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Abstract
We consider the problem of compressing a set of substrings sampled from a string and analyzing the
size of the compression. Given a string S of length n, and integers d and m where n ≥ m ≥ 2d > 0,
let SCS(S, m, d) be the string obtained by sequentially concatenating substrings of length m sampled
regularly at intervals of d starting at position 1 in S. We consider the size of the LZ77 parsing of
SCS(S, m, d), in relation to the size of the LZ77 parsing of S. This is motivated by genome sequencing,
where the mentioned sampling process is an idealization of the short-read DNA sequencing. We
show the following upper bound:

|LZ77(SCS(S, m, d))| ≤ |LZ77(S)| + 2n − m

d
.

We also give a lower bound showing that this is tight. This improves previous results by Badkobeh
et al. [ICTCS 2022], and closes the open problem of whether their bound can be improved.

Another natural question is whether assuming that all letters in S are part of a sample, it is
always the case that |LZ77(S)| ≤ |LZ77(SCS(S, m, d))|. Surprisingly, we show that there is a family
of strings such that |LZ77(SCS(S, m, d))| = |LZ77(S)| − 1.
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1 Introduction

The recent revolution in short-read sequencing technologies has made the acquisition of large
genome sequences significantly cheaper and faster. This has led to a drastic increase in the
amount of genome data and by extension the need to compress these vast datasets. Numerous
ambitious sequencing projects (and existing databases) are currently underway, such as the
recent Earth BioGenome Project [30, 31], the 10K Vertebrate Genomes Project [33], and
The International Genome Sample Resource (IGSR) [9] built on the foundation of the 1,000
Genomes Project, among many others. These projects aim to create large databases of strings
(genomes) that vary only slightly from each other and as a result, contain large repetitions of
data.

The vast amount of genome data in these databases makes the importance of compression
and fast random access especially apparent. There are several tools that are popular for
compressing genome data, some of which are the standard gzip and 7zip compressors. The
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9:2 Tight Bounds for Compressing Substring Samples

. . .

Figure 1 The sampling process for constructing SCS(S, m, d).

basis of these is Lempel-Ziv (LZ77) parsing [29, 43], typically followed by an entropy encoding.
Additionally, there are several read-set specific compressors [1, 5, 7, 16], at least one of which
is also a Lempel-Ziv type compressor.

A natural question is to consider the effects the sampling process has on the compressibility
of the resulting data. This question was originally posed by Badkobeh et al. [3], and to our
knowledge, this is the only instance before us where analysis in this area has been undertaken.
In particular, we consider the problem of compressing a set of substrings sampled from a
string and analyzing the size of the compression. Specifically, we will analyze the size of the
LZ77 parsing (which we define later) as it and variations thereof are widely used in many
relevant compressors.

The analysis is achieved by defining an idealized model, which mimics the genome sequen-
cing process. The idealization occurs since we do not consider errors, i.e., insertions, deletions,
and substitutions of letters, which are introduced by short-read sequencing technologies.
Moreover, we do not consider variations in the distance between or the length of samples
across the genome. In practice, these fluctuate for a variety of reasons [8]. However, analysis
of these technologies, even in an idealized setting, can give much insight into their effects on
compressibility.

We now define the idealized model, as described by Badkobeh et al. [3], which we use
throughout the remainder of the paper. Given a string S = S[1, n] = S[1]S[2] · · · S[n] of
length n, and integers d and m where n ≥ m ≥ 2d > 0, let SCS(S, m, d) be the string
obtained by sequentially concatenating substrings of length m sampled regularly at intervals
of d starting at position 1 in S. The sampling process and construction of SCS(S, m, d) is
shown in Figure 1.

Formally, we have a total of k = 1 + ⌊(n − m)/d⌋ samples, where ⌊x⌋ is the largest integer
which is smaller than or equal to x. The jth sample s′

j consists of the m consecutive letters
in S starting at position (j − 1)d + 1. Notice that the last (n − m mod d) letters in S are
not part of any sample due to rounding. The samples are concatenated sequentially to form
the string SCS(S, m, d) = s′

1s′
2 · · · s′

k.
The connection between this model and genome sequencing is very well described by

Badkobeh et al. [3]. In short, SCS(S, m, d) corresponds to a file of the short-read sequences,
which is the typical output of a sequencing experiment (e.g. the FASTQ format). Here, m

corresponds to the read length and m/d to the coverage, i.e., the average number of samples
that cover a position in S. The assumption that m ≥ 2d corresponds to a coverage of at
least 2, which is a relevant case for DNA sequencing.
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In this paper, we consider the size of the LZ77 parsing of SCS(S, m, d), in relation to
the size of the LZ77 parsing of the original string S. In the remainder of this section we
define the LZ77 parsing of a string, briefly present previous work, and state our results and
techniques.

1.1 The LZ77 Parsing
The Lempel-Ziv (LZ77) parsing [29, 43] (also known as the LZ77 factorization) of a string is
a fundamental part of data compression [10, 22, 14, 21], and for string processing such as
detecting the periodicities of a string [2, 19].

The LZ77 parsing of S partitions S into a sequence of zS substrings LZ77(S) :=
f1, f2, ..., fzS

called phrases. The size of the LZ77 parsing of S is |LZ77(S)| = zS . The
phrases are constructed greedily from left to right using the following rules. The ith phrase
fi with starting position pi is encoded either as (a) the first occurrence of a letter in S, or
(b) the longest substring with an occurrence in S before pi. The compression of S occurs
since the phrases of type (b) are encoded as a pair (ri, li), where ri > 0 is the distance from
pi to the beginning of the previous occurrence of fi, and li is the length of fi. This is the
LZ77-variant given by Storer and Szymanski [40], whereas the original definition [43] always
added an extra letter to the end of these phrases. Furthermore, we consider the variant of
LZ77, where a previous occurrence referenced by a phrase is allowed to overlap with the
corresponding phrase.

Naturally, we say that a phrase fi covers an interval [a, b] if and only if every element in
[a, b] is contained within the interval [pi, pi + li − 1], corresponding to the range of fi in S.
Similarly, we say that the phrase overlaps the interval when the range contains at least one
element in [a, b].

Computing the LZ77 parsing is a very well-studied problem, and there are many algorithms
solving it with various trade-offs. The simplest way to construct the LZ77 parsing is to
build an index on the input string (e.g. a suffix tree or suffix array), and greedily from left
to right find the longest prefix of the current suffix with an occurrence to the left of the
current position. There has been lots of previous (and ongoing) research on LZ77 leading to
practical and space-efficient computation [6, 13, 15, 23, 24, 18, 26, 20, 34, 37], parallel [38]
and external computation [25], online parsing [35, 36, 39, 41], and more [12]. Other practical
solutions include the sliding window LZ77 parsing [11, 27, 4], where the previous occurrence
of a phrase is restricted to start no more than w letters away from the start position of the
phrase, with w as a parameter.

Often these articles include performance metrics obtained experimentally by compressing
collections of strings, such as DNA sequences (e.g. [25, 22, 21, 15, 23, 24, 34, 38, 35]),
to emphasize the benefits of the corresponding compressor. This demonstrates that an
important motivation for improving upon LZ77 factorization is among others to improve the
storage of genome databases.

1.2 Previous Work
We will now consider previous results and the techniques that have been used. As mentioned
earlier, Badkobeh et al. [3] originally posed the question of the effects of the sampling process
on compressibility. They have shown that |LZ77(SCS(S, m, d))| ≤ m − d + 2|LZ77(S)| +
(2n − m)/d.

The techniques they employ in their proof involve partitioning SCS(S, m, d) into several
smaller intervals and examining the number of phrases incurred by each individually. More
precisely, they consider the intervals given by the first m − d letters followed by the last
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9:4 Tight Bounds for Compressing Substring Samples

d letters in each sample. In the former, they show that the first m − d letters in the first
sample trivially incur at most m − d phrases and that the first m − d letters in the remaining
samples incur at most one phrase each. The last d letters in each sample are analyzed by
defining a rather involved projection of the individual phrases in LZ77(S) onto SCS(S, m, d),
and showing a bound on how many phrases are incurred by the projected intervals.

They conclude their paper by posing the open question of whether their upper bound
can be improved.

1.3 Our Results
In this paper, we answer the question asked by Badkobeh et al. [3] in the affirmative and give
tight upper and lower bounds improving upon theirs. More precisely, we show the following
upper bound.

▶ Theorem 1. Let S be a string of length n, then for all integers d and m where n ≥ m ≥
2d > 0:

|LZ77(SCS(S, m, d))| ≤ |LZ77(S)| + 2n − m

d
.

Intuitively, the upper bound given in Theorem 1 states that there is no overhead for the
first sample and that the remaining samples have an overhead of two phrases each. This
bound is strictly better than that given by Badkobeh et al. [3]. In particular, consider what
happens when m = n, i.e., when we only have a single sample. In this case, their upper
bound is (n − d + 2|LZ77(S)| + n/d), whereas ours is |LZ77(S)|. The latter is tight, since
SCS(S, n, d) = S regardless of the choice of d.

The techniques we use in the proof of Theorem 1 are similar to those used by Badkobeh
et al. [3], in the sense that we also partition SCS(S, m, d) into several smaller intervals which
we consider individually. The primary differences are that we tightly analyze the phrases
incurred by the entire first sample, and we do not define a projection for analyzing the last d

letters of the remaining samples. Instead, we categorize the substrings of phrases incurred
by dividing S during the sampling process. We show that these substrings incur at most
one phrase each in LZ77(SCS(S, m, d)), and use this to give a bound on the total number of
phrases. This new approach allowed us to significantly improve the upper bound.

Furthermore, we show that our upper bound is tight for any choice of d ≥ 3.

▶ Theorem 2. Let d and m be integers, where d ≥ 3 and m ≥ 2d. Then for all integers
n ≥ m there exists a string S of length n such that:

|LZ77(SCS(S, m, d))| = |LZ77(S)| + 2
⌊

n − m

d

⌋
.

The primary difference between this and the upper bound is the floor after division. This is
necessary here since we are referring to an exact number of phrases. We obtain Theorem 2
by constructing a string S of arbitrary length n ≥ m based on parameters d and m, and
analyzing the compressibility of SCS(S, m, d) and the constructed string.

Another natural question is whether |LZ77(S)| ≤ |LZ77(SCS(S, m, d))| is always the case,
assuming that all letters in S are part of a sample, i.e., n ≥ m and n ≡ m (mod d). The
latter assumption is important since it is otherwise trivial to disprove (e.g. let S be m

repetitions of a followed by a single b). According to our knowledge, this question has not
been considered in detail until now. We show that there exists a family of strings where this
is not the case, leading to the following surprising result.
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▶ Theorem 3. Let d and m be integers, where d ≥ 2, m ≥ 2d, and m ≡ 0 (mod d). Then,
there exists a string S of length n ≥ m where n ≡ m (mod d) such that:

|LZ77(SCS(S, m, d))| = |LZ77(S)| − 1 .

We obtain Theorem 3 by constructing a string S of length n = 3m − d, and analysing
the compressibility after sampling, in a similar fashion to the proof of Theorem 2.

In the following sections, we provide proof of our results. We prove the upper bound
in Section 2, the corresponding lower bound showing that this is tight in Section 3, and
the theorem on improved compressibility in Section 4. Finally, we finish the paper with
concluding remarks and future work in Section 5.

2 Upper Bound

Let S be the given string of length n and let S′ := SCS(S, m, d). We assume w.l.o.g. that
every letter in S is part of some sample, i.e., n ≥ m and n ≡ m (mod d), and partition each
sample into two substrings such that s′

j = ujsj , where |uj | = m − d and |sj | = d. Thus,
S′ = u1s1u2s2 · · · uksk. In order to prove Theorem 1, we partition S′ by considering the
following three cases separately:
1. the first sample s′

1 = u1s1,
2. the first m − d letters uj in every sample s′

j for 2 ≤ j ≤ k, and
3. the last d letters sj in every sample s′

j for 2 ≤ j ≤ k.

This partitions S′ into non-overlapping intervals. Similarly, we use this interpretation
to write the given string equivalently as S = u1s1s2 · · · sk, and define zS := |LZ77(S)| and
zS′ := |LZ77(S′)| which will be useful when showing these cases.

Any LZ77 parsing contains exactly the same number of phrase starting positions as
phrases. Therefore, by bounding the number of starting positions of phrases in the above
intervals, we bound the total number of phrases in the LZ77 parsing of S′. As a property
of LZ77 there are several substrings which incur at most one starting position of a phrase
in the compression of S′. These substrings are categorized in Lemma 4 and Lemma 5, and
we use these several times throughout the proof. This strategy is similar to that used by
Badkobeh et al. [3], but we show a tighter bound.

▶ Lemma 4. Let T be a string, and P be a substring of T , i.e., P = T [i, j], where
1 ≤ i ≤ j ≤ |T |. If P has a previous occurrence in T starting at position i′ < i, then the
LZ77 parsing of T contains at most one starting position of a phrase in the interval [i, j].

Proof. Assume the LZ77 parsing contains more than one starting position in the interval [i, j].
Then the first of these phrases has a starting position p and length l, where i ≤ p ≤ p+l−1 < j.
Since P has an occurrence in T at position i′ < i, the substring T [p, j] with length j−p+1 > l

also has an occurrence at i′ + p − i < p. This contradicts the property that every phrase
starting at position p covers the longest substring with an occurrence in T before p. ◀

▶ Lemma 5. Let T be a string, and f1f2 · · · fzT
be the phrases in the LZ77 parsing of T .

Then for every phrase fi with starting position pi which is not the first occurrence of a
letter, and for every pair of integers (v, w) where 1 ≤ v ≤ w ≤ li, substring fi[v, w] has an
occurrence in T before pi + v.

Proof. Consider phrase fi. This is either the first occurrence of a letter, in which case
the lemma trivially holds, or it has an occurrence in T at position pi − ri. Therefore, the
substring fi[v, w] for any pair (v, w) where 1 ≤ v ≤ w ≤ li must also have an occurrence in
T at position pi − ri + v < pi + v. ◀

CPM 2024



9:6 Tight Bounds for Compressing Substring Samples

As mentioned, we partition S′ into several intervals. We consider these cases in the
following paragraphs, whereafter we collect the results to give the final bounds.

Case 1. Consider the first sample s′
1. By definition, this is the substring sampled by the

letters in the interval [1, m] in S. We denote the interval as X and the number of phrases
overlapping X in the LZ77 parsing of S as zX . Intuitively, the LZ77 parsing of S′ contains
exactly zX starting positions of phrases in that same interval. This is illustrated in Figure 2.

. . . . . .

 phrases

. . . . . .

Figure 2 Intuition of the first zX phrases in LZ77(S′) compared to those in LZ77(S).

Formally, we consider the phrases fi for 1 ≤ i < zX in LZ77(S). Since fi only depends
on the previous letters and S[1, pi + li − 1] = S′[1, pi + li − 1], this phrase is exactly the same
as the ith phrase in LZ77(S′). This is the case for every phrase except fzX

. However, by
Lemma 5 the substring S[pzX

, m] = S′[pzX
, m] has a previous occurrence, and by Lemma 4

this incurs at most one starting position of a phrase, and the proof follows.

Case 2. Consider the first m − d letters uj in samples s′
j for every j, where 2 ≤ j ≤ k. By

definition of the jth sample, uj is a repeat of the last m − d letters in s′
j−1. This is illustrated

in Figure 3.
Following directly from Lemma 4, these repeating intervals contain at most one starting

position of a phrase and therefore contribute at most k − 1 = (n − m)/d to the total number
of phrases.

. . .

. . .

Figure 3 Illustration of the overlap between samples.

Case 3. Finally, consider the last d letters sj in samples s′
j for every j, where 2 ≤ j ≤ k.

The positions of these in S′ are illustrated in Figure 4.

Figure 4 Illustration of the last d letters sj in sample s′
j , for each j where 2 ≤ j ≤ k.



P. Bille, C. M. Fuglsang, and I. L. Gørtz 9:7

Consider the phrases in LZ77(S) which encode these substrings, i.e., the phrases over-
lapping the interval [m + 1, n]. There are at most (zS − zX + 1) such phrases, where zX is
the number of phrases overlapping the interval [1, m]. This is trivially shown since phrase
intervals are disjoint, and at most one phrase fzX

might overlap both intervals in S. This is
also illustrated in Figure 5.

. . .

 phrases  phrases

. . .

Figure 5 The number of phrases in LZ77(S) overlapping the interval [m + 1, n].

We denote these phrases as fzX
, fzX +1, ..., fzS

, and consider their overlap with each
sample sj . In particular, each phrase fi which overlaps sj either (i) has zero endpoints in sj ,
(ii) ends in sj , (iii) starts in sj , or (iv) has both endpoints in sj .

These cases are illustrated in Figure 6.

. . . . . .

(i)
(ii)
(iii)
(iv)

Figure 6 All cases where a phrase overlaps substring sj . The phrase considered is marked in red.

We partition each phrase fi into the largest substring for each sj which does not cross the
border from sj−1 to sj , or from sj to sj+1. I.e., the substring in S given by the intersection
between the intervals of fi and sj . This ensures that the substrings exist in S′. These
substrings are collectively denoted as phrase parts, and exactly partition the last d letters of
every sample except s′

1. This is illustrated in Figure 7. Notice that by definition the length
of each phrase part is at most d.

. . . . . .

. . . . . .

Figure 7 Example of phrase parts constructed from phrases.

▶ Lemma 6. A phrase part incurs at most one phrase starting position in the LZ77 parsing
of S′.

Proof. Consider phrase part P constructed from phrase fi and substring sj . The lemma
trivially holds if fi is the first occurrence of a letter. Therefore, we assume w.l.o.g. that fi

has a previous occurrence in S. It then follows directly from Lemma 5 that P also has a

CPM 2024
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previous occurrence in S. We will show that a previous occurrence of P also exists in S′ and
that by Lemma 4 this incurs at most one phrase starting position. There are three cases
that should be considered for the previous occurrence of P in S. It either starts in (a) u1,
(b) some sj′ where j′ < j, or (c) sj . In case (a) the occurrence must either end in u1 or s1,
since the length is at most d. This occurrence is therefore contained within s′

1, and must
also be present in S′. Similarly, in case (b) the occurrence crosses at most one border from
sj′ to sj′+1 due to the length being at most d. Since the length of each sample is at least
2d, the sample s′

j′+1 must end with the substring sj′sj′+1, and since j′ + 1 ≤ j a previous
occurrence of P must also exist in S′. Lastly, in case (c), the occurrence must also end in
sj since the phrase part would otherwise overlap with the border from sj to sj+1. Such
a previous occurrence clearly also exists in S′. Thus, a phrase part always has a previous
occurrence in S′, and the proof follows. ◀

In order to determine a bound on the number of phrase starting positions, we therefore
only have to count how many phrase parts are present in S in the interval [m + 1, n].

There can be at most one phrase part of type (i) or (ii) for each substring sj . This is
shown by a simple contradiction. Assume there is more than one phrase part of either type in
sj . This would imply that more than one phrase starts before sj and crosses the border from
sj−1 to sj . However, this contradicts the requirement that phrases do not overlap. Thus,
there are at most k − 1 = (n − m)/d such parts. Similarly, we will at most have (zS − zX)
phrase parts of type (iii) or (iv). There cannot be any more, since phrase fzX

does not have
its starting position in the interval [m + 1, n] and a phrase would otherwise need to have two
starting positions which is not possible. Therefore, there are at most (zS − zX + (n − m)/d)
phrase parts partitioning the interval [m + 1, n] in S, and as shown in Lemma 6 these incur
at most one phrase each in the LZ77 parsing of S′.

Putting it together

In summary, we have shown that case 1 incurs at most zX phrases, case 2 at most (n − m)/d,
and finally case 3 at most (zS − zX + (n − m)/d). Therefore:

zS′ ≤ zX + n − m

d
+ zS − zX + n − m

d
= zS + 2n − m

d
.

This concludes the proof of Theorem 1.

3 Lower Bound

Given integers d ≥ 3, m ≥ 2d, and k > 0, we construct the string S of length m + (k − 1)d
over the alphabet Σ = {λ0, λ1, ..., λk}. In particular, we construct S from several substrings
such that S := u1s1s2 · · · sk, where |u1| = m − d, and |sj | = d for all 1 ≤ j ≤ k. This
is exactly the interpretation used during the proof of Theorem 1. We define u1 as m − d

consecutive repetitions of letter λ0, such that u1 := λ0 · · · λ0. Similarly, we define each sj as
a single letter λj−1 followed by d − 1 repetitions of letter λj , such that sj := λj−1λj · · · λj .
This construction is shown in Figure 8:

Figure 8 Construction of S in the proof of Theorem 2.
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As seen above S = λm−d+1
0 λd

1 · · · λd
k−1λd−1

k . Due to the constraints on m and d, the
length of each of the repetitions is at least 2 and therefore requires exactly two phrases to
encode. Thus, the total number of phrases in the LZ77 parsing of S is zS = 2k + 2.

We now consider how many phrases are required to encode S′ := SCS(S, m, d). We prove
this by induction showing that every sample is encoded by exactly four phrases, and these
phrases never cross the border between two samples. We consider the first sample s′

1 in
Figure 9.

Figure 9 The structure of the first sample in S′.

The first sample s′
1 consists of m − d + 1 repetitions of λ0 followed by d − 1 repetitions of

λ1. Since the repetitions have length at least 2, these are encoded by exactly four phrases in
total. Therefore, we only have to argue that the last phrase does not overlap s′

2. The first
letter in s′

2 is always λ0 since the start position of this sample is d + 1, which is within the
first m − d + 1 repetitions of λ0, since m ≥ 2d. Hence, this is the first time λ0 follows λ1,
and thus the last phrase in s′

1 does not overlap s′
2.

We now assume the hypothesis for every sample prior to the jth sample, seen in Figure 10.

Figure 10 The structure of the jth sample in S′.

By the induction hypothesis, the last phrase encoding s′
j−1 does not overlap any letters

in s′
j . Therefore, the first phrase encoding s′

j starts with the first letter in s′
j . We show that

s′
j is encoded by exactly four phrases which also do not cross the border to s′

j+1.
(i) The first phrase covers exactly the first m − d letters in s′

j .
(ii) The second phrase has length 1, covering the last occurrence of λj−1 in s′

j .
(iii) The third phrase has length 1, covering the first occurrence of λj .
(iv) The fourth phrase covers exactly the last d − 2 repetitions of λj in s′

j .

As mentioned during the proof of Theorem 1, the first m − d letters uj in sample s′
j

where j > 1, is a repeat of the last m − d letters in s′
j−1. By the induction hypothesis and

Lemma 4, this implies that there can be at most one phrase overlapping this interval. Since
every sample has length m ≥ 2d, the jth sample ends with the substring sj−1sj as seen
in Figure 10. Therefore, if the first phrase covered more than m − d letters, it would also
have to cover d repetitions of λj−1 following letter λj−2. However, this is the first time we
encounter d repetitions of λj−1 in a row. This shows (i). The last occurrence of λj−1 is also
covered by exactly one phrase since the phrase would otherwise also have to cover the first
occurrence of λj which is not possible. This shows (ii). It is trivial to show (iii) and (iv),
since it is the first occurrence of λj . In the latter case, the phrase does not overlap s′

j+1,
since that sample begins with some λj′ where j′ ̸= j.

CPM 2024



9:10 Tight Bounds for Compressing Substring Samples

The induction proof does not consider the last sample, however, in this case, the last
phrase clearly ends at the end of s′

k. Therefore, we have shown that each sample is encoded
by exactly four phrases. Thus, the total number of phrases in the LZ77 parsing of S′ is
zS′ = 4k = zS + 2(k − 1).

Theorem 2 is therefore shown for some parameter k. However it is also possible to
construct a string S of any length n ≥ m by letting k := ⌊(n − m)/d⌋ + 1 and padding (n − m

mod d) repetitions of λk to the end of S in the definition stated in Figure 8. This yields
exactly the same number of phrases for encoding S, and since the last (n − m mod d) letters
are not part of any sample, S′ remains unchanged. Thus, we have shown the equality:

|LZ77(SCS(S, m, d))| = |LZ77(S)| + 2(k − 1) = |LZ77(S)| + 2
⌊

n − m

d

⌋
.

This concludes the proof of Theorem 2.

4 Improved Compressibility

Given integers d ≥ 2 and m ≥ 2d, where m ≡ 0 (mod d), we construct a string S of length
n = 3m − d over alphabet Σ consisting of exactly two letters a and b, i.e., Σ = {a, b}. Notice
that n ≥ m and the required property of n ≡ m (mod d) holds, since m ≡ 0 (mod d) implies
that 3m − d ≡ m (mod d). We construct S by concatenating several repetitions of letters
from Σ, as shown in Figure 11. The phrases in the LZ77 parsing of S are shown in Figure 12.

Figure 11 Construction of S in the proof of Theorem 3.

Figure 12 The phrases in the LZ77 parsing of S. Phrase *f4 is only present when m > d + 2.

Notably, the first repetition of letter b in Figure 11 has two cases, and requires either
one or two phrases to encode depending on whether m = d + 2 or m > d + 2, respectively.
This is only relevant when d = 2 and m = 4, since we otherwise always fulfill m > d + 2.
Therefore, the number of phrases in the LZ77 parsing of S following this construction is:

|LZ77(S)| =
{

6 if d = 2 and m = 4,

7 otherwise.

We now consider the number of phrases in the LZ77 parsing of S′ := SCS(S, m, d). There
is a total of k = ⌊(3m − d − m)/d⌋ + 1 = 2m/d samples contributing to S′. The first sample
s′

1 consists of d + 1 repetitions of letter a followed by m − d − 1 repetitions of letter b, since
these are the first m letters in S. This sample is shown in Figure 13.
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Figure 13 The first sample of S′.

The following m/d−1 samples together follow a pattern of a single a followed by m−d−1
repetitions of b. This pattern occurs since the jth sample ends with (j − 1)d − 1 repetitions
of letter b, and the (j + 1)th sample starts with m − jd repetitions of letter b, resulting in a
total of m − d − 1 repetitions of b. This repeating pattern is illustrated in Figure 14.

Figure 14 The 2nd to the (m/d)th samples of S′. These form a repeating pattern of a single
letter a followed by m − d − 1 repetitions of letter b.

The (m/d + 1)th sample is shown in Figure 15. This is the sample starting at position m

in S and also starts with the pattern of a single a followed by m − d − 1 repetitions of b. The
number of times this pattern occurs is therefore once for the first sample, m/d times for the
following m/d − 1 samples, and once for the (m/d + 1)th sample, totaling m/d + 2 times.

Figure 15 The (m/d + 1)th samples of S′.

Finally, the remaining m/d−1 samples consist of a similar repeating pattern with m−d−1
repetitions of b followed by a single a. The pattern in this case is repeated only m/d times,
i.e., two times less than previously. This is illustrated in Figure 16.

Figure 16 The (m/d + 2)th to the (2m/d)th samples of S′. These form a repeating pattern of
m − d − 1 repetitions of letter b followed by a single letter a.

The complete structure of S′ is shown in Figure 17. We have adjusted the second pattern
slightly, to make it more similar to the first pattern. The phrases in the LZ77 parsing of S′

are shown in Figure 18.

CPM 2024
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Figure 17 The structure of S′ in the proof of Theorem 3.

Figure 18 The phrases in the LZ77 parsing of S′. Phrase *f ′
4 is only present when m > d + 2.

Notably, the LZ77 parsing of S′ takes advantage of the pattern where a single letter a is
followed by a repetition of letter b. This is especially relevant for phrases f ′

5 and f ′
6. Again,

the first repetition of the letter b has the same two cases exactly as described previously,
requiring either one or two phrases. Therefore, the size of the LZ77 parsing of S′ is:

|LZ77(SCS(S, m, d))| =
{

5 if d = 2 and m = 4,

6 otherwise.

This is always exactly one phrase less than the number of phrases in the LZ77 parsing of S.
Thus, we have shown the following equality:

|LZ77(SCS(S, m, d))| = |LZ77(S)| − 1

This concludes the proof of Theorem 3.

5 Concluding Remarks

We have considered the problem of compressing a set of substrings sampled from a string
and analyzing the size of the compression. We have shown that |LZ77(SCS(S, m, d))| ≤
|LZ77(S)| + 2(n − m)/d and that this upper bound is tight. Likewise, we have shown that
there exists a family of strings where the compressibility after the sampling process improves
by exactly one phrase, i.e., where |LZ77(SCS(S, m, d))| = |LZ77(S)| − 1.

There are several directions that future work could take. A natural question is to
derive bounds for other compression algorithms, such as Relative Lempel-Ziv [17, 22],
LZ78 [44], Re-Pair [28], or other well-known context-free grammar compressors [32, 42]. As
an extension of the original motivation it is also relevant to consider what happens when
we change some of the idealizations made to the model (e.g. errors during sampling as
introduced by short-read sequencing technologies, or a generalization of sample lengths
and/or positions). Finally, an interesting question is whether there exists a string where the
size of the LZ77 parsing of the concatenated samples improves by more than one phrase,
i.e., is the best you can do the equality in Theorem 3, or does there exist an instance where
|LZ77(SCS(S, m, d))| < |LZ77(S)| − 1?
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