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Abstract
The classical string indexing problem asks to preprocess the input string S for efficient pattern
matching queries. Bille, Fischer, Gørtz, Pedersen, and Stordalen [CPM 2023] generalized this to the
streaming sliding window string indexing problem, where the input string S arrives as a stream,
and we are asked to maintain an index of the last w characters, called the window. Further, at any
point in time, a pattern P might appear, again given as a stream, and all occurrences of P in the
current window must be output. We require that the time to process each character of the text or
the pattern is worst-case. It appears that standard string indexing structures, such as suffix trees,
do not provide an efficient solution in such a setting, as to obtain a good worst-case bound, they
necessarily need to work right-to-left, and we cannot reverse the pattern while keeping a worst-case
guarantee on the time to process each of its characters. Nevertheless, it is possible to obtain a bound
of O(log w) (with high probability) by maintaining a hierarchical structure of multiple suffix trees.

We significantly improve this upper bound by designing a black-box reduction to maintain a
suffix tree under prepending characters to the current text. By plugging in the known results, this
allows us to obtain a bound of O(log log w + log log σ) (with high probability), where σ is the size of
the alphabet. Further, we introduce an even more general problem, called the streaming dynamic
window string indexing, where the goal is to maintain the current text under adding and deleting
characters at either end and design a similar black-box reduction.
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1 Introduction

The string indexing problem is to preprocess a string S into a compact data structure that
supports efficient subsequent pattern matching queries, that is, given a pattern string P ,
report all occurrences of P within S. Bille, Fischer, Gørtz, Pedersen, and Stordalen [6]
introduced a variant of the string indexing problem, called the streaming sliding window
string indexing (SSWSI) problem, where S arrives as a stream one character at a time. Here,
we want to maintain an index of a window of the last w character for a specified parameter w.
At any point in time, a pattern matching query for a pattern P may arrive also streamed one
character at a time, and we need to report the occurrences of P within the current window.
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8:2 Faster Sliding Window String Indexing in Streams

We measure the complexity of the algorithm by the worst-case time it processes a single
character of the text or pattern. The goal is to compactly maintain the index while processing
the characters arriving from either S or a pattern query efficiently. The SSWSI problem
captures scenarios where we want to index recent data in an incoming stream (the window)
while supporting fast pattern matching queries. For instance, monitoring a high-speed data
stream, where we cannot afford to index the entire stream but still want to support fast
queries.

As discussed in Bille, Fischer, Gørtz, Pedersen, and Stordalen [6], the standard string
indexing structures, such as sliding suffix tree [8,12,20–22] and online suffix tree [1–3,7,14,17–
19] constructions, do not provide an efficient solution to the SSWSI problem. For instance,
efficient online suffix tree constructions require that we process the string (and hence also
the pattern) in right-to-left order. In our setting we cannot afford to reverse pattern while
keeping a worst-case guarantee on the time to process each of its characters. Bille, Fischer,
Gørtz, Pedersen, and Stordalen [6] showed how achieve O(log w) (with high probability) time
per character by maintaining a hierarchical structure of multiple suffix trees.

In this paper, we present a new black-box reduction to online suffix tree construction
algorithms, i.e., algorithms that maintain suffix trees while prepending one character at a
time to the current text. By plugging in known results, we obtain solutions using either
O(log log w + log log σ) time (with high probability) or O

(
log log w + (log log σ)2

log log log σ

)
(determin-

istic) time per character. Here, σ is the size of the alphabet. We also consider a generalized
version of this problem, called the streaming dynamic window string indexing (SDWSI)
problem. Here, the window is a dynamic string that can be updated by adding or deleting
characters at either end of the string, and we have to support streamed pattern matching
queries as above. We show how to extend our reduction and results for this problem, and
obtain similar bounds.

1.1 Setup
We now formally define the streaming dynamic window string indexing and streaming sliding
window string indexing problems and our main results.

Streaming Dynamic Window String Indexing. Let S be a dynamic string over an alphabet
Σ. The streaming dynamic window string indexing (SDWSI) problem is to maintain a data
structure on S that supports the following operations:

AddRight(a): add the character a to the right end of S.
AddLeft(a): add the character a to the left end of S.
RemoveRight(): remove the last character from S.
RemoveLeft(): remove the first character from S.
Report(P ) report all the occurrences of P in S.

In the Report(P ) query, the pattern string P is streamed one character at a time from
left-to-right and the goal is to begin reporting occurrences immediately after receiving the
last character. We do not assume that we know the length P before the arrival of its last
character.

Streaming Sliding Window String Indexing. Given an integer parameter w ≥ 1, we define
the streaming sliding window string indexing (SSWSI) problem as above, except that we
support a restricted set of operations:

Report(P ) report all the occurrences of P in S.
Update(a): AddRight(a). If |S| is now greater than w also perform a RemoveLeft().
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Thus, except for the first w Update operations, the window always has size w and changes
only by “sliding” one character to the right. This is also called the timely streaming sliding
window string indexing problem in Bille et al. [6].

Online Suffix Trees and Dynamic Dictionaries. Our main results use online suffix tree
construction algorithms and dynamic dictionaries as a black box. We define the precise
requirements for these. Let R be a string of length r over an alphabet of size σ and Ti be the
suffix tree of R[i..r]. An online suffix tree construction algorithm processes R from right to
left such that at the ith step, the algorithm explicitly constructs Ti and returns a pointer to
the new leaf ℓ corresponding to suffix R[i..r], the parent of ℓ, and the edge between ℓ and the
parent. We will use the currently best known algorithms for online suffix tree construction
due to Kopelowitz [17] and Fischer and Gawrychowski [14].

▶ Lemma 1 ([14, 17]). Given a string R of length r over an alphabet of size σ, we can solve
online suffix tree in linear space using either O(log log r +log log σ) time with high probability1

or O(log log r + (log log σ)2

log log log σ ) (deterministic) time per character, respectively.

Let X be a set of x integers from a universe of size u. A dynamic dictionary structure on X

supports membership (i.e., determine if a given integer is in X or not), insert, and delete on
X. We use the following results.

▶ Lemma 2. A set X ⊆ [U ] can be maintained in a linear space dynamic dictionary structure
that uses either O(1) time with high probability or O( (log log U)2

log log log U ) (deterministic) time.

Proof. The first bound is obtained by using a dynamic hash table [10]. The second bound
follows from a result of Andersson and Thorup [4]. ◀

We will maintain a dynamic dictionary structure D(v) for every explicit node v of the
current suffix tree Ti. D(v) maps the first character on an edge to the edge, which allows us
to navigate down in Ti to find the (implicit or explicit) node corresponding to P [1..i], for
i = 1, 2, . . . , m, in either O(1) time with high probability or O

(
(log log σ)2

log log log σ

)
(deterministic)

time per character of P .

1.2 Results
We can now define our main results. Let tsuff(r, σ) denote the time per character of a linear
space online suffix tree construction algorithm on a string of length r over an alphabet
σ. Also, let tdict(x, u) denote the time per operation of a linear space dynamic dictionary
structure. We show the following result for streaming sliding window string indexing.

▶ Theorem 3. Let S be a string over an alphabet of size σ. Given an integer parameter
w ≥ 1 we can solve the streaming sliding window string indexing problem on S for a
window of size w with an O(w) space data structure that supports Update and Report in
O(tsuff(w, σ)+tdict(w, σ)) time per character. Furthermore, Report uses additional worst-case
constant time per reported occurrence.

Plugging in Lemmas 1 and 2 in Theorem 3 we obtain the following bounds:

1 Kopelowitz [17] claims only worst-case expected time, but the expectation is due to hash tables, so one
can plug in e.g. the construction of Dietzfelbinger and auf der Heide [10].
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8:4 Faster Sliding Window String Indexing in Streams

▶ Corollary 4. Let S be a string over an alphabet of size σ. Given an integer parameter
w ≥ 1 we can solve the streaming sliding window string indexing problem on S for a window
of size w with an O(w) space data structure that supports Update and Report in either
O(log log w + log log σ) time per character with high probability or O

(
log log w + (log log σ)2

log log log σ

)
deterministic time per character. Furthermore, Report uses additional worst-case constant
time per reported occurrence.

For the streaming dynamic window string indexing we show the following result.

▶ Theorem 5. Let S be a dynamic string of length w over an alphabet σ. We can solve
the streaming dynamic window string indexing problem on S with an O(w · tsuff(w, σ)) space
data structure that supports AddRight, AddLeft, RemoveRight, RemoveLeft and Report in
O(tsuff(w, σ)+tdict(w, σ)) time per character. Furthermore, Report uses additional worst-case
constant time per reported occurrence.

Again, plugging in Lemmas 1 and 2 in Theorem 5 we obtain the following bounds:

▶ Corollary 6. Let S be a dynamic string of length w over an alphabet σ. We can solve the
streaming dynamic window string indexing problem on S with an O(w · tsuff(w, σ)) space data
structure that supports AddRight, AddLeft, RemoveRight, RemoveLeft and Report in either
O(log log w + log log σ) time per character with high probability or O

(
log log w + (log log σ)2

log log log σ

)
deterministic time per character. Furthermore, Report uses additional worst-case constant
time per reported occurrence.

1.3 Techniques
We first show how to use an online suffix tree construction algorithm to solve the version
where the string only changes by appending characters to the right. As noted, existing fast
algorithms for this problem work from right to left by prepending characters and then reverse
patterns to do a pattern matching query. We cannot do this efficiently in our scenario since
we want fast per character processing and we do not know the length of the pattern ahead
of time. To overcome this, we construct the online suffix tree over the reverse string and
then answer a pattern matching query P by prepending the characters of P to the string
as we receive them. Thus after receiving all of P the suffix tree contains all suffixes of
rev(P )$rev(S). When we receive the last character from the pattern, we determine if there
is an occurrence by checking if the edge in the suffix tree created by prepending the last
character starts with a $. Finally, we return the state of the online suffix tree before the
query. To quickly return the state of the online suffix tree to the state before the query, we
use techniques from persistent data structures.

To solve the streaming sliding window string indexing problem, we use the above data
structure over the last part of the window and a static suffix tree with a range maximum
query data structure over the first part of the window. The two data structures always
overlap by w/3. We can then answer pattern matching queries by querying each of these
structures. To find occurrences of long patterns not covered by any of the structures, we
give an algorithm that can report all occurrences of a pattern P in a text of length O(|P |)
in constant time per streamed character in P .

We solve the streaming dynamic window string indexing problem by representing S as a
concatenation of two shorter strings S = S1 ·S2. We then use online suffix tree data structures
on S1 and S2. The one on S1 supports only the updates AddLeft and RemoveLeft, and the
one on S2 supports only the updates AddRight and RemoveRight. To obtain the final result,
we use a classic technique to implement a deque with two stacks (see e.g., Hoogerwood [15]
combined with a deamortization scheme from Chuang and Goldberg [9].
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1.4 Overview
In Section 2 we introduce some notation. In Section 3 we give our algorithm for finding
occurrences of a streamed pattern P in strings of length O(|P |). In Section 4 we show how
to solve the version where the string S only grows by appending characters to the right.
Section 5 contains our new improved solution to the streaming sliding window string indexing
(SSWSI) problem. Finally, in Section 6 we give our solution to the streaming dynamic
window string indexing (SDWSI) problem.

2 Preliminaries

Given a string S of length n over an alphabet Σ, the ith character is denoted S[i], and the
substring starting at S[i] and ending at S[j] is denoted S[i..j]. The substrings of the form
S[i..n] are the suffixes of S. The reverse of a string S is the string rev(S) = S[n]S[n−1] · · · S[1].

The suffix tree [23] T over a string S[1..n] is the compact trie of all suffixes of S$, where
$ ̸∈ Σ is lexicographically smaller than any letter in the alphabet. Each leaf corresponds to a
suffix of S, and the leaves are ordered from left to right in lexicographically increasing order.
The suffix tree uses O(n) space by implicitly representing the string associated with each
edge using two indices into S. Farach-Colton, Ferragina, and Muthukrishnan [11] show that
the optimal construction time for T is sort(n, |Σ|), i.e., the time it takes to sort n elements
from the universe Σ. The suffix array L of a string S is the array where L[i] is the starting
position of the ith lexicographically smallest suffix of S. Note that L[i] corresponds to the
ith leaf of T in left-to-right order. Furthermore, let v be an internal node in T and let sv be
the string spelled out by the root-to-v path. The descendant leaves of v exactly correspond
to the suffixes of S that start with sv, and these leaves correspond to a consecutive range
[α, β]v in L. The locus of a string P is the minimum depth node v such that P is a prefix
of sv.

▶ Definition 7 (Periods). We say that a positive integer p is a period of a string S if
S[i] = S[i + p] for all i = 1, . . . , |S| − p. A string S is periodic if its smallest period is at
most |S|/2.

For a periodic pattern P with the smallest period p, we say a1, . . . , ak form a chain of
occurrences of P in S if P = S[ai..ai + |P | − 1] for i = 1, . . . , k and ai − ai−1 = p for
i = 2, . . . , k. The following (known) lemma is an easy consequence of the periodicity
lemma [13].

▶ Lemma 8. Let a1 < a2 < . . . < ak be all occurrences of P in S, where |S| ≤ 2|P |. If k ≥ 3
then a1, a2, . . . , ak form a chain.

3 Matching Long Streaming Patterns

In this section we describe an algorithm that can find and compactly report all occurrences of
a streamed pattern P in a string S of length O(|P |) in worst-case constant time per streamed
character.

We are given an integer m and a string S of length O(m) supporting random access in
constant time. We now receive a streamed pattern P of length between m and 3m. We want
to find all occurrences of P in S using constant time per streamed character. Since we do
not know the precise length of P before we receive the last character our algorithm must be
able to report all occurrences of the current P in constant time after receiving the first m

CPM 2024



8:6 Faster Sliding Window String Indexing in Streams

characters. Note that, since |S| = O(m) there is a constant number of occurrences of P in S

unless P is periodic. If P is periodic then, by Lemma 8, the occurrences can be described by
a constant number of chains.

Algorithm

The algorithm works in three phases. The ith phase starts after i · ⌊m/4⌋ of characters
of P have been streamed for i ∈ {1, 2, 3}. The third phase has two variants based on the
periodicity of P [0..⌊m/4⌋ − 1]. Throughout the phases, we store the streamed characters
of P .

Phase 1. Starts after the first ⌊m/4⌋ characters have arrived. We build a KMP au-
tomaton [16] of P [0..⌊m/4⌋ − 1]. When we have built the KMP automaton, we check if
P [0..⌊m/4⌋ − 1] is periodic and find its smallest period p.

Phase 2. Starts after 2⌊m/4⌋ characters have arrived. Find all occurrences of P [0..⌊m/4⌋−1]
in S using the KMP automaton. If P [0..⌊m/4⌋ − 1] is not periodic then there is a constant
number of occurrences and they are maintained explicitly. If P [0..⌊m/4⌋ − 1] is periodic then,
by Lemma 8, the occurrences can be described by a constant number of chains. In more
detail, let P = S[ai..ai + |P | − 1] be the previous occurrence and P = S[ai+1..ai+1 + |P | − 1]
be the next occurrence. If ai + p = ai+1 then we extend the last chain by ai+1, and otherwise
we create a new chain initially consisting of only ai+1.

Phase 3. Starts after 3⌊m/4⌋ characters have arrived. There are two cases depending on
whether P [0..⌊m/4⌋ − 1] is periodic or not.
Non-periodic. Extend the match of each occurrence from phase 2 simultaneously by explicitly

matching each character of P [⌊m/4⌋..|P |]. For each streamed character of P , match 4
characters until we have caught up to the stream. When the stream ends, report all
occurrences.

Periodic. We match in each chain simultaneously as follows. Let a1, . . . , ak be a chain. We
match against one occurrence in the chain, matching 4 characters at a time for each
streamed character of P as in the non-periodic case. Let the current occurrence we are
checking be occurrence j. Initially, j = k and i = ⌊m/4⌋. As long as i < |P | we do
the following: Compare P [i] and S[aj + i]. If we match we set i = i + 1 and continue.
Otherwise, there are two cases. If the mismatched character P [i] is a continuation of the
period and j > 1, we set j = j − 1, i = i + 1, and continue. Otherwise, we stop matching
in this chain. While matching, we also check if P still has period p.
When the stream ends there are two cases. If P does not have period p (P is non-periodic
or its smallest period is greater than p), then return the occurrence aj . If P has period p

we return the chain a1, . . . , aj .

Analysis

Constructing a KMP automaton of P [0..⌊m/4⌋ − 1] takes O(m) time. We can find the
periodicity through the KMP in O(m) time. The number of characters streamed in phase 1
is 2⌊m/4⌋ − ⌊m/4⌋, and thus we spent O(m)/⌊m/4⌋ = O(1) time per character in phase 1.

In phase 2, we match the KMP automaton of P [0..⌊m/4⌋ − 1] against S. Since the length
of S is O(m) and the number of characters streamed in phase 2 is 3⌊m/4⌋ − 2⌊m/4⌋, we
spent O(m)/⌊m/4⌋ = O(1) time per character in phase 2.
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a b a b a b a b a b a b c

c

a b a b a b a b a b a b c

a

a b a b a b a b a b a b a c

a b

<latexit sha1_base64="ooPkdiGjEt2G+vnIYwYbxUDRtus=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3SPQY8OIxonlAsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8NJME/YgOJQ85o8ZKD2V62S+W3Iq7AFknXkZKkKHRL371BjFLI5SGCap113MT40+pMpwJnBV6qcaEsjEdYtdSSSPU/nRx6oxcWGVAwljZkoYs1N8TUxppPYkC2xlRM9Kr3lz8z+umJrzxp1wmqUHJlovCVBATk/nfZMAVMiMmllCmuL2VsBFVlBmbTsGG4K2+vE5a1YpXq9Tur0r1ahZHHs7gHMrgwTXU4Q4a0AQGQ3iGV3hzhPPivDsfy9ack82cwh84nz+HbY1F</latexit>

(a)

<latexit sha1_base64="RPpOndLUlyW3PNrk0B+TwYifxhU=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3SPQY8OIxonlAsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8NJME/YgOJQ85o8ZKD+Xgsl8suRV3AbJOvIyUIEOjX/zqDWKWRigNE1Trrucmxp9SZTgTOCv0Uo0JZWM6xK6lkkao/eni1Bm5sMqAhLGyJQ1ZqL8npjTSehIFtjOiZqRXvbn4n9dNTXjjT7lMUoOSLReFqSAmJvO/yYArZEZMLKFMcXsrYSOqKDM2nYINwVt9eZ20qhWvVqndX5Xq1SyOPJzBOZTBg2uowx00oAkMhvAMr/DmCOfFeXc+lq05J5s5hT9wPn8AiPKNRg==</latexit>

(b)

<latexit sha1_base64="O6Gjj1BilT4be9D1sl/ENYC0mA0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3SPQY8OIxonlAsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8NJME/YgOJQ85o8ZKD2V22S+W3Iq7AFknXkZKkKHRL371BjFLI5SGCap113MT40+pMpwJnBV6qcaEsjEdYtdSSSPU/nRx6oxcWGVAwljZkoYs1N8TUxppPYkC2xlRM9Kr3lz8z+umJrzxp1wmqUHJlovCVBATk/nfZMAVMiMmllCmuL2VsBFVlBmbTsGG4K2+vE5a1YpXq9Tur0r1ahZHHs7gHMrgwTXU4Q4a0AQGQ3iGV3hzhPPivDsfy9ack82cwh84nz+Kd41H</latexit>

(c)

<latexit sha1_base64="2lsz2MSh9xNkM2sCtQsbFodva5I=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRahXspukeqx4MVjRfsB7VKy2WwbmmSXJCuUpT/BiwdFvPqLvPlvTNs9aOuDgcd7M8zMCxLOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpOFaFtEvNY9QKsKWeStg0znPYSRbEIOO0Gk9u5332iSrNYPpppQn2BR5JFjGBjpYdqeDksV9yauwBaJ15OKpCjNSx/DcKYpIJKQzjWuu+5ifEzrAwjnM5Kg1TTBJMJHtG+pRILqv1sceoMXVglRFGsbEmDFurviQwLracisJ0Cm7Fe9ebif14/NdGNnzGZpIZKslwUpRyZGM3/RiFTlBg+tQQTxeytiIyxwsTYdEo2BG/15XXSqde8Rq1xf1Vp1vM4inAG51AFD66hCXfQgjYQGMEzvMKbw50X5935WLYWnHzmFP7A+fwBi/yNSA==</latexit>

(d)

Figure 1 Phase 3. In (a) the pattern is non-periodic and we continue matching from each
occurrence of P [0..⌊m/4⌋ − 1] (marked with gray). (b)-(d) show different cases of the periodic case.
Here P [0..⌊m/4⌋ − 1] = ababab. In (b) we match P [i] = c and thus continue matching from this
position. Since P [i] = c is not a continuation of the period, we will never shift back to the previous
occurrence. In (c) we mismatch and P [i] = a is a continuation of the period, so we shift to the
previous occurrence in the chain and keep matching. In (d) we mismatch and the and P [i] = c is
not a continuation of the period, so we stop.

In phase 3, we extend each match from phase 2. Since these are occurrences of a pattern
of length at least ⌊m/4⌋ and S has length O(m), by Lemma 8 the number of occurrences
or chains from phase 2 is constant. Since we match at most 3 characters at a time per
occurrence or chain, we use O(1) time per streamed character in phase 3.

The space of the KMP automaton is linear, and in addition to that, we only need space
for the strings S and P and a constant number of positions (set of possible occurrences) in
S. Thus the space is O(m).

Correctness. For correctness, assume that while matching against chain a1, . . . , ak we have
a mismatch S[aj + i] ̸= P [i]. If P [0..i] has period p, then since S[aj ..aj + i − 1] = P [0..i − 1]
and S[aj′ ..aj′ + i−1+p] = P [0..p] ·S[aj′+1..aj′+1 + i−1] for 1 ≤ j′ < j, then aj′ is a starting
position of P [0..i]. Otherwise, by the same argument, P [0..i] has no starting position in the
chain. Let P [0..ℓ] be the longest prefix of P such that P [0..ℓ] has period p and let a1, . . . , aj

be all the starting positions of P [0..ℓ] in a chain. If ℓ ̸= |P | − 1, then the remaining part of
P is non-periodic, and by the same argument as before, only aj can be an occurrence of P ,
which we match explicitly against.

When we enter phase 3 we have matched against P [0..⌊m/4⌋ − 1] and 3⌊m/4⌋ characters
have been streamed. The earliest time the stream can terminate is after m characters. Since
we match up to 4 characters at a time, by the time the stream can terminate, we could have
matched ⌊m/4⌋ + 4(m − 3⌊m/4⌋) > m characters, and thus we catch up to the stream before
it can terminate.

In summary, we have shown the following.

▶ Lemma 9. We are given an integer m and a string S of length O(m) supporting random
access in constant time and a streamed pattern P of length between m and 3m. For each
arriving character of P we use constant time, and when the stream ends we output all the
occurrences of P in S in constant time. If P is periodic, we output the occurrences as the
O(1) chains describing all occurrences. The algorithm uses O(m) space.

Note that we can replace KMP with any real-time pattern matching algorithm.
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4 Matching Streaming Patterns with Append

In this section, we show how to maintain the string S under appending characters (adding
characters at the right end using AddRight(a)) while supporting Report(P ).

Data structure

The data structure consists of a suffix tree over the reverse string of S, i.e., rev(S). We utilize
the online suffix tree algorithm to maintain the suffix tree. To perform AddRight(a), we use
the online suffix tree algorithm to insert the new suffix a · rev(S) in the suffix tree by adding
a new edge (v, w). Furthermore, if the edge (v, w) splits an edge in the suffix tree, i.e., the
node v is a new node, then we store a pointer to the leaf w in node v.

Rollback. When we answer Report(P ) queries, we will modify the data structure, but to
quickly return the data structure to the state it had before the query, we do the following.
We store three values for each memory cell c used by the data structure:

The value vc that cell c has when we are not processing a query.
The value qc that cell c has when we are processing a query.
The timestamp tc of the last query that modified the cell c. Initially, tc = −1.

When we process the t’th query, if we access cell c, we first check if qc is outdated by checking
tc. If tc < t then we access vc. Otherwise, we access qc. Whenever we modify a cell c during
the query, we set tc = t and update qc.

Query

To perform a query Report(P ), we do the following. We prepend rev(S) with “$” and then
prepend each streamed character from P when we receive it. When we prepend the last
character of P , we get the edge (v, w) that is added to insert the new suffix rev(P )$rev(S) in
the suffix tree. If the first character of the string on edge (v, w) is “$” then all other children
of v are occurrences of P in S. Otherwise, there are no occurrences of P in S.

To report all occurrences in worst-case constant time per reported occurrence, we do the
following. We do a depth first traversal of the subtree rooted at v, visiting four nodes at
each time step. We get an occurrence for each node we visit, either by a leaf we visit, or the
pointer to a leaf stored in an internal node visited. To avoid reporting the same occurrence
twice, we keep an array of size w, storing which indices have been reported in the current
Report(P ) query. If we find multiple new occurrences in a single time step, we output one
and store the remaining in a buffer. If we do not find any new occurrences in a time step we
output an occurrence from the buffer.

Analysis

For each AddRight(a), we use the online suffix tree algorithm to find the new edge (v, w)
in O(tsuff(w, σ)) time. We can identify if v is a new node in constant time by checking
the number of children of v and update its stored pointer in constant time. Thus, each
AddRight(a) takes O(tsuff(w, σ)) time.

For each Report(P ), we spend O(tsuff(w, σ)) per character in P that we prepend to the
string. When we traverse the subtree rooted at v, we visit at most four nodes per reported
occurrence. Thus, each Report(P ) query uses O(tsuff(w, σ)) per character in P and an
additional O(1) time per reported occurrence.
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<latexit sha1_base64="WgPLE9JyKYOs7Mdt2rGPtX4aiOo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHhRHaNryOJF4+QyCOBDZkdemFkdnYzM6shhC/w4kFjvPpJ3vwbB9iDgpV0UqnqTndXkAiujet+O7m19Y3Nrfx2YWd3b/+geHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hodua3HlFpHst7M07Qj+hA8pAzaqxUf+oVS27FnYOsEi8jJchQ6xW/uv2YpRFKwwTVuuO5ifEnVBnOBE4L3VRjQtmIDrBjqaQRan8yP3RKzqzSJ2GsbElD5urviQmNtB5Hge2MqBnqZW8m/ud1UhPe+BMuk9SgZItFYSqIicnsa9LnCpkRY0soU9zeStiQKsqMzaZgQ/CWX14lzfOKd1W5rF+UquUsjjycwCmUwYNrqMId1KABDBCe4RXenAfnxXl3PhatOSebOYY/cD5/AOAjjOs=</latexit>w

<latexit sha1_base64="hdJ4ZTCPeyM/3iDDEaZ0XfmdQd8=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoOQi2FXfB0DXjxGMA9IljA7mU2GzM4uM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38389hPXRsTqEScJ9yM6VCIUjKKV2kE/G59703654tbcOcgq8XJSgRyNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzc6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGN76mVBJilyxxaIwlQRjMvudDITmDOXEEsq0sLcSNqKaMrQJlWwI3vLLq6R1UfOua1cPl5V6NY+jCCdwClXw4AbqcA8NaAKDMTzDK7w5ifPivDsfi9aCk88cwx84nz/eYI8y</latexit>

bk�1
<latexit sha1_base64="pS1hMIGkowWTHEj+wgXXlgAM+KM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIX8eCF48VTFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemAqujet+OaW19Y3NrfJ2ZWd3b/+genjU1kmmGPosEYnqhlSj4BJ9w43AbqqQxqHATji5nfudR1SaJ/LBTFMMYjqSPOKMGiv54SCfzAbVmttwFyB/iVeQGhRoDaqf/WHCshilYYJq3fPc1AQ5VYYzgbNKP9OYUjahI+xZKmmMOsgXx87ImVWGJEqULWnIQv05kdNY62kc2s6YmrFe9ebif14vM9FNkHOZZgYlWy6KMkFMQuafkyFXyIyYWkKZ4vZWwsZUUWZsPhUbgrf68l/SPm94V43L+4tas17EUYYTOIU6eHANTbiDFvjAgMMTvMCrI51n5815X7aWnGLmGH7B+fgGAjWOwA==</latexit>

bk
<latexit sha1_base64="KyLoVVFUa8cFdBhB+Cbu/W0yWRI=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBByMewGX8eAF48RzAOSJcxOepMhs7PLzKwQlnyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3cxvP6HSPJaPZpKgH9Gh5CFn1FipHfSz8UVt2i+V3ao7B1klXk7KkKPRL331BjFLI5SGCap113MT42dUGc4ETou9VGNC2ZgOsWuppBFqP5ufOyXnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhLd+xmWSGpRssShMBTExmf1OBlwhM2JiCWWK21sJG1FFmbEJFW0I3vLLq6RVq3rX1auHy3K9ksdRgFM4gwp4cAN1uIcGNIHBGJ7hFd6cxHlx3p2PReuak8+cwB84nz/f5Y8z</latexit>

bk�2
<latexit sha1_base64="YVjU6gFeXr9c4iaK0gH/xixTs5c=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBByMez6Pga8eIxgHpAsYXbSmwyZnV1mZoWw5CO8eFDEq9/jzb9xkuxBEwsaiqpuuruCRHBtXPfbWVldW9/YLGwVt3d29/ZLB4dNHaeKYYPFIlbtgGoUXGLDcCOwnSikUSCwFYzupn7rCZXmsXw04wT9iA4kDzmjxkqtoJeNzi4mvVLZrbozkGXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgpNhNNSaUjegAO5ZKGqH2s9m5E3JqlT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOtnXCapQcnmi8JUEBOT6e+kzxUyI8aWUKa4vZWwIVWUGZtQ0YbgLb68TJrnVe+6evVwWa5V8jgKcAwnUAEPbqAG91CHBjAYwTO8wpuTOC/Ou/Mxb11x8pkj+APn8wfhao80</latexit>

bk�3

<latexit sha1_base64="HBLfSQzqEFaiJmEjOkyFk5ZWVRY=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHhRHaNryOJF48Q5ZHAhswOvTAyO7uZmTUhhC/w4kFjvPpJ3vwbB9iDgpV0UqnqTndXkAiujet+O7m19Y3Nrfx2YWd3b/+geHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hodua3nlBpHssHM07Qj+hA8pAzaqxUv+8VS27FnYOsEi8jJchQ6xW/uv2YpRFKwwTVuuO5ifEnVBnOBE4L3VRjQtmIDrBjqaQRan8yP3RKzqzSJ2GsbElD5urviQmNtB5Hge2MqBnqZW8m/ud1UhPe+BMuk9SgZItFYSqIicnsa9LnCpkRY0soU9zeStiQKsqMzaZgQ/CWX14lzfOKd1W5rF+UquUsjjycwCmUwYNrqMId1KABDBCe4RXenEfnxXl3PhatOSebOYY/cD5/AKmTjMc=</latexit>

S

<latexit sha1_base64="PmyQNwgfU3gMGufKk/5GFr1JKUA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOQU9gVX8eAF48J5AXJEmYnvcmY2dllZlYIIV/gxYMiXv0kb/6Nk2QPmljQUFR1090VJIJr47rfTm5jc2t7J79b2Ns/ODwqHp+0dJwqhk0Wi1h1AqpRcIlNw43ATqKQRoHAdjC+n/vtJ1Sax7JhJgn6ER1KHnJGjZXqjX6x5FbcBcg68TJSggy1fvGrN4hZGqE0TFCtu56bGH9KleFM4KzQSzUmlI3pELuWShqh9qeLQ2fkwioDEsbKljRkof6emNJI60kU2M6ImpFe9ebif143NeGdP+UySQ1KtlwUpoKYmMy/JgOukBkxsYQyxe2thI2ooszYbAo2BG/15XXSuqx4N5Xr+lWpWs7iyMMZnEMZPLiFKjxADZrAAOEZXuHNeXRenHfnY9mac7KZU/gD5/MHqxeMyA==</latexit>

T
<latexit sha1_base64="6gsiF42uNGNmju/D3xZXUs9+O/Q=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOQU9gViR4DXryZgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8MJME/YgOJQ85o8ZKjft+seRW3AXIOvEyUoIM9X7xqzeIWRqhNExQrbuemxh/SpXhTOCs0Es1JpSN6RC7lkoaofani0Nn5MIqAxLGypY0ZKH+npjSSOtJFNjOiJqRXvXm4n9eNzXhjT/lMkkNSrZcFKaCmJjMvyYDrpAZMbGEMsXtrYSNqKLM2GwKNgRv9eV10rqseNVKtXFVqpWzOPJwBudQBg+uoQZ3UIcmMEB4hld4cx6dF+fd+Vi25pxs5hT+wPn8AaPVjMQ=</latexit>

O

Figure 2 The data structures over the window.

The online suffix tree algorithm uses linear space and both the buffer and the array
storing reported indices have size O(w). Thus the total space is O(w).

Correctness. Let (v, w) be the edge that is added to insert the new suffix rev(P )$rev(S) in
the suffix tree. If the first character on the edge (v, w) is “$”, then the string on the path
from the root of the suffix tree to v is rev(P ). Since the suffix tree is built on the string
rev(P )$rev(S), then all descendant leaves of v besides w, are occurrences of P in the string S.

Let t be the current time step since we started reporting occurrences. After the tth time
step, we have visited at least 2t nodes (or all the nodes in the subtree if the size of the
subtree is less than 2t). Since each leaf is stored in at most one internal node and the number
of nodes in the subtree rooted at v is 2occ − 1, then after the tth time step, the number of
unique occurrences found is at least t. Thus, at each time step, we either find an occurrence
or an occurrence is stored in the buffer.

▶ Lemma 10. Let S be a dynamic string of length w over an alphabet σ. We can support
the following subset of streaming dynamic window string indexing operations on S: AddRight
and Report in O(tsuff(w, σ)) time per character in O(w) space. Furthermore, Report uses
additional worst-case constant time per reported occurrence.

5 Streaming Sliding Window String Indexing

In this section, we show Theorem 3. In the SSWSI problem, we can see it as we have a
string S that is being streamed, and the string S′ that we maintain corresponds to the
window, i.e., after the ith update S′ = S[i − w + 1..i]. We partition the streamed string S

into consecutive blocks b0, b1, b2, . . . of length B = ⌈w/3⌉ (except possibly the last one), i.e.,
bj = S[j · B..(j + 1) · B − 1]. Let bk be the block containing the last streamed character S[i],
that is k = ⌊i/B⌋. Thus the whole window is contained in bk−3 · bk−2 · bk−1 · bk.

Our data structure for the SSWSI problem consists of two structures. A static data
structure T for bk−3 · bk−2 and an online data structure O for the string bk−2 · bk−1 · bk. We
utilize Lemma 10 for the online data structure O. See Figure 2. Furthermore, we store S′ in
a rotated array.

Static data structure

The static data structure consists of the following.
A suffix tree.
A suffix array A containing the leaves of the suffix tree in left to right order.
A range maximum query data structure on the array A.
Furthermore, each node in the suffix tree stores the range of its descendant leaves in the
array A.
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This is the same as the structure used in Bille et al. [6]. For the suffix tree, we use the
same online suffix tree algorithm as used for the online data structure to build it. For the
range maximum query, we use a data structure using linear space and preprocessing time
and constant query time [5]. To perform a query P in the static data structure, we do the
following. We search for P in the suffix tree, reading one character at a time. Let [ℓ, r]
be the range of leaves stored in the locus of P . We perform a range maximum query in
A[ℓ..r] to find the rightmost occurrence x. If x is not in the window, then there are no
occurrences starting in bk−3bk−2 that are in the window. Otherwise, we report x and recurse
on A[ℓ..x − 1] and A[x + 1..r]. To use worst-case constant time per reported occurrence we
do three range maximum queries in one time step and keep a buffer of found but unreported
occurrences as in Section 4. It then follows from a similar argument that we can report each
occurrence in worst-case constant time.

The combined query

To find all occurrences of a streamed pattern P in S′ we do the following. Assume that
P has length m ≤ B. We later show how to handle the case where m > B. We query T

and O in parallel with the streamed characters of P . When P has arrived, we first report
occurrences from the online data structure O. While we report occurrences from the online
data structure, we prepare the static data structure to report occurrences that begin in bk−3
and are in the window, since occurrences that begin in bk−2 are also reported by the online
structure. The static data structure does not report the occurrences from the right (even
though the first reported occurrence is the rightmost). However, we can modify its reporting
procedure so that all the occurrences in bk−2 will be reported before bk−3 as follows. If the
currently considered occurrence falls within bk−1 we report it and recurse. Otherwise, we
pause the recursion and add the current occurrence to a list. Next, we iterate over the list of
paused recursive calls and resume each of them one-by-one. For each reported occurrence in
the online data structure, we also process an occurrence in the static data structure until we
get to the occurrences in bk−3. When we have finished reporting occurrences in the online
data structure O, we resume reporting the occurrences in bk−3.

If m > B, we use Lemma 9 to find occurrences of P in S′. We note that, because of how
these occurrences are reported (as either a constant number of explicitly given positions or a
constant number of arithmetical progressions), it is trivial to filter out the occurrences that
are anyway reported by the static or the online data structure. In summary, we have shown
that we can report all occurrences of P in S′.

Rebuilding

We rebuild the structures in the background to keep the static and online data structure
partially and completely inside the window, respectively. When block bk begins, we start
building the static data structure T ′ for bk−2bk−1 and the online data structure O′ for bk−1bk.
Since block bk−2 and bk−1 have been completed, we can use the online suffix tree algorithm
to construct a suffix tree for bk−2bk−1. We construct T ′ and O′ at a pace such that when
the bk+1 begins, we have completed the structures and can swap T with T ′ and O with O′.

Analysis

We update the online data structure for each Update operation in O(tsuff(w, σ)) time.
We rebuild the static and online suffix trees once per block. It takes O(tsuff(w, σ) · w)
time to rebuild the static and online suffix trees. To build the range maximum query
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data structure and add ranges to the suffix tree, we spent an additional O(w) time. We
augment the suffix tree with a dictionary data structure in each node over the first character
of the labels of the outgoing edges. This takes O(tdict(w, σ) · w) time. Thus we use
O((tsuff(w, σ) + tdict(w, σ)) · w)/B = O(tsuff(w, σ) + tdict(w, σ)) time on rebuilding for each
Update.

For a query P , we spend O(tsuff(w, σ)) time in the online data structure for each character
in P by Lemma 10. In the static data structure, we traverse the suffix tree, using O(tdict(w, σ))
time for each character in P . By Lemma 9, we spend O(1) time per streamed character
of P to report long patterns. Thus, in total, we spend O(tsuff(w, σ) + tdict(w, σ)) time per
character plus additional constant time per reported occurrence.

Both the online and the static data structures use linear space. We have a constant
number of such data structures at a time each over a substring of bk−3bk−2bk−1bk. Since
|bk−3bk−2bk−1bk| = O(w), this use O(w) space in total. All other components, i.e. the buffer
and the algorithm for the long patterns, use O(w) space. Thus the total space is O(w).

Correctness. The static and online data structures cover the entirety of S′ and overlap
by B characters, and thus they report all occurrences of pattern P in S′ if the length of
P is no more than B. When we report, we need time to discard the occurrences in bk−2
reported by the static data structure. Since the number of occurrences in bk−2 is no more
than the occurrences in bk−2bk−1bk, we have time to discard the occurrences in the static
data structure if we report the occurrences in the online data structure first. If the pattern
is longer than B, then the algorithm of Lemma 9 is ready to report occurrences since the
sliding window has size O(w) and P has a length between B = ⌈w/3⌉ and w.

6 Streaming Dynamic Window String Indexing

In this section, we consider the more general case, where we want to maintain the text S

under adding and removing characters at either end, while still supporting Report(P ) queries.
We first show how to maintain S under only prepending/appending characters, and then
extend this to the general case.

Directly from our definition of an online suffix tree construction algorithm we have:

▶ Lemma 11. Let S be a dynamic string of length w over an alphabet σ. We can support
the following subset of streaming dynamic window string indexing operations on S: AddLeft
and Report in O(tsuff(w, σ) + tdict(w, σ)) time per character in O(w) space. Furthermore,
Report uses additional worst-case constant time per reported occurrence.

To get reporting in worst-case constant time per reported occurrence we do as in Section 4.

6.1 Prepend and Append
The current text S is represented as a concatenation S = S1S2. We store the characters of
S1 and S2 on a doubly-linked list L1 and L2, respectively, and maintain the structure from
Lemma 11 for S1, and the structure from Lemma 10 for S2. Initially, S1 and S2 are empty.
The operation S.AddLeft(a) prepends a to L1 and calls S1.AddLeft(a), while S.AddRight(a)
appends a to L2 and calls S2.AddRight(a). The operation S.Report(P ) needs to consider
occurrences of P in S1, S2, and straddling between S1 and S2. The first and the second
case is implemented by running S1.Report(P ) and S2.Report(P ) in parallel. The third case
is implemented by proceeding in phases 0, 1, 2, . . .. Phase k corresponds to m ∈ (3k−1, 3k].
In each phase, we maintain two instances of the procedure from Lemma 9. We maintain an
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invariant that the text S available to the first instance is S1[(|S1| − 3k + 1)..|S1|]S2[1..3k]
(length-3k suffix of S1 concatenated with length-3k prefix of S2), and after having read
P [i], where i ∈ (3k−1, 3k], the pattern fed to the first instance is simply the whole P [1..i].
Thus, for any m ∈ (3k−1, 3k] the first instance allows us to report all occurrences of P that
straddle between S1 and S2. Meanwhile, we maintain the following invariant concerning
the second instance. While reading P [i], for i ∈ (3k−1, 2 · 3k−1], we create an array storing
S1[(|S1| − 3k+1 + 1)..|S1|]S2[1..3k+1] (length-3k+1 suffix of S1 concatenated with length-
3k+1 prefix of S2). This can be done by traversing L1 from the last element and L2
from the first element, spending constant time for every such i. Thus, after reaching
i = 2 · 3k−1, the array stores the text that we will need in the next phase. Then, while
reading P [i], for i ∈ (2 · 3k−1, 3k], we send three characters of the pattern to the second
instance for every new character of the pattern. More precisely, after receiving P [i] we send
P [3(i − 2 · 3k−1) − 2], P [3(i − 2 · 3k−1) − 1], and P [3(i − 2 · 3k−1)] to the second instance. Thus,
after reaching i = 3k, the second instance has received the whole current pattern P [1..3k], so
we can swap the instances, reset the second instance, and proceed to the next phase.

6.2 General case
We first explain how to extend Lemma 10 to support both AddLeft(a) and RemoveLeft(),
and similarly how to extend Lemma 11 to support both AddRight(a) and RemoveRight(). In
both cases, we use the same simple idea.

▶ Lemma 12. Let S be a dynamic string of length w over an alphabet σ. We can support
the following subset of SDWSI operations on S:

either AddLeft, RemoveLeft, and Report in O(tsuff(w, σ) + tdict(w, σ)) per character in
O(w · (tsuff(w, σ) + tdict(w, σ)))space,
or AddRight, RemoveRight, and Report in O(tsuff(w, σ)) per character, in O(w ·tsuff(w, σ))
space.

Furthermore, Report uses additional worst-case constant time per reported occurrence.

Proof. Supporting AddLeft and RemoveLeft or AddRight and RemoveRight can be seen as
providing the possibility of undoing the most recent updates. We consider a structure that can
be modified with an Update operation and denote the empty structure by ⊥. Then, the current
structure will be always S = ⊥.Update1.Update2. . . . .Updatek. We want to either modify
it to obtain S′ = ⊥.Update1.Update2. . . . .Updatek.Updatek+1, or (if k ≥ 1) undo the most
recent update to obtain S′ = ⊥.Update1.Update2. . . . .Updatek−1. This can be implemented
as follows. We maintain a stack consisting of k records. The i-th record stores (in e.g. a linked
list) all modifications made when executing Updatei on ⊥.Update1.Update2. . . . , Updatei−1.
Each modification is described by specifying the address of a memory cell, and its value
before the update. Let u(w, σ) be the time for an update. Because any update modifies
only u(w, σ) memory cells, the space usage is O(w · u(w, σ)). Then, to undo the most recent
update we retrieve the top record and revert all memory cells modified by the most recent
update to their original values. This takes O(u(w, σ)) time. During an update, we push
a new record onto the stack and store all modified memory cells there. This also takes
O(u(w, σ)) time. The results now follow from plugging in the update times from Lemma 10
and Lemma 11. ◀

We are now ready to describe the general case. We use the well-known idea of implementing
a deque with two stacks, see e.g. Hoogerwoord [15]. We briefly describe this idea. The
current deque is represented as S = rev(S1).S2, where S1 and S2 are stacks, rev denotes the
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reversal, and . the concatenation. Then, prepending an element is implemented by pushing
it onto S1 while appending an element is implemented by pushing it onto S2. Removing
the first element is implemented by popping it from S1, while removing the last element is
implemented by popping it from S2. This works as long as both S1 and S2 are non-empty.
As soon as one of them, say S1, becomes empty, we rebuild the structure by distributing the
elements stored on S2 evenly between S1 and S2. It is easy to prove that the amortized cost
of the rebuilding is constant, by defining the potential of the structure as ||S1| − |S2||.

However, we need a worst-case efficient version. Chuang and Goldberg [9] provide a partic-
ularly clean description of how to modify the amortized version to obtain an implementation
where every operation takes worst-case constant time. We refer the reader to their original
description and only describe what is stored in their implementation. The current deque is
represented as S = rev(S′).rev(S).B.B′, where S′, S, B and B′ are stacks. Additionally, the
structure maintains additional stacks auxS, auxB, and extraS, newS, newB, extraB. The
rebuilding is done incrementally, and while this is being done every prepended element is
pushed onto both S′ and extraS, while every appended element is pushed onto both B′

and extraB. Then, after the rebuilding has finished, the current deque is represented as
S = rev(extraS).rev(newS).newB.extraB.

We built on the worst-case efficient implementation of Chuang and Goldberg [9] to
prove Theorem 5. We maintain the current string S in a deque, and represent it as
S = rev(S′).rev(S).B.B′. Additionally, for each of the stacks S′, S, B, B′ and similarly
extraS, newS, newB, extraB, we maintain a doubly-linked list storing its elements. Note that
this would not be allowed in a purely functional implementation, which is the model assumed
by Chuang and Goldberg [9], but we are not making any such assumption. Next, for each of the
stacks S′, S, extraS, newS we maintain an instance of Lemma 12 with AddLeft and RemoveLeft
while for each of the stacks B, B′, newB, extraB we maintain an instance of Lemma 12 with
AddRight and RemoveRight. This makes the update time O(tsuff(w, σ) + tdict(w, σ)) and
space O(w · (tsuff(w, σ) + tdict(w, σ))). To implement Report(P ), we separately consider
occurrences of P inside rev(S′), rev(S), B and B′ by running Report(P ) in parallel for each
of the maintained instances. It remains to consider occurrences of P that straddle between
rev(S′) and rev(S).B.B′, or between rev(S′).rev(S) and B.B′. or rev(S′).rev(S).B and B′.
Each of these cases is solved as described in Section 6.1 by observing that we can provide
access to the corresponding doubly-linked lists by (temporarily) concatenating some of the
maintained doubly-linked lists. All three instances are run in parallel, so the overall additional
time per character of P is constant.
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