its high
compressibility and more recently used as a measure for the space complexity of efficient data
structures. It is a known fact that reordering the strings in the input collection S affects the number
of runs in the output string bwt(S) produced by applying the BWT to the string collection. In this
paper, we define a class of transformed strings where symbols in particular blocks of the bwt(S) can
be reordered according to a different adaptive alphabet order. Then, we introduce new heuristics to
reduce the number of runs in the BWT output of a string collection that improve on the two existing
heuristics introduced in Cox et al. [7]. These new heuristics are computed when applying the BWT
to a string collection assuming no a priori order on the input strings and without requiring any pre-
and/or post- processing of the collection S or of the BWT string. In this paper, we also face the
problem of reconstructing the input collection S from the string bwt(S) together with the string
permutation realized when applying an alphabetical reordering of symbols during the construction
of bwt(S).
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1 Introduction

The Burrows–Wheeler transform (BWT), introduced by M. Burrows and D. Wheeler in the
1990s [3] as a method for compressing a single input text, has since evolved into a versatile
tool with many applications well beyond its original purpose [23]. Just as examples, the
BWT has been used as the building block for compact text indexing [8, 16, 17, 10], and
for bioinformatics applications, e.g., for sequence alignment [20], phylogenetic analysis [12],
genome assembly [24] as well as for sequencing data compression [13].
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7:2 A Class of Heuristics for Reducing the Number of BWT-Runs

Informally, the BWT is a text transformation that rearranges the symbols of an input
string S into a string bwt(S), which is obtained by concatenating the symbols that precede
the cyclic rotations of S once the rotations have been sorted into lexicographic order. An
equivalent and faster way to build bwt(S) [3] is to sort the suffixes of a related string obtained
by appending an end-marker symbol (usually $) that is lexicographically smaller than any of
the symbols in S but does not appear in S itself. Both ways have two important properties:
reversibility and clustering effect.

The reversibility permits to invert the transformed string by reconstructing S, and allows
to search patterns in S very efficiently. While the clustering effect describes the inner property
of the BWT to carry occurrences of a given symbol to runs of equal consecutive symbols.

The more symbols can be grouped into runs of the same symbol, the better is the
performance of compression techniques such as, for instance, run-length encoding (RLE)
where a string is coded as a concatenation of pairs formed by the symbol c and the number
of times c is repeated. The total number of runs of a same symbol in the BWT-string is
usually referred to as r. Recently, the parameter r is increasingly appearing not only for data
compression, but also for measuring the space requirement of BWT-based text indexing data
structures (see for instance [16, 17, 10]). Therefore, a text containing a few long runs is easier
to compress or index than a text having the same characters but organized into a greater
number of shorter runs. An interested reader can find theoretical studies and applications
about the clustering effect in [19, 21, 22, 5] and references therein. Due to the ever-increasing
volume and repetitive nature of data, developing new techniques that reduce or minimize the
number of runs produced by the BWT is paramount for managing big data in applications.

Just as for a single string, the BWT of a collection of strings can be constructed either
by sorting their cyclic rotations3 as in [18] or sorting their suffixes [1]. In the latter case,
a distinct end-marker symbol is appended to each string, making the collection ordered
according to the order established among the end-marker symbols. Moreover, it is known
that given a string collection S, the two strings bwt(S) and bwt(S ′) can only differ within
particular intervals, if S ′ is a string permutation of S [7, 5].

Our contributions. In this paper, we define a class of transformed strings obtained by
applying the BWT to a string collection S in which the symbols in particular blocks of the
bwt(S) can permute according to a different adaptive alphabet ordering, while maintaining
the reversibility property. Some known strategies falling into this class have already been
introduced in the literature [7, 15, 2, 4]; and we recall them in Section 3.

Then, we introduce new heuristics for reducing the number of runs while computing
the BWT-string; these heuristics improve on the number of runs of both the BWT-string
obtained from the input-ordered collection and the two previously-introduced heuristics [7].
We show experimentally that the new heuristics tend to minimize the number of runs.

In this paper, the BWT output string is obtained by sorting all the suffixes of the input
strings assuming that each string ends with a different end-marker symbol, but no a priori
ordering of the end-marker symbols is given. Among the state-of-the-art approaches to
compute the BWT for a string collection, we employ the algorithm BCR described in [1]
to ensure that the order between any two end-marker symbols is determined during the
construction of the BWT and not a priori. The interested reader can refer to [5] for a survey
on the different output strings obtained by different tools.

3 In this case, one needs to use the ω-order defined in [18].
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We also address the problem of inverting the bwt(S) preserving the input order in S in
case a symbol reordering has been applied during its construction. This property allows to
reconstruct only a single string or groups of strings of the input collection and it might be
useful in some applications, where only specific groups of strings are to be decoded (e.g., in
short-reads collections). In fact, without knowing the string reordering applied to bwt(S),
the inverse transform of bwt(S) is no longer lossless in terms of string order.

1.1 Related works
In the literature, the problem of reducing the number of runs in the BWT-string has been
approached from two perspectives. Indeed, on the one hand, the number of runs is affected
by the order of the symbols in the considered alphabet; on the other hand, it is also impacted
by the order of the strings in the collection.

Alphabet order. Chapin and Tate [6] show experimentally that ordering symbols by their
ASCII code does not always give the best compression and discuss several heuristics for
varying the alphabet order. For instance, they propose a scheme in which rotations are sorted
in a manner inspired by reflected Gray codes. In [14], the authors introduce the Alternating
BWT (ABWT) that is defined as the BWT by using a different order of the cyclic rotations,
where one needs to alternate the standard and reverse orderings in odd and even positions.
In [11], the authors describe a class of BWT string transformations based on context adaptive
alphabet orderings, where in the rotation sorting phase, the alphabet orderings depend on
the context (i.e., the longest common prefix of the rotations being compared). Moreover,
they consider the problem of determining the BWT variant that minimizes the number
of runs in the transformed string. Recently, Bentley et al. [2] derived the computational
complexity of minimizing the number of runs in the BWT via alphabet ordering. They prove
that the problem of deciding whether there exists an ordering of the alphabet symbols such
that the number of runs in the BWT is at most equal to a given integer is NP-complete and
its corresponding minimization problem is APX-hard.

String order. When the BWT is applied to a string collection by sorting the suffixes of its
strings, one needs to append a different end-marker symbol to each string and to establish a
order among them. In this case, the problem of minimizing the number of runs also needs to
consider the different orderings of the input strings, since the ordering of the input strings
depends on the reciprocal ordering of the end-marker symbols appended to each string. The
authors in [7] provide the first experimental study showing: i) one can permute symbols
within the bwt(S) associated to particular blocks, named “SAP-intervals” (SAP standing for
“same-as-previous”), without destroying the string reversibility; ii) one can obtain a reduced
number of runs in the bwt(S) while permuting symbols in SAP-intervals (see also [5]).

The problem of minimizing the number of runs in the bwt(S) via string ordering has
been tackled as a closely related problem by Bentley et al. [2]. Indeed, finding a string order
that minimizes the number of runs in the bwt(S) is equivalent to finding an order for the
end-marker symbols that results in the minimum number of runs in the bwt(S). They show
that given the bwt(S), the problem of minimizing its runs via string order can be solved
in linear time by reducing such problem to a tuple sorting problem (more details in [2]).
In [4], the authors provide the first implementation that computes the bwt(S) with the
fewest number of runs using the post-processing strategy described in [2] combined with the
SAP-array [7].

CPM 2024
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2 Preliminary and Materials

Let Σ = {c1, c2, . . . , cσ} be a finite ordered alphabet Σ with c1 < c2 < . . . < cσ, where <

denotes the standard lexicographic order. Let S be a string of length n on Σ. We denote the
i-th symbol of S by S[i]. A substring of S is denoted as S[i, j] = S[i] · S[i + 1] · · · S[j], with ·
being the concatenation operator.

Let S = {S1, S2, . . . , Sm} be a collection of m strings on the alphabet Σ. We assume that
each string Si ∈ S has length ni + 1, since we append a special end-marker symbol $i to each
Si, i.e. Si[ni + 1] = $i, such that each $i does not belong to Σ and it is lexicographically
smaller than any other symbol in Σ. Let us denote by N =

∑m
i=1 ni + m the number of

symbols of all strings in S (including their end-marker symbols).
The suffix of a string Si starting at position k is Si[k, ni + 1] and we define the j-suffix

of Si as the suffix starting at position ni + 1 − j of Si, i.e. Si[ni + 1 − j, ni + 1], which has
length j + 1 (including the end-marker symbol $i). Note that the 0-suffix of Si is just $i.

A run in a string S is a maximal substring consisting of repetitions of only one character.
The BWT is a reversible text transformation that, given as input a string S$ (with $ not

appearing in S), produces an output string bwt(S$) such that bwt[i] is the symbol preceding
the i-th lexicographically smallest suffix of the string S$. In the seminal paper by Burrows
and Wheeler [3], two important properties that establish a correlation between the string
bwt(S$) = L and the string F , formed by lexicographically sorting the symbols of S$, have
been shown4:

For all i = 1 . . . n + 1, the symbol F [i] circularly follows the symbol L[i] in the string S$;
For each alphabet symbol c, the h-th occurrence of c in L corresponds to the h-th
occurrence of c in F . In particular, if L[i] is any occurrence of c in L, the position of
its corresponding occurrence in F is given by C[L[i]] + rank(L[i], i), where C[c] is the
total number of symbols in S$ that are smaller than c and rank(c, i) is the number of
occurrences of c in the substring L[1, i].

The above function that maps symbol occurrences in L to their corresponding symbol
occurrences in F is known as LF-mapping [9].

2.1 The BWT applied to a string collection
A way for applying the BWT to a string collection consists in appending to each string an
end-marker symbol and then concatenating the resulting strings to form a unique larger
string. Nevertheless, it is also built without concatenating the input strings by using two
approaches: i) sorting cyclic rotations of the input strings [18]; ii) sorting suffixes of the
input strings [1]. The former approach uses a special order to sort the cyclic rotations which
is not affected by the order of the input strings; while the sorting performed by the latter
approach deeply depends on the order defined on the end-marker symbols. For this reason,
in this paper, we focus on the latter approach and we follow the strategy introduced in [1]
to handle the list of sorted suffixes. Note that in [1], the suffixes of the strings in S are
sorted assuming that each string Si ends with a distinct end-marker symbol $i such that
$i < $j , if i < j in S. See Table 1, sixth column (inputBWT), for an example of the BWT of
a string collection S obtained by concatenating the symbols preceding the sorted suffixes of
the strings in S (last column). The authors of [1] provide two related methods for computing
such a BWT for large collections of strings making use of sequential reading and writing of

4 The same properties hold for the BWT of a string collection [18, 1] - see Section 2.1.
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files from disk: the first variant, BCR, is a semi external memory approach (see Section 3.1)
that requires more RAM than the second variant, BEETL-BCRext, which uses negligible
RAM at the expense of a larger amount of disk I/O.

2.2 SAP-array, SAP-interval and BWT by SAP
The authors of [7] showed that compression of the BWT output string can be improved by
reordering the strings in the input collection, and that an “implicit sorting” strategy can be
applied while computing the BWT. Such a strategy is based on the observation that in some
particular blocks of the bwt(S), the order of the symbols is entirely determined by the order
established among the associated j-suffixes that are equal up to the end-marker symbols 5.
In order to keep track of these blocks, we recall the notion of SAP-array and of SAP-interval.

▶ Definition 1 ([7]). The SAP-array (for ‘same-as-previous’-array) of a collection S is a
binary vector of the same length as the bwt(S) string such that SAP[i] = 1 if and only if the
suffix corresponding to the symbol bwt(S)[i] is same as the previous suffix in the list of sorted
suffixes (their end-marker symbols excluded). A SAP-interval bwt(S)[b, e] is a maximal block
of consecutive symbols such that SAP[i] = 1, for all b < i ≤ e.

In other words, any run of 1’s preceded by a 0 in the SAP-array corresponds to a block
of equal j-suffixes, with j ≥ 0, that differ only for their end-marker symbols.

Therefore, given two collections S and S ′ having the same strings but in different order,
the following results hold (see [7, 5]).

▶ Observation 2. The BWTs of S and S ′ have identical SAP-arrays and can only differ
within SAP-intervals that contain more than one distinct symbol.

▶ Observation 3. Within a SAP-interval containing more than one distinct symbol, the
reordering of the characters implicitly involves permuting the strings in the collection.

3 A class of heuristics based on SAP-intervals

In this section, we describe a class of BWT transformed strings that reduce the number of
runs based on the notion of SAP-intervals and the two key observations above (Observations 2
and 3). Moreover, we introduce new heuristics that apply an implicit string reordering during
the construction of the BWT output string allowing a reduction of the number of runs with
respect to the original input order.

We define the following class of transformed strings associated with a string collection S:

▶ Definition 4. Given a string collection S, the class SS comprises all the strings obtained
from bwt(S) by possibly sorting the symbols of each SAP-interval according to a different
adaptive alphabet ordering.

The following existing variants of the BWT of S belong to the class SS :
1. rloBWT (or colexBWT), which is obtained by using the lexicographic alphabet ordering

for each SAP-interval [15, 7] - see rloBWT column in Figure 1. Note that the rloBWT
corresponds to sorting the input collection in reverse lexicographic order (RLO), or
co-lexicographic order, and it can be computed not only by pre-processing the strings,
but also on-the-fly during the construction of the bwt(S) itself (more details in [15]).

5 Such a key observation is also stated in Bentley et al. [2], where such blocks are modeled as tuples, and
in Cenzato et al. [5] through the notion of “interesting intervals”.

CPM 2024
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2. sapBWT, which is obtained by sorting the symbols in those SAP-intervals whose number
of distinct symbols is smaller than the SAP-interval’s length, i.e. only in SAP-intervals
in which it is possible to decrease the number of runs of the SAP-interval. The alphabet
order used in any of such SAP-intervals, bwt[b, e], is given by setting bwt[b] as the smallest
alphabet symbol and using the lexicographic order for all the other symbols. Note
that the sapBWT is obtained on-the-fly during the construction of the bwt(S) (through
BEETL-BCRext) where the SAP-array information is implicitly taken into account by
computing a SAP status (more details in [7]) - see sapBWT column in Figure 1.

3. optBWT, which is obtained by using an alphabet order designed ad hoc for each
SAP-interval containing more than one distinct symbol that minimizes the number of
mismatches at the boundaries of the SAP-intervals. The ad hoc alphabet order for
each SAP-interval is established in a backward fashion while scanning the bwt(S) and
its SAP-array (both pre-computed) and using a stack to manage consecutive SAP-
intervals (more details in [4]). In our running example (Figure 1), the optBWT is
TTTTTTT $$GGGG$$GGGGGCAAGC$$$CCCAAAA. Note that the number of runs
in the optBWT is the minimum possible [2, 4].

Now, we focus on a particular subclass of SS in which the adaptive alphabet order used
in SAP-intervals is selected on-the-fly while building the BWT string itself. The sapBWT
and rloBWT belong to this subclass, differently from the optBWT that is obtained as
post-processing.

Therefore, we do not assume that the strings in S are ordered: we define a string order
for S while building the BWT string, on the basis of the alphabet order choices performed
in the SAP-intervals.

In Section 3.2, we define new heuristics belonging to SS that reduce the number of runs
on-the-fly during the construction of the BWT output string. To this end, we adopt the
construction method introduced in [1] (see Section 3.1), which does not concatenate the
input strings, but incrementally builds the bwt(S) by parsing the suffixes of the same length
through a right-to-left scanning of all the strings at the same time.

3.1 BCR Construction and Data Structure Design
In this section we recall how the BCR algorithm works without describing the previous work
in full detail, rather summarizing the explanation and data structures employed. For the
space and time complexities of BCR we refer to the original article [1, Table 1].

BCR proceeds incrementally in k steps, where k is the length of the longest string in the
collection plus one for the appended end-marker symbol. At the end of step j, BCR has
built a partial BWT, bwtj(S), corresponding to the concatenation of the symbols preceding
the lexicographically sorted suffixes of length less than or equal to j.

In order to compute bwtj(S), BCR needs an array A of m elements, that uses O(m log(m+
|Σ| + |bwt(S)|)) bits of workspace, which is updated at each iteration j, for j = 0, 1, 2, . . . , k.
We denote by A(j) the array A at the j-th iteration, and by q any index in [1, m], then:

A(j)[q].seq stores the index of the string in S whose j-suffix is ranked q after lexicograph-
ically sorting all j-suffixes, i.e., A(j).seq gives the lexicographic order of all j-suffixes;
A(j)[q].sym stores the symbol circularly preceding the j-suffix of the string with index
A(j)[q].seq, i.e., a symbol to be inserted into bwtj−1(S);
A(j)[q].pos stores in which position symbol A(j)[q].sym must be inserted into bwtj−1(S).
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Table 1 The SAP-array and the different SAP-ordering heuristics applied to the collection
S = {CGAT, GGAT, CGCT, AGCT, AGAT, GGAT, GGCT }. The SAP-intervals are colored and
the sorted suffixes related to S are listed in the last column. The number of runs is computed
considering the end-marker symbols as the same symbol $.

Different heuristics string order Sorted suffixes in
SAP-ARRAY altBWT plusBWT randBWT sapBWT rloBWT InputBWT input collection

0 T T T T T T $1
1 T T T T T T $2
1 T T T T T T $3
1 T T T T T T $4
1 T T T T T T $5
1 T T T T T T $6
1 T T T T T T $7
0 $ $ $ $ $ $ A G A T $5
0 $ $ $ $ $ $ A G C T $4
0 G G G G G G A T $1
1 G G G G G G A T $2
1 G G G G G G A T $5
1 G G G G G G A T $6
0 $ $ $ $ $ $ C G A T $1
0 $ $ $ $ $ $ C G C T $3
0 G G G G G G C T $3
1 G G G G G G C T $4
1 G G G G G G C T $7
0 A G C C A C G A T $1
1 C G A A C G G A T $2
1 G A G G G A G A T $5
1 G C G G G G G A T $6
0 G C G C A C G C T $3
1 C G A A C A G C T $4
1 A A C G G G G C T $7
0 $ $ $ $ $ $ G G A T $2
1 $ $ $ $ $ $ G G A T $6
0 $ $ $ $ $ $ G G C T $7
0 A A C A A A T $1
1 A A C A A A T $2
1 A A C A A C T $3
1 A A A A A C T $4
1 C C A C C A T $5
1 C C A C C A T $6
1 C C A C C C T $7

Number of runs 13 12 13 14 14 17

A trivial “iteration 0” sets the initial partial BWT, bwt0(S), by simulating the insertion
of the end-marker symbols in the sorted list of suffixes. Thus, we set A(0)[q].seq = q,
A(0)[q].sym = Sq[nq] and A(0)[q].pos = q, for q = 1 . . . m. In the original version of BCR,
bwt0(S) = A(0)[1].sym · · · A(0)[m].sym, i.e., bwt0(S) is the concatenation of the symbols
preceding the end-marker symbols assuming that $i < $j , if i < j.

For each iteration j = 1, 2, . . . , k, BCR computes bwtj(S) by inserting the symbols
preceding all the j-suffixes of S into bwtj−1(S), through the following three phases:
1. BCR computes A(j) from A(j−1). For any q, let x = A(j−1)[q].seq, c = A(j−1)[q].sym

and p = A(j−1)[q].pos. The value A(j)[q].pos is set by reading bwtj−1(S) and by using
the LF-mapping, i.e., A(j)[q].pos = C[c] + rank(c, p) (we omit details for space reasons).
While, A(j)[q].sym is updated with the symbol preceding the j-suffix of Sx.

2. BCR sorts the array A(j) by using A(j).pos as sorting key.
3. For each q, BCR inserts the symbol A(j)[q].sym into bwtj−1(S) at position A(j)[q].pos.

CPM 2024



7:8 A Class of Heuristics for Reducing the Number of BWT-Runs

At the end of iteration j, after inserting all the symbols preceding the j-suffixes into bwtj−1(S),
we get bwtj(S) available for the next iteration. Whenever the first symbol of a string Sx has
been inserted into bwtj−1(S), the symbol $x must be inserted at the next iteration and then
no other symbol of the string Sx will be inserted.

After the last iteration k, all end-marker symbols have been inserted in their correct
positions into bwtk−1(S) and the BWT of the collection is completed.

Note that, the BCR implementation inserts the same end-marker symbol, $, for all strings
(i.e., $i = $ for all i = 1, . . . , m) so as not to increase the size of the alphabet. However,
one can store in a separate file the values in A(j).seq to which each end-marker symbol is
associated.

Actually, in BCR as well as in our implementation, the partial BWT is split into σ

segments Bj(z) formed by the symbols preceding suffixes starting with the symbol z (more
details in [1]). Hence, in the array A(j), for each value A(j)[q].pos, one needs to store two
pieces of information: the symbol z and the position in Bj(z) – see also [15].

3.2 Improved SAP-heuristics
Here we introduce three heuristics whose associated BWT strings belong to the class SS of
Definition 4. These heuristics are such that:

they improve the number of runs of the BWT output string with respect to the input
order (inputBWT) and the two existing heuristics sapBWT and rloBWT;
symbols in SAP-intervals are sorted during an incremental construction of the BWT
string that parses the suffixes of the same length through a simultaneous right-to-left
scanning of all the strings, like BCR does. At the jth-iteration, the sorting takes into
account symbols already stored in bwtj−1(S) or that will be inserted into the bwtj(S).

Let j be any BCR iteration, for j = 1, . . . , k.
The first heuristic, called altBWT, uses an alternating lexicographic order to sort symbols

in consecutive SAP-intervals which are to be inserted into bwtj−1(S). Thus, it differs from the
rloBWT, as it alternates the lexicographic order and its inverse when inserting consecutive
SAP-intervals - see altBWT column in Table 1.

The second heuristic, called plusBWT, designs an ad hoc alphabet order for each SAP-
interval to be inserted into bwtj−1(S) on the basis of the symbols already in it. In particular,
let p be the position in which the first symbol of the SAP-interval must be inserted into
bwtj−1(S). We modify the alphabet order by setting the smallest symbol as bwtj−1[p − 1] (if
it exists) and the greatest one as bwtj−1[p] (if it exists), and by keeping the alphabet order
among all the other symbols - see plusBWT column in Table 1.

The third heuristic, called randBWT, applies a random alphabet order for each SAP-
interval inserted into bwtj−1. Note that all these heuristics correspond to a string reordering
that cannot be obtained a-priori unless having the associated string permutation.

In order to sort symbols according to any of the above strategies, the array A(j) defined
in Section 3.1 is augmented with a binary value A(j)[q].sap that stores, for any q = 1, . . . , m,
the SAP-status of the associated symbol A(j)[q].sym6. More precisely, A(j)[q].sap encodes
whether or not the j-suffix of the string Sx, where x = A(j)[q].seq, is same as the j-suffix of
the string Sy, where y = A(j)[q − 1].seq, up to the end-marker symbol7.

6 Differently from [7], we compute the SAP-status and the SAP-intervals for the current iteration.
7 Similar strategies have been used in [7, 15] and in the BCR-implementation of the tool optimalBWT

introduced in [4] for explicitly computing the SAP-array.
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Hence, if we have A(j)[q′].sap = 0 and A(j)[q′ + i].sap = 1, for some q′ and all i with
1 ≤ i < ℓ, then there exist ℓ j-suffixes in S that are equal up to the end-marker symbols
and that belong to the strings with indices A(j)[q′ + i].seq, for 0 ≤ i < ℓ. For this reason,
the symbols A(j)[q′ + i].sym, for 0 ≤ i < ℓ, form a SAP-interval and they are inserted in
consecutive positions into bwtj−1(S).

Now, we describe how to modify BCR to compute any of the above heuristics.
At “iteration 0”, the array A is initialized as described in Section 3.1. Moreover, since

we simulate the insertion of the 0-suffixes of S, we set A(0)[1].sap = 0 and A(0)[q].sap = 1,
for all 1 < q ≤ m. Differently from the original BCR, before storing in bwt0(S) the symbols
A(0)[q].sym, for q = 1 . . . m, we perform a sorting on A(0) with respect to A(0)[·].sym as
sorting key. Supposing σ < m, we perform a linear sorting on A(0) on the basis of a special
alphabet order, which is for both altBWT and plusBWT the alphabetic order, and for
randBWT a random order on Σ. Then, by setting bwt0(S) = A(0)[1].sym . . . A(0)[m].sym,
we have that the number of runs of bwt0(S) is minimized. Note that the sorting is possible
since we assume there is no fixed order among the end-marker symbols, (i.e., it is no longer
true that $i < $j if i < j). The sorting of the symbols depends on the selected alphabet
order rather than on the string ordering.

At each iteration j = 1, 2, . . . , k, BCR updates the partial bwtj−1(S) by inserting the
symbols preceding the j-suffixes of S by using the three phases described in Section 3.1.
We modify both phase 1 and phase 3 in order to update A(j)[q].sap values and to permute
symbols in SAP-intervals while building bwtj(S).

In particular, during phase 1, when computing A(j) from A(j−1), we propagate the SAP-
status from iteration j − 1 to iteration j. For each maximal interval [b, e] in A(j−1) such that
A(j−1)[i].sap = 1 for all b < i ≤ e, we set A(j)[q].sap = 0 if A(j−1)[q].sym ̸= A(j−1)[q−1].sym,
for any b < q ≤ e, and keep A(j)[q].sap = A(j−1)[q].sap, otherwise. Intuitively, let c and
c′ be the symbols preceding the two equal j-suffixes of Sx and Sy, where x = A(j)[q].seq

and y = A(j)[q − 1].seq. Both c and c′ are in the same SAP-interval, but being c ̸= c′,
the (j + 1)-suffixes of Sx and Sy are no longer equal and thus their preceding symbols are
no longer in the same SAP-interval. During phase 2, BCR sorts the array A(j) by using
A(j)[q].pos as sorting key. No modifications need to be performed at this phase, but we can
make a key observation relevant for phase 3: for each maximal interval [b, e] in A(j) such
that A(j)[i].sap = 1 for b < i ≤ e, the symbols A(j)[q].sym need to be inserted in consecutive
positions into bwtj−1(S) starting from position p = A(j)[b].pos (that is A(j)[b + i].pos = p + i,
for all i = 1, . . . , e − b). During phase 3, for each maximal interval [b, e] in A(j) such that
A(j)[i].sap = 1 for all b < i ≤ e, we first linearly sort the sub-array A(j)[b, e] by using a
specific alphabet order on the key A(j).sym, and then for all b ≤ q ≤ e, we write the symbol
A(j)[q].sym into bwtj−1(S) in consecutive positions starting from p.

At the end, BCR has built a BWT string for the collection S in which the string order
is not given a priori, but it has implicitly established during the BWT construction itself
according to the alphabet order used within SAP-intervals.

The additional space required with respect to the original BCR is given by both the space
for storing the SAP status in m bits and the space used for linearly sorting the elements in
the SAP-intervals, which is O(σ log m) bits to store the number of symbol occurrences in
a SAP-interval and O(m log(σ + m)) bits to linearly sort at most m symbols carrying the
indices of the strings to which they belong. The time complexity of each iteration increases
by O(m), since first the array A(j) is scanned to find any maximal interval [b, e] such that
A(j)[i].sap = 1 (for b < i ≤ e) and for each of them the elements in A(j)[b, e] are linearly
sorted according to A(j).sym. Thus, the overall space and time complexity remains as in [1,
Table 1].
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a)
F rlo

BWT
$? T
$? T
$? T
$? T
$? T
$? T
$? T
A $5
A $4
A G
A G
A G
A G
C $1
C $3
C G
C G
C G
G A
G C
G G
G G
G A
G C
G G
G $2
G $6
G $7
T A
T A
T A
T A
T C
T C
T C

→

b)
F rlo

BWT
$5 T
$1 T
$2 T
$6 T
$4 T
$3 T
$7 T
A $5
A $4
A G
A G
A G
A G
C $1
C $3
C G
C G
C G
G A
G C
G G
G G
G A
G C
G G
G $2
G $6
G $7
T A
T A
T A
T A
T C
T C
T C

c)
F input

BWT
$1 T
$2 T
$3 T
$4 T
$5 T
$6 T
$7 T
A $5
A $4
A G
A G
A G
A G
C $1
C $3
C G
C G
C G
G C
G G
G A
G G
G C
G A
G G
G $2
G $6
G $7
T A
T A
T C
T C
T A
T A
T C

d)
Sorted
suffixes
$1
$2
$3
$4
$5
$6
$7
AGAT$5
AGCT$4
AT$1
AT$2
AT$5
AT$6
CGAT$1
CGCT$3
CT$3
CT$4
CT$7
GAT$1
GAT$2
GAT$5
GAT$6
GCT$3
GCT$4
GCT$7
GGAT$2
GGAT$6
GGCT$7
T$1
T$2
T$3
T$4
T$5
T$6
T$7

e)

Input
CGAT$1
GGAT$2
CGCT$3
AGCT$4
AGAT$5
GGAT$6
GGCT$7

RLO
AGAT$5
CGAT$1
GGAT$2
GGAT$6
AGCT$4
CGCT$3
GGCT$7

Figure 1 Considering the string collection of Table 1: a) and b) show the decoding of a string
when the strings are sorted by using the reverse lexicographic order (RLO). In a), the indices of the
end-markers in column F cannot be assigned, if we do not know the string permutation performed
during the encoding. In b), these indices are assigned since the encoding transformation outputted
the string permutation. While c) shows the decoding of a string when no string permutation is
performed. In d), we list the sorted suffixes according to the input order, and in e) the two considerd
re-orderings of our string collection.

4 Inverting the BWT and input order-preserving

In this section, we address the problem of inverting the BWT transform when a symbol
re-ordering in the SAP-intervals has been applied.

For ease of description, Figures 1a)-b) show the columns F and L of the collection of our
running example where the symbols of any SAP-interval have been sorted lexicographically
(rloBWT). However, what we show in the following holds for all the other SAP-ordering
heuristics. Figure 1c) shows the LF mapping applied to S3 = CGCT$3 in the BWT string
with input order of the collection, whose associated list of sorted suffixes is in Figure 1d).

Note that by applying the LF-mapping to the rloBWT, starting from the first m symbols in
L, we retrieve the m strings of the collection but permuted according to the order determined
by the local alphabet order used within the SAP-intervals (RLO in Figure 1e)). However,
the input string permutation can be recovered: in fact, when applying LF-mapping starting
from the q-th symbol in L (e.g., in Figure 1a) q = 6), we end up with the end-marker $k (e.g.,
in Figure 1a) $3) which means that the string Sk (S3) has been placed at the q-th position
(6-th position) in the permuted string collection. Since the indices of the end-marker symbols
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in L can be stored in a dedicated file, any $ in L can be associated with the correct string to
which it belongs even if all end-marker symbols appearing in L are equal to $. In this way,
since the LF-mapping starting from the q-th symbol in L ends in $k, we can label the q-th
end-marker symbol $? in F with the index k (e.g., in Figure 1a) F [6] = $3).

The example in Figure 1 also shows that, although the operation of symbol swapping is
not visible in any SAP-interval with a run of a same symbol, the symbols are (implicitly)
swapped with respect to the inputBWT (e.g., the red G-symbols in the third SAP-interval
of Figure 1c), since $3 > $4 in rloBWT).

We point out that by using LF-mapping we can decode the entire collection, but decoding
one single string or a specific group of strings in S is not possible. Indeed, in Figure 1a), we
do not know how to decode the sixth string of the input collection, since starting from L[6]
we end up decoding the third string. In addition, it is not possible to start from $6 in L and
to apply the LF-mapping, since we are not able to map $6 in L to the corresponding $? in
F . Therefore, the crucial property of decoding only specific groups of strings that the BCR
algorithm guarantees is compromised.

We address this issue by designing a strategy so that BCR can output the permutation
of the string indices at the end of the BWT construction phase. In this way, it is possible
to assign the correct index to any end-marker symbol in F , and decoding groups of strings
without decoding the entire collection (Figure 1b)).

Let π be an array of length m storing the permutation of the string indices of the
input collection. For instance, in Figure 1b), where rloBWT is computed, the permutation
π = [5 1 2 6 4 3 7]. Whereas, at the last iteration, the array A(4).seq contains the indices
[5 4 1 3 2 6 7], which correspond to the indices of the end-marker symbols in L. Indeed, at
the last iteration, A(k).seq contains the indices of the strings according to their lexicographic
order, regardless of the SAP-ordering heuristics used for building the BWT string.

Therefore, during the BWT construction, we need to keep track of the symbol swapping
performed. We modify the BCR data structure so that some entries of the array A point to
indices of π. More precisely, for any iteration j, we have a pointer A(j)[q].pi to a position in π

whenever a symbol swapping may affect the entries of A(j) from position q, i.e., A(j)[q].sap = 0
and A(j)[q + 1].sap = 1. That allows to report in π any string index swapping due to a
symbol swapping within a SAP-interval. In fact, the array A(j) is designed to assign to each
symbol A(j)[q].sym the string index to which it belongs (i.e., A(j)[q].seq).

After “iteration 0”, we have A(0)[1].pi points to π[1] and we initialize π[q] with the value
A(0)[q].seq, for all 1 ≤ q ≤ m. At each iteration j, we update A(j)[q].pi during phase 1 at the
same time as A(j)[q].sap. In particular, if A(j)[q].sap is set to 0, for some q, then A(j)[q].pi

points to π[x], where x is obtained by moving the position pointed by A(j)[q′].pi (with q′

the rightmost index preceding q such that A(j)[q′].sap = 0) by the offset q − q′. During
phase 3, we need to update π when a symbol swapping is performed. Thus, if [b, e] is a
maximal interval in A(j) such that A(j)[q].sap = 1 for all b < q ≤ e, and π[x] is the entry
of π pointed by A(j)[b].pi, then we copy in π[x, x + b − e] the values A(j)[b, e].seq after the
symbol swapping in that interval. At the end of the BWT construction, π corresponds to
the list of the indices of the end-marker symbols in F .

5 Experimental Results

In this section, we assess the performance of the introduced heuristics that we have
integrated into BCR tool8 implemented in C++ working in semi-external memory. To
evaluate the performance, we have designed a series of tests on real-life datasets (see Table 2).

8 Source code: https://github.com/giovannarosone/BCR_LCP_GSA.
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Table 2 Real-life datasets together with the BWT length, the maximum string length and the
number of strings. The column optBWT reports the minimum number of runs for each dataset, the
column ρ stores the ratio between the sum of the lengths of all SAP-intervals and the number of
runs in them and the column τ stores the ratio between the number of runs in the SAP-intervals
and the number of different symbols in them (higher values in bold).

Dataset Description BWT length Max Number of optBWT ρ τ
len. sequences

1 SRR7494928–30 Epstein Barr Virus 984,191,064 101 9,648,932 40,700,607 3.32 35.51
2 ERR732065–70 HIV-virus 1,345,713,812 150 8,912,012 11,539,661 10.98 15.57
3 SRR12038540 SARS-CoV-2 RBD 1,690,229,250 50 33,141,750 14,864,523 7.08 25.46
4 ERR022075_1 E. Coli str. K-12 2,294,730,100 100 22,720,100 71,203,469 1.46 11.38
5 SRR059298 Deformed wing virus 2,455,299,082 72 33,634,234 48,376,632 8.09 17.62
6 SRR065389–90 C. Elegans 14,095,870,474 100 139,563,074 921,561,895 1.56 8.15
7 SRR2990914_1 Sindibis virus 15,957,722,119 36 431,289,787 105,250,120 3.16 129.84
8 ERR1019034 H. Sapiens 123,506,926,658 100 1,222,840,858 10,860,229,434 1.82 7.58
9 pdb_seqres proteins 241,121,574 16,181 865,773 16,829,629 5.51 5.20

For each dataset, we computed two parameters: ρ and τ . The former parameter is given
by the ratio between the sum of the lengths of all SAP-intervals in the BWT string and
the total number of runs in the SAP-intervals of the inputBWT and it can be considered
as a repetitiveness measure in SAP-intervals. The latter parameter is given by the ratio
between the total number of runs in the SAP-intervals of the inputBWT and the sum of the
number of distinct symbols in each SAP-interval. The higher τ , the more the heuristics can
reduce the number of runs in the SAP-intervals, since the alphabet ordering applied to any
SAP-interval reduces its number of runs to the number of distinct symbols.

All tests were done on a DELL PowerEdge R750 machine, 24-core machine with 2 Intel(R)
Xeon(R) Gold 5318Y 24C/48T CPUs at 2.10 GHz, with 960 GB. The system is Ubuntu
22.04.2 LTS.

In Table 3, we report the number of runs for the new heuristics plusBWT, altBWT and
randBWT, and show they improve on BWT-string with input order (inputBWT), and the
two previously-introduced heuristics rloBWT and sapBWT9.

Recall that the sapBWT heuristic is built using BEETL-BCRext [1], which uses negligible
RAM at the expense of a larger amount of disk I/O. Therefore, its computation requires
more time than the other heuristics. In fact, all other BWT-strings are obtained by the
BCR-based tool that works in semi-external memory by sequential reading and writing files
on disk and requires more RAM (to store the array A) than BEETL-BCRext.

The heuristics altBWT, plusBWT, randBWT and rloBWT have similar performances: on
the largest dataset of about 123 Gb containing more than a billion sequences, they required
a time construction of about 17 hours and an internal memory usage of about 20GB. On the
contrary, the inputBWT required a time construction of about 15 hours and a similar internal
memory usage (about 20GB). Note that the optBWT is computed as post-processing [4] by
taking about 19 hours due to the fact that it needs to explicitly compute the SAP-array.

The experimental results show that plusBWT is the heuristic that gives the fewest runs,
improving on the number of runs in inputBWT by up to 97% and giving at least a 50%
reduction in runs for all eight of the DNA sequence datasets (strings from the alphabet
{A, C, G, N, T} of the same length). For the last dataset, containing proteins (on an alphabet
of 26 symbols of variable length), we observe that the reduction in the number of runs

9 Note that the implementation of sapBWT requires strings of the same length – see https://github.
com/BEETL/BEETL.

https://github.com/BEETL/BEETL
https://github.com/BEETL/BEETL
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Table 3 Number of runs in the BWT-string without symbol reordering (inputBWT) compared
to the number of runs for any heuristic being in the class SS for each dataset in Table 2.

Different heuristics string order
inputBWT rloBWT sapBWT plusBWT altBWT randBWT

1 254, 663, 327 41, 730, 649 65, 040, 263 41, 372, 530 41, 592, 394 41, 599, 327
2 48, 727, 709 11, 941, 093 17, 662, 811 11,766,827 11, 858, 536 11, 872, 578
3 209, 136, 502 17, 026, 009 17, 949, 348 15,226,766 16, 014, 506 16, 626, 930
4 259, 821, 570 75, 846, 202 92, 304, 201 74,529,428 75, 239, 739 75, 332, 300
5 249, 873, 376 50, 495, 777 75, 142, 244 49,619,150 50, 207, 432 50, 302, 961
6 2, 251, 887, 226 968, 098, 124 1, 066, 534, 827 954,489,749 960, 811, 214 963, 741, 035
7 3, 313, 966, 937 109, 772, 697 188, 817, 402 108,466,351 109, 365, 518 109, 599, 875
8 23, 084, 021, 291 11, 312, 737, 256 12, 151, 830, 264 11,179,873,104 11, 250, 843, 471 11, 273, 506, 405
9 17, 971, 532 16, 862, 960 − 16,848,496 16, 861, 264 16, 861, 897

is smaller compared to the one obtained for larger datasets, since the overall number of
SAP-intervals is smaller. In addition, for this particular dataset, only 96, 814 of its 24, 055, 929
SAP-intervals have at least two distinct symbols10, and reordering symbols in SAP-intervals
can have an impact on the number of runs only if SAP-intervals have at least two distinct
symbols.

Finally, the additional overhead for the computation of any BWT-string in the class
SS is negligible compared to the number of runs reduction obtained with respect to the
inputBWT.

6 Conclusions and further work

In this paper, we defined from a theoretical viewpoint a class SS of transformed strings
obtained by applying the BWT to a string collection S in which the symbols in particular
blocks (SAP-intervals) permute according to a different adaptive alphabet ordering. We
showed that the symbol swapping is important to reduce the number of runs in the BWT-
string with respect to the one computed using the string input order, and it can be performed
while maintaining the reversibility property of the BWT.

From a practical viewpoint, we introduced some heuristics belonging to SS that reduce
the number of runs, while computing the BWT-string itself. These heuristics improve on both
the BWT-string obtained from the input-ordered collection and the two previously-introduced
heuristics in [7].

In the experiments, the heuristics in the class SS showed a considerable reduction in the
number of runs. For instance, for all datasets (apart from pdb_seqres dataset), plusBWT
obtained a reduction in the number of runs of about 50%-96% with respect to the inputBWT.
Such reordering strategies can be very useful for data compression and for data structures
whose properties have a favourable dependence on a small number of runs. Furthermore,
the experiments showed that good results in terms of number of runs can be obtained using
a random alphabet order for any SAP-interval (i.e., randBWT). That heuristic performs
better than the rloBWT heuristic that establishes the lexicographic alphabet order for each
SAP-interval. This is an intriguing fact that shows that picking random symbols to place at
the borders of a SAP-interval can be better than always choosing the lexicographic order to
sort them. Experimentally, the best results are obtained when the alphabet order choice in

10 These SAP-intervals with at least two distinct symbols are associated with the interesting intervals
introduced in [5].
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SAP-intervals keeps track of the symbols immediately preceding/succeeding, as done in the
plusBWT heuristic. In addition, we observe that a pre-processing reordering of the input
strings in S can only be applied if the string reordering is known a priori, such as for the
reverse lexicographic order; nevertheless, this condition does not universally apply.

From Observations 2 and 3, we can conclude that the size of the introduced class SS
is at most m!. However, strings that are equal keep their original order in S and not all
permutations may be possible. As future work, we intend to study further the permutations
in the class SS taking into account also the permutation study related to the rloBWT in [5].

Finally, an interesting direction for further studies involves to determine how the other
data structures related to BWT are affected by the symbol swapping, considering that the
LCP-array is not affected, as well as the SAP-array.
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