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Preface

The Annual Symposium on Combinatorial Pattern Matching (CPM) has by now over 30 years
of tradition and is considered to be the leading conference for the community working on
Stringology. The objective of the annual CPM meetings is to provide an international forum
for research in combinatorial pattern matching and related applications such as computational
biology, data compression and data mining, coding, information retrieval, natural language
processing, and image processing (i.e. 2D strings).

This volume contains the papers presented at the 35th Annual Symposium on Combin-
atorial Pattern Matching (CPM 2024) held on June 25–27, 2024 in Fukuoka, Japan. The
conference program includes 28 contributed papers and three invited talks, by

Martin Farach-Colton (New York University, USA),
Zsuzsanna Lipták (University of Verona, Italy), and
Tetsuo Shibuya (University of Tokyo, Japan).

For the sixth time, CPM includes the “Highlights of CPM” special session, for presenting
the highlights of recent developments in combinatorial pattern matching. In this sixth
installment we selected as highlight papers “Gapped String Indexing in Subquadratic Space
and Sublinear Query Time”, by Philip Bille, presented at STACS 2024, and “Optimal-Time
Queries on BWT-Runs Compressed Indexes” and “An Optimal-Time RLBWT Construction
in BWT-Runs Bounded Space”, by Yasuo Tabei / Takaaki Nishimoto, presented at ICALP
2021 and ICALP 2022, respectively.

The contributed papers for CPM 2024 were selected out of 48 submissions, corresponding
to an acceptance ratio of 58%. Each submission received at least three reviews. We thank the
members of the Program Committee and all the additional external subreviewers, who are
listed below, for their hard, invaluable, and collaborative effort that resulted in an excellent
scientific program. We also thank the CPM Steering Committee for their support and advice.
We thank the CPM 2024 Organising Committee chair Yuto Nakashima and all the other
members for their excellent and hard work that made this conference a wonderful one.

The CPM 2024 conference was co-located with a StringMasters workshop held on June 24
and June 28, 2024 in Fukuoka. The StringMasters workshop was organized by Dominik Köppl.
Preceding these events in Fukuoka, a two-day summer school was held at the University
of Electro-Communications, in Tokyo, which provided lectures by Jesper Jansson (Kyoto
University) and Philip Wellnitz (National Institute of Informatics). The summer school was
organized by Paweł Gawrychowski, Hideo Bannai, and Takuya Meino.

The Annual Symposium on Combinatorial Pattern Matching started in 1990, and has
since then taken place every year. Previous CPM meetings were held in Paris, London (UK),
Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus, Piscataway, Warwick, Montreal,
Jerusalem, Fukuoka, Morelia, Istanbul, Jeju, Barcelona, London (Ontario, Canada), Pisa,
Lille, New York, Palermo, Helsinki, Bad Herrenalb, Moscow, Ischia, Tel Aviv, Warsaw,
Qingdao, Pisa, Copenhagen (on-line), Wrocław, Prague, and Marne-la-Vallée. From 1992 to
the 2015 meeting, all proceedings were published in the LNCS (Lecture Notes in Computer
Science) series. Since 2016, the CPM proceedings have appeared in the LIPIcs (Leibniz
International Proceedings in Informatics) series, as volume 54 (CPM 2016), 78 (CPM 2017),
105 (CPM 2018), 128 (CPM 2019), 161 (CPM 2020), 191 (CPM 2021), 223 (CPM 2022),
and 259 (CPM 2023). The entire submission and review process was carried out using the
EasyChair conference system.
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0:x Preface

This proceedings of CPM 2024 is dedicated to the memory of Masayuki Takeda, who
passed away in December 2022, in Fukuoka. As a professor at the Department of Informatics,
Kyushu University, Masayuki was one of the pioneers of the field of pattern matching and
compressed string processing in Japan. He was a passionate researcher, and published over
200 articles, including 34 papers in the CPM series of conferences – more than all but one
other author. Masayuki also co-chaired CPM 2002 in Fukuoka with late Alberto Apostolico.
Masayuki was a great teacher, and he supervised a number of students at the undergraduate,
master, and PhD levels, many of whom have gone on to have successful research careers.
Implicitly, and explicitly, he is the reason the CPM conference returns to Fukuoka this year.

Shunsuke Inenaga and Simon J. Puglisi
CPM 2024 Program Committee Chairs
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Abstract
The LCP array is an important tool in stringology, allowing to speed up pattern matching algorithms
and enabling compact representations of the suffix tree. Recently, Conte et al. [DCC 2023] and
Cotumaccio et al. [SPIRE 2023] extended the definition of this array to Wheeler DFAs and,
ultimately, to arbitrary labeled graphs, proving that it can be used to efficiently solve matching
statistics queries on the graph’s paths. In this paper, we provide the first efficient algorithm building
the LCP array of a directed labeled graph with n nodes and m edges labeled over an alphabet of size
σ. The first step is to transform the input graph G into a deterministic Wheeler pseudoforest Gis

with O(n) edges encoding the lexicographically- smallest and largest strings entering in each node of
the original graph. Using state-of-the-art algorithms, this step runs in O(min{m log n, m + n2}) time
on arbitrary labeled graphs, and in O(m) time on Wheeler DFAs. The LCP array of G stores the
longest common prefixes between those strings, i.e. it can easily be derived from the LCP array of
Gis. After arguing that the natural generalization of a compact-space LCP-construction algorithm
by Beller et al. [J. Discrete Algorithms 2013] runs in time Ω(nσ) on pseudoforests, we present a
new algorithm based on dynamic range stabbing building the LCP array of Gis in O(n log σ) time
and O(n log σ) bits of working space. Combined with our reduction, we obtain the first efficient
algorithm to build the LCP array of an arbitrary labeled graph. An implementation of our algorithm
is publicly available at https://github.com/regindex/Labeled-Graph-LCP.

2012 ACM Subject Classification Theory of computation → Sorting and searching; Theory of
computation → Graph algorithms analysis; Theory of computation → Pattern matching

Keywords and phrases LCP array, Wheeler automata, prefix sorting, pattern matching, sorting
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1:2 Computing the LCP Array of a Labeled Graph

Giovanni Manzini: Funded by the Italian Ministry of Health, POS 2014-2020, project ID T4-
AN-07, CUP I53C22001300001, by INdAM-GNCS Project CUP E53C23001670001 and by PNRR
ECS00000017 Tuscany Health Ecosystem, Spoke 6 CUP I53C22000780001.

1 Introduction

The LCP array of a string – storing the lengths of the longest common prefixes of lexicographic-
adjacent string suffixes – is a data structure introduced by Manber and Myers in [23] that
proved very useful in tasks such as speeding up pattern matching queries with suffix arrays [23]
and representing more compactly the suffix tree [1]. As a more recent application of this array,
Boucher et al. augmented the BOSS representation of a de Bruijn graph with a generalization
of the LCP array that supports the navigation of the underlying variable-order de Bruijn
graph [7]. Recently, Conte et al. [9] and Cotumaccio [14] extended this structure to Wheeler
DFAs [19] – deterministic edge-labeled graphs admitting a total order of their nodes being
compatible with the co-lexicographic order of the strings labeling source-to-node paths – and,
ultimately, arbitrary edge-labeled graphs. The main idea when generalizing the LCP array to
a labeled graph, is to collect the lexicographic smallest infu and largest supu string entering
each node u (following edges backwards, starting from u), sorting them lexicographically, and
computing the lengths of the longest common prefixes between lexicographically-adjacent
strings in this sorted list [9]. As shown by Conte et al. [9] and Cotumaccio et al. [14, 16],
such a data structure can be used to efficiently find Maximal Exact Matches (MEMs) on the
graph’s paths and to speed up the navigation of variable-order de Bruijn graphs.

Importantly, [9,14,16] did not discuss efficient algorithms for building the LCP array of a
labeled graph. The goal of our paper is to design such algorithms.

Overview of our contributions

Let G be a directed labeled graph with n nodes and m edges labeled over an alphabet of
cardinality σ. After introducing the main definitions and notation in Section 2, in Section 3 we
describe our main three-steps pipeline for computing the LCP array of G: (1) Pre-processing.
Using the algorithms described in [2,5, 12] we transform G into a particular deterministic
Wheeler pseudoforest Gis of size O(n), that is, a deterministic Wheeler graph [19] whose
nodes have in-degree equal to 1. Graph Gis compactly encodes the lexicographically- smallest
and largest strings infu and supu (Definition 4) leaving backwards (i.e. following reversed
edges) every node u of G, by means of the unique path entering the node. Using state-
of-the-art algorithms, this step runs in O(m) time and O(m) words of space if G is a
Wheeler semi-DFA [2], and in O(min{m + n2, m log n}) time and O(m) words of space on
arbitrary deterministic graphs [5,12]. (2) LCP computation: we describe a new compact-space
algorithm computing the LCP array of Gis (see below for more details); (3) Post-processing:
we turn the LCP array of Gis into the LCP array of the original graph G, in O(m) time and
O(m) words of space.

As far as step (2) is concerned, we turn our attention to the algorithm of Beller et al. [6],
working on strings in O(n log σ) time and O(n log σ) bits of working space on top of the
LCP array (which can be streamed to the output in the form of pairs (i, LCP [i]) sorted
by their second component). The idea of this algorithm is to keep a queue of suffix array
intervals, initially filled with the interval [1, n]. After extracting from the queue an interval
[i, j] corresponding to all suffixes prefixed by some string α, the algorithm retrieves all distinct
characters c1, . . . , ck in the Burrows-Wheeler transform [8] interval BWT [i, j] and, by means
of backward searching [18], retrieves the intervals of strings c1 · α, . . . , ck · α, writing an LCP
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entry at the beginning of each of those intervals (unless that LCP entry was not already
filled, in which case the procedure does not recurse on the corresponding interval). Recently,
Alanko et al. [3] generalized this algorithm to the BWT of the infimum sub-graph of a de
Bruijn graph (also known as the SBWT [4]). In Section 4 we first show a pseudoforest on
which the natural generalization of Beller et al.’s algorithm [6] performs Ω(nσ) steps of
forward search; this implies that, as a function of σ, this algorithm is exponentially slower on
graphs than it is on strings. Motivated by this fact, we revisit the algorithm. For simplicity,
in this paragraph, we sketch the algorithm on strings; see Section 4 for the generalization to
graphs. Rather than working with a queue of suffix array intervals, we maintain a queue of
LCP indexes i ∈ [1, n]. We furthermore keep a dynamic range-stabbing data structure on
all the open intervals (l, r] such that BWT [l] = BWT [r] = c for some character c, and no
other occurrence of c appears in BWT [l, r]. When processing position i with LCP [i] = ℓ,
we remove the intervals (l, r] stabbed by i, and use them to derive new LCP entries of value
ℓ + 1 (and new positions to be inserted in the queue) by backward-stepping from BWT [l]
and BWT [r]. On deterministic Wheeler pseudoforests, our algorithm runs in O(n log σ) time
and uses O(n log σ) bits of working space (the LCP array can be streamed to output as in
the case of Beller et al. [6]).

Putting everything together (preprocessing, LCP of Gis, and post-processing), we prove
(see Section 2 for all definitions):

▶ Theorem 1. Given a labeled graph G with n nodes and m edges labeled over alphabet
[σ], with σ ≤ mO(1), we can compute the LCP array of G in O(m) words of space and
O(n log σ + min{m log n, m + n2}) time. If G is a Wheeler semi-DFA, the running time
reduces to O(n log σ + m).

If the input graph G is a Wheeler pseudoforest with all strings infu being distinct,
represented compactly as an FM-index of a Wheeler graph [19], we can do even better: our
algorithm terminates in O(n log σ) time while using just O(n log σ) bits of working space
(Lemma 15).

We implemented our algorithm computing the LCP array of Gis (Algorithm 1) and made
it publicly available at https://github.com/regindex/Labeled-Graph-LCP.

Due to space constraints, some proofs can be found in the full version of the paper.

2 Preliminaries

We work with directed edge-labeled graphs G = (V, E) on a fixed ordered alphabet Σ = [σ] =
{1, . . . , σ}, where E ⊆ V × V × Σ and, without loss of generality, V = [n] for some integer
n > 0. Symbol n = |V | denotes therefore the number of nodes of G. With m = |E| we denote
the number of edges of G. Without loss of generality, we assume that there are no nodes
with both in-degree and out-degree equal to zero (such nodes can easily be treated separately
in the problem we consider in this paper). In particular, this implies that n ∈ O(m). We
require that the alphabet’s size is polynomial in the input’s size: σ ≤ mO(1). Notation inu

and outu, for u ∈ V , indicates the in-degree and out-degree of u, respectively. We say that
G is deterministic if (u, v′, a), (u, v′′, b) ∈ E ⇒ a ̸= b whenever v′ ̸= v′′. We say that any
node u ∈ V with inu = 0 is a source, that G is a semi-DFA if G is deterministic, has exactly
one source, and all nodes are reachable from the source, and that G is a pseudoforest if
and only if inu = 1 for all u ∈ V . If G = (V, E) is a pseudoforest, λ(u) ∈ Σ, for u ∈ V ,
denotes the character labeling the unique edge entering v. We say that two labeled graphs
G = (V, E), G′ = (V ′, E′) on the same alphabet Σ are isomorphic if and only if there exists
a bijection ϕ : V → V ′ preserving edges and labels: for every u, v ∈ V, u′, v′ ∈ V ′, a ∈ Σ,
(u, v, a) ∈ E if and only if (ϕ(u), ϕ(v), a) ∈ E′.
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If α = c1c2 · · · cn ∈ Σ∗ is a finite string, the notation ←−α = cncn−1 · · · c1 indicates α

reversed. The notation Σω indicates the set of omega strings, that is, right-infinite strings of
the form c1c2c3 . . . , with ci ∈ Σ for all i ∈ N>0. As usual, Σ∗ and Σ+ denote the sets of finite
(possibly empty) strings and the set of nonempty finite strings from Σ, respectively. For
α = c1c2 · · · ∈ Σω∪Σ∗, α[i . . . ] indicates the suffix cici+1 . . . of α. If α, β ∈ Σω∪Σ∗, we write
α ≺ β to indicate that α is lexicographically smaller than β (similarly for ⪯: lexicographically
smaller than or equal to). Symbol ϵ denotes the empty string, and it holds ϵ ≺ α for all
α, β ∈ Σω ∪Σ+. Given a set S ⊆ Σω ∪Σ∗ and a string α ∈ Σω ∪Σ∗, notation S ≺ α indicates
(∀β ∈ S)(β ≺ α) (similarly for α ≺ S, S ⪯ α, and α ⪯ S).

If G = (V, E) is deterministic, given u ∈ V we denote with OUTL(u) the sorted string of
characters labeling outgoing edges from u: OUTL(u) = c1 . . . ck if and only if (∀j ∈ [k])(∃v ∈
V )

(
(u, v, cj) ∈ E

)
, with c1 ≺ c2 · · · ≺ ck. We write c ∈ OUTL(u), with c ∈ Σ, as a shorthand

for c ∈ {OUTL(u)[1], . . . , OUTL(u)[k]}. Since we assume that G is deterministic when we
use this notation, it holds outu = |OUTL(u)|.

Wheeler graphs were introduced by Gagie et al. [19]:

▶ Definition 2. Let G = (V, E) be an edge-labeled graph, and let < be a strict total order on
V . For every u, v ∈ V , let u ≤ v indicate u < v ∨ u = v. We say that < is a Wheeler order
for G if and only if:
1. (Axiom 1) For every u, v ∈ V , if inu = 0 and inv > 0 then u < v.
2. (Axiom 2) For every (u′, u, a), (v′, v, b) ∈ E, if u < v, then a ⪯ b.
3. (Axiom 3) For every (u′, u, a), (v′, v, a) ∈ E, if u < v, then u′ ≤ v′.
A graph G = (V, E) is Wheeler if it admits at least one Wheeler order.

Let u, v ∈ V , α ∈ Σ+, and c ∈ Σ. We write u
α
⇝ v to indicate that there exists a path

from u to v labeled with string α (that is, we can go from u to v by following edges whose
labels, when concatenated, yield α), and write u

c→ v as an abbreviation for (u, v, c) ∈ E.
We use the symbol Iu to denote the set of strings obtained starting from node u and

following edges backwards. This process either stops at a node with in-degree 0 (thereby
producing a finite string), or continues indefinitely (thereby producing an omega-string).
Notice that this notation differs from [2], where edges are followed forwards; we use this
slight variation since, as seen below, it is a more natural way to define the LCP array of a
graph. More formally:

▶ Definition 3. Let G = (V, E) be a labeled graph. For u ∈ V , Iω
u ⊆ Σω denotes the set of

omega-strings leaving backwards node u:

Iω
u = {c1c2 . . . ∈ Σω : (∃v1, v2, · · · ∈ V )(v1

c1→ u ∧ (∀i ≥ 2)(vi
ci→ vi−1))}.

The symbol Iu ⊆ Σω ∪ Σ∗ denotes instead the set of all strings leaving backwards u:

Iu = Iω
u ∪ {←−α ∈ Σ+ : (∃v ∈ V )(inv = 0 ∧ v

α
⇝ u)};

If inu = 0, we define Iu = {ϵ}.

▶ Definition 4 (Infimum and supremum strings [22]). Let G = (V, E) and u ∈ V . The infimum
string infG

u = inf Iu and the supremum string supG
u = sup Iu relative to G are defined as:

infG
u = γ ∈ Σ∗ ∪ Σω s.t. (∀β ∈ Σ∗ ∪ Σω)(β ⪯ Iu → β ⪯ γ ⪯ Iu)

supG
u = γ ∈ Σ∗ ∪ Σω s.t. (∀β ∈ Σ∗ ∪ Σω)(Iu ⪯ β → Iu ⪯ γ ⪯ β)

When G will be clear from the context, we will drop the superscript and simply write infu

and supu.
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Cotumaccio [14] defines the LCP of a labeled graph as follows:

▶ Definition 5. Let G = (V, E) be a labeled graph. Let γ1 ⪯ γ2 ⪯ · · · ⪯ γ2n be the
lexicographically-sorted strings infu and supu, for all u ∈ V . The LCP array LCPG[2, 2n]
of G is defined as LCPG[i] = lcp(γi−1, γi), where lcp(γi−1, γi) is the length of the longest
common prefix between γi−1 and γi.

In the above definition, observe that LCPG[i] =∞ if and only if γi−1 = γi and γi−1, γi ∈
Σω. We are interested in this definition since, as shown in [14], it allows computing matching
statistics on arbitrary labeled graphs.

If G = (V, E) is a pseudoforest, then Iu is a singleton for every u ∈ V and the above
definition can be simplified since infu = supu for every u ∈ V . In this paper we will consider
the particular case of pseudoforests for which all the infu(= supu) are distinct. In this
particular case, we define the reduced LCP array as follows:

▶ Definition 6. Let G = (V, E) be a labeled pseudoforest such that infu ̸= infv for all
u ̸= v ∈ V . Let γ∗

1 ≺ γ∗
2 ≺ · · · ≺ γ∗

n be the lexicographically-sorted strings infu, for all u ∈ V .
The reduced LCP array LCP∗

G = LCP∗
G[2, n] of G is defined as LCP∗

G[i] = lcp(γ∗
i−1, γ∗

i ).

Since pseudoforests will play an important role in our algorithms, we proceed by proving
a useful property of the reduced LCP array of a pseudoforest.

▶ Lemma 7. Let G = (V, E) be a labeled pseudoforest such that infu ̸= infv for all u ≠ v ∈ V .
Let 1 ≤ k <∞ be such that LCP∗

G[i] = k for some 2 ≤ i ≤ n. Then, there exists 2 ≤ i′ ≤ n

such that LCP∗
G[i′] = k − 1.

Proof. Let γ∗
1 ≺ γ∗

2 ≺ · · · ≺ γ∗
n be the lexicographically-sorted strings infu, for all u ∈ V .

For all i ∈ [n] let 1 ≤ p(i) ≤ n be the unique integer such that γ∗
p(i) = γ∗

i [2 . . . ]. Such
integer always exists and it is unique, since the γ∗

j ’s are all the strings leaving each node of
G (following edges backwards).

Since 1 ≤ k < ∞, then γ∗
i−1[1] = γ∗

i [1] and γ∗
p(i−1) = γ∗

i−1[2 . . . ] ≺ γ∗
i [2 . . . ] = γ∗

p(i),
which implies p(i − 1) < p(i). As a consequence, k = LCP∗

G[i] = lcp(γ∗
i−1, γ∗

i ) = 1 +
lcp(γ∗

p(i−1), γ∗
p(i)) = 1 + minp(i−1)+1≤t≤p(i) lcp(γ∗

t−1, γ∗
t ) = 1 + minp(i−1)+1≤t≤p(i) LCP∗

G[t],
so there exists p(i − 1) + 1 ≤ i′ ≤ p(i) such that k = 1 + LCP∗

G[i′], or equivalently,
LCP∗

G[i′] = k − 1. ◀

3 The pipeline: computing LCPG from G

As mentioned in Section 1, we reduce the computation of LCPG to three steps: (1) a pre-
processing phase building a Wheeler pseudoforest Gis, (2) the computation of the reduced
LCP array of Gis, and (3) a post-processing phase yielding LCPG. Steps (1) and (3) mainly
use existing results from the literature and we illustrate them in this section. Our main
contribution is step (2) for which in Section 4 we describe a new algorithm.

3.1 Pre-processing
Let G = (V, E) be the input graph. As the first step of our pre-processing phase, we augment
Σ← Σ ∪ {#} with a new symbol #(= 0) lexicographically-smaller than all symbols in the
original alphabet {1, . . . , σ}, and add a self-loop u

#→ u to all nodes u ∈ V such that inu = 0.
This will simplify our subsequent steps as now all strings leaving (backwards) any node
belong to Σω; from now on, we will therefore work with graphs with no sources.
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Consider the set IS = {infu, supu : u ∈ V }, and let N = |IS| ≤ 2n. Note that N could
be strictly smaller than 2n since some nodes may share the same infimum/supremum string.
Moreover, by the definition of infima and suprema strings, for each α ∈ IS it holds that
α[2 . . . ] ∈ IS: this is true because, if α is the infimum of Iu, then u has a predecessor v such
that (i) v

α[1]→ u and (ii) α[2 . . . ] is the infimum of Iv (the same holds for suprema strings).
Let us give the following definition.

▶ Definition 8. Given G = (V, E) with no sources, let IS = {infu, supu : u ∈ V }. We denote
with G′

is = (IS, E′
is) the labeled graph with edge set E′

is = {(α[2 . . . ], α, α[1]) : α ∈ IS}.

Observe that (i) each node α ∈ IS of G′
is has exactly one incoming edge, and (ii) G′

is

is deterministic since α
a→ β and α

a→ β′ imply β = a · α = β′. In other words, G′
is is a

deterministic pseudo-forest. In addition, infu ̸= infv for every u ̸= v ∈ IS. Let us prove that
G′

is is a Wheeler graph.

▶ Lemma 9. The lexicographic order ≺ on the nodes of G′
is is a Wheeler order.

Proof. We prove that ≺ satisfies the three axioms of Definition 2.
(Axiom 1). This axiom holds trivially, since G′

is has no nodes with in-degree 0.
(Axiom 2). Let (α′, α, α[1]), (β′, β, β[1]) ∈ E′

is, with α ≺ β. Then, by definition of the
lexicographic order ≺, it holds α[1] ⪯ β[1].

(Axiom 3). Let (α[2 . . . ], α, a), (β[2 . . . ], β, a) ∈ E′
is, with a = α[1] = β[1] and α ≺ β. Then,

by the definition of ≺ it holds α[2 . . . ] ≺ β[2 . . . ]. ◀

Importantly, we remark that our subsequent algorithms will only require the topology
and edge labels of G′

is to work correctly. In other words, any graph isomorphic to G′
is will

work, and it will not be needed to compute explicitly the set IS (an impractical task, since
IS contains omega-strings). Figure 1 shows an example of labeled graph G (with sources)
pre-processed to remove sources and converted to such a graph isomorphic to G′

is. We can
compute such a graph using recent results in the literature:

▶ Theorem 10. Let G = (V, E) be a labeled graph with no sources and alphabet of size
σ ≤ mO(1). Let moreover Vi = {ui : u ∈ V } and Vs = {us : u ∈ V } be two duplicates
of V . Then, we can compute a graph Gis = ([N ], Eis) being isomorphic to G′

is = (IS, E′
is)

(Definition 8), together with a function map : Vi ∪ Vs → [N ] such that:
1. for every u ∈ V , infG

u = infGis

map(ui) and supG
u = supGis

map(us), and
2. the total order < on the integers coincides with the Wheeler order of Gis. In particular,

for all i, j ∈ [N ], i < j if and only if infGis
i = supGis

i ≺ infGis
j = supGis

j .
Function map is returned as an array of 2n = 2|V | words, so that it can be evaluated in
constant time. Gis and map can be computed from G in O(m+n2) time [12] or in O(m log n)
time [5]. If G is a Wheeler semi-DFA, the running time reduces to O(m) [2]. All these
algorithms use O(m) words of working space.

In the full version of the paper we discuss how Theorem 10 can be obtained using the
results in [2, 5, 12] (which were originally delivered for a different purpose: computing the
maximum co-lex order [11, 13, 15, 17]). Figure 1 shows an example of Gis (right) for a
particular labeled graph G (left). Table 1 (right) shows the nodes [N ] of such a graph Gis,
together with the strings entering in each node, sorted lexicographically, and their longest
common prefix array LCP∗

Gis
. In Table 1 (left) we sort the duplicated nodes (Vi ∪ Vs) of G

by their infima (Vi) and suprema (Vs) strings, and show the mapping map : Vi ∪ Vs → [N ] in
the second and third columns.
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Figure 1 Left: a labeled graph G. Right: a graph Gis isomorphic to G′
is (Definition 8) satisfying

Theorem 10. Note that in Gis the node numbering coincides with the Wheeler order.

Table 1 Left: lexicographically-sorted infima and suprema strings γj of graph G = (V, E) of
Figure 1, along with the nodes of V they reach (subscripted using the duplicates Vi and Vs of V to
show whether the string is an infimum or a supremum), and array LCPG. The second ([N ]) and
third (Vi ∪ Vs) columns of the table show the mapping map : Vi ∪ Vs → [N ]. Right: The sorted
infima (equivalently, suprema) γ∗

j of graph Gis of Figure 1, and the array LCP∗
Gis

.

j [N ] Vi ∪ Vs γj LCPG j [N ] Vi ∪ Vs γj LCPG [N ] γ∗
j LCP∗

Gis

1 1 10i ε - 17 7 12i C 0 1 #####... -
2 1 10s ε 0 18 7 12s C 1 2 A####... 0
3 1 11i ε 0 19 8 13i CC 1 3 ATA##... 1
4 1 11s ε 0 20 8 13s CC 2 4 ATATA... 3
5 1 5i ε 0 21 9 7s CTC 1 5 ATCC#... 2
6 1 5s ε 0 22 10 8i TA 0 6 ATTTT... 2
7 2 6i A 0 23 11 1i TATAT... 2 7 C####... 0
8 2 7i A 1 24 11 1s TATAT... ∞ 8 CC###... 1
9 3 9i ATA 1 25 11 3i TATAT... ∞ 9 CTC##... 1
10 4 2i ATATA... 3 26 11 3s TATAT... ∞ 10 TA###... 0
11 4 2s ATATA... ∞ 27 12 6s TC 1 11 TATAT... 2
12 4 4i ATATA... ∞ 28 13 14i TCC 2 12 TC###... 1
13 4 4s ATATA... ∞ 29 13 16i TCC 3 13 TCC##... 2
14 5 15i ATCC 2 30 13 16s TCC 3 14 TCTC#... 2
15 6 15s ATTTT... 2 31 14 8s TCTC 2 15 TTTTT... 1
16 6 9s ATTTT... ∞ 32 15 14s TTTTT... 1

3.2 Post-processing

In Section 3.1 we have shown how to convert the input G = (V, E) into a Wheeler pseudoforest
Gis = ([N ], Eis) encoding the infima and suprema strings of G. In Section 4 we will show
how to compute the reduced LCP∗

Gis
of Gis. Here, we discuss the last step of our pipeline,

converting LCP∗
Gis

into LCPG.
Let γ∗

1 ≺ γ∗
2 ≺ · · · ≺ γ∗

N be the sorted strings infj , for j ∈ [N ], relative to graph Gis,
and γ1 ⪯ γ2 ⪯ · · · ⪯ γ2n be the sorted strings infu, supu, for u ∈ V , relative to graph G.
By construction (Section 3.1), the former sequence of strings is obtained from the latter by
performing these two operations: (1) duplicates are removed, and (2) finite strings γi are
turned into omega-strings of the form γi ·#ω (see Table 1, right table). This means that
LCPG is almost the same as LCP∗

Gis
, except in maximal intervals LCPG[i + 1, j] such that

γi = γi+1 = · · · = γj . In those intervals, we have LCPG[i + 1, j] = |γi|; notice that this value
could be either finite (if γi ∈ Σ∗) or infinite (if γi ∈ Σω).
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1:8 Computing the LCP Array of a Labeled Graph

As an example, consider the interval LCPG[10, 13] = (3,∞,∞,∞) in Tabe 1 (left). This
interval corresponds to strings ATATA..., and corresponds to LCP∗

Gis
[4] = 3 (right). The

first value LCPG[10] is equal to LCP∗
Gis

[4] = 3, while the others, LCPG[11, 13] = (∞,∞,∞)
are equal to the length (∞) of the omega-string ATATA.... A similar example not involving
an omega string is LCPG[7, 8] = (0, 1) (string A), corresponding to LCP∗

Gis
[2] = 0.

Given LCP∗
Gis

, Gis, and map (see Theorem 10) it is immediate to derive LCPG in O(m)
worst-case time and O(m) words of working space, as follows. First of all, we sort Vi ∪ Vs

(the two duplicates of V , see Theorem 10) according to the order given by the integers
map(x), for x ∈ Vi ∪ Vs. Let u1, u2, . . . , u2n be the corresponding sequence of sorted nodes,
i.e. such that map(u1) ≤ map(u2) ≤ · · · ≤ map(u2n). The second step is to identify
the above-mentioned maximal intervals LCPG[i + 1, j]: these are precisely the maximal
intervals such that map(ui) = map(ui+1) = · · · = map(uj). For each such interval, we set
LCPG[i] = LCP∗

Gis
[map(ui)] and LCPG[i + 1] = LCPG[i + 2] = . . . LCPG[j] = |γi|. In order

to compute the length |γi|, observe that γi = γ∗
map(ui) if γi ∈ Σω, and γi · #ω = γ∗

map(ui)

if γi ∈ Σ∗. Then, a simple DFS visit of Gis starting from nodes u with a self-loop u
#→ u

reveals whether we are in the former or latter case, and allows computing the length (DFS
depth) of γi in the latter.

4 Computing the LCP array of Gis

In view of Sections 3.1 and 3.2, the core task to solve in order to compute LCPG is the
computation of LCP∗

Gis
. To make notation lighter, in this section we denote the input graph

with symbol G = (V, E) and assume it is a deterministic Wheeler pseudoforest such that
infu ̸= infv for all u ̸= v ∈ V . In the rest of the section, n and m denote the number of
nodes and edges of G. The goal of our algorithms is to compute LCP∗

G.
To solve this problem, we first focused our attention on the algorithm of Beller et al. [6],

computing the LCP array from the Burrows-Wheeler Transform [8] of the input string in
(1 + o(1)) · n log σ + O(n) bits of working space (including the indexed BWT and excluding
the LCP array, which however can be streamed to output in order of increasing LCP values)
and O(n log σ) time. However, as we briefly show in Figure 2, we realized that the natural
generalization of this algorithm to pseudoforests runs in Ω(nσ) time in the worst case.
Motivated by this fact, in this section we re-design the algorithm by resorting to the dynamic
interval stabbing problem (e.g., see [24]), achieving running time O(n log σ) on deterministic
Wheeler pseudoforests. This will require designing a novel dynamic range-stabbing data
structure that could be of independent interest.

Let v1 < v2 < · · · < vn denote the Wheeler order of G. We define:

▶ Definition 11 (bridge). For 1 ≤ l < r ≤ n and c ∈ Σ, a triplet (l, r, c) is said to be a bridge
of G if and only if (i) both vl and vr have an outgoing edge labeled with c and (ii) for every
k such that l < k < r, vk does not have any outgoing edge labeled with c.

Consider two consecutive nodes (in the Wheeler order) vi−1 and vi with the same incoming
label c = λ(vi−1) = λ(vi) for some 1 < i ≤ n. On deterministic pseudoforests there is a
one-to-one correspondence between the set of such node pairs and the set of bridges:

▶ Lemma 12. The following bijection exists between the set of bridges and the set of pairs
(vi−1, vi) such that λ(vi−1) = λ(vi). Let λ(vi−1) = λ(vi) = c, and let vl and vr be the
nodes such that vl

c→ vi−1 and vr
c→ vi. Then, (l, r, c) is a bridge. Conversely, for every

bridge (l, r, c), letting vh and vi be the unique nodes such that vl
c→ vh and vr

c→ vi, we have
h = i− 1.
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Figure 2 A Wheeler pseudoforest with V = {u < v1 < · · · < vn < z1 < · · · < zn} and Wheeler
order < where the number of forward search steps in the natural generalization of Beller et al.’s
algorithm is Θ(nσ). The range of nodes (BWT interval) reached by a path suffixed by bi, for
1 ≤ i ≤ n, is [vi, vn]. The algorithm right-extends (via forward search) each of these ranges by all the
n characters c1, . . . , cn; when extending with ci, we obtain the unary range [zi] of nodes reached by a
path suffixed by bici. This means that Beller et al.’s algorithm will perform in total Θ(nσ) = Θ(n2)
forward search steps. Intuitively, our solution to this problem will be to extend just one of those
ranges by c1, . . . , cn. We achieve this by resorting to a dynamic range stabbing data structure.

Proof. Given such nodes vi−1 and vi, vl and vr are unambiguously determined because every
node has exactly one incoming edge. To see that (l, r, λ(vi)) is a bridge, notice that for every
edge (u, u′, λ(vi)), if u′ < vi−1, then by Axiom 3 and determinism u < vl, and if vi < u′,
then similarly vr < u, so for every k such that l < k < r, vk does not have an outgoing edge
labeled λ(vi). For the reverse implication, notice that h ̸= i because every node has exactly
one incoming edge, and it cannot be i < h otherwise from Axiom 3 we would obtain vr < vl.
Hence h ≤ i− 1. If we had h < i− 1, then by Axiom 2 the unique edge entering vi−1 should
be labeled c, and from Axiom 3 and determinism its start node k should satisfy l < k < r,
so (l, r, c) would not be a bridge. ◀

The intuition behind our algorithm is as follows. Given a bridge (l, r, c), suppose that
lcp(γ∗

l , γ∗
r ) = d ≥ 0. Let vi−1 and vi be the nodes such that vl

c→ vi−1 and vr
c→ vi (see

Lemma 12). These nodes can be obtained from vl and vr by one forward search step. Then, we
have γ∗

i−1 = cγ∗
l and γ∗

i = cγ∗
r , thus lcp(γ∗

i−1, γ∗
i ) = lcp(γ∗

l , γ∗
r ) + 1 = d + 1. By Lemma 9, the

Wheeler order v1 < · · · < vn corresponds to the lexicographic order of the node’s incoming
strings γ∗

1 ≺ · · · ≺ γ∗
n, hence lcp(γ∗

l , γ∗
r ) = minj∈(l,r] lcp(γ∗

j−1, γ∗
j ) = minj∈(l,r] LCP∗

G[j].
Therefore, the minimum value d = minj∈(l,r] LCP∗

G[j] within the left-open interval (l, r]
corresponding to a bridge (l, r, c) yields LCP∗

G[i] = lcp(γ∗
i−1, γ∗

i ) = d + 1. This observation
stands at the core of our algorithm: if we compute LCP values in nondecreasing order, then
the position jmin = argminj∈(l,r]LCP∗

G[j] (1 < jmin ≤ n) of the first (smallest) generated
LCP value inside (l, r] “stabs” interval (l, r]. This yields LCP∗

G[i] = LCP∗
G[jmin] + 1. After

this interval stabbing query, bridge (l, r, c) is removed from the set of bridges since the
resulting LCP value LCP∗

G[i] has been correctly computed once for all.
Our procedure for computing LCP∗

G is formalized in Algorithm 1. The algorithm takes as
input a deterministic Wheeler pseudoforest G represented as an FM index (Lemma 13 below)
and outputs all pairs (i, LCP∗

G[i]), one by one in a streaming fashion, in nondecreasing order
of their second component (i.e. LCP value). This is useful in space-efficient applications
where one cannot afford storing the whole LCP array in n log n bits, see for example [26].

▶ Lemma 13. A deterministic Wheeler pseudoforest G can be represented succinctly in
(1+o(1)) ·n log σ+O(n) bits of space with a data structure (FM index of a Wheeler graph [19])
supporting the following queries in O(log σ) time:
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1. G.forward_step(i, c): given 1 < i ≤ n and a character c ∈ Σ, let k ≥ i be the smallest
integer such that vk has an outgoing edge labeled with c. This query returns the integer i′

such that vk
c→ vi′ , or ⊥ if such k does not exist.

2. OUTL(vi)[j]: given a node vi and an index j ∈ [σ], return the j-th outgoing label of vi.
Return ⊥ if j > outvi

.
3. λ(vi): given i ∈ [n], return the incoming label of vi.

Proof. Following [19], we represent G as a triple (C, OUT, L) ∈ {0, . . . , n}σ × {0, 1}2n × [σ]n
defined as:

OUT = 0outv1 1 · 0outv2 1 · · · 0outvn 1 is the concatenation of the outdegrees of nodes
v1, . . . , vn, written in unary,
L = OUTL(v1) ·OUTL(v2) · · ·OUTL(vn) is the concatenation of all the labels of the node’s
outgoing edges in Wheeler order, and
C[c] = |{u ∈ V : λ(u) ≺ c}|, c ∈ Σ, denotes the number of nodes whose incoming edge
is labelled with a character c′ such that c′ ≺ c. Importantly, C is not actually stored
explicitly; as we show below, any C[c] can be retrieved from L in O(log σ) time.

The only difference with [19] (where arbitrary Wheeler graphs are considered) is that a
pseudoforest has n nodes and n edges, and all nodes have in-degree equal to 1. This simplifies
the structure, since we do not need to store in-degrees. L is encoded with a wavelet tree [21]
and OUT with a succinct bitvector data structure [27]. A root-to leaf traversal of the wavelet
tree of L is sufficient to retrieve any C[c] in O(log σ) time at no additional space cost (see
for example [28, Alg 3]). This representation uses n log σ + O(n) bits of space and supports
the following operations in O(log σ) time: (1) random access to any of the arrays C, OUT, L,
(2) L.rankc(j), returning the number of occurrences of c in L[1, j], and (3) OUT.select1(j),
returning the position of the j-th occurrence of bit 1 in bitvector OUT.

Using these queries, we can solve query (1) as follows: G.forward_step(i, c) = C[c] +
L.rankc(OUT.select1(i− 1)− (i− 1)) + 1. If L.rankc(OUT.select1(i− 1)− (i− 1)) + 1 exceeds
the number of characters equal to c in L (we discover this in O(log σ) time using the
wavelet tree on L), the query returns ⊥. Query (2) is answered as follows: OUTL(vi)[j] =
L[OUT.select1(i − 1) − (i − 1) + j]. If j exceeds the out-degree of vi (we discover this in
constant time using rank and select queries on OUT), the query returns ⊥. Query (3) λ(vi)
can be solved with a root-to-leaf visit of the wavelet tree of L, in O(log σ) time (range quantile
queries, see [20]). ◀

We proceed by commenting the pseudocode and proving its correctness and complexity.
In Line 3 of Algorithm 1, we compute the set I of bridges of the input graph using Lemma 14.
Each bridge (l, r, c) will “survive” in I until any LCP∗

G[i] with i ∈ (l, r] is computed. Set I
is represented as a dynamic range stabbing data structure (Lemma 14 below) on the set
of character-labeled intervals {(l, r]c : (l, r, c) is a bridge}, where notation (l, r]c indicates
a left-open interval labeled with character c. We require this data structure to support
interval stabbing and interval deletion queries. General solutions for this problem solving
both queries in amortized O(log n/ log log n) time exist [24]. While in the general case this
is optimal, in our particular case observe that, by Definition 11, no more than σ intervals
get stabbed by a given i ∈ [n]. We exploit this property to develop a more efficient (if
log σ = o(log n/ log log n)) dynamic range stabbing data structure (for the full proof, see the
full version of the paper):

▶ Lemma 14. Given a Wheeler pseudoforest G represented with the data structure of
Lemma 13, in O(n log σ) time and O(n log σ) bits of working space we can build a dynamic
interval stabbing data structure I of O(n log σ) bits representing the set of bridges of G
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Algorithm 1 Given a Wheeler pseudoforest G, compute LCP∗
G. In Line 8, I. stab_and_remove(i)

stabs and removes bridges from I.

1: LCP∗
G ← Array LCP∗

G[2, n], with values initialized to ∞
2: W ← ∅ ▷ W : queue of integer pairs of the form (i, LCP∗

G[i])
3: I ← {(l, r, c) ∈ [n]× [n]× Σ : (l, r, c) is a bridge of G} ▷ I: bridges of G

4: for all 1 < i ≤ n such that λ(vi−1) ≺ λ(vi): W.push(i, 0)
5: while W ̸= ∅ do
6: (i, d)←W.pop()
7: output (i, d) ▷ Stream pair (i, LCP∗

G[i]) to output
8: R← I. stab_and_remove(i) ▷ R ⊆ Σ: set of labels of bridges stabbed and removed
9: for c ∈ R do

10: i′ ← G.forward_step(i, c)
11: W.push(i′, d + 1)
12: end for
13: end while

(Definition 11) and answering the following query: I.stab_and_remove(i), where i ∈ [n].
Letting S = {(l, r, c) ∈ I : l < i ≤ r} be the set of stabbed bridges, this query performs the
following two operations:
1. it returns the set of characters R = {c : (l, r, c) ∈ S} labeling bridges stabbed by i, and
2. it removes those bridges: I ← I \ S.
Let ℓ =

∑
(l,r,c)∈S(r − l + 1) be the total length of the stabbed bridges. The query is solved in

O(log σ + |R|+ ℓ/σ) time.

Proof (Sketch, see the full paper version for all the details). We divide the nodes
v1, . . . , vn into non-overlapping blocks vkσ, . . . , v(k+1)σ of σ nodes each, for k = 0, . . . , n/σ−1
(assume σ divides n for simplicity). Let I be the set of labeled intervals (l, r]c corresponding
to all the bridges (l, r, c) of G; the bridges of G can be reconstructed in O(log σ) time each
using operation OUTL(vi)[j] of Lemma 13. Each interval (l, r]c ∈ I overlapping t > 1 blocks
(i.e. l + 1 ≤ kσ ≤ (k + t− 2)σ < r for some k ∈ {0, . . . , n/σ − 1}) is broken into t “pieces”
(l1 = l, r1]c, . . . , (lt, rt = r]c: a suffix of a block, followed by full blocks, followed by a prefix
of a block. Each piece (li, ri]c, overlapping the k-th block for some k, is inserted in interval
set Ik. The pieces (l1, r1]c, . . . , (lt, rt]c are connected using a doubly-linked list. Intervals of
I fully contained in a block are not split in any piece and just inserted in Ik, with k being
the block they overlap. Since no more than σ intervals can pairwise intersect at any point
i ∈ [n], for every k at most σ “pieces” of at most σ intervals are inserted in Ik: in total,
the number of intervals in all the sets Ik is therefore

∑n/σ−1
k=0 |Ik| ∈ O(|I|+ σ · n/σ) = O(n)

(because |I| ∈ O(n) by Lemma 12). We build an interval tree data structure T (Ik) ( [25, Ch
8.8], [10, Ch 17.3]) on each Ik. Interval stabbing queries are answered locally (on the tree
associated with the block containing the stabbing position i). Interval deletion queries
require to also follow the linked list associated with the deleted interval, to delete all ℓ/σ

“pieces” of the original interval (of length ℓ) of I. Each interval piece is deleted in constant
time since we do not need to re-balance the tree. Our claim follows by observing that
|Ik| ∈ O(σ2) for every k (because no more than σ intervals can pairwise intersect at any
point), so (i) each T (Ik) is built in O(|Ik| log |Ik|) = O(|Ik| log σ) time (overall, all trees are
built in O(n log σ) time), and (ii) each pointer (tree edges and linked list pointers) uses just
O(log σ) bits: observe that linked list pointers always connect intervals belonging to adjacent
trees T (Ik), T (Ik±1), so they point inside a memory region of size O(|Ik|) ⊆ O(σ2) and thus
require O(log |Ik|) ⊆ O(log σ) bits each. ◀
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After building data structure I, in Line 4 we identify all integers 1 < i ≤ n such that
LCP∗

G[i] = 0: these correspond to consecutive nodes vi−1, vi with different incoming labels:
λ(vi−1) ̸= λ(vi).

We keep the following invariant before and after the execution of each iteration of the
while loop at Line 5: for every 1 < i ≤ n, exactly one of the following three conditions
holds. (i) the pair (i, LCP∗

G[i]) has already been output at line 7, (ii) (i, d) ∈ W for some
d ≥ 0, in which case it holds that LCP∗

G[i] = d or (iii) (l, r, c) ∈ I, where (l, r, c) is the bridge
associated with vi according to Lemma 12.

The invariant clearly holds before entering the while loop, because for every 1 < i ≤ n

we either push (i, 0) in W at Line 4 whenever λ(vi−1) ̸= λ(vi) (thereby satisfying condition
(ii) since LCP∗

G[i] = lcp(γ∗
i−1, γ∗

i ) = 0), or insert (l, r, c) in I at Line 3, where (l, r, c) is the
bridge associated with vi (thereby satisfying condition (iii)). At this point, condition (i) does
not hold for any 1 < i ≤ n. Notice that by Definition 11, no bridge is associated with vi

such that λ(vi−1) ̸= λ(vi) (and vice versa), so the invariant’s conditions are indeed mutually
exclusive.

We show that the invariant holds after every operation in the body of the main loop.
Assume we pop (i, d) from W at Line 6. Then, this means that (before popping) condition
(ii) of our invariant holds, and in particular LCP∗

G[i] = d. At line 7 the algorithm correctly
outputs (i, d = LCP∗

G[i]), so condition (i) of the invariant now holds for position i (while
condition (ii) does not hold anymore, and condition (iii) did not hold even before: remember
that the three conditions are mutually exclusive). The invariant is not modified (so it still
holds) for the other positions i′ ̸= i.

In Line 8, we retrieve and remove every bridge (l, r, c) such that l < i ≤ r. Let vi′

be the node associated with bridge (l, r, c) (Lemma 12). The fact that we remove (l, r, c)
from I temporarily invalidates the invariant for i′ (none of (i-iii) hold), but in the for loop
at Line 9 we immediately re-establish the invariant by pushing in W pair (i′, d + 1) and
observing that indeed LCP∗

G[i′] = d + 1 (i.e. condition (ii) of the invariant holds for position
i′). To see that LCP∗

G[i′] = d + 1 holds true first observe that, since (i) we use a queue W

for pairs (i, LCP∗
G[i]), (ii) initially (Line 4), we only push in W pairs of the form (i, 0), and

(iii) whenever we pop a pair (i, d) we push pairs of the form (j, d + 1) for some i, j ∈ [n],
LCP values are popped in line 6 in nondecreasing order. In particular, for every d ≥ 0, no
pair of the form (i, d + 1) is popped from the queue until all pairs of the form (j, d) are
popped. From this observation and since i is the first integer stabbing bridge (l, r, c) in
Line 8 (since we remove bridges from I immediately after they are stabbed), it must be
lcp(γ∗

l , γ∗
r ) = minl<j≤r LCP∗

G[j] = LCP∗
G[i] = d. Then, since γ∗

i′−1 = cγ∗
l and γ∗

i′ = cγ∗
r hold,

we have that LCP∗
G[i′] = lcp(γ∗

i′−1, γ∗
i′) = d + 1.

We proved that our invariant always holds true; in particular, it holds when the algorithm
terminates. The fact that conditions (i-iii) are mutually exclusive, immediately implies
that no LCP value is output more than once, i.e. the first components of the output pairs
(i, LCP∗

G[i]) are all distinct.
At the end of the algorithm’s execution, W = ∅ holds. To prove that the algorithm

computes every LCP value, suppose for a contradiction, that there exists i ∈ [n] such that
(i, LCP∗

G[i]) is never output in Line 7. Without loss of generality, choose i yielding the smallest
such LCP∗

G[i]. Note that LCP∗
G[i] > 0, since all pairs (j, LCP∗

G[j] = 0) are inserted in W at
Line 4, thus they are output at Line 7. Then, condition (i) of our invariant does not hold for
i. Also condition (ii) cannot hold, otherwise it would be (i, LCP∗

G[i]) ∈W ̸= ∅. We conclude
that condition (iii) must hold for i: (l, r, c) ∈ I, where (l, r, c) is the bridge associated with vi

by Lemma 12. In turn, this implies that no pair (j, LCP∗
G[j]) for l < j ≤ r has been output
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in Line 7 (otherwise, such a j stabbing (l, r, c) would have caused the removal of (l, r, c) from
I). By Lemma 12, vl

c→ vi−1 and vr
c→ vi hold. Since we assume that infu ̸= infv for all

u ̸= v ∈ V , we can apply Lemma 7 and obtain that it must hold LCP∗
G[j] = LCP∗

G[i]− 1 for
some l < j ≤ r, which contradicts to minimality of LCP∗

G[i]. We conclude that the algorithm
computes every LCP value.

Next, we analyze the algorithm’s running time and working space. By Lemma 14,
I is built in O(n log σ) time using O(n log σ) bits of working space. The while loop at
Line 5 iterates at most O(n) times because (i) at most n elements are pushed into the
queue W at the beginning (Line 4), and (ii) an element (i, d) ∈ N2 can be pushed into
the queue at Line 11 only after a bridge is stabbed and removed; thus at most |I| ∈ O(n)
elements can be pushed into the queue. As a result, Line 8 (query I.stab_and_remove(i))
is executed O(n) times. Recall (Lemma 14) that such a query runs in O(log σ + |R|+ ℓ/σ)
time, where |R| is the number of characters labeling stabbed intervals (equivalently, the
number of stabbed intervals since no two intervals labeled with the same character can
intersect) and ℓ is the total cumulative length of the stabbed intervals. Since overall the
calls to I.stab_and_remove(i) will ultimately remove all bridges from I, we conclude that
the sum of all cardinalities |R| equals |I| ∈ O(n), and the sum of all cumulative lengths ℓ

equals the sum of all the bridges’ lengths:
∑

(l,r,c)∈I(r − l + 1) ∈ O(nσ) (because no two
intervals labeled with the same character can intersect). Appying Lemma 14 we conclude
that, overall, all calls to I.stab_and_remove(i) cost O(n log σ + n + nσ/σ) = O(n log σ)
time. Line 10 takes O(log σ) time by Lemma 13. We represent the queue W in O(n) bits
of space, using the same strategy of Beller et al. (see [6] for all details): W is represented
internally with two queues Wt and Wt+1, containing pairs of the form (i, t) and (i, t + 1),
respectively (in fact, only the first element i of the pair needs to be stored). Pairs are popped
from the former queue and pushed into the second. As long as |Wt+1| ≤ n/ log n, Wt+1 is
represented as a simple vector of integers. As soon as |Wt+1| > n/ log n, we switch to a
packed bitvector representation of n bits (n/ log n words) marking with a bit set all i such
that (i, t + 1) ∈Wt+1. When Wt becomes empty, we delete it, create a new queue Wt+2, and
start popping from Wt+1 and pushing into Wt+2. If Wt+1 is still represented as a vector of
integers, popping is trivial. Otherwise (packed bitvector), all integers in Wt+1 can be popped
in overall O(n/ log n + |Wt+1|) ⊆ O(|Wt+1|) time using bitwise operations.

We finally obtain:

▶ Lemma 15. Given a deterministic Wheeler pseudoforest G = (V, E) such that infu ̸= infv

for all u ̸= v ∈ V represented with the data structure of Lemma 13, the reduced LCP array
LCP∗

G of G can be computed in O(n log σ) time and O(n log σ) bits of working space on top
of the input. The algorithm does not allocate memory for the output array LCP∗

G: the entries
of this array are streamed to output in the form of pairs (i, LCP∗

G[i]) sorted by their second
component, from smallest to largest.

Putting everything together (pre-processing, Lemma 15, and post-processing), we obtain
the main result of our paper, Theorem 1.
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Abstract
The classical pattern matching paradigm is that of seeking occurrences of one string in another,
where both strings are drawn from an alphabet set Σ. Motivated by many applications, algorithms
were developed for pattern matching where the matching relation is not necessarily the “=” relation.
Examples are pattern matching with “don’t cares”, approximate matching, less-than matching,
Cartesian-tree matching, order preserving matching, parameterized matching, degenerate matching,
function matching, and more. Some of the matchings above allow for efficient pattern matching
algorithms, while others do not.

Much work has not been done on categorization of the complexity of various string matching
queries based on the type of matching. For example, when can exact matching be done fast? When
can approximate matching be calculated fast? When can tandem or palindrome recognition be
efficiently calculated?

This paper defines the matching graph of a given string under a matching relation. We show
that the type of graph affects various string algorithms. The matching graph can also be a tool for
lower bounds. We provide a lower bound for finding palindromes in a general degenerate graph. We
also show some results in recognizing the minimum alphabet required for reconstructing a string
that presents a given matching graph.
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1 Introduction

In the classical pattern matching model, we seek occurrences of a string, or more generally,
a set of strings, in a distinguished string. All strings are comprised of symbols from an
alphabet set Σ. The basic problem in this paradigm is that of standard string matching, that
is, the problem of finding all occurrences of a pattern string of length m in a text string of
length n. This problem can be solved in O(n + m) time-independent of the alphabet size
|Σ| [15, 27,43].

While the exact matching paradigm, where a match means alphabet equality, is a
common and important one, historically, many problems were identified where a match
between symbols has a different meaning. The first such model was the pattern matching
with don’t cares, where a special symbol ϕ /∈ Σ is added, where ϕ matches every symbol
in Σ. As we will see, this changes the matching graph, and the matching relation is no
longer transitive. Fischer and Paterson [28, 34] showed that convolutions can solve this
problem efficiently. Convolutions have been useful in the case of less-than matching [8].
Here the alphabet is natural numbers, and a pattern letter p matches the text letter t if
p ≤ t. The new twist in this matching relation is that it is not symmetric. Approximate
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matching seeks all pattern occurrences with errors. There are several algorithms for Hamming
distance errors, generally convolutions-based [1, 13], and dynamic programming algorithms
for Levenshtein edit distance [44]. In Cartesian Tree matching, two strings match if they
have the same Cartesian tree [46], and in order-preserving matching, two strings match if the
relative order of their elements is the same [30]. Parameterized Matching was introduced
by Brenda Baker [20]. In this matching, a text and pattern match if there is a bijection
that, when applied to the pattern alphabet, will match the text. In function matching, the
function applied to the pattern alphabet is a general function [14]. In degenerate string
matching, the alphabet consists of non-empty subsets of alphabet Σ [26, 31,35].

The various matchings mentioned above led to many different algorithms. The work
of [19] classifies regex-matching problems by their structure. However, except for the latter,
a systemic work on categorizing different matching types has not been performed. In this
paper, we propose a method of analyzing some matching relations, called the matching graph.
We give an example where a lower bound can be achieved due to the matching graph and
study some of the insights that the matching graph offers.

▶ Definition 1. Let M ⊆ Σ × Σ be a matching relation of elements in alphabet Σ. Let
S = S[1], ..., S[n] be a string over Σ. The Matching graph of S is the graph G = (V, E),
whose nodes are V = {1, ..., n} and where there is an edge ij if M(i, j).

▶ Example 2. For alphabet Σ = {a, b, c}, the matching graph of string S = a, a, b, a, b, b, c, c, b

is the graph consisting of the three cliques {1, 2, 4}, {3, 5, 6, 9} and {7, 8}.

▶ Example 3. Let Σ = {a, b}, and let ϕ be the don’t care symbol. Then the matching graph
of S = a, a, b, ϕ, b, a, ϕ, a can be seen in Fig. 1.

Figure 1 Matching Graph of a string with don’t cares.

Note that the graph is always a set of cliques when the matching relation is transitive, as
seen in Example 2. When the relation is symmetric, the graph is undirected; otherwise, it is
not.

Our contribution
In this paper, we consider the matching relation in a generic string. We prove that any
possible matching relation corresponds to a degenerate string, which implies lower bounds
on most degenerate string matching algorithms. We also show that the number of characters
required to reconstruct a degenerate string is tightly O(n2), as more characters introduce
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no new information, and some matching relations cannot be reconstructed with less than
O(n2) alphabet characters. We show that constructing a degenerate string from a matching
relation with the smallest possible alphabet is NP-hard.

2 Preliminaries

We begin with basic definitions and notation, generally following [29].
Let S = S[1]S[2] . . . S[n] be a string of length |S| = n over an ordered alphabet Σ. By ε we

denote the empty string. For two positions i and j on S, we denote by S[i..j] = S[i]S[i+1]..S[j]
the factor (sometimes called substring) of S that begins at position i and ends at position j

(it equals ε if j < i). A prefix of S is a factor that begins at position 1 (S[1..j]), and a suffix
is a factor that ends at position n (S[i..n]). We say that SR is the reversal of S, which is
S[n]S[n− 1]...S[1].

▶ Definition 4 (Index Matching Function). Let S be a string of length |S| = n. The
MS : [n]× [n]→ {0, 1} is the matching function of string S and MS(i, j) = 1 iff S[i] = S[j].
The matching function will be denoted as M if S is clear from the context.

The matching function of a standard string (as defined above) is transitive, reflexive, and
symmetric.

▶ Definition 5 (Palindrome). A palindrome is a string S that equals its reversal SR. Using
definition Definition 4, a palindrome is a string that ∀i,M(i, n− i) = 1. A palindrome factor
is a string factor P = S[i..j] such that P is a palindrome. A maximal palindromic factor
is a palindromic factor P = S[i..j] such that S[i − 1..j + 1] is either not defined or not a
palindrome.

▶ Definition 6 (Don’t care). The special character “don’t care”, denoted as ϕ is a character
that matches any other character, including itself. A string S having a don’t care at index m

satisfies ∀i < |S|,MS(m, i) =MS(i, m) = 1.

This paper addresses an interesting matching relation - equality in degenerate strings.

▶ Definition 7 (Degenerate string). Let Σ be an alphabet. S is called a degenerate string, if
S ∈ {P (Σ)/ϕ}∗, where P (Σ) is the power set of Σ.

The length of the string, n, is the number of characters (sets) within that string. The
size of the string, N , is

n∑
i=1
|S[i]|. We call the sets in S terminals and the characters in Σ,

elements. The empty set can not be a terminal.

▶ Example 8. Let Σ = [5] = {1, 2, 3, 4, 5}, and let S1 = {1, 4}{1, 5}{4}{1, 2, 3}, and
S2 = {1}{2}{5}{5}. The lengths of S1, S2, denoted respectively by n1, n2 are both 4.
However, the sizes, N1, N2 (resp.) are different, where N1 = 8 and N2 = 4.

▶ Definition 9 (Primitive terminal). Let c be a terminal of a degenerate string. We say that c

is primitive if |c| = 1.

▶ Definition 10 (Terminals equality). Let c1, c2 be two terminals of a degenerate string. We
say that c1 matches c2 if c1 ∩ c2 ̸= ∅. Throughout the paper, we denote terminals equality
between S[i] and S[j] as S[i] = S[j].

▶ Observation 11. Degenerate string matching where the only non-primitive terminal is Σ
is equivalent to string matching with don’t cares.

CPM 2024
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▶ Definition 12. Let G = (V, E) be an undirected graph, meaning that ∀i, j s.t. (i, j) ∈ E →
(j, i) ∈ E. An induced subgraph, or simply a subgraph G′ = (V ′, E′) of G is formed from a
subset of the vertices of the original graph, and all of the edges that connect vertices in the
subset. Formally, V ′ ⊆ V , ∀i, j, i ∈ V ′ ∧ j ∈ V ′ if and only if (i, j) ∈ E′.
A clique is a subgraph G′ = (V ′, E′) such that ∀i ̸= j ∈ V ′, (i, j) ∈ E′.

▶ Definition 13. The complete graph Kn is a clique with n vertices. A bipartite graph
G = (V1 ∪ V2, E) is a graph such that all vertices in E connect a vertex in V1 with a vertex
from V2, formally, ∀(i, j) ∈ E, either i ∈ V1, j ∈ V2 or i ∈ V2, j ∈ V1. The complete bipartite
graph Kn,m is a bipartite graph G = (V1 ∪ V2, E) such that |V1| = n, |V2| = m and E has all
possible edges under the bipartite restriction. Bipartite graphs have no odd-length cycles, and
therefore K3 is not a subgraph of Kn,m, for any n and m.

▶ Definition 14 (Edge Clique Cover). Let G = (V, E) be a graph. An edge clique cover of
G is a set of subgraphs of G, {(V1, E1), (V2, E2), ..., (Vm, Em)} such that E =

⋃m
i=1 Ei. The

edge clique cover number is the size of the smallest possible set that covers G. Deciding if a
graph can be covered with less than k cliques is NP-hard, and also hard to estimate.

3 Matching function in Pattern Matching

The standard definition of a string defines a string as an ordered array of characters, i.e.,
S ∈ Σ∗. However, the alphabet is not crucial for most string algorithms and can be replaced
by the numbers 1, 2, ..., |Σ|. This possible replacement is because most algorithms only
consider whether two characters are equal. This would not be true for algorithms considering
a more complicated relation between the characters, for example, DNA algorithms that can
predict a particular illness from a specific DNA subsequence or algorithms concerning the
value of the characters, for example, ordered matching or Cartesian tree matching.

We call algorithms that only concern characters equality alphabet comparison algorithms.
We may perceive the input to such algorithms as matching oracle M rather than a string S.

▶ Definition 15. A matching oracle M is a function M : [n] × [n] → {0, 1}, where ∀i, j

M(i, j) = 1 iff S[i] = S[j].

3.1 Matching Oracle Properties

While many algorithms claim to be comparison-based, most make additional assumptions
about the matching function. The most common assumption is for the the function M(i, j)
to define an equivalence relation, i.e.:
1. M(i, j) = M(j, i) (symmetric)
2. M(i, i) = 1 (reflexive)
3. M(i, j) = 1 ∧M(j, k) = 1→M(i, k) = 1 (transitive)

These assumptions work very well for standard equality. However, the last few decades
have prompted the evolution of pattern matching from a combinatorial solution of the
exact string matching problem to an area concerned with approximate matching of various
relationships motivated by computational molecular biology, computer vision, and complex
searches in digitized and distributed multimedia libraries [16,32].
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3.1.1 Parameterized strings
An important type of non-exact matching is the parameterized matching problem, which
was introduced by Baker [21,22]. Her main motivation lay in software maintenance, where
program fragments are to be considered “identical” even if variable names are different.
Therefore, strings under this model are comprised of symbols from two disjoint sets Σ and Π
containing fixed symbols and parameter symbols respectively. In this paradigm, one seeks
parameterized occurrences, i.e., exact occurrences up to renaming the pattern string parameter
symbols in the respective text location. This renaming is a bijection b : Π→ Π. An optimal
algorithm for exact parameterized matching appeared in [9]. It uses the KMP automaton for
a linear-time solution over fixed finite alphabet Σ. Approximate parameterized matching
was investigated in [17, 21, 37]. Idury and Schäffer [40] considered multiple matching of
parameterized patterns.

Parameterized matching has proven useful in other contexts as well. An interesting
problem is searching for images (e.g. [7, 18,47]). Assume, for example, that we are seeking
a given icon in any possible color map. If the colors were fixed, then this is an exact
two-dimensional pattern matching [6]. However, if the color map is different , the exact
matching algorithm will not find the pattern. A parameterized two-dimensional search is
precisely the algorithm needed. If, in addition, one is also willing to lose resolution, then a
two-dimensional function matching search should be used, where the renaming function is
not necessarily a bijection [5,14]. Another degenerate parameterized condition appears in
DNA matching. Because of the base pair bonding, exchanging A with T and C with G, in
both text and pattern, produces a match [38].

As defined, Parameterized matching is not an alphabet comparison matching. However,
it has been shown to be equivalent to exact matching on a prev array, which is a transitive
alphabet comparison matching. A prev is an array defined on a string S, where A[i] =
maxj<i{j | S[j] = S[i]}, or 0 if no such index exists [21].

3.1.2 Don’t cares
Pattern Matching with don’t cares is indeed an alphabet comparison matching. It can be
defined via a matching oracle, where the don’t care symbol ϕ satisfies ∀i, j s.t. S[i] = ϕ,
M(i, j) = 1. However, this relation is not an equivalence relation. M is not transitive.

▶ Example 16. Let S = aϕb. M(1, 2) = 1, M(2, 3) = 1 but M(1, 3) = 0.

However, the matching function is still quite structured even if the transitivity property
is omitted. For example, let i, j, k, w be distinct indices such that M(i, j) = M(j, k) =
M(k, w) = 1. In the don’t care settings, we know that M(i, k) = 1 or M(j, w) = 1. This is
true, because if M(i, k) = 0, then both S[i], S[k] ̸= ϕ, S[i] ̸= S[k], which means that S[j] = ϕ

and therefore M(j, w) = 1. Pattern matching with don’t cares has efficient solutions using
convolutions [28,34].

3.1.3 Less-than Matching
The matching with don’t cares is an example of a non-transitive alphabet comparison
matching relation. We do not know of any matching relation that is not reflexive.

Some non-symmetric alphabet comparison matching relations have been researched.
Subset matching [12] and less-than matching [8]. The less-than matching problem is:
Input: Text string T = T [1], ..., T [n] and pattern string P = P [1], ..., P [m] where T [i], P [i] ∈

N (the set of natural numbers).
Output: All locations i in T where T [i + k] ≥ P [k], k = 1, ..., m.

CPM 2024



2:6 Reconstructing General Matching Graphs

In words, every matched element of the pattern is not greater than the corresponding text
element. If the text and pattern are drawn schematically, we are interested in all positions
where the pattern lies below the text.

It turns out that convolutions could be used for efficient matching less-than matching.
However, by giving up the symmetry requirement, we may ambiguate some basic strings’
constructs - such as periods and palindromes. Therefore, in the remainder of this paper, we
will only consider symmetric matching functions.

In the next section, we consider the degenerate string matching problem, which generalizes
the don’t care matching problem.

4 Degenerate string detection

Generalized degenerate strings and elastic degenerate strings are motivated by problems in
Computational Biology. Much work has been done on efficient algorithms for matching as well
as lower bounds [2–4,23–26,31,35,41]. In this section we will focus on detecting a degenerate
string from a matching function. We will show that every symmetric matching graph has a
corresponding degenerate string. We will also show that reconstructing a degenerate string
from a matching function over a minimal alphabet is NP-hard, and we will eventually show
that for certain matching graphs, the degenerate string alphabet Σ is of quadratic order.
The following two theorems will be proven in this section.

▶ Definition 17. A degenerate string S is said to reconstruct a matching graph G if the
matching graph of S equals to G 1.

▶ Theorem 18. Every symmetric matching graph has a corresponding degenerate string.

▶ Theorem 19. Recovering a degenerate string over minimal alphabet from a symmetric
matching graph is NP-hard.

4.1 Matching graph representation
As we have seen, the matching function can be represented as a graph. One of the standard
representations of a dense graph is by storing an adjacency matrix. Storing the list of
neighbors for each vertices is more efficient if the graph is sparse. As we consider a symmetric
function, the graph is undirected.

Because each symmetric matching function is equivalent to an undirected graph, we
consider the problem of reconstructing a degenerate string from an arbitrary undirected
graph. We begin by showing the existence of such a reconstruction. We later prove that
finding a minimal alphabet is a hard problem.

4.2 Reconstructing a degenerate string from an undirected graph
There has been much work recently on reverse engineering data structures [10, 11, 33, 36,
39, 42, 45]. Reverse engineering determines whether a given input is a valid instance of a
particular data structure. We also refer to this as reconstructing the data structure. As we
have seen, reconstructing the string from a matching graph for simple equality matching is
simple. Each clique gives the indices of a unique symbol. Any graph that is not a collection
of disjointed cliques is an illegal data structure. The matching graph of a degenerate string
has the particular property that every undirected graph is legal. We now describe how, given
an undirected graph G, we reconstruct a degenerate string whose matching graph is G.

1 Not isomorphic, as nodes have significance
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1 2 3
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(a) Matching graph, S is initialized
S = {}{}{}{}{}{}{}.

1 2 3

4 5

6

7

a b

c de

f
(b) All edges are labeled with a character
S = {a, c, e}{a, b, d}{b}{c, f}{d, e, f}{}{}.

1 2 3

4 5

6

7

a b

c de

f
(c) Empty sets are reconstructed
S = {a, c, e}{a, b, d}{b}{c, f}{d, e, f}{g}{h}.

Figure 2 Reconstructing a degenerate string from the matching graph using Algorithm 1. We
reconstruct with characters and not numbers to avoid confusion between edges and nodes.

Let G = (V, E) be an undirected graph, where V = [n] = {1, 2, ..., n} represent the indices
of the degenerate string, and an edge (i, j) exists if and only if the reconstructed string
matches between indices i and j, denoted as S[i] = S[j].

Algorithm 1 Reconstruct a degenerate string from an undirected graph.

Data: Undirected graph G = (V, E)
Result: Degenerate string S

1 S ← {{}, {}, ...{}} // Initialize the output degenerate string with |V |
empty sets

2 c← 1 for e = (i, j) ∈ E do
3 S[i].add(c)
4 S[j].add(c)
5 c← c + 1
6 for each empty s set in S do
7 s.add(c)
8 c← c + 1

The second For loop is necessary for the following reason. At the end of the first For
loop, we may have empty sets for any node that does not match any other node, and empty
sets are not allowed in degenerate strings. Thus, we finish the algorithm by adding a new
character for every such node, which is the only symbol in that set and does not occur
anywhere else. An example can be found at Figure 2.

▶ Lemma 20. Algorithm 1 reconstructs a degenerate string S with the same matching graph
as the input G = (V, E).

CPM 2024
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1 2 3

4 5

6

7

$1$1

$1

(a) First clique is colored
S = {$1}{}{}{$1}{$1}{}{}.

1 2 3

4 5

6

7

$2

$1

$2 $2$1

$1

(b) Second clique is colored
S = {$1, $2}{$2}{}{$1}{$1, $2}{}{}.

1 2 3

4 5

6

7

$2

$1

$2 $2

a

$1

$1

(c) Third trivial clique is colored with a regular
label, to distinguish it from non trivial cliques.
S = {$1, $2}{$2, a}{a}{$1}{$1, $2}{}{}.

1 2 3

4 5

6

7

$2

$1

$2 $2

a

$1

$1

(d) Empty sets are reconstructed
S = {$1, $2}{$2, a}{a}{$1}{$1, $2}{b}{c}.

Figure 3 Reconstructing a degenerate string from the matching graph of Figure 2, using cliques.

Proof. We show that S[i] = S[j] iff (i, j) ∈ E.
We first prove that for every edge (i, j), the terminals S[i] and S[j] match. If (i, j) is an

edge, then S[i] and S[j] both have the same character c, and therefore S[i] ∩ S[j] ̸= ϕ, hence
S[i] matches S[j].

We now prove that for every pair of indices i, j where S[i] matches S[j], the edge (i, j)
exists. If S[i] matches S[j], it means that S[i] ∩ S[j] ̸= ϕ. Let c ∈ S[i] ∩ S[j]. c was either
added to the algorithm in the first For loop or the second. It is clear that if c was added in
the first For loop, then (i, j) is an edge, but in the second loop, all the characters added are
unique, so it is impossible that both S[i] and S[j] have the same character that was added
in that loop. ◀

The above reconstruction algorithm is simple and linear on the input size but does not
produce a degenerate string with a minimal alphabet. Some graphs can be reconstructed to
a degenerate string over an alphabet of constant size, while the algorithm will produce a
quadratic size.

▶ Example 21. Consider the degenerate string {a}n, of length n and of size N = n. The
corresponding matching graph G is a clique of size n. However, after running Algorithm 1 on
a clique of size n, the resulting degenerate string will be {{1, 2, ..., n}, {1, n + 2, ...}, {2, n +
2, 2n + 3, ...}, ...}, a string of length n but of size N = n2.

Is there an efficient algorithm to reconstruct G = (V, E) using a minimal alphabet? The
answer is probably no, as we show that this problem is an NP-hard problem.

▶ Lemma 22. Let G = (V, E) be a matching graph, and let G′ = (V ′, E′) be an arbitrary
sub-clique of G. Applying Algorithm 1 on G′′ = (V, E/E′) and then adding a new character
$ for all vertices in V ′ is a valid degenerate string reconstruction.
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Proof. We will use Lemma 20 again. We need to prove that ∀i, j, S[i] = S[j] iff (i, j) ∈ E.
Lemma 20 shows that for every (i, j) ∈ E/E′, S[i] = S[j]. Also, for every (i, j) ∈ E′, we have
S[i] = S[j], as we required all of the characters participating in the clique to have a unique
new character $i. We handle the other side similarly. We have a common character for every
i, j where S[i] = S[j]. If the character is some $i, there must be an edge between S[i] and
S[j], as they participate in the same clique. Otherwise, the terms proof in Lemma 20 holds,
which completes the proof. ◀

▶ Lemma 23. Let G = (V, E) be a matching graph, and let G′ = (V ′, E′) be a subgraph of
G which is not a clique. If the reconstruction algorithm assigns the same character to all
indices in V ′, then the resulting degenerate string does not have G as a matching graph.

Proof. Let G = (V, E), G′ = (V ′, E′) be a graph and a subgraph as defined in the lemma.
Let i, j be vertices such that i, j ∈ V ′ but (i, j) /∈ E′. Such a pair must exist, as a subgraph
with only one vertex must be a clique, and a subgraph with more than one edge where all
distinct vertices are connected is a clique.

If the algorithm assigns all indices i, j in the subgraph G′ with the same character c, then
c ∈ S[i] ∩ S[j], which means that S[i] = S[j], but (i, j) /∈ E. ◀

▶ Observation 24. Lemma 22 can be applied iteratively to different cliques of G.

An example of Algorithm 1 with clique coloring can be found at Figure 3.

▶ Observation 25. Algorithm 1 applies Lemma 22 iteratively to all cliques of size 2, i.e.,
cliques having exactly two nodes and one edge.

▶ Observation 26. Let G = (V, E) be a matching graph, and let e ∈ E. Every algorithm
reconstructing a degenerate string from G will output a different string to G = (V, E) and
G′ = (V, E/{e}).

▶ Lemma 27. Given a graph G = (V, E) and a degenerate string S that reconstructs it, the
string S defines an Edge-Clique-Cover for G.

Proof. Let Σ be the alphabet of S. For every character σ ∈ Σ, all string-indices i1, i2, ..., ik

whose terminals S[ij ] contain σ are connected in the matching graph G (by the definition of
reconstruction) and must form a clique (Lemma 23). Also, every edge (i, j) ∈ E corresponds
to at least one character in Σ (Observation 26), and therefore every character in Σ corresponds
to a clique in G, where the vertices are all terminal indices containing σ 2. ◀

▶ Observation 28. Reconstructing a degenerate string from a matching graph with an alphabet
of size k finds a Clique-Edge-Cover of size k to the matching graph, which is NP-hard.

Degenerate string equivalence
As seen at Observation 28, reconstructing a degenerate string from a matching function over
a minimal alphabet is hard. However, reconstructing a degenerate string without limiting
the resulting alphabet size is easy. We consider two different degenerate strings that have
the same matching relation as self-equivalent. As shown in Example 21, every degenerate
string can be rewritten as an equivalent string with at most O(n2) characters and a maximal
terminal size of n− 1.

2 Some cliques can be sub-cliques of other cliques.
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4.3 Constructing the matching function
We have defined the matching function and matching graph and will use it to prove some
lower bounds. Before we proceed, we discuss the complexity of constructing the matching
graph. We show that it is at least as hard as boolean matrix multiplication.

▶ Lemma 29. Let S be a degenerate string of length n over an ordered alphabet Σ =
{1, 2, ..., k}. Let d(S[i]) be the indicator of S[i], i.e., a binary vector w = d(S[i]) where
w[i] = 1 iff i ∈ S[i], and let D be a matrix

D =


d(S[1])
d(S[2])

...
d(S[n])


The matching graph of S is G = ({1, 2, ..., n}, E), where E = {(i, j) | (D ×DT )i,j = 1}.

Proof. The vertices of the matching graph are always defined as [n]. An edge (i, j) exists if
and only if S[i] = S[j]. The element (D ×DT )i,j equals to d(S[i]) · d(S[j]), and the boolean
inner product of binary vectors v, w equals one if the vectors are orthogonal, and in our
construction it means that S[i] = S[j]. ◀

▶ Lemma 30. If finding the matching graph of a degenerate string S of length 2n and size
O(n2) can be performed in time f(n), then Boolean Matrix Multiplication can be computed
in time O(f(n)).

Proof. Let us denote by G = (V, E) the matching graph constructed from S.
Let A, B be boolean matrices of size n × n. We want to compute C = A × B in time

f(n).
Let S be a degenerate string of length 2n over numbers alphabet [n] = {1, 2, ..., n}. We

rewrite:

A =


v1
v2
...

vn

 , B =
[
u1, un, . . . , un

]
, C = A×B =


v1 · u1, v1 · u2, . . . v1 · un

v2 · u1, v2 · u2, . . . v2 · un

...
vn · u1, vn · u2, . . . vn · un


We choose the terminals of S to be the following:

S[i] =
{

vi, if i ≤ n

ui−n, otherwise.

Regarding only the elements of v, u and not their vector type. 3

Let D be the matrix defined in Lemma 29. The edges of the matching graph of S are
described by D × DT . Moreover, (D × DT )i,n+j = vi · uj , and therefore C[i][j] = 1 iff
(i, j + n) ∈ E, hence, completing the proof. ◀

3 In the definition of S[i] the elements of A are row vectors and the elements of B are column vectors.
However, in our definition of degenerate strings, row and column vectors have exactly the same meaning,
therefore the direction can be altogether ignored.
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5 Palindromes and degenerate strings

In the previous section, we discussed the degenerate string matching problem and showed
that in a degenerate string S over an arbitrary alphabet, there are no restrictions on the
edges of the matching graph G, whereas, in a regular string, there is a very rigid structure to
the graph.

In this subsection, we show how the matching graph can be used to prove unconditional
lower bounds for finding maximal palindromes in a degenerate string.

▶ Lemma 31. Let S be an arbitrary degenerate string. A comparison-based algorithm A

cannot find all longest palindromes of S using less than O(n2) time.

Proof. Let us assume that we have a comparison-based algorithm A that can find all longest
palindromes in a degenerate string S using less than O(n2) time.

Let S be a degenerate string of length n such that S has palindromes of length exactly
n/4 in all centers that fit such a long palindrome. Also, let us assume that no other
palindromes exist within S. Such a construction is achievable from Theorem 18. There are
O(n) palindromes of size O(n), so comparing all indices within maximal palindromes takes
O(n2) work. However, the algorithm does not perform O(n2) work, so there is a comparison
S[i], S[j] that lays within a maximal palindrome that is not checked, so a similar string S̃

where S̃[i] ̸= S̃[j], and otherwise is identical to S. Running A on S̃ will result in the same
maximal palindromes array, but one of its palindromes is shorter. ◀

The above lemma, in effect, means that all edges in the matching graph must be examined
to find the maximum palindrome. The reason is that there are no conditions on the edges of
the graph, so one may not infer an edge by knowing other edges.

A conditional lower bound for finding all maximal palindromes from a degenerate string
was given by [3]. Recall:

▶ Theorem 32. Given a degenerate string of length 4n over an alphabet of size σ = ω(logn),
all maximal GD palindromes cannot be computed in O(n2−ϵ · σO(1)) time, for any ϵ > 0,
unless the Strong Exponential Time Hypothesis fails.

The difference between M. Alzamel et al. theorem and ours, is that theirs shows a
conditional lower bound on SETH, given a degenerate string. At the same time, we give an
unconditional lower bound given a general matching graph. Of course, our proof relies on the
fact that any general graph is a matching graph of some degenerate string. Our construction
requires a quadratic size alphabet. For fixed-sized finite alphabets, the situation may be
different. We are aware that, given a fixed finite alphabet, it is not hard to find algorithms
that run in time Õ(n2) and find all maximal palindromes [4]. However, in that later case,
the input size is not quadratic in n, but rather linear. The question is whether our lower
bound applies in this case, i.e. can general graphs be matching graphs of degenerate strings
over finite alphabets?

▶ Observation 33. Given a matching graph G = (V, E) of any degenerate string, all maximal
palindromes can be found in time O(n2) by checking maximal palindrome around all possible
centers.

We show in Lemma 31 that O(n2) work is always required in the general case, and
in Theorem 32 that O(n2) work is required under the SETH assumption. Given the matching
graph, we also see in Observation 33 that exactly O(n2) is an upper bound. Therefore,
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building the matching graph is at least as hard as finding all maximal palindromes on the
general case and at least as hard as finding all maximal palindromes in degenerate strings
with an alphabet of size ω(logn) under the SETH assumption.

We show that a quadratic number of characters is necessary to reconstruct a general
matching graph.

▶ Lemma 34. There exist matching graphs G = (V, E) that cannot be reconstructed with
less than an alphabet Σ of size less than O(|V |2).

Proof. Consider the complete bipartite graph Kn,n. This graph is triangle-free and has
a quadratic number of edges. As every character in the reconstructed degenerate string
corresponds to a clique, and every clique has exactly one edge, there must be a quadratic
number of cliques in the clique cover of the graph, hence a quadratic number of characters in
any degenerate string S reconstructing G. ◀

The conclusion from all the above is that we have an unconditional lower bound for
finding maximal palindromes in general graphs. The bound is the number of edges in the
matching graph, O(n2). We also know that general matching graphs imply degenerate strings
over alphabets of size O(n2). It may look like we have a tight algorithm, but this is not the
case. Our algorithm has two stages:
1. Construct the matching graph G = (V, E) from the degenerate string.
2. Use the matching graph to find all palindromes in time O(|E|).
Indeed, one may construct the matching graph in linear time when the alphabet is finite,
but then we are not sure that the matching graph is general, and therefore, the lower bound
on finding the palindrome does not apply. Consider the following example:

▶ Example 35. Let S be a degenerate string over binary alphabet {a, b}. Every string
element is either {a}, {b} or {a, b}. Since {a, b} matches both {a} and {b}, the problem
of finding palindromes in string S is equivalent to the problem of finding palindromes in
a regular string over binary alphabets with don’t cares. As was seen in Example 3, the
matching graph in this case is well structured. Hence, there may not be a need to traverse
all edges. We also know that pattern matching with don’t cares has efficient solutions using
convolutions. Accordingly, it may be the case that finding all palindromes in regular strings
over binary alphabets with don’t care has more efficient solutions than the quadratic.

In the case of alphabets of size O(n2) (quadratic alphabets), the lower bound applies,
and we have an O(n2) time algorithm for finding palindromes that matches the lower bound,
but that algorithm assumes a given matching graph. We have shown a conditional lower
bound for constructing the matching graph of a degenerate string over a quadratic alphabet
as bounded by the complexity of Boolean matrix multiplication, so our algorithm’s time is
now dependent on the time to construct the matching graph.

6 Conclusion and Open Problems

We have shown a simple data structure, the Matching Graph, that gives information on the
matching relation of a pattern matching problem. We can infer from the graph whether a
relation is transitive or symmetric. We also show that the graph may be useful for finding
lower bounds, as in finding palindromes in degenerate strings.

Some very interesting open problems remain. An important one is finding an optimal
algorithm for constructing the matching graph of degenerate strings. Such an algorithm will
immediately imply an optimal algorithm for finding all palindromes in a degenerate string.
This problem is especially relevant for small alphabets (O(log n)), where no lower bounds
are known.
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Another intriguing problem is finding optimal algorithms for finding palindromes in
degenerate strings over a fixed finite alphabet. A notorious example is finding all palindromes
in a string over a binary alphabet, with don’t cares.

Finally, given a degenerate string over a very large alphabet (Ω(n2)), we know that there
is an equivalent degenerate string over an O(n2)-size alphabet. We have shown that finding
an equivalent degenerate string with the minimal alphabet is NP-hard. However, it is easy
to construct an equivalent degenerate string over a O(n2)-size alphabet in time N + n2|Σ|.
Can it be done faster?
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Abstract
We consider the problem of maintaining the size of the LZ77 factorization of a string S of length at
most n under the following operations: (a) appending a given letter to S and (b) deleting the first
letter of S. Our main result is an algorithm for this problem with amortized update time Õ(

√
n). As

a corollary, we obtain an Õ(n
√

n)-time algorithm for computing the most LZ77-compressible rotation
of a length-n string – a naive approach for this problem would compute the LZ77 factorization
of each possible rotation and would thus take quadratic time in the worst case. We also show an
Ω(

√
n) lower bound for the additive sensitivity of LZ77 with respect to the rotation operation. Our

algorithm employs dynamic trees to maintain the longest-previous-factor array information and
depends on periodicity-based arguments that bound the number of the required updates and enable
their efficient computation.
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1 Introduction

Lempel-Ziv 77 (LZ77) [70] is one of the most well known and most effective compression
algorithms that admit efficient implementations. An LZ-like parsing of a string is a parti-
tioning of the string into phrases, where each phrase starting at position i is either a single
letter that does not occur previously, or is a prefix of the rest of the string of length ℓ ≥ 1
that has a previous occurrence at some position s < i. Each phrase can then be encoded by
a pair (1, T [i]), or (ℓ, s), depending on the type of the phrase. The latter is a reference to a
previous occurrence of the phrase, and thus compression can be achieved when there are
many long phrases. The LZ-like parsing is also known as a Lempel-Ziv-Storer-Szymanski
factorization (LZSS) [63] with self-references or a C-factorization [14]. The number of phrases
in an LZ-like parsing can be minimized by adopting a greedy left-to-right approach, which is
the so-called LZ77 parsing, and can be computed off-line in O(n) time and space for linearly
sortable alphabets, or in O(n log σ) time and O(n) space for general ordered alphabets,
where n is the length of the string and σ is the number of distinct letters in the string (also
o(n)-time algorithms for well-compressible strings over a small alphabet are known [20, 36]).
Algorithms for computing the LZ77 parsing of a given (static) string have been studied
extensively [1, 18, 16, 54, 4, 31, 32, 38, 33, 27, 28, 69, 24, 53, 25, 57, 44].
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3:2 Maintaining the Size of LZ77 on Semi-Dynamic Strings

In an on-line setting, where the string can grow by appending symbols at the end, only
the last phrase of an LZ77 parsing can change. The LZ77 parsing of the string can be
maintained in amortized O(log σ) time for each append operation, by a direct adaptation
of Ukkonen’s suffix tree construction algorithm [67]. There are also results that focus on
achieving smaller space [55, 62, 69, 58, 6].

The fully-dynamic setting, where edits to the text at any position are allowed, is much
more challenging than the on-line setting. The efficient computation of the LZ77 parsing
essentially relies on index data structures such as suffix trees or arrays, which allow fast
prefix searches. Recent advances have showed that dynamic indices with poly-logarithmic
update and query times are possible [53, 37], and together with dynamic longest common
extension (LCE) queries [51, 52, 53], this enables the computation of the LZ77 parsing of a
dynamic string S in Õ(|LZ(S)|) time, where |LZ(S)| is the number of phrases in the LZ77
parsing of the current string. Note that this number can be linear in the size of the string.

In this paper, we consider the problem of maintaining the size of the LZ77 parsing of
a semi-dynamic string of length at most n, where the allowed update operations are (a)
appending a letter and (b) shrinking the string by deleting the first letter. We present an
algorithm that processes each update in strongly sublinear time.

Related Work
Cormode and Muthukrishnan [13] introduced the substring compression problem, where the
goal is to preprocess a static string so that given any factor of the string, the phrases in its
LZ77 parsing can be computed efficiently. Existing solutions for the substring compression
problem [13, 35, 42, 43] basically compute the LZ77 parsing one phrase at a time, and thus
require Õ(|LZ(S)|) time to answer a query for a factor S. Our aim is to achieve better query
time when the size of the LZ77 parsing can be large, by considering the more restricted
semi-dynamic setting, where the queried factor moves in a sliding-window fashion over a
string (note, however, that the whole string is not necessarily given beforehand).

The notion of compression sensitivity [2] measures the degree to which the sizes of
compressed representations can change in response to updates. Akagi et al. [2] considered
the compression sensitivity of LZ77 under single-letter updates. We extend this result by
showing that a cyclic rotation of a length-n string by one letter can change the size of the
LZ77 parsing only by O(

√
n), and there are arbitrarily long strings for which the size of the

LZ77 parsing changes by Θ(
√

n).
The semi-dynamic/sliding window setting has been considered for maintaining the suffix

tree [12, 21, 46], the Directed Acyclic Word Graph [29, 60], as well as for other stringology
problems [3, 15, 48, 47, 49]. Early studies of the dynamic longest common subsequence and
edit distance problems considered models where the allowed updates are a subset of prepend,
append, and delete the first or last letter, see [66, 45, 39, 30]. Our results are not related to
the problem considered in [10], where the “sliding window” considered there is a range in
which previous occurrences of the phrases are limited to those starting inside the range.

Our Contributions
We consider the following problem with strings indexed from 0.

Semi-dynamic LZ Compression Size
Maintained object: A string S of length at most n along with |LZ(S)|.
Update: Perform one of the two following operations:
delete: S → S[1 . . |S| − 1]; append(a) for a ∈ Σ: S → Sa.
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Our main result can be stated as follows.

▶ Theorem 1. The Semi-dynamic LZ Compression problem admits a solution using O(n)
space and O(

√
n log2 n) amortized update time.

We also define the problem in the sliding window model.

Sliding Window LZ Compression Size
Input: A string S of length n and an integer d ∈ [1 . . n].
Output: The size of LZ(S[i . . i + d)), for each i = 0, . . . , n − d.

We define the rotation operation on a string S as rot(S) = S[1 . . |S|)S[0]. The string
obtained from S by r applications of the rotation operation is denoted rotr(S), while
rot0(S) := S.

Most LZ-Compressible Rotation
Input: A string S of length n.
Output: An integer r ∈ [0 . . n) such that LZ(rotr(S)) has the least number of phrases,
that is, arg minr∈[0. .n) |LZ(rotr(S))|.

This problem is a special case of Sliding Window LZ Compression Size. It suffices
to iterate over all length-n factors of string S2 using a sliding window.

In Fact 25 in Section 6, we show that some rotation of S can have Θ(
√

|S|) fewer phrases
than S, or 2

3 z phrases, where z = |LZ(S)|. This implies that storing the best rotation value
and compressing the rotation can yield better compression.

As a baseline, the Sliding Window LZ Compression Size can be solved using
Generalized Substring Compression queries [35] as follows.

▶ Proposition 2. The Sliding Window LZ Compression Size problem can be solved in
O(n

√
log n + Z log log n) time and O(n log log n) space, where Z =

∑n−d
i=0 |LZ(S[i . . i + d))|

is the total number of phrases in the LZ77 factorizations of all length-d windows of S.

Proof. Let us recall that in the Generalized Substring Compression problem, we are to
preprocess a string S so that, given any factor S[ℓ . . r] of S, we can compute the phrases in its
LZ77 parsing efficiently. Keller et al. [35] presented an efficient data structure for answering
Generalized Substring Compression queries based on range successor queries. If the
later range successor data structure of Gao et al. [26] is used, we obtain an O(n log log n)-size
data structure that can be constructed in O(n

√
log n) time and can answer a Generalized

Substring Compression query for S[ℓ . . r] in O(|LZ(S[ℓ . . r])| log log n) time. ◀

Other trade-offs in the proposition are also possible; see [50, 26, 19]. For example, one
can obtain linear space with O(n

√
log n + Z logϵ n) time, for any ϵ > 0 [50, 26]. Still, the

time complexity of the algorithm of Proposition 2 is Õ(n + Z), which can be as bad as Õ(n2)
for poorly compressible texts. As a corollary of Theorem 1, we obtain the following result.

▶ Corollary 3. The Sliding Window LZ Compression Size and Most LZ-Compressible
Rotation problems can be solved in O(n

√
n log2 n) time using O(n) space.

Technical Overview
At the heart of our solution, lies the maintenance of a dynamic tree that encodes the longest-
previous-factor array information; the LZ77 factorization corresponds to a single path in
this tree and this path’s length can be efficiently retrieved by maintaining said tree using
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link-cut trees [61]. A periodicity-based argument allows us to show that deleting the first
letter of S results in O(

√
n) updates to our dynamic tree. Appending a letter to S might

unfortunately lead to Ω(n) updates. However, all updated edges of the tree have the same
target and consecutive sources. Moreover, the structure of those updates allows us to handle
them efficiently in batches. Namely, we show that there are O(

√
n) consecutive intervals of

positions [a . . b] such that, for all elements i of each interval, the (rightmost) position of the
longest previous factor starting at position i changes from some position j to some position
j′ and, for some integers x and y, for all i ∈ [a . . b], i − j′ = x and i − j = y. All in all, given
the endpoints of the intervals and the changes in the (rightmost) positions of the longest
previous factors, we update the tree structure in Õ(

√
n) time in total by storing all edges

with the same target using a joinable balanced binary search tree [64]. In order to exploit the
above structural insights, we show that it suffices to maintain a data structure that allows us
to efficiently retrieve the value LPFS [i] for the elements of an Õ(

√
n)-size subset of [1 . . |S|).

We obtain this data structure by exploiting ideas that stem from internal string queries,
such as the Interval LCP problem [35]. For a static string S, it suffices to combine a
suffix tree and a 2D range successor data structure over an n × n grid, where, for each suffix
S[j . . n), we have a point (RANK[j], j), where RANK[j] is the lexicographic rank of said suffix
among the suffixes of S. For computing the positions of longest previous factors, we enhance
this data structure with further range successor data structures. We then maintain such
a data structure that efficiently answers the desired queries when the involved factors are
contained in S[0 . . |S| − O(

√
n)]. We overcome the technical challenge posed by the need

to handle the remaining queries by analysing the periodic structure implied by “hard” such
queries and batching them so that we only spend an additive O(

√
n) factor overhead in the

time complexity.

Structure of the paper. The auxiliary data structure for LPF computation in a semi-
dynamic setting is described in Section 3. An abstract structure of the LPF-tree is defined
in Section 4, where the periodicity-based arguments are also given. Implementations of
operations on the tree are provided in Section 5. Finally, Section 6 considers the additive
sensitivity of the size of the LZ77 parsing under a single rotation operation.

2 Preliminaries

Let S = S[0]S[1] · · · S[n−1] be a string (or text) of length n = |S| over an integer alphabet Σ.
The elements of Σ are called letters. For two positions i and j of S, we denote by S[i . . j]
a string called a factor of S that starts at position i and ends at position j (the factor is
empty, denoted by ε, if i > j). A factor of S can be represented in O(1) space by specifying
the indices i and j of an occurrence of it. We define S[i . . j + 1) = S[i . . j] = S(i − 1 . . j]. A
string U is a proper prefix (resp. suffix) of S if there exists a non-empty string V such that
S = UV (resp. S = V U).

If a string B is both a proper prefix and a proper suffix of a length-n string S, then B

is called a border of S. A positive integer p is called a period of S if S[i] = S[i + p] for all
i ∈ [0 . . n − p). String S has a period p if and only if it has a border of length n − p. We
refer to the smallest period of S as the period of S, and denote it by per(S). String S is
called periodic if per(S) ≤ n/2.

▶ Lemma 4 (Periodicity Lemma [22], weak version). If p and q are periods of a string S and
satisfy p + q ≤ |S|, then gcd(p, q) is also a period of S.
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▶ Lemma 5 ([11, 56, 42]). The set of occurrences of a string X in a string Y can be expressed
as a union of O(|Y |/|X|) arithmetic progressions such that the difference of each progression
equals per(X). The intervals spanned by the progressions are disjoint.

For a string S of length n, we define the following arrays indexed from 0 to n − 1:

LPFS [i] = max({ℓ ≥ 0 : S[j . . j + ℓ) = S[i . . i + ℓ), j < i} ∪ {0})
LPFposS [i] = max({j < i : S[j . . j + LPFS [i]) = S[i . . i + LPFS [i]) ̸= ε} ∪ {−1}).

See Figure 3 in Page 11 for an example.

▶ Theorem 6 (Corollary of [8]). For a string S of length n, arrays LPFS and LPFposS can
be constructed in O(n

√
log n) time.

Proof. Array LPFS can be constructed in O(n) time [17], while array LPFposS can be
constructed in O(n(1 + log σ/

√
log n)) = O(n

√
log n) time [8]. ◀

Predecessor data structures. For a static set, a combination of x-fast tries [68] and
deterministic dictionaries [59] yields the following efficient deterministic data structure.

▶ Fact 7 ([23, Proposition 2]). A sorted static set Y ⊆ [1 . . U ] can be preprocessed in O(|Y |)
time and space so that predecessor queries can be performed in O(log log |U |) time.

A dynamic predecessor data structure over m integer keys can be stored using an
exponential search tree [5] in O(m) space, supporting insertions, deletions, and predecessor
queries in O(log2 log m/ log log log m) worst-case time.

3 Answering LPF Queries in a Batch in a Semi-dynamic String

In the semi-dynamic model, we will extensively use a solution to the following problem to
compute previous occurrences of factors of the maintained string S.

Semi-dynamic Batch LPF
Maintained object: A string S of length at most n.
Update: Perform one of the two following operations:

delete: S → S[1 . . |S| − 1];
append(a) for a ∈ Σ: S → Sa.

Query: Given a set Y ⊆ [0 . . |S|), compute LPFS [y] and LPFposS [y] for each y ∈ Y .

This section is devoted to an O(n)-space solution for this problem with O(
√

n log n)
update time and O(

√
n log n + |Y | logϵ n) query time, for any ϵ > 0. We start with a

discussion of static algorithms for computing LPF and LPFpos.
A solution to the following static problem can be used to answer queries for LPF in a

sliding window if the whole string is known in advance.

Interval LCP
Input: A string T of length n.
Query: Given a factor F of T and an interval [i . . j], find the longest prefix F ′ of
F that occurs in T at some position in [i . . j] and a position k ∈ [i . . j] such that
T [k . . k + |F ′|) = F ′.
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▶ Theorem 8 (Keller et al. [35], Belazzougui et al. [8]). The Interval LCP problem admits
a solution with O(n) space, O(n

√
log n) construction time, and O(logϵ n) query time, for

any ϵ > 0.

To answer queries for LPFpos in a sliding window we would use an auxiliary problem
called Interval LCP Position in which, in addition to the output of an Interval LCP
query, we compute the rightmost position within the interval [i . . j] where the longest prefix
of F occurs. Using range successor queries, one can obtain a solution for the Interval LCP
Position problem with the complexities of Theorem 8.

Let us formally define range successor queries. We are given a set P of n points in an
n × n grid. Given a range [x . . x′] × [y . . ∞) (or [x . . x′] × (−∞ . . y]), we are to report a point
of P that is included in the range and has a minimal y-coordinate (maximal y-coordinate,
respectively). Clearly, the x and y coordinates can be interchanged in this definition.

▶ Lemma 9. The Interval LCP Position problem admits a solution with O(n) space,
O(n

√
log n) construction time, and O(logϵ n) query time, for any ϵ > 0.

Proof. We compute in O(n) time the suffix array SA, the rank array RANK and the LCP
array [34]. Let us recall the definitions of these arrays. The suffix array SA[0 . . n) is a
permutation of [0 . . n) such that:

T [SA[0] . . n) < T [SA[1] . . n) < · · · < T [SA[n − 1] . . n);

then SA[RANK[i]] = i for all i ∈ [0 . . n). The LCP array is defined as follows:

LCP[i] = max{ℓ ≥ 0 : T [SA[i] . . SA[i]+ℓ) = T [SA[i+1] . . SA[i+1]+ℓ)} for i ∈ [0 . . n−1).

Next, we perform O(n
√

log n)-time preprocessing (see [8]) to construct an O(n)-sized data
structure for O(logϵ n)-time range successor queries (see [50]) on two sets of points on n × n

grids: set P1 = {(i, LCP[i]) : i ∈ [0 . . n − 1)} and set P2 = {(i, RANK[i]) : i ∈ [0 . . n)}; the
set P2 was also used in [35]. Finally, we perform the preprocessing of Theorem 8.

Upon an Interval LCP Position query for a factor F and interval [i . . j], we first use
an Interval LCP query to compute the longest prefix F ′ of F that occurs at some position
in [i . . j] and a position k ∈ [i . . j] such that T [k . . k + |F ′|) = F ′. We would like to compute
the maximum index k′ ∈ [k . . j] such that T [k′ . . k′ + |F ′|) = F ′.

First, we use range successor queries on the set of points P1 to locate the range [ℓ . . r] in
the suffix array that contains all the suffixes that have a longest common prefix with suffix
T [k . . n] of length at least |F ′|. Namely, to compute r, we find the smallest x-coordinate of a
point from P1 in the range [RANK[k] . . ∞) × [0 . . |F ′|). If there is no such point, r = n − 1,
and otherwise r is the computed x-coordinate. The computation of ℓ is symmetric.

Now, among the suffixes that correspond to SA[ℓ . . r], we would like to find the suffix
occurring at a maximum position that is at most j. We ask a range successor query on
the set of points P2 to find the maximum y-coordinate of a point in [ℓ . . r] × (−∞ . . j]; the
returned y-coordinate is the sought position k′.

The Interval LCP query and each range successor query take O(logϵ n) time, for any
ϵ > 0 [8, 35]. ◀

The data structure of Lemma 9 essentially consists of the suffix tree of T (which is used in
the data structure underlying Theorem 8) and range successor data structures. The corollary
below follows from the work of Keller et al. [35] and Lemma 9.
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▶ Corollary 10. A string T of length n can be preprocessed in O(n
√

log n) time so that, given
a string F and an interval [i . . j], computing the longest prefix of F that occurs in T at some
position in [i . . j], as well as the rightmost position in [i . . j] at which it occurs, reduces in
O(logϵ n) time, for any ϵ > 0, to computing the locus of L in the suffix tree of T , where L is
the longest prefix of F that occurs in T .

We are now ready to proceed to semi-dynamic computation of LPF and LPFpos.

▶ Lemma 11. The Semi-dynamic Batch LPF problem admits an O(n)-space solution
with O(

√
n log n) update time and O(

√
n log n + |Y | logϵ n) query time, for any ϵ > 0.

Proof. We will be rebuilding some data structures over the string S after every ⌊
√

n⌋ updates.
We will keep the update-time bound worst-case by using the so-called time slicing technique,
that is, splitting the work required for the construction of the data structure into roughly equal
chunks and distributing them among the subsequent ⌊

√
n⌋ updates; if the data structures

can be constructed in Õ(n) time, then we will spend Õ(
√

n) time on each single update. Let
S1 be the current string S, S2 be S1 after ⌊

√
n⌋ updates, and S3 be S2 after ⌊

√
n⌋ updates.

The data structure for S1 will be ready by the time S2 is processed and will be used until
S3 is reached, at which point the data structure that is constructed for S2 will be ready.
This way, when processing the current string S, we can assume that we have access to data
structures for a string Z = V S[0 . . |S| − x), where x ≤ 2

√
n and V is a string composed of

all deleted letters since the construction of this data structure was issued.
The data structures that are stored for Z include the static data structure of Corollary 10

for the Interval LCP Position problem that takes O(n) space and O(n
√

log n) time to
construct; the suffix tree of Z augmented in O(n) time with the weighted-ancestor-queries
data structure of [7], which allows one to retrieve in O(1) time the locus of any given factor
of Z in the suffix tree of Z, and other O(n)-time constructible data structures based on the
suffix tree of Z to be specified later.

Let us now discuss how to compute LPFS [y] and LPFposS [y] for all y ∈ Y . We compute
at most three candidate values for LPFS [y] for each y ∈ Y , together with candidate positions
LPFposS [y], and we take the maximum LPF value and the corresponding position in the end.

Case I. LPFposS [y] ≥ d := |S| − 10⌈
√

n⌉, so y > d. We compute the LPFS′ and LPFposS′

arrays for S′ = S[d . . |S|) in O(
√

n log n) time (Theorem 6). For each y ∈ Y with y > d,
we have a candidate LPFS′ [y − d] for LPFS [y] along with candidate LPFposS′ [y − d] for
LPFposS [y].

Case II. LPFposS [y] + LPFS [y] < |S| − x. (Let us note that, however, y + LPFS [y] can be as
large as |S| in this case.) Our main aim is to compute, for each y ∈ Y , the locus of the longest
prefix Ly of S[y . . |S|) that occurs in S[0 . . |S| − x). Let the elements of Y in increasing order
be y0, y1, . . .; we process them in this order. Starting from the locus of S[y0 . . |S| − x) which
we compute in O(1) time using a weighted ancestor query, we go down in the suffix tree letter
by letter with the aim of computing Ly0 . Note that we follow an edge as long as the node
we reach corresponds to a factor of S[0 . . |S| − x) (and not just of Z); this can be checked
in constant time after a linear-time bottom-up preprocessing of the suffix tree. When we
have found the locus of Ly0 we do the following. From the suffix tree, we obtain an index i

such that Ly0 = Z[i . . i + |Ly0 |). In constant time, using a weighted ancestor query, we go to
the locus of Z[i + (y1 − y0) . . i + |Ly0 |) and start the search for Ly1 from there; and so on.
We process |Y | suffixes and only have x = O(

√
n) letters to extend them by. The total time

required for the described process is thus O(|Y | +
√

n log log n) assuming that the children
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of a node in the suffix tree of Z are stored using the predecessor data structure of Fact 7.
We then use Corollary 10 to compute a pair of candidates for LPFS [y] and LPFposS [y] for
each y ∈ Y , spending O(logϵ n) time for each y.

Case III. LPFposS [y] < |S| − 10
√

n and LPFposS [y] + LPFS [y] ≥ |S| − x. We have

y ≤ |S| − LPFS [y] ≤ LPFposS [y] + x ≤ LPFposS [y] + 2
√

n, and

LPFS [y] ≥ |S| − x − LPFposS [y] > 10
√

n − x ≥ 8
√

n.

Hence, factors S[y . . y + LPFS [y]) and S[LPFposS [y] . . LPFposS [y] + LPFS [y]) start at
most 2

√
n positions apart and overlap by more than 6

√
n positions. This means that

S[LPFposS [y] . . y + LPFS [y]) is periodic with period at most 2
√

n. In particular, due to
the periodicity lemma (Lemma 4), the period of this factor must be equal to the period of
S[|S| − ⌊8

√
n⌋ . . |S| − x).

We can compute the period p of S[|S| − ⌊8
√

n⌋ . . |S| − x) in O(
√

n) time using the
Morris-Pratt algorithm [41]. If p ≤ 2

√
n, we compute the maximal factor S[ℓ . . r] of S that

contains S[|S| − ⌊8
√

n⌋ . . |S| − x) and has the same period; the periodicity can be extended
to the left in constant time after a linear-time preprocessing of Z (using longest common
extension queries [9]) and to the right in O(

√
n) time using letter comparisons. Then, for

each y ∈ [ℓ + p . . r], we have a candidate r − y + 1 for LPFS [y] along with candidate y − p for
LPFposS [y]. ◀

▶ Remark 12. For the purposes of Sliding Window LZ Compression Size problem for
a string S, instead of Lemma 11, one could simply build the data structure encapsulated
in Lemma 9 for S and use it to compute all required values LPFS [y] and LPFposS [y] in the
implied instance of the Semi-dynamic Batch LPF problem.

4 Properties of Longest Previous Factors and LPF-Tree

We next show two properties of the LPF and LPFpos arrays. The first of them bounds the
number of zeroes in the LPFposU array.

To prove the lemma, we show that the values LPFU [i] for increasing positions i such that
LPFposU [i] = 0 are strictly increasing. This, together with the fact that no three factors of
the form U [i . . i + LPFU [i]) for these positions overlap, shows that there are O(

√
n) such

positions. The aforementioned fact follows by periodicity.

▶ Lemma 13. For a string U of length n, the number of positions i ∈ [0 . . n) such that
LPFposU [i] = 0 is O(

√
n).

Proof. Let I = {i ∈ [1 . . n) : LPFposU [i] = 0}. First, let us note that, for any i, i′ ∈ I

with i < i′, we have LPFU [i] < LPFU [i′]. Indeed, if we had LPFU [i] ≥ LPFU [i′], then, for
ℓ = LPFU [i′], we would have U [i . . i + ℓ) = U [0 . . ℓ) = U [i′ . . i′ + ℓ), which would imply
LPFposU [i′] ≥ i > 0, yielding a contradiction.

By the above, to prove the statement of the lemma, it suffices to show that if i ∈ I, then
there is at most one element i′ ∈ I ∩ (i . . i + ⌊ 1

2 LPFU [i]⌋].
Assume that such elements i and i′ exist. The setting is illustrated in Figure 1. We will

show that then i′ is determined uniquely for i. For ℓ = LPFU [i], we have that U [i . . i + ℓ) =
U [i′ . . i′ + ℓ) is a border of U [i . . i′ + ℓ). Hence, U [i . . i′ + ℓ) has a period p := i′ − i ≤ ℓ/2
and is thus periodic. Let q be the smallest period of U [i . . i′ + ℓ). By the periodicity lemma
(Lemma 4), q divides p.
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Figure 1 An illustration of the proof of Lemma 13. For i = 11 and i′ = 13, we have LPFposU [i] =
LPFposU [i′] = 0, ℓ = LPFU [i] = 8 and ℓ′ = LPFU [i′] = 10. In this example, we have q = 2.

By definition, U [i . . i + ℓ) = U [0 . . ℓ), so U [0 . . ℓ) has period q. Moreover, U [i + ℓ] =
U [i + ℓ − q] = U [ℓ − q], where the first equality follows from the fact that position i + ℓ is
within the factor U [i . . i′ + ℓ). Therefore, U [ℓ] ̸= U [ℓ − q], because otherwise we would have
U [i . . i + ℓ] = U [0 . . ℓ] and LPFU [i] > ℓ. This means that U [0 . . ℓ] does not have period q, i.e.,
U [i′ . . i′ + ℓ] does not have period q (as LPFU [i′] > ℓ).

Let r be the smallest position such that r ≥ i + q and U [i . . r] does not have period q.
We must have i′ = r − ℓ. All in all, i′ is uniquely determined by i in U . ◀

▶ Remark 14. The bound from Lemma 13 is tight. Let a1, . . . , am be distinct letters and
consider strings Si = a1a2 · · · ai. Then the string U = SmS1S2 · · · Sm has length Θ(m2) and
for each starting position j > 0 of some Si, for i = 1, . . . , m, we have LPFposU [j] = 0.

Let us define LPFpos′
S [i] = i − LPFposS [i].

The next lemma characterizes the positions i such that i + LPFU [i] = |U |. There can
be many such positions, even Θ(n), say, for a unary string U = an. However, there are
only O(

√
n) different values LPFpos′

U [i] for such positions. Here, we need to consider the
LPFpos′

U array and not the LPFposU array, as the latter can have Θ(n) different values for
the positions of the considered type; the unary string U = an, for which LPFposU [i] = i − 1
for each i ∈ [0 . . n), is an example.

In the proof it suffices to consider positions i ≤ n −
√

n such that i + LPFU [i] = |U |.
Each such position implies an occurrence of a length-⌊

√
n⌋ suffix V of U in V . In turn, the

occurrence of V determines the value of LPFpos′
U [i]. We consider all possible occurrences of

V in U as O(
√

n) arithmetic progressions (cf. Lemma 5) and use periodicity to show that
O(1) occurrences in each progression can be implied in the aforementioned sense.

▶ Lemma 15. For a string U of length n, among all positions i ∈ [0 . . n) for which
i + LPFU [i] = n, there are O(

√
n) different values LPFpos′

U [i].

Proof. We denote s = n − ⌊
√

n⌋. Obviously, there are at most ⌊
√

n⌋ − 1 different values
LPFpos′

U [i] for i ∈ (s . . n).
Let V = U [s . . n). Note that if LPFposU [i] = j for some i ∈ [0 . . s] with i + LPFU [i] = n,

then there is an occurrence of V in U at position j + (s − i). In this case, we say that the
occurrence of V in U at position j + (s − i) is implied by position i or that position i implies
the occurrence.

By Lemma 5, the set of occurrences of V in U consists of O(
√

n) maximal arithmetic
progressions with common difference per(V ). Let J be one of these arithmetic progressions.
We will show that there are at most two elements p ∈ J such that the occurrence of V at
position p is implied by any position i ∈ [0 . . s]. This will conclude the proof, as for all
positions i that imply an occurrence of V at position p, the value LPFpos′

U [i] = s − p is the
same. Let U [n − d . . n) be the longest suffix of U with period per(V ). Figure 2 contains an
illustration of possible cases considered below.

Let J0 be the arithmetic progression containing position s. Assume first that position
i ∈ [0 . . s] implies an occurrence of V at a position p in J = J0. We must have |J0| > 1.
If i ≥ n − d, then U [i . . n) has period per(V ). We have U [j . . j + LPFU [i]) = U [i . . n), so
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Figure 2 An illustration of the proof of Lemma 15. Let V = abab. We have n − d = 16 and
{i ∈ [0 . . 23] : i + LPFU [i] = 24} = [14 . . 23]. Let J = {2, 4, 6, 8, 10} be an arithmetic progression of
occurrences of V in U . Positions 14 and 15 imply the occurrence of V at position 6; the corresponding
equality U [0 . . 9] = U [14 . . 23] is illustrated using the blue top rectangles. Positions 16 and 17 imply
the occurrence of V at position 10; the corresponding equality U [6 . . 13] = U [16 . . 23] is illustrated
using the red bottom rectangles. For each position i ∈ [18 . . 23], we have LPFpos′

U [i] = per(V ) = 2.

j ≥ n − d, as otherwise U [j . . j + LPFU [i]) would not have period per(V ). One cannot
have j ∈ (i − per(V ) . . i), as this would imply an additional occurrence of V that is not in
the progression. We always select the rightmost position, so p = s − per(V ) is determined
uniquely (and j = i−per(V )). Now we need to note that the case that i < n−d is impossible.
Indeed, in this case the longest suffix of U [i . . n) that has period per(V ) has length d, the
longest suffix of U [j . . j + LPFU [i]) that has period per(V ) has length d − (i − j), i.e., smaller
than d, but U [j . . j + LPFU [i]) = U [i . . n).

Henceforth we assume that J ̸= J0. For r = max J + |V |, let U [r − d′ . . r) be the
longest suffix of U [0 . . r) with period per(V ). Assume that position i ∈ [0 . . s] implies an
occurrence of V at a position in J . If n − i ≤ min(d, d′), we have i ∈ [n − d . . n) and
U [i . . n) = U [max J + |V | − (n − i) . . max J + |V |). Hence, since LPFposU [i] stores the
rightmost value in case of ties, the implied occurrence of V is the one starting at position
max J . Otherwise, the factor equality implied by i+LPFU [i] = n means that d ≤ d′. Thus we
have i < n − d and U [i . . n) does not have period per(V ). Now, there is exactly one position
p ∈ J such that U [p+ |V |−d . . p+ |V |) has period per(V ), but U [p+ |V |−d−1 . . p+ |V |) does
not have this period. Namely, p = max J − (d′ − d) and we must have d′ ≡ d (mod per(V )).
The occurrence of V at position p is the one implied by position i in this case. This concludes
the proof that at most two occurrences of V in J can be implied by any position i ∈ [0 . . s],
and hence the whole proof. ◀

▶ Remark 16. The bound from Lemma 15 is tight. Let a1, . . . , am be distinct letters and
consider strings S′

i = aiai−1 · · · a1. Then the string U = S′
mS′

m−1 · · · S′
1S′

m has length Θ(m2),
j +LPFU [j] = |U | for all j ∈ [|U |−m . . |U |) and all values LPFpos′

U [j], for j ∈ [|U |−m . . |U |),
are different.

LPF-tree
Let us define LPF′

S [i] = max(1, LPFS [i]). We define an LPF-tree for a string S as a tree with
nodes [0 . . |S|], among which |S| is the root, and edges {(i, i + LPF′

S [i]) : i = 0, . . . , |S| − 1}.
The single edge outgoing from i has label equal to LPFpos′

S [i]; see Figure 3.
From Theorem 6 we obtain the following.

▶ Corollary 17. The LPF-tree of a string S of length n can be constructed in O(n
√

log n)
time.

The LZ77 parsing of a string S can be computed straightforwardly from the LPFS and
LPFposS arrays in a greedy manner; cf. [16, 17]. We make the following simple observation.

▶ Observation 18. Let π be the 0-to-|S| path in the LPF-tree of S. Then, |LZ(S)| equals the
number |π| of edges of π. Additionally, for k ≤ |π|, if the k-th edge on π is (i, i + LPF′

S [i]),
then the k-th phrase of LZ(S) is equal to S[i . . i + LPF′

S [i]).
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Figure 3 Example of an LPF-tree for the string abbbababb.

We need to extend the definition of an LPF-tree to the semi-dynamic setting. Let U be
a semi-dynamic string that was obtained from an initial string by using a = deletions(U)
first-letter deletions and some number of append operations. The nodes and edges of a
semi-dynamic LPF-tree for U are, respectively, [a . . a + |U |], among which a + |U | is the root,
and {(i, i + LPF′

U [i − a]) : i ∈ [a . . a + |U |)}. The single edge outgoing from i has label equal
to LPFpos′

U [i − a].

▶ Lemma 19. Let us consider any string U and the semi-dynamic LPF-tree T of U . The
sources of all edges of T that enter a given node form a set of consecutive integers.

Proof. Let a = deletions(U). It suffices to show that for any i ∈ [0 . . |U | − 2], we have
i + LPF′

U [i] ≤ i + 1 + LPF′
U [i + 1] (equivalently, i + a + LPF′

U [i] ≤ i + 1 + a + LPF′
U [i + 1]).

The conclusion is obvious if LPF′
U [i] = 1. Hence, we assume that LPF′

U [i] > 1, so LPF′
U [i] =

LPFU [i]. Let ℓ = LPFU [i] and p = LPFposU [i] < i. We have U [p . . p + ℓ) = U [i . . i + ℓ) and
hence U [p + 1 . . p + ℓ) = U [i + 1 . . i + ℓ). Consequently, i + 1 + LPF′

U [i + 1] ≥ i + ℓ, as
required. ◀

5 Updating a Semi-dynamic LPF-tree

We start by introducing an abstract data structure that will be used to store labels of edges
of an LPF-tree. The data structure stores key-value pairs such that, for each pair, the value
is smaller than the key. The set of keys at any time is a set of consecutive integers and is
denoted by I. The size of I is denoted by n and the set of values is a subset of [0 . . n). The
following operations are supported:
(a) insertion of a pair with key max I + 1, where I is the current interval of keys, or deletion

of a pair with key min I,
(b) setting the value of all keys in a specified interval [k1 . . k2] to a given integer v, knowing

that their values were all equal to an integer v′,
(c) reporting all key-value pairs for which the difference between the key and the value is

minimal.
Let us call this data structure D. Let πn = (log log n)2/ log log log n.

▶ Lemma 20. Data structure D can be implemented in O(n) space so that each operation
(a), (b) is performed in O(πn) time and each pair in operation (c) is reported in O(log log n)
time.

Proof. For each value, we store the set of keys with this value as a collection of maximal
intervals in a dynamic predecessor data structure. The predecessor data structures are stored
in dynamic predecessor data structure indexed by values 0 through n − 1.
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Moreover, for each value, the minimum key with this value is determined and such
key-value pairs are stored in a min-type priority queue ordered by the difference between
the key and the value. Whenever an operation is performed on one of the predecessor data
structures, the priority queue is updated accordingly.

Insertion in operation (a) requires to insert a singleton interval {max I + 1} to the
predecessor data structure for its value, possibly merging the interval with the previous one.
Deletion in operation (a) requires to remove the first element of the first interval in the
predecessor data structure for this value.

In operation (b) we identify the (at most one) interval I in the predecessor data structure
for value v′ that contains [k1 . . k2] as a sub-interval. Then I is replaced by the at most two
intervals I \ [k1 . . k2], and the interval [k1 . . k2] is inserted into the predecessor data structure
for v, possibly being merged with any adjacent intervals.

In operation (c), elements are removed from the priority queue one by one and reported
until the next element has a different priority. Afterwards they are reinserted to the priority
queue.

We use the dynamic predecessor data structure [5] that requires O(m) space on m

elements and supports queries in O(πn) time. The priority queue requires O(log log n) time
per operation [65]. ◀

Let U be a semi-dynamic string with deletions(U) = a. The labels of edges of a semi-
dynamic LPF-tree for U will be stored as a set of key-value pairs with keys i ∈ [a . . a + |U |)
and values LPFpos′

U [i − a] using data structure D. Only edges for which LPFposU [i − a] ̸= −1
are stored in D.

In the two lemmas below, we use the data structure D together with the Semi-dynamic
Batch LPF data structure (Lemma 11) to efficiently compute the updates that need to
be performed on the semi-dynamic LPF-tree upon each of the single-letter updates on the
string considered in the semi-dynamic setting. The actual operations on the LPF-tree will
be performed in Section 5.1 when we define the data structure representing the LPF-tree.

▶ Lemma 21. Let U be a semi-dynamic string of length n and U ′ be U after the deletion of
its first letter. The semi-dynamic LPF-tree for U ′ can be obtained from the semi-dynamic
LPF-tree for U by updating O(

√
n) edges.

The set of edges to be updated, as well as their new labels, can be computed in O(
√

n log n)
time. Data structure D can be updated in O(

√
nπn) time.

Proof. Let a = deletions(U). First, the edge from a needs to be removed. No operation on
D is required, as LPFposU [0] = −1.

Then, let us note that if LPFposU [i − a] > 0 for i ∈ (a . . a + n), then LPF′
U [i − a] =

LPF′
U ′ [i−(a+1)] and LPFposU [i−a]+a = LPFposU ′ [i−(a+1)]+(a+1), so LPFpos′

U [i−a] =
LPFpos′

U ′ [i − (a + 1)]. Hence, only edges (i, i + LPF′
U [i − a]) with LPFposU [i − a] = 0, i.e.,

LPFpos′
U [i − a] = i − a, remain to be updated. The bound on the number of such edges

follows by Lemma 13.
The edges to be updated can be retrieved in O(

√
n log log n) time using data structure D.

Indeed, for such an edge, the difference of the key and the value of the corresponding pair
in D satisfies i−LPFpos′

U [i−a] = a. Moreover, if LPFposU [i−a] > 0 for i ∈ (a . . a+n), then
i − LPFpos′

U [i − a] = a + LPFposU [i − a] > a. Therefore, the sought edges can be obtained
via operation (c) on data structure D.

For each edge (i, i + LPF′
U [i − a]) with label LPFpos′

U [i − a] = i − a that we remove, we
have to insert edge (i, i + LPF′

U ′ [i − (a + 1)]) with label LPFpos′
U ′ [i − (a + 1)]. (The edge

is inserted to D as well only if LPFposU ′ [i − (a + 1)] ̸= −1.) We compute the targets and
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labels of these edges in O(
√

n log n) time using Lemma 11. According to Lemma 20, data
structure D can be updated in O(

√
nπn) total time via O(

√
n) calls to operation (b), each

with a singleton interval. ◀

▶ Lemma 22. Let U be a semi-dynamic string of length n and U ′ = Uc, for some letter c.
The semi-dynamic LPF-tree for U ′ can be obtained from the semi-dynamic LPF-tree for U by
adding a new root and an edge from the old root to the new root, as well as redirecting some
number of edges with consecutive sources that lead to the old root to point to the new root.

The set of edges to be updated, represented as O(
√

n) groups of edges with consecutive
sources, equal old label and equal new label, can be computed in O(

√
n log1.5 n) time. Data

structure D can be updated in O(
√

nπn) time.

Proof. Let a = deletions(U). We first create a new node a + n + 1, designate it to be the
root, and insert an edge (a + n, a + n + 1) with label decided by an invocation of Lemma 11
in O(

√
n log n) time. (The edge is inserted to D if only LPFposU ′ [n] ̸= −1.) Then, since

i + LPFU [i − a] ≤ i + LPFU ′ [i − a] ≤ i + LPFU [i − a] + 1,

for all i, all we need to do is compute the nodes i such that i + LPFU [i − a] = a + n and
i + LPFU ′ [i − a] = a + n + 1. Due to Lemma 19, these nodes form a set R of consecutive
integers and, in particular, R = (r . . a + n) for some r ∈ [a . . a + n).

We can compute r in O(
√

n log1.5 n) time using binary search and Lemma 11. It remains
to partition R into sub-intervals with the same LPFpos′

U ′ and LPFpos′
U values. Note that

the LPFpos′
U ′ and LPFpos′

U values in R are non-decreasing since an occurrence of a length-ℓ
suffix of U or U ′ at a position p, implies an occurrence of any suffix of length ℓ − µ for a
positive integer µ at position p + µ.

By Lemma 15, there are O(
√

n) possible values of LPFpos′
U ′ [i], for i ∈ R. We next show

how to compute the partition of R by values LPFpos′
U ′ [i] in Õ(

√
n) time using Lemma 11.

We maintain a set of disjoint active intervals whose union is the set of positions for which
we have not yet computed the value of LPFpos′

U ′ . Initially, our set of active intervals
is {R}. Then, until there are no active intervals left, for each active interval J , in the
order of decreasing size, we do the following. We compute LPFpos′

U ′ for min J , max J ,
and the midpoint j = ⌊(min J + max J)/2⌋ of J . If the interval is of size at most three,
we partition it to three singletons which are marked as inactive and labeled with the
corresponding LPFpos′

U ′ values. Else, for the most distant x, y ∈ {min J, j, max J} such that
LPFpos′

U ′ [x − a] = LPFpos′
U ′ [y − a], if they exist, we designate [x . . y] as inactive and label it

with LPFpos′
U ′ [x − a]. The remaining positions yield at most two active intervals, by splitting

J at its midpoint j. We can think of this algorithm proceeding in levels, where at level λ we
process those active intervals that have been obtained via λ splits. At each level, we sweep
the intervals in a left-to-right manner, repeatedly merging consecutive intervals with the
same label, so that the resulting interval inherits that label. Since in each level other than
the first one each active interval contains an endpoint of the sought partition of R, we have
at most O(

√
n) active intervals in each level. As the sizes of active intervals decrease by a

constant factor in each level, we have O(log n) levels. We batch the O(
√

n) queries for each
level and answer them using Lemma 11. The total time required for partitioning R is thus
O(

√
n log1.5 n).

Next, we partition R by values LPFpos′
U [i] using the same algorithm in Õ(

√
n) time.

Finally, we compute an intersection of the two partitions, as desired, in O(
√

n) time.
To update the data structure D using Lemma 20, we insert the edge from the old root to

the new root using operation (a) and then perform the operation (b) on each of the O(
√

n)
groups of edges that are being redirected. In total, the data structure is updated in O(

√
nπn)

time, as desired. ◀
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5.1 Implementation of a Semi-Dynamic LPF-tree using Link-cut Trees
and Joinable Balanced BSTs

A link-cut tree is a classic data structure [61] that represents a forest of rooted trees
containing n nodes in total. Each node stores an integer weight. The data structure has size
O(n) and supports the following operations in amortized O(log n) time:

add a tree consisting of a single node to the forest;
remove a tree consisting of a single node from the forest;
attach a root node to another node as its child (link operation);
given a node in one of the trees, disconnect it (and its subtree) from the tree of which it
is part to form a separate tree (cut operation);
add a given value α to the weights of all the descendants of a node;
return the weight of a given node.

For implementations of operations including weights, see for example [40, Appendix: Splay
trees and link-cut trees].

It is well-known (cf. [64, pp. 45-56]) that a collection of red-black trees (RB trees)
containing n integer keys in total can support the following operations, each in O(log n) time:

insert an element to an RB tree;
delete a given element from an RB tree;
join two RB trees into one RB tree, provided that all keys in one of the trees are smaller
than all keys in the other (the arguments of the join operation are not kept);
split an RB tree into two RB trees, one containing all keys smaller than a specified
parameter k and the other containing the remaining keys (again, the initial RB tree is
not kept).

We note that every operation on an RB tree (adding a new leaf, removing a leaf, rotation)
can be simulated using O(1) link and cut operations. We obtain the following observation.

▶ Observation 23. A collection of RB trees on n nodes can be simulated using link-cut trees.
The amortized cost of every operation on an RB tree is then O(log2 n).

The semi-dynamic LPF-tree is represented using link-cut trees. A straightforward
implementation would be sufficient to cover first-letter deletions (Lemma 21). However, when
a new letter is appended to the string, the total number of single-edge updates could be Θ(n).
To guarantee efficiency, edges need to be redirected in batches (Lemma 22). To this end, we
use joinable balanced BSTs, such as RB trees, to represent all edges leading to a single node.

More formally, the whole LPF-tree is stored in one link-cut tree. There is a 1-to-1
correspondence between nodes of the LPF-tree and nodes of the link-cut tree. Assume node v

of the LPF-tree is not a leaf and that the sources of all edges with target v are u1, u2, . . . , up,
with u1 < u2 < · · · < up. Then the link-cut tree arranges the nodes u1, u2, . . . , up into an
RB-tree and the root of this tree is joined with an edge with v.

In Lemma 21, we need to make O(
√

n) single edge updates. Each of them requires
the move of a node from one RB tree to another RB tree in our link-cut tree, which gives
O(

√
n log2 n) time by Observation 23. In Lemma 22, in addition to operations on O(1)

nodes and edges on the link-cut tree, we need to move a batch of consecutive nodes from
an RB tree to a new RB tree leading to the new root. By Observation 23, the operations
on the link-cut tree in this lemma require only O(log2 n) time. The resulting update time
complexity O(

√
n log2 n) dominates the remaining operations from Lemmas 21 and 22.

We assume that edges inside RB trees have weight 0 and all the remaining edges have
weight 1. Then, in the data structure the weights of nodes will be updated so that at each
moment, the weight of a node will be equal to the sum of weights of edges on the path to the
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root. Then, for a node i ∈ [a . . a + |U |], where a = deletions(U), the weight will correspond
to the length of the path in the LPF-tree from a to a + |U |. The weights can be maintained
with O(1) “add” and “query” operations (which gives O(log n) amortized time) per link or
cut operation to satisfy this definition of weights. Indeed, no changes to weights are required
in link or cut operations implementing a rotation on an RB tree; when moving a batch of
edges to a different RB tree, we first query for the weights of the roots of the old RB tree and
the new RB tree and then add the difference of these weights to the whole moved subtrees;
adding a new root requires incrementing the weights of all the existing nodes.

By Lemmas 21 and 22, we obtain the following result, which together with Observation 18
implies our main result, Theorem 1.

▶ Lemma 24. A semi-dynamic LPF-tree of a string of length at most n can be maintained
in O(

√
n log2 n) amortized time per update operation, such that the length of the path from

the root to any node can be retrieved in O(log n) amortized time.

6 Additive Sensitivity of LZ77 for Rotations

Note that as each rotation can be emulated with two edit operations, the work of Akagi et
al. [2, Section 8] implies that, for any string S, 1

6 |LZ(rot(S))| ≤ |LZ(S)| ≤ 6|LZ(rot(S))|.

▶ Fact 25. There are infinitely many strings S for which |LZ(rot(S))| ≥ |LZ(S)| + Θ(
√

|S|)
and |LZ(rot(S))| ≥ 3

2 |LZ(S)| − 2.

Proof. Let a1, . . . , am be distinct letters and let Si = a1a2 · · · ai. Now, consider the string
S = SmS1S2 · · · Sm, which is of length Θ(m2).

We have that |LZ(S)| = 2m since the phrases of LZ(S) are:

(a1, a2, . . . , am, S1, S2, . . . , Sm).

Let S′ = rot(S) = a2a3 · · · amS1S2 · · · Sma1. Then, we have |LZ(S′)| = 3m − 2 since the
phrases of LZ(S′) are:

(a2, a3, . . . , am, a1, S1, a2, S2, a3, S3, a4, . . . , Sm−2, am−1, Sm−1, ama1). ◀

The next fact provides a corresponding upper bound on |LZ(rot(S))|. Further, let us
note that the rot operation can decrease the number of LZ phrases by one; for example,
|LZ(abaa)| = 4 and |LZ(baaa)| = 3. Fact 26 also shows that a larger decrease is not possible.

▶ Fact 26. For every string S, we have |LZ(S)| − 1 ≤ |LZ(rot(S))| ≤ |LZ(S)| + Θ(
√

|S|) and
|LZ(rot(S))| ≤ 2|LZ(S)|.

Proof. The second inequality follows by Lemma 13. Indeed, let us consider the LZ parsing
of S into phrases F1, F2, . . . , Fk. We have |F1| = 1. We can transform it into a parsing of
rot(S) as follows: move F1 to the end and for each phrase Fi whose previous occurrence was
only at the leftmost position of S, partition Fi into a one-letter phrase and the remaining
phrase. By Lemma 13, O(

√
|S|) phrases will be partitioned. The resulting parsing cannot

have fewer phrases than the LZ parsing of rot(S) by the fact that greedy is optimal in this
case. The parsing has size |LZ(S)| + Θ(

√
|S|) and, simultaneously, size at most 2|LZ(S)|, as

required.
Let us prove the first inequality. Let S′ be S without its first letter. If suffices to show

that |LZ(S′)| ≥ |LZ(S)| − 1, as appending letters can only increase the number of phrases.
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For a position a in S, by nextS(a) we denote the smallest ending position b of a phrase
in LZ(S) such that b ≥ a. We show by induction that if i is the ending position of a phrase
in LZ(S′), then |LZ(S′[0 . . i])| ≥ |LZ(S[0 . . j])| − 1 for j = nextS(i + 1).

The base case for i = 0 holds with equality for j = nextS(1). Assume that |LZ(S′[0 . . i])| ≥
|LZ(S[0 . . j])| − 1 holds for i being an ending position of a phrase in S′ and j = nextS(i + 1).
Let i′ > i be the next ending position of a phrase in S′ and j′ = nextS(i′ + 1). If j′ = j,
then the desired inequality holds as |LZ(S′[0 . . i′])| = |LZ(S′[0 . . i])| + 1 and |LZ(S[0 . . j′])| =
LZ(S[0 . . j])|. Otherwise, we have that j′ = j′′, where j′′ = nextS(j + 1): Indeed, if j′ > j′′,
then S′[j . . j′ − 1] would have an earlier occurrence in S′, so S[j + 1 . . j′] = S′[j . . j′ − 1]
would have an earlier occurrence in S, which contradicts the greediness of the algorithm
computing the parsing. By the inductive assumption, this concludes that

|LZ(S′[0 . . i′])| = |LZ(S′[0 . . i])|+1 ≥ |LZ(S[0 . . j])| = |LZ(S[0 . . j′′])|−1 = |LZ(S[0 . . j′])|−1,

as required. ◀

7 Conclusions

We have shown that the size of the Lempel-Ziv-Storer-Szymanski factorization (LZSS) with
self-references of a length-n semi-dynamic string S can be updated in Õ(

√
n) time. The

same approach with minor adaptations can store the size of the classic LZ77 parsing (with
self-references), in which the phrase of S starting at position i is S[i . . min(i+LPFS [i], |S|−1)]
(i.e., it includes the position that immediately follows the longest previous factor), also with
Õ(

√
n) update time. Future work includes storing the size of other types of compression in

the semi-dynamic setting. The main open problems are, however, if the update time can be
decreased and if strictly sublinear update time is possible in the fully dynamic setting.
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Abstract
In this work, we consider pattern matching variants in small space, that is, in the read-only setting,
where we want to bound the space usage on top of storing the strings. Our main contribution is
a space-time trade-off for the Internal Pattern Matching (IPM) problem, where the goal is
to construct a data structure over a string S of length n that allows one to answer the following
type of queries: Compute the occurrences of a fragment P of S inside another fragment T of S,
provided that |T | < 2|P |. For any τ ∈ [1 . . n/ log2 n], we present a nearly-optimal Õ(n/τ)-size1 data
structure that can be built in Õ(n) time using Õ(n/τ) extra space, and answers IPM queries in
O(τ + log n log3 log n) time. IPM queries have been identified as a crucial primitive operation for
the analysis of algorithms on strings. In particular, the complexities of several recent algorithms for
approximate pattern matching are expressed with regards to the number of calls to a small set of
primitive operations that include IPM queries; our data structure allows us to port these results to
the small-space setting. We further showcase the applicability of our IPM data structure by using
it to obtain space-time trade-offs for the longest common substring and circular pattern matching
problems in the asymmetric streaming setting.
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1 Introduction

In the fundamental text indexing problem, the task is to preprocess a text T into a data
structure (index) that can answer the following queries efficiently: Given a pattern P , find
the occurrences of P in T . The Internal Pattern Matching problem (IPM) is a variant
of the text indexing problem, where both the pattern P and the text T are fragments of a
longer string S, given in advance.

1 Throughout this work, the Õ(·) notation suppresses factors polylogarithmic in the input-size.
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4:2 Internal Pattern Matching in Small Space and Applications

Introduced in 2009 [47], IPM queries are a cornerstone of the family of internal queries
on strings. The list of internal queries, primarily executed through IPM queries, comprises
of period queries, prefix-suffix queries, periodic extension queries, and cyclic equivalence
queries; see [52, 53, 50]. Other problems that have been studied in the internal setting include
shortest unique substring [1], longest common substring [5], suffix rank and selection [9, 50],
BWT substring compression [9], shortest absent string [10], dictionary matching [32, 21, 20],
string covers [31], masked prefix sums [34], circular pattern matching [44], and longest
palindrome [61].

The primary distinction between the classical and internal string queries lies in how
the pattern is handled during queries. In classical queries, the input is explicitly provided
at query time, whereas in internal queries, the input is specified in constant space via the
endpoints of fragments of string S. This distinction enables notably faster query times in
the latter setting, as there is no need to read the input when processing the query. This
characteristic of IPM and similar internal string queries renders them particularly valuable
for bulk processing of textual data. This is especially advantageous when S serves as input
for another algorithm, as illustrated by multiple direct and indirect (via other internal
queries) applications of IPM: pattern matching with variables [56, 36], detection of gapped
repeats and subrepetitions [55, 41], approximate period recovery [2, 4], computing the longest
unbordered substring [51], dynamic repetition detection [3], computing string covers [31],
identifying two-dimensional maximal repetitions, enumeration of distinct substrings [25],
dynamic longest common substring [5], approximate pattern matching [26, 27], approximate
circular pattern matching [23, 24], (approximate) pattern matching with wildcards [11], RNA
folding [33], and the language edit distance problem for palindromes and squares [12].

Below we assume |T | < 2|P |, which guarantees that the set of occurrences of P in T

forms an arithmetic progression and can be thus represented in O(1) space.
With no preprocessing (O(1) extra space), IPM queries on a string S of length n can

be answered in O(n) time by a constant-space pattern matching algorithm (see [17] and
references therein). On the other side of the spectrum, Kociumaka, Radoszewski, Rytter,
and Waleń [52] showed that for every string S ∈ [0 . . σ]n, there exists a data structure of
size O(n/ logσ n) which answers IPM queries in optimal O(1) time and can be constructed in
O(n/ logσ n) time given the packed representation of S (meaning that S divided into blocks
of logσ n consecutive letters, and every block is stored in one machine word). The problem
has been equally studied in the compressed and dynamic settings [26, 49, 48].

1.1 Our Main Contribution: Small-space IPM
As our main contribution, we provide a trade-off between the constant-space and O(n) query
time and the O(n/ logσ n)-space and constant query time data structures. We consider
the IPM problem in the read-only setting, where one assumes random read-only access to
the input string(s) and only accounts for the extra space, that is, the space used by the
algorithm/data structure on top of the space needed to store the input.

▶ Corollary 1.1. Suppose that we have read-only random access to a n-length string S

of length n over an integer alphabet. For any integer τ = O(n/ log2 n), there is a data
structure that can be built using O(n logn/τ n + (n/τ) · log4 n log log n) time using O((n/τ) ·
log n(log log n)3) extra space and can answer the following internal pattern matching queries
in time O(τ + log n log3 log n): given p, p′, t, t′ ∈ [1 . . n] such that t′ − t ≤ 2(p′ − p), return
all occurrences of P = S[p . . p′] in T = S[t . . t′].
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Our data structure is nearly optimal: First, when n/τ is polynomial, the construction
time is linear; and secondly, the product of the query time and space of our data structure is
optimal up to polylogarithmic factors (Lemma 3.8).

Technical overview for IPM queries. Our solution relies heavily on utilizing the concept of
τ -partitioning sets, as introduced by Kosolobov and Sivukhin [57]. For a string of length n,
a τ -partitioning is a subset of O(n/τ) positions that satisfies some density and consistency
criteria. We use the positions of such a set as anchor points for identifying pattern occurrences,
provided that the pattern avoids a specific periodic structure. To detect these anchored
occurrences, we employ sparse suffix trees alongside a three-dimensional range searching
structure. In cases where the pattern does not avoid said periodic structure, we employ a
different strategy, leveraging the periodic structure to construct the necessary anchor points.

We next provide a brief comparison of the outlined approach with previous work. String
anchoring techniques have been proven very useful in and been developed for text indexing
problems, such as the longest common extension (LCE) problem, in small space [57, 16]. One
of the most technically similar works to ours is that of Ben-Nun et al. [14] who considered
the problem of computing a long common substring of two input strings in small space. They
use an earlier variant of τ -partitioning sets, due to Birenzwige et al. [16], that has slightly
worse guarantees than that of Kosolobov and Shivukhin [57]. The construction of anchors
for substrings with periodic structure is quite similar to that of Ben-Nun et al. [14]. After
computing a set of anchors, they aim to identify a synchronised pair of anchors that yields a
long common substring; they achieve this via mergeable AVL trees. As IPM queries need
to be answered in an online manner, we instead construct an appropriate orthogonal range
searching data structure over a set of points that correspond to anchors. Using orthogonal
range searching is a by-now classical approach for text indexing, see [58] for a survey.

1.2 Applications
Several internal queries reduce to IPM queries, and hence we obtain efficient implementations
of them in the small-space setting. Additionally, we port several efficient approximate pattern
matching algorithms to the small-space setting since IPM was the only primitive operation
that they rely on that did not have an efficient small-space implementation to this day. See
Section 4 for details on these applications.

Longest Common Substring (LCS). The LCS problem is formally defined as follows.

Longest Common Substring (LCS)
Input: Strings S and T of length at most n.
Output: The length of a longest string that appears as a (contiguous) fragment in
both S and T .

The length of the longest common substring is one of the most popular string-similarity
measures. The by-now classical approach to the LCS problem is to construct the suffix tree
of S and T in O(n) time and space. The longest common substring of the two strings appears
as a common prefix of a pair of suffixes of S and T and hence its length is the maximal
string-depth of a node of the suffix tree with leaf-descendants corresponding to suffixes of
both strings; this node can be found in O(n) time in a bottom-up manner.

Starikovskaya and Vildhøj [64] were the first to consider the problem in the read-only
setting. They showed that for any n2/3 < τ ≤ n, the problem can be solved in O(τ) extra
space and O(n2/τ) time. Kociumaka et al. [54] extended their bound to all 1 ≤ τ ≤ n, which
in particular resulted in a constant-space read-only algorithm running in time Õ(n2).
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In an attempt to develop even more space-efficient algorithms for the LCS problem, it
might be tempting to consider the streaming setting, which is particularly restrictive: in this
setting, one assumes that the input arrives letter-by-letter, as a stream, and must account for
all the space used. Unfortunately, this setting does not allow for better space complexity: any
streaming algorithm for LCS, even randomised, requires Ω(n) bits of space (Theorem 5.2).
In the asymmetric streaming setting, which is slightly less restrictive and was introduced by
Andoni et al. [7] and Saks and Seshadhri [63], the algorithm has random access to one string
and sequential access to the other. Mai et al. [60] showed that in this setting, LCS can be
solved in Õ(n2) time and O(1) space. By utilising (a slightly more general variant of) IPM
queries, we extend their result and show that for every τ ∈ [

√
n log n(log log n)3 . . n], there is

an asymmetric streaming algorithm that solves the LCS problem in O(τ) space and Õ(n2/τ)
time (Theorem 6.1). Note that these bounds almost match the bounds of Kociumaka et
al. [54], while the setting is stronger.

Circular Pattern Matching (CPM). The CPM problem is formally defined as follows.

Circular Pattern Matching (CPM)
Input: A pattern P of length m, a text T of length n.
Output: All occurrences of rotations of P in T .

The interest in occurrences of rotations of a given pattern is motivated by applications in
Bioinformatics and Image Processing: in Bioinformatics, the starting position of a biological
sequence can vary significantly due to the arbitrary nature of sequencing in circular molecular
structures or inconsistencies arising from different standards of linearization applied to
sequence databases; and in Image Processing, the contour of a shape can be represented
using a directional chain code, which can be viewed as a circular sequence, particularly when
the orientation of the image is irrelevant [8].

For strings over an alphabet of size σ, the classical read-only solution for CPM via the
suffix automaton of P · P runs in O(n log σ) time and uses O(m) extra space [59]. Recently,
Charalampopoulos et al. showed a simple O(n) time and O(m) extra space solution. The
problem has been also studied from the practical point of view [65, 40, 29] and in the text
indexing setting [45, 43, 42].

It is not hard to see that the CPM and the LCS problems are closely related: occurrences
of rotations of P in T are exactly the common substrings of P · P and T of length m.
Implicitly using this observation, we show that in the streaming setting, the CPM problem
requires Ω(m) bits of space (Theorem 5.3) and that in the asymmetric streaming setting,
for every τ ∈ [

√
m log m(log log m)3 . . m], there exists an algorithm that solves the CPM

problem in time Õ(mn/τ) using O(τ) extra space (Corollary 6.5). Finally, in the read-only
setting, we give an online O(n)-time, O(1)-space algorithm (Theorem 7.1).

2 Preliminaries

For integers i, j ∈ Z, denote [i . . j] = {k ∈ Z : i ≤ k ≤ j}, [i . . j) = {k ∈ Z : i ≤ k < j}.
We consider an alphabet Σ = {1, 2, . . . , σ} of size polynomially bounded in the length of
the input string(s). The elements of the alphabet are called letters, and a string is a finite
sequence of letters. For a string T and an index i ∈ [1 . . n], the i-th letter of T is denoted
by T [i]. We use |T | = n to denote the length of T . For two strings S, T , we use ST or
S ◦ T indifferently to denote their concatenation S[1] · · · S[|S|]T [1] · · · T [|T |]. For integers i, j,
T [i . . j] denotes the fragment T [i]T [i + 1] · · · T [j] of T if 1 ≤ i ≤ j ≤ n and the empty string ε
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otherwise. We extend this notation in a natural way to T [i . . j + 1) = T [i . . j] = T (i − 1 . . j].
When i = 1 or j = n, we omit these indices, i.e., T [. . j] = T [1 . . j] and T [i . .] = T [i . . n].
A string P is a prefix of T if there exists j ∈ [1 . . n] such that P = T [. . j], and a suffix
of T if there exists i ∈ [1 . . n] such that P = T [i . .]. We denote the reverse of a string T

by rev(T ) = T [n]T [n − 1] · · · T [2]T [1]. For an integer ∆ ∈ [1 . . n], we say that a string
T [∆ + 1 . . n] ◦ T [1 . . ∆] is a rotation of T . A fragment T [i . . j] of a string T is called an
occurrence of a string P if T [i . . j] = P ; in this case, we say that P occurs at position i

of T . A positive integer ρ is a period of a string T if T [i] = T [i + ρ] for all i ∈ [1 . . |T | − ρ].
The smallest period of T is referred to as the period of T and is denoted by per(T ). If
per(T ) ≤ |T |/2, T is called periodic.

▶ Fact 2.1 (Corollary of the Fine–Wilf periodicity lemma [37]). The starting positions of the
occurrences of a pattern P in a text T form O(|T |/|P |) arithmetic progressions with difference
per(P ).

We assume a reader to be familiar with basic data structures for string processing, see,
e.g., [59]. Recall that a suffix tree for a string S is essentially a compact trie representing the
set of all suffixes of S, whereas a sparse suffix tree contains only a subset of these suffixes.

▶ Fact 2.2 ([57, Theorem 3]). Suppose that we have read-only random access to a string S

of length n over an integer alphabet. For any integer b = Ω(log2 n), one can construct in
O(n logb n) time and O(b) space the sparse suffix tree for arbitrarily chosen b suffixes.

▶ Fact 2.3 ([17]). There is a read-only online algorithm that finds all occurrences of a
pattern P of length m in a text T of length n ≥ m in O(n) time and O(1) space.

▶ Fact 2.4 ([38, Lemma 6]). Given read-only random access to a string S of length n, one
can decide in O(n) time and O(1) space if S is periodic and, if so, compute per(S).

▶ Fact 2.5 ([35]). Given read-only random access to a string S of length n, the lexicograph-
ically smallest rotation of a string S can be computed in O(n) time and O(1) space.

Static predecessor. For a static set, a combination of x-fast tries [66] and deterministic
dictionaries [62] yields the following efficient deterministic data structure; cf. [39].

▶ Fact 2.6 ([39, Proposition 2]). A sorted static set Y ⊆ [1 . . U ] can be preprocessed in O(|Y |)
time and space so that predecessor queries can be performed in O(log log |U |) time.

Weighted ancestor queries. Let T be a rooted tree with integer weights on nodes. A
weighted ancestor query for a node u and weight d must return the highest ancestor of u

with weight at least d.

▶ Fact 2.7 ([6]). Let T be a rooted tree of size n with integer weights on nodes. Assume
that each weight is at most n, with the weight of the root being zero, and the weight of every
non-root node being strictly larger than its parent’s weight. T can be preprocessed in O(n)
time and space so that weighted ancestor queries on it can be performed in O(log log n) time.

If T is the suffix tree of a string and the weights are the string-depths of the nodes, this
result can be improved further:

▶ Fact 2.8 ([13]). The suffix tree T of a string of length n can be preprocessed in O(n) time
and O(n) space so that weighted ancestor queries on it can be performed in O(1) time.
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3D range emptiness. A three-dimensional orthogonal range emptiness query asks whether
a range [a1 × a2] × [b1 × b2] × [c1 × c2] is empty.

▶ Fact 2.9 ([46, Theorem 2]). There exists a data structure that answers three-dimensional
orthogonal range emptiness queries on a set of n points from a [U ] × [U ] × [U ] grid in
O(log log U + (log log n)3) time, uses O(n log n(log log n)3) space, and can be constructed in
O(n log4 n log log n) time. If the query range is not empty, the data structure also outputs a
point from it.

▶ Remark 2.10. Better space vs. query-time tradeoffs than the above are known for the 3D
range emptiness problem; cf [19] and references therein. We opted for the data structure
encapsulated of Fact 2.9 due to its efficient construction algorithm. Note that a data structure
capable of reporting all points in an orthogonal range over a [U ] × [U ] × [U ] grid with n

points in time O(Q1(U, n) + Q2(U, n) · |output|) can answer range emptiness queries, also
returning a witness in the case the range is not empty, in time O(Q1(U, n) + Q2(U, n)).

3 Internal Pattern Matching

We consider a slightly more powerful variant of IPM queries, as required by our applications.
A reader that is only interested in IPM queries can focus on the case when a = ε.

Extended IPM (Decision)
Input: A string S of length n over an integer alphabet to which we have read-only
random access.
Query: Given p, p′, t, t′ ∈ [1 . . n] and a ∈ Σ ∪ {ε}, return whether P := S[p . . p′]a
occurs in T := S[t . . t′] and, if so, return a witness occurrence.

Our solution for Extended IPM (Decision) heavily relies on a solution for the following
auxiliary problem.

Anchored IPM
Input: A string S of length n over an integer alphabet Σ to which we have read-only
random access and a set A ⊆ [1 . . n].
Query: Given p, x, p′, t, t′ ∈ [1 . . n] with p ≤ x ≤ p′, x ∈ A, and a ∈ Σ ∪ {ε}, for
P := S[p . . p′]a, decide whether there exists an occurrence of P at some position
j ∈ [t . . t′ − |P | + 1] such that j + (x − p) ∈ A and, if so, return a witness.

▶ Lemma 3.1. There exists a data structure for the Anchored IPM problem that can
be built using O(n log|A| n) + O(|A| log4 |A| log log |A|) time and O(|A| log |A|(log log |A|)3)
extra space, and answers queries in O(log3 log n) time.

Proof. For an integer y ∈ [1 . . n], denote Py := rev(S[. . y)) and Sy := S[y . .]. Consider a
family X := {(Py$, Sy$) : y ∈ A} of pairs of strings, where $ ̸∈ Σ is a letter lexicographically
smaller than all others. Using Fact 2.2, we build a sparse suffix tree RSST for the first
components of the elements of X and a sparse suffix tree SST for the second components of
the elements of X .

Consider a three-dimensional grid [1 . . n] × [1 . . n] × [1 . . n]. In this grid, create a set Π
of points, which contains, for each element (Py$, Sy$) of X , a point (rankrev(y), rank(y), y),
where rankrev(y) is the lexicographic rank of Py$ among the first components of the elements
of X and rank(y) is the lexicographic rank of Sy$ among the second components of the
elements of X .
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Upon a query, we first retrieve the leaves corresponding to Px$ and Sx$ in RSST and SST,
respectively. This can be done in O(log log n) time with the aid of Fact 2.6 built over the
elements of A, with x ∈ A storing pointers to the corresponding leaves as satellite information.
Next, we retrieve the (possibly implicit) nodes u and v corresponding to rev(S[p . . x)) in
RSST and S[x . . p′]a in SST, respectively. This can be done in O(log log n) time after an
O(|A|)-time preprocessing of (a) the two trees according to Fact 2.7 and (b) the edge-labels
of the outgoing edges of each node using Fact 2.6. Now, it suffices to check if there is some
integer j such that the leaf corresponding to Pj$ is a descendant of u, the leaf corresponding
to Sj$ is a descendant of v, and j ∈ [t + (x − p) . . t′ − (p′ + |a| − x)]. After a linear-time
bottom-up preprocessing of RSST and SST, we can retrieve in O(1) time the following ranges:

R1 = {rankrev(y) : the node of RSST corresponding to Py$ is a descendant of u};
R2 = {rank(y) : the node of SST corresponding to Sy$ is a descendant of v}.

The query then reduces to deciding whether the orthogonal range R1 ×R2 × [t+(x−p) . . t′ −
(p′ + |a| − x)] contains any point in Π, and returning a witness if it does. We can do this
efficiently by building the data structure encapsulated in Fact 2.9 for Π: the query time
is O(log3 log n), while the construction time is O(n log|A| n) + O(|A| log4 |A| log log |A|) and
the space usage is O(|A| log |A|(log log |A|)3). ◀

For an integer parameter τ , we next present a data structure for Extended IPM
(Decision) that uses Õ(n/τ) space on top of the space required to store S and answers
queries in nearly-constant time provided that P is of length greater than 5τ . We achieve
this result using the so-called τ -partitioning sets of Kosolobov and Sivukhin [57] as anchors
for the occurrences if P avoids a certain periodic structure, and by exploiting said periodic
structure to construct anchors in the remaining case.

▶ Definition 3.2 (τ -partitioning set). Given an integer τ ∈ [4 . . n/2], a set of positions
P ⊆ [1 . . n] is called a τ -partitioning set if it satisfies the following properties:
(a) if S[i−τ . . i+τ ] = S[j−τ . . j+τ ] for i, j ∈ [τ + 1 . . n−τ ], then i ∈ P if and only if j ∈ P;
(b) if S[i . . i+ℓ] = S[j . . j+ℓ], for i, j ∈ P and some ℓ ≥ 0, then, for each d ∈ [0 . . ℓ−τ),

i + d ∈ P if and only if j + d ∈ P;
(c) if i, j ∈ [1 . . n] with j − i > τ and (i . . j) ∩ P = ∅, then S[i . . j] has period at most τ/4.

▶ Theorem 3.3 ([57]). Suppose that we have read-only random access to a string S of
length n over an integer alphabet. For any integer τ ∈ [4 . . O(n/ log2 n)] and b = n/τ , one
can construct in O(n logb n) time and O(b) extra space a τ -partitioning set P of size O(b).
The set P additionally satisfies the property that if a fragment S[i . . j] has period at most τ/4,
then P ∩ [i + τ . . j − τ ] = ∅.

▶ Definition 3.4 (τ -runs). A fragment F of a string S is a τ -run if and only if |F | > 3τ ,
per(F ) ≤ τ/4, and F cannot be extended in either direction without its period changing. The
Lyndon root of a τ -run R is the lexicographically smallest rotation of R[1 . . per(R)].

The following fact follows from the proof of Lemma 10 in the full version of [22], where
the definition of τ -runs is slightly different, but captures all of our τ -runs.

▶ Fact 3.5 (cf. [22, proof of Lemma 10]). Two τ -runs can overlap by at most τ/2 positions.
The number of τ -runs in a string of length n is O(n/τ).

▶ Lemma 3.6. Suppose that we have read-only random access to a string S of length n over
an integer alphabet. For any integer τ ∈ [4 . . O(n/ log2 n)], all τ -runs in S can be computed
and grouped by Lyndon root in O(n logb n) time using O(b) extra space, where b = n/τ .
Within the same complexities, we can compute, for each τ -run, the first occurrence of its
Lyndon root in it.
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Proof. We first compute a τ -partitioning set P for S using Theorem 3.3. Due to Property c,
its converse that is stated in Theorem 3.3, and Fact 3.5 there is a natural injection from
the τ -runs to the maximal fragments of length at least τ that do not contain any position
in P – the τ -run corresponding to such a maximal fragment may extend for τ more positions
in each direction. We can find the period of each maximal fragment in time proportional
to its length using O(1) extra space due to Fact 2.4. We then try to extend the maximal
fragment to a τ -run using O(τ) letter comparisons. Additionally, we compute the Lyndon
root of each computed τ -run R in O(τ) = O(|R|) time by applying Fact 2.5 to R[1 . . per(R)].
The first occurrence of the Lyndon root in the τ -run can be computed in constant time since
we know which rotation of R[1 . . per(R)] equals the Lyndon root. Over all τ -runs, the total
time is O(n) due to Fact 3.5. ◀

We next prove the main result of this section.

▶ Theorem 3.7. For any ℓ ∈ [20 . . O(n/ log2 n)], there is a data structure for Extended
IPM (Decision) that can be built using O(n logn/ℓ n) + O((n/ℓ) · log4 n log log n) time and
O((n/ℓ) · log n(log log n)3) extra space given random access to S and answers queries in
O(log3 log n) time, provided that |P | > ℓ.

Proof. Let τ = ⌊ℓ/5⌋. We use Theorem 3.3 and Lemma 3.6 with parameter τ to compute a
partitioning set P of size O(n/τ) and all τ -runs in S, grouped by Lyndon root, each one to-
gether with the first occurrence of its Lyndon root. We create a static predecessor structure R
using Fact 2.6, where we insert the starting position of each run R with the following satellite
information: R’s ending position, the first occurrence of R’s Lyndon root in R, and an identifier
of its group. We additionally create a data structure Q, where, for each group of τ -runs with a
common root L, indexed by their identifiers, we construct, using Fact 2.6, a predecessor data
structure for a set QL := {(y, s, e) : S[s . . e] is the longest τ -run with a suffix L ◦ L[1 . . y]},
with the first components being the keys and the remaining components being stored as
satellite information. The sets QL can be straightforwardly constructed in O(n log n/τ) time.

Now, let L be a set that contains the ending position of each τ -run as well as the starting
(resp. ending) positions of the first (resp. last) two occurrences of the Lyndon root in this
τ -run; L can be straightforwardly constructed in O(n/τ) time given the information returned
by the application of Lemma 3.6. We then construct a set A := P ∪ L and preprocess the
string S and the set A according to Lemma 3.1.

Our query comprises of two steps.

Step 1. First, we deal with the case when both P and T have period at most τ/4. Since P

and T are of length at least 5τ , due to Fact 3.5, each of them can be only contained in the
τ -run whose starting position is closest to it in the left. We can thus check whether they both
have period at most τ/4 in O(log log n) time by performing two predecessor queries on R. If
this turns out to be the case, we then check whether the two corresponding τ -runs belong to
the same group. If they do not, then P does not occur in T due to Fact 3.5. Otherwise, let the
common Lyndon root of the two runs be L. We can compute in constant time non-negative
integers xP , xT , yP , yT < |L| and eP , eT such that P = L(|L| − xP . .] ◦ LeP ◦ L[. . yP ] and
T = L(|L| − xT . .] ◦ LeT ◦ L[. . yT ]. Note that P occurs in T if and only if at least one of the
following conditions is met: (1) eP = eT , xP ≤ xT , and yP ≤ yT ; or (2) eP = eT − 1 and
xP ≤ xT ; or (3) eP = eT − 1 and yP ≤ yT ; or (4) eP ≤ eT − 2. In each of the four cases, we
can compute an occurrence of P in T in constant time.

Step 2. In the second step of the query, we consider the case when per(T ) > τ/4 and
distinguish between two cases depending on whether per(S[p . . p + 3τ ]) ≤ τ/4. In each case,
it suffices to perform at most two anchored internal pattern matching queries.
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Case I: per(S[p . . p + 3τ ]) > τ/4. Due to Property c, [p . . p + 3τ ] ∩ P ̸= ∅. Let
x = min([p . . p + 3τ ] ∩ P). Additionally, due to Property b, for any occurrence of P in S at
position j, we have [p . . p + 3τ ] ∩ P = (p − j) + ([j . . j + 3τ ] ∩ P), and hence j + (x − p) ∈ P .
Thus, an anchored IPM query returns the desired answer in O(log3 log n) time.

Case II: per(S[p . . p + 3τ ]) ≤ τ/4. We distinguish between two subcases depending on
whether per(P ) > τ/4; we can check this in O(log log n) time with the aid of data structure R
by comparing p′ with the ending position of the τ -run that contains S[p . . p+3τ ] and checking
if a = P [|P | − per(S[p . . p + 3τ ])] if a ̸= ε.

Subcase (a): per(P ) > τ/4. In this case, for any occurrence of P in T , the ending position
of the τ -run that is a prefix of P must be aligned with the ending position of a τ -run in
T , which belongs to L ⊆ A.
Recall that P = S[p . . p′]a. If the period of S[p . . p′] is greater than τ/4, we retrieve the
ending position of the τ -run containing S[p . . p + 3τ ], which is in L ⊆ A as well and issue
an anchored internal pattern matching query. Assume now that the period of S[p . . p′ + 1]
is at most τ/4 and ε ̸= a ̸= P [|P | − per(S[p . . p′])], in which case p′ might not be in A.
In this case, we retrieve a fragment S[q . . q′] equal to S[p . . p′], such that q′ is an ending
position of a τ -run in O(log log n) time using the data structure Q, if such a fragment
exists, and use q ∈ L ⊆ A as the anchor to our internal anchor query, effectively searching
for S[q . . q′]a = P . Observe that if such a fragment S[q . . q′] does not exist, P cannot
have any occurrence in T .

Subcase (b): per(P ) ≤ τ/4. We consider an occurrence of P in the τ -run that contains P

that starts in its first per(P ) positions and one that ends in its last per(P ) positions. Let
these two occurrences be at positions p1 and p2, respectively. Each of these occurrences
contains at least one element of L; let those elements be denoted q1 for the occurrence at
p1 and q2 for the occurrence at p2.
Note that these elements can be straightforwardly computed given the endpoints of the
τ -run, the endpoints of P , and the first occurrence of the Lyndon root in the τ -run, which
we already have in hand. We then issue anchored internal pattern matching queries for
(p1, q1, p1 + |P | − 1, t, t′) and (p2, q2, p2 + |P | − 1, t, t′) as both q1 and q2 are in L. These
queries are answered in O(log3 log n) time. As we show next, if P has an occurrence in
T , this occurrence will be returned by those queries.
Consider an occurrence of P in S[t . . t′] and denote the τ -run that contains this occurrence
by R. Since per(T ) > τ/4, R does not contain S[t . . t′]. Without loss of generality, let us
assume that R does not extend to the left of S[t . . t′], the remaining case is symmetric. Let
the first occurrence of the Lyndon root L of the τ -run in P be at position i = q1 − p1 + 1
of P , noting that i ≤ per(P ). Then, in the leftmost occurrence of P in R, position i

must be aligned with either the first or the second position where L occurs in R. By the
construction of the set L, it follows that both of these positions are in L, and hence the
anchored internal pattern matching query will return an occurrence. ◀

▶ Corollary 1.1. Suppose that we have read-only random access to a n-length string S

of length n over an integer alphabet. For any integer τ = O(n/ log2 n), there is a data
structure that can be built using O(n logn/τ n + (n/τ) · log4 n log log n) time using O((n/τ) ·
log n(log log n)3) extra space and can answer the following internal pattern matching queries
in time O(τ + log n log3 log n): given p, p′, t, t′ ∈ [1 . . n] such that t′ − t ≤ 2(p′ − p), return
all occurrences of P = S[p . . p′] in T = S[t . . t′].
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Proof. If the length of P is at most max{τ, 20}, we compute its occurrences in T , whose length
is O(τ), in O(τ) time using Fact 2.3. In what follows, we assume that |P | > max{τ, 20}.

We build the Extended IPM (Decision) data structure of Theorem 3.7 for S with
ℓ = max{τ, 20}. This allows us to efficiently answer the decision version of the desired IPM
queries, also returning a witness, in O(log3 log n) time. If the query does not return an
occurrence of P in T , we are done. Otherwise, we have to compute all occurrences of P

in T represented as an arithmetic progression (cf Fact 2.1). Let the witness returned by the
data structure be S[x . . x′]. Consider the rightmost occurrence of P in S[t . . x′), or, if it does
not exist, the leftmost occurrence in S(x . . t′]. Such an occurrence can be found by binary
search. If no such occurrence exists, we are again done, as P has a single occurrence in T .
Otherwise, the occurrences of P in T form an arithmetic progression with difference equal to
the difference d of x and the starting position of the found occurrence due to Fact 2.1. We
compute the extreme values of this arithmetic progression using binary search as well: we
compute the minimum and the maximum j ∈ Z such that S[x + j · d . . x′ + j · d] = P and
t ≤ x + j · d ≤ x′ + j · d ≤ t′ using O(log n) IPM queries in total; the complexity follows. ◀

Lower Bound for an IPM data structure
We now show that the product of the query time and the space achieved in Corollary 1.1 is
optimal up to polylogarithmic factors, via a reduction from the following problem.

Longest Common Extension (LCE)
Input: A string S of length n.
Query: Given i, j ∈ [1 . . n], return the largest ℓ such that S[i . . i + ℓ] = S[j . . j + ℓ].

Bille et al. [15, Lemma 4] showed that any data structure for LCE for n-length strings
that uses s bits of extra space on top of the input has query time Ω(n/s).

▶ Lemma 3.8. In the non-uniform cell-probe model, any IPM data structure that uses s bits
of space on top of the input for a string of length n, has query time Ω(n/(s log n)).

Proof. We prove Lemma 3.8 by reducing LCE queries in a string S of length n to IPM queries
in S. Consider an IPM data structure with space s and query time q and observe that IPM
queries can be used to check substring equality since S[i . . i′] = S[j . . j′] if and only if S[i . . i′]
occurs inside the interval [j . . j′] and j′ − j = i′ − i. Using binary search, we can thus answer
any LCE query via O(log n) IPM queries. Hence, we have q log n = Ω(n/s), which concludes
the proof the lemma. ◀

Lemma 3.8 implies a similar lower bound for the word RAM model, which is weaker than
the non-uniform cell-probe model.

4 Other Internal Queries and Approximate Pattern Matching

In the PILLAR model of computation [26] the runtimes of algorithms are analysed with
respect to the number of calls made to standard word-RAM operations and a few primitive
string operations. It has been used to design algorithms for internal queries [52, 53, 50],
approximate pattern matching under Hamming distance [26] and edit distance [27], circular
approximate pattern matching under Hamming distance [24] and edit distance [28], and
(approximate) wildcard pattern matching under Hamming distance [11]. Space-efficient
implementations of the PILLAR model immediately result in space-efficient implementations
of the above algorithms.
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In the PILLAR model, one is given a family of strings X for preprocessing. The elementary
objects are fragments X[i . . j] of strings X ∈ X . Each fragment S is represented via a handle,
which is how S is passed as input to PILLAR operations. Initially, the model provides a handle
to each X ∈ X . Handles to other fragments can be obtained through an Extract operation:

Extract(S, ℓ, r): Given a fragment S and positions 1 ≤ ℓ ≤ r ≤ |S|, extract S[ℓ . . r].
Furthermore, given elementary objects S, S1, S2 the following primitive operations are sup-
ported in the PILLAR model:

Access(S, i): Assuming i ∈ [1 . . |S|], retrieve S[i].
Length(S): Retrieve the length |S| of S.
Longest common prefix LCE(S1, S2): Compute the length of the longest common prefix
of S1 and S2.
LCER(S1, S2): Compute the length of the longest common suffix of S1 and S2.
Internal pattern matching IPM(S1, S2): Assuming that |S2| < 2|S1|, compute the set of
the starting positions of occurrences of S1 in S2 represented as one arithmetic progression.

All PILLAR operations other than LCE, LCER, and IPM admit trivial constant-time and
constant-space implementations in the read-only setting. For any τ = O(n/ log2 n), Kosolobov
and Sivukhin [57] showed that after O(n logn/τ n)-time, O(n/τ)-space preprocessing, LCE
and LCER queries can be supported in O(τ) time. For IPM queries, we use Corollary 1.1.

In [52, 53, 50] it is (implicitly) shown that the following internal queries can be efficiently
implemented in the PILLAR model.

A cyclic equivalence query takes as input two equal-length fragments U = S[i . . i + ℓ] and
V = S[j . . j +ℓ], and returns all rotations of U that are equal to V . Any cyclic equivalence
query reduces to O(1) LCE queries and O(1) IPM(P, T ) queries with |T |/|P | = O(1).
A period query takes as input a fragment U = S[i . . j], and returns all periods of U . Such
a period query reduces to O(log |U |) LCE queries and O(log |U |) IPM(P, T ) queries with
|T |/|P | = O(1).
A 2-period query takes as input a fragment U = S[i . . j], checks if U is periodic and, if so,
it also returns U ’s period. Such a query reduces to O(1) LCE queries and O(1) IPM(P, T )
queries with |T |/|P | = O(1).

▶ Corollary 4.1. Suppose that we have read-only random access to a string S of length n over
an integer alphabet. For any integer τ = O(n/ log2 n), there is a data structure that can be
built using O(n logn/τ n + (n/τ) · log4 n log log n) time and O((n/τ) · log n(log log n)3) extra
space and can answer cyclic equivalence and 2-period queries on S in O(τ + log n log3 log n)
time, and period queries on S in O(τ log n + log2 n log3 log n) time.

By plugging this implementation of the PILLAR model into [26, 27, 24, 11, 28], we obtain
the following:

▶ Corollary 4.2. Suppose that we have read-only random access to a text T of length n, a
pattern P of length m over an integer alphabet. Given an integer threshold k, for any integer
τ = O(m/ log2 m), we can compute:

the approximate occurrences of P in T under the Hamming distance in Õ(n + k2τ · n/m)
time using Õ(m/τ + k2) extra space;
the approximate occurrences of P in T under the edit distance in Õ(n + k3.5τ · n/m) time
using Õ(m/τ + k3.5) extra space;
the approximate occurrences of all rotations of P in T under the Hamming distance in
Õ(n + k3τ · n/m) time using Õ(m/τ + k3) extra space;
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the approximate occurrences of all rotations of P in T under the edit distance in Õ(n +
k5τ · n/m) time using Õ(m/τ + k5) extra space;
in the case where P has D wildcard letters arranged in G maximal intervals, the approx-
imate occurrences of P in T under the Hamming distance in Õ(n+(D +k)(G+k)τ ·n/m)
time using Õ(m/τ + (D + k)(G + k)) extra space.

To the best of our knowledge, the only work that has considered approximate pattern
matching in the read-only model is due to Bathie et al. [12]. They presented online algorithms
both for the Hamming distance and the edit distance; for the Hamming distance their
algorithm uses O(k log m) extra space and O(k log m) time per letter of the text, and for the
edit distance Õ(k4) bits of space and Õ(k4) amortised time per letter.

5 LCS and CPM in the Streaming Setting

In the streaming setting, we receive a stream composed of the concatenation of the input
strings, e.g., the pattern and the text in the case of CPM. We account for all the space used,
including the space needed to store any information about the input strings. We exploit
the well-known connection between streaming algorithms and communication complexity to
prove linear-space lower bounds for streaming algorithms for LCS and CPM.

Lower Bounds for Streaming Algorithms
Our streaming lower bounds are based on a reduction from the following problem:

Augmented Index
Alice holds a binary string S of length n.
Bob holds an index i ∈ [1 . . n] and the string S[. . i − 1].
Output: Bob is to return the value of S[i].

In the one-way communication complexity model, Alice performs an arbitrary computation
on her input to create a message M and sends it to Bob who must compute the output using
this message and his input. The communication complexity of a protocol is the size of M in
bits. The protocol is randomised when either Alice or Bob use randomised computation.

▶ Theorem 5.1 ([18, Theorem 2.3]). The randomised one-way communication complexity of
Augmented Index is Ω(n) bits.

▶ Theorem 5.2. In the streaming setting, any algorithm for LCS for strings of length at
most n uses Ω(n) bits of space.

Proof. We show the bound by a reduction from the Augmented Index problem. Consider
an input S, (i, S[. . i − 1]) to the Augmented Index problem, where |S| = n. We observe
that for A = 0n$S and B = 0n$S[. . i−1]1, where $ /∈ {0, 1}, we have LCS(A, B) = n+ i+1 if
and only if S[i] = 1. Now, if we have a streaming algorithm for LCS that uses b bits of space,
we can develop a one-way protocol for the Augmented Index problem with message size b

bits as follows. Alice runs the algorithm on A. When she reaches the end of A, she sends
the memory state of the algorithm and n (in binary) to Bob. Bob continues running the
algorithm on B, which he can construct knowing n and S[. . i − 1], and returns 1 if and only if
LCS(A, B) = n + i + 1. Theorem 5.1 implies that b + log n = Ω(n), and hence b = Ω(n). ◀

▶ Theorem 5.3. In the streaming setting, any algorithm for CPM uses Ω(m) bits of space,
where m is the size of the pattern.
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Proof. We show the bound by a reduction from the Augmented Index problem. Consider
an input S, (i, S[. . i − 1]) to the Augmented Index problem, where |S| = m. Let A = S$
and B = S$S[. . i − 1]1, where $ /∈ {0, 1}. B ends with an occurrence of a rotation of A if and
only if S[i] = 1. Now, if we have a streaming algorithm for CPM that uses b bits of space, we
can develop a one-way protocol for the Augmented Index problem with message size b

bits as follows. Alice runs the algorithm on the pattern A = S$ and the first |S| + 1 letters
of the string B. She then sends the memory state of the algorithm to Bob. Bob continues
running the algorithm on the remainder of B, i.e., on S[1 . . i − 1]1, and returns 1 if and only
if the algorithm reports an occurrence of a rotation of A ending at position n + i + 1. By
Theorem 5.1, we have b = Ω(m). ◀

6 LCS and CPM in the Asymmetric Streaming Setting

In this section, we use Theorem 3.7 to show that for any τ ∈ [Ω̃(
√

m) . . O(m/ log2 m)], there
are asymmetric streaming algorithms for LCS and CPM that use O(τ) space and Õ(m/τ)
time per letter. We start by giving an algorithm for a generalization of the LCS problem
that can be used to solve both LCS and CPM. For two strings S, T , a fragment T [t . . t′] is
a T -maximal common substring of S and T if it is a occurs in S and neither T [t − 1 . . t′]
(assuming t > 1) nor T [t . . t′ + 1] (assuming t′ < n) occurs in S.

▶ Theorem 6.1. Assume to be given read-only random access to a string S of length m and
streaming access to a string T of length n over an integer alphabet, where n ≥ m. For all
τ ∈ [

√
m log m(log log m)3 . . O(m/ log2 m)], there is an algorithm that reports all T -maximal

common substrings of S and T using O(τ) space and O(nm/τ · log log σ) time.

Proof. We cover T with windows of length 2τ (except maybe for the last) that overlap by τ

letters: there are O(n/τ) such windows. After reading such a window W , we apply the
procedure encapsulated in the following claim with A = W and B = S:

▷ Claim 6.2. Let A, B be strings of respective lengths a and b, where a < b < aO(1), over
an integer alphabet of size σ. Given read-only random access to A and B, we can compute
all B-maximal common substrings of A and B, and the length LCSuf(A, B) of the longest
suffix of A that occurs in B in O(b log log σ) time using O(a) extra space.

Proof. We start by building the suffix tree for A and preprocessing it for constant-time
weighted ancestor queries: this takes O(a) time (see Fact 2.2 and Fact 2.8). Additionally,
we preprocess the labels of edges outgoing from each node according to Fact 2.6. Then, the
algorithm traverses the tree maintaining the following invariant: at every moment, it is at a
node (maybe implicit) corresponding to a substring B[i . . j] of B. It starts at the root of the
tree with i = 1 and j = 0. In each iteration, the algorithm tries to go down the tree from the
current node using B[j + 1]; this takes O(log log σ) time. If it succeeds, it increments j and
continues. Otherwise, it considers two cases. If it is at the root, it increments both i and j.
Otherwise, it jumps to the node corresponding to B[i + 1 . . j] via a weighted ancestor query
in O(1) time and increments i. The nodes reached by an edge traversal and abandoned with
the use of a weighted ancestor query in the next iteration are in one-to-one correspondence
with the B-maximal common substrings of A and B. The LCSuf of A and B is the depth of
the deepest visited node that corresponds to a suffix of A. As at least one of the indices i, j

gets incremented at every step of the traversal, the total runtime is O(b log log σ). ◁

The above sliding-window procedure takes O(m log log σ) time per window and uses O(τ)
space, which adds up to O(nm/τ · log log σ) time in total, and finds all T -maximal common
substrings of S and T that have length at most τ .
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We run another procedure in parallel in order to compute T -maximal common substrings
of length at least τ . During preprocessing, we build the Extended IPM (Decision) data
structure (Theorem 3.7) for the string S with ℓ = τ − 2 in O(m logm/τ m) = O(nm/τ) time
using O((m/τ) · log m(log log m)3) = O(τ) space.

Assume that while reading a window W = T [ℓ . . r], the sliding-window procedure found
an LCSuf T [i . . r] of length at least τ . We start a search for a common substring starting
in W . Let j ≥ r be the current letter of T , and T [i . . j], ℓ ≤ i ≤ r, be the longest suffix
of T [ℓ . . j] that occurs in S. We assume that we know a position where T [i . . j] occurs
in S, which is the case for j = r. When T [j + 1] arrives, we update i using the following
observation:

▶ Observation 6.3. If T [i . . j] is the longest suffix of T [1 . . j] that occurs in S, and T [i′ . . j+1]
is the longest suffix of T [1 . . j + 1] that occurs in S, then i ≤ i′.

By using binary search and IPM queries, we can find the smallest i ≤ i′ such that
T [i′ . . j + 1] occurs in S and a witness occurrence, if the corresponding string has length at
least τ : namely, if S[x . . x′] is a witness occurrence of T [i . . j] in S, we search for occurrences
of P = S[x + (i′ − i) . . x′]T [j + 1] in S. If j − i′ < τ , we stop the search, and otherwise we
set i′ = i and continue. It is evident that all T -maximal common substrings of S and T that
are of length greater than τ can be extracted during the execution of the above procedure: a
maintained suffix of length greater than τ is such a fragment if the last update to it was an
increment of its right endpoint, while the next update is an increment of its left endpoint.
For every letter, we run at most one binary search which uses O(log m) IPM queries and
hence takes O(log m(log log m)3) time. As τ = O(m/ log2 m), the m/τ term dominates the
per-letter running time. The correctness of the described procedure follows from the fact
that any substring of T of length greater than τ is either fully contained in the first window
or crosses the boundary of some window. ◀

▶ Corollary 6.4. Assume to be given random access to an m-length string S and streaming ac-
cess to a n-length string T , where n ≥ m. For all τ ∈ [

√
m log m(log log m)3 . . O(m/ log2 m)],

there is an algorithm that computes LCS(S, T ) using O(nm/τ · log log σ) time and O(τ) space.

Proof. Note that the longest common substring of S and T is a T -maximal substring of S

and T . We use the algorithm of Theorem 6.1 with the same value of τ to iterate over all
T -maximal common substrings T [t . . t′] of S and T , and store the pair of indices t, t′ that
maximizes t′ − t. ◀

▶ Corollary 6.5. Assume to be given random access to an m-length pattern P and streaming ac-
cess to an n-length text T , where n ≥ m. For all τ ∈ [

√
m log m(log log m)3 . . O(m/ log2 m)],

there is an algorithm that solves the CPM problem for P, T using O(m/τ · log log σ) time per
letter of T and O(τ) space.

Proof. We use the algorithm of Theorem 6.1 with threshold τ on the string P · P , to which
we have random access, and a streaming string T . The occurrence of any rotation of P

in T implies a common substring of P · P and T of length m ≥ 2τ . The algorithm of
Theorem 6.1 allows us to find such occurrences in O(m/τ · log log σ) amortized time per
letter of T using O(τ) space. By noticing that none of the m-length substrings are fully
contained in T (|T |−τ . . |T |], we can deamortise the algorithm using the standard time-slicing
technique, cf [30]. ◀
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7 CPM in the Read-only Setting

In this section, we present a deterministic read-only online algorithm for the CPM problem.

▶ Theorem 7.1. There is a deterministic read-only online algorithm that solves the CPM
problem on a pattern P of length m and a text T of length n using O(1) space and O(1) time
per letter of the text.

Proof. In this proof, we assume that n ≤ 2m − 1. If this is not the case, we can cover T with
2m-length windows overlapping by m − 1 letters, and process the text window by window;
the last window might be shorter. Every occurrence of a rotation of P belongs to exactly
one of the windows and hence will be reported exactly once.

We partition P into four fragments P1, P2, P3, P4, each of length either ⌊m/4⌋ or ⌈m/4⌉.2
By applying Fact 2.4, we compute the periods of each of P and Pi for i ∈ [1 . . 4], if it is are
periodic. We also compute, for each i ∈ [1 . . 4], the occurrences of Pi in P 2 using Fact 2.3,
and store them in O(1) space due to Fact 2.1. Overall, the preprocessing step takes O(m)
time and uses constant space.

We compute all occurrences of all Pi in T in an online manner using Fact 2.3. Due to
Fact 2.1, we can represent all computed occurrences of each Pi using a constant number of
arithmetic progressions with difference per(Pi) in O(1) space.

▶ Observation 7.2. Assume that T (j − m . . j] = P [∆ + 1 . . m] ◦ P [. . ∆]. There is an
occurrence of Pi at a position ℓ of T such that j − m < ℓ ≤ j − |Pi| + 1 if and only if there is
an occurrence of Pi at position p = ∆ + ℓ − j + m of P 2.

Now, note that for every rotation P ′ of P , some Pi occurs at one of the first ϕ := 2⌈m/4⌉
positions of P ′. We will use such occurrences as anchors to compute the occurrences of
rotations of P in T . Fix i such that there is an occurrence of Pi in the first ϕ positions of
T (j − m . . j]. We consider two cases depending on whether the period of Pi is large or small.

Case I: per(Pi) > |Pi|/4. By Fact 2.1, there are O(1) occurrences of Pi in each of T

and P 2. Suppose that Pi occurs at position ℓ of T . If T (j − m . . j] = P [∆ + 1 . . m] ◦ P [. . ∆]
for some ∆, then, by Observation 7.2, Pi occurs at position p = ∆ + ℓ − j + m of P 2 and we
must have that the length of the longest common suffix of T [1 . . ℓ) and P 2[1 . . p) is at least
ℓ − (j − m) and the length of the longest common prefix of T [ℓ + |Pi| . .] and P 2[p + |Pi| . .] is
at least j − ℓ − |Pi|. As we only need to consider occurrences of Pi in the first ϕ positions of
rotations of P , we can work under the assumption that ℓ − (j − m) ≤ ϕ. Hence, it suffices to
compute, for every occurrence of Pi at a position p in P 2 and every occurrence of Pi at a
position ℓ in T , values

x := max{ϕ, LCER(T [1 . . ℓ), P 2[1 . . p))}, the maximum of ϕ and the length of the longest
common suffix of T [1 . . ℓ) and P 2[1 . . p);
y := LCER(T [1 . . ℓ), P 2[1 . . p)), the length of the longest common prefix of T [ℓ + |Pi| . .]
and P 2[p + |Pi| . .].

The length y is computed naively as new letters arrive, while, in order to compute x,
we perform a constant number of letter comparisons for each letter that arrives. Since
ℓ − (j − m) = O(j − ℓ − |Pi|), we will have completed the extension to the left when the j-th
letter of the text arrives. As there is a constant number of pairs (p, ℓ) to be considered, we
perform a total number of O(1) letter comparisons per letter of the text.

2 The sole reason for partitioning P into four fragments instead of two is to guarantee that there is an
occurrence of some Pi close the the starting position of each rotation of P . This allows us to obtain a
worst-case rather than an amortised time bound for processing each letter of the text.
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Case II: per(Pi) ≤ |Pi|/4. For brevity, denote ρ = per(Pi). Below, when we talk about
arithmetic progressions of occurrences of Pi, we mean maximal arithmetic progressions
of starting positions of occurrences of Pi with difference ρ. Consider the first element ℓ

and the last element r of the rightmost computed arithmetic progression of occurrences
of Pi in T (j − m . . j]. We next distinguish between two cases depending on whether
per(T (j − m . . j]) = ρ. This information can be easily maintained in O(1) time per letter
using O(1) space as follows. In particular, for each arithmetic progression of occurrences
of Pi in T , we perform at most ρ − 1 letter comparisons to extend the periodicity to the left;
we can do this lazily upon computing the first element of each progression, by performing at
most one letter comparison for each of the next ρ − 1 letter arrivals. Further, as at most
one arithmetic progression corresponds to occurrences of Pi in T that contain a position
in (j − ρ . . j], the extensions to the right take O(1) time per letter as well.

Subcase (a): per(T (j − m . . j]) ̸= ρ. Suppose that T (j − m . . j] = P [∆ + 1 . . m] ◦ P [. . ∆]
for some ∆. Then, due to Observation 7.2, one of the two following holds:
1. ℓ and pℓ = ∆+ℓ−j +m are the first elements in arithmetic progressions of occurrences

of Pi in T (j − m . . j] and P 2, respectively;
2. r and pr = ∆+r −j +m are the last elements in arithmetic progressions of occurrences

of Pi in T (j − m . . j] and P 2, respectively.
We handle this case by considering a subset of pairs of occurrences of Pi and treating
them similarly to Case I. Namely, we consider (a) pairs that are first in their respective
arithmetic progressions in P 2 and T and (b) pairs that are last in their respective
arithmetic progressions in P 2 and T (j − m . . j]. By Fact 2.1, there are only a constant
number of such elements in P 2 and a constant number of such elements in the text at any
time (a previously last element in the text may stop being last when a new occurrence of
Pi is detected). For pairs of first elements there are no changes required to the algorithm
for Case I. We next argue that, for each pair (r, pr) of last elements, it suffices to perform
only O(ρ) letter comparisons to check how far the periodicity extends to the left, and that
this is all we need to check. Due to this, we do not restrict our attention to the case when
r ∈ (j − m . . j − m + ϕ], but rather consider all last elements of arithmetic progressions.
Let ℓ′ be the first element of the arithmetic progression in T (j − m . . m] that contains r.
If ℓ′ > ρ + j − m, we avoid extending to the left since either ℓ′ ∈ (j − m . . j − m + ϕ] and
the sought occurrence of a rotation of P , if it exists, will be computed by the algorithm
when it processes pair (ℓ′, ∆ + ℓ′ − j + m) or the sought occurrence will be computed
when processing a different arithmetic progression of occurrences of Pi or a different
Pj . Further note that the extension to the left has been already computed; either ℓ′ is
not the first element in the arithmetic progression of occurrences of Pi in T (we have
assumed that it is in T (j − m . . j]), in which case we are trivially done, or ℓ′ is the first
element of an arithmetic progression in T and hence we extended the periodicity via a lazy
computation when the occurrence of Pi at position ℓ′ was detected. As the occurrences
of Pi in T are spaced at least ρ positions away, the above procedure takes O(1) time per
letter of the text.

Subcase (b): per(T (j − m . . j]) = ρ. Using O(m) time and O(1) extra space, we can
precompute all 1 ≤ j ≤ ρ such that Q∞

i [j . . j + m) occurs in P 2, where Qi = Pi[1 . . ρ];
it suffices to extend the periodicity for each of the O(1) arithmetic progressions of
occurrences of Pi in P 2 and to perform standard arithmetic. In particular, the output
consists of a constant number of intervals. Then, if per(T (j − m . . j]) = ρ, T (j − m . . j]
equals a rotation of P if and only if ℓ − (j − m) (mod ρ) is in one of the computed
intervals and this can be checked in constant time. ◀
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Abstract
Wheeler automata were introduced in 2017 as a tool to generalize existing indexing and compression
techniques based on the Burrows-Wheeler transform. Intuitively, an automaton is said to be
Wheeler if there exists a total order on its states reflecting the natural co-lexicographic order of the
strings labeling the automaton’s paths; this property makes it possible to represent the automaton’s
topology in a constant number of bits per transition, as well as efficiently solving pattern matching
queries on its accepted regular language. After their introduction, Wheeler automata have been
the subject of a prolific line of research, both from the algorithmic and language-theoretic points
of view. A recurring issue faced in these studies is the lack of large datasets of Wheeler automata
on which the developed algorithms and theories could be tested. One possible way to overcome
this issue is to generate random Wheeler automata. Motivated by this observation of practical
nature, in this paper we initiate the theoretical study of random Wheeler automata, focusing our
attention on the deterministic case (Wheeler DFAs – WDFAs). We start by naturally extending the
Erdős-Rényi random graph model to WDFAs, and proceed by providing an algorithm generating
uniform WDFAs according to this model. Our algorithm generates a uniform WDFA with n states,
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1 Introduction

Wheeler automata were introduced by Gagie et al. in [11] in an attempt to unify existing
indexing and compression techniques based on the Burrows-Wheeler transform [5]. An
automaton is said to be Wheeler if there exists a total order of its states such that (i)
states reached by transitions bearing different labels are sorted according to the underlying
total alphabet’s order, and (ii) states reached by transitions bearing the same label are
sorted according to their predecessors (i.e. the order propagates forward, following pairs
of equally-labeled transitions). Equivalently, these axioms imply that states are sorted
according to the co-lexicographic order of the strings labeling the automaton’s paths. Since
their introduction, Wheeler automata have been the subject of a prolific line of research,
both from the algorithmic [7, 3, 10, 12, 9, 6, 13] and language-theoretic [2, 1, 8] points of
view. The reason for the success of Wheeler automata lies in the fact that their total state
order enables simultaneously to index the automaton for pattern matching queries and to
represent the automaton’s topology using just O(1) bits per transition (as opposed to the
general case, requiring a logarithmic number of bits per transition).

A recurring issue faced in research works on Wheeler automata is the lack of datasets of
(large) Wheeler automata on which the developed algorithms and theories could be tested.
As customary in these cases, a viable solution to this issue is to randomly generate the desired
combinatorial structure, following a suitable distribution. The most natural distribution,
the uniform one, represents a good choice in several contexts and can be used as a starting
point to shed light on the combinatorial objects under consideration; the case of random
graphs generated using the Erdős-Rényi random graph model [15] is an illuminating example.
In the case of Wheeler automata, we are aware of only one work addressing their random
generation: the WGT suite [6]. This random generator, however, does not guarantee a
uniform distribution over the set of all Wheeler automata.

Our contributions
Motivated by the lack of formal results in this area, in this paper we initiate the theoretical
study of random Wheeler automata, focusing our attention on the algorithmic generation
of uniform deterministic Wheeler DFAs (WDFAs). We start by extending the Erdős-Rényi
random graph model to WDFAs: our uniform distribution is defined over the set Dn,m,σ of all
Wheeler DFAs over the effective alphabet (i.e. all labels appear on some edge) [σ] = {1, . . . , σ},
with n states [n], m transitions, and Wheeler order 1 < 2 < . . . < n. We observe that,
since any WDFA can be encoded using O(nσ) bits [11], the cardinality of Dn,m,σ is at most
2O(nσ). On the other hand, the number of DFAs with n states over alphabet of size σ is
2Θ(nσ log n) [15]. As a result, a simple rejection sampling strategy that uniformly generates
DFAs until finding a WDFA (checking the Wheeler property takes linear time on DFAs [1])
would take expected exponential time to terminate. To improve over this naive solution, we
start by defining a new combinatorial characterization of WDFAs: in Section 3, we establish
a bijection that associates every element of Dn,m,σ to a pair formed by a binary matrix and
a binary vector. This allows us to design an algorithm to uniformly sample WDFAs, based
on the above-mentioned representation. Remarkably, our sampler uses constant working
space and streams the sampled WDFA directly to output:
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▶ Theorem 1. There is an algorithm to generate a uniform WDFA from Dn,m,σ in O(m)
expected time (O(m log m) time with high probability) using O(1) words of working space, for
all alphabets of size σ ≤ m/ ln m. The output WDFA is directly streamed to the output as a
set of labeled edges.

As a by-product of our combinatorial characterization of WDFAs, in Theorem 19 we give
an exact formula for the number |Dn,m,σ| of distinct WDFAs with n nodes and m edges
labeled from alphabet [σ] and in Theorem 20 we give a tight asymptotic formula for the
number |Dn,σ| of distinct WDFAs with n nodes and any number of edges labeled from [σ],
obtaining that nσ + (n − σ) log σ bits are necessary and sufficient to encode WDFAs from
such a family up to an additive Θ(n) term.

We conclude by presenting an implementation of our algorithm, publicly available at
https://github.com/regindex/Wheeler-DFA-generation, and showing that it is very fast
in practice while using a negligible (constant) amount of working space.

2 Preliminaries and Problem Statement

With ln x and log x, we indicate the natural logarithm and the logarithm in base 2 of x,
respectively. For an integer k ∈ N+, we let [k] denote the set of all integers from 1 to
k. For a bit-vector v ∈ {0, 1}k, we denote with ∥v∥ =

∑
i∈[k] vi the L1-norm of v, i.e.,

the number of set bits in v. For an integer ℓ ≤ k, we denote with v[1 : ℓ] the bit-vector
(v1, . . . , vℓ) consisting only of the first ℓ bits of v. For a bit-matrix A ∈ {0, 1}ℓ×k and a
column index j ∈ [k], we denote the j’th column of A by Aj and the element at row i and
column j as Ai,j . We let ∥A∥ =

∑
i∈[k],j∈[ℓ] Ai,j be the L1,1-norm of A, which again counts

the number set bits in A. For a bit-vector v ∈ {0, 1}k, we use the notation rank(v, i) to
denote the number of occurrences of 1 in v[1 : i]. For completeness, we let rank(v, 0) = 0.
We generalize this function also to matrices as follows. For a bit-matrix A ∈ {0, 1}ℓ×k, we
let rank(A, (i, j)) =

∑
r∈[j−1] rank(Ar, ℓ) + rank(Aj , i). We sometimes write bit-vectors from

{0, 1}k in string form, i.e., as a sequence of k bits.
In this paper we are concerned with deterministic finite automata.

▶ Definition 2 (Determinisitic Finite Automaton (DFA)). A Determinisitic Finite (Semi-)
Automaton (DFA) D is a triple (Q, Σ, δ) where Q = [n] is a finite set of n states with 1 ∈ Q

being the source state, Σ = [σ] is the finite alphabet of size σ, and δ : Q × Σ → Q is a
transition function containing m transitions.

We omit to specify the final states of DFAs, since they do not play a role in the
context of our problem. We use the shorthand δj(v) for δ(v, j). Furthermore, we write
δout(v) := {δj(v) : j ∈ Σ} for the set of all out-neighbors of a state v ∈ Q and δin(v) :=
{u ∈ Q : ∃j ∈ Σ with v ∈ δj(u)} for the set of all in-neighbors of v. We assume DFAs
to have non-zero in-degree for exactly the non-source states, i.e., δin(v) ̸= ∅ if and only if
v > 1; This choice simplifies our exposition and it is not restrictive from the point of view
of the languages accepted by such DFAs. We do not require the transition function δ to
be complete; This choice is motivated by the fact that requiring completeness restricts the
class of Wheeler DFAs [2]. Furthermore, we do not require DFAs to be connected; Also this
choice is customary as it allows, for instance, to use our WDFA sampler to empirically study
properties such as connectivity phase transition thresholds.

We say that the alphabet Σ is effective if and only if (∀j ∈ Σ)(∃u, v ∈ Q)(δj(u) = v), i.e.
if every character of Σ labels at least one transition. We assume that the alphabet Σ = [σ] is
totally ordered according to the standard order among integers. Wheeler DFAs constitute
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a special class of DFAs that can be stored compactly and indexed efficiently due to an
underlying order on the states: the Wheeler order (see Definition 3). As said in Definition 2,
in this paper the states Q of an automaton D are represented by the integer set [n] for some
positive integer n; note that in the following definition we use the order on integers < to
denote the Wheeler order on the states.

▶ Definition 3 (Wheeler DFA [11]). A Wheeler DFA (WDFA) is a DFA D such that < is a
Wheeler order, i.e. for a, a′ ∈ Σ, u, v, u′, v′ ∈ Q:

(i) If u′ = δa(u), v′ = δa′(v), and a ≺ a′, then u′ < v′.
(ii) If u′ = δa(u) ̸= δa(v) = v′ and u < v, then u′ < v′.

We note that the source axiom present in [11], which requires that the source state is first
in the order, vanishes in our case as the ordering < on the integers directly implies that the
source state is ordered first. Notice that property (i) in Definition 3 implies that a WDFA is
input-consistent, i.e., all in-going transitions to a given state have the same label.

▶ Definition 4. With Dn,m,σ we denote the set of all Wheeler DFAs with effective alphabet
Σ = [σ], n states Q = [n], m transitions, and Wheeler order 1 < 2 < . . . < n.

Clearly, Dn,m,σ is a subset of the set An,m,σ of all finite (possibly non-deterministic)
automata over the ordered alphabet [σ] with n states [n] and m transitions.

In this paper we investigate the following algorithmic problem:

▶ Problem 5. For given n, m, and σ, generate an element from Dn,m,σ uniformly at random.

Note that, since in Definition 4 we require 1 < 2 < . . . < n to be the Wheeler order,
Problem 5 is equivalent to that of uniformly generating pairs formed by a Wheeler DFA D

and a valid Wheeler order for the states Q = [n] of D, not necessarily equal to the integer
order 1 < 2 < · · · < n. Throughout the whole paper, we assume that n − 1 ≤ m ≤ nσ and
σ ≤ n − 1 (due to input consistency), as otherwise Dn,m,σ = ∅ and the problem is trivial.

3 An Algorithm for Uniformly Generating WDFAs

Our strategy towards solving Problem 5 efficiently is to associate every element D from
Dn,m,σ to exactly one pair (O, I) of elements from On,σ,m × Im,n (see Definition 6 below)
via a function r : Dn,m,σ → On,σ,m × Im,n (“r” stands for representation). Formally, the two
sets appearing in the co-domain of r are given in the following definition.

▶ Definition 6. Let

On,σ,m :=
{

O ∈ {0, 1}n×σ : ∥O∥ = m and ∥Oj∥ ≥ 1 for all j ∈ [σ]
}

and
Im,n :=

{
I ∈ {0, 1}m : ∥I∥ = n − 1

}
.

The intuition behind the two sets On,σ,m and Im,n is straightforward: their elements
encode the outgoing labels and the in-degrees of the automaton’s states, respectively. In order
to describe more precisely this intuition, let us fix an automaton D = (Q, δ, Σ) ∈ Dn,m,σ and
consider its image r(D) = (O, I) ∈ On,σ,m × Im,n (see Figures 1 and 2 for an illustration):

The matrix O is an encoding of the labels of the out-transitions of D. A 1-bit in position
Ou,j means that there is an out-going transition from state u labeled j. Formally,

Ou,j :=
{

1 if ∃v : v = δj(u)
0 otherwise.

(1)
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The vector I is a concise encoding of the in-degrees of all states. It is defined as

I := (1, 0, . . . , 0︸ ︷︷ ︸
|δin(2)|

, 1, 0, . . . , 0︸ ︷︷ ︸
|δin(3)|

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
|δin(n)|

), (2)

i.e, for all states i other than the source (that has no in-transitions), the vector contains
exactly one 1-bit followed by |δin(i)| − 1 0-bits.

1 2 3 4 5

2

1 2

2

1

2

Figure 1 Running example: a WDFA D with n = 5 states, m = 6 edges, alphabet cardinality
σ = 2, and Wheeler order 1 < 2 < 3 < 4 < 5. Note that the WDFA has two connected components.

1 2
1 0 1
2 1 0
3 0 1
4 0 1
5 1 1

2 3 4 5
1 0 1 1 0 1

Figure 2 Matrix O (left) and bit-vector I (right) forming the encoding r(D) = (O, I) of the
WDFA D of Figure 1. In matrix O, column names are characters from Σ = [σ] and row names
are states from Q = [n]. In bit-vector I, each state (except state 1) is associated with a bit set,
in Wheeler order. Cells containing a set bit are named with the name of the corresponding state.
Bits in bold highlight the states on which the character that labels the state’s incoming transitions
changes (i.e. state 2 is the first whose incoming transitions are labeled 1, and state 3 is the first
whose incoming transitions are labeled 2).

Let us proceed with two remarks.
▶ Remark 7. As ∥O∥ = m there are m transitions in total. As ∥Oj∥ ≥ 1 for all j ∈ [σ], the
alphabet is effective, i.e., every character labels at least one transition.
▶ Remark 8. The vector I does not encode the letter on which a transition is in-going to a
given state. Notice however that as D is a WDFA all these transitions have to be labeled with
the same letter and we can reconstruct this letter for a given I once we know the total number
of transitions labeled with each letter. This is because property (i) of Definition 3 guarantees
that the node order is such that the source state (that has no in-going transitions) is ordered
first followed by nodes whose in-transitions are labeled with character 1, followed by nodes
with in-transitions labeled with character 2, etc. The information on how many transitions
are labeled with each character is carried by the matrix O for which r(D) = (O, I).

Let (O, I) be a pair from the image of r, i.e, r(D) = (O, I) for some D. Then it will
always be the case that I is contained in a subset IO of Im,n that can be defined as follows.

▶ Definition 9. For a matrix O ∈ On,σ,m, let

IO :=
{

I ∈ Im,n : I1+
∑j−1

k=1
∥Ok∥ = 1 for all j ∈ [σ]

}
.
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Using our running example of Figure 2, the bits I1+
∑j−1

k=1
∥Ok∥ that we force to be equal

to 1 are those highlighted in bold, i.e. I1 and I3: noting that bits in I correspond to edges,
those bits correspond to the leftmost edge labeled with a given character j (for any j ∈ Σ).

This leads us to define the following subset of On,σ,m × Im,n:

▶ Definition 10. Rn,m,σ := {(O, I) : O ∈ On,σ,m and I ∈ IO}.

Based on the above definition, we can prove:

▶ Lemma 11. For any D ∈ Dn,m,σ, r(D) ∈ Rn,m,σ.

Proof. Note that the integers
∑j−1

k=1 ∥Ok∥ for j ∈ [σ] correspond to the number of edges
labeled with letters 1, . . . , j − 1, hence the positions 1 +

∑j−1
k=1 ∥Ok∥ correspond to a change

of letter in the sorted (by destination node) list of edges. Recalling that WDFAs are input-
consistent (i.e., all in-transitions of a given node carry the same label) and that nodes are
ordered by their in-transition letters, positions 1+

∑j−1
k=1 ∥Ok∥ for j ∈ [σ] in I must necessarily

correspond to the first edge of a node, hence they must contain a set bit. ◀

The co-domain of the function r can thus be restricted, and the function’s signature can
be redefined, as follows: r : Dn,m,σ → Rn,m,σ.

After describing this association of a WDFA D ∈ Dn,m,σ to a (unique) pair r(D) =
(O, I) ∈ Rn,m,σ, we will argue that function r is indeed a bijection from Dn,m,σ to Rn,m,σ.
It will follow that one way of generating elements from Dn,m,σ is to generate elements from
Rn,m,σ: this will lead us to an efficient algorithm to uniformly sample WDFAs from Dn,m,σ,
as well to a formula for the cardinality of Dn,m,σ.

3.1 The Basic WDFA Sampler
Our overall approach is to (1) uniformly sample a matrix O from On,σ,m using Algorithm 2,
then (2) uniformly sample a vector I from IO using Algorithm 3 with input O, and finally
(3) build a WDFA D using O and I as input via Algorithm 4. We summarize this procedure
in Algorithm 1. A crucial point in our correctness analysis (Section 4) will be to show that
uniformly sampling from On,σ,m and IO does indeed lead to a uniform WDFA from Dn,m,σ

(besides the bijectivity of r, intuitively, this is because |IO| = |IO′ | for any O, O′ ∈ On,σ,m).
As source of randomness, our algorithm uses a black-box shuffler algorithm: given a

bit-vector B ∈ {0, 1}∗, function shuffle(B) returns a random permutation of B. To improve
readability, in this subsection we start by describing a preliminary simplified version of our
algorithm which does not assume any particular representation for the matrix-bit-vector pair
(O, I) ∈ Rn,m,σ, nor a particular shuffling algorithm (for now, we only require the shuffling
algorithm to permute uniformly its input). By employing a particular sequential shuffler,
in Subsection 3.2 we then show that we can generate a sparse representation of O and I

on-the-fly, thereby achieving constant working space and linear expected running time.

Algorithm 1 sample_D(n, m, σ).

1 O := sample_O(n, m, σ)
2 I := sample_I(O)
3 D := build_D(O, I)
4 return D
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Out-transition Matrix. In order to sample the matrix O from On,σ,m, in addition to function
shuffle we assume a function reshapek,ℓ that takes a vector x of dimension k ·ℓ and outputs
a matrix A of dimension k × ℓ with the j’th column Aj being the portion x(j−1)·k+1, . . . , xj·k
of x. The algorithm to uniformly generate O from On,σ,m then simply samples a bit vector of
length nσ with exactly m 1-bits, shuffles it uniformly, reshapes it to be a matrix of dimension
n × σ and repeats these steps until a matrix is found with at least one 1-bit in each column
(rejection sampling).

Algorithm 2 sample_O(n, m, σ).

1 repeat
2 O := reshapen,σ(shuffle(1m0nσ−m))
3 until ∥Oj∥ ≥ 1 for all j ∈ [σ]
4 return O

Looking at the running example of Figures 1 and 2, the shuffler is called as shuffle(1604).
In this particular example, this bit-sequence is permuted as 0100110111 by function shuffle.
Function reshapen,σ converts this bit-sequence into the matrix O depicted in Figure 2, left.

In-transition Vector. In order to generate the vector I from Im,n, we proceed as follows.
The algorithm takes O as input and generates a uniform random element from the set IO

by first creating a “mask” that is a vector of the correct length m and contains σ 1-bits at
the points 1 +

∑j−1
k=1 ∥Ok∥ for j ∈ [σ]. These are the points in I where the character of the

corresponding transition changes and hence, by the input-consistency condition, also the
state has to change. The remaining m − σ positions in the mask are filled with the wildcard
character #. We then give this mask vector as the first argument to a function fill that
replaces the m − σ positions that contain the wildcard character # with the characters in the
second argument (in order). Formally, the function fill takes two vectors as arguments a

and b with the condition that a contains |b| times the # character and |a| − |b| times a 1-bit.
The function then returns a vector c that satisfies ci = 1 whenever ai = 1 and ci = bi−rank(a,i)
otherwise, i.e., when ai = #.

Algorithm 3 sample_I(O).

1 extract n, m, σ from O

2 mask := 1#∥O1∥−11#∥O2∥−1 . . . 1#∥Oσ∥−1

3 I := fill(mask, shuffle(1n−σ−10m−n+1))
4 return I

Going back to our running example of Figures 1 and 2, we have mask = 1#1### (that
is, all bits but the bold ones in the right part of Figure 2 are masked with a wildcard).
The shuffler is called as shuffle(1100) and, in this particular example, returns the shuffled
bit-vector 0101. Finally, function fill is called as fill(1#1###,0101) and returns the
bit-vector I =101101 depicted in the right part of Figure 2.

Building the WDFA. After sampling O and I, the remaining step is to build the output
DFA D. This is formalized in Algorithm 4. By iterating over all non-zero elements in
O, we construct the transition function δ: the i’th non-zero entry in O corresponds to an

CPM 2024



5:8 Random Wheeler Automata

in-transition at state rank(I, i) + 1 (we keep a counter named v corresponding to this rank).
The origin state of the transition is the row in which we find the i’th 1 in O when reading O

column-wise. The column itself corresponds to the label of this transition.

Algorithm 4 build_D(O, I).

1 extract n, m, σ from O, Q := [n], Σ := [σ]

2 δ := ∅, i := 1, v := 1
3 for j = 1, 2, . . . , σ do
4 for u = 1, 2, . . . , n do
5 if Ou,j = 1 then
6 if Ii = 1 then v := v + 1
7 δ := δ ∪ {((u, j), v))}, i := i + 1

8 return D = (Q, Σ, δ)

3.2 Constant-Space WDFA Sampler
Notice that our Algorithm 4 accesses the matrix O and the bit-vector I in a sequential
fashion: O is accessed column-wise and I from its first to last position. Based on this
observation, we now show how our WDFA sampler can be modified to use constant working
space. The high-level idea is to generate on-the-fly the positions of non-zero entries of O and
I in increasing order.

In order to achieve this, we employ the sequential shuffler described by Shekelyan and
Cormode [17]. Given two integers N and n, the function init_sequential_shuffler(N, n)
returns an iterator S that can be used (with a stack-like interface) to extract n uniform
integers without replacement from [N ], in ascending order and using a constant number of
words of working space (that is, the random integers are generated on-the-fly upon request,
from the smallest to the largest). More specifically, function S.pop() returns the next sampled
integer, while S.empty() returns true if and only if all n integers have been extracted. The
sequential shuffling algorithm is essentially a clever modification of Knuth’s shuffle [14] (also
referred to as Fisher-Yates shuffler). Knuth’s shuffler, after going through the arbitrarily
ordered set [N ], and in the i’th iteration (for i from 1 to n) swapping the i’th item with
the item at a random position [i, N ], returns the first n items in the resulting permutation.
Knuth’s shuffler requires working space proportional to n as we need to remember which
elements have been swapped from lower positions (i.e., index ≤ n) into higher positions (i.e.,
index > n). The idea behind the sequential shuffler of Shekelyan and Cormode is to first
sample just the cardinality H of the set of items in higher positions that Knuth’s shuffler
would swap into lower position. Then, in a second step the algorithm samples H actual items
from higher positions with replacement, resulting in h ≤ H elements. Finally, in a third step,
n − h items are sampled from lower positions. We note that the distribution in the first step
is chosen such that the sampling in the second step can be done with replacement – sampling
duplicates simply increases the number of items sampled from lower positions. We refer the
reader to the article by Shekelyan and Cormode [17] for further details.

Algorithm Description. We now describe Algorithm 5. We recall the mask employed in
Algorithm 3: Algorithm 5 iterates, using variable i, over the ranks (i.e., i-th occurrences) of
characters # (wildcards) in the mask. Variable i′, on the other hand, stores the rank of the
next wildcard # that is replaced with a set bit by the shuffler; the values of i′ are extracted
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Algorithm 5 sample_D_constant_space(n, m, σ).

1 i := 1 /* Current position in the subsequence of #’s of the mask */

2 v := 1 /* Destination state of current transition */

3 SO := init_sequential_shuffler(nσ, m)
4 SI := init_sequential_shuffler(m − σ, n − σ − 1)

5 i′ := SI .pop() /* next nonzero position in sequence of #’s in the mask */

6 j := 0 /* current column in O */

7 prev_j := 0 /* previously-visited column in O */

8 while not SO.empty() do
9 t := SO.pop()

10 (u, j) :=
((

(t − 1) mod n
)

+ 1,
(
(t − 1) div n

)
+ 1

)
/* Nonzero coordinate in O */

11 if j > prev_j + 1 then
12 clear output stream and goto line 1 /* Rejection: ∥Oprev_j+1∥ = 0 */

13 if j = prev_j + 1 /* Column of O changes */

14 then
15 v := v + 1
16 prev_j := j

17 else
18 if i = i′ then
19 v := v + 1
20 i′ := SI .pop() /* next nonzero position in sequence of #’s in the mask */

21 i := i + 1
22 output ((u, j), v) /* Stream transition to output */

23 if j ̸= σ then
24 clear output stream and goto line 1 /* Rejection: ∥Oσ∥ = 0 */

from the shuffler SI . Now, whenever i = i′, we are looking at a bit set in bit-vector I (which
here is not stored explicitly, unlike in Algorithm 4) and thus we have to move to the next
destination state v. This procedure exactly simulates Lines 6 and 7 of Algorithm 4.

The iteration (column-wise) over all non-zero entries of matrix O is simulated by the
extraction of values from the shuffler IO (one value per iteration of the while loop at Line 8):
each such value t extracted at Line 9 is converted to a pair (u, j) at Line 10. Variables j

and prev_j store the columns of the current and previously-extracted non-zero entries of
O, respectively. If j > prev_j + 1, then column number prev_j + 1 has been skipped by
the shuffler, i.e., Oprev_j+1 does not contain non-zero entries. In this case, we reject and
start the sampler from scratch (Line 12; note that we need to clear the output stream before
re-initializing the algorithm). If, on the other hand, j = prev_j+1 (Line 13), then the current
non-zero entry of O belongs to the next column with respect to the previously-extracted
non-zero entry; this means that the character labeling incoming transitions changes and we
therefore move to the next destination node by increasing v := v + 1 (Line 15). In this case
we do not increment i, since the new destination node v is the first having incoming label j

and thus it does not correspond to a character # in the mask. Variable i gets incremented
only if j = prev_j: this happens at Line 21. The other case in which we need to move to
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the next destination node (v := v + 1) is when j = prev_j and i = i′ (Line 19). In such a
case, in addition to incrementing v we also need to extract from the shuffler SI the rank
i′ of the next mask character # that is replaced with a set bit (Line 20). After all these
operations, we write the current transition ((u, j), v) to the output stream (Line 22). The
last two lines of Algorithm 5 check if the last visited column of matrix O is indeed Oσ. If
not, ∥Oσ∥ = 0 and we need to reject and re-start the algorithm.

The remaining components of Algorithm 5 are devoted to simulate Algorithm 1, using as
input the two sequences of random pairs/integers extracted from SO and SI , respectively.
As a matter of fact, the two loops in Algorithm 4 correspond precisely to extracting the pairs
(u, j) from SO, and the check at Line 6 of Algorithm 4, together with the increment of i at
Line 7, corresponds to extracting the integers i′ from SI . The rejection sampling mechanism
(repeat-until loop in Algorithm 2) is simulated in Algorithm 5 by re-starting the algorithm
whenever the column j of the current pair (u, j) is either larger by more than one unit than
the column j_prev of the previously-extracted pair (i.e., ∥Oj_prev+1∥ = 0, Line 12), or if the
last pair extracted from SO is such that j is not the σ-th column (i.e., ∥Oσ∥ = 0, Line 24).

Running Example. To understand how the sequential shuffler is used in Algorithm 5, refer
again to the running example of Figures 1 and 2. In Algorithm 5 at Line 3, the sequential
shuffler SO is initialized as SO := init_sequential_shuffler(nσ = 10, m = 6), i.e. the
iterator SO returns 6 uniform integers without replacement from the set {1, 2, . . . , 10}. In
this particular example, function pop() called on iterator SO returns the following integers,
in this order: 2,5,6,8,9,10. Using the formula at Line 10 of Algorithm 5, these integers are
converted to the matrix coordinates (2, 1), (5, 1), (1, 2), (3, 2), (4, 2), (5, 2), i.e., precisely the
nonzero coordinates of matrix O in Figure 2, sorted first by column and then by row.

Using the same running example, the sequential shuffler SI is initialized in Line 4 of
Algorithm 5 as SI := init_sequential_shuffler(m − σ = 4, n − σ − 1 = 2), i.e. the
iterator SI returns two uniform integers without replacement from the set {1, 2, 3, 4}. In
this particular example, function pop() called on iterator SI returns the following integers,
in this order: 2,4. Using the notation of the previous subsection, this sequence has the
following interpretation: the 2-nd and 4-th occurrences of # of our mask 1#1### used
in Algorithm 3 have to be replaced with a bit 1, while the others with a bit 0. After this
replacement, the mask becomes 101101, i.e. precisely bit-vector I of Figure 2.

4 Analysis

4.1 Correctness, Completeness and Uniformity
Being Algorithm 5 functionally equivalent to Algorithm 1 (the only relevant difference between
the two being the employed data structures to represent matrix O and bit-vector I), for ease
of explanation in this section we focus on analyzing the correctness (the algorithm generates
only elements from Dn,m,σ), completeness (any element from Dn,m,σ can be generated by the
algorithm) and uniformity (all D ∈ Dn,m,σ have the same probability to be generated by the
algorithm) of Algorithm 1. These properties then automatically hold on Algorithm 5 as well.

We start with a simple lemma. The lemma says the following: Assume that r(D) = (O, I)
and O contains a 1 in position (u, j), meaning that there is a transition leaving state u,
labeled with letter j. Then this out-transition is the i = rank(O, (u, j)) bit that is set to 1 in
O and hence the entry in I corresponding to this transition can be found at I[i]. The state
to which this transition is in-going is exactly the number of 1s in I up to this point, i.e.,
rank(I, i), plus one (the offset is due to the source having no in-transitions).



R. Becker, D. Cenzato, S.-H. Kim, B. Kodric, R. Maso, and N. Prezza 5:11

▶ Lemma 12. Let D ∈ Dn,m,σ and let r(D) = (O, I). If Ou,j = 1 and rank(O, (u, j)) = i,
then δ(u, j) = rank(I, i) + 1.

Proof. First, notice that since Ou,j = 1, it is clear that there is an outgoing transition from
u labeled j. Furthermore, since rank(O, (u, j)) = i, we know that this transition corresponds
to the i-th entry in I. Now, by the definition of I, it follows that the destination state of the
considered transition is v = rank(I, i) + 1. ◀

Algorithm 4 is a deterministic algorithm and thus describes a function, say f , from the
set of its possible inputs to the set of its possible outputs. The set of its possible inputs, i.e.,
the domain of f , is exactly Rn,m,σ. The algorithm’s output is certainly a finite automaton,
i.e., the co-domain of f is An,m,σ. We will in fact show that the range of f is exactly Dn,m,σ.
We will do so by showing that f is actually an inverse of r, more precisely we show that (1)
r is surjective and (2) f is a left-inverse of r (and thus r is injective).

Surjectivity of r. We start with proving that r is surjective.

▶ Lemma 13. It holds that r : Dn,m,σ → Rn,m,σ is surjective.

Proof. Fix an element (O, I) ∈ Rn,m,σ, i.e., an O ∈ On,σ,m and I ∈ IO. We now construct
an automaton D = (Q, Σ, δ) and then show that r(D) = (O, I). We let Q = [n], Σ = [σ], and

δ = {((u, j), v) : Ou,j = 1 and v = rank(I, rank(O, (u, j))) + 1}.

Let r(D) = (O′, I ′) and let us proceed by showing that O = O′ and I = I ′. Recall the
definition of r, see Equations (1) and (2). It is immediate that O′ = O given the definition of
O′ and δ. In order to show that I ′ = I, first note that I ′ =

∏n
i=2 10|δin(i)|−1. Then, consider

the following relation between I and δin(i) for any state i ∈ [n], which uses the definition of
δ and Lemma 12:

|δin(i)| = |{(u, j) ∈ [n] × [σ] : Ou,j = 1 and rank(I, rank(O, (u, j))) + 1 = i}|
= |{k ∈ [m] : k = rank(O, (u, j)) for some (u, j) ∈ [n] × [σ] with Ou,j = 1

and rank(I, k) + 1 = i}|
= max{k ∈ [m] : rank(I, k) = i − 1} − max{k ∈ [m] : rank(I, k) = i − 2}.

Now, recall that I ∈ IO, hence the first bit in I is 1. Using the previous equality, it
now follows that the second 1-bit in I is at position |δin(2)| + 1. By using this equality
another n − 3 times, we obtain that the first

∑n−1
i=2 |δin(i)| + 1 positions of I are equal to

(10|δin(2)|−110|δin(3)|−1 . . . 10|δin(n−1)|−1)1 and thus agree with I ′. It remains to observe that
this portion of I already contains n − 1 bits that are equal to 1 and thus the remaining bits
have to be zero-bits as I ∈ I. Hence, I = I ′ and this completes the proof. ◀

Injectivity of r via Left-inverse f . In order to establish that f is the inverse of r, it remains
to prove that f is a left-inverse of r (which implies that r is injective).

▶ Lemma 14. The function f is a left-inverse of r, i.e., f(r(D)) = D for any D ∈ Dn,m,σ.

Proof. Let D = (Q, Σ, δ) ∈ Dn,m,σ and let (O, I) = r(D). We have to show that D′ = f(O, I),
i.e., the automaton D′ = (Q′, Σ′, δ′) output by Algorithm 4 on input (n, m, σ, O, I) is equal to
D. Notice that clearly Q = Q′ = [n] and Σ = [σ]. It remains to show that δ = δ′. It is clear
that Algorithm 4 adds m transitions to δ′, one in each of the m = ∥O∥ iterations. It thus
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remains to prove that each such transition ((u, j), v) added in some iteration i is contained
in δ. Firstly, as Ou,j = 1 it is clear that D has an outgoing transition at state u with letter j,
second it is clear that the algorithm maintains the property that v = rank(I, i) + 1 and thus
due to Lemma 12 it holds that δ(u, j) = v and thus this transition is also contained in δ. ◀

We can thus denote the function f with r−1.

▶ Corollary 15. Function r : Dn,m,σ → Rn,m,σ is bijective.

The above lemma has several consequences. First, it shows that the output of Algorithm 4
is always a WDFA. Second, as the function r is bijective, this means that generating uniform
pairs from the range of r results in a uniform distribution of WDFAs from Dn,m,σ.

▶ Lemma 16. Algorithm 1 on input n, m, σ generates uniformly distributed WDFAs from
Dn,m,σ.

Proof. In the light of r being a bijection and Algorithm 4 implementing the function r−1, it
remains to argue that the statements O := sample_O(n, m, σ) and I := sample_I(O) from
Algorithm 1 in fact generate uniformly distributed pairs from the domain of r−1, i.e., from
Rn,m,σ. It is clear that sample_O(n, m, σ) results in a uniformly distributed element O from
On,σ,m and that sample_I(O) results in a uniformly distributed element I from IO. It thus
remains to observe that |IO| is identical for all O ∈ On,σ,m, namely |IO| =

(
m−σ

n−σ−1
)

for all
O ∈ On,σ,m. This completes the proof. ◀

4.2 Run-time and Space
We now analyze the number of iterations of Algorithm 2, that is, the expected number of
rejections before extracting a bit-matrix O with ∥Oj∥ > 0 for all j ∈ [σ]. Algorithm 5 is
clearly equivalent to Algorithm 1 also under this aspect, since at Lines 12 and 24 we re-start
the algorithm whenever we generate a column Oj without non-zero entries. We prove:

▶ Lemma 17. Assume that m ≥ σ ln(e ·σ). The expected number of iterations of Algorithm 2
(equivalently, rejections of Algorithm 5) is at most 1.6. Furthermore, the algorithm terminates
after O(log m) iterations with probability at least 1 − m−c for any constant c > 0.

We refer the reader to the full version of this article [4] for the proof of the above lemma.
Now assume that σ ≤ m/ ln m. This implies that e · σ ≤ m (for m larger than a constant),
which together with the initial assumption implies that σ ln(e · σ) ≤ σ ln m ≤ m. This is
exactly the condition in Lemma 17. Hence, if σ ≤ m/ ln m then the expected number of
rejections of Algorithm 5 is O(1) (or O(log m) with high probability). Our main Theorem 1
follows from the fact that the sequential shuffler of [17] uses constant space, its functions
pop() and empty() run in constant time, and the while loop at Line 8 of Algorithm 5 runs
for at most m iterations (less only in case of rejection) every time Algorithm 5 is executed.

5 Counting Wheeler DFAs

In this section, we use the WDFA characterization of Section 3.1 to give an exact formula
for the number |Dn,m,σ| of WDFAs with n nodes and m edges on effective alphabet [σ] with
Wheeler order 1 < 2 < · · · < n. All proofs of this section can be found in the full version of
the article [4]. From our previous results, all we need to do is to compute the cardinalities of
On,m,σ and IO.
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▶ Lemma 18. |On,m,σ| =
∑σ

j=0(−1)j
(

σ
j

)(
n(σ−j)

m

)
.

This lemma is obtained via an inclusion-exclusion argument. From Algorithm 3, it is
immediate that |IO| =

(
m−σ

n−σ−1
)

for all O ∈ On,m,σ (see also the proof of Lemma 16). Since
r : Dn,m,σ → Rn,m,σ is bijective (Corollary 15), we obtain an exact formula for |Dn,m,σ|:

▶ Theorem 19. The number |Dn,m,σ| of WDFAs with set of nodes [n] and m transitions
labeled from the effective alphabet [σ], for which 1 < 2 < · · · < n is a Wheeler order is

|Dn,m,σ| =
(

m − σ

n − σ − 1

) σ∑
j=0

(−1)j

(
σ

j

)(
n(σ − j)

m

)
.

Using similar techniques, in the case where σ is not arbitrarily close to n, i.e., σ ≤ (1−ε)·n
for some constant ε, we moreover obtain a tight formula for the logarithm of the cardinality
of Dn,σ =

⋃
m Dn,m,σ, the set of all Wheeler DFAs with n states over effective alphabet [σ]

and Wheeler order 1 < 2 < · · · < n:

▶ Theorem 20. The following bounds hold:
1. log |Dn,σ| ≥ nσ + (n − σ) log σ − (n + log σ), for any n and σ ≤ n − 1, and
2. log |Dn,σ| ≤ nσ + (n − σ) log σ + O(n), for any n ≥ 2/ε and σ ≤ (1 − ε) · n, where ε is

any desired constant such that ε ∈ (0, 1/2].

Note that log |Dn,σ| is the information-theoretic worst-case number of bits necessary (and
sufficient) to encode a WDFA from Dn,σ. Our Theorem 20 states that, up to an additive
Θ(n) number of bits, this value is of nσ + (n − σ) log σ bits. As a matter of fact, our encoding
r(D) = (O, I) of Section 3, opportunely represented using succinct bitvectors [16], achieves
this bound up to additive lower-order terms and supports efficient navigation of the transition
relation.

6 Implementation

We implemented our uniform WDFA sampler in C++.1 We tested our implementation
by generating WDFAs with a broad range of parameters: n ∈ {106 · 2i : i = 0, . . . , 6},
m ∈ {n · 2i − 1 : i = 0, . . . , 7} and σ = 128. To analyze the impact of streaming to disk on the
running time, we tested two versions of our code: (1) We stream the resulting WDFA to disk
(SSD). (2) We stream the WDFA to a pre-allocated vector residing in internal memory. Note
that constant working space is achieved only in case (1). Our experiments were run on a
server with Intel(R) Xeon(R) W-2245 CPU @ 3.90GHz with 8 cores, 128 gigabytes of RAM,
512 gigabytes of SSD, running Ubuntu 18.04 LTS 64-bit. Working space was measured with
/usr/bin/time (Resident set size).

Figure 3 shows the running time of both variants (left: (1) streaming to SSD; right: (2)
streaming to RAM). Both versions exhibit a linear running time behavior, albeit with a
different multiplicative constant. The algorithm storing the WDFA in internal memory is
between 1.2 and 1.7 times faster than the version streaming the WDFA to the disk (the
relatively small difference is due to the fact that we used an SSD). We measured a throughput
of at least 5.466.897 and 7.525.794 edges per second for the two variants, respectively. In our
experiments we never observed a rejection: this is due to the fact that σ ≪ m, making it
extremely likely to generate bit-matrices O containing at least one set bit in each column.

1 Implementation available at https://github.com/regindex/Wheeler-DFA-generation.
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Figure 3 Wall clock time for generating random WDFAs using Algorithm 5. Left: running time
for the algorithm in case (1), i.e., streaming the resulting WDFAs to disk. Right: running time in
case (2), i.e., storing WDFAs in internal memory.

As far as space usage is concerned, version (1), i.e., streaming the WDFA to disk, always
used about 4 MB of internal memory, independently from the input size (this memory is
always required to load the C++ libraries). This confirms the constant space usage of our
algorithm, also experimentally. As expected, the space usage of version (2) is linear with
the input’s size. Nevertheless, both algorithms are extremely fast in practice: in these
experiments, the largest automaton consisting of 64 million states and more than 8 billion
edges was generated in about 15 and 10 minutes with the first and second variant, respectively.
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Abstract
We study the problem of making a de Bruijn graph (dBG), constructed from a collection of strings,
weakly connected while minimizing the total cost of edge additions. The input graph is a dBG that can
be made weakly connected by adding edges (along with extra nodes if needed) from the underlying
complete dBG. The problem arises from genome reconstruction, where the dBG is constructed from
a set of sequences generated from a genome sample by a sequencing experiment. Due to sequencing
errors, the dBG is never Eulerian in practice and is often not even weakly connected. We show the
following results for a dBG G(V, E) of order k consisting of d weakly connected components:
1. Making G weakly connected by adding a set of edges of minimal total cost is NP-hard.
2. No PTAS exists for making G weakly connected by adding a set of edges of minimal total cost

(unless the unique games conjecture fails). We complement this result by showing that there
does exist a polynomial-time (2− 2/d)-approximation algorithm for the problem.

3. We consider a restricted version of the above problem, where we are asked to make G weakly
connected by only adding directed paths between pairs of components. We show that making G

weakly connected by adding d−1 such paths of minimal total cost can be done in O(k|V |α(|V |)+
|E|) time, where α(·) is the inverse Ackermann function. This improves on the O(k|V | log(|V |) +
|E|)-time algorithm proposed by Bernardini et al. [CPM 2022] for the same restricted problem.

4. An ILP formulation of polynomial size for making G Eulerian with minimal total cost.
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1 Introduction

Let us start with some basic definitions and notation following [5]. An alphabet Σ is a finite set
of elements called letters. We consider an integer alphabet Σ = [0, σ). Let x = x[0] . . . x[n−1]
be a string of length n = |x| over Σ. By Σk we denote the set of all strings of length k > 0.
For two indices i and j ≥ i of x, x[i . . j] is the fragment of x starting at position i and
ending at position j. The fragment x[i . . j] is an occurrence of the underlying substring
p = x[i] . . . x[j]; we say that p occurs (or starts) at position i in x. A prefix of x is a substring
of the form x[0 . . j] and a suffix of x is a substring of the form x[i . . n − 1]. By xy or x · y we
denote the concatenation of strings x and y: xy = x[0] . . . x[|x| − 1]y[0] . . . y[|y| − 1]. Given
strings x and y, a suffix/prefix overlap of x and y is a suffix of x that is a prefix of y.

Let S be a collection of strings. The order-k de Bruijn graph (dBG) of S is a directed
multigraph, denoted by GS,k(V, E), such that V is the set of length-(k − 1) substrings of
the strings in S and GS,k contains an edge (u, v) with multiplicity mu,v if and only if the
string u[0] · v is equal to the string u · v[k − 2] and this string occurs exactly mu,v times in
total in the strings in S. For instance, suppose that S is generated from a genome sample by
a sequencing experiment: then any Eulerian circuit1 of GS,k(V, E) corresponds to a single
genome reconstruction [26, 23]. In this model, due to sequencing errors, GS,k would never be
Eulerian in practice [24]; and it would not even be weakly connected. One could, however,
try to make GS,k Eulerian by duplicating some of its existing edges [22] or introducing new
ones when the former do not suffice to make GS,k Eulerian [5]. A natural optimization goal
in either case would be to minimize the total cost of edge additions.

In this paper, we study the problem of making any arbitrary GS,k weakly connected by
introducing a set of new edges of minimal total cost (as well as the underlying set of new
nodes when they do not exist in GS,k). Finding a cheapest way for making GS,k weakly
connected is important because one can subsequently apply the linear-time algorithm of
Bernardini et al. [5] to balance it by adding a set of edges of minimal total cost, and thus
making the graph Eulerian. Since making the dBG directly Eulerian by adding a set of new
edges of minimal total cost is NP-hard (from the shortest common superstring problem [11]),
the connect-and-balance approach, generally, serves as a good-performing heuristic [5]. Our
work falls into a broader line of research that is concerned with algorithmic problems on
strings that can be formulated as problems on dBGs [7, 6, 8, 30, 28, 29, 31, 3, 4].

By GΣ,k(VΣ,k, EΣ,k), we denote the complete dBG of order k over alphabet Σ with
|VΣ,k| = σk−1 and |EΣ,k| = σk. Any two nodes u and v ̸= u in VΣ,k can be connected
by a super-edge whose weight wu,v is in [1, k): this is the shortest path of wu,v unit-cost
edges in GΣ,k. For example, for edge (aabc, bcac) with aabc, bcac ∈ VΣ,k and k = 5, we have
waabc,bcac = 2 corresponding to the following two unit-cost edges: aabc → abca → bcac.

We next formally define the main problem in scope; see Figure 1 for an example.

Connecting de Bruijn Graphs with Edges (Connect-DBG-E)
Input: A de Bruijn graph G(V, E) of order k over alphabet Σ = [0, σ), σ ≤ (k − 1)|V |.
Output: A set A ⊆ EΣ,k of edges and a set B ⊆ VΣ,k of nodes such that G(V ∪B, E ∪A)
is weakly connected and A is of minimum size.

Let us remark that Connect-DBG-E allows for connecting two components Ci, Cj of G

by a path directed from Ci to Cj but this needs not be the case in general; see Figure 1.

1 An Eulerian circuit is a graph cycle using each graph edge exactly once. Such a graph is called Eulerian.
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Figure 1 An input dBG of order k = 5 with d = 3 weakly connected components (left); a solution
to Connect-DBG-E with cost 3 (middle); a solution to Connect-DBG-P with cost 8 (right). The
Connect-DBG-P problem is a restricted version of the Connect-DBG-E problem allowing to
connect the graph only by means of directed paths whose endpoints are two components. In fact, the
graph on the right also shows an optimal solution to making the graph on the left semi-Eulerian.

We fix throughout a dBG G(V, E) of order k over the integer alphabet Σ = [0, σ), σ ≤
(k − 1)|V |, consisting of d weakly connected components. We show the following results:
1. Connect-DBG-E is NP-hard. We show this via a somewhat surprising and highly

non-trivial reduction from the Minimum Vertex Cover problem [15]. See Section 2.
2. No polynomial-time approximation scheme (PTAS) exists for Connect-DBG-E unless

the unique games conjecture [16] fails. We complement this result with a polynomial-
time (2 − 2/d)-approximation algorithm for Connect-DBG-E. Our strategy relies on an
existing (2−2/d)-approximation algorithm for the Minimum Steiner Tree problem [18],
where d is the number of terminals of the Steiner tree.2 See Section 3.

3. Making G weakly connected by adding a set of d−1 directed paths (between components)
of minimal total cost can be done in O(k|V |α(|V |) + |E|) time, where α(·) is the inverse
Ackermann function. We call this the Connect-DBG-P problem; see Figure 1 for an
example. Our algorithm improves the O(k|V | log(|V |)+|E|)-time algorithm by Bernardini
et al. [5]. We make use of an augmented static version of the Aho-Corasick machine [1]
to select the shortest possible paths, while keeping track of the connected components as
they are dynamically merged by using a union-find data structure [10]. See Section 4.

4. An integer linear program (ILP) formulation of polynomial size for making G Eulerian
with minimal total cost. This is a flow-based formulation inspired by the above relaxation
of connecting the d components with d − 1 paths (Connect-DBG-P). Since the graph
must also be balanced (the in- and out-degree for every node is the same), an optimal
solution can always be decomposed into such paths. We complement our ILP with proof-
of-concept experiments on real data showing that problem instances of around 900 nodes
and edges can be solved using an off-the-shelf ILP solver within 10 hours. See Section 5.

2 Hardness of Connect-DBG-E

In this section, we prove that Connect-DBG-E is NP-hard via a reduction from Minimum
Vertex Cover [15]. Recall that Minimum Vertex Cover asks, given an undirected
graph G(V, E), to find a smallest subset C of V such that every edge in E has at least one
endpoint in C. In this section, we use the term vertex instead of node for obvious reasons.

▶ Theorem 1. Connect-DBG-E is NP-hard.

2 The Steiner tree of some subset of the nodes of a graph G is a minimum-weight connected subgraph of
G that includes all the nodes.
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Figure 2 An instance of Minimum Vertex Cover (left) and the instance of Connect-DBG-E
(right) implied by the reduction of Theorem 1.

Proof. Let IV C = G(V, E) be an instance of Minimum Vertex Cover. We reduce it to
an instance IdBG of Connect-DBG-E, consisting of a dBG G̃ of order 4 over an alphabet
Σ of size σ = |V | + |E| + 1. G̃ consists of |E| edge gadgets, plus a vertex v# = ### and
an edge (v#, v#). The edge gadget for ei = (u, v) ∈ E has the following vertices and edges:
Vi = {v1i, v2i, v3i, v4i, v5i}, with v1i = eieiei; v2i = eieiu; v3i = eieiv; v4i = eiu#; v5i = eiv#;
and Ei = {(v1i, v2i), (v1i, v3i), (v2i, v4i), (v3i, v5i)}. We call v4i and v5i the terminal vertices
of the ith component; the remaining vertices are called non-terminal. The reduction requires
polynomial time: an example is illustrated in Figure 2. Let OPT (IV C) and OPT (IdBG)
denote the size of an optimal solution to IV C and IdBG, respectively.

▷ Claim 2. A solution to IV C of size α implies a solution to IdBG of size α + |E|.

Proof. Let C be a cover of G of size α. For each v ∈ C, we add to G̃ a new vertex v##; we
then connect all the new vertices to ### using α edges in total. Since C is a vertex cover
for G, by construction, one of the two terminal vertices of each edge gadget in G̃ corresponds
to a vertex in C and it can thus be connected with a single edge to one of the newly added
vertices, using another |E| edges in total. We can thus make G̃ weakly connected by adding
α vertices and α + |E| edges. ◁

▷ Claim 3. A solution to IdBG of size β + |E| implies a solution to IV C of size at most β.

Proof. We observe that any solution to IdBG must add new vertices, as by construction, no
two gadgets can be connected with a single edge, nor can they be connected to ### with a
single edge. Moreover, any solution that adds γ new vertices must add at least γ + |E| new
edges, as this is the minimum possible number to connect |E| + γ + 1 components (the |E|
edge gadgets, the vertex ###, and the γ new vertices).

We further observe that the only way two distinct edge gadgets can be connected using
two edges is by adding an edge from one of the terminal vertices of each gadget to a newly
added vertex of the form v#λ, where λ is any letter from the alphabet and v is a letter
corresponding to a vertex of IV C that is an endpoint of both the edges corresponding to the
two gadgets. This is because any two vertices of two distinct gadgets have no suffix/prefix
overlap, thus no path of length two can connect them; and any two vertices of two distinct
gadgets have no common prefix, thus there cannot be two edges out of a new vertex that
reach two distinct gadgets. On the other hand, the terminal vertices of two distinct gadgets
can have the same suffix v# for some v and thus can be both connected to a vertex of the
form v#λ – note that when λ = # these vertices can be, in turn, connected to ###.

Now consider a solution to IdBG that adds β new vertices. We construct a cover for IV C

as follows. For every newly added vertex u#λ that is adjacent to more than one gadget,
add the corresponding vertex u to the cover: this covers all the edges corresponding to the
adjacent gadgets. For the edge gadgets that are connected to some new vertex which is not
adjacent to any other gadget, add one of the endpoints of the corresponding edge of E to
the vertex cover: this covers the remaining edges of IV C . The cover is thus of size at most β.

◁
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Let us now prove that OPT (IV C) = ℓ ⇐⇒ OPT (IdBG) = |E| + ℓ.
⇒) By Claim 2, an optimal solution to IV C of size ℓ implies a solution to IdBG of size

ℓ+ |E|. Suppose for a contradiction that this solution is not optimal, i.e., there exists another
solution to IdBG of size ℓ′ + |E| with ℓ′ < ℓ new vertices. By Claim 3, this would imply a
cover for IV C of size at most ℓ′ < ℓ, a contradiction.

⇐) By Claim 3, an optimal solution to IdBG of size |E| + ℓ implies a solution to IV C

of size at most ℓ. Suppose for a contradiction that OPT (IV C) = ℓ′ < ℓ: by Claim 2, this
would imply a solution to IdBG of size ℓ′ + |E|, a contradiction. ◀

The above reduction is not approximation preserving (because OPT (IV C) = ℓ ⇐⇒
OPT (IdBG) = |E| + ℓ), which would have allowed us to directly obtain a constant-factor
approximation algorithm for Connect-DBG-E from Minimum Vertex Cover [14], and
to prove its inapproximability from the inapproximability of Minimum Vertex Cover [25].

3 Approximating Connect-DBG-E

We start by proving that the existence of a PTAS for Connect-DBG-E is excluded under
the unique games conjecture [16]. To achieve this, we restrict to a specific class of graphs.

▶ Theorem 4. There exists no PTAS for Connect-DBG-E unless the unique games
conjecture fails.

Proof. Consider the same reduction as in the proof of Theorem 1. The sizes of the solutions
to the two problem instances IV C and IdBG always differ by a term of exactly |E|, implying
that the reduction preserves the inapproximability of Connect-DBG-E in the case where
the size of the minimum vertex cover is Ω(|E|). Indeed, suppose for a contradiction that
there exists a PTAS for Connect-DBG-E. Then given any instance IV C , we could obtain
a solution of size d by reducing it to IdBG, running the PTAS, and subtracting |E| from the
result. Let dOP T + |E| denote the size of an optimal solution to IdBG (thus dOP T is the size
of an optimal solution to IV C), and d + |E| the solution returned by the PTAS. We have
that d + |E| ≤ (1 + ϵ)(dOP T + |E|), for some input parameter ϵ > 0, and thus

d ≤ (1 + ϵ)(dOP T + |E|) − |E| = (1 + ϵ)dOP T + ϵ|E|. (1)

When dOP T = Ω(|E|), let c > 1 be a constant such that |E|
c ≤ dOP T ≤ |E| (as the size of any

vertex cover is bounded by |E|). From Equation 1, we obtain that d ≤ (1 + (1 + c)ϵ)dOP T ,
which contradicts the inapproximability of Minimum Vertex Cover. An example of
graphs for which the size of the minimum vertex cover is Ω(|E|) are bounded-degree graphs:
indeed, they have at most |V | · ∆/2 edges and a minimum vertex cover of size at least
|V |/(∆ + 1) = Ω(|E|), where ∆ is the bounded maximum degree. Minimum Vertex Cover
is hard to approximate (unless the unique games conjecture fails) on bounded degree graphs
to within a factor 2 − (2 + o∆(1)) log log ∆

log ∆ for a sufficiently large integer ∆ [2].
This implies that there is no PTAS for Connect-DBG-E (conditioned on the unique

games conjecture) when restricted to the very specific instances obtained, via the reduction
of Theorem 1, from instances of bounded-degree Minimum Vertex Cover. We can thus
conclude that, in general, there exists no PTAS for Connect-DBG-E conditioned on the
unique games conjecture. ◀

Motivated by Theorem 4, we next present a (2 − 2/d)-approximation algorithm for
Connect-DBG-E. Our strategy relies on an existing (2 − 2/d)-approximation algorithm
for the Minimum Steiner Tree problem, where d is the number of terminals. Recall that
Minimum Steiner Tree asks, given a graph G′(V ′, E′) with non-negative edge weights and
a subset of terminal nodes, to compute a tree of minimum weight that contains all terminals.
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(a) (b) (c)

Figure 3 Construction of Theorem 6. The input G consists of 3 weakly connected components
shown in (a) with black solid lines; grey dashed lines represent nodes and edges of the underlying
complete dBG (only the portion directly connected to nodes of G is depicted); grey thick dashed edges
form a solution to Connect-DBG-E, which in this case would be returned by the approximation
algorithm. G′ is shown in (b): solid edges are in E, thick edges represent the same solution as in
(a). The metric closure of G′ is shown in (c): thick edges represent the same solution as in (a).

Given a dBG G(V, E) of order k consisting of d weakly connected components C1, . . . , Cd,
let G′(V ′, E′) be the graph obtained from the complete dBG GΣ,k collapsing each component
Ci into one super-node vi: an example is in Figure 3. More formally, V ′ = (VΣ,k \ V ) ∪ V ,
where V = {v1, . . . , vd} is a set of unlabeled nodes s.t. vi /∈ VΣ,k corresponds to Ci for all
i ∈ [1, d]; and E′ = (EΣ,k ∩((VΣ,k \V )×(VΣ,k \V )))∪E, where EΣ,k ∩((VΣ,k \V )×(VΣ,k \V ))
are simply the edges of the complete dBG connecting pairs of nodes that are both not in G;
the edges in E are s.t. there is an edge from a super-node vi to a node v ∈ (VΣ,k \ V ) if and
only if at least one of the nodes of Ci would be connected to v by an edge in the complete
dBG; and likewise for edges (v, vi). Two super-nodes are connected by an edge if and only
if two nodes in the respective components would be connected by an edge in the complete
dBG. Formally, E = E1 ∪ E2 ∪ E3, where

E1 = {(vi, v) | ∃u ∈ Ci and v ∈ (VΣ,k \ V ) s.t. (u, v) ∈ EΣ,k},

E2 = {(v, vi) | ∃u ∈ Ci and v ∈ (VΣ,k \ V ) s.t. (v, u) ∈ EΣ,k},

E3 = {(vi, vj) | ∃u ∈ Ci and v ∈ Cj s.t. (v, u) ∈ EΣ,k}.

Inspect Figure 3(b): the edge (1011, v1) belongs to set E2; the edge (v3, 0001) belongs to E1;
no edges belong to E3 in this example.

It is easy to see that solving Connect-DBG-E for G is equivalent to solving an instance
of Minimum Steiner Tree on G′ with v1, . . . , vd as terminals. Any polynomial-time
approximation algorithm for Minimum Steiner Tree can therefore be applied to solve
Connect-DBG-E with the same approximation ratio. Unfortunately, when applied naively,
this strategy does not give a polynomial-time algorithm for Connect-DBG-E, because G′

has an exponential size and thus constructing it requires, in general, exponential time.
To overcome this issue, we focus on a specific approximation algorithm for the Minimum

Steiner Tree problem which does not require computing the whole graph G′ but rather
only its metric closure, defined as a weighted complete graph on the set of terminals v1, . . . , vd

such that the weight on edge (vi, vj) is the length of the shortest undirected path between vi

and vj in G′. An example of the metric closure of G′ is in Figure 3(c). Note, in particular,
that the length of the shortest undirected path between two nodes (i.e., a sequence of edges
that form a path if their direction is ignored) is smaller or equal to the length of the shortest
directed path: for instance, the shortest undirected path between 0110 and 0111 in Figure 3
is of length 2 (through node 1011), while the shortest directed path is of length 3 (through
nodes 1101 and 1011). In contrast to explicitly constructing the whole G′, computing only
its metric closure can be done in polynomial time, as stated by the following lemma.
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▶ Lemma 5. For any dBG G(V, E) of order k, computing the metric closure of G′ can be
done in O(k|V |2) time.

Proof. Let G consist of the weakly connected components C1, . . . , Cd. By the definition of
G′, computing its metric closure requires computing the length of the shortest undirected
path in GΣ,k between any pair of nodes that lie in two different components of G. An
algorithm to compute shortest undirected paths in dBGs in O(k) time per pair has been
proposed in [20]: this algorithm only relies on computing common substrings for each pair of
nodes and it does not require to construct G′.

The weight of an edge (vi, vj) in the metric closure of G′ is thus obtained by computing
the length of the shortest undirected path between every pair of nodes u ∈ Ci, v ∈ Cj

and taking the minimum over such values. Over all edges (vi, vj), this requires time
O(k

∑
i,j∈[1,d] |Ci||Cj |) = O(k|V |2). ◀

▶ Theorem 6. For any dBG G(V, E) of order k consisting of d weakly connected components,
there exists an O(k|V |2)-time (2 − 2/d)-approximation algorithm for Connect-DBG-E.

Proof. The algorithm, which is an adaptation of [18] to dBGs, consists of three steps:
(i) Construct the metric closure of G′.
(ii) Compute a minimum spanning tree of the metric closure.
(iii) Convert the minimum spanning tree into a set of nodes and a set of edges to be added

to G to make it weakly connected.
The correctness follows directly from the fact that a minimum spanning tree for the metric
closure of G′ is a (2 − 2/d)-approximation for the minimum Steiner tree [18], where d is the
number of terminals and thus the number of weakly connected components of G.

Step (i) requires O(k|V |2) time as per Lemma 5. Step (ii) can be done in O(d2) time by
applying, e.g., Prim’s algorithm [27]. Finally, Step (iii) can be done by applying again the
algorithm from [20] to compute the shortest undirected path between every pair vi, vj such
that the edge (vi, vj) is in the minimum spanning tree of the metric closure of G′ and taking
the union of the nodes and edges in such paths. This requires O(k|V |2) total time. ◀

4 Connecting de Bruijn Graphs with Paths in Essentially Optimal Time

In this section, we present an exact algorithm for a restricted version of Connect-DBG-E,
in which we are asked to make a dBG G(V, E) of order k weakly connected by adding a set
of directed paths (between components) of minimum total length. This problem was already
considered and solved in (nearly optimal) polynomial time in [5]; here we propose a much
simpler and essentially time-optimal algorithm. To formally define the restricted problem we
consider, we first need the following definition of a condensed graph of a dBG from [5].

▶ Definition 7 (Condensed Graph). Given a dBG G(V, E) of order k over an alphabet Σ with
a set C of weakly connected components, its condensed graph Ĝ(V̂ , Ê) is a weighted directed
multigraph whose nodes V̂ are in a bijection with C. The edges have integer weights in [1, k):
there is an edge (i, j) ∈ Ê for each pair of nodes ui ∈ Ci, uj ∈ Cj, with Ci, Cj ∈ C, and its
weight is the length of the shortest path from ui to uj in the complete dBG GΣ,k.

Connecting de Bruijn Graphs with Paths (Connect-DBG-P)
Input: A de Bruijn graph G(V, E) of order k over alphabet Σ = [0, σ), σ ≤ (k − 1)|V |.
Output: A minimum-weight spanning tree T of the condensed graph Ĝ of G.
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(a) (b)

Figure 4 (a) An instance of Connect-DBG-P consisting of 3 components. (b) The modified
AC machine built in the preprocessing phase of Algorithm 1. Dashed arrows are the backward edges
of the original AC machine; solid, curved arrows are the backward edges of the modified AC machine
(backward edges to the root are omitted). Symbols close to the states represent their lists of colors.

A solution T to Connect-DBG-P naturally corresponds to a set P of paths on GΣ,k

that make G weakly connected: an edge (i, j) of T corresponds to the shortest path from
some node ui ∈ Ci to some uj ∈ Cj , and in turn, by the definition of dBG, such a path is
determined by the longest suffix/prefix overlap of ui and uj .

The algorithm for Connect-DBG-P proposed in [5] makes use of a dynamic version of
the Aho-Chorasick (AC) machine of the nodes of G to find the shortest connecting paths
and to keep track of the connected components as they are progressively united by these
paths. Here we will use an augmented but static version of the same AC machine to select
the paths, and we will keep track of the connected components as they are dynamically
merged by employing a union-find data structure.

Before describing our solution, let us recall that AC machines generalize the Knuth-
Morris-Pratt [17] algorithm for a set of strings. Informally, AC machines are finite-state
machines that resemble a trie with additional backward edges (also called failure transitions)
between the states. There is exactly one failure transition f(u) = v from each state u (except
for the root state) to some state v. Backward edges encode suffix/prefix overlaps between
the strings represented by the AC machine, as specified by the following lemma.

▶ Lemma 8 (Aho-Corasick lemma [1]). Let u and v be two strings representing two distinct
states of the AC machine, and identify the states with such strings. Then, f(u) = v if and
only if v is the longest proper suffix of u that is also a prefix of some string in the machine.

In a preprocessing step, we compute the d weakly connected components of G, choose a
representative node for each component, and assign it a unique color: we will identify each
color with the connected component and with the representative node it is associated with.
To store the weakly connected components of G, we construct a union-find data structure [10].
Union-find data structures allow to efficiently perform any sequence of operations of the
following two kinds on disjoint sets: union(A, B) merges sets A and B; and find(x) returns
the representative element of the unique set containing x.

We then construct the AC machine of the nodes of G and preprocess it as follows; see
Figure 4 for an example. We color each terminal state with the color of the connected
component of the node of G it represents. Each internal state is assigned the union of the
colors of its descendants. From each terminal state s, we follow the unique path of backward
edges to the root and, for each state u on this path, we add to the machine a backward edge
(s, u). We finally prune all the backward edges connecting two non-terminal states.
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Once we are done with the preprocessing phase, we start performing a reverse BFS of the
machine (which begins from the deepest internal states and proceeds level-by-level towards
the root) and check whether the overlap encoded by the backward edges incoming to each of
the visited states can be used to unite some components. This is because the deeper the
state u reached by a backward edge (s, u), the longer the overlap encoded by the edge; and
the longer the overlap, the shorter the path connecting s with all the nodes represented by
the terminal states below u. The idea is to greedily select the backward edges encoding paths
that connect two currently separate components, using the union-find data structure both to
check which components are still separate and to unite them when we select a shortest path.

Implementation Details. We associate two lists to each state u: one for the colors; and
one for the incoming backward edges. The colors of u are stored in a list LCu of ordered
pairs < c, pc >, where c is a distinct color and pc is a pointer to any terminal state of color c

below u. The backward edges incoming to u are stored using a list LEu of their tails (recall
that all the tails are terminal states). We will need to keep track of the states of the AC
machine visited during the execution of the algorithm, therefore we set up a visited/unvisited
flag for each internal state, initially set to “unvisited”.

When we visit a state u for the first time, we select the first backward edge (s, u) of
the list LEu (if any). Let c be the color of the terminal state s. For each color α in the
list LCu, we compare the representative of the current connected component of the node
associated with color c and the representative of the current connected component of the
node associated with α, that is, we compare the results of operations find(c) and find(α). If
they differ, it means that the components of the two nodes are still separate, thus we can
unite them by adding the path linking s to the node pointed by pα, and keep track of the fact
that they now constitute a single connected component by performing union(c, α) (recall that
we identify colors and connected components). If find(c) = find(α), then the two components
were united in a previous step, thus we just move on to the next color in LCu. At the end of
the scan of LCu, c and all the colors of u will represent the same connected component.

We then select each subsequent backward edge in LEu, and we compare just the color
of its tail and the first color in LCu, again by performing two find operations. We merge
the two components and add the appropriate path if they differ, or move on to the next
backward edge in LEu (or to the next state, if LEu is exhausted) if they are the same.

The whole procedure is summarized in Algorithm 1.

▶ Theorem 9. Algorithm 1 solves Connect-DBG-P in O(k|V |α(|V |) + |E|) time.

Proof.
Correctness. Algorithm 1 is essentially Kruskal’s algorithm [19] applied to the condensed
graph Ĝ. Indeed, the longest suffix/prefix overlap between any two nodes u1, u2 (which
determines the weight of the corresponding edge in Ĝ) is encoded in the AC machine by a
path of backward edges starting from u1 and ending at an ancestor of u2 [33, Theorem 4].
Thus, by construction, the backward edges we add to the AC machine encode the edges
of Ĝ (a single backward edge may correspond to multiple edges of Ĝ), plus some shorter
suffix/prefix overlaps that are discarded: they have no correspondence in Ĝ. In particular,
a backward edge (s, u) of the modified AC machine encodes overlaps of length d(u), where
d(u) is the depth of state u, i.e., the length of the string it represents [33, Lemma 3].

Algorithm 1 always returns a feasible solution. Indeed, every time a state u is visited, all
the components (i.e., nodes from V̂ ) descending from u are connected (Lines 9-11); since all
the components descend from the root, at the end the whole Ĝ is connected; and the union
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Algorithm 1 Connect dBG with Paths.

1: Compute the d weakly connected components of G(V, E) and the union-find data structure over
the components; identify each component with a distinct color and each color with a node of
that component. Construct and preprocess the AC machine of V .

2: P ← ∅; comp-count← d;
3: while comp-count > 1 do
4: u← next state of the AC machine in a reverse BFS order;
5: for all (s, u) in LEu do
6: c← color(s);
7: if u is unvisited then
8: Flag u as visited;
9: for all < α, pα > in LCu do

10: if find(c) ̸= find(α) then
11: union(c, α); comp-count← comp-count− 1; P ← P ∪ {path from s to pα};
12: else
13: < α, pα >← first element of LCu;
14: if find(c) ̸= find(α) then
15: union(c, α); comp-count← comp-count− 1; P ← P ∪ {path from s to pα};
16: return P

and find operations ensure that no loop is created. Moreover, the algorithm only returns
paths corresponding to backward edges that encode maximal suffix/prefix overlaps, thus
edges of Ĝ. Suppose for a contradiction that the algorithm uses an edge (s, u) to connect s

with a descendant s′ of u using an overlap of length d(u), while the longest overlap between
s and s′ is of length ℓ > d(u). Then, by construction, there is a lower ancestor v of s′ with
d(v) = ℓ and another backward edge (s, v). Since the states are visited in a reverse BST
order, v is visited before u, (s, v) is considered before (s, u) and it is used to connect s to s′,
thus uniting their components; when u is visited afterwards and (s, u) is considered, s and s′

are already in the same component, so the shorter overlap is discarded, a contradiction.
Finally, optimality follows directly from the correctness of Kruskal’s algorithm [19].

Complexity. Computing the connected components of G and assigning each a color c ∈ [1, d]
requires O(|V | + |E|) time, where |E| is the number of distinct edges of G [13]. Building
the AC machine of V takes O(k|V |) time because each string is of length k − 1 [1, 9].
Initializing a union-find data structure for the weakly connected components of G requires
O(|V |) time [10].

During the execution of the algorithm, we perform exactly d − 1 < |V | union operations;
moreover, at each visited state u, we perform a number of find operations proportional to
the sum of the number of colors of u and the number of backward edges incoming to u. The
total size of lists LEu and LCu over all non-terminal states u is bounded by O(k|V |), because
the color of each of the |V | terminal states propagates to at most k − 2 non-terminal states
(the depth of the AC machine is k − 1), and by construction, there are up to k − 2 backward
edges from each terminal state.

Since the cost of each find and union operation amortizes to O(α(|V |)) [10], the total cost
of this procedure is O(α(|V |)(k|V | + d − 1)) = O(k|V |α(|V |)). Since the preprocessing phase
requires O(k|V | + |E|) time, the statement follows. ◀
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5 Making a dBG Eulerian through ILP

Let us recall some basic definitions. An Eulerian trail is a trail in a finite graph that visits
every edge exactly once allowing for revisiting nodes. An Eulerian circuit is an Eulerian trail
that starts and ends on the same node. A graph with an Eulerian circuit is called Eulerian.
A graph with an Eulerian trail but with no Eulerian circuit is called semi-Eulerian.3

Recall that, by GΣ,k(VΣ,k, EΣ,k), we denote the complete dBG of order k over alphabet
Σ. Here, we present an ILP formulation for making any arbitrary dBG G(V, E) Eulerian
(or semi-Eulerian) by adding a multiset of edges from EΣ,k; this problem is NP-hard via a
simple reduction from the shortest common superstring problem [11]. Instead of explicitly
adding nodes, we assume that any two nodes can be connected with a (super-)edge whose
cost is in [1, k), and try to make G Eulerian by adding edges with a minimum total cost.

5.1 The ILP Formulation
Let E be the set of edges (u, v) between nodes u, v ∈ V for which there is a path from u

to v in GΣ,k. This is possible for every pair of nodes in V . We define the set V−(u) of
in-neighbors of node u ∈ V as V−(u) = {v ∈ V | (v, u) ∈ E}. Similarly, we define the set
V+(u) of out-neighbors of node u ∈ V as V+(u) = {v ∈ V | (u, v) ∈ E}. We also define
a weight function W : E → Z≥0, which assigns a weight wu,v to an edge (u, v) ∈ E equal
to the length of the shortest directed path from u to v in GΣ,k. In particular, we have
wu,v = k − 1 − MO(u, v), where k is the order of G and MO(u, v) is the length of the longest
overlap between a suffix of u and a prefix of v. For example, for edge (aabc, bcac) ∈ E with
aabc, bcac ∈ V and k = 5, we have waabc,bcac = k − 1 − |bc| = 5 − 1 − 2 = 2, corresponding to
the following two unit-cost edges: aabc → abca → bcac. All Θ(|V |2) weights of the |V | nodes
can be precomputed in the optimal O(k|V | + |V |2) time [12, 21]. By Euler’s theorem, making
G Eulerian (resp. semi-Eulerian) reduces to finding a minimum weight multiset of edges A′

from E such that G′ = (V, E ∪ A′) is weakly connected and balanced (resp. semi-balanced).
To compute multiset A′, we employ the ILP formulation presented in Figure 5. Each

edge (u, v) is associated to a non-negative integer variable au,v whose value corresponds to
the increase of the multiplicity mu,v of (u, v) (where mu,v = 0 for any (u, v) ∈ E \ E). Thus,
au,v +mu,v denotes the actual multiplicity of (u, v) in G′. Each node v is associated to binary
variables xv and yv which determine if v is a source and/or a target node in an Eulerian trail
of G′, respectively. Specifically, if xv = 1, yv = 0, then v is a source node and not a target
node; if xv = 0, yv = 1 then v is a target node but not a source; and if xv = yv = 0 then v is
either (i) both a source and a target node in an Eulerian trail; or (ii) neither a source nor a
target node in an Eulerian trail. Due to the constraint in Equation (2e), it cannot be that
xv = yv = 1, and due to the constraints in Equation (2c) and Equation (2d) there is up to
one source and one target node in G′.

Since the existence of a single component in G′ is necessary for G′ to be Eulerian or
semi-Eulerian, we introduce a non-negative integer variable bu,v for each edge (u, v) ∈ E
to check the connectivity of G′, through constraints that will be explained in detail later.
Let us provide the main idea behind modeling connectedness. Suppose there are d = r + 1
components in G. We select one node from each component of G arbitrarily, such that we
have a set S = {s1, . . . , sr} of start nodes and one destination node which we denote by
dn. Let Ci be the component containing si, where i ∈ [1, r], and Cdn be the component

3 Note that both Eulerian and semi-Eulerian graphs are required to be weakly connected.
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minimize
∑

(u,v)∈E au,v · wu,v (2a)

subject to
∑

u∈V−(v)

(au,v + mu,v)−
∑

u∈V+(v)

(av,u + mv,u) + xv − yv = 0, v ∈ V (2b)

0 ≤
∑
v∈V

xv ≤ 1, (2c)∑
v∈V

xv =
∑
v∈V

yv, (2d)

xv + yv ≤ 1, v ∈ V (2e)
bu,v ≤ r · (au,v + mu,v + av,u + mv,u), (u, v) ∈ E (2f)∑
v∈V+(si)

bsi,v −
∑

u∈V−(si)

bu,si = 1 ∀i ∈ [1, r] (2g)

∑
u∈V−(dn)

bu,dn −
∑

v∈V+(dn)

bdn,v = r (2h)

∑
u∈V−(v)

bu,v =
∑

u∈V+(v)

bv,u v ∈ V \ (S ∪ {dn}) (2i)

bu,v ∈ Z≥0, (u, v) ∈ E (2j)
au,v ∈ Z≥0, (u, v) ∈ E (2k)
xv ∈ {0, 1}, v ∈ V (2l)
yv ∈ {0, 1}, v ∈ V (2m)

Figure 5 The complete ILP formulation for making a dBG Eulerian or semi-Eulerian.

containing dn. Ci and Cdn are connected if there exists a (positive) flow from si to dn.
Assume that each connection between Ci and Cdn provides one unit of flow. There are r

start nodes in G, so dn must absorb r units of flow in total from all start nodes.
Equation (2a) seeks to minimize the cost of multiset A′ (the sum of weights for all edges

added to G to make it Eulerian or semi-Eulerian). All other equations seek to guarantee
that the graph G′ is Eulerian or semi-Eulerian by ensuring that all its nodes are balanced
(Equation (2b) to Equation (2e)) and that all its nodes with nonzero degree belong to
a single strongly connected component (Equation (2f) to Equation (2i)). Let δ−(v) and
δ+(v) denote the in- and out-degree of node v, respectively. Recall that a weakly connected
graph is Eulerian if δ−(v) = δ+(v) for each v ∈ V , and semi-Eulerian if δ−(s) = δ+(s) − 1,
δ−(t) = δ+(t) + 1, and δ−(v) = δ+(v) for each v ∈ V \ {s, t}, where s and t are the source
and target nodes, respectively. Equation (2b) enforces that G′ is Eulerian by requiring
xv = 0, yv = 0 such that δ−(v) = δ+(v) for each v ∈ V , or that G′ is semi-Eulerian by
requiring xs = 1, ys = 0 for source node, xt = 0, yt = 1 for target node and xv = 0, yv = 0
for all other nodes, respectively. Equation (2c), Equation (2d) and Equation (2e) enforce
that there exists at most only one source node and one target node in G′. Equation (2f)
bounds the value of bu,v. In particular, if nodes u and v are not connected in G′ (i.e.,
au,v + mu,v + av,u + mv,u = 0), then Equation (2f) together with Equation (2j) ensure that
both bu,v = 0 and bv,u = 0; otherwise, bu,v ≥ 0 and bv,u ≥ 0. Equation (2g) enforces that
each si provides one unit of flow; and Equation (2h) enforces that dn absorbs r units of flow
from all si’s together. Last, Equation (2i) enforces that the amount of flow that enters each
node that is not in S ∪ {dn} is equal to the amount of flow that exits this node.
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(a) Input graph G(V, E). (b) Computing the flow units. (c) Output graph G′.

Figure 6 An example of making the dBG on the left semi-Eulerian. The units of flow are depicted
with yellow edges and the edges we add to make the graph semi-Eulerian are colored green.

▶ Example 10. Consider the subgraph G(V, E) of the complete order-3 dBG shown in
Figure 6a, where V = {aa, ab, ba, bb} and E = {(ab, bb)}. By adding edge (bb, ba) and edge
(ba, aa) in G, we find an Eulerian trail where the source node is ab and the target node is aa.
The weights of the added edges are both 1, i.e., wbb,ba = wba,aa = 1, and the total cost of this
solution is 2, which is minimal (since anyway we must connect d = 3 connected components).

We show that the solution we found satisfies the constraints of the ILP from Figure 5.
For the source node ab, we have xab = 1, yab = 0, and it is semi-balanced since δ−(ab) −
δ+(ab) + xab − yab = 0 − 1 + 1 − 0 = 0. Similarly, for the target node aa, we have xaa = 0,
yaa = 1, and it is semi-balanced. For all other nodes, v ∈ {bb, ba}, δ−(v) = δ+(v) = 1 and
xv = yv = 0. Also, the values of xv and yv, ∀v ∈ V , satisfy Equation (2c) to Equation (2e).

Next, we show the connectivity of G′. There are d = 3 components in G (namely,
C1, C2 and Cdn). We select one node from each component arbitrarily, such that we have
S = {bb, aa} and dn = ba. The destination node dn needs to absorb two units of flow from
C1 and C2. Since aba,aa = 1 > 0, baa,ba ≥ 0, there exists a flow starting at node aa and
ending at node dn (Equation (2f)). Similarly, node dn absorbs another unit of flow from bb;
the two units of flow are represented with yellow lines in Figure 6b. Thus, the output graph
G′ is semi-Eulerian: the source node is ab and the target node is aa; see Figure 6c.

5.2 Proof-of-concept Experiments
We implemented our ILP formulation in C++ using Gurobi 9.5.2. We will refer to this algorithm
as ILP. Our code is available at https://bitbucket.org/eulerian-ext/cpm2024/.

We present proof-of-concept experiments using ILP on small samples of the Staphylococcus
aureus (STA) whole-genome shotgun benchmark dataset. This dataset is available from
http://gage.cbcb.umd.edu/data/index.html. The number of reads in the STA dataset
is 1, 294, 104 (Library 1), the average read length is 101 base pairs (bp) and the insert length
is 180bp. All experiments ran on an AMD EPYC 7702 CPU with 256GB RAM.

We first applied ILP on dBGs of varying order k. We constructed these order-k dBGs,
one for each k value, using the first 10 reads of STA. To compute the weight wu,v of each
edge given as input to ILP, we used the implementation of [32] for computing MO(u, v); and
then set wu,v = k − 1 − MO(u, v). Observe in Table 1a that, as expected, increasing k slightly
reduced the number of edges |E| of the input dBG and that it also generally increased the
number of connected components. As can be seen, making a graph with more connected
components Eulerian incurred a larger total cost and required more time. For example, for
k = 8, there are 2 components extended to an Eulerian graph with a cost of 47 in less than
30 minutes, while for k = 13, there are 10 components extended to an Eulerian graph with
a cost of 92 in about 6.5 hours. This is because when r increases, the number of distinct
possible combinations of values of the variables bu,v increases exponentially with d = r + 1,
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Table 1 Runtime of ILP on dBGs with varying k and |E| on the STA dataset. Note that the
time to compute all constants in ILP is not included in the reported runtimes.

(a) Runtime of ILP on dBGs with varying k con-
structed from the first 10 reads of the STA dataset.

k |V | |E| d Cost Time (s)
8 709 724 2 47 1,766
9 720 714 7 56 9,260
10 713 704 9 65 24,378
11 704 694 10 78 26,982
12 694 684 10 87 34,989
13 684 674 10 92 23,119

(b) Runtime of ILP on dBGs with varying num-
ber |E| of edges constructed from the first 8, 9,
10, 11, and 12 reads of the STA dataset.

k |V | |E| d Cost Time (s)
9 562 554 8 43 13,779
9 641 634 7 49 9,205
9 720 714 7 56 11,748
9 798 794 7 61 13,183
9 876 875 6 65 19,751

as each possible combination corresponds to a different weighted spanning tree of the d

components; and there are exponentially many possible spanning trees. In other words, there
are exponentially many ways to form the sums in Equations 2g, 2h, and 2i.

We then applied ILP on dBGs of fixed order k = 9 and varying number |E| of edges.
We started with a dBG G1, constructed as explained before from the first 8 reads of STA
with k = 9. G1 corresponds to the first row in Table 1b. Then, we constructed dBGs G2,
G3, G4, and G5, with a larger number of edges than G1, by adding into G1 nodes and edges
corresponding to the next 1, 2, 3, and 4 reads in STA, respectively. That is, G2 is constructed
from the first 9 reads of STA with k = 9. Observe in Table 1b that, as expected, increasing
|E| also increases |V | and generally reduces the number of components. As expected, making
a graph with more edges Eulerian, while keeping the number of components the same,
incurred a larger total cost and required more time. Indeed, the main factor that determines
the runtime is the number of components. For example, it took 50% more time to make the
dBG in the first row of Table 1b Eulerian compared to the time in the second row of the
same table because the former has more components, although it has fewer edges and nodes.

These results show that despite the NP-hardness of the problem, ILP can be used to
obtain optimal solutions for small graphs within a reasonable amount of time. These graphs
may be specific subgraphs of a much larger graph that need to be made Eulerian.
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Abstract
The Burrows-Wheeler transform (BWT) is a famous text transformation that rearranges the symbols
of the input strings so that occurrences of a same symbol tend to occur in runs. The number of
runs is an important parameter in the BWT output string, historically associated with its high
compressibility and more recently used as a measure for the space complexity of efficient data
structures. It is a known fact that reordering the strings in the input collection S affects the number
of runs in the output string bwt(S) produced by applying the BWT to the string collection. In this
paper, we define a class of transformed strings where symbols in particular blocks of the bwt(S) can
be reordered according to a different adaptive alphabet order. Then, we introduce new heuristics to
reduce the number of runs in the BWT output of a string collection that improve on the two existing
heuristics introduced in Cox et al. [7]. These new heuristics are computed when applying the BWT
to a string collection assuming no a priori order on the input strings and without requiring any pre-
and/or post- processing of the collection S or of the BWT string. In this paper, we also face the
problem of reconstructing the input collection S from the string bwt(S) together with the string
permutation realized when applying an alphabetical reordering of symbols during the construction
of bwt(S).
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1 Introduction

The Burrows–Wheeler transform (BWT), introduced by M. Burrows and D. Wheeler in the
1990s [3] as a method for compressing a single input text, has since evolved into a versatile
tool with many applications well beyond its original purpose [23]. Just as examples, the
BWT has been used as the building block for compact text indexing [8, 16, 17, 10], and
for bioinformatics applications, e.g., for sequence alignment [20], phylogenetic analysis [12],
genome assembly [24] as well as for sequencing data compression [13].
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Informally, the BWT is a text transformation that rearranges the symbols of an input
string S into a string bwt(S), which is obtained by concatenating the symbols that precede
the cyclic rotations of S once the rotations have been sorted into lexicographic order. An
equivalent and faster way to build bwt(S) [3] is to sort the suffixes of a related string obtained
by appending an end-marker symbol (usually $) that is lexicographically smaller than any of
the symbols in S but does not appear in S itself. Both ways have two important properties:
reversibility and clustering effect.

The reversibility permits to invert the transformed string by reconstructing S, and allows
to search patterns in S very efficiently. While the clustering effect describes the inner property
of the BWT to carry occurrences of a given symbol to runs of equal consecutive symbols.

The more symbols can be grouped into runs of the same symbol, the better is the
performance of compression techniques such as, for instance, run-length encoding (RLE)
where a string is coded as a concatenation of pairs formed by the symbol c and the number
of times c is repeated. The total number of runs of a same symbol in the BWT-string is
usually referred to as r. Recently, the parameter r is increasingly appearing not only for data
compression, but also for measuring the space requirement of BWT-based text indexing data
structures (see for instance [16, 17, 10]). Therefore, a text containing a few long runs is easier
to compress or index than a text having the same characters but organized into a greater
number of shorter runs. An interested reader can find theoretical studies and applications
about the clustering effect in [19, 21, 22, 5] and references therein. Due to the ever-increasing
volume and repetitive nature of data, developing new techniques that reduce or minimize the
number of runs produced by the BWT is paramount for managing big data in applications.

Just as for a single string, the BWT of a collection of strings can be constructed either
by sorting their cyclic rotations3 as in [18] or sorting their suffixes [1]. In the latter case,
a distinct end-marker symbol is appended to each string, making the collection ordered
according to the order established among the end-marker symbols. Moreover, it is known
that given a string collection S, the two strings bwt(S) and bwt(S ′) can only differ within
particular intervals, if S ′ is a string permutation of S [7, 5].

Our contributions. In this paper, we define a class of transformed strings obtained by
applying the BWT to a string collection S in which the symbols in particular blocks of the
bwt(S) can permute according to a different adaptive alphabet ordering, while maintaining
the reversibility property. Some known strategies falling into this class have already been
introduced in the literature [7, 15, 2, 4]; and we recall them in Section 3.

Then, we introduce new heuristics for reducing the number of runs while computing
the BWT-string; these heuristics improve on the number of runs of both the BWT-string
obtained from the input-ordered collection and the two previously-introduced heuristics [7].
We show experimentally that the new heuristics tend to minimize the number of runs.

In this paper, the BWT output string is obtained by sorting all the suffixes of the input
strings assuming that each string ends with a different end-marker symbol, but no a priori
ordering of the end-marker symbols is given. Among the state-of-the-art approaches to
compute the BWT for a string collection, we employ the algorithm BCR described in [1]
to ensure that the order between any two end-marker symbols is determined during the
construction of the BWT and not a priori. The interested reader can refer to [5] for a survey
on the different output strings obtained by different tools.

3 In this case, one needs to use the ω-order defined in [18].
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We also address the problem of inverting the bwt(S) preserving the input order in S in
case a symbol reordering has been applied during its construction. This property allows to
reconstruct only a single string or groups of strings of the input collection and it might be
useful in some applications, where only specific groups of strings are to be decoded (e.g., in
short-reads collections). In fact, without knowing the string reordering applied to bwt(S),
the inverse transform of bwt(S) is no longer lossless in terms of string order.

1.1 Related works
In the literature, the problem of reducing the number of runs in the BWT-string has been
approached from two perspectives. Indeed, on the one hand, the number of runs is affected
by the order of the symbols in the considered alphabet; on the other hand, it is also impacted
by the order of the strings in the collection.

Alphabet order. Chapin and Tate [6] show experimentally that ordering symbols by their
ASCII code does not always give the best compression and discuss several heuristics for
varying the alphabet order. For instance, they propose a scheme in which rotations are sorted
in a manner inspired by reflected Gray codes. In [14], the authors introduce the Alternating
BWT (ABWT) that is defined as the BWT by using a different order of the cyclic rotations,
where one needs to alternate the standard and reverse orderings in odd and even positions.
In [11], the authors describe a class of BWT string transformations based on context adaptive
alphabet orderings, where in the rotation sorting phase, the alphabet orderings depend on
the context (i.e., the longest common prefix of the rotations being compared). Moreover,
they consider the problem of determining the BWT variant that minimizes the number
of runs in the transformed string. Recently, Bentley et al. [2] derived the computational
complexity of minimizing the number of runs in the BWT via alphabet ordering. They prove
that the problem of deciding whether there exists an ordering of the alphabet symbols such
that the number of runs in the BWT is at most equal to a given integer is NP-complete and
its corresponding minimization problem is APX-hard.

String order. When the BWT is applied to a string collection by sorting the suffixes of its
strings, one needs to append a different end-marker symbol to each string and to establish a
order among them. In this case, the problem of minimizing the number of runs also needs to
consider the different orderings of the input strings, since the ordering of the input strings
depends on the reciprocal ordering of the end-marker symbols appended to each string. The
authors in [7] provide the first experimental study showing: i) one can permute symbols
within the bwt(S) associated to particular blocks, named “SAP-intervals” (SAP standing for
“same-as-previous”), without destroying the string reversibility; ii) one can obtain a reduced
number of runs in the bwt(S) while permuting symbols in SAP-intervals (see also [5]).

The problem of minimizing the number of runs in the bwt(S) via string ordering has
been tackled as a closely related problem by Bentley et al. [2]. Indeed, finding a string order
that minimizes the number of runs in the bwt(S) is equivalent to finding an order for the
end-marker symbols that results in the minimum number of runs in the bwt(S). They show
that given the bwt(S), the problem of minimizing its runs via string order can be solved
in linear time by reducing such problem to a tuple sorting problem (more details in [2]).
In [4], the authors provide the first implementation that computes the bwt(S) with the
fewest number of runs using the post-processing strategy described in [2] combined with the
SAP-array [7].

CPM 2024
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2 Preliminary and Materials

Let Σ = {c1, c2, . . . , cσ} be a finite ordered alphabet Σ with c1 < c2 < . . . < cσ, where <

denotes the standard lexicographic order. Let S be a string of length n on Σ. We denote the
i-th symbol of S by S[i]. A substring of S is denoted as S[i, j] = S[i] · S[i + 1] · · · S[j], with ·
being the concatenation operator.

Let S = {S1, S2, . . . , Sm} be a collection of m strings on the alphabet Σ. We assume that
each string Si ∈ S has length ni + 1, since we append a special end-marker symbol $i to each
Si, i.e. Si[ni + 1] = $i, such that each $i does not belong to Σ and it is lexicographically
smaller than any other symbol in Σ. Let us denote by N =

∑m
i=1 ni + m the number of

symbols of all strings in S (including their end-marker symbols).
The suffix of a string Si starting at position k is Si[k, ni + 1] and we define the j-suffix

of Si as the suffix starting at position ni + 1 − j of Si, i.e. Si[ni + 1 − j, ni + 1], which has
length j + 1 (including the end-marker symbol $i). Note that the 0-suffix of Si is just $i.

A run in a string S is a maximal substring consisting of repetitions of only one character.
The BWT is a reversible text transformation that, given as input a string S$ (with $ not

appearing in S), produces an output string bwt(S$) such that bwt[i] is the symbol preceding
the i-th lexicographically smallest suffix of the string S$. In the seminal paper by Burrows
and Wheeler [3], two important properties that establish a correlation between the string
bwt(S$) = L and the string F , formed by lexicographically sorting the symbols of S$, have
been shown4:

For all i = 1 . . . n + 1, the symbol F [i] circularly follows the symbol L[i] in the string S$;
For each alphabet symbol c, the h-th occurrence of c in L corresponds to the h-th
occurrence of c in F . In particular, if L[i] is any occurrence of c in L, the position of
its corresponding occurrence in F is given by C[L[i]] + rank(L[i], i), where C[c] is the
total number of symbols in S$ that are smaller than c and rank(c, i) is the number of
occurrences of c in the substring L[1, i].

The above function that maps symbol occurrences in L to their corresponding symbol
occurrences in F is known as LF-mapping [9].

2.1 The BWT applied to a string collection
A way for applying the BWT to a string collection consists in appending to each string an
end-marker symbol and then concatenating the resulting strings to form a unique larger
string. Nevertheless, it is also built without concatenating the input strings by using two
approaches: i) sorting cyclic rotations of the input strings [18]; ii) sorting suffixes of the
input strings [1]. The former approach uses a special order to sort the cyclic rotations which
is not affected by the order of the input strings; while the sorting performed by the latter
approach deeply depends on the order defined on the end-marker symbols. For this reason,
in this paper, we focus on the latter approach and we follow the strategy introduced in [1]
to handle the list of sorted suffixes. Note that in [1], the suffixes of the strings in S are
sorted assuming that each string Si ends with a distinct end-marker symbol $i such that
$i < $j , if i < j in S. See Table 1, sixth column (inputBWT), for an example of the BWT of
a string collection S obtained by concatenating the symbols preceding the sorted suffixes of
the strings in S (last column). The authors of [1] provide two related methods for computing
such a BWT for large collections of strings making use of sequential reading and writing of

4 The same properties hold for the BWT of a string collection [18, 1] - see Section 2.1.
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files from disk: the first variant, BCR, is a semi external memory approach (see Section 3.1)
that requires more RAM than the second variant, BEETL-BCRext, which uses negligible
RAM at the expense of a larger amount of disk I/O.

2.2 SAP-array, SAP-interval and BWT by SAP
The authors of [7] showed that compression of the BWT output string can be improved by
reordering the strings in the input collection, and that an “implicit sorting” strategy can be
applied while computing the BWT. Such a strategy is based on the observation that in some
particular blocks of the bwt(S), the order of the symbols is entirely determined by the order
established among the associated j-suffixes that are equal up to the end-marker symbols 5.
In order to keep track of these blocks, we recall the notion of SAP-array and of SAP-interval.

▶ Definition 1 ([7]). The SAP-array (for ‘same-as-previous’-array) of a collection S is a
binary vector of the same length as the bwt(S) string such that SAP[i] = 1 if and only if the
suffix corresponding to the symbol bwt(S)[i] is same as the previous suffix in the list of sorted
suffixes (their end-marker symbols excluded). A SAP-interval bwt(S)[b, e] is a maximal block
of consecutive symbols such that SAP[i] = 1, for all b < i ≤ e.

In other words, any run of 1’s preceded by a 0 in the SAP-array corresponds to a block
of equal j-suffixes, with j ≥ 0, that differ only for their end-marker symbols.

Therefore, given two collections S and S ′ having the same strings but in different order,
the following results hold (see [7, 5]).

▶ Observation 2. The BWTs of S and S ′ have identical SAP-arrays and can only differ
within SAP-intervals that contain more than one distinct symbol.

▶ Observation 3. Within a SAP-interval containing more than one distinct symbol, the
reordering of the characters implicitly involves permuting the strings in the collection.

3 A class of heuristics based on SAP-intervals

In this section, we describe a class of BWT transformed strings that reduce the number of
runs based on the notion of SAP-intervals and the two key observations above (Observations 2
and 3). Moreover, we introduce new heuristics that apply an implicit string reordering during
the construction of the BWT output string allowing a reduction of the number of runs with
respect to the original input order.

We define the following class of transformed strings associated with a string collection S:

▶ Definition 4. Given a string collection S, the class SS comprises all the strings obtained
from bwt(S) by possibly sorting the symbols of each SAP-interval according to a different
adaptive alphabet ordering.

The following existing variants of the BWT of S belong to the class SS :
1. rloBWT (or colexBWT), which is obtained by using the lexicographic alphabet ordering

for each SAP-interval [15, 7] - see rloBWT column in Figure 1. Note that the rloBWT
corresponds to sorting the input collection in reverse lexicographic order (RLO), or
co-lexicographic order, and it can be computed not only by pre-processing the strings,
but also on-the-fly during the construction of the bwt(S) itself (more details in [15]).

5 Such a key observation is also stated in Bentley et al. [2], where such blocks are modeled as tuples, and
in Cenzato et al. [5] through the notion of “interesting intervals”.
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7:6 A Class of Heuristics for Reducing the Number of BWT-Runs

2. sapBWT, which is obtained by sorting the symbols in those SAP-intervals whose number
of distinct symbols is smaller than the SAP-interval’s length, i.e. only in SAP-intervals
in which it is possible to decrease the number of runs of the SAP-interval. The alphabet
order used in any of such SAP-intervals, bwt[b, e], is given by setting bwt[b] as the smallest
alphabet symbol and using the lexicographic order for all the other symbols. Note
that the sapBWT is obtained on-the-fly during the construction of the bwt(S) (through
BEETL-BCRext) where the SAP-array information is implicitly taken into account by
computing a SAP status (more details in [7]) - see sapBWT column in Figure 1.

3. optBWT, which is obtained by using an alphabet order designed ad hoc for each
SAP-interval containing more than one distinct symbol that minimizes the number of
mismatches at the boundaries of the SAP-intervals. The ad hoc alphabet order for
each SAP-interval is established in a backward fashion while scanning the bwt(S) and
its SAP-array (both pre-computed) and using a stack to manage consecutive SAP-
intervals (more details in [4]). In our running example (Figure 1), the optBWT is
TTTTTTT $$GGGG$$GGGGGCAAGC$$$CCCAAAA. Note that the number of runs
in the optBWT is the minimum possible [2, 4].

Now, we focus on a particular subclass of SS in which the adaptive alphabet order used
in SAP-intervals is selected on-the-fly while building the BWT string itself. The sapBWT
and rloBWT belong to this subclass, differently from the optBWT that is obtained as
post-processing.

Therefore, we do not assume that the strings in S are ordered: we define a string order
for S while building the BWT string, on the basis of the alphabet order choices performed
in the SAP-intervals.

In Section 3.2, we define new heuristics belonging to SS that reduce the number of runs
on-the-fly during the construction of the BWT output string. To this end, we adopt the
construction method introduced in [1] (see Section 3.1), which does not concatenate the
input strings, but incrementally builds the bwt(S) by parsing the suffixes of the same length
through a right-to-left scanning of all the strings at the same time.

3.1 BCR Construction and Data Structure Design
In this section we recall how the BCR algorithm works without describing the previous work
in full detail, rather summarizing the explanation and data structures employed. For the
space and time complexities of BCR we refer to the original article [1, Table 1].

BCR proceeds incrementally in k steps, where k is the length of the longest string in the
collection plus one for the appended end-marker symbol. At the end of step j, BCR has
built a partial BWT, bwtj(S), corresponding to the concatenation of the symbols preceding
the lexicographically sorted suffixes of length less than or equal to j.

In order to compute bwtj(S), BCR needs an array A of m elements, that uses O(m log(m+
|Σ| + |bwt(S)|)) bits of workspace, which is updated at each iteration j, for j = 0, 1, 2, . . . , k.
We denote by A(j) the array A at the j-th iteration, and by q any index in [1, m], then:

A(j)[q].seq stores the index of the string in S whose j-suffix is ranked q after lexicograph-
ically sorting all j-suffixes, i.e., A(j).seq gives the lexicographic order of all j-suffixes;
A(j)[q].sym stores the symbol circularly preceding the j-suffix of the string with index
A(j)[q].seq, i.e., a symbol to be inserted into bwtj−1(S);
A(j)[q].pos stores in which position symbol A(j)[q].sym must be inserted into bwtj−1(S).
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Table 1 The SAP-array and the different SAP-ordering heuristics applied to the collection
S = {CGAT, GGAT, CGCT, AGCT, AGAT, GGAT, GGCT }. The SAP-intervals are colored and
the sorted suffixes related to S are listed in the last column. The number of runs is computed
considering the end-marker symbols as the same symbol $.

Different heuristics string order Sorted suffixes in
SAP-ARRAY altBWT plusBWT randBWT sapBWT rloBWT InputBWT input collection

0 T T T T T T $1
1 T T T T T T $2
1 T T T T T T $3
1 T T T T T T $4
1 T T T T T T $5
1 T T T T T T $6
1 T T T T T T $7
0 $ $ $ $ $ $ A G A T $5
0 $ $ $ $ $ $ A G C T $4
0 G G G G G G A T $1
1 G G G G G G A T $2
1 G G G G G G A T $5
1 G G G G G G A T $6
0 $ $ $ $ $ $ C G A T $1
0 $ $ $ $ $ $ C G C T $3
0 G G G G G G C T $3
1 G G G G G G C T $4
1 G G G G G G C T $7
0 A G C C A C G A T $1
1 C G A A C G G A T $2
1 G A G G G A G A T $5
1 G C G G G G G A T $6
0 G C G C A C G C T $3
1 C G A A C A G C T $4
1 A A C G G G G C T $7
0 $ $ $ $ $ $ G G A T $2
1 $ $ $ $ $ $ G G A T $6
0 $ $ $ $ $ $ G G C T $7
0 A A C A A A T $1
1 A A C A A A T $2
1 A A C A A C T $3
1 A A A A A C T $4
1 C C A C C A T $5
1 C C A C C A T $6
1 C C A C C C T $7

Number of runs 13 12 13 14 14 17

A trivial “iteration 0” sets the initial partial BWT, bwt0(S), by simulating the insertion
of the end-marker symbols in the sorted list of suffixes. Thus, we set A(0)[q].seq = q,
A(0)[q].sym = Sq[nq] and A(0)[q].pos = q, for q = 1 . . . m. In the original version of BCR,
bwt0(S) = A(0)[1].sym · · · A(0)[m].sym, i.e., bwt0(S) is the concatenation of the symbols
preceding the end-marker symbols assuming that $i < $j , if i < j.

For each iteration j = 1, 2, . . . , k, BCR computes bwtj(S) by inserting the symbols
preceding all the j-suffixes of S into bwtj−1(S), through the following three phases:
1. BCR computes A(j) from A(j−1). For any q, let x = A(j−1)[q].seq, c = A(j−1)[q].sym

and p = A(j−1)[q].pos. The value A(j)[q].pos is set by reading bwtj−1(S) and by using
the LF-mapping, i.e., A(j)[q].pos = C[c] + rank(c, p) (we omit details for space reasons).
While, A(j)[q].sym is updated with the symbol preceding the j-suffix of Sx.

2. BCR sorts the array A(j) by using A(j).pos as sorting key.
3. For each q, BCR inserts the symbol A(j)[q].sym into bwtj−1(S) at position A(j)[q].pos.

CPM 2024



7:8 A Class of Heuristics for Reducing the Number of BWT-Runs

At the end of iteration j, after inserting all the symbols preceding the j-suffixes into bwtj−1(S),
we get bwtj(S) available for the next iteration. Whenever the first symbol of a string Sx has
been inserted into bwtj−1(S), the symbol $x must be inserted at the next iteration and then
no other symbol of the string Sx will be inserted.

After the last iteration k, all end-marker symbols have been inserted in their correct
positions into bwtk−1(S) and the BWT of the collection is completed.

Note that, the BCR implementation inserts the same end-marker symbol, $, for all strings
(i.e., $i = $ for all i = 1, . . . , m) so as not to increase the size of the alphabet. However,
one can store in a separate file the values in A(j).seq to which each end-marker symbol is
associated.

Actually, in BCR as well as in our implementation, the partial BWT is split into σ

segments Bj(z) formed by the symbols preceding suffixes starting with the symbol z (more
details in [1]). Hence, in the array A(j), for each value A(j)[q].pos, one needs to store two
pieces of information: the symbol z and the position in Bj(z) – see also [15].

3.2 Improved SAP-heuristics
Here we introduce three heuristics whose associated BWT strings belong to the class SS of
Definition 4. These heuristics are such that:

they improve the number of runs of the BWT output string with respect to the input
order (inputBWT) and the two existing heuristics sapBWT and rloBWT;
symbols in SAP-intervals are sorted during an incremental construction of the BWT
string that parses the suffixes of the same length through a simultaneous right-to-left
scanning of all the strings, like BCR does. At the jth-iteration, the sorting takes into
account symbols already stored in bwtj−1(S) or that will be inserted into the bwtj(S).

Let j be any BCR iteration, for j = 1, . . . , k.
The first heuristic, called altBWT, uses an alternating lexicographic order to sort symbols

in consecutive SAP-intervals which are to be inserted into bwtj−1(S). Thus, it differs from the
rloBWT, as it alternates the lexicographic order and its inverse when inserting consecutive
SAP-intervals - see altBWT column in Table 1.

The second heuristic, called plusBWT, designs an ad hoc alphabet order for each SAP-
interval to be inserted into bwtj−1(S) on the basis of the symbols already in it. In particular,
let p be the position in which the first symbol of the SAP-interval must be inserted into
bwtj−1(S). We modify the alphabet order by setting the smallest symbol as bwtj−1[p − 1] (if
it exists) and the greatest one as bwtj−1[p] (if it exists), and by keeping the alphabet order
among all the other symbols - see plusBWT column in Table 1.

The third heuristic, called randBWT, applies a random alphabet order for each SAP-
interval inserted into bwtj−1. Note that all these heuristics correspond to a string reordering
that cannot be obtained a-priori unless having the associated string permutation.

In order to sort symbols according to any of the above strategies, the array A(j) defined
in Section 3.1 is augmented with a binary value A(j)[q].sap that stores, for any q = 1, . . . , m,
the SAP-status of the associated symbol A(j)[q].sym6. More precisely, A(j)[q].sap encodes
whether or not the j-suffix of the string Sx, where x = A(j)[q].seq, is same as the j-suffix of
the string Sy, where y = A(j)[q − 1].seq, up to the end-marker symbol7.

6 Differently from [7], we compute the SAP-status and the SAP-intervals for the current iteration.
7 Similar strategies have been used in [7, 15] and in the BCR-implementation of the tool optimalBWT

introduced in [4] for explicitly computing the SAP-array.
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Hence, if we have A(j)[q′].sap = 0 and A(j)[q′ + i].sap = 1, for some q′ and all i with
1 ≤ i < ℓ, then there exist ℓ j-suffixes in S that are equal up to the end-marker symbols
and that belong to the strings with indices A(j)[q′ + i].seq, for 0 ≤ i < ℓ. For this reason,
the symbols A(j)[q′ + i].sym, for 0 ≤ i < ℓ, form a SAP-interval and they are inserted in
consecutive positions into bwtj−1(S).

Now, we describe how to modify BCR to compute any of the above heuristics.
At “iteration 0”, the array A is initialized as described in Section 3.1. Moreover, since

we simulate the insertion of the 0-suffixes of S, we set A(0)[1].sap = 0 and A(0)[q].sap = 1,
for all 1 < q ≤ m. Differently from the original BCR, before storing in bwt0(S) the symbols
A(0)[q].sym, for q = 1 . . . m, we perform a sorting on A(0) with respect to A(0)[·].sym as
sorting key. Supposing σ < m, we perform a linear sorting on A(0) on the basis of a special
alphabet order, which is for both altBWT and plusBWT the alphabetic order, and for
randBWT a random order on Σ. Then, by setting bwt0(S) = A(0)[1].sym . . . A(0)[m].sym,
we have that the number of runs of bwt0(S) is minimized. Note that the sorting is possible
since we assume there is no fixed order among the end-marker symbols, (i.e., it is no longer
true that $i < $j if i < j). The sorting of the symbols depends on the selected alphabet
order rather than on the string ordering.

At each iteration j = 1, 2, . . . , k, BCR updates the partial bwtj−1(S) by inserting the
symbols preceding the j-suffixes of S by using the three phases described in Section 3.1.
We modify both phase 1 and phase 3 in order to update A(j)[q].sap values and to permute
symbols in SAP-intervals while building bwtj(S).

In particular, during phase 1, when computing A(j) from A(j−1), we propagate the SAP-
status from iteration j − 1 to iteration j. For each maximal interval [b, e] in A(j−1) such that
A(j−1)[i].sap = 1 for all b < i ≤ e, we set A(j)[q].sap = 0 if A(j−1)[q].sym ̸= A(j−1)[q−1].sym,
for any b < q ≤ e, and keep A(j)[q].sap = A(j−1)[q].sap, otherwise. Intuitively, let c and
c′ be the symbols preceding the two equal j-suffixes of Sx and Sy, where x = A(j)[q].seq

and y = A(j)[q − 1].seq. Both c and c′ are in the same SAP-interval, but being c ̸= c′,
the (j + 1)-suffixes of Sx and Sy are no longer equal and thus their preceding symbols are
no longer in the same SAP-interval. During phase 2, BCR sorts the array A(j) by using
A(j)[q].pos as sorting key. No modifications need to be performed at this phase, but we can
make a key observation relevant for phase 3: for each maximal interval [b, e] in A(j) such
that A(j)[i].sap = 1 for b < i ≤ e, the symbols A(j)[q].sym need to be inserted in consecutive
positions into bwtj−1(S) starting from position p = A(j)[b].pos (that is A(j)[b + i].pos = p + i,
for all i = 1, . . . , e − b). During phase 3, for each maximal interval [b, e] in A(j) such that
A(j)[i].sap = 1 for all b < i ≤ e, we first linearly sort the sub-array A(j)[b, e] by using a
specific alphabet order on the key A(j).sym, and then for all b ≤ q ≤ e, we write the symbol
A(j)[q].sym into bwtj−1(S) in consecutive positions starting from p.

At the end, BCR has built a BWT string for the collection S in which the string order
is not given a priori, but it has implicitly established during the BWT construction itself
according to the alphabet order used within SAP-intervals.

The additional space required with respect to the original BCR is given by both the space
for storing the SAP status in m bits and the space used for linearly sorting the elements in
the SAP-intervals, which is O(σ log m) bits to store the number of symbol occurrences in
a SAP-interval and O(m log(σ + m)) bits to linearly sort at most m symbols carrying the
indices of the strings to which they belong. The time complexity of each iteration increases
by O(m), since first the array A(j) is scanned to find any maximal interval [b, e] such that
A(j)[i].sap = 1 (for b < i ≤ e) and for each of them the elements in A(j)[b, e] are linearly
sorted according to A(j).sym. Thus, the overall space and time complexity remains as in [1,
Table 1].
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a)
F rlo

BWT
$? T
$? T
$? T
$? T
$? T
$? T
$? T
A $5
A $4
A G
A G
A G
A G
C $1
C $3
C G
C G
C G
G A
G C
G G
G G
G A
G C
G G
G $2
G $6
G $7
T A
T A
T A
T A
T C
T C
T C

→

b)
F rlo

BWT
$5 T
$1 T
$2 T
$6 T
$4 T
$3 T
$7 T
A $5
A $4
A G
A G
A G
A G
C $1
C $3
C G
C G
C G
G A
G C
G G
G G
G A
G C
G G
G $2
G $6
G $7
T A
T A
T A
T A
T C
T C
T C

c)
F input

BWT
$1 T
$2 T
$3 T
$4 T
$5 T
$6 T
$7 T
A $5
A $4
A G
A G
A G
A G
C $1
C $3
C G
C G
C G
G C
G G
G A
G G
G C
G A
G G
G $2
G $6
G $7
T A
T A
T C
T C
T A
T A
T C

d)
Sorted
suffixes
$1
$2
$3
$4
$5
$6
$7
AGAT$5
AGCT$4
AT$1
AT$2
AT$5
AT$6
CGAT$1
CGCT$3
CT$3
CT$4
CT$7
GAT$1
GAT$2
GAT$5
GAT$6
GCT$3
GCT$4
GCT$7
GGAT$2
GGAT$6
GGCT$7
T$1
T$2
T$3
T$4
T$5
T$6
T$7

e)

Input
CGAT$1
GGAT$2
CGCT$3
AGCT$4
AGAT$5
GGAT$6
GGCT$7

RLO
AGAT$5
CGAT$1
GGAT$2
GGAT$6
AGCT$4
CGCT$3
GGCT$7

Figure 1 Considering the string collection of Table 1: a) and b) show the decoding of a string
when the strings are sorted by using the reverse lexicographic order (RLO). In a), the indices of the
end-markers in column F cannot be assigned, if we do not know the string permutation performed
during the encoding. In b), these indices are assigned since the encoding transformation outputted
the string permutation. While c) shows the decoding of a string when no string permutation is
performed. In d), we list the sorted suffixes according to the input order, and in e) the two considerd
re-orderings of our string collection.

4 Inverting the BWT and input order-preserving

In this section, we address the problem of inverting the BWT transform when a symbol
re-ordering in the SAP-intervals has been applied.

For ease of description, Figures 1a)-b) show the columns F and L of the collection of our
running example where the symbols of any SAP-interval have been sorted lexicographically
(rloBWT). However, what we show in the following holds for all the other SAP-ordering
heuristics. Figure 1c) shows the LF mapping applied to S3 = CGCT $3 in the BWT string
with input order of the collection, whose associated list of sorted suffixes is in Figure 1d).

Note that by applying the LF-mapping to the rloBWT, starting from the first m symbols in
L, we retrieve the m strings of the collection but permuted according to the order determined
by the local alphabet order used within the SAP-intervals (RLO in Figure 1e)). However,
the input string permutation can be recovered: in fact, when applying LF-mapping starting
from the q-th symbol in L (e.g., in Figure 1a) q = 6), we end up with the end-marker $k (e.g.,
in Figure 1a) $3) which means that the string Sk (S3) has been placed at the q-th position
(6-th position) in the permuted string collection. Since the indices of the end-marker symbols
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in L can be stored in a dedicated file, any $ in L can be associated with the correct string to
which it belongs even if all end-marker symbols appearing in L are equal to $. In this way,
since the LF-mapping starting from the q-th symbol in L ends in $k, we can label the q-th
end-marker symbol $? in F with the index k (e.g., in Figure 1a) F [6] = $3).

The example in Figure 1 also shows that, although the operation of symbol swapping is
not visible in any SAP-interval with a run of a same symbol, the symbols are (implicitly)
swapped with respect to the inputBWT (e.g., the red G-symbols in the third SAP-interval
of Figure 1c), since $3 > $4 in rloBWT).

We point out that by using LF-mapping we can decode the entire collection, but decoding
one single string or a specific group of strings in S is not possible. Indeed, in Figure 1a), we
do not know how to decode the sixth string of the input collection, since starting from L[6]
we end up decoding the third string. In addition, it is not possible to start from $6 in L and
to apply the LF-mapping, since we are not able to map $6 in L to the corresponding $? in
F . Therefore, the crucial property of decoding only specific groups of strings that the BCR
algorithm guarantees is compromised.

We address this issue by designing a strategy so that BCR can output the permutation
of the string indices at the end of the BWT construction phase. In this way, it is possible
to assign the correct index to any end-marker symbol in F , and decoding groups of strings
without decoding the entire collection (Figure 1b)).

Let π be an array of length m storing the permutation of the string indices of the
input collection. For instance, in Figure 1b), where rloBWT is computed, the permutation
π = [5 1 2 6 4 3 7]. Whereas, at the last iteration, the array A(4).seq contains the indices
[5 4 1 3 2 6 7], which correspond to the indices of the end-marker symbols in L. Indeed, at
the last iteration, A(k).seq contains the indices of the strings according to their lexicographic
order, regardless of the SAP-ordering heuristics used for building the BWT string.

Therefore, during the BWT construction, we need to keep track of the symbol swapping
performed. We modify the BCR data structure so that some entries of the array A point to
indices of π. More precisely, for any iteration j, we have a pointer A(j)[q].pi to a position in π

whenever a symbol swapping may affect the entries of A(j) from position q, i.e., A(j)[q].sap = 0
and A(j)[q + 1].sap = 1. That allows to report in π any string index swapping due to a
symbol swapping within a SAP-interval. In fact, the array A(j) is designed to assign to each
symbol A(j)[q].sym the string index to which it belongs (i.e., A(j)[q].seq).

After “iteration 0”, we have A(0)[1].pi points to π[1] and we initialize π[q] with the value
A(0)[q].seq, for all 1 ≤ q ≤ m. At each iteration j, we update A(j)[q].pi during phase 1 at the
same time as A(j)[q].sap. In particular, if A(j)[q].sap is set to 0, for some q, then A(j)[q].pi

points to π[x], where x is obtained by moving the position pointed by A(j)[q′].pi (with q′

the rightmost index preceding q such that A(j)[q′].sap = 0) by the offset q − q′. During
phase 3, we need to update π when a symbol swapping is performed. Thus, if [b, e] is a
maximal interval in A(j) such that A(j)[q].sap = 1 for all b < q ≤ e, and π[x] is the entry
of π pointed by A(j)[b].pi, then we copy in π[x, x + b − e] the values A(j)[b, e].seq after the
symbol swapping in that interval. At the end of the BWT construction, π corresponds to
the list of the indices of the end-marker symbols in F .

5 Experimental Results

In this section, we assess the performance of the introduced heuristics that we have
integrated into BCR tool8 implemented in C++ working in semi-external memory. To
evaluate the performance, we have designed a series of tests on real-life datasets (see Table 2).

8 Source code: https://github.com/giovannarosone/BCR_LCP_GSA.
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Table 2 Real-life datasets together with the BWT length, the maximum string length and the
number of strings. The column optBWT reports the minimum number of runs for each dataset, the
column ρ stores the ratio between the sum of the lengths of all SAP-intervals and the number of
runs in them and the column τ stores the ratio between the number of runs in the SAP-intervals
and the number of different symbols in them (higher values in bold).

Dataset Description BWT length Max Number of optBWT ρ τ
len. sequences

1 SRR7494928–30 Epstein Barr Virus 984,191,064 101 9,648,932 40,700,607 3.32 35.51
2 ERR732065–70 HIV-virus 1,345,713,812 150 8,912,012 11,539,661 10.98 15.57
3 SRR12038540 SARS-CoV-2 RBD 1,690,229,250 50 33,141,750 14,864,523 7.08 25.46
4 ERR022075_1 E. Coli str. K-12 2,294,730,100 100 22,720,100 71,203,469 1.46 11.38
5 SRR059298 Deformed wing virus 2,455,299,082 72 33,634,234 48,376,632 8.09 17.62
6 SRR065389–90 C. Elegans 14,095,870,474 100 139,563,074 921,561,895 1.56 8.15
7 SRR2990914_1 Sindibis virus 15,957,722,119 36 431,289,787 105,250,120 3.16 129.84
8 ERR1019034 H. Sapiens 123,506,926,658 100 1,222,840,858 10,860,229,434 1.82 7.58
9 pdb_seqres proteins 241,121,574 16,181 865,773 16,829,629 5.51 5.20

For each dataset, we computed two parameters: ρ and τ . The former parameter is given
by the ratio between the sum of the lengths of all SAP-intervals in the BWT string and
the total number of runs in the SAP-intervals of the inputBWT and it can be considered
as a repetitiveness measure in SAP-intervals. The latter parameter is given by the ratio
between the total number of runs in the SAP-intervals of the inputBWT and the sum of the
number of distinct symbols in each SAP-interval. The higher τ , the more the heuristics can
reduce the number of runs in the SAP-intervals, since the alphabet ordering applied to any
SAP-interval reduces its number of runs to the number of distinct symbols.

All tests were done on a DELL PowerEdge R750 machine, 24-core machine with 2 Intel(R)
Xeon(R) Gold 5318Y 24C/48T CPUs at 2.10 GHz, with 960 GB. The system is Ubuntu
22.04.2 LTS.

In Table 3, we report the number of runs for the new heuristics plusBWT, altBWT and
randBWT, and show they improve on BWT-string with input order (inputBWT), and the
two previously-introduced heuristics rloBWT and sapBWT9.

Recall that the sapBWT heuristic is built using BEETL-BCRext [1], which uses negligible
RAM at the expense of a larger amount of disk I/O. Therefore, its computation requires
more time than the other heuristics. In fact, all other BWT-strings are obtained by the
BCR-based tool that works in semi-external memory by sequential reading and writing files
on disk and requires more RAM (to store the array A) than BEETL-BCRext.

The heuristics altBWT, plusBWT, randBWT and rloBWT have similar performances: on
the largest dataset of about 123 Gb containing more than a billion sequences, they required
a time construction of about 17 hours and an internal memory usage of about 20GB. On the
contrary, the inputBWT required a time construction of about 15 hours and a similar internal
memory usage (about 20GB). Note that the optBWT is computed as post-processing [4] by
taking about 19 hours due to the fact that it needs to explicitly compute the SAP-array.

The experimental results show that plusBWT is the heuristic that gives the fewest runs,
improving on the number of runs in inputBWT by up to 97% and giving at least a 50%
reduction in runs for all eight of the DNA sequence datasets (strings from the alphabet
{A, C, G, N, T } of the same length). For the last dataset, containing proteins (on an alphabet
of 26 symbols of variable length), we observe that the reduction in the number of runs

9 Note that the implementation of sapBWT requires strings of the same length – see https://github.
com/BEETL/BEETL.

https://github.com/BEETL/BEETL
https://github.com/BEETL/BEETL
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Table 3 Number of runs in the BWT-string without symbol reordering (inputBWT) compared
to the number of runs for any heuristic being in the class SS for each dataset in Table 2.

Different heuristics string order
inputBWT rloBWT sapBWT plusBWT altBWT randBWT

1 254, 663, 327 41, 730, 649 65, 040, 263 41, 372, 530 41, 592, 394 41, 599, 327
2 48, 727, 709 11, 941, 093 17, 662, 811 11,766,827 11, 858, 536 11, 872, 578
3 209, 136, 502 17, 026, 009 17, 949, 348 15,226,766 16, 014, 506 16, 626, 930
4 259, 821, 570 75, 846, 202 92, 304, 201 74,529,428 75, 239, 739 75, 332, 300
5 249, 873, 376 50, 495, 777 75, 142, 244 49,619,150 50, 207, 432 50, 302, 961
6 2, 251, 887, 226 968, 098, 124 1, 066, 534, 827 954,489,749 960, 811, 214 963, 741, 035
7 3, 313, 966, 937 109, 772, 697 188, 817, 402 108,466,351 109, 365, 518 109, 599, 875
8 23, 084, 021, 291 11, 312, 737, 256 12, 151, 830, 264 11,179,873,104 11, 250, 843, 471 11, 273, 506, 405
9 17, 971, 532 16, 862, 960 − 16,848,496 16, 861, 264 16, 861, 897

is smaller compared to the one obtained for larger datasets, since the overall number of
SAP-intervals is smaller. In addition, for this particular dataset, only 96, 814 of its 24, 055, 929
SAP-intervals have at least two distinct symbols10, and reordering symbols in SAP-intervals
can have an impact on the number of runs only if SAP-intervals have at least two distinct
symbols.

Finally, the additional overhead for the computation of any BWT-string in the class
SS is negligible compared to the number of runs reduction obtained with respect to the
inputBWT.

6 Conclusions and further work

In this paper, we defined from a theoretical viewpoint a class SS of transformed strings
obtained by applying the BWT to a string collection S in which the symbols in particular
blocks (SAP-intervals) permute according to a different adaptive alphabet ordering. We
showed that the symbol swapping is important to reduce the number of runs in the BWT-
string with respect to the one computed using the string input order, and it can be performed
while maintaining the reversibility property of the BWT.

From a practical viewpoint, we introduced some heuristics belonging to SS that reduce
the number of runs, while computing the BWT-string itself. These heuristics improve on both
the BWT-string obtained from the input-ordered collection and the two previously-introduced
heuristics in [7].

In the experiments, the heuristics in the class SS showed a considerable reduction in the
number of runs. For instance, for all datasets (apart from pdb_seqres dataset), plusBWT
obtained a reduction in the number of runs of about 50%-96% with respect to the inputBWT.
Such reordering strategies can be very useful for data compression and for data structures
whose properties have a favourable dependence on a small number of runs. Furthermore,
the experiments showed that good results in terms of number of runs can be obtained using
a random alphabet order for any SAP-interval (i.e., randBWT). That heuristic performs
better than the rloBWT heuristic that establishes the lexicographic alphabet order for each
SAP-interval. This is an intriguing fact that shows that picking random symbols to place at
the borders of a SAP-interval can be better than always choosing the lexicographic order to
sort them. Experimentally, the best results are obtained when the alphabet order choice in

10 These SAP-intervals with at least two distinct symbols are associated with the interesting intervals
introduced in [5].
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SAP-intervals keeps track of the symbols immediately preceding/succeeding, as done in the
plusBWT heuristic. In addition, we observe that a pre-processing reordering of the input
strings in S can only be applied if the string reordering is known a priori, such as for the
reverse lexicographic order; nevertheless, this condition does not universally apply.

From Observations 2 and 3, we can conclude that the size of the introduced class SS
is at most m!. However, strings that are equal keep their original order in S and not all
permutations may be possible. As future work, we intend to study further the permutations
in the class SS taking into account also the permutation study related to the rloBWT in [5].

Finally, an interesting direction for further studies involves to determine how the other
data structures related to BWT are affected by the symbol swapping, considering that the
LCP-array is not affected, as well as the SAP-array.
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Abstract
The classical string indexing problem asks to preprocess the input string S for efficient pattern
matching queries. Bille, Fischer, Gørtz, Pedersen, and Stordalen [CPM 2023] generalized this to the
streaming sliding window string indexing problem, where the input string S arrives as a stream,
and we are asked to maintain an index of the last w characters, called the window. Further, at any
point in time, a pattern P might appear, again given as a stream, and all occurrences of P in the
current window must be output. We require that the time to process each character of the text or
the pattern is worst-case. It appears that standard string indexing structures, such as suffix trees,
do not provide an efficient solution in such a setting, as to obtain a good worst-case bound, they
necessarily need to work right-to-left, and we cannot reverse the pattern while keeping a worst-case
guarantee on the time to process each of its characters. Nevertheless, it is possible to obtain a bound
of O(log w) (with high probability) by maintaining a hierarchical structure of multiple suffix trees.

We significantly improve this upper bound by designing a black-box reduction to maintain a
suffix tree under prepending characters to the current text. By plugging in the known results, this
allows us to obtain a bound of O(log log w + log log σ) (with high probability), where σ is the size of
the alphabet. Further, we introduce an even more general problem, called the streaming dynamic
window string indexing, where the goal is to maintain the current text under adding and deleting
characters at either end and design a similar black-box reduction.
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1 Introduction

The string indexing problem is to preprocess a string S into a compact data structure that
supports efficient subsequent pattern matching queries, that is, given a pattern string P ,
report all occurrences of P within S. Bille, Fischer, Gørtz, Pedersen, and Stordalen [6]
introduced a variant of the string indexing problem, called the streaming sliding window
string indexing (SSWSI) problem, where S arrives as a stream one character at a time. Here,
we want to maintain an index of a window of the last w character for a specified parameter w.
At any point in time, a pattern matching query for a pattern P may arrive also streamed one
character at a time, and we need to report the occurrences of P within the current window.

© Philip Bille, Paweł Gawrychowski, Inge Li Gørtz, and Simon R. Tarnow;
licensed under Creative Commons License CC-BY 4.0

35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024).
Editors: Shunsuke Inenaga and Simon J. Puglisi; Article No. 8; pp. 8:1–8:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:phbi@dtu.dk
https://orcid.org/0000-0002-1120-5154
mailto:gawry@cs.uni.wroc.pl
https://orcid.org/0000-0002-6993-5440
mailto:inge@dtu.dk
https://orcid.org/0000-0002-8322-4952
mailto:sruta@dtu.dk
https://orcid.org/0009-0002-4293-6475
https://doi.org/10.4230/LIPIcs.CPM.2024.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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We measure the complexity of the algorithm by the worst-case time it processes a single
character of the text or pattern. The goal is to compactly maintain the index while processing
the characters arriving from either S or a pattern query efficiently. The SSWSI problem
captures scenarios where we want to index recent data in an incoming stream (the window)
while supporting fast pattern matching queries. For instance, monitoring a high-speed data
stream, where we cannot afford to index the entire stream but still want to support fast
queries.

As discussed in Bille, Fischer, Gørtz, Pedersen, and Stordalen [6], the standard string
indexing structures, such as sliding suffix tree [8,12,20–22] and online suffix tree [1–3,7,14,17–
19] constructions, do not provide an efficient solution to the SSWSI problem. For instance,
efficient online suffix tree constructions require that we process the string (and hence also
the pattern) in right-to-left order. In our setting we cannot afford to reverse pattern while
keeping a worst-case guarantee on the time to process each of its characters. Bille, Fischer,
Gørtz, Pedersen, and Stordalen [6] showed how achieve O(log w) (with high probability) time
per character by maintaining a hierarchical structure of multiple suffix trees.

In this paper, we present a new black-box reduction to online suffix tree construction
algorithms, i.e., algorithms that maintain suffix trees while prepending one character at a
time to the current text. By plugging in known results, we obtain solutions using either
O(log log w + log log σ) time (with high probability) or O

(
log log w + (log log σ)2

log log log σ

)
(determin-

istic) time per character. Here, σ is the size of the alphabet. We also consider a generalized
version of this problem, called the streaming dynamic window string indexing (SDWSI)
problem. Here, the window is a dynamic string that can be updated by adding or deleting
characters at either end of the string, and we have to support streamed pattern matching
queries as above. We show how to extend our reduction and results for this problem, and
obtain similar bounds.

1.1 Setup
We now formally define the streaming dynamic window string indexing and streaming sliding
window string indexing problems and our main results.

Streaming Dynamic Window String Indexing. Let S be a dynamic string over an alphabet
Σ. The streaming dynamic window string indexing (SDWSI) problem is to maintain a data
structure on S that supports the following operations:

AddRight(a): add the character a to the right end of S.
AddLeft(a): add the character a to the left end of S.
RemoveRight(): remove the last character from S.
RemoveLeft(): remove the first character from S.
Report(P ) report all the occurrences of P in S.

In the Report(P ) query, the pattern string P is streamed one character at a time from
left-to-right and the goal is to begin reporting occurrences immediately after receiving the
last character. We do not assume that we know the length P before the arrival of its last
character.

Streaming Sliding Window String Indexing. Given an integer parameter w ≥ 1, we define
the streaming sliding window string indexing (SSWSI) problem as above, except that we
support a restricted set of operations:

Report(P ) report all the occurrences of P in S.
Update(a): AddRight(a). If |S| is now greater than w also perform a RemoveLeft().
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Thus, except for the first w Update operations, the window always has size w and changes
only by “sliding” one character to the right. This is also called the timely streaming sliding
window string indexing problem in Bille et al. [6].

Online Suffix Trees and Dynamic Dictionaries. Our main results use online suffix tree
construction algorithms and dynamic dictionaries as a black box. We define the precise
requirements for these. Let R be a string of length r over an alphabet of size σ and Ti be the
suffix tree of R[i..r]. An online suffix tree construction algorithm processes R from right to
left such that at the ith step, the algorithm explicitly constructs Ti and returns a pointer to
the new leaf ℓ corresponding to suffix R[i..r], the parent of ℓ, and the edge between ℓ and the
parent. We will use the currently best known algorithms for online suffix tree construction
due to Kopelowitz [17] and Fischer and Gawrychowski [14].

▶ Lemma 1 ([14, 17]). Given a string R of length r over an alphabet of size σ, we can solve
online suffix tree in linear space using either O(log log r +log log σ) time with high probability1

or O(log log r + (log log σ)2

log log log σ ) (deterministic) time per character, respectively.

Let X be a set of x integers from a universe of size u. A dynamic dictionary structure on X

supports membership (i.e., determine if a given integer is in X or not), insert, and delete on
X. We use the following results.

▶ Lemma 2. A set X ⊆ [U ] can be maintained in a linear space dynamic dictionary structure
that uses either O(1) time with high probability or O( (log log U)2

log log log U ) (deterministic) time.

Proof. The first bound is obtained by using a dynamic hash table [10]. The second bound
follows from a result of Andersson and Thorup [4]. ◀

We will maintain a dynamic dictionary structure D(v) for every explicit node v of the
current suffix tree Ti. D(v) maps the first character on an edge to the edge, which allows us
to navigate down in Ti to find the (implicit or explicit) node corresponding to P [1..i], for
i = 1, 2, . . . , m, in either O(1) time with high probability or O

(
(log log σ)2

log log log σ

)
(deterministic)

time per character of P .

1.2 Results
We can now define our main results. Let tsuff(r, σ) denote the time per character of a linear
space online suffix tree construction algorithm on a string of length r over an alphabet
σ. Also, let tdict(x, u) denote the time per operation of a linear space dynamic dictionary
structure. We show the following result for streaming sliding window string indexing.

▶ Theorem 3. Let S be a string over an alphabet of size σ. Given an integer parameter
w ≥ 1 we can solve the streaming sliding window string indexing problem on S for a
window of size w with an O(w) space data structure that supports Update and Report in
O(tsuff(w, σ)+tdict(w, σ)) time per character. Furthermore, Report uses additional worst-case
constant time per reported occurrence.

Plugging in Lemmas 1 and 2 in Theorem 3 we obtain the following bounds:

1 Kopelowitz [17] claims only worst-case expected time, but the expectation is due to hash tables, so one
can plug in e.g. the construction of Dietzfelbinger and auf der Heide [10].
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▶ Corollary 4. Let S be a string over an alphabet of size σ. Given an integer parameter
w ≥ 1 we can solve the streaming sliding window string indexing problem on S for a window
of size w with an O(w) space data structure that supports Update and Report in either
O(log log w + log log σ) time per character with high probability or O

(
log log w + (log log σ)2

log log log σ

)
deterministic time per character. Furthermore, Report uses additional worst-case constant
time per reported occurrence.

For the streaming dynamic window string indexing we show the following result.

▶ Theorem 5. Let S be a dynamic string of length w over an alphabet σ. We can solve
the streaming dynamic window string indexing problem on S with an O(w · tsuff(w, σ)) space
data structure that supports AddRight, AddLeft, RemoveRight, RemoveLeft and Report in
O(tsuff(w, σ)+tdict(w, σ)) time per character. Furthermore, Report uses additional worst-case
constant time per reported occurrence.

Again, plugging in Lemmas 1 and 2 in Theorem 5 we obtain the following bounds:

▶ Corollary 6. Let S be a dynamic string of length w over an alphabet σ. We can solve the
streaming dynamic window string indexing problem on S with an O(w · tsuff(w, σ)) space data
structure that supports AddRight, AddLeft, RemoveRight, RemoveLeft and Report in either
O(log log w + log log σ) time per character with high probability or O

(
log log w + (log log σ)2

log log log σ

)
deterministic time per character. Furthermore, Report uses additional worst-case constant
time per reported occurrence.

1.3 Techniques
We first show how to use an online suffix tree construction algorithm to solve the version
where the string only changes by appending characters to the right. As noted, existing fast
algorithms for this problem work from right to left by prepending characters and then reverse
patterns to do a pattern matching query. We cannot do this efficiently in our scenario since
we want fast per character processing and we do not know the length of the pattern ahead
of time. To overcome this, we construct the online suffix tree over the reverse string and
then answer a pattern matching query P by prepending the characters of P to the string
as we receive them. Thus after receiving all of P the suffix tree contains all suffixes of
rev(P )$rev(S). When we receive the last character from the pattern, we determine if there
is an occurrence by checking if the edge in the suffix tree created by prepending the last
character starts with a $. Finally, we return the state of the online suffix tree before the
query. To quickly return the state of the online suffix tree to the state before the query, we
use techniques from persistent data structures.

To solve the streaming sliding window string indexing problem, we use the above data
structure over the last part of the window and a static suffix tree with a range maximum
query data structure over the first part of the window. The two data structures always
overlap by w/3. We can then answer pattern matching queries by querying each of these
structures. To find occurrences of long patterns not covered by any of the structures, we
give an algorithm that can report all occurrences of a pattern P in a text of length O(|P |)
in constant time per streamed character in P .

We solve the streaming dynamic window string indexing problem by representing S as a
concatenation of two shorter strings S = S1 ·S2. We then use online suffix tree data structures
on S1 and S2. The one on S1 supports only the updates AddLeft and RemoveLeft, and the
one on S2 supports only the updates AddRight and RemoveRight. To obtain the final result,
we use a classic technique to implement a deque with two stacks (see e.g., Hoogerwood [15]
combined with a deamortization scheme from Chuang and Goldberg [9].
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1.4 Overview
In Section 2 we introduce some notation. In Section 3 we give our algorithm for finding
occurrences of a streamed pattern P in strings of length O(|P |). In Section 4 we show how
to solve the version where the string S only grows by appending characters to the right.
Section 5 contains our new improved solution to the streaming sliding window string indexing
(SSWSI) problem. Finally, in Section 6 we give our solution to the streaming dynamic
window string indexing (SDWSI) problem.

2 Preliminaries

Given a string S of length n over an alphabet Σ, the ith character is denoted S[i], and the
substring starting at S[i] and ending at S[j] is denoted S[i..j]. The substrings of the form
S[i..n] are the suffixes of S. The reverse of a string S is the string rev(S) = S[n]S[n−1] · · · S[1].

The suffix tree [23] T over a string S[1..n] is the compact trie of all suffixes of S$, where
$ ̸∈ Σ is lexicographically smaller than any letter in the alphabet. Each leaf corresponds to a
suffix of S, and the leaves are ordered from left to right in lexicographically increasing order.
The suffix tree uses O(n) space by implicitly representing the string associated with each
edge using two indices into S. Farach-Colton, Ferragina, and Muthukrishnan [11] show that
the optimal construction time for T is sort(n, |Σ|), i.e., the time it takes to sort n elements
from the universe Σ. The suffix array L of a string S is the array where L[i] is the starting
position of the ith lexicographically smallest suffix of S. Note that L[i] corresponds to the
ith leaf of T in left-to-right order. Furthermore, let v be an internal node in T and let sv be
the string spelled out by the root-to-v path. The descendant leaves of v exactly correspond
to the suffixes of S that start with sv, and these leaves correspond to a consecutive range
[α, β]v in L. The locus of a string P is the minimum depth node v such that P is a prefix
of sv.

▶ Definition 7 (Periods). We say that a positive integer p is a period of a string S if
S[i] = S[i + p] for all i = 1, . . . , |S| − p. A string S is periodic if its smallest period is at
most |S|/2.

For a periodic pattern P with the smallest period p, we say a1, . . . , ak form a chain of
occurrences of P in S if P = S[ai..ai + |P | − 1] for i = 1, . . . , k and ai − ai−1 = p for
i = 2, . . . , k. The following (known) lemma is an easy consequence of the periodicity
lemma [13].

▶ Lemma 8. Let a1 < a2 < . . . < ak be all occurrences of P in S, where |S| ≤ 2|P |. If k ≥ 3
then a1, a2, . . . , ak form a chain.

3 Matching Long Streaming Patterns

In this section we describe an algorithm that can find and compactly report all occurrences of
a streamed pattern P in a string S of length O(|P |) in worst-case constant time per streamed
character.

We are given an integer m and a string S of length O(m) supporting random access in
constant time. We now receive a streamed pattern P of length between m and 3m. We want
to find all occurrences of P in S using constant time per streamed character. Since we do
not know the precise length of P before we receive the last character our algorithm must be
able to report all occurrences of the current P in constant time after receiving the first m
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characters. Note that, since |S| = O(m) there is a constant number of occurrences of P in S

unless P is periodic. If P is periodic then, by Lemma 8, the occurrences can be described by
a constant number of chains.

Algorithm

The algorithm works in three phases. The ith phase starts after i · ⌊m/4⌋ of characters
of P have been streamed for i ∈ {1, 2, 3}. The third phase has two variants based on the
periodicity of P [0..⌊m/4⌋ − 1]. Throughout the phases, we store the streamed characters
of P .

Phase 1. Starts after the first ⌊m/4⌋ characters have arrived. We build a KMP au-
tomaton [16] of P [0..⌊m/4⌋ − 1]. When we have built the KMP automaton, we check if
P [0..⌊m/4⌋ − 1] is periodic and find its smallest period p.

Phase 2. Starts after 2⌊m/4⌋ characters have arrived. Find all occurrences of P [0..⌊m/4⌋−1]
in S using the KMP automaton. If P [0..⌊m/4⌋ − 1] is not periodic then there is a constant
number of occurrences and they are maintained explicitly. If P [0..⌊m/4⌋ − 1] is periodic then,
by Lemma 8, the occurrences can be described by a constant number of chains. In more
detail, let P = S[ai..ai + |P | − 1] be the previous occurrence and P = S[ai+1..ai+1 + |P | − 1]
be the next occurrence. If ai + p = ai+1 then we extend the last chain by ai+1, and otherwise
we create a new chain initially consisting of only ai+1.

Phase 3. Starts after 3⌊m/4⌋ characters have arrived. There are two cases depending on
whether P [0..⌊m/4⌋ − 1] is periodic or not.
Non-periodic. Extend the match of each occurrence from phase 2 simultaneously by explicitly

matching each character of P [⌊m/4⌋..|P |]. For each streamed character of P , match 4
characters until we have caught up to the stream. When the stream ends, report all
occurrences.

Periodic. We match in each chain simultaneously as follows. Let a1, . . . , ak be a chain. We
match against one occurrence in the chain, matching 4 characters at a time for each
streamed character of P as in the non-periodic case. Let the current occurrence we are
checking be occurrence j. Initially, j = k and i = ⌊m/4⌋. As long as i < |P | we do
the following: Compare P [i] and S[aj + i]. If we match we set i = i + 1 and continue.
Otherwise, there are two cases. If the mismatched character P [i] is a continuation of the
period and j > 1, we set j = j − 1, i = i + 1, and continue. Otherwise, we stop matching
in this chain. While matching, we also check if P still has period p.
When the stream ends there are two cases. If P does not have period p (P is non-periodic
or its smallest period is greater than p), then return the occurrence aj . If P has period p

we return the chain a1, . . . , aj .

Analysis

Constructing a KMP automaton of P [0..⌊m/4⌋ − 1] takes O(m) time. We can find the
periodicity through the KMP in O(m) time. The number of characters streamed in phase 1
is 2⌊m/4⌋ − ⌊m/4⌋, and thus we spent O(m)/⌊m/4⌋ = O(1) time per character in phase 1.

In phase 2, we match the KMP automaton of P [0..⌊m/4⌋ − 1] against S. Since the length
of S is O(m) and the number of characters streamed in phase 2 is 3⌊m/4⌋ − 2⌊m/4⌋, we
spent O(m)/⌊m/4⌋ = O(1) time per character in phase 2.
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<latexit sha1_base64="ooPkdiGjEt2G+vnIYwYbxUDRtus=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3SPQY8OIxonlAsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8NJME/YgOJQ85o8ZKD2V62S+W3Iq7AFknXkZKkKHRL371BjFLI5SGCap113MT40+pMpwJnBV6qcaEsjEdYtdSSSPU/nRx6oxcWGVAwljZkoYs1N8TUxppPYkC2xlRM9Kr3lz8z+umJrzxp1wmqUHJlovCVBATk/nfZMAVMiMmllCmuL2VsBFVlBmbTsGG4K2+vE5a1YpXq9Tur0r1ahZHHs7gHMrgwTXU4Q4a0AQGQ3iGV3hzhPPivDsfy9ack82cwh84nz+HbY1F</latexit>

(a)

<latexit sha1_base64="RPpOndLUlyW3PNrk0B+TwYifxhU=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3SPQY8OIxonlAsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8NJME/YgOJQ85o8ZKD+Xgsl8suRV3AbJOvIyUIEOjX/zqDWKWRigNE1Trrucmxp9SZTgTOCv0Uo0JZWM6xK6lkkao/eni1Bm5sMqAhLGyJQ1ZqL8npjTSehIFtjOiZqRXvbn4n9dNTXjjT7lMUoOSLReFqSAmJvO/yYArZEZMLKFMcXsrYSOqKDM2nYINwVt9eZ20qhWvVqndX5Xq1SyOPJzBOZTBg2uowx00oAkMhvAMr/DmCOfFeXc+lq05J5s5hT9wPn8AiPKNRg==</latexit>

(b)

<latexit sha1_base64="O6Gjj1BilT4be9D1sl/ENYC0mA0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3SPQY8OIxonlAsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8NJME/YgOJQ85o8ZKD2V22S+W3Iq7AFknXkZKkKHRL371BjFLI5SGCap113MT40+pMpwJnBV6qcaEsjEdYtdSSSPU/nRx6oxcWGVAwljZkoYs1N8TUxppPYkC2xlRM9Kr3lz8z+umJrzxp1wmqUHJlovCVBATk/nfZMAVMiMmllCmuL2VsBFVlBmbTsGG4K2+vE5a1YpXq9Tur0r1ahZHHs7gHMrgwTXU4Q4a0AQGQ3iGV3hzhPPivDsfy9ack82cwh84nz+Kd41H</latexit>

(c)

<latexit sha1_base64="2lsz2MSh9xNkM2sCtQsbFodva5I=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRahXspukeqx4MVjRfsB7VKy2WwbmmSXJCuUpT/BiwdFvPqLvPlvTNs9aOuDgcd7M8zMCxLOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpOFaFtEvNY9QKsKWeStg0znPYSRbEIOO0Gk9u5332iSrNYPpppQn2BR5JFjGBjpYdqeDksV9yauwBaJ15OKpCjNSx/DcKYpIJKQzjWuu+5ifEzrAwjnM5Kg1TTBJMJHtG+pRILqv1sceoMXVglRFGsbEmDFurviQwLracisJ0Cm7Fe9ebif14/NdGNnzGZpIZKslwUpRyZGM3/RiFTlBg+tQQTxeytiIyxwsTYdEo2BG/15XXSqde8Rq1xf1Vp1vM4inAG51AFD66hCXfQgjYQGMEzvMKbw50X5935WLYWnHzmFP7A+fwBi/yNSA==</latexit>

(d)

Figure 1 Phase 3. In (a) the pattern is non-periodic and we continue matching from each
occurrence of P [0..⌊m/4⌋ − 1] (marked with gray). (b)-(d) show different cases of the periodic case.
Here P [0..⌊m/4⌋ − 1] = ababab. In (b) we match P [i] = c and thus continue matching from this
position. Since P [i] = c is not a continuation of the period, we will never shift back to the previous
occurrence. In (c) we mismatch and P [i] = a is a continuation of the period, so we shift to the
previous occurrence in the chain and keep matching. In (d) we mismatch and the and P [i] = c is
not a continuation of the period, so we stop.

In phase 3, we extend each match from phase 2. Since these are occurrences of a pattern
of length at least ⌊m/4⌋ and S has length O(m), by Lemma 8 the number of occurrences
or chains from phase 2 is constant. Since we match at most 3 characters at a time per
occurrence or chain, we use O(1) time per streamed character in phase 3.

The space of the KMP automaton is linear, and in addition to that, we only need space
for the strings S and P and a constant number of positions (set of possible occurrences) in
S. Thus the space is O(m).

Correctness. For correctness, assume that while matching against chain a1, . . . , ak we have
a mismatch S[aj + i] ̸= P [i]. If P [0..i] has period p, then since S[aj ..aj + i − 1] = P [0..i − 1]
and S[aj′ ..aj′ + i−1+p] = P [0..p] ·S[aj′+1..aj′+1 + i−1] for 1 ≤ j′ < j, then aj′ is a starting
position of P [0..i]. Otherwise, by the same argument, P [0..i] has no starting position in the
chain. Let P [0..ℓ] be the longest prefix of P such that P [0..ℓ] has period p and let a1, . . . , aj

be all the starting positions of P [0..ℓ] in a chain. If ℓ ̸= |P | − 1, then the remaining part of
P is non-periodic, and by the same argument as before, only aj can be an occurrence of P ,
which we match explicitly against.

When we enter phase 3 we have matched against P [0..⌊m/4⌋ − 1] and 3⌊m/4⌋ characters
have been streamed. The earliest time the stream can terminate is after m characters. Since
we match up to 4 characters at a time, by the time the stream can terminate, we could have
matched ⌊m/4⌋ + 4(m − 3⌊m/4⌋) > m characters, and thus we catch up to the stream before
it can terminate.

In summary, we have shown the following.

▶ Lemma 9. We are given an integer m and a string S of length O(m) supporting random
access in constant time and a streamed pattern P of length between m and 3m. For each
arriving character of P we use constant time, and when the stream ends we output all the
occurrences of P in S in constant time. If P is periodic, we output the occurrences as the
O(1) chains describing all occurrences. The algorithm uses O(m) space.

Note that we can replace KMP with any real-time pattern matching algorithm.
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4 Matching Streaming Patterns with Append

In this section, we show how to maintain the string S under appending characters (adding
characters at the right end using AddRight(a)) while supporting Report(P ).

Data structure

The data structure consists of a suffix tree over the reverse string of S, i.e., rev(S). We utilize
the online suffix tree algorithm to maintain the suffix tree. To perform AddRight(a), we use
the online suffix tree algorithm to insert the new suffix a · rev(S) in the suffix tree by adding
a new edge (v, w). Furthermore, if the edge (v, w) splits an edge in the suffix tree, i.e., the
node v is a new node, then we store a pointer to the leaf w in node v.

Rollback. When we answer Report(P ) queries, we will modify the data structure, but to
quickly return the data structure to the state it had before the query, we do the following.
We store three values for each memory cell c used by the data structure:

The value vc that cell c has when we are not processing a query.
The value qc that cell c has when we are processing a query.
The timestamp tc of the last query that modified the cell c. Initially, tc = −1.

When we process the t’th query, if we access cell c, we first check if qc is outdated by checking
tc. If tc < t then we access vc. Otherwise, we access qc. Whenever we modify a cell c during
the query, we set tc = t and update qc.

Query

To perform a query Report(P ), we do the following. We prepend rev(S) with “$” and then
prepend each streamed character from P when we receive it. When we prepend the last
character of P , we get the edge (v, w) that is added to insert the new suffix rev(P )$rev(S) in
the suffix tree. If the first character of the string on edge (v, w) is “$” then all other children
of v are occurrences of P in S. Otherwise, there are no occurrences of P in S.

To report all occurrences in worst-case constant time per reported occurrence, we do the
following. We do a depth first traversal of the subtree rooted at v, visiting four nodes at
each time step. We get an occurrence for each node we visit, either by a leaf we visit, or the
pointer to a leaf stored in an internal node visited. To avoid reporting the same occurrence
twice, we keep an array of size w, storing which indices have been reported in the current
Report(P ) query. If we find multiple new occurrences in a single time step, we output one
and store the remaining in a buffer. If we do not find any new occurrences in a time step we
output an occurrence from the buffer.

Analysis

For each AddRight(a), we use the online suffix tree algorithm to find the new edge (v, w)
in O(tsuff(w, σ)) time. We can identify if v is a new node in constant time by checking
the number of children of v and update its stored pointer in constant time. Thus, each
AddRight(a) takes O(tsuff(w, σ)) time.

For each Report(P ), we spend O(tsuff(w, σ)) per character in P that we prepend to the
string. When we traverse the subtree rooted at v, we visit at most four nodes per reported
occurrence. Thus, each Report(P ) query uses O(tsuff(w, σ)) per character in P and an
additional O(1) time per reported occurrence.



P. Bille, P. Gawrychowski, I. L. Gørtz, and S. R. Tarnow 8:9

<latexit sha1_base64="WgPLE9JyKYOs7Mdt2rGPtX4aiOo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHhRHaNryOJF4+QyCOBDZkdemFkdnYzM6shhC/w4kFjvPpJ3vwbB9iDgpV0UqnqTndXkAiujet+O7m19Y3Nrfx2YWd3b/+geHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hodua3HlFpHst7M07Qj+hA8pAzaqxUf+oVS27FnYOsEi8jJchQ6xW/uv2YpRFKwwTVuuO5ifEnVBnOBE4L3VRjQtmIDrBjqaQRan8yP3RKzqzSJ2GsbElD5urviQmNtB5Hge2MqBnqZW8m/ud1UhPe+BMuk9SgZItFYSqIicnsa9LnCpkRY0soU9zeStiQKsqMzaZgQ/CWX14lzfOKd1W5rF+UquUsjjycwCmUwYNrqMId1KABDBCe4RXenAfnxXl3PhatOSebOYY/cD5/AOAjjOs=</latexit>w

<latexit sha1_base64="hdJ4ZTCPeyM/3iDDEaZ0XfmdQd8=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoOQi2FXfB0DXjxGMA9IljA7mU2GzM4uM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38389hPXRsTqEScJ9yM6VCIUjKKV2kE/G59703654tbcOcgq8XJSgRyNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzc6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGN76mVBJilyxxaIwlQRjMvudDITmDOXEEsq0sLcSNqKaMrQJlWwI3vLLq6R1UfOua1cPl5V6NY+jCCdwClXw4AbqcA8NaAKDMTzDK7w5ifPivDsfi9aCk88cwx84nz/eYI8y</latexit>

bk�1
<latexit sha1_base64="pS1hMIGkowWTHEj+wgXXlgAM+KM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIX8eCF48VTFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemAqujet+OaW19Y3NrfJ2ZWd3b/+genjU1kmmGPosEYnqhlSj4BJ9w43AbqqQxqHATji5nfudR1SaJ/LBTFMMYjqSPOKMGiv54SCfzAbVmttwFyB/iVeQGhRoDaqf/WHCshilYYJq3fPc1AQ5VYYzgbNKP9OYUjahI+xZKmmMOsgXx87ImVWGJEqULWnIQv05kdNY62kc2s6YmrFe9ebif14vM9FNkHOZZgYlWy6KMkFMQuafkyFXyIyYWkKZ4vZWwsZUUWZsPhUbgrf68l/SPm94V43L+4tas17EUYYTOIU6eHANTbiDFvjAgMMTvMCrI51n5815X7aWnGLmGH7B+fgGAjWOwA==</latexit>

bk
<latexit sha1_base64="KyLoVVFUa8cFdBhB+Cbu/W0yWRI=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBByMewGX8eAF48RzAOSJcxOepMhs7PLzKwQlnyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3cxvP6HSPJaPZpKgH9Gh5CFn1FipHfSz8UVt2i+V3ao7B1klXk7KkKPRL331BjFLI5SGCap113MT42dUGc4ETou9VGNC2ZgOsWuppBFqP5ufOyXnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhLd+xmWSGpRssShMBTExmf1OBlwhM2JiCWWK21sJG1FFmbEJFW0I3vLLq6RVq3rX1auHy3K9ksdRgFM4gwp4cAN1uIcGNIHBGJ7hFd6cxHlx3p2PReuak8+cwB84nz/f5Y8z</latexit>

bk�2
<latexit sha1_base64="YVjU6gFeXr9c4iaK0gH/xixTs5c=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBByMez6Pga8eIxgHpAsYXbSmwyZnV1mZoWw5CO8eFDEq9/jzb9xkuxBEwsaiqpuuruCRHBtXPfbWVldW9/YLGwVt3d29/ZLB4dNHaeKYYPFIlbtgGoUXGLDcCOwnSikUSCwFYzupn7rCZXmsXw04wT9iA4kDzmjxkqtoJeNzi4mvVLZrbozkGXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgpNhNNSaUjegAO5ZKGqH2s9m5E3JqlT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOtnXCapQcnmi8JUEBOT6e+kzxUyI8aWUKa4vZWwIVWUGZtQ0YbgLb68TJrnVe+6evVwWa5V8jgKcAwnUAEPbqAG91CHBjAYwTO8wpuTOC/Ou/Mxb11x8pkj+APn8wfhao80</latexit>

bk�3

<latexit sha1_base64="HBLfSQzqEFaiJmEjOkyFk5ZWVRY=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHhRHaNryOJF48Q5ZHAhswOvTAyO7uZmTUhhC/w4kFjvPpJ3vwbB9iDgpV0UqnqTndXkAiujet+O7m19Y3Nrfx2YWd3b/+geHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hodua3nlBpHssHM07Qj+hA8pAzaqxUv+8VS27FnYOsEi8jJchQ6xW/uv2YpRFKwwTVuuO5ifEnVBnOBE4L3VRjQtmIDrBjqaQRan8yP3RKzqzSJ2GsbElD5urviQmNtB5Hge2MqBnqZW8m/ud1UhPe+BMuk9SgZItFYSqIicnsa9LnCpkRY0soU9zeStiQKsqMzaZgQ/CWX14lzfOKd1W5rF+UquUsjjycwCmUwYNrqMId1KABDBCe4RXenEfnxXl3PhatOSebOYY/cD5/AKmTjMc=</latexit>

S

<latexit sha1_base64="PmyQNwgfU3gMGufKk/5GFr1JKUA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOQU9gVX8eAF48J5AXJEmYnvcmY2dllZlYIIV/gxYMiXv0kb/6Nk2QPmljQUFR1090VJIJr47rfTm5jc2t7J79b2Ns/ODwqHp+0dJwqhk0Wi1h1AqpRcIlNw43ATqKQRoHAdjC+n/vtJ1Sax7JhJgn6ER1KHnJGjZXqjX6x5FbcBcg68TJSggy1fvGrN4hZGqE0TFCtu56bGH9KleFM4KzQSzUmlI3pELuWShqh9qeLQ2fkwioDEsbKljRkof6emNJI60kU2M6ImpFe9ebif143NeGdP+UySQ1KtlwUpoKYmMy/JgOukBkxsYQyxe2thI2ooszYbAo2BG/15XXSuqx4N5Xr+lWpWs7iyMMZnEMZPLiFKjxADZrAAOEZXuHNeXRenHfnY9mac7KZU/gD5/MHqxeMyA==</latexit>

T
<latexit sha1_base64="6gsiF42uNGNmju/D3xZXUs9+O/Q=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOQU9gViR4DXryZgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8MJME/YgOJQ85o8ZKjft+seRW3AXIOvEyUoIM9X7xqzeIWRqhNExQrbuemxh/SpXhTOCs0Es1JpSN6RC7lkoaofani0Nn5MIqAxLGypY0ZKH+npjSSOtJFNjOiJqRXvXm4n9eNzXhjT/lMkkNSrZcFKaCmJjMvyYDrpAZMbGEMsXtrYSNqKLM2GwKNgRv9eV10rqseNVKtXFVqpWzOPJwBudQBg+uoQZ3UIcmMEB4hld4cx6dF+fd+Vi25pxs5hT+wPn8AaPVjMQ=</latexit>

O

Figure 2 The data structures over the window.

The online suffix tree algorithm uses linear space and both the buffer and the array
storing reported indices have size O(w). Thus the total space is O(w).

Correctness. Let (v, w) be the edge that is added to insert the new suffix rev(P )$rev(S) in
the suffix tree. If the first character on the edge (v, w) is “$”, then the string on the path
from the root of the suffix tree to v is rev(P ). Since the suffix tree is built on the string
rev(P )$rev(S), then all descendant leaves of v besides w, are occurrences of P in the string S.

Let t be the current time step since we started reporting occurrences. After the tth time
step, we have visited at least 2t nodes (or all the nodes in the subtree if the size of the
subtree is less than 2t). Since each leaf is stored in at most one internal node and the number
of nodes in the subtree rooted at v is 2occ − 1, then after the tth time step, the number of
unique occurrences found is at least t. Thus, at each time step, we either find an occurrence
or an occurrence is stored in the buffer.

▶ Lemma 10. Let S be a dynamic string of length w over an alphabet σ. We can support
the following subset of streaming dynamic window string indexing operations on S: AddRight
and Report in O(tsuff(w, σ)) time per character in O(w) space. Furthermore, Report uses
additional worst-case constant time per reported occurrence.

5 Streaming Sliding Window String Indexing

In this section, we show Theorem 3. In the SSWSI problem, we can see it as we have a
string S that is being streamed, and the string S′ that we maintain corresponds to the
window, i.e., after the ith update S′ = S[i − w + 1..i]. We partition the streamed string S

into consecutive blocks b0, b1, b2, . . . of length B = ⌈w/3⌉ (except possibly the last one), i.e.,
bj = S[j · B..(j + 1) · B − 1]. Let bk be the block containing the last streamed character S[i],
that is k = ⌊i/B⌋. Thus the whole window is contained in bk−3 · bk−2 · bk−1 · bk.

Our data structure for the SSWSI problem consists of two structures. A static data
structure T for bk−3 · bk−2 and an online data structure O for the string bk−2 · bk−1 · bk. We
utilize Lemma 10 for the online data structure O. See Figure 2. Furthermore, we store S′ in
a rotated array.

Static data structure

The static data structure consists of the following.
A suffix tree.
A suffix array A containing the leaves of the suffix tree in left to right order.
A range maximum query data structure on the array A.
Furthermore, each node in the suffix tree stores the range of its descendant leaves in the
array A.
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This is the same as the structure used in Bille et al. [6]. For the suffix tree, we use the
same online suffix tree algorithm as used for the online data structure to build it. For the
range maximum query, we use a data structure using linear space and preprocessing time
and constant query time [5]. To perform a query P in the static data structure, we do the
following. We search for P in the suffix tree, reading one character at a time. Let [ℓ, r]
be the range of leaves stored in the locus of P . We perform a range maximum query in
A[ℓ..r] to find the rightmost occurrence x. If x is not in the window, then there are no
occurrences starting in bk−3bk−2 that are in the window. Otherwise, we report x and recurse
on A[ℓ..x − 1] and A[x + 1..r]. To use worst-case constant time per reported occurrence we
do three range maximum queries in one time step and keep a buffer of found but unreported
occurrences as in Section 4. It then follows from a similar argument that we can report each
occurrence in worst-case constant time.

The combined query

To find all occurrences of a streamed pattern P in S′ we do the following. Assume that
P has length m ≤ B. We later show how to handle the case where m > B. We query T

and O in parallel with the streamed characters of P . When P has arrived, we first report
occurrences from the online data structure O. While we report occurrences from the online
data structure, we prepare the static data structure to report occurrences that begin in bk−3
and are in the window, since occurrences that begin in bk−2 are also reported by the online
structure. The static data structure does not report the occurrences from the right (even
though the first reported occurrence is the rightmost). However, we can modify its reporting
procedure so that all the occurrences in bk−2 will be reported before bk−3 as follows. If the
currently considered occurrence falls within bk−1 we report it and recurse. Otherwise, we
pause the recursion and add the current occurrence to a list. Next, we iterate over the list of
paused recursive calls and resume each of them one-by-one. For each reported occurrence in
the online data structure, we also process an occurrence in the static data structure until we
get to the occurrences in bk−3. When we have finished reporting occurrences in the online
data structure O, we resume reporting the occurrences in bk−3.

If m > B, we use Lemma 9 to find occurrences of P in S′. We note that, because of how
these occurrences are reported (as either a constant number of explicitly given positions or a
constant number of arithmetical progressions), it is trivial to filter out the occurrences that
are anyway reported by the static or the online data structure. In summary, we have shown
that we can report all occurrences of P in S′.

Rebuilding

We rebuild the structures in the background to keep the static and online data structure
partially and completely inside the window, respectively. When block bk begins, we start
building the static data structure T ′ for bk−2bk−1 and the online data structure O′ for bk−1bk.
Since block bk−2 and bk−1 have been completed, we can use the online suffix tree algorithm
to construct a suffix tree for bk−2bk−1. We construct T ′ and O′ at a pace such that when
the bk+1 begins, we have completed the structures and can swap T with T ′ and O with O′.

Analysis

We update the online data structure for each Update operation in O(tsuff(w, σ)) time.
We rebuild the static and online suffix trees once per block. It takes O(tsuff(w, σ) · w)
time to rebuild the static and online suffix trees. To build the range maximum query
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data structure and add ranges to the suffix tree, we spent an additional O(w) time. We
augment the suffix tree with a dictionary data structure in each node over the first character
of the labels of the outgoing edges. This takes O(tdict(w, σ) · w) time. Thus we use
O((tsuff(w, σ) + tdict(w, σ)) · w)/B = O(tsuff(w, σ) + tdict(w, σ)) time on rebuilding for each
Update.

For a query P , we spend O(tsuff(w, σ)) time in the online data structure for each character
in P by Lemma 10. In the static data structure, we traverse the suffix tree, using O(tdict(w, σ))
time for each character in P . By Lemma 9, we spend O(1) time per streamed character
of P to report long patterns. Thus, in total, we spend O(tsuff(w, σ) + tdict(w, σ)) time per
character plus additional constant time per reported occurrence.

Both the online and the static data structures use linear space. We have a constant
number of such data structures at a time each over a substring of bk−3bk−2bk−1bk. Since
|bk−3bk−2bk−1bk| = O(w), this use O(w) space in total. All other components, i.e. the buffer
and the algorithm for the long patterns, use O(w) space. Thus the total space is O(w).

Correctness. The static and online data structures cover the entirety of S′ and overlap
by B characters, and thus they report all occurrences of pattern P in S′ if the length of
P is no more than B. When we report, we need time to discard the occurrences in bk−2
reported by the static data structure. Since the number of occurrences in bk−2 is no more
than the occurrences in bk−2bk−1bk, we have time to discard the occurrences in the static
data structure if we report the occurrences in the online data structure first. If the pattern
is longer than B, then the algorithm of Lemma 9 is ready to report occurrences since the
sliding window has size O(w) and P has a length between B = ⌈w/3⌉ and w.

6 Streaming Dynamic Window String Indexing

In this section, we consider the more general case, where we want to maintain the text S

under adding and removing characters at either end, while still supporting Report(P ) queries.
We first show how to maintain S under only prepending/appending characters, and then
extend this to the general case.

Directly from our definition of an online suffix tree construction algorithm we have:

▶ Lemma 11. Let S be a dynamic string of length w over an alphabet σ. We can support
the following subset of streaming dynamic window string indexing operations on S: AddLeft
and Report in O(tsuff(w, σ) + tdict(w, σ)) time per character in O(w) space. Furthermore,
Report uses additional worst-case constant time per reported occurrence.

To get reporting in worst-case constant time per reported occurrence we do as in Section 4.

6.1 Prepend and Append
The current text S is represented as a concatenation S = S1S2. We store the characters of
S1 and S2 on a doubly-linked list L1 and L2, respectively, and maintain the structure from
Lemma 11 for S1, and the structure from Lemma 10 for S2. Initially, S1 and S2 are empty.
The operation S.AddLeft(a) prepends a to L1 and calls S1.AddLeft(a), while S.AddRight(a)
appends a to L2 and calls S2.AddRight(a). The operation S.Report(P ) needs to consider
occurrences of P in S1, S2, and straddling between S1 and S2. The first and the second
case is implemented by running S1.Report(P ) and S2.Report(P ) in parallel. The third case
is implemented by proceeding in phases 0, 1, 2, . . .. Phase k corresponds to m ∈ (3k−1, 3k].
In each phase, we maintain two instances of the procedure from Lemma 9. We maintain an
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invariant that the text S available to the first instance is S1[(|S1| − 3k + 1)..|S1|]S2[1..3k]
(length-3k suffix of S1 concatenated with length-3k prefix of S2), and after having read
P [i], where i ∈ (3k−1, 3k], the pattern fed to the first instance is simply the whole P [1..i].
Thus, for any m ∈ (3k−1, 3k] the first instance allows us to report all occurrences of P that
straddle between S1 and S2. Meanwhile, we maintain the following invariant concerning
the second instance. While reading P [i], for i ∈ (3k−1, 2 · 3k−1], we create an array storing
S1[(|S1| − 3k+1 + 1)..|S1|]S2[1..3k+1] (length-3k+1 suffix of S1 concatenated with length-
3k+1 prefix of S2). This can be done by traversing L1 from the last element and L2
from the first element, spending constant time for every such i. Thus, after reaching
i = 2 · 3k−1, the array stores the text that we will need in the next phase. Then, while
reading P [i], for i ∈ (2 · 3k−1, 3k], we send three characters of the pattern to the second
instance for every new character of the pattern. More precisely, after receiving P [i] we send
P [3(i − 2 · 3k−1) − 2], P [3(i − 2 · 3k−1) − 1], and P [3(i − 2 · 3k−1)] to the second instance. Thus,
after reaching i = 3k, the second instance has received the whole current pattern P [1..3k], so
we can swap the instances, reset the second instance, and proceed to the next phase.

6.2 General case
We first explain how to extend Lemma 10 to support both AddLeft(a) and RemoveLeft(),
and similarly how to extend Lemma 11 to support both AddRight(a) and RemoveRight(). In
both cases, we use the same simple idea.

▶ Lemma 12. Let S be a dynamic string of length w over an alphabet σ. We can support
the following subset of SDWSI operations on S:

either AddLeft, RemoveLeft, and Report in O(tsuff(w, σ) + tdict(w, σ)) per character in
O(w · (tsuff(w, σ) + tdict(w, σ)))space,
or AddRight, RemoveRight, and Report in O(tsuff(w, σ)) per character, in O(w ·tsuff(w, σ))
space.

Furthermore, Report uses additional worst-case constant time per reported occurrence.

Proof. Supporting AddLeft and RemoveLeft or AddRight and RemoveRight can be seen as
providing the possibility of undoing the most recent updates. We consider a structure that can
be modified with an Update operation and denote the empty structure by ⊥. Then, the current
structure will be always S = ⊥.Update1.Update2. . . . .Updatek. We want to either modify
it to obtain S′ = ⊥.Update1.Update2. . . . .Updatek.Updatek+1, or (if k ≥ 1) undo the most
recent update to obtain S′ = ⊥.Update1.Update2. . . . .Updatek−1. This can be implemented
as follows. We maintain a stack consisting of k records. The i-th record stores (in e.g. a linked
list) all modifications made when executing Updatei on ⊥.Update1.Update2. . . . , Updatei−1.
Each modification is described by specifying the address of a memory cell, and its value
before the update. Let u(w, σ) be the time for an update. Because any update modifies
only u(w, σ) memory cells, the space usage is O(w · u(w, σ)). Then, to undo the most recent
update we retrieve the top record and revert all memory cells modified by the most recent
update to their original values. This takes O(u(w, σ)) time. During an update, we push
a new record onto the stack and store all modified memory cells there. This also takes
O(u(w, σ)) time. The results now follow from plugging in the update times from Lemma 10
and Lemma 11. ◀

We are now ready to describe the general case. We use the well-known idea of implementing
a deque with two stacks, see e.g. Hoogerwoord [15]. We briefly describe this idea. The
current deque is represented as S = rev(S1).S2, where S1 and S2 are stacks, rev denotes the
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reversal, and . the concatenation. Then, prepending an element is implemented by pushing
it onto S1 while appending an element is implemented by pushing it onto S2. Removing
the first element is implemented by popping it from S1, while removing the last element is
implemented by popping it from S2. This works as long as both S1 and S2 are non-empty.
As soon as one of them, say S1, becomes empty, we rebuild the structure by distributing the
elements stored on S2 evenly between S1 and S2. It is easy to prove that the amortized cost
of the rebuilding is constant, by defining the potential of the structure as ||S1| − |S2||.

However, we need a worst-case efficient version. Chuang and Goldberg [9] provide a partic-
ularly clean description of how to modify the amortized version to obtain an implementation
where every operation takes worst-case constant time. We refer the reader to their original
description and only describe what is stored in their implementation. The current deque is
represented as S = rev(S′).rev(S).B.B′, where S′, S, B and B′ are stacks. Additionally, the
structure maintains additional stacks auxS, auxB, and extraS, newS, newB, extraB. The
rebuilding is done incrementally, and while this is being done every prepended element is
pushed onto both S′ and extraS, while every appended element is pushed onto both B′

and extraB. Then, after the rebuilding has finished, the current deque is represented as
S = rev(extraS).rev(newS).newB.extraB.

We built on the worst-case efficient implementation of Chuang and Goldberg [9] to
prove Theorem 5. We maintain the current string S in a deque, and represent it as
S = rev(S′).rev(S).B.B′. Additionally, for each of the stacks S′, S, B, B′ and similarly
extraS, newS, newB, extraB, we maintain a doubly-linked list storing its elements. Note that
this would not be allowed in a purely functional implementation, which is the model assumed
by Chuang and Goldberg [9], but we are not making any such assumption. Next, for each of the
stacks S′, S, extraS, newS we maintain an instance of Lemma 12 with AddLeft and RemoveLeft
while for each of the stacks B, B′, newB, extraB we maintain an instance of Lemma 12 with
AddRight and RemoveRight. This makes the update time O(tsuff(w, σ) + tdict(w, σ)) and
space O(w · (tsuff(w, σ) + tdict(w, σ))). To implement Report(P ), we separately consider
occurrences of P inside rev(S′), rev(S), B and B′ by running Report(P ) in parallel for each
of the maintained instances. It remains to consider occurrences of P that straddle between
rev(S′) and rev(S).B.B′, or between rev(S′).rev(S) and B.B′. or rev(S′).rev(S).B and B′.
Each of these cases is solved as described in Section 6.1 by observing that we can provide
access to the corresponding doubly-linked lists by (temporarily) concatenating some of the
maintained doubly-linked lists. All three instances are run in parallel, so the overall additional
time per character of P is constant.
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Abstract
We consider the problem of compressing a set of substrings sampled from a string and analyzing the
size of the compression. Given a string S of length n, and integers d and m where n ≥ m ≥ 2d > 0,
let SCS(S, m, d) be the string obtained by sequentially concatenating substrings of length m sampled
regularly at intervals of d starting at position 1 in S. We consider the size of the LZ77 parsing of
SCS(S, m, d), in relation to the size of the LZ77 parsing of S. This is motivated by genome sequencing,
where the mentioned sampling process is an idealization of the short-read DNA sequencing. We
show the following upper bound:

|LZ77(SCS(S, m, d))| ≤ |LZ77(S)| + 2n − m

d
.

We also give a lower bound showing that this is tight. This improves previous results by Badkobeh
et al. [ICTCS 2022], and closes the open problem of whether their bound can be improved.

Another natural question is whether assuming that all letters in S are part of a sample, it is
always the case that |LZ77(S)| ≤ |LZ77(SCS(S, m, d))|. Surprisingly, we show that there is a family
of strings such that |LZ77(SCS(S, m, d))| = |LZ77(S)| − 1.
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1 Introduction

The recent revolution in short-read sequencing technologies has made the acquisition of large
genome sequences significantly cheaper and faster. This has led to a drastic increase in the
amount of genome data and by extension the need to compress these vast datasets. Numerous
ambitious sequencing projects (and existing databases) are currently underway, such as the
recent Earth BioGenome Project [30, 31], the 10K Vertebrate Genomes Project [33], and
The International Genome Sample Resource (IGSR) [9] built on the foundation of the 1,000
Genomes Project, among many others. These projects aim to create large databases of strings
(genomes) that vary only slightly from each other and as a result, contain large repetitions of
data.

The vast amount of genome data in these databases makes the importance of compression
and fast random access especially apparent. There are several tools that are popular for
compressing genome data, some of which are the standard gzip and 7zip compressors. The
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. . .

Figure 1 The sampling process for constructing SCS(S, m, d).

basis of these is Lempel-Ziv (LZ77) parsing [29, 43], typically followed by an entropy encoding.
Additionally, there are several read-set specific compressors [1, 5, 7, 16], at least one of which
is also a Lempel-Ziv type compressor.

A natural question is to consider the effects the sampling process has on the compressibility
of the resulting data. This question was originally posed by Badkobeh et al. [3], and to our
knowledge, this is the only instance before us where analysis in this area has been undertaken.
In particular, we consider the problem of compressing a set of substrings sampled from a
string and analyzing the size of the compression. Specifically, we will analyze the size of the
LZ77 parsing (which we define later) as it and variations thereof are widely used in many
relevant compressors.

The analysis is achieved by defining an idealized model, which mimics the genome sequen-
cing process. The idealization occurs since we do not consider errors, i.e., insertions, deletions,
and substitutions of letters, which are introduced by short-read sequencing technologies.
Moreover, we do not consider variations in the distance between or the length of samples
across the genome. In practice, these fluctuate for a variety of reasons [8]. However, analysis
of these technologies, even in an idealized setting, can give much insight into their effects on
compressibility.

We now define the idealized model, as described by Badkobeh et al. [3], which we use
throughout the remainder of the paper. Given a string S = S[1, n] = S[1]S[2] · · · S[n] of
length n, and integers d and m where n ≥ m ≥ 2d > 0, let SCS(S, m, d) be the string
obtained by sequentially concatenating substrings of length m sampled regularly at intervals
of d starting at position 1 in S. The sampling process and construction of SCS(S, m, d) is
shown in Figure 1.

Formally, we have a total of k = 1 + ⌊(n − m)/d⌋ samples, where ⌊x⌋ is the largest integer
which is smaller than or equal to x. The jth sample s′

j consists of the m consecutive letters
in S starting at position (j − 1)d + 1. Notice that the last (n − m mod d) letters in S are
not part of any sample due to rounding. The samples are concatenated sequentially to form
the string SCS(S, m, d) = s′

1s′
2 · · · s′

k.
The connection between this model and genome sequencing is very well described by

Badkobeh et al. [3]. In short, SCS(S, m, d) corresponds to a file of the short-read sequences,
which is the typical output of a sequencing experiment (e.g. the FASTQ format). Here, m

corresponds to the read length and m/d to the coverage, i.e., the average number of samples
that cover a position in S. The assumption that m ≥ 2d corresponds to a coverage of at
least 2, which is a relevant case for DNA sequencing.
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In this paper, we consider the size of the LZ77 parsing of SCS(S, m, d), in relation to
the size of the LZ77 parsing of the original string S. In the remainder of this section we
define the LZ77 parsing of a string, briefly present previous work, and state our results and
techniques.

1.1 The LZ77 Parsing
The Lempel-Ziv (LZ77) parsing [29, 43] (also known as the LZ77 factorization) of a string is
a fundamental part of data compression [10, 22, 14, 21], and for string processing such as
detecting the periodicities of a string [2, 19].

The LZ77 parsing of S partitions S into a sequence of zS substrings LZ77(S) :=
f1, f2, ..., fzS

called phrases. The size of the LZ77 parsing of S is |LZ77(S)| = zS . The
phrases are constructed greedily from left to right using the following rules. The ith phrase
fi with starting position pi is encoded either as (a) the first occurrence of a letter in S, or
(b) the longest substring with an occurrence in S before pi. The compression of S occurs
since the phrases of type (b) are encoded as a pair (ri, li), where ri > 0 is the distance from
pi to the beginning of the previous occurrence of fi, and li is the length of fi. This is the
LZ77-variant given by Storer and Szymanski [40], whereas the original definition [43] always
added an extra letter to the end of these phrases. Furthermore, we consider the variant of
LZ77, where a previous occurrence referenced by a phrase is allowed to overlap with the
corresponding phrase.

Naturally, we say that a phrase fi covers an interval [a, b] if and only if every element in
[a, b] is contained within the interval [pi, pi + li − 1], corresponding to the range of fi in S.
Similarly, we say that the phrase overlaps the interval when the range contains at least one
element in [a, b].

Computing the LZ77 parsing is a very well-studied problem, and there are many algorithms
solving it with various trade-offs. The simplest way to construct the LZ77 parsing is to
build an index on the input string (e.g. a suffix tree or suffix array), and greedily from left
to right find the longest prefix of the current suffix with an occurrence to the left of the
current position. There has been lots of previous (and ongoing) research on LZ77 leading to
practical and space-efficient computation [6, 13, 15, 23, 24, 18, 26, 20, 34, 37], parallel [38]
and external computation [25], online parsing [35, 36, 39, 41], and more [12]. Other practical
solutions include the sliding window LZ77 parsing [11, 27, 4], where the previous occurrence
of a phrase is restricted to start no more than w letters away from the start position of the
phrase, with w as a parameter.

Often these articles include performance metrics obtained experimentally by compressing
collections of strings, such as DNA sequences (e.g. [25, 22, 21, 15, 23, 24, 34, 38, 35]),
to emphasize the benefits of the corresponding compressor. This demonstrates that an
important motivation for improving upon LZ77 factorization is among others to improve the
storage of genome databases.

1.2 Previous Work
We will now consider previous results and the techniques that have been used. As mentioned
earlier, Badkobeh et al. [3] originally posed the question of the effects of the sampling process
on compressibility. They have shown that |LZ77(SCS(S, m, d))| ≤ m − d + 2|LZ77(S)| +
(2n − m)/d.

The techniques they employ in their proof involve partitioning SCS(S, m, d) into several
smaller intervals and examining the number of phrases incurred by each individually. More
precisely, they consider the intervals given by the first m − d letters followed by the last
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d letters in each sample. In the former, they show that the first m − d letters in the first
sample trivially incur at most m − d phrases and that the first m − d letters in the remaining
samples incur at most one phrase each. The last d letters in each sample are analyzed by
defining a rather involved projection of the individual phrases in LZ77(S) onto SCS(S, m, d),
and showing a bound on how many phrases are incurred by the projected intervals.

They conclude their paper by posing the open question of whether their upper bound
can be improved.

1.3 Our Results
In this paper, we answer the question asked by Badkobeh et al. [3] in the affirmative and give
tight upper and lower bounds improving upon theirs. More precisely, we show the following
upper bound.

▶ Theorem 1. Let S be a string of length n, then for all integers d and m where n ≥ m ≥
2d > 0:

|LZ77(SCS(S, m, d))| ≤ |LZ77(S)| + 2n − m

d
.

Intuitively, the upper bound given in Theorem 1 states that there is no overhead for the
first sample and that the remaining samples have an overhead of two phrases each. This
bound is strictly better than that given by Badkobeh et al. [3]. In particular, consider what
happens when m = n, i.e., when we only have a single sample. In this case, their upper
bound is (n − d + 2|LZ77(S)| + n/d), whereas ours is |LZ77(S)|. The latter is tight, since
SCS(S, n, d) = S regardless of the choice of d.

The techniques we use in the proof of Theorem 1 are similar to those used by Badkobeh
et al. [3], in the sense that we also partition SCS(S, m, d) into several smaller intervals which
we consider individually. The primary differences are that we tightly analyze the phrases
incurred by the entire first sample, and we do not define a projection for analyzing the last d

letters of the remaining samples. Instead, we categorize the substrings of phrases incurred
by dividing S during the sampling process. We show that these substrings incur at most
one phrase each in LZ77(SCS(S, m, d)), and use this to give a bound on the total number of
phrases. This new approach allowed us to significantly improve the upper bound.

Furthermore, we show that our upper bound is tight for any choice of d ≥ 3.

▶ Theorem 2. Let d and m be integers, where d ≥ 3 and m ≥ 2d. Then for all integers
n ≥ m there exists a string S of length n such that:

|LZ77(SCS(S, m, d))| = |LZ77(S)| + 2
⌊

n − m

d

⌋
.

The primary difference between this and the upper bound is the floor after division. This is
necessary here since we are referring to an exact number of phrases. We obtain Theorem 2
by constructing a string S of arbitrary length n ≥ m based on parameters d and m, and
analyzing the compressibility of SCS(S, m, d) and the constructed string.

Another natural question is whether |LZ77(S)| ≤ |LZ77(SCS(S, m, d))| is always the case,
assuming that all letters in S are part of a sample, i.e., n ≥ m and n ≡ m (mod d). The
latter assumption is important since it is otherwise trivial to disprove (e.g. let S be m

repetitions of a followed by a single b). According to our knowledge, this question has not
been considered in detail until now. We show that there exists a family of strings where this
is not the case, leading to the following surprising result.
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▶ Theorem 3. Let d and m be integers, where d ≥ 2, m ≥ 2d, and m ≡ 0 (mod d). Then,
there exists a string S of length n ≥ m where n ≡ m (mod d) such that:

|LZ77(SCS(S, m, d))| = |LZ77(S)| − 1 .

We obtain Theorem 3 by constructing a string S of length n = 3m − d, and analysing
the compressibility after sampling, in a similar fashion to the proof of Theorem 2.

In the following sections, we provide proof of our results. We prove the upper bound
in Section 2, the corresponding lower bound showing that this is tight in Section 3, and
the theorem on improved compressibility in Section 4. Finally, we finish the paper with
concluding remarks and future work in Section 5.

2 Upper Bound

Let S be the given string of length n and let S′ := SCS(S, m, d). We assume w.l.o.g. that
every letter in S is part of some sample, i.e., n ≥ m and n ≡ m (mod d), and partition each
sample into two substrings such that s′

j = ujsj , where |uj | = m − d and |sj | = d. Thus,
S′ = u1s1u2s2 · · · uksk. In order to prove Theorem 1, we partition S′ by considering the
following three cases separately:
1. the first sample s′

1 = u1s1,
2. the first m − d letters uj in every sample s′

j for 2 ≤ j ≤ k, and
3. the last d letters sj in every sample s′

j for 2 ≤ j ≤ k.

This partitions S′ into non-overlapping intervals. Similarly, we use this interpretation
to write the given string equivalently as S = u1s1s2 · · · sk, and define zS := |LZ77(S)| and
zS′ := |LZ77(S′)| which will be useful when showing these cases.

Any LZ77 parsing contains exactly the same number of phrase starting positions as
phrases. Therefore, by bounding the number of starting positions of phrases in the above
intervals, we bound the total number of phrases in the LZ77 parsing of S′. As a property
of LZ77 there are several substrings which incur at most one starting position of a phrase
in the compression of S′. These substrings are categorized in Lemma 4 and Lemma 5, and
we use these several times throughout the proof. This strategy is similar to that used by
Badkobeh et al. [3], but we show a tighter bound.

▶ Lemma 4. Let T be a string, and P be a substring of T , i.e., P = T [i, j], where
1 ≤ i ≤ j ≤ |T |. If P has a previous occurrence in T starting at position i′ < i, then the
LZ77 parsing of T contains at most one starting position of a phrase in the interval [i, j].

Proof. Assume the LZ77 parsing contains more than one starting position in the interval [i, j].
Then the first of these phrases has a starting position p and length l, where i ≤ p ≤ p+l−1 < j.
Since P has an occurrence in T at position i′ < i, the substring T [p, j] with length j−p+1 > l

also has an occurrence at i′ + p − i < p. This contradicts the property that every phrase
starting at position p covers the longest substring with an occurrence in T before p. ◀

▶ Lemma 5. Let T be a string, and f1f2 · · · fzT
be the phrases in the LZ77 parsing of T .

Then for every phrase fi with starting position pi which is not the first occurrence of a
letter, and for every pair of integers (v, w) where 1 ≤ v ≤ w ≤ li, substring fi[v, w] has an
occurrence in T before pi + v.

Proof. Consider phrase fi. This is either the first occurrence of a letter, in which case
the lemma trivially holds, or it has an occurrence in T at position pi − ri. Therefore, the
substring fi[v, w] for any pair (v, w) where 1 ≤ v ≤ w ≤ li must also have an occurrence in
T at position pi − ri + v < pi + v. ◀
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As mentioned, we partition S′ into several intervals. We consider these cases in the
following paragraphs, whereafter we collect the results to give the final bounds.

Case 1. Consider the first sample s′
1. By definition, this is the substring sampled by the

letters in the interval [1, m] in S. We denote the interval as X and the number of phrases
overlapping X in the LZ77 parsing of S as zX . Intuitively, the LZ77 parsing of S′ contains
exactly zX starting positions of phrases in that same interval. This is illustrated in Figure 2.

. . . . . .

 phrases

. . . . . .

Figure 2 Intuition of the first zX phrases in LZ77(S′) compared to those in LZ77(S).

Formally, we consider the phrases fi for 1 ≤ i < zX in LZ77(S). Since fi only depends
on the previous letters and S[1, pi + li − 1] = S′[1, pi + li − 1], this phrase is exactly the same
as the ith phrase in LZ77(S′). This is the case for every phrase except fzX

. However, by
Lemma 5 the substring S[pzX

, m] = S′[pzX
, m] has a previous occurrence, and by Lemma 4

this incurs at most one starting position of a phrase, and the proof follows.

Case 2. Consider the first m − d letters uj in samples s′
j for every j, where 2 ≤ j ≤ k. By

definition of the jth sample, uj is a repeat of the last m − d letters in s′
j−1. This is illustrated

in Figure 3.
Following directly from Lemma 4, these repeating intervals contain at most one starting

position of a phrase and therefore contribute at most k − 1 = (n − m)/d to the total number
of phrases.

. . .

. . .

Figure 3 Illustration of the overlap between samples.

Case 3. Finally, consider the last d letters sj in samples s′
j for every j, where 2 ≤ j ≤ k.

The positions of these in S′ are illustrated in Figure 4.

Figure 4 Illustration of the last d letters sj in sample s′
j , for each j where 2 ≤ j ≤ k.
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Consider the phrases in LZ77(S) which encode these substrings, i.e., the phrases over-
lapping the interval [m + 1, n]. There are at most (zS − zX + 1) such phrases, where zX is
the number of phrases overlapping the interval [1, m]. This is trivially shown since phrase
intervals are disjoint, and at most one phrase fzX

might overlap both intervals in S. This is
also illustrated in Figure 5.

. . .

 phrases  phrases

. . .

Figure 5 The number of phrases in LZ77(S) overlapping the interval [m + 1, n].

We denote these phrases as fzX
, fzX +1, ..., fzS

, and consider their overlap with each
sample sj . In particular, each phrase fi which overlaps sj either (i) has zero endpoints in sj ,
(ii) ends in sj , (iii) starts in sj , or (iv) has both endpoints in sj .

These cases are illustrated in Figure 6.

. . . . . .

(i)
(ii)
(iii)
(iv)

Figure 6 All cases where a phrase overlaps substring sj . The phrase considered is marked in red.

We partition each phrase fi into the largest substring for each sj which does not cross the
border from sj−1 to sj , or from sj to sj+1. I.e., the substring in S given by the intersection
between the intervals of fi and sj . This ensures that the substrings exist in S′. These
substrings are collectively denoted as phrase parts, and exactly partition the last d letters of
every sample except s′

1. This is illustrated in Figure 7. Notice that by definition the length
of each phrase part is at most d.

. . . . . .

. . . . . .

Figure 7 Example of phrase parts constructed from phrases.

▶ Lemma 6. A phrase part incurs at most one phrase starting position in the LZ77 parsing
of S′.

Proof. Consider phrase part P constructed from phrase fi and substring sj . The lemma
trivially holds if fi is the first occurrence of a letter. Therefore, we assume w.l.o.g. that fi

has a previous occurrence in S. It then follows directly from Lemma 5 that P also has a
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previous occurrence in S. We will show that a previous occurrence of P also exists in S′ and
that by Lemma 4 this incurs at most one phrase starting position. There are three cases
that should be considered for the previous occurrence of P in S. It either starts in (a) u1,
(b) some sj′ where j′ < j, or (c) sj . In case (a) the occurrence must either end in u1 or s1,
since the length is at most d. This occurrence is therefore contained within s′

1, and must
also be present in S′. Similarly, in case (b) the occurrence crosses at most one border from
sj′ to sj′+1 due to the length being at most d. Since the length of each sample is at least
2d, the sample s′

j′+1 must end with the substring sj′sj′+1, and since j′ + 1 ≤ j a previous
occurrence of P must also exist in S′. Lastly, in case (c), the occurrence must also end in
sj since the phrase part would otherwise overlap with the border from sj to sj+1. Such
a previous occurrence clearly also exists in S′. Thus, a phrase part always has a previous
occurrence in S′, and the proof follows. ◀

In order to determine a bound on the number of phrase starting positions, we therefore
only have to count how many phrase parts are present in S in the interval [m + 1, n].

There can be at most one phrase part of type (i) or (ii) for each substring sj . This is
shown by a simple contradiction. Assume there is more than one phrase part of either type in
sj . This would imply that more than one phrase starts before sj and crosses the border from
sj−1 to sj . However, this contradicts the requirement that phrases do not overlap. Thus,
there are at most k − 1 = (n − m)/d such parts. Similarly, we will at most have (zS − zX)
phrase parts of type (iii) or (iv). There cannot be any more, since phrase fzX

does not have
its starting position in the interval [m + 1, n] and a phrase would otherwise need to have two
starting positions which is not possible. Therefore, there are at most (zS − zX + (n − m)/d)
phrase parts partitioning the interval [m + 1, n] in S, and as shown in Lemma 6 these incur
at most one phrase each in the LZ77 parsing of S′.

Putting it together

In summary, we have shown that case 1 incurs at most zX phrases, case 2 at most (n − m)/d,
and finally case 3 at most (zS − zX + (n − m)/d). Therefore:

zS′ ≤ zX + n − m

d
+ zS − zX + n − m

d
= zS + 2n − m

d
.

This concludes the proof of Theorem 1.

3 Lower Bound

Given integers d ≥ 3, m ≥ 2d, and k > 0, we construct the string S of length m + (k − 1)d
over the alphabet Σ = {λ0, λ1, ..., λk}. In particular, we construct S from several substrings
such that S := u1s1s2 · · · sk, where |u1| = m − d, and |sj | = d for all 1 ≤ j ≤ k. This
is exactly the interpretation used during the proof of Theorem 1. We define u1 as m − d

consecutive repetitions of letter λ0, such that u1 := λ0 · · · λ0. Similarly, we define each sj as
a single letter λj−1 followed by d − 1 repetitions of letter λj , such that sj := λj−1λj · · · λj .
This construction is shown in Figure 8:

Figure 8 Construction of S in the proof of Theorem 2.
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As seen above S = λm−d+1
0 λd

1 · · · λd
k−1λd−1

k . Due to the constraints on m and d, the
length of each of the repetitions is at least 2 and therefore requires exactly two phrases to
encode. Thus, the total number of phrases in the LZ77 parsing of S is zS = 2k + 2.

We now consider how many phrases are required to encode S′ := SCS(S, m, d). We prove
this by induction showing that every sample is encoded by exactly four phrases, and these
phrases never cross the border between two samples. We consider the first sample s′

1 in
Figure 9.

Figure 9 The structure of the first sample in S′.

The first sample s′
1 consists of m − d + 1 repetitions of λ0 followed by d − 1 repetitions of

λ1. Since the repetitions have length at least 2, these are encoded by exactly four phrases in
total. Therefore, we only have to argue that the last phrase does not overlap s′

2. The first
letter in s′

2 is always λ0 since the start position of this sample is d + 1, which is within the
first m − d + 1 repetitions of λ0, since m ≥ 2d. Hence, this is the first time λ0 follows λ1,
and thus the last phrase in s′

1 does not overlap s′
2.

We now assume the hypothesis for every sample prior to the jth sample, seen in Figure 10.

Figure 10 The structure of the jth sample in S′.

By the induction hypothesis, the last phrase encoding s′
j−1 does not overlap any letters

in s′
j . Therefore, the first phrase encoding s′

j starts with the first letter in s′
j . We show that

s′
j is encoded by exactly four phrases which also do not cross the border to s′

j+1.
(i) The first phrase covers exactly the first m − d letters in s′

j .
(ii) The second phrase has length 1, covering the last occurrence of λj−1 in s′

j .
(iii) The third phrase has length 1, covering the first occurrence of λj .
(iv) The fourth phrase covers exactly the last d − 2 repetitions of λj in s′

j .

As mentioned during the proof of Theorem 1, the first m − d letters uj in sample s′
j

where j > 1, is a repeat of the last m − d letters in s′
j−1. By the induction hypothesis and

Lemma 4, this implies that there can be at most one phrase overlapping this interval. Since
every sample has length m ≥ 2d, the jth sample ends with the substring sj−1sj as seen
in Figure 10. Therefore, if the first phrase covered more than m − d letters, it would also
have to cover d repetitions of λj−1 following letter λj−2. However, this is the first time we
encounter d repetitions of λj−1 in a row. This shows (i). The last occurrence of λj−1 is also
covered by exactly one phrase since the phrase would otherwise also have to cover the first
occurrence of λj which is not possible. This shows (ii). It is trivial to show (iii) and (iv),
since it is the first occurrence of λj . In the latter case, the phrase does not overlap s′

j+1,
since that sample begins with some λj′ where j′ ̸= j.
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The induction proof does not consider the last sample, however, in this case, the last
phrase clearly ends at the end of s′

k. Therefore, we have shown that each sample is encoded
by exactly four phrases. Thus, the total number of phrases in the LZ77 parsing of S′ is
zS′ = 4k = zS + 2(k − 1).

Theorem 2 is therefore shown for some parameter k. However it is also possible to
construct a string S of any length n ≥ m by letting k := ⌊(n − m)/d⌋ + 1 and padding (n − m

mod d) repetitions of λk to the end of S in the definition stated in Figure 8. This yields
exactly the same number of phrases for encoding S, and since the last (n − m mod d) letters
are not part of any sample, S′ remains unchanged. Thus, we have shown the equality:

|LZ77(SCS(S, m, d))| = |LZ77(S)| + 2(k − 1) = |LZ77(S)| + 2
⌊

n − m

d

⌋
.

This concludes the proof of Theorem 2.

4 Improved Compressibility

Given integers d ≥ 2 and m ≥ 2d, where m ≡ 0 (mod d), we construct a string S of length
n = 3m − d over alphabet Σ consisting of exactly two letters a and b, i.e., Σ = {a, b}. Notice
that n ≥ m and the required property of n ≡ m (mod d) holds, since m ≡ 0 (mod d) implies
that 3m − d ≡ m (mod d). We construct S by concatenating several repetitions of letters
from Σ, as shown in Figure 11. The phrases in the LZ77 parsing of S are shown in Figure 12.

Figure 11 Construction of S in the proof of Theorem 3.

Figure 12 The phrases in the LZ77 parsing of S. Phrase *f4 is only present when m > d + 2.

Notably, the first repetition of letter b in Figure 11 has two cases, and requires either
one or two phrases to encode depending on whether m = d + 2 or m > d + 2, respectively.
This is only relevant when d = 2 and m = 4, since we otherwise always fulfill m > d + 2.
Therefore, the number of phrases in the LZ77 parsing of S following this construction is:

|LZ77(S)| =
{

6 if d = 2 and m = 4,

7 otherwise.

We now consider the number of phrases in the LZ77 parsing of S′ := SCS(S, m, d). There
is a total of k = ⌊(3m − d − m)/d⌋ + 1 = 2m/d samples contributing to S′. The first sample
s′

1 consists of d + 1 repetitions of letter a followed by m − d − 1 repetitions of letter b, since
these are the first m letters in S. This sample is shown in Figure 13.
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Figure 13 The first sample of S′.

The following m/d−1 samples together follow a pattern of a single a followed by m−d−1
repetitions of b. This pattern occurs since the jth sample ends with (j − 1)d − 1 repetitions
of letter b, and the (j + 1)th sample starts with m − jd repetitions of letter b, resulting in a
total of m − d − 1 repetitions of b. This repeating pattern is illustrated in Figure 14.

Figure 14 The 2nd to the (m/d)th samples of S′. These form a repeating pattern of a single
letter a followed by m − d − 1 repetitions of letter b.

The (m/d + 1)th sample is shown in Figure 15. This is the sample starting at position m

in S and also starts with the pattern of a single a followed by m − d − 1 repetitions of b. The
number of times this pattern occurs is therefore once for the first sample, m/d times for the
following m/d − 1 samples, and once for the (m/d + 1)th sample, totaling m/d + 2 times.

Figure 15 The (m/d + 1)th samples of S′.

Finally, the remaining m/d−1 samples consist of a similar repeating pattern with m−d−1
repetitions of b followed by a single a. The pattern in this case is repeated only m/d times,
i.e., two times less than previously. This is illustrated in Figure 16.

Figure 16 The (m/d + 2)th to the (2m/d)th samples of S′. These form a repeating pattern of
m − d − 1 repetitions of letter b followed by a single letter a.

The complete structure of S′ is shown in Figure 17. We have adjusted the second pattern
slightly, to make it more similar to the first pattern. The phrases in the LZ77 parsing of S′

are shown in Figure 18.
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Figure 17 The structure of S′ in the proof of Theorem 3.

Figure 18 The phrases in the LZ77 parsing of S′. Phrase *f ′
4 is only present when m > d + 2.

Notably, the LZ77 parsing of S′ takes advantage of the pattern where a single letter a is
followed by a repetition of letter b. This is especially relevant for phrases f ′

5 and f ′
6. Again,

the first repetition of the letter b has the same two cases exactly as described previously,
requiring either one or two phrases. Therefore, the size of the LZ77 parsing of S′ is:

|LZ77(SCS(S, m, d))| =
{

5 if d = 2 and m = 4,

6 otherwise.

This is always exactly one phrase less than the number of phrases in the LZ77 parsing of S.
Thus, we have shown the following equality:

|LZ77(SCS(S, m, d))| = |LZ77(S)| − 1

This concludes the proof of Theorem 3.

5 Concluding Remarks

We have considered the problem of compressing a set of substrings sampled from a string
and analyzing the size of the compression. We have shown that |LZ77(SCS(S, m, d))| ≤
|LZ77(S)| + 2(n − m)/d and that this upper bound is tight. Likewise, we have shown that
there exists a family of strings where the compressibility after the sampling process improves
by exactly one phrase, i.e., where |LZ77(SCS(S, m, d))| = |LZ77(S)| − 1.

There are several directions that future work could take. A natural question is to
derive bounds for other compression algorithms, such as Relative Lempel-Ziv [17, 22],
LZ78 [44], Re-Pair [28], or other well-known context-free grammar compressors [32, 42]. As
an extension of the original motivation it is also relevant to consider what happens when
we change some of the idealizations made to the model (e.g. errors during sampling as
introduced by short-read sequencing technologies, or a generalization of sample lengths
and/or positions). Finally, an interesting question is whether there exists a string where the
size of the LZ77 parsing of the concatenated samples improves by more than one phrase,
i.e., is the best you can do the equality in Theorem 3, or does there exist an instance where
|LZ77(SCS(S, m, d))| < |LZ77(S)| − 1?
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1 Introduction

Throughout the years, a variety of notions for repetitive structures in strings have been
explored; see, e.g., [18, 31, 27, 42, 29]. Even recently, new efficient algorithms regarding
palindromes [10, 22, 37], squares [17], runs [6, 16, 33], and powers [4] have been introduced.
In the studies on 2-dimensional strings (aka 2d-strings or matrices), periodic and palindromic
structures also attracted definite interest [2, 3, 5, 13, 21, 30, 19, 38].

Matching frame is a natural repetition in 2d-strings, first considered by Wang [40] when
introducing Wang tiles. Given a 2d-string M over an alphabet Σ, a frame in M is a
rectangle defined by a tuple (u, d, ℓ, r) such that u < d and ℓ < r. This rectangle covers the
submatrix M [u..d][ℓ..r] and is matching if this submatrix has equal marginal rows and equal
marginal columns. Formally, (u, d, ℓ, r) is a matching frame if M [u][ℓ..r] = M [d][ℓ..r] and
M [u..d][ℓ] = M [u..d][r] (see Figure 1). Wang’s fundamental conjecture, later disproved by
Berger [8], said “a set of tiles is solvable (= tiles the plane) if and only if it admits a cyclic
rectangle (= matching frame)”. Note that a fast algorithm to find matching frames would
simplify a huge computation conducted by Jeandel and Rao [24] to prove that their aperiodic
set of tiles is minimal.

ℓ 𝒓

o n v w l a m l i s a c

𝒖 r a l i t e r a l s s e

m p a e r s y a a u c t

o r b n e o h q b u e v

l l e e n a g n e o n q

𝒅 u e l i t e r a l s a c

d v r a l n t n e o n m

s e m e t k a t o t y o

Figure 1 An example of a matching frame (u, d, ℓ, r) = (2, 6, 3, 9). The strings on the top and
bottom sides of the frame are equal, and the strings on the left and right sides are also equal. The
perimeter of the frame is 2 · (6 − 2 + 9 − 3) = 20. The matrix also contains a smaller matching frame.

Matching frames indicate “potential” periodicity in two dimensions. Namely, if a 2d-string
M is built according to some local rule, then any matching frame in M can be extended to a
periodic tiling of the plane, respecting this local rule. Well-known examples of such local rules
are given, in particular, by self-assembly models such as aTAM [36] or 2HAM [11]. Note that
matching frame is an avoidable repetition: as was first observed by Wang [41], there exist
infinite binary 2d-strings without matching frames. Avoidable repetitions are interesting, in
particular, due to a nontrivial decision problem.

Overall, there is a clear motivation to design efficient algorithms searching for matching
frames. Let us specify the exact problem studied in this paper. The perimeter of a
frame F = (u, d, ℓ, r) is the total number of cells in its marginal rows and columns, i.e.
per(F ) = 2(d− u + r − ℓ). By maximum frame (in a set of frames) we mean the frame with
the maximal perimeter in this set. In the maximum matching frame problem, the goal is to
find a maximum matching frame in a given matrix or report that no matching frame exists.
We also consider the (1− ε)-approximation version of this problem, in which the goal is to
find a matching frame with a perimeter within the factor (1− ε) from the maximum possible.
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Our Results. We present Õ(nm)-space algorithms that establish the following bounds on
the complexity of the maximum matching frame problem and its approximation version.

▶ Theorem 1 (Maximum Matching Frame). The time complexity of the maximum matching
frame problem for an n×m matrix M is Õ(n2.5) in the case m = Θ(n). In the general case,
the complexity is Õ(ab min{a,

√
b}), where a = min{n, m} and b = max{n, m}.1

▶ Theorem 2 ((1− ε)-Approximation). The time complexity of the (1− ε)-approximation
maximum matching frame problem for an n×m matrix M is Õ( nm

ε4 ).

▶ Corollary 3 (Deciding Matching Frame). There is an algorithm deciding whether an n×m

matrix M contains a matching frame in Õ(nm) time and space.

We remark that our exact and approximation algorithms can be straightforwardly adapted
to find matching frames with the maximum area / the minimum perimeter / the minimum
area instead of matching frames with the maximum perimeter.

High-Level Overview
Maximum Matching Frame. The algorithm for finding a maximum matching frame follows
a heavy-light approach. The parameter used to distinguish between heavy and light frames
is the shorter side of the frame. A frame F = (u, d, ℓ, r) has height d − u and width r − ℓ.
We assume that there is a maximum matching frame having its height smaller than or equal
to its width. (Either the input matrix or its transpose satisfies this assumption and we can
apply our algorithm to both matrices and return the better of two results.) For some integer
threshold x, we say that a frame with d− u ≤ x is short (or light); otherwise, it is tall (or
heavy). We provide two algorithms, one that returns a maximum short matching frame in M

and another returns a maximum tall matching frame in M . The largest of the two answers
is the maximum matching frame in M .

The algorithm for short frames iterates over all pairs of rows with distance at most x from
each other. Note that there are O(nx) such pairs. Moreover, under the assumption that some
matching frame F = (u, d, ℓ, r) is short, the rows u and d used by F are processed as a pair.
When processing a pair, the algorithm decomposes its rows into maximal equal segments.
Every segment is processed in linear time to obtain a maximum matching frame that uses a
portion of the segment as top and bottom rows (see Section 5.1). The accumulated size of
the segments is bounded by m, so the algorithm runs in Õ(n ·m · x) time.

The algorithm for tall frames (see Section 5.2) first guesses a range [H/2..H ] for the height
and a range [W/2..W ] for the width of a maximum matching frame. As we consider tall
frames, the ranges are sufficiently large, so it is easy to find a small set of positions P in the
matrix M such that every frame with the height and width from the given ranges contains
a position from P. The algorithm employs a subroutine that, given H, W , and a position
(i, j), computes a maximum matching frame among the frames that contain (i, j), have the
height in [H/2..H] and the width in [W/2..W ]. The implementation of this subroutine is
the main technical part of the algorithm. This is done by maintaining and querying a range
data structure (see Section 4) that allows one to process pairs of columns and pairs of rows
with the position (i, j) between them. There are O(W 2) pairs of columns and O(H2) pairs
of rows to be processed, which we do in Õ(H2 + W 2) = Õ(W 2) total time. We also show
that |P| = O( nm

HW ), and therefore the running time for one pair of ranges is Õ(nm W
H ). We

1 Throughout the paper, Õ(f(n)) = O(f(n) · polylogn)

CPM 2024
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further observe that the sum of values W
H over all guessed ranges is O( W ′

H′ ) for some single
guessed pair (W ′, H ′). Since x ≤ H ′ ≤ W ′ ≤ max{n, m}, we obtain the running time of
Õ(nm max(n,m)

x ).
Finally, the algorithm selects the threshold x =

√
max{n, m} and applies the algorithms

for both the short and the tall case to obtain a running time of Õ(nm
√

max{n, m}). Altern-
atively, one can run the algorithm for short frames alone, setting x = min(n, m). Taking the
better of these two options proves Theorem 1.

Approximation Algorithm. As a preliminary step in our approach for finding a (1 − ε)-
approximation to the maximum matching frame, we apply a two-dimensional variant of the
so-called standard trick [15, 12] from certain one-dimensional pattern matching problems. In
pattern matching, we are given a text T [1..n] and a pattern P [1..m] and the goal is to find all
the indices i ∈ [n−m + 1] such that T [i..i+m−1] “matches” P . The standard trick refers to
partitioning T into O(n/m) overlapping fragments of size Θ(m), such that every match of P

is contained in a fragment. In general, the trick allows one to assume that the length of the
text is within a small factor from the length of the pattern. Our two-dimensional variant of
this trick (Lemma 15) allows us to assume that both dimensions of the maximum matching
frame are within a poly(1− ε) factor of the vertical and the horizontal lengths of M .

This assumption allows us to focus on matching frames with sides that are “close” to the
boundaries of M ; we call such frames large. The algorithm uses a carefully selected threshold
for being close to the boundaries, guaranteeing that (1) the maximum matching frame is
large and (2) the perimeter of every large frame approximates the perimeter of the maximum
matching frame. With that, the problem boils down to determine whether there exists a
large matching frame. The main technical novelty of the approximation algorithm is solving
this decision problem in near-linear time.

The algorithm for the above decision problem consists of two main components. The first
component (see Section 6.3) is an Õ(1) time subroutine that, given a triplet (u, d, ℓ), decides
if there is an integer r such that (u, d, ℓ, r) is a large matching frame. However, applying this
subroutine to every triplet would cost Ω(n2m) time. The second component (see Section 6.2)
of the algorithm is the retrieval of a set of Õ(nm) triplets such that if some large matching
frame exists, there must also be a large matching frame derived from one of these triplets.

We conclude by presenting the combinatorial structure that allows us to consider Õ(nm)
triplets in the second component. Consider a triplet (u, d, ℓ) and let k be the largest integer
such that M [u][ℓ..k] = M [d][ℓ..k] (let S denote this string). Assuming there exists an index
r such that (u, d, ℓ, r) is a large matching frame, one has r ≤ k. Observe that if there is
an index d′ < d that is close to the bottom boundary of M such that M [d′][ℓ..k] = S, then
(u, d′, ℓ, r) is also a large matching frame. Therefore, the triplet (u, d, ℓ) can be removed from
the set of triplets that have to be processed. We say that a triplet that is not eliminated due
to this reasoning is interesting. Surprisingly, the number of interesting triplets is bounded
by O(nm log n) (see Section 6.1). This combinatorial observation is the main novelty of the
approximation algorithm.

2 Preliminaries

We use range notation for integers and strings. We write [i..j] and [i..j) for the sets {i, . . . , j}
and {i, . . . , j − 1} respectively (assuming i ≤ j). Further, we abbreviate [1..n] to [n]. A
string S[1..n] = S[1]S[2] · · ·S[n] is a sequence of characters from an alphabet Σ. We also
write

←−−−−
S[1..n] = S[n]S[n−1] · · ·S[1]. For every i ≤ j ∈ [n], S[i..j] = S[i]S[i + 1] · · ·S[j] is a

substring of S. The substring is called a prefix (resp., a suffix) of S if i = 1 (resp., j = n).
We assume Σ to be linearly ordered, inducing a lexicographic order (lex-order) on strings.
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An n×m matrix (or 2d-string) M is a 2-dimensional array of symbols from Σ. We refer
to the number of cells in M as the size of M , writing |M | = nm. We denote a horizontal
substring of M as M [i][j1..j2] = M [i][j1]M [i][j1 + 1] . . . M [i][j2]. Similarly, we denote a
vertical substring as M [i1..i2][j] = M [i1][j]M [i1 + 1][j] . . . M [i2][j].

2.1 Suffix Arrays, Longest Common Prefixes
For a tuple of strings S = (S1, S2, . . . , Sn), the lexicographically sorted array LSAS is an array
of length n that stores the lex-order of the strings in S. Formally, LSAS [i] = j if Sj is the ith
string in S according to the lex-order (ties are broken arbitrarily). For a string S[1..n], the
suffix array SAS of S is the LSA of all suffixes of S. Formally, for every i ∈ [n] let Si = S[i..n]
and let SS = (S1, S2, . . . , Sn); then SAS = LSASS

. The suffix arrays were introduced by
Manber and Myers [32] and became ubiquitous in string algorithms. The array can be
constructed in near-linear time and space by many algorithms [25, 26, 28, 34, 35, 42, 39].

▶ Lemma 4. Given a string S[1..n], the suffix array of S can be constructed in O(n log n)
time and space.

An important computational primitive is a data structure for computing the length
of the longest common prefix of two strings S[1..n] and T [1..m], given as LCP(S, T ) =
max{ℓ ∈ [min{n, m}] | S[1..ℓ] = T [1..ℓ]}. An LCP data structure LCPS for a set of strings
S = {S1, S2, . . . , Sn} supports queries in the form “given two indices i, j ∈ [n], report
LCP(Si, Sj)”. We denote by LCP(S) the LCP data structure for the set of suffixes of a given
string S[1..n]. It is known that the following can be obtained by applying the lowest common
ancestor data structure of [23] to the suffix tree of [42].

▶ Lemma 5. There is an LCP data structure with O(n log n) construction time and O(1)
query time. The data structure uses O(n) space.

The following facts are easy. For their proofs, see the full version [9] of this paper.

▶ Fact 6. Given three strings S1, S2 and S3, the condition LCP(S1, S2) > LCP(S1, S3) implies
LCP(S1, S3) = LCP(S2, S3).

▶ Fact 7. Let S = (S1, S2, . . . , Sn) be a tuple of strings and let P [1..m] be a string. The set
Occ(S, P ) = {k | Sk[1..m] = P} coincides with the range LSAS [i..j] for some i, j ∈ [n].

Furthermore, there is an O(log n) time algorithm that given k, m, LSAS , and LCPS
computes i and j such that Occ(S, Sk[1..m]) = LSAS [i..j].

▶ Definition 8 (Fingerprint). For a tuple S and a string P = Sk[1..m], the fingerprint of P

in S is the tuple (i, j, m) such that i and j are the indices specified in Fact 7.

2.2 Orthogonal Range Queries
Our algorithms use data structures for orthogonal range queries. Such a data structure stores,
for some positive integer dimension d, a set P ⊆ Rd of d-dimensional points. Each point
p ∈ P has an associated value v(p) ∈ R. The data structure supports the queries regarding
an input d-dimensional orthogonal range R = [a1..b1]× [a2..b2]× . . .× [ad..bd]. For a point
p = (x1, x2, . . . , xd) one has p ∈ R if xi ∈ [ai..bi] for every i ∈ [1..d]. We need the queries
Maximum(R) = argmaxv(p)(p ∈ R ∩ P) and Minimum(R) = argminv(p)(p ∈ R ∩ P). For this,
we use the data structure [43, 14] with the following running times.
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10:6 Searching 2D-Strings for Matching Frames

▶ Lemma 9. For any integer d, a set of n points in Rd can be preprocessed in O(n logd−1 n)
time and space to support Maximum and Minimum range queries in O(logd−1 n) time.

In Section 6.3, we use a very particular type of 2-dimensional Maximum/Minimum queries,
where v(p) is one of the coordinates of p. Though faster data structures are known in this
case [7, 20], using these data structures cannot improve the asymptotics of our results.

3 Data Structures

When looking for matching frames in an n×m matrix M , we make use of the following data
structures, which all our algorithms create during their preprocessing phase.

For each column ℓ ∈ [m] we use
1. a lex-sorted array LSAℓ

rows of the strings {M [i][ℓ..m] | i ∈ [n]} (see Figure 2a);
2. an LCP structure LCPℓ

rows over LSAℓ
rows;

3. a range query structure Dℓ
rows, containing all pairs {(i, Ii,ℓ

rows) | i ∈ [n]}, where Ii,ℓ
rows is

the index of the string M [i][ℓ..m] in LSAℓ
rows (see Figure 2b).

In addition, we build the same three structures for the set of all strings of the form←−−−−−−
M [i][1..ℓ], denoted as LSAℓ←−−rows, LCPℓ←−−rows and Dℓ←−−rows.
Symmetrically, for each row u ∈ [n] we use

1. a lex-sorted array LSAu
columns of the strings {M [u..n][i] | i ∈ [m]};

2. an LCP structure LCPu
columns over LSAu

columns;
3. a range query structure Du

columns, containing all pairs {(i, Iu,i
columns) | i ∈ [m]}, where

Iu,i
columns is the index of the string M [u . . . n][i] in LSAu

columns.
In addition, we build the same three structures for the set of all strings of the form←−−−−−−
M [1..u][i], denoted as LSAu←−−−−

columns, LCPu←−−−−
columns and Du←−−−−

columns
.

In the full version [9] of this paper we show how to construct all these structures in
O(nm log(nm)) time and space.

4 The Segment Compatibility Data Structure

In this section we present the segment compatibility data structure (SCDS), which is at the
core of our maximum matching frame algorithm (see Section 5.2). We start with technical
definitions.

Segment, aligned pair, compatible pairs. A horizontal (resp. vertical) segment is a triplet
(i, j1, j2) (resp. (i1, i2, j)) with j1 < j2 (resp. i1 < i2). It represents the horizontal (resp.
vertical) segment in the plane connecting the points (i, j1) and (i, j2) (resp. (i1, j) and (i2, j)).
A pair (s1, s2) of horizontal segments is aligned if s1 = (i1, j1, j2) and s2 = (i2, j1, j2) for
some i1 < i2, j1 < j2 ∈ N. Such a pair has distance |i2− i1|. Symmetrically, a pair of vertical
segments (s1, s2) is aligned if s1 = (i1, i2, j1) and s2 = (i1, i2, j2) for some i1 < i2, j1 < j2 ∈ N.
Such a pair has distance |j2 − j1|.

An aligned pair of horizontal segments (i1, j1, j2) and (i2, j1, j2) and an aligned pair of
vertical segments (a1, a2, b1) and (a1, a2, b2) are compatible if and only if a1 ≤ i1 ≤ i2 ≤ a2,
and j1 ≤ b1 ≤ b2 ≤ j2.

The SCDS stores a set of aligned pairs of vertical segments and supports the query
MaxCompatible(h1, h2): given an aligned pair (h1, h2) of horizontal segments, return a
pair (v1, v2) with the maximum distance among the stored pairs compatible with (h1, h2),
or return null if no stored pair is compatible with (h1, h2).
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Figure 2 (a) An example of LSAℓ
rows. Every cell in LSAℓ

rows contains an index corresponding to a
horizontal word in the matrix starting in column ℓ. The (indices representing the) words appear
bottom-up in lex-order.
(b) A visualization of the points stored in Dℓ

rows. Every point corresponds to a horizontal word.
The height of every point corresponds to the location of the corresponding word in LSAℓ

rows. The
horizontal location of a point represents the index of its appearance in the string.

▶ Lemma 10. Given a set T of t aligned pairs of vertical segments, the SCDS with O(log3 t)
query time can be built in O(t log3 t) time.

Proof. For each aligned pair P =
(
(a1, a2, b1), (a1, a2, b2)

)
, we define a 4-dimensional point

point(P ) = (a1, a2, b1, b2) with the value v(point(P )) = b2 − b1. Then we build, for the set of
points {point(P ) | P ∈ T}, a 4-dimensional range data structure D with Maximum queries.

Let (h1, h2) =
(
(i1, j1, j2), (i2, j1, j2)

)
be a pair of aligned horizontal segments and let

R = ([−∞, i1], [i2,∞], [j1, j2], [j1, j2]). It is clear that a pair P is compatible with (h1, h2) if
and only if point(P ) ∈ R. Hence, to perform the query MaxCompatible(h1, h2), we query D

with Maximum(R) and return the output.
Due to Lemma 9, the construction time and the query time are as required. ◀
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10:8 Searching 2D-Strings for Matching Frames

5 Maximum Matching Frame

In this section we prove Theorem 1, describing an algorithm with the announced time
complexity. We assume that the input matrix M contains a maximum matching frame
(u, d, ℓ, r) whose height d − u is smaller than or equal to its width r − ℓ. To cover the
complementary case, the algorithm is applied both to the original matrix M and to its
transpose M⊤ and then the maximum result is reported.

Our algorithm chooses a parameter x and distinguishes between short frames of height
at most x and tall frames with height larger than x. It processes the two types of frames
separately and returns the maximum between two solutions.

5.1 Algorithm for Short Frames
In this section we prove the following lemma:

▶ Lemma 11. There is an algorithm that for a given x ∈ [n] finds, in Õ(n ·m · x) time and
O(n) additional space, a maximum matching frame of height at most x.

Proof. For every two rows u′, d′ ∈ [n] such that d′ ∈ [u′ + 1..u′ + x] the algorithm works as
follows. First, the algorithm finds all maximal ranges [a..b] such that M [u′][a..b] = M [d′][a..b].
By “maximal” we mean that a range can not be extended to the right or to the left while
keeping equality. Note that all maximal ranges are disjoint. For k ∈ [m] we denote the
vertical string M [u′..d′][k] by Sk.

Let [a..b] be a maximal range. For every vertical string Sk with k ∈ [a..b] we find its
leftmost and rightmost occurrences in the range [a..b]. This is achieved by initializing an
empty dictionary Da,b and scanning the range [a..b] left to right. For each k ∈ [a..b] the
algorithm computes the fingerprint f in LSAu′

columns of the string Sk (see Definition 8). If f is
not in Da,b, we add f to Da,b and update both the leftmost and rightmost occurrence of Sk

to be k. If f is already in Da,b, we update the rightmost occurrence of Sk to be k.
After completing the scan, the algorithm finds a vertical string Sk such that the distance

between the leftmost occurrence ℓ′ and the rightmost occurrence r′ of Sk is maximal. If
ℓ′ < r′, we call the frame (u′, d′, ℓ′, r′) the (a, b)-range candidate of (u′, d′); otherwise, there
is no such candidate. Among all maximal ranges [a..b], an (a, b)-range candidate with the
maximal perimeter is the (u′, d′)-candidate (if there are no (a, b)-range candidates for (u′, d′),
there is no (u′, d′) candidate). The algorithm outputs a (u′, d′)-candidate with the maximal
perimeter over all pairs of rows (u′, d′) or returns null if there are no such candidates.

Correctness. Let F ′ = (u′, d′, ℓ′, r′) be the frame returned by the algorithm. Then F ′ is the
(a, b)-range candidate of (u′, d′) for some range [a..b] such that a ≤ ℓ′ < r′ ≤ b. Then, the
equality M [u′][a..b] = M [d′][a..b] implies M [u′][ℓ′..r′] = M [d′][ℓ′..r′], while M [u′..d′][ℓ′] =
M [u′..d′][r′] by the choice of ℓ′, r′. Hence, F ′ is matching.

Let F = (u, d, ℓ, r) be a maximum matching frame among the frames of height at most x.
When the algorithm iterates over the rows u, d, it identifies a range [a..b] such that a ≤ ℓ <

r ≤ b. Let F̂ = (u, d, ℓ̂, r̂) be the (a, b)-range candidate of (u, d). Since F is a valid choice for
this candidate, the inequality r − ℓ ≤ r̂ − ℓ̂ holds, implying per(F ) ≤ per(F̂ ) ≤ per(F ′).

Complexity. For a pair of rows (u′, d′), identifying the maximal ranges takes O(m) time.
A maximal range [a..b] requires O(b− a) dictionary operations, each taking O(log n) time
using, for example, an AVL tree [1]. Since all the maximal ranges of (u′, d′) are disjoint, their
lengths sum to at most m, leading to the running time Õ(m) for (u′, d′).
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Since d′ ∈ [u′ + 1..u′ + x], there are O(n · x) pairs of rows to process. Therefore, the total
running time of the algorithm is Õ(n ·m · x). Since the algorithm considers every pair of
rows (u′, d′) separately, the (additional) space usage of the algorithm is O(n). ◀

5.2 Algorithm for Tall Frames
In this section, we prove the following lemma:

▶ Lemma 12. There is an algorithm that for a given x ∈ [n] finds, in Õ( n·m2

x ) time and
Õ(m2) additional space, a maximum matching frame of height at least x.

Given a frame F = (u, d, ℓ, r) and a position p = (i, j) such that i ∈ [u..d] and j ∈ [ℓ..r],
we say that p is contained in F and F contains p. We say that F is a (p, H, W )-frame if
d− u ∈ [H/2..H ], r− ℓ ∈ [W/2..W ], and F contains p. We introduce an algorithm that finds
a maximum matching (p, H, W )-frame and use it as a subroutine of the algorithm finding
the maximum matching tall frame.

▶ Lemma 13. Given a position (i, j) in M and a pair of positive integers (H, W ) ∈ [n]× [m],
there is an algorithm finding a maximum matching ((i, j), H, W )-frame in Õ(H2+W 2) time
and Õ(W 2) additional space.

Proof. For every pair (ℓ, r) ∈ [m]2 such that r − ℓ ∈ [W/2..W ] and j ∈ [ℓ..r], the algorithm
finds the maximal aligned agreement between the columns ℓ and r intersecting the ith row
by executing two LCP queries. First the algorithm queries LCPi

columns to obtain the maximal
d′ such that M [i..d′][ℓ] = M [i..d′][r]. Similarly, the algorithm queries LCPi←−−−−

columns to obtain
the minimal u′ such that M [u′..i][ℓ] = M [u′..i][r]. Then the algorithm stores the pair of
segments s1 = (u′, d′, ℓ) and s2 = (u′, d′, r). To conclude this part, the algorithm constructs
an SCDS over all stored pairs.

Next, the algorithm iterates over all pairs (u, d) ∈ [n]2 such that d− u ∈ [H/2..H] and
i ∈ [u..d]. For each such pair, the algorithm queries the data structures LCPj

rows and LCPj
←−−rows

(similar to the above computation of vertical agreements), obtaining the minimal ℓ′ and the
maximal r′ such that M [u][ℓ′..r′] = M [d][ℓ′..r′]. The algorithm then constructs the horizontal
aligned pair of segments sh

1 = (u, ℓ′, r′) and sh
2 = (d, ℓ′, r′). The algorithm queries SCDS for

(sv
1, sv

2)← MaxCompatible(sh
1 , sh

2 ). Let sv
1 = (t1, t2, ℓ) and sv

2 = (t1, t2, r). We call the frame
(u, d, ℓ, r) the (u, d)-optimal frame. If the query MaxCompatible(sh

1 , sh
2 ) returns null, there is

no (u, d)-optimal frame. The algorithm reports the (u, d)-optimal frame with the maximum
perimeter among all pairs (u, d), or returns null if no such frames were found.

Correctness. By construction, each frame (u, d, ℓ, r) identified by the algorithm is a
(p, H, W )-frame. We proceed to show that it is a matching frame. Recall that (u, d, ℓ, r) was
obtained from two compatible pairs of segments sv

1, sv
2 and sh

1 , sh
2 . Notice that for the pair

sv
1 = (uv, dv, ℓ) and sv

2 = (uv, dv, r) to be compatible with sh
1 = (u, ℓh, rh), sh

2 = (d, ℓh, rh),
the inequalities uv ≤ u and dv ≥ d must hold. By the construction of sv

1 and sv
2 we have

M [uv..dv][ℓ] = M [uv..dv][r] and then M [u..d][ℓ] = M [u..d][r]. In a similar way, one can prove
M [u][ℓ..r] = M [d][ℓ..r], showing that (u, d, ℓ, r) is a matching frame as required.

To conclude the correctness of our algorithm, we need to show that some maximum
matching (p, H, W )-frame is (u, d)-optimal for some (u, d). Let (ut, dt, ℓt, rt) be a maximum
matching (p, H, W )-frame. For (ut, dt), the algorithm creates the horizontal aligned pair
sh

1 = (ut, ℓh, rh), sh
2 = (dt, ℓh, rh). Since M [ut][ℓt..rt] = M [dt][ℓt..rt], we have ℓh ≤ ℓt and

rh ≥ rt. By a similar argument, when constructing the SCDS, the algorithm creates a
vertical aligned pair sv

1 = (uv, dv, ℓt), sv
2 = (uv, dv, rt) with uv ≤ ut and dv ≥ dt. Denote the
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output of MaxCompatible(sh
1 , sh

2 ) by
(
(u′, ℓ′, r′), (d′, ℓ′, r′)

)
. One has r′ − ℓ′ ≥ rt − ℓt since

the pair (sv
1, sv

2) is compatible with (sh
1 , sh

2 ). Then (ut, dt, ℓ′, r′) is a matching frame with
perimeter 2(dt − ut + r′ − ℓ′) ≥ 2(dt − ut + rt − ℓt). Due to the maximality of the perimeter
of (ut, dt, ℓt, rt), we have that (ut, dt, ℓ′, r′) is a maximum matching (p, H, W )-frame.

Complexity. It can be easily shown that there are O(W 2) pairs (ℓ, r) satisfying r − ℓ ≤W

and j ∈ [ℓ..r]. Similarly, there are O(H2) pairs (u, d) satisfying d− u ≤ H and i ∈ [u..d]. By
Lemma 10, the construction of the SCDS takes Õ(W 2) time. The algorithm then applies
O(H2) queries to the SCDS and the overall complexity is Õ(W 2 + H2). The additional space
usage of the algorithm is dominated by the SCDS data structure of size Õ(W 2). ◀

Proof of Lemma 12. The algorithm iterates over all pairs H, W ∈ {x · 2k | k ≥ 1} such that
H ≤ W < 2m. For a pair (H, W ), the algorithm runs the subroutine from Lemma 13 for
every position (i, j) ∈ [n]× [m] such that i mod H/2 = 0 and j mod W/2 = 0. Finally, the
algorithm reports the maximum matching frame among all outputs of this subroutine.

Correctness. Since every instance of the subroutine from Lemma 13 reports a matching
frame or a null, the algorithm also reports a matching frame (or a null). Let F = (u, d, ℓ, r) be
a maximum matching frame of height at least x. Let W (resp. H) be the smallest number in
{x · 2k | k ≥ 1} which is at least r − ℓ (resp. d− u). Then there exist i ∈ [u..d] and j ∈ [ℓ..r]
such that i mod H/2 = 0 and j mod W/2 = 0. Hence the algorithm ran the subroutine for
((i, j), H, W )-frames and got reported a matching frame F ′ with per(F ′) ≥ per(F ). Therefore,
the algorithm returns a maximum matching frame.

Complexity. For a given pair (H, W ), the subroutine of Lemma 13 was called for
⌊ 2n

H

⌋
·
⌊ 2m

W

⌋
points (i, j). In total, these calls cost Õ

(
nm
HW (W 2 + H2)

)
= Õ

(
nm W

H

)
time. Therefore, the

algorithm runs in Õ(nm) ·
∑

H,W
W
H time, where the summation is over all possible pairs.

Let t =
⌈
log m

x

⌉
. Since x ≤ H ≤W < 2m, we have

∑
H,W

W
H = 2t + 2 · 2t−1 + 3 · 2t−2 + · · · ≤

4 · 2t = O( m
x ). The time bound from the lemma now follows. The additional space usage

of the algorithm is dominated by the space of the largest instance of Lemma 13, which is
Õ(W 2) for some W . Since W < 2m, we have the required bound Õ(m2). ◀

5.3 Combining the Short and Tall Algorithms

In this section, we combine the results of Section 5.1 and Section 5.2 to prove Theorem 1.

Proof of Theorem 1. Applying the algorithm of Lemma 11 and the algorithm of Lemma 12
with the same threshold x =

√
m and reporting the maximum frame between both outputs

yields an algorithm with running time Õ(nm ·
√

m). We run the same scheme for the
transposed matrix M⊤ and x =

√
n, which takes Õ(nm ·

√
n) time. In total, processing both

M and M⊤ takes Õ(nm ·
√

max{n, m}) time. The space usage of the algorithm is dominated
by the preprocessed data, which takes Õ(nm) space.

Notice that d−u ≤ r− ℓ for all considered frames, yielding d−u ≤ min{n, m}. Therefore,
applying Lemma 11 to both M and M⊤ with x = min{n, m} provides an alternative algorithm
that outputs the maximum matching frame within Õ(nm ·min{n, m}) time. Choosing the
faster between the two above algorithms implies Theorem 1. ◀
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6 Approximation Version

In the (1− ε)-approximation version of the problem, the goal is to find, given a matrix M

with a maximum matching frame F , a matching frame F ′ in M with per(F ′) ≥ (1− ε)per(F ).
Our algorithm reduces the problem to multiple instances of a decision problem defined below.
The reduction is shown in Lemma 15 below and the decision problem is solved in Section 6.3.

Decision problem. The input for this problem is a matrix M , and an inner rectangle
(u⊏⊐, d⊏⊐, ℓ⊏⊐, r⊏⊐) in M . A frame (u, d, ℓ, r) in M is surrounding if (u⊏⊐, d⊏⊐, ℓ⊏⊐, r⊏⊐) is strictly
inside it; formally, if u < u⊏⊐ ≤ d⊏⊐ < d and ℓ < ℓ⊏⊐ ≤ r⊏⊐ < r. The goal in this version of the
problem is to output a surrounding matching frame (u, d, ℓ, r) or report that no such frame
exists in M . In Section 6.3, we show that this problem can be solved in near-linear time, by
proving the following lemma.

▶ Lemma 14. Given an n×m matrix M with an inner rectangle (u⊏⊐, d⊏⊐, ℓ⊏⊐, r⊏⊐), there is
an algorithm that finds, in Õ(nm) time and space, a surrounding matching frame in M or
reports that no such frame exists.

Via an application of a 2-dimensional variant of the so-called standard trick [15, 12], we
obtain the following reduction.

▶ Lemma 15. Let a = 1 + ε/3. For every (h, w) ∈ [loga n]× [loga m] such that ah, aw ≥ 2,
there is a set Mh,w of sub-matrices, each associated with an inner rectangle, such that the
following properties are satisfied:
1. |Mh,w| = O( nm

ε2ah+w ).
2. For every sub-matrix M ′ ∈Mh,w, |M ′| = O(ah+w).
3. For every frame (u, d, ℓ, r) with d− u ∈ [ah..ah+1 − 1] and r− ℓ ∈ [aw..aw+1 − 1] there is

a sub-matrix M ′ ∈Mh,w such that (u, d, ℓ, r) is a surrounding frame in M ′ with respect
to its inner rectangle.

4. For every surrounding frame F in any M ′ ∈Mh,w, per(F ) ≥ (1− ε)
(
2(aw+1 + ah+1)

)
.

The inner rectangles and the corners of the sub-matrices in Mh,w can be obtained in
O(|Mh,w|) time and space given h and w.

Proof. Fix (h, w) ∈ [loga n] × [loga m]. We define several numeric values that are used
repeatedly by our reduction, namely δw =

⌊
εaw+1

3

⌋
, δh =

⌊
εah+1

3

⌋
, Ww =

⌈
aw+2⌉

, and
Hh =

⌈
ah+2⌉

. For convenience, assume without loss of generality that both n−Hh

δh
and m−Ww

δw

are integers. Otherwise, the algorithm adds dummy rows and columns to the right and to the
bottom sides of the matrix with distinct unique characters not in Σ until δh divides n−Hh

and δw divides m−Ww. The set Mh,w of sub-matrices of M is defined as follows:

Mh,w =
{

M [αδh + 1..αδh + Hh][βδw + 1..βδw + Ww] | α ∈ [0.. n−Hh

δh
] and β ∈ [0.. m−Ww

δw
]
}

.

In words, those are all sub-matrices with width Ww − 1 and height Hh − 1, having their
upper left corner in a cell (x′, y′) of M such that x′ mod δh = y′ mod δw = 1. Note that
Properties 1 and 2 are trivially satisfied. Additionally, it is clear that the corners of each
sub-matrix can be obtained in constant time.

Property 3 is obtained by combining the following two claims.

▷ Claim 16. Every frame (u, d, ℓ, r) with d− u ∈ [ah..ah+1 − 1] and r − ℓ ∈ [aw..aw+1 − 1]
is contained in some M ′ ∈Mh,w.
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Proof. Let x (resp. y) be the largest integer multiple of δh (resp. δw) that is smaller than u

(resp. ℓ). By definition, Mh,w contains a sub-matrix M ′ = M [x + 1..x + Hh][y + 1..y + Ww].
In order to prove that (u, d, ℓ, r) is fully contained inside M ′, we need to show that (1) x < u,
(2) y < ℓ, (3) x + Hh ≥ d and (4) y + Ww ≥ r. Conditions (1), (2) are immediate from the
choice of x and y. Let us show (3). The choice of x also implies x + δh ≥ u. Therefore,

x + Hh ≥ u− δh + Hh = u−
⌊

εah+1

3

⌋
+

⌈
ah+2⌉

≥ u − εah+1

3 + ah+2 = u + ah+1
(

a− ε

3

)
= u + ah+1.

By conditions of the lemma, d− u < ah+1, so we obtain x + Hh > d as required. Condition
(4) can be shown in the same way. ◁

For each sub-matrix M ′ = M [x + 1..x + Hh][y + 1..y + Ww] we define the inner rectangle
R⊏⊐ = (u⊏⊐, d⊏⊐, ℓ⊏⊐, r⊏⊐) = (x + Hh −

⌈
ah

⌉
+ 1, x +

⌈
ah

⌉
− 1, y + Ww − ⌈aw⌉+ 1, y + ⌈aw⌉ − 1).

As the further argument does not depend on x, y, we assume x = y = 0 for simplicity.

▷ Claim 17. If (u, d, ℓ, r) is a frame in M ′ with r−ℓ ∈ [aw..aw+1−1] and d−u ∈ [ah..ah+1−1],
then (u, d, ℓ, r) is a surrounding frame.

Proof. Since d ≤ Hh and d−u ≥ ah, one has u ≤ d− ah ≤ Hh− ah < u⊏⊐, as required. Since
u ≥ 1, one also has d ≥ ah + 1 > d⊏⊐ as required. The inequalities ℓ < ℓ⊏⊐ and r > r⊏⊐ are
proved in the same way, so (u, d, ℓ, r) is surrounding by definition. ◁

To prove Property 4, we note that the perimeter of a surrounding frame in M ′ is at
least 2((d⊏⊐ − u⊏⊐ + 2) + (r⊏⊐ − ℓ⊏⊐ + 2)). We show that d⊏⊐ − u⊏⊐ + 2 ≥ (1− ε) · ah+1. It can
be similarly argued that r⊏⊐ − ℓ⊏⊐ + 2 ≥ (1 − ε) · aw+1; the two inequalities together yield
Property 4. Recall that u⊏⊐ = Hh −

⌈
ah

⌉
+ 1, d⊏⊐ =

⌈
ah

⌉
− 1, Hh =

⌈
ah+2⌉

. Then

d⊏⊐ − u⊏⊐ + 2 =
⌈
ah

⌉
− 1−Hh +

⌈
ah

⌉
− 1 + 2 ≥ 2ah − ah+2 = ah+1( 2

a − a
)

It remains to show that 2
a − a ≥ 1− ε. Indeed,

2
a
− a = 2− (1 + 2ε/3 + ε2/9)

1 + ε/3 = 1− 2ε/3− ε2/3 + 2ε2/9
1 + ε/3 = 1− ε + 2ε2/9

1 + ε/3 > 1− ε,

as required. The lemma is proved. ◀

With Lemmas 14 and 15, we are ready to prove Theorem 2.

Proof of Theorem 2. The algorithm first processes frames of height 1 or width 1, applying
the algorithm of Lemma 11 with x = 1 to both M and M⊤. After that, the algorithm
proceeds as follows. For every pair (h, w) ∈ [loga n]× [loga m] such that aw, ah ≥ 2, it creates
the setMh,w with the corresponding inner rectangles (see Lemma 15) and applies Lemma 14
on every M ′ ∈Mh,w with its inner rectangle. The algorithm returns the maximum frame
among the matching frames returned by algorithms of Lemma 11 and Lemma 14. If neither
of these two algorithms reported a frame, then a “no frames” answer is reported.
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Correctness. Let F = (u, d, ℓ, r) be a maximum matching frame in M . If d = u + 1 or
r = ℓ + 1, then F is found by the algorithm of Lemma 11. Otherwise, consider the pair
(h, w) ∈ [loga n]× [loga m] such that d− u ∈ [ah..ah+1 − 1] and r − ℓ ∈ [aw..aw+1 − 1]. By
Property 3 of Lemma 15, there is a sub-matrix M ′ ∈Mh,w that contains F as a surrounding
frame. The algorithm in Lemma 14 returns a surrounding matching frame F ′ in M ′, and by
Property 4 of Lemma 15, per(F ′) ≥ (1− ε)

(
2(aw+1 + ah+1)

)
. Since per(F ) < 2(aw+1 + ah+1),

the approximation guarantee is fulfilled.

Complexity. Given h and w, the running time of the algorithm that obtains Mh,w and the
suitable R⊏⊐ is O(|Mh,w|) ⊆ O(nm/ε2) by Property 1 of Lemma 15.

Due to Properties 1 and 2 of Lemma 15, the sum of the sizes of the matrices in Mh,w

is O
(

nm
ε2

)
. Hence, applying Lemma 14 on all M ′ ∈ Mh,w takes Õ

(
nm
ε2

)
time. Recall that

there are O(log1+ε n · log1+ε m) = O( 1
ε2 log n · log m) values of h and w. Thus, the total

running time of the algorithm is Õ( nm
ε4 ). Each matrix in Mh,w is processed separately. The

space complexity of processing a matrix is Õ(ah+w) = Õ(nm). The space is reused when
each matrix is processed, so the overall space complexity of the algorithm is Õ(nm). ◀

6.1 Interesting Pairs and Interesting Triplets
In order to prove Lemma 14, we introduce and study the following notion, illustrated by
Figure 3.

▶ Definition 18. Given a tuple (S1, . . . , Sn) of strings, we call a pair (i, j) interesting if
i < j and for any ℓ such that ℓ ∈ [i + 1, j − 1] one has LCP(Si, Sℓ) < LCP(Si, Sj).

𝑺𝟏 i n t e r e s t i n g

𝑺𝟐 i n d e x

𝑺𝟑 i n t r i g u i n g

𝑺𝟒 p a i r s

𝑺𝟓 p a l i n d r o m e

𝑺𝟔 i n t e g e r

𝑺𝟕 p a i n t

𝑺𝟖 i n t e l l e c t u a l

Figure 3 An example of interesting pairs where the first component of the pair is S1 or S4. The
rows beginning in red form interesting pairs with S1 and the rows beginning in blue form interesting
pairs with S4. The color indicates the LCP of the components of the pair. Notice that (S1, S8) is
not an interesting pair because of S6.

Trivially, all pairs of the form (i, i + 1) are interesting for any tuple. The next lemma
bounds the number of interesting pairs. This bound is tight as shown in the full version [9]
of this paper.

▶ Lemma 19. For each n-tuple of strings, there are O(n log n) interesting pairs.

Proof. For a given tuple (S1, . . . , Sn), fix an integer ℓ ∈ [1..⌈log n⌉] and consider the set
Iℓ = {(i, j) | (i, j) is interesting and j − i ∈ [2ℓ−1..2ℓ − 1]}. We say that a pair (i, j) ∈ Iℓ is
of the first type if i = max{i′ | (i′, j) ∈ Iℓ} and of the second type otherwise. The following
claim is crucial.
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▷ Claim 20. All pairs of the first type from Iℓ have different second components; all pairs
of the second type from Iℓ have different first components.

Proof. The first statement stems directly from the definition of the first type. Let us prove
the second one. Assume by contradiction that (i, j), (i, j′) ∈ Iℓ are pairs of the second type,
with j′ < j. As (i, j) is not of the first type, Iℓ contains a pair (i′, j) with i′ > i. We prove
the following sequence of inequalities, leading to a contradiction.

LCP(Si, Si′)
(1)
< LCP(Si, Sj′) (2)= LCP(Sj′ , Sj) (3)= LCP(Si′ , Sj′)

(4)
< LCP(Si′ , Sj) (5)= LCP(Si, Si′),

Since 2ℓ−1 ≤ j− i′, 2ℓ−1 ≤ j′− i and j− i < 2ℓ ≤ j− i′ + j′− i, we have i′ < j′. Since (i, j′)
is an interesting pair and i′ ∈ [i+1..j′−1], we obtain (1) by Definition 18. Since (i, j) is an
interesting pair, every k ∈ [i+1..j−1] satisfies LCP(Si, Sk) < LCP(Si, Sj). Hence, by Fact 6
we have LCP(Si, Sk) = LCP(Sk, Sj). We obtain (2) and (5) by setting k = j′ and k = i′

respectively. Finally, (i′, j) is an interesting pair, and j′ ∈ [i′ + 1..j − 1]. So, Definition 18
gives us (4) and then Fact 6 implies (3). ◁

Claim 20 says that Iℓ contains at most n pairs of the first type and at most n pairs of the
second type. As ℓ takes ⌈log n⌉ values, the lemma follows. ◀

To relate interesting pairs to our decision problem we need one more notion.

▶ Definition 21. Let M be an n×m-matrix and ℓ ∈ [m]. A triplet (u, d, ℓ) is called interesting
if the pair (u, d) is interesting for the tuple (M [1][ℓ..m], . . . , M [n][ℓ..m]).

6.2 Finding all interesting triplets
▶ Lemma 22. All interesting triplets for an n×m matrix M can be found in Õ(nm) time.

We assume that the data structures described in Section 3 are constructed. We process each
ℓ ∈ [m] independently, computing all interesting triplets of the form (u, d, ℓ). By Definition 21,
such a triplet is interesting if the pair (u, d) is interesting for the tuple S = (S1, . . . , Sn),
where Si = M [i][ℓ..m]. Below we work with this fixed tuple S. The algorithm scans S string
by string; while processing Si, the algorithm finds all the interesting pairs (i, j).

For i < j ∈ [n], let L(i, j) be the maximum LCP value between Si and any Sk for
k ∈ [i + 1 . . . j]. Let I(i, j) = min{k ∈ [i + 1 . . . j] | LCP(Si, Sk) = L(i, j)} be the minimum
index k with this maximum LCP value. Using the function I(i, j) we characterize the set of
interesting pairs that share the first index i.

▶ Lemma 23. For i ∈ [n], let j1 > j2 > · · · > jz be the second coordinates of all interesting
pairs of the form (i, j). Then j1 = I(i, n) and jk = I(i, jk−1 − 1) for every k ∈ [2..z].

Proof. First we need to prove that (i, I(i, n)) is interesting and that there is no interesting pair
(i, j′) with j′ > I(i, n). By the definitions of L(i, n) and I(i, n), for every j′ < I(i, n) we have
LCP(Si, Sj′) < L(i, n) = LCP(Si, SI(i,n)), so (i, I(i, j)) is interesting. Now consider a pair
(i, j′) with j′ > I(i, n). The same definitions imply LCP(Si, Sj′) ≤ L(i, n) = LCP(Si, SI(i,n)),
so the pair (Si, Sj′) is not interesting and we have j1 = I(i, n) as required.

Let k ∈ [2..z] and consider the second statement. Similar to the above, we argue that the
pair (i, I(i, jk−1 − 1)) is interesting and no pair (i, j′) such that I(i, jk−1 − 1) < j′ < jk−1 is
interesting. Hence I(i, jk−1 − 1) follows jk−1 in the list of second coordinates of interesting
pairs of the form (i, j), i.e., jk = I(i, jk−1 − 1). ◀

We proceed to show how to compute I(i, j) and L(i, j) efficiently.
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▶ Lemma 24. Given i and j, L(i, j) can be computed in O(log n) time.

Proof. Note that if we lex-sort the tuple (Si, . . . , Sj), then the maximum LCP value with Si

would be reached by one of its neighbors Sjleft and Sjright in the sorted tuple; we assume Sjleft <

Si < Sjright (one neighbor may absent). Thus, L(i, j) = max{LCP(Si, Sjleft), LCP(Si, Sjright)}.
The algorithm retrieves jleft and jright using range queries on Dℓ

rows as detailed below.
Recall that Ix,ℓ

rows denotes the index of Sx in LSAℓ
rows. Note that I

jright,ℓ
rows is the minimal index

satisfying Ix,ℓ
rows > Ii,ℓ

rows with x ∈ [i + 1..j]. Hence, in order to get jright one queries Dℓ
rows for a

point (x, Ix,ℓ
rows) in the range [i + 1..j]× [Ii,ℓ

rows + 1..∞] that minimizes Ix,ℓ
rows; the first coordinate

of this point is jright. Symmetrically, in order to get jleft one queries Dℓ
rows for a point (x, Ix,ℓ

rows)
in the range [i + 1..j]× [1..Ii,ℓ

rows − 1] that maximizes Ix,ℓ
rows; the first coordinate of this point is

jleft. After retrieving jright and jleft, one queries the LCPℓ
rows structure for LCP(Si, Sjright) and

LCP(Si, Sjleft), and outputs the maximum as L(i, j).
Two range queries take O(log n) time (Lemma 9 for d = 2) while two LCP queries take

O(1) time (Lemma 5). The lemma now follows. ◀

▶ Lemma 25. Given i and j, I(i, j) can be computed in O(log n) time.

Proof. The algorithm starts by applying Lemma 24 to obtain L(i, j) in O(log n) time. Let
P = Si[1..L(i, j)] be the prefix of length L(i, j) of Si. Recall that by definition, I(i, j) is
the minimal index k ∈ [i + 1..j] such that Sk[1..L(i, j)] = P . Using Fact 7, the algorithm
finds, in O(log n) time, a pair of indices iP , jP such that Sz[1..L(i, j)] = P if and only if
Iz,ℓ

rows ∈ [iP ..jP ]. After that, the algorithm retrieves I(i, j) by querying Dℓ
rows for the point

(k, Ik,ℓ
rows) in the range [i + 1..j]× [iP ..jP ] with the minimal first coordinate. This coordinate

k is then reported as I(i, j). As this query takes O(log n) time by Lemma 9 for d = 2, the
lemma follows. ◀

Proof of Lemma 22. Let ℓ be fixed and S = {S1, . . . , Sn} be defined as above. For each Si,
the algorithm finds j1 = I(i, n) using Lemma 25, reports (i, j1) as an interesting pair (see
Lemma 23), and then iterate. As long as jk ̸= i + 1, the algorithm finds jk+1 = I(i, jk − 1)
using Lemma 25 and reports the interesting pair (i, jk+1). Note that the algorithm is
guaranteed to finish the iteration, since the pair (i, i + 1) is interesting.

The algorithm spends O(log n) time per interesting pair by Lemma 22; the number of
such pairs is O(n log n) by Lemma 19. Multiplying this by m choices for ℓ, we obtain the
required time bound Õ(nm). ◀

6.3 Algorithm for the Decision Variant
In this section we prove Lemma 14, presenting the required algorithm.

The algorithm starts by modifying M as follows. For every (i, j) ∈ [u⊏⊐ . . . d⊏⊐]× [ℓ⊏⊐ . . . r⊏⊐],
we set M [i][j] = $i,j with $i,j being a unique symbol not in Σ. Since neither of the changed
symbols belongs to a marginal row/column of a surrounding frame, this modification preserves
surrounding matching frames. The following claim clarifies the role of interesting triplets.

▶ Lemma 26. If a matrix M with an inner rectangle (u⊏⊐, d⊏⊐, ℓ⊏⊐, r⊏⊐) contains a surrounding
matching frame (u, d, ℓ, r), then it contains a surrounding matching frame (u′, d′, ℓ, r) such
that (u′, d′, ℓ) is an interesting triplet.

Proof. Let (u, d, ℓ, r) be a surrounding matching frame in M . We denote Sh = M [u][ℓ..r] =
M [d][ℓ..r]. Let u′ be the maximal index in [u..u⊏⊐ − 1] such that M [u′][ℓ..r] = Sh and let
d′ be the minimal index in [d⊏⊐ + 1..d] such that M [d′][ℓ..r] = Sh. The frame (u′, d′, ℓ, r) is
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surrounding by definition and matching by construction (note that M [u..d][ℓ] = M [u..d][r]
implies M [u′..d′][ℓ] = M [u′..d′][r]). Finally, for arbitrary d′′ ∈ [u′ + 1..d′ − 1] one has
M [d′′][ℓ..r] ̸= Sh. If d′′ < u⊏⊐ or d′′ > d⊏⊐, this condition holds by the choice of u′ and d′

respectively. Otherwise the condition is guaranteed by uniqueness of the symbols of the inner
rectangle. Hence LCP(M [u′][ℓ..m], M [d′′][ℓ..m]) < |Sh| ≤ LCP(M [u′][ℓ..m], M [d′][ℓ..m]), and
the triplet (u′, d′, ℓ) is interesting by definition. ◀

The Algorithm. After setting M [i][j] = $i,j for each (i, j) ∈ [u⊏⊐ . . . d⊏⊐] × [ℓ⊏⊐ . . . r⊏⊐], the
algorithm applies the preprocessing described in Section 3 and finds all interesting triplets
in O(nm log2 n) time by applying Lemma 22. The final ingredient we need is a mechanism
verifying, given an interesting triplet (u, d, ℓ), if there is a surrounding matching frame
(u, d, ℓ, r). For this purpose, we present the following lemma.

▶ Lemma 27. There is an algorithm that, given an interesting triplet (u, d, ℓ) of M , outputs
an integer r such that (u, d, ℓ, r) is a surrounding matching frame or reports null if no such r

exists. The algorithm runs in O(log n) time.

Proof. The algorithm reports null if u ≥ u⊏⊐, or d ≤ d⊏⊐, or ℓ ≥ ℓ⊏⊐. Otherwise, it seeks for a
value r such that (i) r ≥ r⊏⊐ + 1, (ii) M [u][ℓ..r] = M [d][ℓ..r], and (iii) M [u..d][r] = M [u..d][ℓ].

The algorithm queries LCPℓ
rows for Lu,d = LCP(M [u][ℓ..m], M [d][ℓ..m]). By definition of

LCP, we have M [u][ℓ..r] = M [d][ℓ..r] if and only if r ≤ ℓ + Lu,d−1. Hence, conditions (i) and
(ii) are satisfied if and only if r ∈ [r⊏⊐ + 1 . . . ℓ + Lu,d − 1]. To check (iii), let Sv = M [u..d][ℓ].
Using Fact 7, the algorithm finds the pair of indices iv, jv such that M [u..d][r] = Sv if and
only if r ∈ LSAu

columns[iv..jv]. Now the algorithm checks the existence of a value r satisfying
(i)–(iii) by querying Du

columns for a point within the range [r⊏⊐ + 1..ℓ + Lu,d−1]× [iv..jv]. If the
queried structure returns a point (r, Iu,r

columns), the algorithm outputs r; otherwise, it reports
null, as there is no value of r such that (u, d, ℓ, r) is a surrounding matching frame.

The algorithm performs a single LCP query (O(1) time by Lemma 5), finds iv and jv

(O(log n) time by Fact 7), queries Du
columns (O(log n) time by Lemma 9), and compares a

constant number of integers. The lemma follows. ◀

We are finally ready to prove Lemma 14.

Proof of Lemma 14. After finding all interesting triplets, the algorithm applies the sub-
routine from Lemma 27 to every interesting triplet (u, d, ℓ). If this subroutine outputs r,
the algorithm outputs the surrounding matching frame (u, d, ℓ, r). If the subroutine outputs
null for all interesting triplets, then, relying on Lemma 26, the algorithm reports that no
surrounding matching frame exists.

The algorithm spends O(nm log2(nm)) for each of three tasks it performs: prepro-
cessing (Section 3), finding interesting triplets (Lemma 22), and verifying interesting triplets
(Lemma 19 and Lemma 27). Thus, its time (and therefore, space) complexity is Õ(nm), as
required. ◀
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Abstract
Hairpin completion, derived from the hairpin formation observed in DNA biochemistry, is an
operation applied to strings, particularly useful in DNA computing. Conceptually, a right hairpin
completion operation transforms a string S into S · S′ where S′ is the reverse complement of a prefix
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1 Introduction

Hairpin completion [6], derived from the hairpin formation observed in DNA biochemistry, is
an operation applied to strings, particularly useful in DNA computing [10, 9, 8, 7]. Consider
a sequences over an alphabet Σ with involution Inv : Σ → Σ assigning for every σ ∈ Σ an
inverse symbol σ. For a string S ∈ Σ∗, a left hairpin completion transforms S into

←−
S′ · S,

where S′ is a suffix of S, and for any X ∈ Σ∗ we define ←−X = X[|X|] ·X[|X| − 1] · . . . ·X[1].
This operation can only be applied under the restriction that the suffix S′ is preceded by
the symbol S[1]. Similarly, a right hairpin completion transforms S into S ·

←−
S′ where S′ is a

prefix of S followed by S[|S|].
Several problems regarding hairpin completion were studied [11, 12, 13, 14, 3]. In this

paper, we consider the hairpin completion distance problem. In this problem, we are given
two strings x and y and our goal is to compute the minimum number of hairpin completion
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operations one has to apply on y to transform y into x, or to report that there is no
sequence of hairpin completion operation can turn y into x. In 2009, Manea, Martín-Vide
and Mitrana [12] proposed the problem and introduced a cubic time O(n3) algorithm (where
n = |x|). Later Manea [11] introduced a faster algorithm that runs in O(n2 log n) time.
Recently, Boneh et al. [3] showed that the time complexity of the problem is O(n2). Moreover,
Boneh et al. posed the following open problem.

▶ Problem 1. Can one prove a lower bound for hairpin completion distance computation
that matches the O(n2) upper bound?

In this paper, we show that for every ε > 0, there is no O(n2−ε) time algorithm for computing
the hairpin completion distance from y to x, unless the Strong Exponential Time Hypothesis
(SETH) [5] is false. Thus, we provide a conditional lower bound matching the upper bound
of [3] up to sub-polynomial factors.

▶ Theorem 2. Let ε > 0. If there is an algorithm that computes the hairpin completion
distance from y to x in O(|x|2−ε) time, then SETH is false. This holds even if the input
strings are over an alphabet of size 4.

We note that due to the relationship between hairpin operations and DNA biochemistry,
a typical output for a hairpin-related problem is over the alphabet {A, C, G, T} of size 4.
Hence, our lower bound applies to a natural set of practical inputs.

Theorem 2 is proven by reducing Longest Common Subsequence (LCS) problem to the
hairpin completion distance problem. Namely, for two ternary strings S and T , we show a
linear time construction of a pair of strings x and y such that LCS(S, T ) can be computed
in linear time from the hairpin completion distance from y to x. The hardness of hairpin
completion computation follows from the conditional lower bound on the LCS problem [4, 1].
We refer the reader to Section 3 where we introduce the reduction and to Section 3.1 where
we provide a high-level discussion regarding the correctness of our construction.

2 Preliminaries

For i, j ∈ N let [i..j] = {k ∈ N | i ≤ k ≤ j}. We denote [i] = [1..i].
A string S over an alphabet Σ is a sequence of characters S = S[1]S[2] . . . S[|S|]. For

i, j ∈ [|S|], we call S[i..j] = S[i]S[i + 1] . . . S[j] a substring of S. If i = 1, S[i..j] is a prefix of
S, and if j = |S|, S[i..j] is a suffix of S. Let x and y be two strings over an alphabet Σ. x ·y is
the concatenation of x and y. For strings x1, x2, . . . xm, we denote as

⊙m
i=1 = x1 ·x2 · . . . ·xm.

For a string x and k ∈ N we write the concatenation of x to itself k times as xk. For a
symbol σ ∈ Σ, we denote as #σ(x) = |{i ∈ [|x|] | x[i] = σ}| the number of occurrences of σ

in x. We say that a string y occurs in x (or that x contains an occurrence of y) if there is an
index i ∈ [|x| − |y|+ 1] such that x[i..i + |y| − 1] = y.

For two sets of strings S and T , we define the set of strings S ∗ T = {s · x · t | s ∈ S, x ∈
Σ∗, t ∈ T }. We use the notations S∗ = S ∗ Σ∗ and ∗S = Σ∗ ∗ S. When using ∗ notation,
we sometimes write s ∈ Σ∗ to denote the set {s} (for example, 0∗ is the set of all strings
starting with 0).

Hairpin Operations. Let Inv : Σ→ Σ be a permutation on Σ. We say that Inv is an inverse
function on Σ if Inv = Inv−1 and Inv(σ) ̸= σ for every σ ∈ Σ. Throughout this paper, we
discuss strings over alphabet Σ = {0, 1} with Inv(σ) = 1−σ. For every symbol in σ, we denote
σ = Inv(σ). We further extend this notation to strings by denoting x = x[1] · x[2] · . . . · x[|x|].
We denote ←−x = x[|x|] · x[|x| − 1] · . . . · x[2] · x[1].
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We define several types of hairpin operations that can be applied to a string over Σ with
an inverse function on Σ. In [6], hairpin operations are defined as follows.

▶ Definition 3 (Hairpin Operations). Let S ∈ Σ∗. A right hairpin completion of length
ℓ ∈ [|S|] transforms S into S ·

←−−−−
S[1..ℓ]. A right hairpin completion operation of length ℓ can

be applied on S only if S[ℓ + 1] = S[|S|]. Similarly, a left hairpin completion of length ℓ

transforms S into
←−−−−−−−−−−−−
S[|S| − ℓ + 1..|S|] ·S. A left hairpin completion of length ℓ can be applied to

S only if S[|S|− ℓ] = S[1]. A right (resp. left) hairpin deletion operation of length ℓ ∈ [
⌊

|S|
2

⌋
]

transforms a string S into a prefix (resp. suffix) S′ of S such that S can be obtained from S′

by a valid right (resp. left) hairpin completion of length ℓ.

Throughout this paper, we use the following modified definition of hairpin operation,
which removes the constraints regarding S[1] and S[|S|].

▶ Definition 4 (Hairpin Operations, Modified definition). Let S ∈ Σ∗. A right hairpin
completion of length ℓ ∈ [|S|] transforms S into S ·

←−−−−
S[1..ℓ]. Similarly, a left hairpin completion

of length ℓ transforms S into
←−−−−−−−−−−−−
S[|S| − ℓ + 1..|S|] · S. A right (resp. left) hairpin deletion of

length ℓ ∈ [
⌊

|S|
2

⌋
] operation transforms a string S into a prefix (resp. suffix) S′ of S such

that S can be obtained from S′ by a valid right (resp. left) hairpin completion of length ℓ.

We highlight that the modified definition is not equivalent to the definition of [6]. Even
though the paper is phrased in terms of the modified definition, we emphasize that Theorem 2
is correct with respect to both definitions. In the full version of this paper, we discuss the
machinery required to make our hardness result applicable to Definition 3. The complete
details for bridging this gap are developed in the full version of this paper [2].

Let x and y be two strings. We denote by HDD(x, y) (resp. HCD(x, y)) the minimum
number of hairpin deletion (resp. completion) operations required to transform x into y,
counting both left and right operations. Note that HDD(x, y) = HCD(y, x).

For the sake of analysis, we define the following graph.

▶ Definition 5 (Hairpin Deletion Graph). For a string x the Hairpin Deletion Graph Gx =
(V, E) is defined as follows. V is the set of all substrings of x, and (u, v) ∈ E if v can be
obtained from u in a single hairpin deletion operation.

We define the distance between two vertices s and t in a graph G (denoted as distG(s, t))
to be the minimal length (number of edges) of a path from s to t in G (of ∞ if there is
no such path). Note that for a source string x and a destination string y, it holds that
HDD(x, y) = distGx

(x, y). We distinguish between two types of edges outgoing from x[i..j].
An edge of the form x[i..j]→ x[i+ℓ..j] for some ℓ ∈ N is called a left edge and it corresponds to
a left hairpin deletion operation of length ℓ. Similarly, an edge of the form x[i..j]→ x[i..j− ℓ]
for some ℓ ∈ N is called a right edge and it corresponds to a right hairpin deletion operation
of length ℓ. When a path p in Gx traverses a left (resp. right) edge outgoing from v, we say
that p applies a left (resp. right) hairpin deletion to v. For a path p we denote by cost(p)
the length of p.

Hairpin Deletion. Since the paper makes intensive use of hairpin deletion notations, we
introduce an alternative, more intuitive definition for hairpin deletion, equivalent to Defini-
tion 4. For a string S, if for some ℓ ∈ [

⌊
|S|
2

⌋
] we have S[1..ℓ] =

←−−−−−−−−−−−−
S[|S| − ℓ + 1..|S|] then a left

(resp. right) hairpin deletion operation transforms S into S[ℓ + 1..|S|] (resp. S[1..|S| − ℓ]).
In particular, if S[1] ̸=

←−−−
S[|S|] then there is no valid hairpin deletion operation on S.
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Longest Common Subsequence. A subsequence of a string S of length n is a string X

of length ℓ such that there is an increasing sequence 1 ≤ i1 < i2 < . . . iℓ ≤ n satisfying
X[k] = S[ik] for every k ∈ [ℓ]. For two strings S and T , a string X is a common subsequence
of S and T if X is a subsequence of both S and T . The LCS problem is, given two strings S

and T of length at most n, compute the maximum length of a common subsequence of S

and T , denoted as LCS(S, T ).
Bringmann and Künnemann [4] have shown the following.

▶ Fact 6 (Hardness of LCS). For every ε > 0, there is no O(n2−ε)-time algorithm that solves
the LCS problem for ternary input strings unless SETH is false.

Fibonacci sequence. The Fibonacci sequence is defined as follows. Fib(0) = 1, Fib(1) = 1
and for all integer i > 1 we have Fib(i) = Fib(i − 1) + Fib(i − 2). The inverse function
Fib−1 : R→ N is defined as Fib−1(x) = min{y ∈ N | Fib(y) ≥ x}.

3 The Reduction

Here we introduce a reduction from the LCS problem on ternary strings. We also provide in
Section 3.1 a high-level discussion of why the reduction should work.

We present a linear time algorithm such that given two strings S, T ∈ {0, 1, 2}∗, constructs
two (binary) strings x and y with |x| = O(|S| + |T |) and |y| = O(1). The strings x and
y have the property that HDD(x, y) can be used to infer LCS(S, T ) in linear time. Thus,
by Fact 6, we deduce that any algorithm computing HDD(x, y) cannot have running time
O(|x|2−ε) for any ε > 0 (assuming SETH).

We use several types of gadgets. Let:
IL(0) = (0103)i0

IL(1) = (0105)i1

IL(2) = (0107)i2

PL = (0109)p

SyncL = 01
IR(0) = (0310)i0 =

←−−−
IL(0)

IR(1) = (0510)i1 =
←−−−
IL(1)

IR(2) = (0710)i2 =
←−−−
IL(2)

PR = (0910)p =←−PL

SyncR = 010
with i0 = 55, i1 = 54, i2 = 53 and p = 144. We call IL(0), IL(1) and IL(2) left information
gadgets and IR(0), IR(1) and IR(2) right information gadgets. We say that IL(α) and IR(β)
match if α = β or mismatch otherwise. PL and PR are called left and right protector gadgets,
respectively. SyncL and SyncR are called left and right synchronizer gadgets, respectively. We
say that two gadgets g1, g2 are symmetric if g2 =←−g1 . Specifically, (IL(0), IR(0)), (IL(1), IR(1)),
(IL(2), IR(2)) and (PL, PR) are the pairs of symmetric gadgets. We emphasize that SyncL and
SyncR are not symmetric.

Using the gadgets above, we define 6 mega gadgets encoding characters from S and T .
For α ∈ {0, 1, 2} we define

EL(α) = PL · SyncL · IL(α) · SyncL and ER(α) = SyncR · IR(α) · SyncR · PR.
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Finally, we define y = PL · SyncL · 01 · 1111 · 10 · SyncR · PR and x =
(⊙|S|

i=1 EL(S[i])
)
· y ·(⊙1

i=|T | ER(T [i])
)

. Note that on the suffix of x we concatenate the elements of T in reverse
order.

In the remainder of this paper, we only use ’x’ and ’y’ to refer to the strings defined above.
We define notations for indices in x which are endpoints of protector and information gadgets
as follows. For ℓ ∈ [|S|+1], let leftP

ℓ = 1+
∑ℓ−1

j=1 |EL(S[j])| be the leftmost index of the ℓth PL

gadget (from the left) in x. Notice that leftP
|S|+1 corresponds to the left PL gadget contained

in y. For r ∈ [|T |+ 1], let rightP
r = |x| −

∑r−1
j=1 |ER(T [j])| be the rightmost index of the rth

PR gadget (from the right) in x. Notice that rightP
|T |+1 corresponds to the right PR gadget

contained in y. For ℓ ∈ [|S|], let leftI
ℓ = leftP

ℓ + |PL|+ |SyncL| be the leftmost index of the ℓth
information gadget (from the left) in x. For r ∈ [|T |], let rightI

r = rightP
r − |PR| − |SyncR| be

the rightmost index of the rth information gadget (from the right) in x.
The rest of the paper is dedicated for proving the following property of x and y.

▶ Lemma 7 (Reduction Correctness). For some constants D(0), D(1), D(2) and B we have:
HDD(x, y) =

∑
α∈{0,1,2} D(α)(#α(S) + #α(T ))− LCS(S, T ) ·B.

Note that #α(S) and #α(T ) can be easily computed for all values of α in linear time.
Therefore, if HDD(x, y) can be computed in O(n2−ε) time for some ε > 0, LCS can be
computed in O(n + n2−ε) (the values of the constants are fixed in the proof). Since
HDD(x, y) = HCD(y, x), hairpin deletion and hairpin completion distance are computa-
tionally equivalent. Recall that HDD(x, y) refers to the modified hairpin deletion distance
(Definition 4). In order to bridge the gap to the original definition of hairpin deletion distance,
we provide a linear time construction of strings x′ and y′ such that HDD′(x′, y′) = HDD(x, y)
in the full version of this paper [2]. Here, HDD′(x′, y′) denotes the hairpin deletion distance
from x′ to y′ as defined in Definition 3. It clearly follows from this construction and the
above discussion that HDD′(x′, y′) can not be computed in O(n2−ε), unless SETH is false.
Thus, proving Theorem 2.

3.1 Intuition for the Reduction Correctness
We provide some high-level discussion regarding the correctness of the construction. First,
notice that y has a single occurrence in x. Therefore, a sequence of hairpin deletion operations
transforming x into y has to delete all mega gadgets. Consider an intermediate step in a
deletion sequence in which the substring x[i..j] is obtained such that i is the leftmost index
of some left gadget gi and j is the rightmost index of some right gadget gj .

If gi and gj are not symmetric, the next hairpin deletion would not be able to make much
progress. This is due to the 1 symbols in gi and the 1 symbols in gj being separated by
a different number of 0’s and 0’s. For the goal of minimizing the number of deletions for
removing all mega gadgets, this is a significant set-back, as either gi or gj would have to be
removed using roughly #1(gi) (or #1(gj)) deletions.

Now consider the case in which gi and gj are symmetric to each other. In this case, either
one of them can be deleted using a single hairpin deletion. However, note that greedily
removing gi will put us in the asymmetric scenario. Notice that there is another possible
approach for deleting symmetric gadgets - a synchronized deletion. In this process, gi and
gj are both deleted gradually. One can easily figure out a way to apply such synchronized
deletion using roughly log(#1(gi)) steps.

Think of a scenario in which i = leftP
ℓ and j = rightP

r for some ℓ and r, i.e. i and j are a
leftmost index and a rightmost index of left and right mega gadgets mℓ and mr, respectively.
Initially, both i and j are in the beginning of protector gadgets pℓ and pr. If mℓ and mr are
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11:6 Hairpin Completion Distance Lower Bound

mega gadgets corresponding to the same symbol α, the protector gadgets and the information
gadgets of mℓ and mr are symmetric to each other. It is therefore very beneficial to remove
the mega gadgets in a synchronized manner. The event in which the ℓ’th left mega gadget
and the r’th right mega gadgets are deleted in a synchronized manner corresponds to S[ℓ]
and T [r] being matched by the longest common subsequence.

Now, consider the case in which mℓ and mr do not match i.e. S[ℓ] ̸= T [r]. Deleting the
protectors in a synchronized manner would not yield much benefit in this scenario, since
the information gadgets are not symmetric, and therefore would have to be removed slowly.
In this case, since an inefficient deletion of an information gadget is inevitable, it is more
efficient to delete one of the protectors gadgets using a single deletion operation, and proceed
to delete the following information gadget inefficiently. This would result in either the left
mega gadget being deleted, or the right one. The event in which the ℓ’th left (resp. r’th
right) mega gadget is deleted in a non synchronized manner corresponds to S[ℓ] (resp. T [r])
not being in the longest common subsequence. The gadgets are designed in a way such that
deleting mega gadgets in a synchronized way is faster than deleting each mega gadget in a
non-synchronized way. Furthermore, the cost reduction of a synchronized deletion over a
non-synchronized deletion is a constant number B. Therefore, by selecting D(α) as the cost
of deleting a mega gadget corresponding to the symbol α in a non-synchronized way, one
obtains Lemma 7.

The above discussion makes an implicit assumption that the sequence of deletion is
applied in phases. Each phase starts with x[i..j] such that i and j are edge endpoints of
mega gadgets and proceeds to either delete both in a synchronized manner or one in a
non-synchronized manner. In order to show that HDD(x, y) is at most the term in Lemma 7,
this is sufficient since we can choose a sequence of deletion with this structure as a witness.
In order to show that HDD(x, y) is at least the expression in Lemma 7, one has to show
that there is an optimal sequence of deletions with this structure. This is one of the main
technical challenges in obtaining Theorem 2.

In a high level, the sync gadgets function as “anchors” that force any sequence of deletions
to stop in their proximity. Another key property of our construction that enforces the “phases”
structure is the large size of a protector relatively to the information. Intuitively, an optimal
sequence would always avoid deleting a protector gadget inefficiently, so if a left protector
is deleted using a right protector, left deletions would continue to occur until the next left
protector is reached.

In Section 4, we provide the formal definition for a well-structured sequence and prove
that there is an optimal sequence of deletions with this structure. In Section 5 we provide a
precise analysis of every phase in a well-structured sequence. In Section 6 we put everything
together and prove Lemma 7.

4 Well-Behaved Paths

We start by defining a well-behaved path.

▶ Definition 8 (Well-Behaved Path). A path p from x to y in Gx is well-behaved if for every
ℓ ∈ [|S|+ 1] and r ∈ [|T |+ 1], if p visits x[leftP

ℓ ..rightP
r ], one of the following vertices is also

visited by p: x[leftP
ℓ+1..rightP

r ], x[leftP
ℓ ..rightP

r+1], or x[leftP
ℓ+1..rightP

r+1]. If one of ℓ + 1 and
r + 1 is undefined, the condition is on the subset of defined vertices. If both are undefined,
the condition is considered satisfied.

This section is dedicated to proving the following lemma.
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▶ Lemma 9 (Optimal Well-Behaved Path). There is a shortest path from x to y in Gx which
is well-behaved.

We start by proving properties regarding paths and shortest paths from x to y in Gx.
Due to space constraints, the proofs for the lemmata in this section appear in the full version
of this paper [2].

4.1 Properties of Paths in Gx

We start by observing that an x to y path in Gx never deletes symbols from y.

▶ Observation 10 (Never Delete y). The substring x[leftP
|S|+1..rightP

|T |+1] = y is the unique
occurrence of y in x. Let p be a path from x to y in Gx. For every vertex x[i..j] in p,
[leftP

|S|+1..rightP
|T |+1] ⊆ [i..j].

Since each hairpin deletion operation deletes a prefix (or a suffix) of a substring of x, we
have the following observation and immediate corollary.

▶ Observation 11. Let x[i..j] ∈ 010a1 ∗ 10b10 for a ̸= b. A single left hairpin deletion
operation removes at most a single 1 character. Symmetrically, a right hairpin deletion
operation removes at most a single 1 character.

▶ Corollary 12. A single left (resp. right) hairpin deletion operation on x[i..j] can remove
more than a single 1 (resp. 1) character only if i and j are in symmetric gadgets.

The next lemma assures a restriction over the vertices along a path from x to y in Gx.

▶ Lemma 13 (Always 01∗ or ∗10). Let p be a path from s to t in Gx such that s, t ∈ 01 ∗ 10.
For every vertex x[i..j] visited by p, we have x[i] = 0 and x[j] = 0. Furthermore, x[i + 1] = 1
or x[j − 1] = 1.

Due to the equivalence between a path in Gx and a sequence of hairpin deletions and due
to the symmetry between hairpin deletion and hairpin completion, we obtain the following.

▶ Corollary 14. Let s, t ∈ 01 ∗ 10 and let H be a sequence of h hairpin deletion operations
(or a sequence of hairpin completion operations) that transforms s into t. For i ∈ [h], let Si

be the string obtained by applying the first i operations of H on s. For every i ∈ [h], we have
Si[1] = 0 and Si[|Si|] = 0. Furthermore, either Si[2] = 1 or Si[|Si| − 1] = 1.

The following lemma discusses the situation in which p visits a vertex not in 01 ∗ 10.
Essentially, the lemma claims that when p visits a substring x[i..j] with a prefix 00, the next
step would be x[i + 1..j], i.e., deleting a single zero from the left.

▶ Lemma 15 (Return to 01 ∗ 10). Let p be a path from x to y in Gx. If p visits a vertex
x[i..j] such that x[i..j] = 01 ∗ 10k for some integer k ≥ 1, then for every k′ ∈ [k − 1] it
must be that p visits x[i..j − k′] as well. Symmetrically, if p visits a vertex x[i..j] such that
x[i..j] = 0k1 ∗ 10 for some integer k ≥ 1, then for every k′ ∈ [k − 1] it must be that p visits
x[i + k′..j] as well.

The following is a direct implication of Lemmata 13 and 15.

▶ Observation 16. Let p be a path from x to y in Gx. If p applies a right hairpin deletion
operation on v then v ∈ 01∗. Symmetrically, if p applies a left hairpin deletion operation on
v then v ∈ ∗10.
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The following lemma establishes the importance of the synchronizer gadgets.

▶ Lemma 17 (Synchronizer Lemma). Let p be a path from x to y in Gx and let s = x[is..js] =
SyncL be a left synchronizer which is not contained in y, p must visit a vertex x[js + 1..k]
for some integer k. Symmetrically, if x[is..js] = SyncR is a right synchronizer which is not
contained in y, p must visit a vertex x[k..is − 1].

Notice that the leftmost index of every left information and protector gadget is js + 1 for
some left synchronizer x[is..js] (excluding the leftmost protector gadget). A similar structure
occurs with right gadgets. The following directly follows from Lemma 17.

▶ Corollary 18. Let p be a path from x to y in Gx. Then, for each ℓ ∈ [|S|] the path p visits
vertices u = x[i..j] with i = leftP

ℓ and v = x[i..j] with i = leftI
ℓ . Symmetrically, for each

r ∈ [|T |] the path p visits vertices u = x[i..j] with j = rightP
r and v = x[i..j] with j = rightI

r.

4.2 Transitions Between Gadegets
In this section, we address the way shortest paths apply to vertices that transit from a gadget
to the gadget afterward.

▶ Lemma 19. Let p be a shortest path from x to y in Gx. For some ℓ ∈ |S|, let v = x[i1..j1]
be the first vertex visited by p with i1 = leftI

ℓ . Let u = x[i2..j2] be the first vertex visited by p

with i2 = leftP
ℓ+1. Then, there is no occurrence of PR in x[j2..j1].

Symmetrically, for some r ∈ |T | let v = x[i1..j1] be the first vertex visited by p with
j1 = rightI

r. Let u = x[i2..j2] be the first vertex visited by p with j2 = rightP
r+1. Then, there

is no occurrence of PL in x[i1..i2].

Proof Sketch, Complete Proof in the full version of this paper [2]. The proof is by con-
tradiction. If there is only a single PR gadget that is contained in x[j2..j1], by Corollary 12
the number of hairpin deletions that must happen just to remove this gadget is at least p.
We introduce an alternative, shorter path: At the moment p reaches this PR gadget, it first
removes all the IL(S[ℓ]) gadget, and then removes all the remaining characters on the right
side greedily, until reaching x[i2..j2]. The reason why this alternative path is indeed shorter
is since in this way the removal of the PR gadget takes 1 operation, instead of p, and we
may pay at most iα + iβ ≤ 2i0 for some α, β ∈ {0, 1, 2}, for removing one information gadget
in the left side and the information gadget following the right protector gadget. Since p is
much larger than i0, the alternative path is shorter, contradicting the assumption that p is
a shortest path. Notice that if there are more than one PR gadgets in x[j2..j1], the benefit
from deleting IL(S[ℓ]) first is even larger. ◀

The following lemma states that every right deletion on x[i..j] with i being within a
non SyncL gadget can also be applied if i is the leftmost index of the gadget. A symmetric
argument is stated as well.

▶ Lemma 20. Let p be a path from x to y in Gx. Let v = x[i..j] be a vertex visited by p

such that i ∈ [leftP
ℓ ..leftI

ℓ − 1] for some ℓ ∈ [|S|]. Let v′ = x[leftP
ℓ ..j], let u = x[i..j − k] and

u′ = x[leftP
ℓ ..j − k] for some k. If (v, u) is an edge in p, then (v′, u′) is an edge in Gx.

The above statement considers the case in which v interacts with a PL gadget, the following
similar statements, regarding different gadgets hold as well:

PR: Let v = x[i..j] be a vertex visited by p such that j ∈ [rightI
r + 1..rightP

r ] for some
r ∈ [|T |]. Let v′ = x[i..rightP

r ], let u = x[i + k..j] for some k, and let u′ = x[i + k..rightP
r ]

If (v, u) is an edge in p, then (v′, u′) is an edge in Gx.
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IL(α) for some α ∈ {0, 1, 2}: Let v = x[i..j] be a vertex visited by p such that
i ∈ [leftI

ℓ ..leftP
ℓ+1 − 1] for some ℓ ∈ [|S|]. Let v′ = x[leftI

ℓ ..j], let u = x[i..j − k] and
u′ = x[leftI

ℓ ..j − k] for some k. If (v, u) is an edge in p, then (v′, u′) is an edge in Gx.
IR(α) for some α ∈ {0, 1, 2}: Let v = x[i..j] be a vertex visited by p such that
j ∈ [rightP

r+1 + 1..rightI
r ] for some r ∈ [|T |]. Let v′ = x[i..rightI

r ], let u = x[i + k..j] for
some k, and let u′ = x[i + k..rightI

r ] If (v, u) is an edge in p, then (v′, u′) is an edge in
Gx.

Proof Sketch, Complete Proof in the full version of this paper [2]. We distinguish be-
tween two cases. If x[i..i + 1] ̸= 01, by Lemma 15 the hairpin deletion removes exactly one
0 character, and by x[leftP

ℓ ] = 0 the edge (u′, v′) is in Gx. If x[i..i + 1] = 01, we first prove
(using Corollary 18) that k ≤ leftI

ℓ − i. Moreover, since i ∈ [leftP
ℓ ..leftI

ℓ −1] it must be the case
that i = leftP

ℓ + q · 11 for some q. Since x[leftP
ℓ ..leftI

ℓ − 1] is periodic with period 11. Thus,
x[leftP

ℓ ..leftP
ℓ + k] = x[leftP

ℓ + q · 11..leftP
ℓ + q · 11 + k] = x[i..i + k] and the claim follows. ◀

We are now ready to prove Lemma 9.

▶ Lemma 9 (Optimal Well-Behaved Path). There is a shortest path from x to y in Gx which
is well-behaved.

Proof. We describe a method that converts a shortest path p from x to y that visits
u = x[leftP

ℓ ..rightP
r ] into a shortest path p′ from x to y that visits one of the following vertices:

x[leftP
ℓ+1..rightP

r ], x[leftP
ℓ ..rightP

r+1], or x[leftP
ℓ+1..rightP

r+1]. Moreover, the prefixes of p and p′

from x to u are identical. Using this technique, it is straightforward to convert a shortest
path from x to y in Gx into a well-behaved path of the same length.

Let vL = x[iL..jL] be the first vertex in p with iL = leftP
ℓ+1 and let vR = x[iR..jR] be the

first vertex in p with jR = rightP
r+1. By Corollary 18, vL and vR are well defined (unless

ℓ = |S|+ 1 or r = |T |+ 1, in such a case just one of the vertices is well defined and the claim
follows trivially from Observation 10). We consider the case where vL appears before vR in p

and show how to convert p. The other case is symmetric.
We distinguish between two cases:

Case 1: jL ∈ [rightI
r + 1..rightP

r ]. Let q be the sub-path of p from u to vL. We present
a path q∗ from u to vL that is not longer than q and visits x[leftP

ℓ+1..rightP
r ]. Recall that

an edge of the form x[i..j] → x[i + k..j] is called a left edge, and an edge of the form
x[i..j] → x[i..j − k] is called a right edge. Let costL be the number of left edges in q and
costR be the number of right edges in q. We first show a path from u = x[leftP

ℓ ..rightP
r ]

to x[leftP
ℓ+1..rightP

r ] of length costL. Let e = x[i1..j] → x[i2..j] be a left edge in q. It must
be that j ∈ [jL..rightP

r ] ⊆ [rightI
r + 1..rightP

r ]. Hence, by Lemma 20, there exists an edge
e′ = x[i1..rightP

r ]→ x[i2..rightP
r ]. Let e1, e2, . . . , ecostL

be the subsequence of all left edges in
q. The path q∗

1 = e′
1, e′

2, . . . , e′
costL

is a valid path of length costL from u = x[leftP
ℓ ..rightP

r ] to
x[leftP

ℓ+1..rightP
r ].

If jL = rightP
r then q∗ = q∗

1 is a path that satisfies all the requirements. Otherwise, costR ≥
1. We claim that there is an edge eR from x[leftP

ℓ+1..rightP
r ] to vL = x[leftP

ℓ+1..jL]. This is
true since x[leftP

ℓ+1..leftI
ℓ+1 − 1] = PL · SyncL =

←−−−−−−−−−−−−−−−
SyncR[2..|SyncR|] · PR =

←−−−−−−−−−−−−−−−
x[rightI

r + 2 .. rightP
r ]

and jL ∈ [rightI
r + 1..rightP

r ]. We conclude q∗ by appending eR to the end of q∗
1 . Finally,

cost(q∗) = costL + 1 ≤ costL + costR = cost(q), and q∗ visits x[leftP
ℓ+1..rightP

r ].
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Case 2: jL ∈ [rightP
r+1 − 1..rightI

r]. We first prove the following claim.

▷ Claim. iR ∈ [leftP
ℓ+1..leftI

ℓ+1 − 1].

Proof. Since vR appears after vL, we have iR ≥ iL = leftP
ℓ+1. Assume to the contrary that

iR ≥ leftI
ℓ+1. Let vf = x[if ..jf ] be the first vertex in p with jf = rightI

r (vf exists according
to Corollary 18). Note that vf does not appear after vL in p since jL =≤ rightI

r = jf

Therefore, if ≤ iL = leftP
ℓ+1 and [leftP

ℓ+1..leftI
ℓ+1] ⊆ [if ..iR]. Therefore, the occurrence of PL

starting in leftP
ℓ+1 is contained in x[if ..iR]. Since p is a shortest path, this is a contradiction

to Lemma 19. ◁

Let q be the sub-path of p from vL to vR. Let costL be the number of left edges in q and
costR be the number of right edges in q. We present a path q∗ from vL to vR that is not
longer than q and visits x[leftP

ℓ+1..rightP
r+1]. We first show a path q∗

1 from vL = x[leftP
ℓ+1..jL]

to x[leftP
ℓ+1..rightP

r+1] of length costR. Let e = x[i..j1]→ x[i..j2] be a right edge in q. It must
be that i ∈ [leftP

ℓ+1..iR] ⊆ [leftP
ℓ+1..leftI

ℓ+1 − 1] due to the claim. Hence, by Lemma 20, there
exists an edge e′ = x[leftP

ℓ+1..j1] → x[leftP
ℓ+1..j2]. Let e1, e2, . . . , ecostL

be the subsequence
of all right edges in q. The path q∗

1 = e′
1, e′

2, . . . , e′
costL

is a valid path of length costR from
vL = x[leftP

ℓ+1..jL] to x[leftP
ℓ+1..rightP

r+1].
If iR = leftP

ℓ+1 then q∗ = q∗
1 is a path that satisfies all the requirements. Otherwise,

costL ≥ 1. We claim that there is an edge eL from x[leftP
ℓ+1..rightP

r+1] to vR = x[iR..rightP
r+1].

This is true since x[leftP
ℓ+1..leftI

ℓ+1] = PL · SyncL · 0 =
←−−−−−−−
SyncR · PR =

←−−−−−−−−−−−−−−−−−−
x[rightI

r+1 + 1 .. rightP
r+1]

and iR ∈ [leftP
ℓ+1..leftI

ℓ+1 − 1]. We conclude q∗ by appending eL to the end of q∗
1 . Finally,

cost(q∗) = costL + 1 ≤ costL + costR = cost(q), and q∗ visits x[leftP
ℓ+1..rightP

r ]. ◀

5 Cost of Well-Behaved Steps

In this section, we analyze the cost of each of the possible phases of a well-behaved path
(Definition 8). We first consider the cost of deletion of a single mega-gadget.

▶ Lemma 21 (Non Synchronized Deletion). Let v = x[leftP
ℓ ..rightP

r ], u1 = [leftP
ℓ+1..rightP

r ]
and u2 = [leftP

ℓ ..rightP
r+1] for ℓ ∈ [|S|] and r ∈ [|T |]. Let S[ℓ] = α and T [r] = β. It holds that

distGx
(v, u1) = iα + 2 and distGx

(v, u2) = iβ + 2.

Proof. We prove distGx
(v, u1) = iα + 2. The proof for distGx

(v, u2) = iβ + 2 is symmetrical.
We prove the lemma by showing distGx

(v, u1) ≥ iα + 2 and distGx
(v, u1) ≤ iα + 2.

distGx(v, u1) ≥ iα + 2. Let p be a v to u1 path in Gx. Note that vertex x[i..j] in p has
j = rightP

r . According to Corollary 18, p must visit z = x[leftI
ℓ ..rightP

r ]. Since z ̸= v, the
sub-path of p from v to z induces a cost of at least 1 to p. Consider the sub-path q of p from
z to u1. According to Corollary 12, every left hairpin deletion step in q deletes at most a
single ’1’ symbol. Due to x[leftI

ℓ ..leftP
ℓ+1 − 1] = IL(α) · SyncL, the sub-path q consists of at

least #1(IL(α)) + 1 = iα + 1 additional left hairpin deletions.

distGx(v, u1) ≤ iα + 2. We present a path p with cost exactly iα + 2 from v to u1.
Initially, p deletes a prefix of length |PL| + |SyncL| from v in one step. This is possible
since v has a suffix 10 · PR. Then, p proceeds to delete x[leftI

ℓ ..leftP
ℓ+1 − 1] = IL(α) · SyncL a

single ’1’ character at a time. Note that this is possible regardless of the value of α due to
x[rightP

r − 8..rightP
r ] = 0710. The total cost of this path is iα + 2 as required. ◀
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In the following lemma, we show that the cost of deleting two disagreeing mega-gadgets
is the same as deleting each one of them separately.

▶ Lemma 22 (Synchronized Deletion of Disagreeing Mega Gadgets). Let v = x[leftP
ℓ ..rightP

r ],
u = [leftP

ℓ+1..rightP
r+1] for ℓ ∈ [|S|] and r ∈ [|T |] with S[ℓ] ̸= T [r]. It holds that distGx(v, u) =

iα + iβ + 4 with S[ℓ] = α and T [r] = β.

Proof. We prove the claim by showing distGx
(v, u) ≥ iα + iβ + 4 and distGx

(v, u) ≤ iα + iβ + 4.

distGx(v, u) ≥ iα + iβ + 4. Let p be a path from v to u in Gx. According to Corollary 18,
p visits vertices z1 = x[leftI

ℓ ..j] and z2 = x[i..rightI
r ] for some i, j. The last left hairpin

deletion in p before z1 and the last right hairpin deletion in p before z2 induce a cost of 2 to
p. Consider a left hairpin deletion that is applied to a vertex x[i′..j′] after z1 in p. Note that
i′ is either within an IL(α) gadget or within a SyncL gadget, and j′ is either within an IR(β)
gadget, a SyncR gadget or a PR gadget. In any of the above cases, Corollary 12 suggests that
the deletion operation deletes at most a single ’1’ character. Therefore, there are at least
iα + 1 left deletions after z1 in p. Due to similar reasoning, there are at least iβ + 1 right
hairpin deletions after z2 in p. It follows that the total cost of p is at least iα + iβ + 4.

distGx(v, u) ≤ iα + iβ + 4. Consider the path p that is composed of two sub-paths, the
prefix p1 is a shortest path from v to w = x[leftP

ℓ+1..rightP
r ] and the suffix p2 is a shortest

path from w to u. By Lemma 21 we have cost(p1) = iα + 2 and cost(p2) = iβ + 2. Therefore
cost(p) = cost(p1) + cost(p2) = iα + 2 + iβ + 2. ◀

The last case we have to analyze is a synchronized deletion of agreeing mega gadgets.
We first present the concept of Fibonacci-regular numbers.

▶ Definition 23 (Fibonacci-regular number). We say that a ∈ N is a Fibonacci-regular number
if for all 2 ≤ k ≤ a it holds that Fib−1(a) ≤ Fib−1(a/k) + k − 1.

▶ Fact 24. i2 = 53, i1 = 54, i0 = 55 and p = 144 are Fibonacci-regular numbers.

The following lemma, which proof is in the full version of this paper, provides the required
machinery to analyze the cost of a synchronized deletion [2].

▶ Lemma 25. Let per = 010ext and let q ∈ 010int01 ∗ 1111 ∗ 100int10 with int ̸= ext and
min{int, ext} ≥ 3. For every Fibonacci-regular number a, we have HDD(pera · SyncL · q ·
SyncR · ←−pera, q) = Fib−1(a) + max(ext− int− 1, 0) + 3.

Finally, we are ready to analyze the cost of synchronized deletion of agreeing mega
gadgets.

▶ Lemma 26 (Synchronized Deletion of Agreeing Mega Gadgets). Let v = x[leftP
ℓ ..rightP

r ],
u = [leftP

ℓ+1..rightP
r+1] for ℓ ∈ [|S|] and r ∈ [|T |] with S[ℓ] = T [r] = α. Then distGx

(v, u) =
Fib−1(p) + Fib−1(iα) + 11− 2α.

Proof. Let w = x[leftI
ℓ ..rightI

r ]. Consider the following path p′ from u to v in Gx. The path p′

consists of a prefix p′
1 which is a shortest path from u to w and a suffix p′

2 which is a shortest
path from w to v. Since i0, i1, i2 and p are Fibonacci-regular numbers (Fact 24), according
to Lemma 25 (with ext = 9 and int = 3 + 2α) we have cost(p′

1) = Fib−1(p) + max(9− (3 +
2α)− 1, 0) + 3 = Fib−1(p) + 8− 2α. Similarly, according to Lemma 25 (with ext = 3 + 2α
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and int = 9) we have cost(p′
2) = Fib−1(iα) + max(3 + 2α− 9− 1, 0) + 3 = Fib−1(iα) + 3. In

total we have cost(p′) = cost(p′
1) + cost(p′

2) = Fib−1(p) + Fib−1(iα) + 11 − 2α. Therefore
distGx

(v, u) ≤ Fib−1(p) + Fib−1(iα) + 11− 2α = 31− 2α.
We prove the following claim.

▷ Claim. There is a shortest path p from v to u that visits w.

Proof. Let vL = x[iL..jL] and vR = x[iR..jR] be the first vertices visited by p with iL = leftI
ℓ

and jR = rightI
r . Assume without loss of generality that vR occurs before vL in p. We

consider two cases regarding jL.

Case 1: jL = rightP
r+1. Consider the suffix ps of p from vL to u. Let v′ = x[i′..j′]

be a vertex in ps that is immediately followed by a left hairpin deletion operation in ps.
Since i′ ∈ [leftI

ℓ ..leftP
ℓ+1 − 1] is either within an IL(α) gadget or within a SyncL gadget, and

j′ = rightP
r+1 is in a PR gadget, Corollary 12 suggests that the left hairpin deletion applied to

v′ deletes at most a single ’1’ character. It follows from the above analysis that the number
of left hairpin deletions in ps is at least #1(IL(α)) + 1 ≥ i2 + 1 = 54. Therefore, the cost of p

is at least 55 > 31 ≥ cost(p′), which contradicts the minimality of p.

Case 2: jL > rightP
r+1. Let q be the sub-path of p from vR to vL. Let costL be the number

of left edges in q and costR be the number of right edges in q. We first show a path from
vR to x[leftI

ℓ ..rightI
r ] of length costL. Let e = x[i1..j]→ x[i2..j] be a left edge in q. It must

be that j ∈ [jL..rightI
r ] ⊆ [rightP

r+1 + 1..rightI
r ]. Hence, by Lemma 20, there exists an edge

e′ = x[i1..rightI
r ]→ x[i2..rightI

r ]. Let e1, e2, . . . , ecostL
be the subsequence of all left edges in

q. The path q∗
1 = e′

1, e′
2, . . . , e′

costL
is a valid path of length costL from vR to x[leftI

ℓ ..rightI
r ].

If jL = rightI
r then q∗ = q∗

1 is a path that satisfies all the requirements. Otherwise, costR ≥
1. We claim that there is an edge eR from x[leftI

ℓ ..rightI
r ] to vL = x[leftI

ℓ ..jL]. This is true
since x[leftI

ℓ ..leftP
ℓ+1 − 1] = IL(S[ℓ]) · SyncL = IL(T [r]) · SyncL =

←−−−−−−−−−−−−−−−−−−−
SyncR[2..|SyncR|] · IR(T [r]) =

←−−−−−−−−−−−−−−−−−
x[rightP

r+1 + 2 .. rightI
r ] and jL ∈ [rightP

r+1 + 1..rightI
r ]. We conclude q∗ by appending eR

to the end of q∗
1 . Finally, cost(q∗) = costL + 1 ≤ costL + costR = cost(q), and q∗ visits

x[leftI
ℓ ..rightI

r ]. ◁

Let p be a shortest path from u to v in Gx. According to the claim, we can indeed
assume that p consists of a shortest path p1 from v to w and a shortest path p2 from w to v.
Therefore we have cost(p) = cost(p′) = Fib−1(p) + Fib−1(iα) + 11− 2α as required. ◀

6 Correctness

Let D(0) = 57, D(1) = 56, D(2) = 55, Dsync(0) = 31, Dsync(1) = 29, Dsync(2) = 27, and
B = 83. The following lemma summarize Lemmata 21, 22, and 26.

▶ Lemma 27. Let ℓ ∈ [|S|] and let r ∈ [|T |] be two integers. Denote S[ℓ] = α and T [r] = β.
The following is satisfied.
1. distGx

(x[leftP
ℓ ..rightP

r ], x[leftP
ℓ+1, rightP

r ]) = D(α)
2. distGx

(x[leftP
ℓ ..rightP

r ], x[leftP
ℓ , rightP

r+1]) = D(β)
3. distGx(x[leftP

ℓ ..rightP
r ], x[leftP

ℓ+1, rightP
r+1]) = D(α) + D(β) if α ̸= β

4. distGx
(x[leftP

ℓ ..rightP
r ], x[leftP

ℓ+1, rightP
r+1]) = Dsync(α) if α = β

5. 2D(0)−Dsync(0) = 2D(1)−Dsync(1) = 2D(2)−Dsync(2) = B
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Proof. According to Lemma 21, we have D(γ) = iγ +2 for every γ ∈ {0, 1, 2}. It follows from
Lemma 22 that if α ̸= β we have distGx

(x[leftP
ℓ ..rightP

r ], x[leftP
ℓ+1, rightP

r+1]) = iα + iβ + 4 =
iα + 2 + iβ + 2 = D(α) + D(β). It follows from Lemma 26 that Dsync(γ) = Fib−1(p) +
Fib−1(iα) + 11− 2γ = 11 + 9 + 11− 2γ = 31− 2γ for every γ ∈ {0, 1, 2}.

Indeed, we have 2 ·D(0)−Dsync(0) = 2 ·57−31 = 83, 2 ·D(1)−Dsync(1) = 56 ·2−29 = 83
and 2 ·D(2)−Dsync(2) = 55 · 2− 27 = 83 as required. ◀

We are now ready to prove Lemma 7 which concludes the correctness of the reduction.

▶ Lemma 7 (Reduction Correctness). For some constants D(0), D(1), D(2) and B we have:
HDD(x, y) =

∑
α∈{0,1,2} D(α)(#α(S) + #α(T ))− LCS(S, T ) ·B.

Proof. We prove the equality claimed, by showing two sides of inequality.

HDD(x, y) ≤
∑

α∈{0,1,2} D(α)(#α(S) + #α(T )) − LCS(S, T ) · B. Denote c =
LCS(S, T ). Let I = i1 < i2 < i3.., . . . , .. < ic ⊆ [|S|] and J = j1 < j2 < j3 . . . < jc ⊆ [|T |] be
two sequences of indices such that S[ik] = T [jk] for every k ∈ [c]. Thus, I and J represent a
maximal common subsequence of S and T .

We present a path p in Gx from x to y. The path p starts in x = x[leftP
1 ..rightP

1 ], and
consists of 3 types of subpaths.
1. Left deletion subpath: a shortest path from x[leftP

ℓ ..rightP
r ] to x[leftP

ℓ+1..rightP
r ] for some

ℓ ∈ [|S|] and r ∈ [|T |+ 1].
2. Right deletion subpath: a shortest path from x[leftP

ℓ ..rightP
r ] to x[leftP

ℓ ..rightP
r+1] for some

ℓ ∈ [|S|+ 1] and r ∈ [|T |].
3. Match subpath: a shortest path from x[leftP

ℓ ..rightP
r ] to x[leftP

ℓ+1..rightP
r+1] for some

ℓ ∈ [|S|] and r ∈ [|T |].
Specifically, if p visits x[leftP

ℓ ..rightP
r ], then p proceeds in a left deletion subpath if ℓ ∈ [|S|]\I.

Otherwise, p proceeds in a right deletion subpath if r ∈ [|T |] \ J . If both ℓ ∈ I and r ∈ J ,
the path p proceeds in a match subpath. Note that it is guaranteed that as long as ℓ ̸= |S|+1
or r ̸= |T |+ 1, p continues to make progress until finally reaching x[leftP

|S|+1..rightP
|T |+1] = y.

We proceed to analyze the cost of p. For α ∈ {0, 1, 2} we introduce the following notation
regarding I and J . Let uL(α) = |{i | S[i] = α and i /∈ I}|, uR(α) = |{j | T [j] = α and j /∈
J }|. In addition, let c(α) = |{k | k ∈ [c] and S[ik] = α}|.

Clearly, by Lemma 27 every k ∈ [c] induces a cost of Dsync(S[ik]) to p. Moreover, every
i ∈ [|S|] \ I, induces a cost of D(S[i]) to p, and every j ∈ [|T |] \ J induces a cost of D(T [j])
to p. Thus, we have

cost(p) =
∑

α∈{0,1,2}

D(α)(uL(α) + uR(α)) +
∑

α∈{0,1,2}

Dsync(α) · c(α)

=
∑

α∈{0,1,2}

D(α)(uL(α) + uR(α)) +
∑

α∈{0,1,2}

(2D(α)−B) · c(α)

=
∑

α∈{0,1,2}

D(α)(uL(α) + uR(α) + 2c(α))−B ·
∑

α∈{0,1,2}

c(α)

=
∑

α∈{0,1,2}

D(α)(#α(S) + #α(T ))− c ·B.

Where the first equality follows from B = 2 ·D(α)−Dsync for every α ∈ {0, 1, 2}, and the last
equality is since for every α ∈ {0, 1, 2} we have #α(S) = uL(α) + cα,#α(T ) = uR(α) + cα

and c = c(0) + c(1) + c(2).

CPM 2024



11:14 Hairpin Completion Distance Lower Bound

HDD(x, y) ≥
∑

α∈{0,1,2} D(α)(#α(S) + #α(T )) − LCS(S, T ) · B. Let p be a well-
behaved shortest path from x to y in Gx. According to Lemma 9, such a path p exists.

Let X = {v = x[leftP
ℓ ..rightP

r ] | p visits v}. Notice that the vertices of X are naturally
ordered by the order of their occurrences in p, so we denote the ith vertex in X by xi. For
i ∈ [|X |−1], we classify the vertex xi = x[leftP

ℓ ..rightP
r ] for some ℓ ∈ [|S|+1] and r ∈ [|T |+1]

into one of the following four disjoint types.

1. Match vertex : if xi+1 = [leftP
ℓ+1..rightP

r+1] and S[ℓ] = T [r].

2. Mismatch vertex : if xi+1 = [leftP
ℓ+1..rightP

r+1] and S[ℓ] ̸= T [r].

3. Left deletion vertex : if xi+1 = [leftP
ℓ+1..rightP

r ].

4. Right deletion vertex : if xi+1 = [leftP
ℓ ..rightP

r+1].

Notice that since p is well-behaved, xi is classified into one of the four types.

We proceed to analyze the cost of the subpath of p from xi = x[leftP
ℓ ..rightP

r ] to xi+1
using Lemma 27. If xi is a match vertex, it induces a cost of Dsync(S[ℓ]). If xi is a mismatch
vertex, it induces a cost of D(S[ℓ]) + D(T [r]). If xi is a right (resp. left) deletion vertex,
it induces a cost of D(S[ℓ]) (resp. D(T [r]). For α, β ∈ {0, 1, 2} we present the following
notations.

cmatch(α) = |{x ∈ X | x is a match vertex with S[ℓ] = α}|

cmis({α, β}) = |{x ∈ X | x is a mismatch vertex with {S[ℓ], T [r]} = {α, β}}|

cmis(α) = |{x ∈ X | x is a mismatch vertex with S[ℓ] = α or T [r] = α}|

cleft(α) = |{x ∈ X | x is a left deletion vertex with S[ℓ] = α}|

cright(α) = |{x ∈ X | x is a right deletion vertex with T [r] = α}|

Note that since every super-gadget is deleted exactly once as a part of an xi to xi+1 subpath.
It follows that for every α ∈ {0, 1, 2} we have #α(S) + #α(T ) = cleft(α) + cright(α) + cmis(α) +
2cmatch(α). Note that for α ∈ {0, 1, 2} we have cmis(α) =

∑
β ̸=α cmis({α, β}). We denote

cmatch = cmatch(0) + cmatch(1) + cmatch(2). We make the following claim:

▷ Claim. cmatch ≤ LCS(S, T ).

Proof. We show that there is a common subsequence of S and T with length cmatch. Let
Pairs = {(ℓ, r) | x[leftP

ℓ ..rightP
r ] is a match vertex}. Note that Pairs is naturally ordered by

the order of occurrences of the corresponding vertices in p. We denote by (ℓi, ri) the ith
pair in Pairs according to this order. Note that for every i ∈ [|Pairs| − 1], we have ℓi < ℓi+1
and ri < ri+1 due to the definition of a match vertex. Furthermore, we have S[ℓi] = T [ri]
for every i ∈ [|Pairs|]. It follows that the subsequence S[ℓ1], S[ℓ2] . . . , S[ℓ|Pairs|] equals to the
subsequence T [r1], T [r2], . . . , T [r|Pairs|]. Therefore, S and T have a common subsequence of
length |Pairs| = cmatch. ◁
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It follows from the above analysis that

cost(p) =
∑

α∈{0,1,2}

Dsync(α)cmatch(α) +
∑

α ̸=β∈{0,1,2}

(D(α) + D(β)) · cmis({α, β})

+
∑

α∈{0,1,2}

D(α)(cleft(α) + cright(α))

=
∑

α∈{0,1,2}

Dsync(α)cmatch(α) +
∑

α∈{0,1,2}

D(α)
∑
β ̸=α

cmis({α, β})

+
∑

α∈{0,1,2}

D(α)(cleft(α) + cright(α))

=
∑

α∈{0,1,2}

Dsync(α)cmatch(α) +
∑

α∈{0,1,2}

D(α) · cmis(α)

+
∑

α∈{0,1,2}

D(α)(cleft(α) + cright(α))

=
∑

α∈{0,1,2}

(2D(α)−B)cmatch(α) +
∑

α∈{0,1,2}

D(α)(cleft(α) + cright(α) + cmis(α))

=
∑

α∈{0,1,2}

D(α)(cleft(α) + cright(α) + cmis(α) + 2cmatch(α))−B
∑

α∈{0,1,2}

cmatch(α)

=
∑

α∈{0,1,2}

D(α) · (#α(S) + #α(T ))−B · cmatch

≥
∑

α∈{0,1,2}

D(α) · (#α(S) + #α(T ))−B · LCS(S, T ).

Where the last inequality follows from the claim. ◀
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Abstract
Within the field of haplotype analysis, the Positional Burrows-Wheeler Transform (PBWT) stands
out as a key innovation, addressing numerous challenges in genomics. For example, Sanaullah et al.
introduced a PBWT-based method that addresses the haplotype threading problem, which involves
representing a query haplotype through a minimal set of substrings. To solve this problem using the
PBWT data structure, they formulate the Minimal Positional Substring Cover (MPSC) problem,
and then, subsequently present a solution for it. Additionally, they present and solve several variants
of this problem: k-MPSC, leftmost MPSC, rightmost MPSC, and length-maximal MPSC. Yet, a full
PBWT is required for each of their solutions, which yields a significant memory usage requirement.
Here, we take advantage of the latest results on run-length encoding the PBWT, to solve the MPSC
in a sublinear amount of space. Our methods involve demonstrating that k-Set Maximal Exact
Matches (k-SMEMs) can be computed in a sublinear amount of space via efficient computation of
k-Matching Statistics (k-MS). This leads to a solution that requires sublinear space for, not only
the MPSC problem, but for all its variations proposed by Sanaullah et al. Most importantly, we
present experimental results on haplotype panels from the 1000 Genomes Project data that show
the utility of these theoretical results. We conclusively demonstrate that our approach markedly
decreases the memory required to solve the MPSC problem, achieving a reduction of at least two
orders of magnitude compared to the method proposed by Sanaullah et al. This efficiency allows
us to solve the problem on large versions of the problem, where other methods are unable to
scale to. In summary, the creation of µ-PBWT paves the way for new possibilities in conducting
in-depth genetic research and analysis on a large scale. All source code is publicly available at
https://github.com/dlcgold/muPBWT/tree/k-smem.
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1 Introduction

In recent years, the Positional Burrows-Wheeler Transform (PBWT) has emerged as a
fundamental data structure for solving various challenges in haplotype analysis. One challenge
in haplotype analysis is haplotype threading, which aims to represent a query haplotype by
using one or more substrings derived from at least k haplotypes within a reference panel.
Sanaullah et al. [10, 11] showed that solutions to the Minimal Positional Substring Cover
(MPSC) problem can be used to solve the haplotype threading problem in the context of
the PBWT. This insight led to a PBWT-framework for solving haplotype threading that
is an alternative to the classical Li and Stephens [7] model that is promised to be more
scalable – as the original is unlikely to be efficient enough to be applied on large biobank
datasets. In addition to the formulation and solution to the MPSC problem, Sanaullah et
al. define several variants of this problem as well as algorithmic solutions. Although more
space-efficient than the Li and Stephens model, each of the solutions presented by Sanaullah
et al. require the construction and storage of the full PBWT. As it was previously mentioned
by Durbin [4], storing the entire PBWT will scale linearly in the size of the input – more
precisely, Durbin predicted it to be 13n bytes. For reasonably large biobank datasets – such
as the ones offered by the 1000 Genomes Project data – this would quickly become unwieldy.

In this paper, we present a space- and time- efficient manner for solving MPSC as well as
all variants suggested by Sanaullah et al: k-MPSC, leftmost MPSC, rightmost MPSC, and
length-maximal MPSC. Our methods take advantage of the latest advancements in run-length
encoding the PBWT, and exploit the fact that MPSC problem can be construed as computing
all Set Maximal Exact Matches (SMEMs) in the PBWT, which are maximal matches that
are common between a pattern and a panel that cannot be extended. More specifically, we
show that we can efficiently compute k-Set Maximal Exact Matches (k-SMEMs), which have
the additional constraint that any SMEM must occur in at least k rows in the reference
panel. This efficient computation comes from extending the definition of Matching Statistics
in the PBWT [3] to k-Matching Statistics (k-MS) in the PBWT. This allows for algorithms
developed by Cozzi et al. [3] to compute Matching Statistics to be extended to computing
k-MS, which yield k-SMEMs, and finally, a solution to the MPSC and the k-MPSC problem,
i.e., find a MPSC in which each positional substring is covered by at least k rows in the
reference panel. Hence, we show how k-SMEMs and k-MS naturally provide a framework for
developing efficient solutions to the MPSC problem and its variants, proving that we can
solve these problems in sublinear space with respect to the size of the panel.

Most importantly, we implement our approach and show that the sublinear bound on the
space usage has a practical benefit in haplotype analysis. We compare our implementation
to the current state-of-the-art on increasingly-larger autosome panels of the 1000 Genomes
Project. Our findings on these datasets demonstrate that our methods substantially lowers
memory consumption for solving the k-MPSC problem, achieving reductions of at least two
orders of magnitude compared to the method presented by Sanaullah et al. Due to this
memory usage, only our method was able to scale to the largest panel sizes in 1000 Genomes
Project with reasonable memory constraints. Hence, we show our strategy is applicable of
solving haplotype threading on extensive datasets found in modern biobanks.
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2 Background

In this paper, we propose novel algorithms for solving the MPSC problem and its variants.
Our algorithms are based on µ-PBWT, which is a run-length encoding of the PBWT. To
lay the groundwork for describing the algorithms in this paper, we formally introduce the
MPSC problems and its variants, and then introduce µ-PBWT and the concepts needed for
the development of our methods.

2.1 The Minimal Positional Substring Cover Problems
Throughout this paper, we define a string X over a finite, ordered alphabet Σ = {c1, . . . , cσ}
to be the concatenation of |X| = n characters X = X[1..n] of Σ. We denote the empty string
as ε, the string spanning position i through j as X[i..j] (with X[i..j] = ε if i > j), the i-th
prefix of X as X[1..i], and the i-th suffix as X[i..|X|].

A positional substring of a string X is a triplet (i, j, X) with 1 ≤ i, j ≤ |X| and we say
that the substring corresponding to (i, j, X) is X[i..j]. Two positional substrings (i, j, X)
and (k, l, Y ) are equal iff i = k, j = l, and X[i..j] = Y [k..l]. A positional substring (i, j, X)
is contained in a string Y iff X[i..j] = Y [i..j].

Given a set S of strings of length w (i.e., panel), a k-positional substring cover of a
w-length string P by S is a set C of positional substrings such that: (i) each position l ∈ [1, w]
of P is covered by a (i, j, X) ∈ C (i.e., i ≤ l ≤ j), (ii) each (i, j, X) ∈ C is contained in P ,
and (iii) each (i, j, X) ∈ C is contained in at least k distinct strings of S. The size of the
cover is the number of elements in C, which we denote as |C|.

▶ Problem 1 (k-Minimal Positional Substring Cover problem, k-MPSC [10]). Given a set S of
h strings of length w and a string P of length w, find, if it exists, a k-positional substring
cover of P by S with the smallest size over all k-positional substring covers of P by S.

The MPSC problem is the k-MPSC problem where k is equal to 1 (i.e., each positional
substring of the cover is contained in at least one string of the panel). It is easy to see that
a solution to the problem exists iff for every i, with 1 ≤ i ≤ w, the positional substrings
(i, i, P ) are contained in at least k distinct strings of S.

The best known algorithm for computing a k-MPSC requires O(w) time [11] and it works
column-wise from left to right by extending matches of the string P with at least k strings
of the panel S. At any column, if the current match cannot be extended, then a new match
starting at the current column is initiated. Optimality is ensured by the property of k-MPSC
modularity [10, Lemma 2]. Matches of P with at least h strings in S are efficiently computed
and extended using the Positional Burrows–Wheeler Transform (PBWT) of S. Hereon, we
denote h · w as n, which will be used throughout this paper to bound the space and time
complexity. The k-MPSC algorithm of Sanaullah et al. [10] requires O(n) space to ensure
constant-time random access to the input panel and to the PBWT.

Next, we draw a relationship between positional substrings and a generalization of
maximal exact matches, which we refer to as k-Set Maximal Exact Match (k-SMEM), by
requiring the maximality of matches to be defined as follows.

▶ Definition 2 (k-SMEM). Let S be a set of h sequences of length w and let P be a string of
length w. The pair (i, j) is a k-SMEM if the positional substring (i, j, P ) is contained in at
least k sequences of S and one of the following holds:

i = 1 and j = w

i = 1 and (i, j + 1, P ) is not contained in at least k strings of S

j = w and (i− 1, j, P ) is not contained in at least k strings of S

(i− 1, j, P ) and (i, j + 1, P ) are not contained in at least k strings of S

CPM 2024
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It is straightforward to observe that every positional substring (i, j, P ), which is part of a
k-MPSC of P by S, generates an interval that fits within a k-SMEM (i′, j′), where i′ ≤ i

and j′ ≥ j. This is because (i, j) either directly constitutes a k-SMEM or can be extended
either to the left, the right, or both.

▶ Problem 3 (k-SMEM-finding). Given a set S of h sequences of length w, a string P of
length w, and an integer k, such that 1 ≤ k ≤ h, find all k-SMEMs between P and S.

As previously mentioned, the k-MPSC problem does not admit a solution if there exists
any positional substring (i, i, P ) that is not included in at least k strings from S. On the
contrary, the k-SMEM-finding problem always admits a solution–possibly not covering some
columns.

Leftmost, Rightmost, and Length-maximal MPSC
Given a panel S and a string P there can exist several distinct k-MPSC of the same size
(hence, several solutions to the problem). Since the returned solution might affect the results
of downstream applications of k-MPSC, three problems have been identified [10, 11] to
constrain (and, possibly, to uniquely identify) the returned solution. As in the original paper,
we state the problems in terms of MPSC (hence, 1-MPSC), but they can be generalized to
k-MPSC.

For the definition of the problems, given a MPSC C, the i-th positional substring of C, for
1 ≤ i ≤ |C|, is the i-th positional substring in the enumeration of the positional substrings of
C by increasing the starting positions, while the length of C is the sum of the lengths of its
positional substrings.

find a leftmost MPSC C of P by S, i.e. a MPSC of P by S such that any i-th substring
in C starts at least as early as the i-th substring of every other MPSC of P by S

find a rightmost MPSC C of P by S, i.e. a MPSC of P by S such that any i-th substring
in C ends at least as late as the i-th substring of every other MPSC of P by S

find a length-maximal MPSC of P by S, i.e. the MPSC that has the largest length out of
all MPSCs of P by S

Given a string P of length w, a set S of h strings of length w, and the PBWT of S,
Sanaullah et al. showed that all these problems can be solved in O(w) time and O(n)
space [11].

2.2 Positional Burrows–Wheeler Transform
The PBWT [4] is a data structure that allows to efficiently perform pattern matching tasks
on a set S = {S1, . . . , Sh} of h binary sequences of length w.

The core data structure is composed of two arrays per each column j: the prefix array
PAj and the divergence array DAj . In detail, PAj stores the permutation of the set {1, . . . , h}
induced by the co-lexicographic ordering of prefixes of S up to column j − 1. More formally,
PAj [i] is equal to k iff Sk[1..j − 1] is the i-th element in co-lexicographical ordered list of
prefixes S1[1..j−1], . . . , Sh[1..j−1]. We note that PA1 = {1, . . . , h}. DAj [i] stores the length
of the longest common suffix between the sequence in position i and its predecessor in the
co-lexicographic ordering of prefixes up to the (j − 1)-th column, i.e., SPAj [i][1..j − 1] and
SPAj [i−1][1..j − 1]. We note that DA1 = {0, . . . , 0}. Finally, the PBWT of S is a matrix
PBWT[1..h][1..w] where each column j stores the bits contained in each position j of each
input sequence reordered by the permutation induced by PAj . More formally, if we consider
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the input set S as a matrix M and we denote the j-th column of a matrix A by col(A)j , we
have col(PBWT)j [i] = col(M)j [PAj [i]] for all i = 1..h and j = 1..w. Durbin [4] prove that we
can compute the entire set of PA arrays, the entire set of DA arrays, and the PBWT matrix
in O(n) time and O(n) space.

2.3 Run-length Encoded PBWT and µ-PBWT

In the seminal paper that first introduced the PBWT, Durbin [4] noted that run-length
encoding can be adapted to the PBWT. Later Cozzi et al. [3] and Bonizzoni et al. [1]
proposed various data structures to efficiently store and query a run-length encoded PBWT
(RLPBWT). In the context of the PBWT, the number of runs is equal to the number of
length-maximal substrings of equal symbols that appear in the columns of the PBWT. Given
rj as the number of runs in RLPBWT column j, we denote r as

∑
1≤j≤w rj .

Here, we consider the RLPBWT implementation of Cozzi et al., which is referred to as
µ-PBWT. Similar to the conventional BWT, the SMEMs-finding problem can be solved by
computing Matching Statistics for a pattern P against a set of sequences S in a run-length
manner.

▶ Definition 4 (Matching Statistics in the PBWT). Given a binary panel composed by h

sequences S = {S1, . . . , Sh} of length w and a pattern P [1..w], we define the Matching
Statistics of P with respect to S as an array MS[1..w] of (row, len) pairs such that, for each
position 1 ≤ j ≤ w:

SMS[j].row[j − MS[j].len + 1..j] = P [j − MS[j].len + 1..j] (having a match of length
MS[j].len shared between P and MS[j].row that ends in j)
P [j −MS[j].len..j] does not occur as a suffix ending in the j-th column in any sequences
of S (left maximality)
MS[j].row = − and MS[j].len = 0 iff P [j] does not occur in column j

Observe that SMEM are computed from the Matching Statistics array. More precisely,
a SMEM of length MS[j].len occurs between P and row MS[j].row, starting from position
j −MS[j].len + 1 in P , if MS[j].len ̸= 0 and either j = w or MS[j].len ≥MS[j + 1].len. In
fact, we cannot extend to the right the considered longest common suffix shared by P and
any sequence in S, guaranteeing the right maximality.

As in [3], µ-PBWT computes the Matching Statistics array in O(r) space by storing only
the following data:

a mapping structure to support in constant time the FL (First-to-Last) function used
to follow a row in the permutation induced by the PBWT from left to right. Note that
µ-PBWT can perform in logarithmic time the reverse of this mapping, following a row
from right to left;
the PA samples at run boundary;
the set of thresholds, that identify the positions of the first minimum DA value in the
range of each run.

µ-PBWT also stores a small successor data structure, called Φ data structure, that is
used to identify the location of the SMEMs in O(r) space. Using the Φ data structure, we
retrieve the previous/next PA/DA value from given a PA/DA value in O(log n/r) time [3].
We refer readers to Cozzi et al. paper and to Bonizzoni et al. paper to recall the methods
used to compute the Matching Statistics array and the SMEMs.
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3 Methods

In this section, we first present a method to extend the Matching Statistics computation to
be able to detect k-SMEMs. We then present a novel approach using Matching Statistics to
solve some variants of the MPSC problem. The principle underlying our approach is that
addressing the k-SMEM problem is essential for dealing with the k-MPSC problem.

3.1 From MS and SMEMs to k-MS and k-SMEMs
In 2023, Tatarnikov et al. [12] extended MONI [9] (an efficient RLBWT [8] and r-index [5, 6]
implementation) to demonstrate its capability in computing k-MEMs – which are defined as
maximal exact matches of a pattern against a text T that occur at least k time in T .

We recall that FL is the function used to trace from left to right the position of a given
row when it is changed by the reordering of rows induced by the PBWT, i.e., computing
the position of the bit corresponding to a certain row in a column in the PBWT from the
previous one.

▶ Definition 5 (k-support values). Given an index column j, a run endpoint index b in the
(j − 1)-th column and the corresponding k-interval DAj [FL(b) − k + 2..FL(b) + k − 1], we
define (offb, Lb) as its k-support values, where:

offb stores the offset from FL(b) to get the beginning of the sub-interval of size k− 1 of the
k-interval that maximizes the minimum divergence array value d across all the possible
sub-intervals of size k − 1. If this interval starts in FL(b) + 1, we have offb = −1
Lb = d

In other words, k-support values determine, for a run endpoint b, the sub-interval of size
k − 1 of DAj [FL(b)− k + 2..FL(b) + k − 1] which has the longest possible common suffix (of
length d) shared by all the k − 1 rows (plus the previous one by DA array definition) stored
in the same sub-interval in PAj . In addition, due to the definition of DAj , we can include
the row that precedes the interval in this set of rows. In Figure 1 we illustrate an example of
k-interval and k-support values.

We can compute the k-support values or at indexing time, accessing the entire PA/DA in
constant time, or at querying time using the Φ data structure.

▶ Theorem 6. Given k and DAj [1..h] as an array with random access in constant time,
we can compute the k-support values in O(k) time. Instead, if we consider the µ-PBWT Φ
functions to access DAj, these values can be computed in O(k log n/r) time.

The following result shows that adding the computation of the k-support to µ-PBWT
does not change the space complexity.

▶ Lemma 7. Given k and the µ-PBWT for a panel of size n = hw, we can store all the
k-support values in a O(r) space, having two additional integers at each run boundary.

Next, to efficiently compute k-SMEMs in a run-length manner, we generalize the definition
of Matching Statistics to the k-MS.

▶ Definition 8 (k-Matching Statistics in the PBWT). Given a binary panel composed by
h sequences S = {S1, . . . , Sh} of length w, a pattern P [1..w] and a value k, we define the
k-Matching Statistics of P with respect to S as an array k-MS[1..w] of (row, len) pairs such
that, for each position 1 ≤ j ≤ w:
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DA6 1 2 3 4 5 col(PBWT)6

1 0 0 0 0 1 0 0
2 3 0 1 0 1 0 1
3 5 0 1 0 1 0 1
4 5 0 1 0 1 0 0
5 1 0 1 0 0 0 0
6 4 1 1 0 0 0 1
7 1 1 0 0 1 0 0
8 3 0 1 0 1 0 1

Figure 1 k-support values example with k = 4. The figure shows the co-lexicographical ordering
up to column 5 used to compute col(PBWT)6 and DA6. Suppose that some run boundary b in
col(PBWT)5 is mapped to col(PBWT)6[4] (the green 0 in the col(PBWT)6 column). We consider
the 4-interval DA6[FL(b)− k + 2..FL(b) + k− 1] = DA6[2..7], circled in green in the DA6 column. We
now consider all the possible subintervals of size k− 1, here 3, considering their minimum divergence
array value. By definition DAj [i] compares row i e row i− 1 in the co-lexicographical ordering so,
with k = 3, we are considering four rows. For example, with DA6[2] we are taking into account also
row 1 to compute that divergence array value. These subintervals, including the additional rows, are
identified by circles in the panel. We are interested in the optimal possible subinterval, so the one
that involves the maximum common extension to the left d. In this example, the orchid one, i.e.
DA6[2..4], is the optimal one, with d = 3. In conclusion, we store the offset offb = 2 and Lb = 3.

Sk-MS[j].row[j − k-MS[j].len + 1..j] = P [j − k-MS[j].len + 1..j] (there exists a match of
length k-MS[j].len shared between P , k-MS[j].row and at least other k− 1 rows in S that
ends in j)
P [j − k-MS[j].len..j] does not occur as a suffix ending in the j-th column in any subset
S′ of sequences of S with |S′| greater or equal of k (left maximality of the match)
k-MS[j].row = − and k-MS[j].len = 0 iff P [j] does not occur at least k time in column j

Given µ-PBWT, as described in Section 2.3, we can extend it with the k-support values
and solve the k-SMEMs problem in a run-length encoding manner. Note that the k-support
values can be pre-computed and queried in constant time, or they can be retrieved each
time according to the complexity in Theorem 6. Observe that the computation of k-MS.len
array involves updating column j, beginning with j = 1, and necessitates the modification of
new additional arrays: lenk and lent. We add a support index sj , which is a position in the
column j to verify whether at least k rows have the same left-maximal match up to the j-th
column. Then:

lenk stores in position j the length of the left-maximal matches shared by at least k rows
(defined by the sub-interval that we get from sj) in the panel
lent acts as the classical MS.len array. In column j, lent[j] stores the length of the
semi-left maximal match shared between k-MS[j].row and a row in the input panel S.
We say semi-left maximal because, unlike classical the MS array, we cannot extend to the
left a match if a column i, such that 1 ≤ i < j, does not contain at least k symbols P [i],

We do not need to store these arrays in (entirely) memory – rather we store two variables
with their values in column j. See Figure 2 for an example of lenk and lent.

3.1.1 Computing k-MS and k-SMEMs
The computation of the k-MS array involves iterating starting from position j = 1 within
both the array and the pattern P . Initially, if the first column contains at least k occurrences
of the symbol P [1], then we assign the values k-MS[1].row = s and k-MS[1].len = 1, where
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M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1
2 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1
3 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1
4 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1
5 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1
6 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1
7 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1
8 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1
9 0 1 0 0 1 0 0 0 0 1 1 1 0 0 1
10 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1
11 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1
12 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0
13 0 1 0 0 1 0 0 0 1 0 1 1 0 0 1
14 0 1 0 0 1 0 0 0 1 0 1 1 0 0 1
15 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1
16 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1
17 0 1 0 1 0 0 0 0 0 0 0 1 1 0 1
18 1 1 0 0 0 1 0 0 0 0 0 1 1 0 1
19 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1
20 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P 0 1 0 0 1 0 1 0 0 0 1 1 1 0 1

row 17 17 17 16 14 14 − 19 12 12 12 12 18 18 18
lent 1 2 3 4 5 6 0 1 2 3 4 5 2 3 4
len3 1 2 3 4 5 6 0 5 6 5 2 3 7 8 9
len 1 2 3 4 5 6 0 1 2 3 2 3 2 3 4

Figure 2 Example of 3-SMEMs results. We consider an input matrix M that represents a set of
20 sequences of length 15 and a pattern P of the same length. We show the 3-SMEMs using the
same colour in M and P . In addition, we show the k-MS array (with underlined all the values that
represent a SMEM), the len3 array, and the lent array.

s belongs to the set S with the condition that Ss[1] = P [1]. If this condition is not met –
that is, if there are fewer than k instances of P [1] in the first column – we set k-MS[1].row
to a placeholder value (indicated by −) and k-MS[1].len to 0.

We now describe how to update k-MS[j] from k-MS[j − 1] for j > 1. To update the
column of k-MS for j we need to follow k-MS[j − 1].row in the permutation induced by
PAj to extend to column j the left-maximal match obtained in column j − 1 if it is possible.
Given that k-MS[j − 1].row is mapped in row i of the column j (via the FL function) in the
PBWT, there are two cases that we have to consider: (1) we have a mismatch between the
pattern P and row i in the j-th column, and (2) we have a match between the pattern P

and row i in the j-th column. Within these two cases, there are some additional sub-cases
that we have to consider. In what follows, we describe how to address these cases, and then,
we show how to use lenk and lent to compute k-MS and k-SMEMs.

Case 1: A mismatch occurs

We assume that we have a mismatch in the j-th column, i.e., col(PBWT)j [i] ̸= P [j]. If
col(PBWT)j does not contain at least k occurrences of the symbol P [j] then we have a complete
mismatch. We represent this with k-MS[j].row = − and lent[j] = lenk[j] = 0, resetting the
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k-MS computation in the next column – implying that we restart the computation from
column j + 1 as we were in column 1. Otherwise, if k-MS[j].row (where k-MS[j].row and
MS[j].row are equal) and lent[j] (which corresponds to the traditional MS[j].len value), then
we apply the approach of Cozzi et al. [3]. This update involves the selection of a new run
boundary b. We use the k-support values to update lenk[j] and sj+1 as follows: lenk[j] = Lb

and sj+1 = FL(b) − offb. In this way, we consider the sub-interval of size k, consisting of
rows that share the longest common suffix of length Lb up to column j.

Case 2: A match occurs

Next, we assume that we have a match in the j-th column, i.e., col(PBWT)j [i] = P [j]. If
col(PBWT)j does not contain at least k occurrences of the symbol P [j] we have an unfeasible
match. We handle this case as in the complete mismatch case described above. We recall
that we use the support index sj to identify the starting position of the sub-interval of size k

in column j of the PBWT in which the rows share the longest common suffix up to column
j. Observe that if we have col(PBWT)j [sj ] = · · · = col(PBWT)j [sj + k − 1] = P [j] then we
have a left-maximal match shared by at least k rows. It follows that we can update the
Matching Statistics in the same manner as in the µ-PBWT: k-MS[j].row = k-MS[j− 1].row,
sj+1 = FL(sj), lent[j] = lent[j − 1] + 1, and lenk[j] = lenk[j − 1] + 1. Informally, we
follow the same sub-interval (by FL function) in column j + 1, updating all the length
values by 1 (due to the match) to consider the next column. We note that the condition
col(PBWT)j [sj ] = · · · = col(PBWT)j [sj + k − 1] = P [j] can be checked without scanning
entirely col(PBWT)j [sj ..sj + k − 1]. In fact, the condition is satisfied iff col(PBWT)j [sj ] and
col(PBWT)j [sj + k − 1] lay in the same run and we can test this fact in logarithmic time (in
the number of runs of the column j-th).

Finally, it is necessary to address the sub-cases that arise when there are symbols within
col(PBWT)j [sj ..sj + k − 1] that do not match P [j]. Again, this fact can be checked by
looking at the runs of the first and the last symbols in this interval. If col(PBWT)j [sj ]
and col(PBWT)j [sj + k − 1] lay on different runs it means that we have at least a run of
symbols that differ from P [j] between these two runs. Thus, we need to use a different
support index. To identify the new support index sj+1 it is necessary to trace a new row.
Recall that all the information used to update the k-MS are stored at a run boundary, and
therefore, we need to select a new run boundary b such that colj(PBWT)[b] = P [j]. This b is
selected as in the mismatch case, assuming to consider i as the index of the first mismatch in
col(PBWT)j [sj ..sj +k−1]. At this point we can update lent[j]. For this purpose, we compute
the length of the common suffix up to the j-th column between k-MS[j− 1].row (that we are
currently following due to the match) and PAj [b] and compare it to lent[j − 1] + 1. We select
the minimum of these two lengths to retain only the suffix that encompasses k rows. So, if
we denote lcsj(A, B) as the longest common suffix up to the j-th column shared by rows
A and B, then we have lent[j] = min(lcsj(k-MS[j − 1].row, PAj [b]), lent[j − 1] + 1). Then
we update k-MS[j].row using the prefix array samples as in µ-PBWT. Moreover, to update
sj+1 and lenk[j] we use the k-support values as follows: lenk[j] = Lb and sj+1 = FL(b)− offb.
In every case mentioned that requires jumping to a new row, we note that if there is no
run available for the jump (for instance, when there are only two runs), then the algorithm
followed is akin to what is done in the case of a complete mismatch.
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Filling the k-MS array and computing k-SMEMs

To account for the lengths of all matches, we formulate the k-MS.len as follows: k-MS[j].len =
min(lent[j], lenk[j]), for all j = 1..w. This step can be performed after processing each column
j. Finally, similar to the computation of SMEMs [1, 3], a k-SMEM of length k-MS[j].len
occurs between P and row k-MS[j].row, starting from position j − k-MS[j].len + 1 in P , if
k-MS[j].len ̸= 0 and either j = w or k-MS[j].len ≥ k-MS[j + 1].len.

▶ Theorem 9. Given a set S of h sequences of length w, an integer k, and query z of size
w, we can compute the k-SMEMs for z using O(r) space.

Providing a similar bound for the time complexity of computing k-SMEM in the µ-PBWT is
an open problem that warrants consideration. We conjecture that it can be done in O(w log r)
time. Lastly, we illustrate the results of computing 3-SMEMs in Figure 2.

3.1.2 From k-MS to k-MPSC
We show now that we can build a solution for k-MPSC by using the k-MS array. We recall
that each positional substring that belongs to a k-MPSC is contained in a k-SMEM. By the
non-inclusion property of k-SMEM, each starting position of a k-SMEM is covered by one
and only one k-SMEM. Combining the above two properties, it follows that there exists a
k-MPSC in which each substring is a prefix of a k-SMEM. In addition, there exists only
one k-SMEM that covers P [w]. Therefore, we can start building a solution to k-MPSC by
adding this k-SMEM as a positional substring. We can now proceed iterating the process
of including each time the single left-maximal match (covered by at least k rows in S) that
ends in the column j prior to the starting column j + 1 of the last positional substring added
to k-MPSC. This left-maximal match is represented by k-MS values in position j, and it is
unique according to the definition of k-MS. The minimality condition is guaranteed by the
fact that we cannot have a better solution, i.e., a single left-maximal match γ that covers
two of the left-maximal matches, α and β, that were already added to k-MPSC. To see
this, consider that if such a γ exists, it must begin prior to α owing to the left-maximal
property and extend at least up to the identical ending position β at the j-th index. In this
case, the definition of k-MS property implies that γ should be identified in position j of the
k-MS array. This is a contradiction because in position j of k-MS array we already selected
the left-maximal match β. Notice that this procedure extends Algorithm 1 to k-MPSC, as
demonstrated in the following section where we prove its efficacy in computing the leftmost
MPSC.

3.2 Solving the Leftmost, Rightmost, and Length-maximal MPSC
Problems with MS and SMEMs

We now show how to use MS and SMEMs to solve the leftmost, rightmost, and length maximal
MPSC problems. We first show that Algorithms 1 and 2 solve the leftmost (Lemma 10) and
rightmost (Lemma 11) MPSC problems, respectively, in sublinear space. We recall that r

denotes the number of runs in the PBWT of a set S of h sequences of length w, which is
upper bounded by their size n = h ·w. The proofs of Lemma 10 and Lemma 11 are based on
the non-inclusion property of SMEMs, which implies that the starting positions and ending
positions of the set of SMEMs are unique. In other words, there cannot exist two SMEMs
that start in the same position in the pattern P and two SMEMs that end in the same
position in the pattern P .
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Algorithm 1 Leftmost MPSC by MS.

1: function LeftMost(MS)
2: j ← w ▷ |MS| = w

3: j′ ← 0
4: while j ̸= 0 do
5: j′ ← j −MS[j].len
6: report (j′ + 1, j, MS[j].row)
7: j ← j′

Algorithm 2 Rightmost MPSC by MS.

1: function RightMost(MS)
2: i← 1 ▷ |MS| = w

3: for j = 1→ w − 1 do
4: if MS[j].len ≥MS[j+1].len then
5: report (i, j, MS[j].row)
6: i← j + 1
7: report (i, w, MS[w].row)

▶ Lemma 10 (Leftmost MPSC). Given a panel S and the MS array of a pattern P with
respect to S, Algorithm 1 computes the leftmost MPSC C of P by S in time O(|C|) and O(r)
space.

Proof. We seek a MPSC such that each i-th positional substrings starts not after any other
i-th positional substring in a MPSC. It is easy to see that a leftmost MPSC is composed of
positional substrings that are prefixes of SMEMs – or, in other words, that are left-maximal.
Otherwise, we can extend the positional substring to the left, contradicting the assumption
of having a leftmost MPSC. Scanning the MS array from right to left, we consider the
SMEM that ends in the last position of the pattern. This SMEM is in the set of the leftmost
MPSC by definition, and the fact that it is the only one that includes position w. We can
compute its starting position j as w −MS [w].len + 1 and we can add (j, w, MS [w].row) to
the set C. The set C is a leftmost MPSC of the columns j to w. A leftmost MPSC of
columns 1 to j − 1 must include the left-maximal match that ends at j − 1. Given that
j′ = (j − 1)−MS[j − 1].len + 1, by definition of SMEM, it follows that we cannot have a
SMEM that includes MS [j − 1].row in position j − 1 and starts before j′. Thus j′ is the
starting position of the next positional substring (of length MS [j − 1].len) in the leftmost
MPSC C of the columns j′ to w. Iterating the previous procedure until reaching column
1 gives the leftmost MPSC. Since each iteration adds a positional substring to the cover
with a single constant-time access of the MS array, the algorithm runs in time proportional
to |C|. ◀

▶ Lemma 11 (Rightmost MPSC). Given a panel S of w-length strings and the MS array of
a pattern P with respect to S, Algorithm 2 computes the rightmost MPSC of P by S in time
O(w) and O(r) space.

Proof. We are interested in a MPSC where each i-th positional substring ends no earlier
than any other i-th positional substring within it. Symmetrically to the leftmost MPSC, the
positional substrings of a rightmost MPSC are suffixes of SMEMs. Given the MS array, a
position j is the ending position of a SMEM iff MS[j].len ≥ MS[j + 1].len or j = w. For
simplicity, in this proof we assume that MS[w+1].len = 0. The construction of the rightmost
MPSC is symmetric to that of the leftmost MPSC. As in the leftmost MPSC, we are not
interested in overlaps between positional substrings. To compute the rightmost MPSC, we
scan from left to right the MS array. By definition, the SMEM that starts in the first column
is in the set of rightmost MPSC, being the only one that includes the first position. Denoting
j as the ending position of this SMEM, we add the positional substring (1, j, MS[j].row)
to the set C of the rightmost MPSC. At each position j where MS[j].len ≥MS[j + 1].len,
there are no other right-maximal matches, meaning there cannot exist an SMEM containing
MS[j].row at position j that extends beyond position j. Thus, js are the ending position
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M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0
2 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0
3 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0
4 1 1 1 0 1 1 1 1 0 0 1 0 0 0 0
5 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1
6 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0

MS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0

row 6 4 4 4 4 3 1 1 1 1 6 6 3 3 3
len 1 2 3 4 5 4 5 6 7 8 5 6 2 3 4

(a) Splitting of a SMEM into substrings from leftmost/rightmost MPSC. We show a panel M and a
pattern P with the corresponding MS array. In the panel, we have dashed circles for the leftmost MPSC
and dotted circles for the rightmost MPSC. With the same colour, we identify a SMEM.

MS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0

row 6 4 4 4 4 3 1 1 1 1 6 6 3 3 3
len 1 2 3 4 5 4 5 6 7 8 5 6 2 3 4
j/j′ ← 2 ← ← ← 6 ← ← ← ← 11 ← ← ← 15

(b) Example of computing leftmost MPSC (identified by circles in the P row) by the MS array. In the
last line we show the jumps used to skip the overlaps as in Algorithm 1.

MS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0

row 6 4 4 4 4 3 1 1 1 1 6 6 3 3 3
len 1 2 3 4 5 4 5 6 7 8 5 6 2 3 4
i 1 − − − − 6 − − − − 11 − 13 − −

(c) Example of computing rightmost MPSC (identified by circles in the P row) by the MS array. For the
sake of simplicity, in the last line, we show the updating of value i as in Algorithm 2.

Figure 3 Example of the relationship between leftmost/rightmost MPSC and SMEMs on the
same set of sequences of [11].

of any other positional substring (i + 1, j, MS[j].row) in the set C, where i is the ending
column of the last substring added to C. Since each position of the MS array is scanned
once, and as each iteration requires only a single constant-time access of the MS array, the
algorithm runs in time proportional to w. ◀

Figure 3 shows how our algorithms compute the leftmost and the rightmost MPSC.
We now consider the problem of finding a length-maximal MPSC. Sanaullah et al. [11]

showed the length-maximal MPSC problem can be solved in O(n + |Q|) space given that
the leftmost MPSC, the rightmost MPSC, and the set Q of SMEMs have been computed in
O(n) space, while the algorithm used to combine all of them to find a length-maximal MPSC
requires O(|Q|) space. We showed that we can compute the leftmost and the rightmost
MPSCs in O(r) space (Lemma 10 and Lemma 11) from the MS array. We also showed in
Section 2.3 that the MS array and the set of SMEMs can be computed in O(r) space using
the µ-PBWT. As a consequence, the following lemma holds.

▶ Lemma 12. Given µ-PBWT for a set S of h strings of length w, a string P of length
w, and the set Q of SMEMs shared by S and P , a length-maximal MPSC of P by S can be
computed in O(r + |Q|) space.
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4 Results

We implemented our methods for computing k-MS and k-SMEMs with and without pre-
computed k-support values, and compared these to the k-MPSC implementation by Sanaullah
et al. [11]. Hereon, we refer to this method as k-MPSC.

4.1 Datasets
We evaluated the execution time and maximum memory usage for indexing and querying
of all these methods using biallelic chromosome panels from the 1000 Genomes Project
(1KGP) [13]. All the data is publicly available at https://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/release/20130502/. We selected the panels for chromosomes 22, 18, and 2.
These panels have 5,008 samples/rows and between 1M and 6M variations/columns. From
these panels, we extracted 30 rows to use them as queries, hence we consider input panels
with 4978 rows. The performance metrics were computed using /usr/bin/time on a machine
equipped with an Intel Xeon CPU E5-4610 v2 (2.30GHz), 256GB RAM and 8GB of swap,
running Ubuntu 20.04.6 LTS.

4.2 Implementation Details and Experimental Setup
We augmented µ-PBWT implementation with the algorithms to compute k-SMEMs. We made
all source code publicly avaliable at https://github.com/dlcgold/muPBWT/tree/k-smem
(with pre-computed k-support values) and https://github.com/dlcgold/muPBWT/tree/
k-smem-live (without pre-computed k-support values).

k-MPSC is written in C++14 and necessitated a few modifications to the code. It was not
possible to index panels as large as the ones from the 1KGP due to design choices on the
dynamics allocation of the data structure. Moreover, k-MPSC implementation halted if an
unfeasible column was encountered (a column with less than k symbols), which frequently
occurred only after very few columns. To make a meaningful comparison, we edited the
source code to solve the allocation issue and to restart the computation after an unfeasible
column is encountered.

Empirical experimental performances for the computation of a leftmost MPSC, a rightmost
MPSC, and a length-maximal MPSC (from the MS array and the set of SMEM) are directly
proportional to the experimental results in Cozzi et al. [3]. Therefore, no additional dedicated
experiments were conducted.

4.3 Results on 1000 Genomes Project Data
Table 1 reports the results of the indexing task and of the querying task with 30 queries. As
anticipated, pre-computing the k-support values leads to an increase in computation times
by up to approximately 100% compared to the variant without pre-computed values. We
note that, due to the average number of runs in each column, we only need to store short
bit-compressed integer vectors for the k-support values, implying that only a ∼5% increase
in memory usage is needed for the implementation without these values stored. A fairly
obvious note that warrants comment is that for k = 1, we do not require k-support values,
thus the memory usage remains the same both with and without them. Regarding k-MPSC,
the indexing phase consists of the PBWT computation of both panel and queries. Since
k-MPSC needs a full PBWT, it requires almost two orders of magnitude more memory than
both of our approaches. This is unsurprising in light of the work of Durbin [4], which stated
that the whole set of data structures for PBWT require 13n bytes to be queried.

CPM 2024

https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://github.com/dlcgold/muPBWT/tree/k-smem
https://github.com/dlcgold/muPBWT/tree/k-smem-live
https://github.com/dlcgold/muPBWT/tree/k-smem-live


12:14 Solving the Minimal Positional Substring Cover Problem in Sublinear Space

Table 1 Indexing and querying wall clock time and max memory usage comparison on chromo-
somes 2/18/22 panels from 1KGP, with 4978 rows and 30 queries.

Wall Clock Time (seconds) Max Memory usage (GB)

µ-PBWT µ-PBWT

Chr. Task k (pre) (no-pre) k-MPSC (pre) (no-pre) k-MPSC

2

Index
1 1381 1384 - 6.45 6.45 -
50 1643 1387 - 6.62 6.45 -
200 2798 1418 - 6.62 6.45 -

Querying
1 254 247 - 5.87 5.87 -
50 1687 2471 - 6.57 6.42 -
200 3563 11834 - 8.45 8.31 -

18

Index
1 425 424 5750 3.26 3.26 168.58
50 697 450 5750 3.36 3.26 168.58
200 807 429 5750 3.36 3.26 168.58

Querying
1 70 70 128 1.92 1.92 171.19
50 739 817 229 2.13 2.08 171.30
200 1740 4263 119 2.74 2.71 171.22

22

Index
1 191 189 2616 1.77 1.77 79.01
50 304 193 2616 1.84 1.77 79.01
200 400 194 2616 1.84 1.77 79.01

Querying
1 31 32 130 0.98 0.98 82.31
50 336 392 171 1.11 1.07 82.85
200 726 2054 133 1.47 1.44 82.48

Regarding the querying performance results, the computation of k-support values during
query time leads to an increase in execution time, which scales with the value of k due to the
use of the Φ data structure. When k was equal to 200, the k-SMEMs computation requires
up to a third of the time with the pre-computed values. Regarding k-MPSC, with random
access in constant time to the complete set of data structures of the PBWT, we observe
that it runs up to 20 times faster than µ-PBWT with pre-computed values and up to 60
times faster than the variant with query-time k-support values computation. Moreover, the
experiments confirm that the k-MPSC algorithm does not linearly scale on k, as explained
in Section 2.1. Regarding memory usage for querying, a similar analysis apply as for the
indexing phase with the additional factor that we also have in memory the queries for the
µ-PBWT. In addition, we suspect that the slight increase in memory usage with larger k

values is due to the support variables used. Since in instances where the computation of
MS requires pointer adjustments because there are not k equivalent values in a designated
interval, we have to compute lcs(A, B).

Due to the memory usage of k-MPSC, we were unable to evaluate the performance on the
larger panels, such as the one related to the chromosome 2 in the 1000 Genomes Project data.
To ensure a comprehensive overview, Table 1 includes the outcomes achieved by µ-PBWT
on the largest dataset (chromosome 2), which k-MPSC could not process within the allocated
memory constraints. This demonstrates the advantages of using µ-PBWT which requires a
sublinear amount of memory.
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5 Conclusions

In this paper, we address the theoretical aspects of the haplotype threading problem, primarily
aiming to offer practical solutions capable of scaling to the large biological datasets currently
stored in biobanks. In particular, we presented two distinct results. First, we adapted
the run-length encoding paradigm for the PBWT to compute k-Matching Statistics (k-MS)
and the k-SMEMs in sublinear space. Next, we show that computing k-MS provides a
theoretical framework to solving the k-Minimal Positional Substring Cover problem as well
as all the variants of the MPSC problem in sublinear space. Our experimental results
decisively show that our method achieves a significant reduction in memory usage for
computing the k-MPSC problem, reducing it by no less than two orders of magnitude
relative to the approach by Sanaullah et al. [11]. This enables our approach to scale to large
datasets collected in contemporary biobanks. In turn, the development of µ-PBWT opens
up unprecedented opportunities for comprehensive genetic studies – e.g., for genotyping and
imputation workflows [14] – and exploration on a large scale.
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Abstract
One of the classical algorithmic problems in formal languages is the context-free recognition problem:
for a given context-free grammar and a length-n string, check if the string belongs to the language
described by the grammar. Already in 1975, Valiant showed that this can be solved in Õpnω

q time,
where ω is the matrix multiplication exponent. More recently, Abboud, Backurs, and Vassilevska
Williams [FOCS 2015] showed that any improvement on this complexity would imply a breakthrough
algorithm for the k-Clique problem. We study the natural online version of this problem, where the
input string wr1..ns is given left-to-right, and after having seen every prefix wr1..ts we should output
if it belongs to the language. The goal is to maintain the total running time to process the whole
input. Even though this version has been extensively studied in the past, the best known upper
bound was Opn3

{ log2 nq. We connect the complexity of online context-free recognition to that of
Online Matrix-Vector Multiplication, which allows us to improve the upper bound to n3

{2Ωp
?

log nq.
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Keywords and phrases data structures, context-free grammar parsing, online matrix-vector multipli-
cation

Digital Object Identifier 10.4230/LIPIcs.CPM.2024.13

1 Introduction

Context-free languages, introduced by Chomsky already in 1959 [3], are one of the basic
concepts considered in formal languages, with multiple applications in programming lan-
guages [2], NLP [11], computational biology [6], and databases [13]. A context-free language
is a language generated by a context-free grammar, meaning that each production rule is
of the form A Ñ α, where A is a non-terminal symbol, and α is a string of terminal and
non-terminal symbols (possibly empty). It was already established by Chomsky [3] that,
without decreasing the expressive power, we can assume that the productions are of the form
A Ñ a and A Ñ BC, where A, B, C are non-terminal symbols, and a is a terminal symbol.
From an algorithmic point of view, the natural (and very relevant with respect to the possible
applications) question is whether, given such a grammar G and a string wr1..ns, we can
efficiently check if w P LpGq. A simple application of the dynamic programming paradigm
shows that this is indeed possible in Opn3q time (ignoring the dependency on the size of the
grammar). This is usually called the Cocke–Younger–Kasami (CYK) approach [4, 12, 25]. In
1975, Valiant [23] designed a non-trivial algorithm that solves this problem in OpBMpnqq

time, where BMpnq denotes the complexity of multiplying two (Boolean) n ˆ n matrices.
Plugging in the currently best known bounds, BMpnq “ Opnωq, where ω ă 2.373 [24]. See [9]
for a somewhat more approachable description of Valiant’s algorithm, and [19] for a very
elegant simplification (achieving the same running time). This is of course a somewhat
theoretical result, and given the practical nature of the problem it is not surprising that
other approaches have been developed [5, 16,17,22], with high worst-case time complexities,
but good behaviour on instances that are relevant in practice. However, the worst-case time
complexity has not seen any improvement. In 2002, Lee [15] showed a conditional lower bound
that provides some explanation for this lack of improvement: multiplying two (Boolean)
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n ˆ n matrices can be reduced to parsing a string of length Opn1{3q for a grammar of size
Opn2q. This does exclude a combinatorial Opgn3´εq algorithm for parsing (more general
problem than recognition), where g is the size of the grammar, but does not contradict the
existence of e.g. Opg2nq time algorithm. However, in 2015 Abboud, Backurs, and Vassilevska
Williams [1] showed a more general conditional lower bound: even for constant-size grammars,
any improvement on the complexity of Valiant’s recognition algorithm implies a breakthrough
for the well-known k-Clique problem.

In some applications, the input string wr1..ns is given character-by-character, and for
each prefix wr1..is we should decide if it belongs to LpGq before reading the next character.
This is known as the online CFG recognition. The goal is to minimise the total time to
process all the characters. It is not hard to adapt the CYK approach to work in Opn3q total
time for this variant, but this seems difficult (or perhaps impossible) for Valiant’s algorithm.
Graham, Harrison, and Ruzzo [8] designed a (slightly) subcubic algorithm, and Rytter [19]
further improved the complexity to Opn3{ log2 nq. Surprisingly, no further improvements
were achieved. On the lower bound, it is known that on a Turing machine, Ωpn2{ log nq

steps are required [7, 20]. This is however quite far from the upper bound, and assumes a
somewhat restricted model of computation, and brings the natural question of understanding
if a faster algorithm exists.

As the complexity of the offline CFG recognition is known to be close to that of (Boolean)
matrix multiplication, it is natural to seek a connection between the complexity of its online
variant with the so-called online matrix multiplication. As a tool for unifying the complexities
of different dynamic problems, Henzinger, Krinninger, Nanongkai, and Saranurak [10]
introduced the Online Matrix-Vector Multiplication problem:

▶ Definition 1 (Online Matrix-Vector Multiplication (OMv)). Given a matrix M P t0, 1unˆn,
and a sequence of vectors v1, . . . , vn P t0, 1un, the task is to output Mvi before seeing vi`1,
for all i “ 1, . . . , n ´ 1.

and conjectured that no Opn3´ϵq time algorithm exists (with the best known upper bound
at the time being Opn3{ log2 nq):

▶ Hypothesis 2 (OMv Hypothesis [10]). Every (randomized) algorithm solving OMv must
take total time n3´op1q.

Surprisingly, Larsen and Williams [14] were soon able to construct a faster n3{2Ωp
?

log nq

time algorithm. This does not refute the OMv hypothesis, but significantly improves the
known upper bound, essentially by saying that we can shave any number of logarithms from
the time complexity.

▶ Theorem 3 ([14]). There exists a randomized algorithm for OMv that runs in total
n3{2Ωp

?
log nq time and succeeds with high probability1.

This suggests the possibility of leveraging the progress on the complexity of Online Matrix-
Vector Multiplication to improve the complexity of online CFG recognition to improve on
the Opn3{ log2 nq time complexity from 1985.

1 By succeeding with high probability we mean that there exists a constant c ą 0 such that the algorithm
succeeds with probability at least 1 ´ 1{nc.
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Our contribution. We show that it is possible to use efficient OMv multiplication to speed
up online context-free recognition:

▶ Theorem 4. Let G be a context-free grammar, and w be a length-n string, revealed one
character at a time. There exists a randomized algorithm that determines, after having seen
wrts, if wr1..ts P LpGq, in n3{2Ωp

?
log nq total time and succeeds with high probability.

Our solution is based on the classical CYK dynamic-programming approach from 1960s
[4, 12,25] in which we calculate the set of non-terminals deriving each of the infixes of w. In
order to avoid the Opn2q time for processing a new character wrts, we maintain a division
of the current prefix into segments of lengths that are powers of 2 present in the binary
representation of t. For each of the segments, we build a structure responsible for processing
suffixes wri..ts that start within the segment and end at t. We extensively use the approach
from Theorem 3 for OMv, with a slight adaptation to matrices that grow in time. More
precisely, we show that we can process a sequence of vectors v1, q1, v2, q2, . . . where |qi| “ i

in which we need to calculate pv1, . . . , viq ˆ qi online, before seeing vi`1. This requires one
more step of dividing the range of columns into segments of lengths that are powers of 2,
and applying the structure from Theorem 3 for each of the segments separately. This results
in the same running time as in the standard OMv problem, in which the matrix we multiply
with does not change.

We note that our algorithm does not need to know the value of n in advance. In fact,
our proof of Theorem 4 can be modified to show that the amortised time for processing the
t-th character is Opt2{2Ωp

?
log tqq, so in particular after having seen wrts we know whether

wr1..ts P LpGq, with the total time spent on wr1s, wr2s, . . . , wrts being Opt3{2Ωp
?

log tqq, for
every t “ 1, 2, . . ..

2 Preliminaries

Consider a context-free grammar G “ pVN , VT , P, Sq. Without loss of generality we assume
that G is in Chomsky normal form [3,21], that is every production in P is either A Ñ BC or
A Ñ c for A, B, C P VN and c P VT . By v

‹
ñ s we denote that string s can be derived from

non-terminal v in the grammar G.
We are given a string w of length n character-by-character and for each t “ 1..n need

to decide if the string wr1..ts belongs to LpGq or not. For every t, the answer should
be provided before reading the pt ` 1q-th character and we call such a procedure online.
Our algorithm will compute the set of all non-terminals that produce every infix of w:
U ri, js “ tv P VN : v

‹
ñ wri..jsu. Then the t-th bit of the output is whether S belongs to

U r1, ts or not.
Our approach has polynomial dependence on the size of the grammar G, which we omit

while stating the complexity of the parsing algorithm.
In the analysis of our algorithm we will consider sums of non-constant number of distinct

expressions containing the Ω function. Unless stated otherwise, all the Ωs within one
sum correspond to the same function, namely there exists one constant bounding all the
expressions at the same time. An example of such sum appears in the following lemma that
will be useful in the next section:

▶ Lemma 5. For any constant a ą 0, we have
řlog n

k“0 2ak´Ωp
?

kq “ na{2Ωp
?

log nq.

CPM 2024
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Proof. Let t “ log n. As we discussed before, various Ω functions correspond to one particular
Ω function, which means that we can read the expression p˚q “

řt
k“0 2ak´Ωp

?
kq as: there

exists a constant c ą 0 such that p˚q ď
řt

k“0 2ak´c
?

k. First we show for which 0 ď k ă t we
can upper bound the k-th summand by the last element from the sum:

ak ´ c
?

k ă at ´ c
?

t

õ

cp
?

t ´
?

kq ă apt ´ kq “ ap
?

t ´
?

kqp
?

t `
?

kq

õ

c

a
´
?

t ă
?

k

So in particular, for k ě k0 “ p c
a q

2 we have that ak ´ c
?

k ď at ´ c
?

t. For k ă k0 we have
2ak´c

?
k ă 2ak0 , so:

p˚q ď k0 ¨ 2ak0 `

t
ÿ

k“k0

2at´c
?

t ď Op1q ` t ¨ 2at´c
?

t “ Op2at´0.9c
?

tq “ 2at´Ωp
?

tq. ◀

3 Parsing context-free grammars online

Our algorithm processes characters from the input one-by-one. While processing the t-th
character it has already computed U ri, js for 1 ď i ď j ă t and needs to compute U ri, ts

for 1 ď i ď t. We maintain a division of the interval r1..pt ´ 1qs into c “ Oplog tq intervals:
re1, e2q, re2, e3q, . . . , rec, ec`1q where e1 “ 1, ec`1 “ t and lengths of the intervals are exactly
the powers of 2 in the binary representation of t ´ 1, in the decreasing order. On a high
level, for the j-th interval there is a data structure Xj responsible for computing U ri, ts for
ej ď i ă ej`1, based on the outputs from Xj1 for j1 ą j. We call such a data structure a
process. We say that the size of process Xj is the length of the interval it corresponds to,
that is |rej , ej`1q| “ ej`1 ´ ej . The processes are created and removed following the binary
representation of t, and a process for interval ra, a`2kq exists only for t “ a`2k, . . . a`2k`1´1.
In the following theorem we describe the calculations performed in each of the processes.

▶ Theorem 6. Let I “ rp, p ` sq be an interval of positions from w. Consider the following
sequence Q of at most s queries Qp`s, Qp`s`1, . . .: in the t-th query we are given set
Qt “ tpi, vq : v

‹
ñ wri, ts, i P rp ` s, tsu and need to compute At “ tpi, vq : v

‹
ñ wri, ts, i P Iu.

There exists a randomized algorithm answering online all queries from Q in total
s3{2Ωp

?
log sq randomized time that succeeds with high probability.

Before we prove the above theorem, we show how to apply it to obtain the algorithm for
parsing context-free grammars online.

▶ Theorem 4. Let G be a context-free grammar, and w be a length-n string, revealed one
character at a time. There exists a randomized algorithm that determines, after having seen
wrts, if wr1..ts P LpGq, in n3{2Ωp

?
log nq total time and succeeds with high probability.

Proof. We show that Algorithm 1 correctly parses all prefixes of w online, in the desired time
complexity. First, we show that the operations in Algorithm 1 satisfy the requirements on
queries described in Theorem 6. Indeed, we always create a process β with I “ rt`1´2r, t`1q
and the subsequent queries are Qt`1, Qt`2, . . ., so in particular the first query concerns the
position right after the end of I, as required. Observe that due to line 7 the sequence of sizes
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Algorithm 1 Parsing context-free grammar online.
Input: Context-free grammar G “ pVN , VT , P, Sq

1: B :“ r s Ź 1-based list of processes B1, B2, . . .

2: for t “ 1, 2, . . . do
3: Qt :“ tpt, vq : pv Ñ wrtsq P P u

4: for j “ |B| to 1 do
5: A :“ Bj .querypQtq

6: Qt :“ Qt Y A

7: let r be maximal such that
řr´1

i“0 |B|B|´i| “ 2r ´ 1
8: remove the last r processes from B

9: add new_processpI “ rt ` 1 ´ 2r, t ` 1qq to the end of B

10: output whether p1, Sq P Qt

of the processes follows the binary representation of t so we create a process of size 2k for t

such that t ” 2k pmod 2k`1q and the last query that we possibly process at β is Qt`2k , so β

is queried at most t ` 2k ´ t “ 2k “ |β| times.
Now we calculate the complexity of the algorithm. We create a new process of size 2k

exactly t n`2k

2k`1 u ă n{2k times. Each process of size 2k answers at most 2k queries so we can
directly apply Theorem 6 to bound the total running time of preprocessing and all queries
processed by the process. Hence the total running time of the algorithm is upper bounded
by:

log n
ÿ

k“0

n

2k
¨
`

2k
˘3

{2Ωp
?

kq “ n ¨

log n
ÿ

k“0
22k´Ωp

?
kq “ n3{2Ωp

?
log nq.

The last step follows by Lemma 5 and the claim holds. ◀

Proof of Theorem 6
In order to prove Theorem 6, we need to introduce some notation and insights following
Rytter’s variant of the Valiant’s offline parser of context-free grammars [19]. We will operate
on matrices of binary relations over the set of non-terminals VN and we call such matrices
relational. Formally, every element of a relational matrix is of the form t0, 1uVNˆVN . To
simplify the notation, our relational matrices will be indexed by intervals J1, J2 Ď r1, ns

of consecutive numbers, corresponding to substrings of the input string w. We define
b-multiplication of matrices A, B with indices Ja ˆ Jc and Jc ˆ Jb respectively, as:

pA b Bqri, jsX,Y “
ł

kPJc
ZPVN

Ari, ksX,Z ¨ Brk, jsZ,Y for i P Ja, j P Jb, X, Y P VN

Similarly, we define relational vectors as vectors of subsets of VN , that is their elements
are of the form: t0, 1uVN , and matrix-vector product M b F of matrix M (indexed with
Ja ˆ Jc) and vector F (indexed with Jc) as:

pM b F qrisX “
ł

kPJc
ZPVN

M ri, ksX,Z ¨ F rksZ for i P Ja, X P VN

CPM 2024
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▶ Lemma 7 ([18]). We can compute relational matrix-matrix b-product in |VN |3 multiplica-
tions of two Boolean matrices and relational matrix-vector b-product in |VN |2 multiplications
of a Boolean matrix and a vector. The Boolean matrices and vectors that we multiply have
the same size as the relational ones.

Proof. By definition of b-product, in order to multiply two relational matrices we iterate
over all triples of X, Y, Z of non-terminals, create Boolean matrices A1X,Z , BZ,Y where
A1X,Zri, js “ Ari, jsX,Z and B1Z,Y ri, js “ Bri, jsZ,Y and calculate A1 ¨ B1 using the standard
Boolean p`, ¨q-product. Then pA b Bqri, jsX,Y “

Ž

ZPVN
pA1X,Z ¨ B1Z,Y qri, js.

Matrix-vector b-multiplication can be calculated analogously. ◀

Now we are able to show the main theorem of this section.

▶ Theorem 6. Let I “ rp, p ` sq be an interval of positions from w. Consider the following
sequence Q of at most s queries Qp`s, Qp`s`1, . . .: in the t-th query we are given set
Qt “ tpi, vq : v

‹
ñ wri, ts, i P rp ` s, tsu and need to compute At “ tpi, vq : v

‹
ñ wri, ts, i P Iu.

There exists a randomized algorithm answering online all queries from Q in total
s3{2Ωp

?
log sq randomized time that succeeds with high probability.

Recall that G “ pVN , VT , P, Sq is the considered grammar. Whenever we refer to wri, i´1s
for any i, we mean an empty string.

Preprocessing. During the preprocessing phase we first run Rytter’s algorithm [19] on
wrp..p ` s ´ 1s and compute U ri, js for all p ď i ď j ă p ` s in Opsωq time2. Based on that
we define a relational matrix V with rows and columns p..pp ` sq by setting

V ri, jsX,Y “ 1 ðñ DZPVN

´

pX Ñ ZY q P P ^ Z
‹
ñ wri..j ´ 1s

¯

for p ď i ď j ď p ` s

Informally, this means that we can extend “to the left” every infix of w that starts at position j

and can be derived from Y to an infix that starts at position i, ends at the same position and
that can be derived from X. For empty infixes we set V ri, isX,Y “ 1 ðñ X “ Y . When
we do not specify the value of some entries of a matrix, it means that there are all zeros in
that entry. For instance, for i ą j in V we have V ri, jsX,Y “ 0 for all X, Y P VN .

Now we calculate V ‹ “ V s with exponentiation by squaring, using b-product at every step
in total Opsω log sq “ Õpsωq time, by Lemma 7. Observe that V ‹ describes all possibilities
of extending an infix “to the left” at most s times. As j ´ i ď s, we never need more than s

steps to extend an infix starting at position j to an infix starting at position i and then:

V ‹ri, jsX,Y “ 1 ðñ D k1ă...ăkr
k1“i,kr“j

Z1,...,ZrPVN

Z1“X,Zr“Y

´

@1ďeărV rke, ke`1s
Ze,Ze`1 “ 1

¯

for p ď i ď j ď p` s

See Figure 1 for an illustration.

Invariant. During the process of answering queries, before receiving a subsequent query Qt,
we maintain a relational matrix H with similar properties as V , with rows p..pp ` sq, but
with columns pp ` sq..t, that is:

Hri, jsX,Y “ 1 ðñ DZPVN

´

pX Ñ ZY q P P ^Z
‹
ñ wri..j´1s

¯

for p ď i ď p`s ď j ď t

2 In [19] is computed V ALIDpk, ℓq “
Ť

kďiďjďℓtpA, i, jq : A P U ri, jsu.
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. . .
i j

Zr = Y

Zr−1

Zr−2

Z1 = X

k2 kr−1kr−2

Figure 1 Illustration of the definition of V ‹. Note that we do not specify the endpoint of the
last string, starting at position j and derived from Y , because we are only interested in the possible
extensions “to the left” from such a string.

This matrix also describes extensions “to the left”, but from an infix starting at position
j ě p ` s to an infix starting at position i ď p ` s. In order to satisfy the invariant, at the
end of preprocessing we initialize Hri, p ` ss “ V ri, p ` ss for p ď i ď p ` s.

Query. From the input set Qt we create a relational vector F rpp ` sq..ts such that

F rjsY “ 1 ðñ Y
‹
ñ wrj..ts ðñ pj, Y q P Qt.

Let A “ H b F . Then ArisX “ 1 ùñ X
‹
ñ wri..ts for p ď i ď p ` s. However, this is

not an equivalence yet, because we need to consider a larger number of extensions “to the
left” using infixes fully contained in I “ rp, p ` sq. For that we use matrix V ‹ and compute
A1 “ V ‹ b A. Then we have A1risX “ 1 ðñ X

‹
ñ wri..ts for p ď i ď p ` s and we can

construct the desired set At that can be returned from the procedure. As the last step
of processing the query, we update matrix H by adding pt ` 1q-th column by definition:
Hri, t ` 1sX,Y “ 1 ðñ DZPVN

pX Ñ ZY q P P ^ A1risZ “ 1.

Running time. The only operations that can take more than Opsq time in the above
procedure are the matrix-vector b multiplications H b F and V ‹ b A. Recall that by
Lemma 7 it suffices to show how to perform these operations efficiently for matrices and
vectors over the Boolean semiring, not the relational ones. In the case of V ‹ bA we have one
matrix V ‹ subsequently multiplied by different vectors A, so we can directly apply Theorem 3
and process online all the queries in total s3{2Ωp

?
log sq time.

For the multiplications H bF we need a slightly different approach, because the matrix H

changes in time. Similarly as in Algorithm 1 we will divide the columns of H into intervals
following the binary representation of the width of H and split H into a number of smaller
square matrices. For each of the small matrices we will use the algorithm for OMv from
Theorem 3.

▶ Lemma 8. Consider the sequence of at most s operations, where in the j-th one we are
given a binary vector vj of length s and a binary vector qj of length j and need to calculate
xj “ Mj ¨ qj where Mj is the matrix with s rows and columns v1, . . . , vj. There exists a
randomized algorithm answering online all the queries in total s3{2Ωp

?
log sq time that succeeds

with high probability.
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Proof. Similarly as in Algorithm 1, we maintain a partition of the interval r1..js into
c “ Oplog jq intervals: Epjq “ re1, e2q, re2, e3q, . . . , rec, ec`1q where e1 “ 1, ec`1 “ j ` 1 and
lengths of the intervals follow the binary representation of j, with re1, e2q being the largest
one. Intervals correspond to subranges of columns of Mj and for an interval of length 2k we
divide its s ˆ 2k submatrix into s{2k square matrices of size 2k ˆ 2k. For each such matrix
we create a data structure for OMv multiplication, by Theorem 3.

In order to process a query, we first add the new column vj , update the structure of
intervals from Epj ´ 1q to Epjq and run preprocessing for each of the newly-created matrices.
To answer the query we divide qj according to Epjq into vectors q1

j , . . . , qc
j and multiply each

vector qi
j by all the matrices of the same size as qj and combine the results in one vector yj

of length s, see Figure 2. Then xj “
Žc

i“1 yi.

M1
1

M2
1

M1
2

M2
2

M3
2

M4
2

q13

q23

∨

M1
1 · q13

x3 =

M1
2 · q23

M3 :

q3 :

M4
2 · q23

...

y1 y2

Figure 2 Example of calculating x3 based on the results from multiplicating square matrices Mz
i

by vector qi
3 for z P r1, s{|qi

3|s.

The correctness of the approach is immediate and now we need to calculate the total
running time. While adding new columns to the considered matrix, we create a new interval
of length 2k for j such that j ” 2k pmod 2k`1q, so in total less than s{2k times. We divide
every interval into s{2k matrices of size 2k ˆ 2k and for each of them we create an OMv
data structure that answers at most 2k queries. By Theorem 3 we can process online all the
queries for a single matrix in 23k{2Ωp

?
kq total time. This gives us the following total running

time of processing all the queries:
log s
ÿ

k“0
s{2k ¨ s{2k ¨ p2kq3´Ωp

?
kq “ s2 ¨

log s
ÿ

k“0
2k´Ωp

?
kq “ s3{2Ωp

?
log sq

where the last step follows from Lemma 5. ◀

Finally, the total running time of our algorithm is Õpsωq for the preprocessing and
s3{2Ωp

?
log sq for answering all the queries, which gives s3{2Ωp

?
log sq total time. This concludes

the proof of Theorem 6.
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Abstract
The well known Normalized Edit Distance (ned) [Marzal and Vidal 1993] is known to disobey the
triangle inequality on contrived weight functions, while in practice it often exhibits a triangular
behavior. Let d be a weight function on basic edit operations, and let nedd be the resulting
normalized edit distance. The question what criteria should d satisfy for nedd to be a metric is
long standing. It was recently shown that when d is the uniform weight function (all operations
cost 1 except for no-op which costs 0) then nedd is a metric. The question regarding non-uniform
weights remained open. In this paper we answer this question by providing a necessary and sufficient
condition on d under which nedd is a metric.
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1 Introduction

The question of quantifying the similarity between two strings is quite ancient [9, 11, 18, 17, 10,
19, 14]. A typical way to measure the distance between two strings, is the Levenshtein distance,
aka, edit distance (ed) [11]. The edit distance between two strings w1, w2 ∈ Σ∗ is measured as
the minimum weight of an edit path – a sequence of edit operations delete, insert, replace, or
no-op – required to transform w1 to w2. In the case of uniform weights, all edit operations cost
1 except for no-op which costs 0. For example, ed(Jane, John) = 3 since we can transform
the string Jane to John using the edit path α =no-op(J),replace(a,o),replace(n,h),replace(e,n)
which weighs 3 and there is no edit path transforming Jane to John that weighs less than
3. In many settings, a normalized version of the edit distance is required. To see why, note
that for the same argument as above the distance between JaneKennedy and JohnKennedy
is also 3 although clearly the latter pair of strings are much more similar to one another.

In [13] the well-known normalized version of the edit distance, henceforth ned, was
suggested in which the distance between two non-empty strings w1 and w2 is the minimum
cost of an edit path between w1 and w2. The cost of an edit path is the weight of edit
operations along the path, divided by the length of the path. The cost of the edit path
α above is thus 3

4 but since α′ =no-op(J),replace(a,o),insert(h),no-op(n),delete(e) also
transforms Jane to John we have that ned(Jane, John) = 3

5 . Similar arguments show that
ned(JaneKennedy, JohnKennedy) = 3

12 , thus it is now apparent that JaneKennedy and
JohnKennedy are more similar to one another (compared to Jane and John).
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14:2 When Is the Normalized Edit Distance over Non-Uniform Weights a Metric?

The above discussion concerned the case of uniform weights. However, in many ap-
plications using a normalized edit distance, such as text retrieval, signal processing, and
computational biology, non-uniform weights are used. In the case of non-uniform weights,
any basic edit operation has its own weight, e.g. delete(a), insert(a), delete(b), replace(a, b),
etc. can cost differently. A function d assigning a weight to each edit operation is assumed,
and each such function gives rise to a different version, nedd, of the normalized edit distance
of [13]. It was noted in [13] that nedd may not satisfy the triangle inequality for certain
weight functions d, though it is observed to behave well in practice often enough. The
question under which criteria on d is nedd a metric is standing since. This motivated the
introduction of other definitions of normalized edit distance, e.g., the generalized edit distance
(ged) [12], and the contextual edit distance (ced) [5]. A sufficient condition on d for gedd

to be a metric was given in [12]1 and in [5] it is shown that ced is a metric when d is the
uniform weight. It was recently shown that under the uniform weights, ned is a metric, and
that ned enjoys several nice properties that ged and ced do not [7]. The question under
which criteria nedd over a non-uniform weight function d is a metric was left unanswered.

In this paper we provide a necessary and sufficient condition on a weight function d on
edit operations, in order for nedd to be a metric. While it is reasonable to assume that d
should be a metric (in the space of edit operations) we show that this is neither a necessary
condition, nor a sufficient one. The exact criteria relaxes the requirement of the triangle
inequality, makes an additional requirement on the cost of inserts and deletes, and in general
concerns only edit operations we term essentials. We term d that satisfies these criteria fine.
The proof that d being fine is also a sufficient condition for nedd to be a metric generalizes
and significantly simplifies the proof that nedd is a metric in the uniform case [7].

The main result of the paper is the following theorem.

▶ Theorem 1 (Necessary and Sufficient Condition). Let d : (Σ ∪ {ε}) × (Σ ∪ {ε}) → [0, 1].
Let a, c ∈ Σ ∪ {ε} and b ∈ Σ. Let m = sup{nedd(w1, w2) : w1, w2 ∈ Σ∗}. A necessary and
sufficient condition for nedd to be a metric is that d satisfies the following properties after
removing inessential edit operations.
1. d(a, c) = 0 iff a = c

2. d(a, c) = d(c, a)
3. d(a, b) + d(b, c) ≥ min{d(a, c), d(a, ε) + d(ε, c)}
4. d(ε, b) = d(b, ε) ≥ m

2

The rest of the paper is organized as follows. We provide some preliminaries in §2. In §3
we show that d being a metric is neither a necessary condition nor a sufficient one. In §4
we gradually develop the necessary condition on d, we term a weight function d satisfying
these conditions fine. In §5 we show that d being fine is a sufficient condition for nedd to be
a metric. In §6 we provide some natural examples for weight functions that are fine, and
discuss applications of nedd in formal verification. Due to lack of space, the proofs regarding
the examples in §6 are deferred to the full version of the paper.

2 Notations

Metric spaces

A metric space is an ordered pair (M, d) where M is a set and d : M × M → R is a metric,
i.e., it satisfies the following properties for all m1,m2,m3 ∈ M:

1 The condition is that d is a metric and all delete and insert operations cost the same.
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1. d(m1,m2) = 0 iff m1 = m2;
2. d(m1,m2) = d(m2,m1);
3. d(m1,m3) ≤ d(m1,m2) + d(m2,m3).
The first condition is referred to as identity of indiscernibles, the second as symmetry, and
the third as the triangle inequality.

Words and Edit Operations

Let Σ be an alphabet and Σ∗ (Σ+) denote all the finite (non-empty) strings over Σ. The
length of word w = σ1σ2...σn, denoted |w|, is n. We use w[i] to denote the i-th letter of w,
and w[..i] for the prefix of w ending at the i-th letter. We denote the empty word by ε. Let
a, b ∈ Σ. The usual edit operations are delete a, insert a, replace a with b, and no-op a. We
use the following notations for them. Let Γ̂ = (Σ ∪ {ε})2. We use [ a

b ] to represent the pair
(a, b). An edit operation is a letter in Γ = Γ̂ \ {[ ε

ε ]}. The letter [ a
b ] denotes replace a with b,

the letter [ a
a ] denotes no-op a, the letter [ a

ε ] denote delete a, and the letter [ ε
a ] denotes insert

a. This style of notation will come in handy in §5 when we prove the sufficient condition.

Edit Paths

An edit path between words w1 and w2 over Σ is a sequence
[ a1

b1

] [ a2
b2

]
. . .

[ am

bm

]
of elements

in Γ satisfying that a1a2 . . . am = w1 and b1b2 . . . bm = w2. For instance, take w1 = aaa and
w2 = bb then α = [ a

b ] [ a
ε ] [ a

b ] is an edit path between w1 and w2, and α′ = [ ε
b ] [ a

b ] [ a
ε ] [ a

ε ] is
another edit path between w1 and w2. It is sometimes convenient to represent these edit
paths as aaa 7→ b_b and _aaa 7→ bb__, respectively. In standard terminology the first edit
path would correspond to replace a with b, delete a, replace a with b and the second to insert
b, replace a with b, delete a, delete a. In §5 we use also strings over Γ̂ which we refer to as
extended edit-paths.

We use πi for the projection of a tuple or a sequence of tuples on its i-th component.
E.g. if α = [ ε

b ] [ a
b ] [ a

ε ] [ a
ε ] then π1(α) = εaaa and π2(α) = bbεε. Let α = a1a2 . . . ak be a

sequence of symbols over Σ ∪ {ε}. We use word(α) for the word obtained by concatenating
these letters. For instance, word(π1(α)) = aaa. Let w1, w2 ∈ Σ∗. Let α be an (extended)
edit path between w1, w2. Then word(π1(α)) = w1 and word(π2(α)) = w2. We use input(α)
for word(π1(α)) and output(α) for word(π2(α)).

Weight, Length and Costs of Edit Paths

Let d : Γ → [0, 1] be a function assigning cost for the basic edit operations. Although [ ε
ε ]

is not an edit operation, it is sometimes convenient to assume d is defined on it as well,
namely d : Γ̂ → [0, 1]. When this is the case we simply assume d(ε, ε) = 0. Let w1 ∈ Σ∗ and
w2 ∈ Σ+. Let α =

[ a1
b1

] [ a2
b2

]
. . .

[ an

bn

]
be an edit path between w1 and w2. We say that the

length of α is n, and that the weight of α is
∑n

i=1 d(ai, bi). We denote them by len(α) and
wgt(α) respectively. The cost of an edit path α, denoted cost(α) is defined as wgt(α)

len(α) . 2

2 Note that it is well defined since w2 ∈ Σ+ guarantees that len(α) ̸= 0. To obtain a definition that works
also for w1 ∈ Σ+ and w2 ∈ Σ∗ we can consider also edit paths from w2 to w1.
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The Normalized Edit Distance (NED)

Let Σ be an alphabet and d : Γ → [0, 1]. Note that d may depend on the exact letters, and
it could be that e.g. d(a, b) ̸= d(b, d) or that d(ε, b) ̸= d(ε, d). The Levenstein distance [11]
(ed) and the Normalized Edit Distance [13] (ned) between w1 and w2 (with respect to d)
can be defined as follows:

edd(w1, w2) = min {wgt(α) : α is an edit path between w1 and w2 } .

nedd(w1, w2) = min {cost(α) : α is an edit path between w1 and w2 } .

The edd distance looks for an edit path with minimum weight, whereas nedd looks for
an edit path with minimum cost.

▶ Example 2 (edd and nedd). For instance, consider the words w1 = abaad, w2 = baaadc over
Σ = {a, b, c, d}. Then both α1 = [ a

ε ]
[

b
b

]
[ a

a ] [ a
a ] [ ε

a ]
[

d
d

]
[ ε

c ] and α2 = [ a
b ] [ b

a ] [ a
a ] [ a

a ]
[

d
d

]
[ ε

c ]
are edit paths between w1 and w2. Consider first the setting of uniform weights, namely
d : Γ → [0, 1] is defined as d(σ, σ) = 0 and d(σ, σ′) = 1 if σ ̸= σ′. In this setting, we have
that wgt(α1) = 1 + 0 + 0 + 0 + 1 + 0 + 1 = 3 and wgt(α2) = 1 + 1 + 0 + 0 + 0 + 1 = 3, so
using ed α1 and α2 are equally good. However len(α1) = 7 and len(α2) = 6 so cost(α1) = 3

7
and cost(α2) = 3

6 thus using ned, α1 is preferable.
Consider now the non-uniform weights d(σ, σ′) = 0.5 for every σ ̸= σ′, and d(σ, σ) = 0,

d(σ, ε) = d(ε, σ) = 1 for every σ, σ′ ∈ Σ. We get that wgt(α1) = 1 + 0 + 0 + 0 + 1 + 0 + 1 = 3
and wgt(α2) = 0.5 + 0.5 + 0 + 0 + 0 + 1 = 2 and so cost(α1) = 3

7 and cost(α2) = 2
6 , thus α2

is preferable.

▶ Definition 3. An edit path α is termed optimal if cost(α) = nedd(input(α), output(α)).

3 A metric weight function is neither necessary nor sufficient

Let d : Γ → [0, 1] we are interested in finding a necessary and sufficient condition on d for
nedd to be a metric. A reasonable conjecture is that d is a metric on the space Γ. We show
that this is neither a sufficient nor a necessary condition.

We first show that d being a metric is not a sufficient condition for nedd to be a metric.

▷ Claim 4. There exists d which is a metric while nedd is not.

Proof. Let Σ = {a, b} and let d(σ, σ) = 0 for every σ ∈ Σ. Let d(a, b) = d(b, a) = 1,
d(a, ε) = d(ε, a) = 0.1 and d(b, ε) = d(ε, b) = 1. It is easy to verify that d is a metric.

We show now that nedd breaks the triangle inequality. Take w1 = a and w3 = b. Then
nedd(a, b) = 0.55 via the edit path that deletes a and inserts b namely [ a

ε ] [ ε
b ]. Its weight is

0.1 + 1 and its lengths is 2. Thus it costs 1.1
2 = 0.55.

Consider now going via w2 = baaaa. Then α1,2 = [ a
b ] [ ε

a ] [ ε
a ] [ ε

a ] [ ε
a ] is an edit path between

w1 and w2 and α2,3 =
[

b
b

]
[ a

ε ] [ a
ε ] [ a

ε ] [ a
ε ] is an edit path between w2 and w3. Notice that

nedd(w1, w2) ≤ 1+4(0.1)
5 and nedd(w2, w3) ≤ 4(0.1)

5 . Thus, nedd(w1, w2) + nedd(w2, w3) ≤
1.8
5 = 0.36 < 0.55 = nedd(w1, w3). Hence, the triangle inequality for nedd breaks. ◁

▶ Corollary 5. d being a metric is not a sufficient condition for nedd to be a metric.

Next we show that d being a metric is not a necessary condition for nedd to be a metric:
nedd can be a metric although d breaks the triangle inequality or the symmetry condition.

▷ Claim 6. There exists nedd which is a metric while d breaks the triangle inequality.
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Proof. Let Σ = {a, b} and let d(σ, σ) = 0 for every σ ∈ Σ. Let d(a, b) = d(b, a) = 1,
d(ε, a) = d(a, ε) = 0.4 and d(ε, b) = d(b, ε) = 0.5. Then d is not a metric since going from
a to b via ε is less costly than going directly (0.9 vs. 1). However, nedd is a metric. It is
easy to see that the first two requirements of a metric hold for nedd. Regarding the triangle
inequality, while it seems at first that it breaks in going from a to b (as it does for d) this
is not the case. The optimal edit path from a to b is [ a

ε ] [ ε
b ] whose cost is 0.5+0.4

2 = 0.45
which is smaller than going via ε which costs nedd(a, ϵ) + nedd(ϵ, b) = 0.4 + 0.5. The proof
that nedd is a metric follows from the fact that it adheres to the sufficient and necessary
conditions we provide. We come back to this in Remark 33. ◁

▷ Claim 7. There exists nedd which is a metric while d breaks symmetry.

Proof. Let Σ = {a, b} and let d(σ, σ) = 0 for every σ ∈ Σ. Let d(a, b) = 1, d(b, a) =
0.9, d(ε, a) = d(a, ε) = 0.4 and d(ε, b) = d(b, ε) = 0.45. Then d is not a metric since
d(a, b) ̸= d(b, a) breaks symmetry. However, nedd is a metric. Indeed, the symmetry of
nedd does not break since it never uses in an optimal path the operation [ a

b ] or [ b
a ]. For

example, consider w1 = a and w2 = b. Then nedd(w1, w2) = wgt([ a
ε ] [ ε

b ])/2 = 0.425 and
nedd(w2, w1) = wgt([ b

ε ] [ ε
a ])/2 = 0.425 (and the fact that d(b, a) = 0.9 ̸= d(b, a) = 1 doesn’t

come in the way). Here as well the proof that nedd is a metric is deferred to Remark 33.
◁

▶ Corollary 8. d being a metric is not a necessary condition for nedd to be a metric.

4 Necessary condition

We turn to extract necessary conditions on d for nedd to be a metric. We start by showing
that, as expected, if nedd is a metric then d satisfies the first requirement of a metric. The
proof relies on the following simple observation.

▷ Claim 9. Let a, b ∈ Σ. Then
1. nedd(a, ε) = d(a, ε) and nedd(ε, a) = d(ε, a)
2. nedd(a, b) = min{d(a, b), 1

2 (d(a, ε) + d(ε, b))}

Proof. The first item holds since there is a single edit path from ε to a ∈ Σ: the edit path
[ ε

a ]. Hence nedd(a, ε) = d(a,ε)
1 . The claim on nedd(ε, a) is symmetric.

The second item holds since there are exactly two edit paths from a to b: either [ a
b ] or

[ a
ε ] [ ε

b ]. Thus ned(a, b) = min{ d(a,b)
1 , d(a,ε)+d(ε,b)

2 }. ◁

▷ Claim 10. If nedd is a metric then d must satisfy the identity of indiscernibles condition.

Proof. Let a, b ∈ Σ. By Claim 9, nedd(a, ε)=d(a, ε) and nedd(ε, a)=d(ε, a). Thus, nedd(a, ε)
> 0 implies d(a, ε) > 0. By symmetry we get d(ε, a) > 0. Consider now the case where b = a.
We have 0 = nedd(a, a) = min{d(a, a), 1

2 (d(a, ε) + d(ε, a))}. Since we have shown that the
second argument is non-zero it follows that d(a, a) = 0. Last, consider the case where b ̸= ε

and b ̸= a. Assume towards contradiction the replace between some non-identical letters a
and b is zero, then nedd(a, b) ≤ 0 via the direct path involving this replace contradicting
that nedd satisfies the first requirement of a metric. ◁

The proof of Claim 6 shows that nedd can satisfy the condition of triangle inequality although
d does not. The reason is that in nedd there are two options for a direct path between two
letters a and b: either a replace or a delete followed by an insert. In the perspective of d a
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path from a to b that takes a short detour via ε is not direct. Hence the triangle inequality
for d can be relaxed as stated below and as we show in the next section this relaxation
suffices.

▷ Claim 11 (Relaxed Triangle Inequality). If nedd satisfies the triangle inequality then d

should satisfy

d(a, b) + d(b, c) ≥ min{d(a, c), d(a, ε) + d(ε, c)}

for all b ∈ Σ and a, c ∈ Σ ∪ {ε}.

▶ Remark 12. Note that when c = ε the requirement is d(a, b)+d(b, ε) ≥ min{d(a, ε), d(a, ε)+
d(ε, ε)} and given d(ε, ε) = 0 this amounts to

d(a, b) + d(b, ε) ≥ d(a, ε)

which says that replacing and deleting cannot cost less than deleting. Similarly, when a = ε

this amounts to d(ε, b) + d(b, c) ≥ d(b, ε) which says that inserting and replacing cannot cost
less than inserting.

Proof of Claim 11. We first consider the case that c = ε. Following Remark 12, assume
towards contradiction that there exists a, b ∈ Σ such that d(a, b) + d(b, ε) < d(a, ε). Consider
w1 = a, w2 = b, w3 = ε. Let α1,3 = [ a

ε ]. Notice that it is the only possible edit path from
w1 to w3 and thus the optimal. Let α1,2 = [ a

b ] and α2,3 = [ b
ε ]. Hence cost(α1,2) = d(a, b),

cost(α2,3) = d(b, ε) and cost(α1,3) = d(a, ε). Since nedd satisfies the triangle inequality
then we know that cost(α1,2) + cost(α2,3) ≥ cost(α1,3) hence d(a, b) + d(b, ε) ≥ d(a, ε) in
contradiction to the assumption. The case where a = ε is similar.

Assume now neither a nor c is ε and assume towards contradiction that there exists
a, b, c ∈ Σ such that d(a, b) + d(b, c) < min{d(a, c), d(a, ε) + d(ε, c)}. Let i ∈ N and consider
w1 = ai+1, w2 = aib and w3 = aic. Let α1,3 ∈ Γ∗ be an optimal edit path between w1 to
w3. Notice that either α1,3 = ([ a

a ])i [ a
c ] or α1,3 = ([ a

a ])i [ a
ε ] [ ε

c ]. Consider the two edit paths
α1,2 = ([ a

a ])i [ a
b ] and α2,3 = ([ a

a ])i [ b
c ] between w1 to w2 and between w2 to w3, respectively.

Case 1: α1,3 = ([ a
a ])i [ a

c ].
Then wgt(α1,3) = d(a, c), len(α1,3) = i+ 1 and cost(α1,3) = d(a,c)

i+1 . In order for nedd to
satisfy the triangle inequality cost(α1,3) ≤ cost(α1,2) + cost(α2,3) must hold. Thus

d(a, c)
i+ 1 ≤ d(a, b)

i+ 1 + d(b, c)
i+ 1

d(a, c) ≤ d(a, b) + d(b, c)

in contradiction to the assumption.
Case 2: α1,3 = ([ a

a ])i [ a
ε ] [ ε

c ].
Then wgt(α1,3) = d(a, ε)+d(ε, c), len(α1,3) = i+2 and cost(α1,3) = d(a,ε)+d(ε,c)

i+2 . In order
for nedd to satisfy the triangle inequality cost(α1,3) ≤ cost(α1,2) + cost(α2,3) must hold.
Thus,

d(a, ε) + d(ε, c)
i+ 2 ≤ d(a, b)

i+ 1 + d(b, c)
i+ 1

(i+ 1)(d(a, ε) + d(ε, c))
i+ 2 ≤ d(a, b) + d(b, c)
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By taking i to infinity we get that

lim
i→∞

(i+ 1)(d(a, ε) + d(ε, c))
i+ 2 = d(a, ε) + d(ε, c) ≤ d(a, b) + d(b, c)

in contradiction to the assumption.
Hence either way we get that for nedd to satisfy the triangle inequality then d should satisfy

d(a, b) + d(b, c) ≥ min{d(a, c), d(a, ε) + d(ε, c)}

for every b ∈ Σ and a, c ∈ Σ ∪ {ε}. ◁

In Claim 4 we have shown that nedd fails to be a metric although d is. Intuitively, the
reason is that going through more and more insert and delete operations can decrease the
overall cost. In the following, we will show that requiring insert and delete operations to be
at least half of the costliest replace operation prevents this.

▷ Claim 13 (At least half). If nedd is a metric and m = sup{nedd(w1, w2) : w1, w2 ∈ Σ∗}.
Then d should satisfy the requirement d(ε, b) = d(b, ε) ≥ m

2 for every b ∈ Σ.

Proof. First note that if m = sup{nedd(w1, w2) : w1, w2 ∈ Σ∗} then m =
sup{nedd(σ1, σ2) : σ1, σ2 ∈ Σ}. Indeed the way to obtain the maximum cost of an edit path
is using the edit operation with maximal cost, and using more than one such operation will
not increase the total cost.

Suppose inserting/deleting some letter b costs c for some c < m
2 . Consider the words

w1 = σ1, w3 = σ3 and assume that w1 and w3 are such that nedd(w1, w3) = m. Note that
there are only two possible edit paths that transform w1 to w3. That is, either α1,3 = [ σ1

σ3 ] or
α1,3 = [ σ1

ε ] [ ε
σ3 ]. Hence nedd(w1, w3) = m implies m = min{d(σ1, σ3), 1

2 (d(σ1, ε)+d(ε, σ3))}.
This in turn implies that d(σ1, σ3) ≥ m and d(σ1, ε) + d(ε, σ3) ≥ 2m.

Consider now the word w2 = σ3 · bk for some k ∈ N where k ≥ 1. Then we can transform
w1 to w2 using the edit path α1,2 = [ σ1

σ3 ] · ([ ε
b ])k or α1,2 = [ σ1

ε ] [ ε
σ3 ] · ([ ε

b ])k. To transform w2
to w3 we can use the edit path α2,3 = [ σ3

σ3 ] ([ b
ε ])k. Then the sum of the edit paths is one of

the following:
1. In case of α1,2 = [ σ1

σ3 ] · ([ ε
b ])k:

cost(α1,2)+cost(α2,3) = d(σ1, σ3) + k · d(ε, b)
1 + k

+ k · d(b, ε)
1 + k

≥ m+ k · c
1 + k

+ k · c
1 + k

= 2k · c+m

1 + k

Since nedd(w1, w3) = m and since nedd is a metric then by the triangle inequality
we require cost(α1,2) + cost(α2,3) ≥ 2k·c+m

1+k ≥ m = nedd(w1, w3). Which entails that
2k · c+m ≥ m+mk and hence c ≥ m

2 .
2. In case of α1,2 = [ σ1

ε ] [ ε
σ3 ] · ([ ε

b ])k:

cost(α1,2)+cost(α2,3) = d(σ1, ε) + d(ε, σ3) + k · d(ε, b)
2 + k

+ k · d(b, ε)
1 + k

≥ 2m+ k · c
2 + k

+ k · c
1 + k

Again, since nedd(w1, w3) = m and since nedd is a metric by the triangle inequality we
require cost(α1,2) + cost(α2,3) ≥ 2m+k·c

2+k + k·c
1+k ≥ m = nedd(w1, w3). Which entails that

(2m+ kc)(1 + k) + kc(2 + k) ≥ m(2 + k)(1 + k)

2m+ 2mk + kc+ k2c+ 2kc+ k2c ≥ 2m+ 3mk +mk2

c(2k2 + 3k) ≥ mk +mk2

c ≥ mk2 +mk

2k2 + 3k
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Taking k to infinity we get that

lim
k→∞

mk2 +mk

2k2 + 3k = m

2

Hence either way we get c ≥ m
2 . ◁

▶ Definition 14. We say that an edit operation γ ∈ Γ is essential if there exists α ∈ Γ∗ such
that α is an optimal edit path that uses γ. Otherwise γ is called inessential.

For example in the proof of Claim 7 we can see that [ a
b ] and [ b

a ] are inessential since
transforming a to b via ε is always preferable, while [ a

ε ] is essential. We show that we can
ignore inessential edit operations without changing the result.

▷ Claim 15 (Essentials suffice). Let Γ′ be the restriction of Γ to only essential edit operations
and let d′ : Γ′ → [0, 1] be the restriction of d to Γ′. Then nedd(w1, w2) = nedd′(w1, w2) for
every w1, w2 ∈ Σ∗.

Proof. Let w1, w2 ∈ Σ∗ we will show that nedd(w1, w2) = nedd′(w1, w2). From Definition 3
we know that an edit path α for which nedd(w1, w2) = cost(α) is an optimal edit path hence
every edit operation in it is essential by Definition 14. Thus, all the edit operations in α

exist in Γ′. It follows that nedd′(w1, w2) ≤ cost(α) and since Γ′ does not have additional
edit operations compared to Γ (and they agree on the costs of the mutual ones) the cost of
nedd′(w1, w2) cannot be bigger than cost(α) or else α is not optimal in contradiction. Hence
nedd′(w1, w2) = nedd(w1, w2). ◁

It follows from Claim 15 that we can assume without loss of generality that there are no
inessential operations in d.
▶ Remark 16. Note that [ a

ε ] and [ ε
a ] are essential for every a ∈ Σ. This is since there is

only one edit path from a to ε (and similarly from ε to a) and it involves these operations.
Moreover, by Claim 9 if nedd is a metric then d(a, ε) = d(ε, a).

▷ Claim 17 (A bound on the cost of an essential replace). Let a, b ∈ Σ. If [ a
b ] is an essential

edit operation then there exists i ∈ N such that d(a, b) < (d(a, ε) + d(ε, b))(1 − 1/i).

Proof. Since [ a
b ] is essential there exists an optimal edit path α that uses it. Consider the

shortest such optimal path. Note that cost(α) = wgt(α)−d(a,b)+d(a,b)
len(α) . Consider a new edit

path α′ that does the same edit operations as α apart from [ a
b ] which it will replace by

[ a
ε ] [ ε

b ]. Note that input(α) = input(α′) and output(α) = output(α′). Since α is optimal we
know cost(α) ≤ cost(α′). Moreover notice that cost(α′) = wgt(α)−d(a,b)+d(a,ε)+d(ε,b)

len(α)+1 .
Hence

cost(α) = wgt(α) − d(a, b) + d(a, b)
len(α) ≤ wgt(α) − d(a, b) + d(a, ε) + d(ε, b)

len(α) + 1 = cost(α′)

Thus

(len(α) + 1)(wgt(α) − d(a, b)) + (len(α) + 1) · d(a, b) ≤
len(α)(wgt(α) − d(a, b)) + len(α)(d(a, ε) + d(ε, b))

implying

(wgt(α) − d(a, b)) + (len(α) + 1) · d(a, b) ≤ len(α)(d(a, ε) + d(ε, b))
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Therefore

d(a, b) ≤ len(α)(d(a, ε) + d(ε, b)) − (wgt(α) − d(a, b))
len(α) + 1

≤ len(α)(d(a, ε) + d(ε, b))
len(α) + 1 = (len(α) + 1 − 1)(d(a, ε) + d(ε, b))

len(α) + 1

= d(a, ε) + d(ε, b) − d(a, ε) + d(ε, b)
len(α) + 1 = (d(a, ε) + d(ε, b))

(
1 − 1

len(α) + 1

)
hence the claim holds for i > len(α) + 1. ◁

In Claim 7 we have shown that symmetry of d is not a necessary condition for nedd to
be a metric. In Claim 9 we showed that insert and delete operations are essential and must
be symmetric. The following claim clarifies that if we restrict d to the essential operations
then symmetry must hold.

▷ Claim 18 (Symmetry of Essentials). Let a, b ∈ Σ, if [ a
b ] is an essential edit operation and

nedd is a metric then [ b
a ] is also essential and d(a, b) = d(b, a).

Proof. Assume that [ a
b ] is an essential edit operation and nedd is a metric. Assume towards

contradiction that [ b
a ] is not essential. From Claim 17 we know that there exists i ∈ N such

that d(a, b) < (d(a, ε) + d(ε, b))(1 − 1/i). Consider w1 = ai+1, w2 = aib, let α = ([ a
a ])i [ a

b ]
and α′ = ([ a

a ])i [ a
ε ] [ ε

b ]. Notice that cost(α) = d(a,b)
i+1 and cost(α′) = d(a,ε)+d(ε,b)

i+2 . Since the
only edit path that can cost less than α is α′ we can check which of them is optimal. We
argue that cost(α) < cost(α′). If this is the case then

d(a, b)
i+ 1 <

d(a, ε) + d(ε, b)
i+ 2

hence

d(a, b) < (i+ 1) · (d(a, ε) + d(ε, b))
i+ 2

and so

d(a, b) < d(a, ε) + d(ε, b) − d(a, ε) + d(ε, b)
i+ 2 = (d(a, ε) + d(ε, b)) · (1 − 1

i+ 2)

And this holds since [ a
b ] is essential and so d(a, b) < (d(a, ε) + d(ε, b))(1 − 1

i ), by Claim 17.
Hence α is optimal which means that nedd(w1, w2) = cost(α) and since nedd is a metric
we know that cost(α) = nedd(w2, w1) as well. Consider now the optional optimal edit
paths from w2 to w1. Let β = ([ a

a ])i [ b
a ] and β′ = ([ a

a ])i [ b
ε ] [ ε

a ]. We know that nedd is
a metric hence following Claim 9 we know that cost(β′) = cost(α′) hence we know that
cost(α) = nedd(w2, w1) < cost(β′). Thus cost(α) = nedd(w2, w1) = cost(β), implying [ b

a ] is
essential too and moreover d(a, b) = d(b, a). ◁

From Remark 16 we know that the only operations that can be inessential are [ a
b ] where

a, b ̸= ε. The following claim provides means to check if [ a
b ] is essential or not.

▷ Claim 19 (Essentialness Check). For every a, b ∈ Σ we have [ a
b ] is inessential iff d(a, b) ≥

d(a, ε) + d(ε, b).
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Proof. =⇒ From Claim 17 we know that if [ a
b ] is essential then there exists i ∈ N such that

d(a, b) < (d(a, ε) + d(ε, b))(1 − 1/i). Thus if such i does not exist (which means that [ a
b ] is

inessential), then for every i we have

d(a, b) ≥ (d(a, ε) + d(ε, b))(1 − 1/i)

hence d(a, b) ≥ d(a, ε) + d(ε, b).
⇐= Assume towards contradiction that d(a, b) ≥ d(a, ε) + d(ε, b) and [ a

b ] is essential. Let
n = d(a, b) and m = d(a, ε) + d(ε, b). From the definition of essential, we know that there
exists w1, w2 ∈ Σ∗ and α ∈ Γ∗ such that α is an optimal path from w1 to w2 that uses [ a

b ].
Let k denote the number of occurrences of [ a

b ] in α. Let wgt(α) = p+n ·k, and len(α) = ℓ+k.
Now notice that if we replace every occurrence of [ a

b ] with [ a
ε ] [ ε

b ] we will get path α′ from
w1 to w2 where cost(α′) = p+m·k

ℓ+2·k < p+n·k
ℓ+k in contradiction to α being an optimal path. ◁

We are now ready to state the necessary condition on d for nedd to be a metric.

▶ Corollary 20 (Necessary Condition). Let a, c ∈ Σ ∪ {ε} and b ∈ Σ. Let m =
sup{nedd(w1, w2) : w1, w2 ∈ Σ∗}. A necessary condition for nedd to be a metric is that d
satisfies the following properties after removing inessential edit operations.
1. d(a, c) = 0 iff a = c

2. d(a, c) = d(c, a)
3. d(a, b) + d(b, c) ≥ min{d(a, c), d(a, ε) + d(ε, c)}
4. d(ε, b) = d(b, ε) ≥ m

2

Indeed, the first requirement is necessary by Claim 10, the second requirement by Claim 18,
the third by Claim 11, and the forth by Claim 13.3

▶ Remark 21. Let m = sup{nedd(w1, w2) : w1, w2 ∈ Σ∗}. Note that we can assume without
loss of generality that m = 1. If this is not the case then we define d′(σ1, σ2) = 1

md(σ1, σ2).
Then d′ would satisfy that sup{nedd′(w1, w2) : w1, w2 ∈ Σ∗} = 1. In this case, it may be
that there are σ1, σ2 for which d′(σ1, σ2) are greater than 1 but such an edit operation is
inessential.

▶ Definition 22 (Fine Weight Function, Fine Metric). We call a function d : Γ → [0, 1]
satisfying the conditions of Corollary 20 fine. Note that if d is a metric it satisfies the first
three requirements. If it also satisfied the fourth requirement, we call it a fine metric.

In the next section, we show that if d : Γ → [0, 1] is fine then nedd is a metric. That is, d
being fine is a sufficient and necessary condition for nedd to be a metric.

5 Sufficient Condition

We turn to show that if d is fine then nedd is a metric. That is, that the necessary condition
provided in the previous section is also a sufficient.

▷ Claim 23. If d is fine then nedd satisfies the identity of indiscernibles requirement.

3 For ged, a sufficient condition was given in [12]. We conjecture that it is not a necessary condition, and
ged may be a metric also when deletion of different letters costs differently as in d of Claim 7.
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Proof. Assume d is fine, and let w1, w2 ∈ Σ∗.
1. Case w1 = w2. We show that nedd(w1, w2) = 0. Since d is fine we know that d(a, a) = 0

for every a ∈ Σ. Thus, we can construct an edit path α that applies no-op to each letter
which leads to that wgt(α) = 0. Hence nedd(w1, w2) = 0.

2. Case w1 ≠ w2. Let α ∈ Γ∗ be an optimal edit path that transforms w1 to w2. Notice
that α needs at least one edit operation, denote it γ, that is not no-op. Since d is fine we
know that wgt(γ) > 0. Hence nedd(w1, w2) = cost(α) = wgt(α)

len(α) ≥ wgt(γ)
len(α) > 0. ◁

▷ Claim 24. If d is fine then nedd satisfies the symmetry requirement.

Proof. Assume that d is fine and assume towards contradiction that there exists w1, w2 ∈ Σ∗

such that nedd(w1, w2) ̸= nedd(w2, w1). Assume w.l.o.g. that nedd(w1, w2) < nedd(w2, w1).
Let α1,2 be an optimal path that transforms w1 to w2. Let γ ∈ α1,2 such that γ = [ a

b ] where
a, b ∈ Σ ∪ {ε} and either a ̸= ε or b ̸= ε. From Definition 14 and Claim 18 we know that γ is
essential and so is [ b

a ]. Since d is fine we know that d(a, b) = d(b, a). We refer to [ b
a ] as the

opposite edit operation of [ a
b ]. Note that if we replace every edit operation in α1,2 with its

opposite edit operation, we will receive a new edit path α2,1 that transforms w2 to w1 and
cost(α2,1) = cost(α1,2) < nedd(w2, w1), contradicting the definition of ned. ◁

We proceed to show that the triangle inequality also holds.
The idea of the proof of [7] that ned satisfies the triangle inequality for the uniform case

is to take two edit paths α1,2 and α2,3 from words w1 to w2 and from w2 to w3 and extract
from them an edit path α1,3 from w1 to w3 that costs at most their sum. We follow that
idea but generalize and simplify the proof.

The heart of the simplification lies in finding a way to align the two edit paths so that
their composition to a new edit path from w1 to w3 is seamless, and we can easily prove that
it costs less than the sum.

We proceed by showing how to compose the two paths. The composition uses as an
intermediate step a pair of extended edit paths α′

1,2, α
′
2,3 that align the give edit paths α1,2

and α2,3, with respect to one another.4

▶ Definition 25 (Alignment of edit paths). Let α1,2 and α2,3 be such that output(α1,2) =
input(α2,3). We say that ⟨α′

1,2, α
′
2,3⟩ is the alignment of α1,2 and α2,3 if α′

1,2 and α′
2,3 are

the shortest extended edit paths satisfying that
α′

1,2 is obtained from α1,2 by inserting some [ ε
ε ] letters,

α′
2,3 is obtained from α2,3 by inserting some [ ε

ε ] letters,
and π2(α′

1,2) = π1(α′
2,3).

The first requirement guarantees that the input and output of α′
1,2 is the same as those

of α1,2, and the second requirement gives the analogous guarantees regarding α′
2,3 and α2,3.

The third requirement strengthens the connection between output(α1,2) and input(α2,3) and
demands that they agree not only on the letters of the interim word w2, but also on the
occurrences of ε. This in particular requires α′

1,2 and α′
2,3 to be of the same length. Using

the [ σ
σ′ ] notations, if we write α′

1,2 and α′
2,3 one above the other then the second and third

lines are the same.

4 Recall that an extended edit path is a string over Γ̂, namely it may use [ ε
ε ] on top of the usual edit

operations.
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▶ Example 26. Let w1 = a1a2a3, w2 = b1b2 and w3 = c1c2c3c4. Then α1,2 =
[ a1

b1

]
[ a2

ε ]
[ a3

b2

]
is an edit path between w1 and w2 and α2,3 = [ ε

c1 ]
[

b1
c2

] [
b2
c3

]
[ ε

c4 ] is an edit path between w2
and w3. Using the 7→ notation, we can write these as a1a2a3 7→ b1_b2 and _b1b2_ 7→ c1c2c3c4.

Let α′
1,2 = [ ε

ε ]
[ a1

b1

]
[ a2

ε ]
[ a3

b2

]
[ ε

ε ] and α′
2,3 = [ ε

c1 ]
[

b1
c2

]
[ ε

ε ]
[

b2
c3

]
[ ε

c4 ]. Then ⟨α′
1,2, α

′
2,3⟩ is

their alignment. Using the 7→ notations these are _a1a2a3_ 7→ _b1_b2_ and _b1_b2_ 7→
c1c2_c3c4, on which it is perhaps easier to see that the output of α′

1,2 and the input of α′
2,3

agree also on ε positions.

Note that if π2(α1,2) contains i occurrences of ε and π1(α2,3) contains j occurrences of
ε then there exist α′

1,2 and α′
2,3 of length at most w2 + i+ j such that ⟨α′

1,2, α
′
2,3⟩ is their

alignment. Moreover, the alignment can be constructed iteratively by following π2(α1,2) and
π1(α2,3) and if the current index (of the considered projections) is not the same, inserting
(ε, ε) to either α1,2 or α2,3 depending on which has advanced less (in terms of letters of w2).

We are now ready to define the composition of α1,2 and α2,3.

▶ Definition 27 (Compose). Let α1,2 and α2,3 be such that output(α1,2) = input(α2,3)
and let ⟨α′

1,2, α
′
2,3⟩ be their alignment. Assume α′

1,2 =
[ a1

b1

] [ a2
b2

]
. . .

[ ak

bk

]
and α′

2,3 =[
b1
c1

] [
b2
c2

]
. . .

[
bk
ck

]
. Let α′′

1,3 = [ a1
c1 ] [ a2

c2 ] . . . [ ak
ck

]. Let α′
1,3 be the edit path obtained from

α′′
1,3 by replacing [ a

c ] with [ a
ε ] [ ε

c ] for every a, c for which d(a, c) ≥ d(a, ε) + d(ε, c). Finally,
let α1,3 be the edit path obtained from α′

1,3 by removing the [ ε
ε ] letters.

▷ Claim 28. Let α1,2 and α2,3 be such that output(α1,2) = input(α2,3). If α1,3 is the result
of composing α1,2 and α2,3 as per Definition 27 then α1,3 is an edit path between input(α1,2)
and output(α2,3).

Proof. Let ⟨α′
1,2, α

′
2,3⟩ be the alignment of α1,2 and α2,3. Then α and α′ agree on their

input and output for α ∈ {α1,2, α2,3} since they only differ in [ ε
ε ] letters. Let α′′

1,3 and
α′

1,3 be as described in Definition 27. It is easy to see that input(α′′
1,3) = input(α′

1,2) and
output(α′′

1,3) = output(α′
2,3) since input([ a

c ]) = a = input([ a
ε ] [ ε

c ]) and similarly output([ a
c ]) =

c = output([ a
ε ] [ ε

c ]). The claim follows by transitivity of equality. ◁

The following lemma is the heart of the proof that the triangle inequality holds for nedd

given d is fine.

▶ Lemma 29. Assume d : Γ → [0, 1] is fine. Let α1,2 and α2,3 be such that output(α1,2) =
input(α2,3). Let α′′

1,3, α′
1,3 and α1,3 be as described in Definition 27. Let n be the number of

occurrences of [ ε
ε ] in α′

1,3. Then
1. len(α1,3) ≥ max{len(α1,2), len(α2,3)} − n

2. wgt(α1,3) ≤ wgt(α1,2) + wgt(α2,3) − n

3. cost(α1,3) ≤ cost(α1,2) + cost(α1,3)

The proof relies on the following fact.

▶ Fact 30. Let d, e, n ∈ N such that e ≤ d. Then e−n
d−n ≤ e

d

We can now prove Lemma 29.

Proof of Lemma 29. Let ⟨α′
1,2, α

′
2,3⟩ be the alignment of α1,2 and α2,3.

1. By the construction of the aligned edit paths there is no index i such that both α′
1,2[i] = [ ε

ε ]
and α′

2,3[i] = [ ε
ε ]. Thus for every index i of α′′

1,3 either α′
1,2[i] is an element of α1,2 or

α′
2,3[i] is an element of α2,3 (or both are). It follows that

len(α′′
1,3) ≥ max{len(α1,2), len(α2,3)}



D. Fisman and I. Tzarfati 14:13

Since α1,3 is obtained from α′
1,3 by removing the occurrences of [ ε

ε ] and there are n such
we get that

len(α1,3) = len(α′
1,3) − n

Because len(α′
1,3) ≥ len(α′′

1,3) we get overall that

len(α1,3) = len(α′
1,3) − n ≥ len(α′′

1,3) − n ≥ max{len(α1,2), len(α2,3)} − n

as required.
2. First note that wgt(α) = wgt(α′) for all α ∈ {α1,2, α2,3, α1,3} since α and α′ differ only

by elements of the form [ ε
ε ] and since d is fine, by the first requirement, d(ε, ε) = 0.

Second, we claim that wgt(α′
1,3) ≤ wgt(α′

1,2) + wgt(α′
2,3). This holds since for every

element [ a
c ] of α′′

1,3 there exists elements [ a
b ] and [ b

c ] in α′
1,2 and α′

2,3 respectively, where
a, b, c ∈ Σ ∪ {ε}. Hence for every respective element [ a

c ] or respective two elements of
[ a

ε ] [ ε
c ] of α′

1,3 there exists elements [ a
b ] and [ b

c ] in α′
1,2 and α′

2,3 respectively. To see how
the corresponding weights relate we split into cases.
a. If both a ̸= ε and c ̸= ε then by the third requirement of being fine min{d(a, c), d(a, ε)+

d(ε, c)} ≤ d(a, b) + d(b, c) and according to the minimum [ a
c ] or [ a

ε ] [ ε
c ] occurs in α′

1,3.
b. If a ̸= ε and c = ε then by the third requirement of being fine and Remark 12 we have

d(a, b) + d(b, ε) ≥ d(a, ε).
c. If a = ε and c ̸= ε then by the third requirement of being fine and Remark 12 we have
d(ε, b) + d(b, c) ≥ d(ε, c).

Thus we get

wgt(α′
1,3) ≤ wgt(α′

1,2) + wgt(α′
2,3) = wgt(α1,2) + wgt(α2,3)

Last, we note that each occurrence of [ ε
ε ] in α′

1,3 corresponds to an occurrence of [ ε
b ] in

α1,2 and [ b
ε ] in α2,3 for some b ∈ Σ. Let b1, b2, . . . , bn be the respective letters in α1,2 or

α2,3. The weight of [ ε
ε ] in α′

1,3 is 0 whereas the original components had some non-zero
weight. Hence

wgt(α′
1,3) ≤ wgt(α1,2) + wgt(α2,3) −

n∑
i=1

(wgt([ ε
bi

]) + wgt([ bi
ε ]))

From the forth requirement of being fine we know d(ε, b) = d(b, ε) ≥ 1
2 . Thus∑n

i=1(wgt([ ε
bi

]) + wgt([ bi
ε ])) ≥ n and hence

wgt(α1,3) = wgt(α′
1,3) ≤ wgt(α1,2) + wgt(α2,3) − n

as required.
3. From items (2) and (1) we get

wgt(α1,3)
len(α1,3) ≤ wgt(α1,2) + wgt(α2,3) − n

len(α1,3) ≤ wgt(α1,2) + wgt(α2,3) − n

max{len(α1,2), len(α2,3)} − n

Applying Fact 30 we get

wgt(α1,2) + wgt(α2,3) − n

max{len(α1,2), len(α2,3)} − n
≤ wgt(α1,2) + wgt(α2,3)

max{len(α1,2), len(α2,3)}
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Assume without loss of generality that len(α1,2) ≥ len(α2,3) then

wgt(α1,2) + wgt(α2,3)
max{len(α1,2), len(α2,3)} = wgt(α1,2) + wgt(α2,3)

len(α1,2)

= wgt(α1,2)
len(α1,2) + wgt(α2,3)

len(α1,2) ≤ wgt(α1,2)
len(α1,2) + wgt(α2,3)

len(α2,3)

Overall we get

cost(α1,3) = wgt(α1,3)
len(α1,3) ≤ wgt(α1,2)

len(α1,2) + wgt(α2,3)
len(α2,3) = cost(α1,2) + cost(α1,3)

as required. ◀

With this proof in place we can conclude that d being fine is a sufficient condition for
nedd to be a metric.

▶ Theorem 31. Let d : Γ̂ → [0, 1] be fine. Then nedd is a metric.

Proof. Given d : Γ̂ → [0, 1] is fine it is easy to see that nedd satisfies the first two requirements
of a metric. To see that it also satisfies the triangle inequality, let w1, w2, w3 ∈ Σ∗. Let α1,2
be an optimal edit path between w1, w2 and α2,3 an optimal edit path between w2, w3. Let
α1,3 be the result of composing α1,2, α2,3 via Definition 27. By Claim 28, α1,3 is an edit path
between w1 and w3 and by Lemma 29, cost(α1,3) ≤ cost(α1,2) + cost(α1,3). Thus

nedd(w1, w3) ≤ cost(α1,3) ≤ cost(α1,2) + cost(α1,3) = nedd(w1, w2) + nedd(w2, w3)

as required. ◀

▶ Corollary 32. nedd is a metric if and only if d is fine.

This corollary proves Theorem 1.
▶ Remark 33. Consider d of Claim 6. The first two requirements of being fine are obviously
met. By Claim 19 the operations [ a

b ] and [ b
a ] are inessential. Hence the third requirement

clearly hold. Note that m = sup{nedd(w1, w2) : w1, w2 ∈ Σ∗} = 0.5 and m
2 = 0.25 hence

the fourth requirement holds.
Consider d of Claim 7. The first requirement of being fine clearly holds. While it breaks

symmetry, if we remove the inessential operations, namely [ a
b ] and [ b

a ] then symmetry is
maintained. Since [ a

b ] and [ b
a ] are inessentials the third requirement holds as well. Finally

the fourth requirement holds since m = 0.45 (as [ a
b ] and [ b

a ] are inessentials) and m
2 = 0.225.

6 Discussion

Now that we have a sufficient and necessary condition for d : Γ → [0, 1] for nedd to be a
metric, it is easy to verify or come up with such d’s for certain applications. We give some
examples in §6.1. In §6.2 we discuss extensions to infinite words and applications in formal
verification.

6.1 Examples for fine weight functions
Recall that given an alphabet Σ, we use Γ for Γ̂ \ {[ ε

ε ]} where Γ̂ = (Σ ∪ {ε})2. Given a
function d : Σ × Σ → [0, 1] and given c ∈ [ 1

2 , 1] we augment it to a function dc : Γ → [0, 1] as
follows:

dc(σ1, σ2) =
{
d(σ1, σ2) if σ1 ̸= ε and σ2 ̸= ε

c if σ1 = ε or σ2 = ε
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Consider the case where Σ = [0, n] for some n ∈ N, that is Σ is a finite interval of the
natural numbers, starting with 0. Then the following distance over Σ is fine.

▶ Example 34 (Distances in [0, n]). Let dn : [0, n] × [0, n] → [0, 1] be defined as follows:

dn(n1, n2) = |n1 − n2|
n+ 1

▷ Claim 35. The weight function dc
n is fine.

Consider now the case that Σ = N, i.e., Σ is the set of naturals number. We can show
that the following distance [16] is fine.

▶ Example 36 (Distances in N). Let dN : N × N → [0, 1] be defined as follows:

dN(n1, n2) = 1 − 1
|n1 − n2| + 1

▷ Claim 37. The weight function dc
N is fine.

▶ Example 38 (Distances between sets). Let Σ = 2A for some finite set of elements A. Let
dset : 2A × 2A → [0, 1] be defined as follows, where ⊕ denotes the symmetrical difference:

dset(S1, S2) = |S1 ⊕ S2|
|A|

▷ Claim 39. The weight function dc
set is fine.

In model checking [1, 2, 3], automata are defined with respect to a set AP =
{p1, p2, . . . , pk} of atomic propositions and the alphabet is Σ = 2AP . We can use dset
to measure the distance between letters, but in a setting where a noise may alter the value
of one of the atomic propositions it makes sense to define the distance between two letters as
the Hamming distance between the two letters, divided by k for normalization.5

▶ Example 40 (Distances in Σ = 2k). Let Σ = 2k. Let dprop : 2k × 2k → [0, 1] be defined as
follows:

dprop(v1, v2) = hd(v1, v2)
k

▷ Claim 41. The weight function dc
prop is fine.

The transitions in automata used in model checking, are usually expressed using Boolean
expressions over the set of atomic propositions, e.g. the Boolean expression p1 ∧ (¬p5 ∨ p7)
abbreviates the set of letters σ ∈ 2k where the first bit is 1 and either the fifth bit is zero or
the seventh bit is 1, and the rest of the bits can be anything. In general, a Boolean expression
b is a compact way to represent the set of letters {σ ∈ 2k | σ |= b}. This type of automata is
a special case of symbolic finite automata (SFA) that are defined with respect to a concrete
alphabet Σ and a symbolic alphabet Ψ of predicates over Σ (see [4] for an introduction to
SFAs). The predicates are associated with a semantic function J·K that maps a predicate ψ
to a subset of Σ that consists of the concrete letters satisfying it. The distance dpred between
predicates ψ1 and ψ2 can thus be defined using dset on Jψ1K and Jψ2K.

▶ Corollary 42. We have that neddc
n
, neddc

N
, neddc

set
, neddc

prop
and neddc

pred
are metrics.

5 The Hamming distance, hd :
⋃

k∈N(Σk × Σk) → N, is defined between two strings of the same length,
as the number of positions in which they differ [9].
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6.2 Applications in Formal Verification

The robustness question in verification, roughly speaking, asks how much a system S can
be altered so that it still satisfies its specification T . Suppose the distance between words
is given by dist, and that JSK is the set of computations induced by the system and JT K
is the set of allowed computations according to the specification T . It is noted in [6] that
the robustness question can be reduced to question of computing the distance between
the languages JSK and JT K defined as: infw1∈JSK infw2∈JφK dist(w1, w2). It is shown in [8,
Theorem 18] that when S and T are given by non-deterministic finite automata and dist is
ned over the uniform weights this can be computed in polynomial time. The proof is by
building a so called edit distance graph of two NFAs, and using the fact that the infimum of
the mean weights of paths from a set of origin nodes to a set of target nodes can be computed
in polynomial time [6]. Since the same graph can be constructed for nedd, with the only
difference that the weights of edges follow the given d rather than follow the uniform weights,
and since the proof in [6] works on any weighted graph in which the weights are rationals, we
can conclude that nedd between languages can be computed in polynomial time, if d gives
rational weights. Note that this is the case in all examples considered in §6.1.

In formal verification, systems and specifications are usually defined over infinite words.
It is thus desired to have a function dist : Σω × Σω → [0, 1] that measure the distance
between two infinite words. In [8, Thm. 6] it was shown that ω-ned(w1, w2) which is defined
as lim supi→∞ ned(w1[..i], w2[..i]) is a metric on infinite words. We can similarly define
ω-nedd(w1, w2) as lim supi→∞ nedd(w1[..i], w2[..i]) and the same proof goes through. To
compute the distance between two ultimately periodic words, 6 it is shown [8, Thm. 8] that
it suffices to consider the best rotations of the periodic parts. Thus reducing computation of
ω-ned to computation of ned, which can be done in polynomial time [13]. This proof works
also for ω-nedd if d is non-uniform and gives rational weights. To compute the distance
between S and T given by non-deterministic Büchi automata (NBA), 7 [8] requires a more
sophisticated version of the edit graph, which tracks along a cycle the number of insert and
deletes to coordinate that they are balanced, namely that the same number of letters is read
in both automata. The same technique would work in the case of non-uniform weights. We
conclude that the robustness question when S and T are NBAs and the considered distance
is ω-nedd for some fine non-uniform weight function d that gives rational weights can also
be computed in polynomial time.
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Abstract
An orientable sequence of order n is a cyclic binary sequence such that each length-n substring
appears at most once in either direction. Maximal length orientable sequences are known only for
n ≤ 7, and a trivial upper bound on their length is 2n−1 − 2⌊(n−1)/2⌋. This paper presents the
first efficient algorithm to construct orientable sequences with asymptotically optimal length; more
specifically, our algorithm constructs orientable sequences via cycle-joining and a successor-rule
approach requiring O(n) time per bit and O(n) space. This answers a longstanding open question
from Dai, Martin, Robshaw, Wild [Cryptography and Coding III (1993)]. Our sequences are applied
to find new longest-known orientable sequences for n ≤ 20.
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1 Introduction

Orientable sequences were introduced by Dai, Martin, Robshaw, and Wild [7] with applications
related to robotic position sensing. In particular, consider an autonomous robot with limited
sensors. To determine its location on a cyclic track labeled with black and white squares,
the robot scans a window of n squares directly beneath it. For the position and orientation
to be uniquely determined, the track must designed with the property that each length n

window can appear at most once in either direction. A cyclic binary sequence (track) with
such a property is called an orientable sequence of order n (an OS(n)). By this definition,
an orientable sequence does not contain a length-n substring that is a palindrome.

Example 1 Consider S = 001011. In the forward direction, including the wraparound,
S contains the six 5-tuples 00101, 01011, 10110, 01100, 11001, and 10010; in the reverse
direction S contains 11010, 10100, 01001, 10011, 00110, and 01101. Since each substring
is unique, S is an OS(5) with length (period) six.

Orientable sequences do not exist for 1 < n < 5, and somewhat surprisingly, the maximum
length Mn of an OS(n) is known only for n = 1, 5, 6, 7. Since the number of palindromes of
length n is 2⌊(n+1)/2⌋, a trivial upper bound on Mn is (2n −2⌊(n+1)/2⌋)/2 = 2n−1 −2⌊(n−1)/2⌋.

In addition to providing a tighter upper bound, Dai, Martin, Robshaw, and Wild [7]
provide a lower bound on Mn by demonstrating the existence of OS(n)s via cycle-joining
with length Ln asymptotic to their upper bound; see Section 1.1 for the explicit upper and
lower bounds.. They conclude by stating the following open problem relating to orientable
sequences whose lengths (periods) attain the lower bound.
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We note that the lower bound on the maximum period was obtained using an existence
construction . . . It is an open problem whether a more practical procedure exists for
the construction of orientable sequences that have this asymptotically optimal period.

Recently, some progress was made in this direction by Mitchell and Wild [20]. They apply
Lempel’s lift [18] to obtain an OS(n) recursively from an OS(n−1). This construction can
generate orientable sequences in O(1)-amortized time per bit; however, it requires exponential
space, and there is an exponential time delay before the first bit can be output. Furthermore,
they state that they “only partially answer the question, since the periods/lengths of the
sequences produced are not asymptotically optimal.”

Main result: By developing a parent rule to define a cycle-joining tree, we construct
an OS(n) of length Ln in O(n) time per bit using O(n) space.

Outline. In Section 1.1, we review the lower bound Ln and upper bound Un from [7]. In
Section 2, we present necessary background definitions and notation, including a review
of the cycle-joining technique. In Section 3, we provide a parent rule for constructing
a cycle-joining tree composed of “reverse-disjoint” cycles. This leads to our O(n) time
per bit construction of orientable sequences of length Ln. In Section 4 we discuss the
algorithmic techniques used to extend our constructed orientable sequences to find longer
ones for n ≤ 20. We conclude in Section 5 with a summary of our results and directions
for future research. An implementation of our construction is available for download at
http://debruijnsequence.org/db/orientable.

1.1 Bounds on Mn

Dai, Martin, Robshaw, and Wild [7] gave a lower bound Ln and an upper bound Un on the
maximum length Mn of an OS(n).1 Their lower bound Ln is the following, where µ is the
Möbius function:

Ln =

2n−1 − 1
2

∑
d|n

µ(n/d)n

d
H(d)

 , where H(d) = 1
2

∑
i|d

i
(

2⌊ i+1
2 ⌋ + 2⌊ i

2 ⌋+1
)

.

Their upper bound Un is the following:1

Un =


2n−1 − 41

9 2 n
2 −1 + n

3 + 16
9 if n mod 4 = 0,

2n−1 − 31
9 2 n−1

2 + n
3 + 19

9 if n mod 4 = 1,
2n−1 − 41

9 2 n
2 −1 + n

6 + 20
9 if n mod 4 = 2,

2n−1 − 31
9 2 n−1

2 + n
6 + 43

18 if n mod 4 = 3.

These bounds are calculated in Table 1 for n up to 20. This table also illustrates the length
Rn of the OS(n) produced by the recursive construction by Mitchell and Wild [20], starting
from an initial orientable sequence of length 80 for n = 8. The column labeled L∗

n indicates
the longest known orientable sequences we discovered by applying a combination of techniques
(discussed in Section 4) to our orientable sequences of length Ln.

1 These bounds correspond to L̃n and Ũn, respectively, as they appear in [7].

http://debruijnsequence.org/db/orientable
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Table 1 Lower bounds Rn, Ln, L∗
n and upper bound Un for Mn.

n Rn Ln L∗
n Un

5 - 0 6 6
6 - 6 16 17
7 - 14 36 40
8 80 48 92 96
9 161 126 174 206

10 322 300 416 443
11 645 682 844 918
12 1290 1530 1844 1908
13 2581 3276 3700 3882
14 5162 6916 7694 7905
15 10325 14520 15394 15948
16 20650 29808 31483 32192
17 41301 61200 63135 64662
18 82602 124368 128639 129911
19 165205 252434 257272 260386
20 330410 509220 519160 521964

1.2 Related work
Recall the problem of determining a robot’s position and orientation on a track. Suppose
now that we allow the track to be non-cyclic. That is, the beginning of the track and the
end of the track are not connected. Then the corresponding sequence that allows one to
determine orientation and position is called an acyclic orientable sequence. One does not
consider the substrings in the wraparound for this variation of an orientable sequence. Note
that one can always construct an acyclic OS(n) from a cyclic OS(n) by taking the cyclic
OS(n) and appending its prefix of length n−1 to the end. See the paper by Burns and
Mitchell [5] for more on acyclic orientable sequences, which they call aperiodic 2-orientable
window sequences. Alhakim et al. [2] generalize the recursive results of Mitchell and Wild [20]
to construct orientable sequences over an alphabet of arbitrary size k ≥ 2; they also generalize
the upper bound, by Dai et al. [7], on the length of an orientable sequence. Rampersad
and Shallit [21] showed that for every alphabet size k ≥ 2 there is an infinite sequence such
that for every sufficiently long substring, the reversal of the substring does not appear in
the sequence. Fleischer and Shallit [11] later reproved the results of the previous paper
using theorem-proving software. See [6, 19] for more work on sequences avoiding reversals of
substrings.

2 Preliminaries

Let B(n) denote the set of all length-n binary strings. Let α = a1a2 · · · an ∈ B(n) and
β = b1b2 · · · bm ∈ B(m) for some m, n ≥ 0. Throughout this paper, we assume 0 < 1 and
use lexicographic order when comparing two binary strings. More specifically, we say that
α < β either if α is a prefix of β or if ai < bi for the smallest i such that ai ̸= bi. We say that
α is a rotation of β if m = n and there exist strings x and y such that α = xy and β = yx.
The weight (density) of a binary string is the number of 1s in the string. Let ai denote
the complement of bit ai. Let αR denote the reversal an · · · a2a1 of α; α is a palindrome if
α = αR. For j ≥ 1, let αj denote j copies of α concatenated together. If α = γj for some
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15:4 Efficient Construction of Long Orientable Sequences

non-empty string γ and some j > 1, then α is said to be periodic2; otherwise, α is said to be
aperiodic (or primitive). For example, the English word hotshots = (hots)2 is periodic, but
hots is aperiodic.

A necklace class is an equivalence class of strings under rotation; let [α] denote the set
of strings in α’s necklace class. We say α is a necklace if it is the lexicographically smallest
string in [α]. Let N(n) denote the set of length-n necklaces. A bracelet class is an equivalence
class of strings under rotation and reversal; let ⟨α⟩ denote the set of strings in α’s bracelet
class. Thus, ⟨α⟩ = [α] ∪ [αR]. We say α is a bracelet if it is the lexicographically smallest
string in ⟨α⟩. Note that in general, a bracelet is always a necklace, but a necklace need not
be a bracelet. For example, the string 001011 is both a bracelet and a necklace, but the
string 001101 is a necklace and is not a bracelet.

A necklace α is symmetric if it belongs to the same necklace class as αR, i.e., both α

and αR belong to [α]. By this definition, a symmetric necklace is necessarily a bracelet. If a
necklace or bracelet is not symmetric, it is said to be asymmetric. Let A(n) denote the set of
all asymmetric bracelets of order n. Table 2 lists all 60 necklaces of length n = 9 partitioned
into asymmetric necklace pairs and symmetric necklaces. The asymmetric necklace pairs
belong to the same bracelet class, and the first string in each pair is an asymmetric bracelet.
Thus, |A(9)| = 14. In general, |A(n)| is equal to the number of necklaces of length n minus
the number of bracelets of length n; for n = 6, 7, . . . 15, this sequence of values |A(n)| is given
by 1, 2, 6, 14, 30, 62, 128, 252, 495, 968 and it corresponds to sequence A059076 in The
On-Line Encyclopedia of Integer Sequences [25]. Asymmetric bracelets have been studied
previously in the context of efficiently ranking/unranking bracelets [1]. One can test whether
a string is an asymmetric bracelet in linear time using linear space; see Theorem 1.

▶ Theorem 1. One can determine whether a string α is in A(n) in O(n) time using O(n)
space.

Proof. A string α will belong to A(n) if α is a necklace and the necklace of [αR] is lexico-
graphically larger than α. These tests can be computed in O(n) time using O(n) space [3]. ◀

Lemma 2 is considered a folklore result in combinatorics on words; see Theorem 4 in [4] for a
variant of the lemma. We provide a short proof for the interested reader.

▶ Lemma 2. A necklace α is symmetric if and only if there exists palindromes β1 and β2
such that α = β1β2.

Proof. Suppose α is a symmetric necklace. By definition, it is equal to the necklace of [αR].
Thus, there exist strings β1 and β2 such that α = β1β2 = (β2β1)R = βR

1 βR
2 . Therefore,

β1 = βR
1 and β2 = βR

2 , which means β1 and β2 are palindromes. Suppose there exists two
palindromes β1 and β2 such that α = β1β2. Since β1 and β2 are symmetric, we have that
αR = (β1β2)R = βR

2 βR
1 = β2β1. So α belongs to the same necklace class as αR and hence is

symmetric. ◀

▶ Corollary 3. If α = 0sβ is a symmetric bracelet such that the string β begins and ends
with 1 and does not contain 0s as a substring, then β is a palindrome.

2 Periodic strings are are also known as powers in the literature. The term periodic is sometimes used to
denote a string of the form (αβ)iα where α is non-empty, β is possibly empty, i ≥ 1, and |(αβ)iα|

|αβ| ≥ 2.
Under this definition, the word alfalfa is periodic, but bonobo is not.

https://oeis.org/A059076
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Table 2 A listing of all 60 necklaces in N(9) partitioned into asymmetric necklace pairs and
symmetric necklaces. The first column of the asymmetric necklaces corresponds to the 14 asymmetric
bracelets A(9).

Asymmetric necklace pairs Symmetric necklaces
000001011 , 000001101 000000000 000100011 001110111
000010011 , 000011001 000000001 000101101 001111111
000010111 , 000011101 000000011 000110011 010101011
000100101 , 000101001 000000101 000111111 010101111
000100111 , 000111001 000000111 001001001 010111111
000101011 , 000110101 000001001 001001111 011011011
000101111 , 000111101 000001111 001010011 011011111
000110111 , 000111011 000010001 001010101 011101111
001001011 , 001001101 000010101 001011101 011111111
001010111 , 001110101 000011011 001100111 111111111
001011011 , 001101101 000011111 001101011
001011111 , 001111101
001101111 , 001111011
010110111 , 010111011

2.1 Cycle joining
Given S ⊆ B(n), a universal cycle U for S is a cyclic sequence of length |S| that contains
each string in S as a substring (exactly once). Thus, an orientable sequence is a universal
cycle. If S = B(n) then U is known as a de Bruijn sequence. Given a universal cycle U for S,
a successor rule for U is a function f : S → {0, 1} such that f(α) is the bit following α in U .

Cycle-joining is perhaps the most fundamental technique applied to construct universal
cycles; for some applications, see [8, 9, 10, 12, 14, 16, 17, 23, 24]. If S is closed under
rotation, then it can be partitioned into necklace classes (cycles); each cycle is disjoint. Let
α = a1a2 · · · an and α̂ = a1a2 · · · an; we say (α, α̂) is a conjugate pair. Two disjoint cycles can
be joined if they each contain one string of a conjugate pair as a substring. This approach
resembles Hierholzer’s algorithm to construct an Euler cycle in an Eulerian graph [15].

Example 2 Consider disjoint subsets S1 = [011111] ∪ [001111] and S2 = [010111] ∪ [010101],
where n = 6. Then U1 = 110011110111 is a universal cycle for S1 and U2 = 01010111 is a
universal cycle for S2. Since (110111, 010111) is a conjugate pair, U = 110011110111 · 01010111
is a universal cycle for S1 ∪ S2.

If all necklace cycles can be joined via conjugate pairs to form a cycle-joining tree, then the
tree defines a universal U for S with a corresponding successor rule (see Section 3 for an
example).

For most universal cycle constructions, a corresponding cycle-joining tree can be defined
by a rather simple parent rule. For example, when S = B(n), the following are perhaps the
simplest parent rules that define how to construct cycle-joining trees with nodes corresponding
to N(n) [13, 22].

Last-0: rooted at 1n and the parent of every other node α ∈ N(n) is obtained by flipping
the last 0.
First-1: rooted at 0n and the parent of every other node α ∈ N(n) is obtained by flipping
the first 1.
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15:6 Efficient Construction of Long Orientable Sequences

Last-1: rooted at 0n and the parent of every other node α ∈ N(n) is obtained by flipping
the last 1.
First-0: rooted at 1n and the parent of every other node α ∈ N(n) is obtained by flipping
the first 0.

These rules induce the cycle-joining trees T1, T2, T3, T4 illustrated in Figure 1 for n = 6.
Note that for T3 and T4, the parent of a node α is obtained by first flipping the highlighted
bit and then rotating the string to its lexicographically least rotation to obtain a necklace.
Each node α and its parent β are joined by a conjugate pair, where the highlighted bit in α

is the first bit in one of the conjugates. For example, the nodes α = 011011 and β = 001011
in T2 from Figure 1 are joined by the conjugate pair (110110, 010110).

111111

011111

001111 010111 011011

001011 001101 010101000111

000011 000101 001001

000001

000000

T1: Last 0

000000

000001

000011000101001001

000111001011001101010101

001111010111011011

011111

111111

T2: First 1

T3: Last 1 T4: First 0

111111

011111

011011 010111 001111

000111

000011

000001

000000

001011010101001101

000101001001

000000

000001

000011

000111

001111

011111

111111

011011

001101

000101 001001

001011 010101

010111

Figure 1 Cycle-joining trees for B(6) from simple parent rules.

3 An efficient cycle-joining construction of orientable sequences

Consider the set of asymmetric bracelets A(n) = {α1, α2, . . . , αt}. Recall, that each symmet-
ric bracelet is a necklace. Let S(n) = [α1] ∪ [α2] ∪ · · · ∪ [αt]. From [7], we have |S(n)| = Ln.
By its definition, there is no string α ∈ S(n) such that αR ∈ S(n). Thus, a universal cycle
for S(n) is an OS(n). For the rest of this section, we assume n ≥ 8.

To construct a cycle-joining tree with nodes A(n), we apply a combination of three of
the four simple parent rules described in the previous section. First, we demonstrate that
there is no such parent rule, using at most two rules in combination. Observe, there are no
necklaces in A(n) with weight 0, 1, 2, n−2, n−1, or, n. Thus, 0n−41011 and 0n−510011 are
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both necklaces in A(n) with minimal weight three. Similarly, 00101n−4 and 001101n−5 are
necklaces in A(n) with maximal weight n−3. Therefore, when considering a parent rule for
a cycle-joining tree with nodes A(n), the rule must be able to flip a 0 to a 1, or a 1 to a 0,
i.e., if the rule applies a combination of the four rules from Section 2.1, it must include one
of First-0 or Last-0, and one of First-1 and Last-1.

Let α = a1a2 · · · an denote a necklace in A(n); it must begin with 0 and end with 1. Then
let

first1(α) be the necklace a1 · · · ai−10ai+1 · · · an, where i is the index of the first 1 in α;
last1(α) be the necklace of [a1a2 · · · an−10];
first0(α) be the necklace of [1a2 · · · an];
last0(α) be the necklace a1 · · · aj−11aj+1 · · · an, where j is the index of the last 0 in α.

Note that first1(α) and last0(α) are necklaces (easily observed by definition) obtained by
flipping the i-th and j-th bit in α, respectively; last1(α) and first0(α) are the result of flipping
a bit and rotating the resulting string to obtain a necklace. The next example illustrates that
no two of the previous four parent rules can be applied in combination to obtain a spanning
tree with nodes in A(n).

Example 3 Suppose p(α) is a parent rule that applies a combination of the four parent
rules, first1, last1, first0, last0, to construct a cycle-joining tree with nodes A(n). The following
examples are for n = 10 but generalize to larger n. In both cases, we see that at least three of
the parent rules must be applied in p.

Suppose p does not use first0; it must apply last0. Consider three asymmetric bracelets
in A(10): α1 = 0000001011, α2 = 0000010111, and α3 = 0011001011. Clearly, first1(α1),
last1(α1), and last0(α1) are symmetric. Thus, α1 must be the root. Both first1(α2) and
last0(α2) are symmetric; thus, p must apply last1. Note last0(α3) is symmetric and last1(α3) =
0001100101 is not a bracelet; thus, p must apply first1.

Suppose p does not use last0; it must apply first0. Consider three asymmetric bracelets in
A(10): β1 = 0000100011, β2 = 0001001111, and β3 = 0001100111. Clearly, first1(β1), last1(β1),
and first0(β) are symmetric. Thus, β1 must be the root. Both first1(β2) and first0(β2) are
symmetric; thus, p must apply last1. Both last1(β3) and first0(β3) are symmetric; thus, p must
apply first1.

Let rn denote the asymmetric bracelet 0n−41011. We choose to use rn to be the root of our
cycle-joining tree since it is the lexicographically smallest asymmetric bracelet of length n.

Parent rule for cycle-joining A(n): Let rn be the root. Let α denote a non-root node in
A(n). Then

par(α) =

 first1(α) if first1(α) ∈ A(n);
last1(α) if first1(α) /∈ A(n) and last1(α) ∈ A(n);
last0(α) otherwise.

(1)

▶ Theorem 4. The parent rule par(α) in (1) induces a cycle-joining tree with nodes A(n)
rooted at rn.

Let Tn denote the cycle-joining tree with nodes A(n) induced by the parent rule in (1);
Figure 2 illustrates T9. The proof of Theorem 4 relies on the following lemma.

▶ Lemma 5. Let α ̸= rn be an asymmetric bracelet in A(n). If neither first1(α) nor last1(α)
are in A(n), then the last 0 in α is at index n−2 or n−1, and both last0(α) and last1(last0(α))
are in A(n).
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000100101

000010011

000001011

000100111

000010111 000101011 001001011

000101111

001011011

000110111001010111

001011111 001101111 010110111

Figure 2 The cycle-joining tree T9. The black edges indicate that par(α) = first1(α); the blue
edges indicate that par(α) = last1(α); the red edges indicate that par(α) = last0(α).

Proof. Since α is an asymmetric bracelet, it must have the form α = 0i1β01j where i, j ≥ 1
and β0 does not contain 0i+1 as a substring. Furthermore, 1β01j < (1β01j)R, which implies
β01j−1 < (β01j−1)R.

Suppose j > 2. Since last1(α) = 0i+11β01j−1 is not an asymmetric bracelet, we have
1β01j−1 ≥ (1β01j−1)R. Thus, β begins with 1. Since first1(α) = 0i+1β01j is not an
asymmetric bracelet, Lemma 2 implies β01j ≥ (β01j)R, contradicting the earlier observation
that β01j−1 < (β01j−1)R. Thus, the last 0 in α is at index n−2 or n−1.

Suppose j = 1 or j = 2. Then the last 0 in α must be at position n−2 or n−1. Write
α = x0y where y = 1 or y = 11. Since α is a bracelet, it is straightforward to see that
last0(α) = x1y is also a bracelet. If it is symmetric, Lemma 2 implies there exist palindromes
β1 and β2 such that last0(α) = x1y = β1β2. However, flipping the 1 in x1y that allows us to
obtain α implies that α is greater than or equal to the necklace in [αR], contradicting the
assumption that α is an asymmetric bracelet. Thus, last0(α) is an asymmetric bracelet.

Consider last1(last0(α)) = 0i+11β1j . Let β = b1b2 · · · bm. Suppose that m = 0. Then
last1(last0(α)) = 0i+11j+1 ⇒ last0(α) = 0i1j+2. Since j = 1 or j = 2, we have that
last0(α) = 0i111 or last0(α) = 0i1111. Now α is the result of flipping one of the 1s
in last0(α) to a 0 and performing the appropriate rotation. But in every case, we end
up with α being a symmetric necklace, a contradiction. Thus, assume m ≥ 1. Suppose
β = 1m. Then, α is not an asymmetric bracelet, a contradiction. Suppose β = 0m. If
j = 1, then α is symmetric, a contradiction; if j = 2, then last1(last0(α)) = 0i+110m11
which is in A(n). For all other cases, β contains at least one 1 and at least one 0; m ≥
2. Since β does not contain 0i+1 as a substring, by Lemma 2, we must show that (i)
β1j−1 < 1j−1βR, which implies 1β1j < 1jβR1, recalling that (ii) β01j−1 < 1j−10βR.
Let ℓ be the largest index of β such that bℓ = 1. Then bℓ+1 · · · bm = 0m−ℓ; note that
bℓ+1 · · · bm is the empty string when ℓ = m. Suppose j = 1. From (ii), we have b1 = 0 and
b2 · · · bℓ−110m−ℓ < 0m−ℓ1bℓ−1 · · · b2. But this implies that b2 · · · bm−ℓ+1 = 0m−ℓ. Therefore,
we have β = 0m−ℓ+1bm−ℓ+2 · · · bm < 0m−ℓ1bℓ−1 · · · b1 = βR, hence (i) is satisfied. Suppose
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j = 2. If b1 = 0, then (i) is satisfied. Otherwise b1 = 1 and from (ii) b2 = 0. From (ii), we get
that b3 · · · bℓ−110m−ℓ < 0m−ℓbℓ−1 · · · b3. This inequality implies that b3 · · · bm−ℓ+2 = 0m−ℓ.
Therefore, we have β1 = 10m−ℓ+1bm−ℓ+3 · · · bm1 < 10m−ℓ1bℓ−1 · · · b1 = 1βR, hence (i) is
satisfied. Thus, last1(last0(α)) is an asymmetric bracelet. ◀

Proof of Theorem 4. Let α be an asymmetric bracelet in A(n) \ {rn}. We demonstrate
that the parent rule par from (1) induces a path from α to rn, i.e., there exists an integer j

such that parj(α) = rn. Note that rn is the lexicographically smallest asymmetric bracelet
of order n. By Lemma 5, par(α) ∈ A(n). In the first two cases of the parent rule, par(α) is
lexicographically smaller than α. If the third case applies, let α = 0s1β. From Lemma 5,
last1(last0(α)) is an asymmetric bracelet. Thus, par(par(α)) is either first1(last0(α)) or
last1(last0(α)); in each case the resulting asymmetric bracelet has 0s+1 as a prefix and is
therefore lexicographically smaller than α. Therefore, the parent rule induces a path from α

to rn. ◀

A successor rule
Each application of the parent rule par(α) in (1) corresponds to a conjugate pair. For
instance, consider the asymmetric bracelet α = 000101111. The parent of α is obtained by
flipping the last 1 to obtain 000101110 (see Figure 2). The corresponding conjugate pair is
(100010111, 000010111). Let C(n) denote the set of all strings belonging to a conjugate pair
in the cycle-joining tree Tn. Then the following is a successor rule for an OS(n):

f(α) =
{

a1 if α ∈ C(n);
a1 otherwise.

For example, if C(9) corresponds to the conjugate pairs to create the cycle-joining tree T9
shown in Figure 2, then the corresponding universal cycle is:

000001011111001011011001011110011011110001011100101011100011011
101011011100001001110001001010001001100001011001001011000101011,

where the two underlined strings belong to the conjugate pair (100010111, 000010111). In
general, this rule requires exponential space to store the set C(n). However, in some cases,
it is possible to test whether a string is in C(n) without pre-computing and storing C(n).
In our successor rule for an OS(n), we use Theorem 1 to avoid pre-computing and storing
C(n), thereby reducing the space requirement from exponential in n to linear in n.

Successor-rule g to construct an OS(n) of length Ln

Let α = a1a2 · · · an ∈ S(n) and let
β1 = 0n−i1a2 · · · ai where i is the largest index of α such that ai = 1 (first 1);
β2 = a2a3 · · · an1 (last 1);
β3 = ajaj+1 · · · an01j−2 where j is the smallest index of α such that aj = 0 and j > 1 (last
0).

Let

g(α) =


a1 if β1 and first1(β1) are in A(n);
a1 if β2 and last1(β2) are in A(n), and first1(β2) is not in A(n);
a1 if β3 and last0(β3) are in A(n), and neither first1(β3) nor last1(β3) are in A(n);
a1 otherwise.
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Starting with any string in α ∈ S(n), we can repeatedly apply g(α) to obtain the next bit in
a universal cycle for S(n).

▶ Theorem 6. The function g is a successor rule that generates an OS(n) with length Ln

for the set S(n) in O(n)-time per bit using O(n) space.

Proof. Consider α = a1a2 · · · an ∈ S(n). If α belongs to some conjugate pair in Tn, then it
must satisfy one of three possibilities stepping through the parent rule in 1:

Both β1 and first1(β1) must be in A(n). Note, β1 is a rotation of α when a1 = 1, where
a1 corresponds to the first one in β1.
Both β2 and last1(β2) must both be in A(n), but additionally, first1(β2) can not be in
A(n). Note, β2 is a rotation of α when a1 = 1, where a1 corresponds to the last one in
β2.
Both β3 and last0(β3) must both be in A(n), but additionally, both first1(β3) and last1(β3)
can not be in A(n). Note, β3 is a rotation of α when a1 = 0, where a1 corresponds to
the last zero in β3.

Thus, g is a successor rule on S(n) that generates a cycle of length |S(n)| = Ln. By Theorem 1,
one can determine whether a string is in A(n) in O(n) time using O(n) space. Since there
are a constant number of tests required by each case of g, the corresponding OS(n) can be
computed in O(n)-time per bit using O(n) space. ◀

4 Extending orientable sequences

The values from the column labeled L∗
n in Table 1 were found by extending an OS(n) of

length Ln constructed in the previous section. Given an OS(n), o1 · · · om, the following
approaches were applied to find longer OS(n)s for n ≤ 20:
1. For each index i, apply a standard backtracking search to see whether oi · · · omo1 · · · oi−1

can be extended to a longer OS(n). We followed several heuristics: (a) find a maximal
length extension for a given i, and then attempt to extend starting from index i + 1;
(b) find a maximal length extension over all i, then repeat; (c) find the “first” possible
extension for a given i, and then repeat for the next index i + 1. In each case, we repeat
until no extension can be found for any starting index. This approach was fairly successful
for even n, but found shorter extensions for n odd. Steps (a) and (b) were only applied
to n up to 14 before the depth of search became infeasible.

2. Refine the search in the previous step so the resulting OS(n) of length m′ has an
odd number of 1s and at most one substring 0n−4. Then we can apply the recursive
construction by Mitchell and Wild [20] to generate an OS(n + 1) with length 2m′ or
2m′ + 1. Then, starting from the sequences generated by recursion, we again apply the
exhaustive search to find minor extensions (the depth of recursion is significantly reduced).
This approach found significantly longer extensions to obtain OS(n + 1)s when n + 1 is
odd.

5 Future research directions

We present the first efficient algorithm to construct orientable sequences with asymptotically
optimal length; it is a successor-rule-based approach that requires O(n) time per bit and
uses O(n) space. This answers a long-standing open question by Dai, Martin, Robshaw, and
Wild [7]. The full version of this paper includes an application of the recent concatenation-tree
framework [22] that leads to constructions of our OS(n)s in O(1)-amortized time per bit.
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It also includes the results of applying our OS(n)s to find some longer acyclic orientable
sequences than reported in [5]. The binary results have recently been extended to arbitrary
sized alphabets like {C, G, A, T }.
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Abstract
Knowing which strings in a massive text are significant – that is, which strings are common and
distinct from other strings – is valuable for several applications, including text compression and
tokenization. Frequency in itself is not helpful for significance, because the commonest strings are the
shortest strings. A compelling alternative is net frequency, which has the property that strings with
positive net frequency are of maximal length. However, net frequency remains relatively unexplored,
and there is no prior art showing how to compute it efficiently. We first introduce a characteristic of
net frequency that simplifies the original definition. With this, we study strings with positive net
frequency in Fibonacci words. We then use our characteristic and solve two key problems related to
net frequency. First, single-nf, how to compute the net frequency of a given string of length m, in
an input text of length n over an alphabet size σ. Second, all-nf, given length-n input text, how
to report every string of positive net frequency (and its net frequency). Our methods leverage suffix
arrays, components of the Burrows-Wheeler transform, and solution to the coloured range listing
problem. We show that, for both problems, our data structure has O(n) construction cost: with
this structure, we solve single-nf in O(m + σ) time and all-nf in O(n) time. Experimentally, we
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our results show that, even with prior knowledge of the set of strings with positive net frequency,
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significant strings.
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1 Introduction

When analysing, storing, manipulating, or working with text, identification of notable (or
significant) strings is typically a key component. These notable strings could form the basis
of a dictionary for compression, be exploited by a tokenizer, or form the basis of trend
detection. Here, a text is a sequence of characters drawn from a fixed alphabet, such as a
book, collection of articles, or a Web crawl. A string is a contiguous sub-sequence of the
text; in this paper, we seek to efficiently identify notable strings.

Given a text, T , and a string, S, the frequency of S is the number of occurrences of S

in T . The frequency of a string is inherently a basis for its significance. However, frequency
is in some sense uninformative. Sometimes a shorter string is frequent only because it is part
of many different longer strings, or of a frequent longer string, or of many frequent longer
strings. That is, the frequency of a string may be inflated by the occurrences of the longer
strings that contain it. Moreover, every substring of a string of frequency f has frequency at
least f . Indeed, the most frequent string in the text has length 1.

A compelling means of identifying notable strings is via net frequency (NF), introduced
by Lin and Yu [23]. Let T = rstkstcastarstast$ be an input text. The highlighted string
st has frequency five. But to arrive at a more helpful notion of the frequency of the string st,
the occurrences of st in repeated longer strings – that is, rst and ast – should be excluded,
leaving one occurrence left (underlined). Defined precisely in Section 3, net frequency (NF)
captures this idea; indeed, the NF of st in T is 1. For now, strings with positive NF are
those that are repeated in the text and are maximal (see Theorem 4, below): if extended to
either left or right the frequency of the extended string would be 1. For the underlined st
above, the frequency of both kst (left) and stc (right) is 1.

It is worth noting the difference between a string with positive NF and a maximal
repeat [21, 33, 35]: when extending a string with positive NF, the frequency of the extended
string becomes 1, whereas when extending a maximal repeat, the frequency of the extended
string decreases, but does not necessarily become 1.

Motivation. NF has been demonstrated to be useful in tasks such as Chinese phoneme-to-
character (and character-to-phoneme) conversion, the determination of prosodic segments in
a Chinese sentence for text-to-speech output, and Chinese toneless phoneme-to-character
conversion for Chinese spelling error correction [23, 24]. NF could also be complementary
to tasks such as parsing in NLP and structure discovery in genomic strings. However, even
though the original paper on NF [23] suggested that “suitable indexing can be used to improve
efficiency”, efficient structures and algorithms for NF were not explicitly described. In this
work, we bridge this gap by delving into the properties of NF. Through these properties, we
introduce efficient algorithms for computing NF.

Problem definition. Throughout, T is our length-n input text and S a length-m string in T .
We consider two problems relating to computing NF in T : the Single-string Net Frequency
problem single-nf and the All-strings Net Frequency problem all-nf:

single-nf: given a text, T , and a query string, S, report the NF of S in T .
all-nf: given a text, T , identify each string that has positive NF in T . Concretely, the
identification could be one of the following two forms. all-nf-report: for each string of
positive NF, report one occurrence and its NF; or all-nf-extract: extract a multiset,
where each element is a string with positive NF and its multiplicity is its NF.
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Our contribution. In this work, we first reconceptualise NF through our new characteristic
that simplifies the original definition. We then apply it and identify strings with positive
NF in Fibonacci words. For single-nf, we introduce an O(m + σ) time algorithm, where
m is the length of the query and σ is the size of the alphabet. This is achieved via several
augmentation to suffix array from LF mapping to LCP array, as well as solution to the
coloured range listing problem. For all-nf, we establish a connection to branching strings
and LCP intervals, then solve all-nf-report in O(n) time, and all-nf-extract in
O(n log δ) time, where δ is a repetitiveness measure defined as δ := max {S(k)/k : k ∈ [n]}
and S(k) denotes the number of distinct strings of length k in T . The cost is bounded by
making a connection to irreducible LCP values. We also conducted extensive experiments
and demonstrated the efficiency of our algorithms empirically. The code for our experiments
is available at https://github.com/peakergzf/string-net-frequency.

2 Preliminaries

Strings. Let Σ be a finite alphabet of size σ. Given a character, x, and two strings, S

and T , some of their possible concatenations are written as xS, Sx, ST , and TS . If S is a
substring of T , we write S ≺ T or T ≻ S. Let [n] denote the set {1, 2, . . . , n}. A substring
of T with starting position i ∈ [n] and end position j ∈ [n] is written as T [i . . . j]. A substring
T [1 . . . j] is called a prefix of T , and T [i . . . n] is called a suffix of T . Let Ti denote the ith

suffix of T , T [i . . . n]. An occurrence in the text T is a pair of starting and ending positions
(s, e) ∈ [n] × [n]. We say (i, j) is an occurrence of string S if S = T [i . . . j], and i is an
occurrence of S if S = T [i . . . i + |S| − 1]. The frequency of S, denoted by f(S), is the number
of occurrences of S in T . A string S is unique if f(S) = 1 and is repeated if f(S) ≥ 2.

Suffix arrays and Burrows-Wheeler transform. The suffix array (SA) [27] of T is an array
of size n where SA[i] stores the text position of the ith lexicographically smallest suffix. For
a string S, let l and r be the smallest and largest positions in SA, respectively, where S is
a prefix of the corresponding suffixes TSA[l] and TSA[r]. Then, the closed interval ⟨l, r⟩ is
referred to as the SA interval of S. The inverse suffix array (ISA) of a suffix array SA is an
array of length n where ISA[i] = j if and only if SA[j] = i. The Burrows-Wheeler transform
(BWT) [29] of T is a string of length n where BWT [i] = T [SA[i] − 1] for SA[i] > 1 and
BWT [i] = $ if SA[i] = 1. The LF mapping is an array of length n where LF [i] = ISA[SA[i]−1]
for SA[i] > 1, and LF [i] = 1 if SA[i] = 1.

LCP arrays and irreducible LCP values. The longest common prefix array (LCP) [17, 28]
is an array of length n where the ith entry in the LCP array stores the length of the longest
common prefix between TSA[i−1] and TSA[i], which is denoted lcp

(
TSA[i−1], TSA[i]

)
. An entry

LCP[i] is called reducible if BWT [i − 1] = BWT [i] and irreducible otherwise. The sum of
irreducible LCP values was first bounded as O(n log n) [16]. Later the bound has been refined
with the development of repetitiveness measures [31]. Let r be the number of equal-letter
runs in the BWT of T . The bound on the sum of irreducible LCP values was improved [15]
to O(n log r). Let S(k) be the number of distinct strings of length k in T , and define
δ := max {S(k)/k : k ∈ [n]} [6, 20, 36]. The bound was further improved in the following
result.

▶ Lemma 1 ([18]). The sum of irreducible LCP values is at most O(n log δ).
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Coloured range listing. The coloured range listing (CRL) problem is defined as follows.
Preprocess a text T of length n such that, later, given a range i, . . . , j, list the position of
each distinct character (“colour”) in T [i . . . j]. The data structure introduced in [30] lists
each such position in O(1) time, occupying O(n log n) bits of space. Compressed structures
for the CRL problem have also been introduced [10].

3 A Fresh Examination of Net Frequency

In this section, we lay the foundation for efficient net frequency (NF) computation by
re-examining NF and proving several properties. Before we formally define NF, we first
introduce the notion of extensions. The proofs of the results in this section are postponed to
the full version.

▶ Definition 2 (Extensions). Given a string S and two symbols x, y ∈ Σ, strings xS, Sy,
and xSy are called the left, right, and bidirectional extension of S, respectively. A left or
right extension is also called a unidirectional extension. We then define the following sets
of extensions: L(S) := {x ∈ Σ : f(xS) ≥ 2} , R(S) := {y ∈ Σ : f(Sy) ≥ 2} , and B(S) :=
{(x, y) ∈ L(S) × R(S) : f(xSy) ≥ 1} .

Note that the definition of B(S) does not require that string xSy needs to repeat; only the
unidirectional extensions, xS and Sy, must do so.

▶ Definition 3 (Net frequency [23]). Given a string S in T , the NF of S is zero if it is unique
in T ; otherwise S repeats and the NF of S is defined as

ϕ(S) := f(S) −
∑

x∈L(S)

f(xS) −
∑

y∈R(S)

f(Sy) +
∑

(x,y)∈B(S)

f(xSy) .

The two subtraction terms discount the occurrences that are part of longer repeated strings
while the addition term compensates for double counting (occurrences of xS and Sy could
correspond to the same occurrence of S), an inclusion-exclusion approach. We now introduce
a fresh examination of NF that significantly simplifies the original definition and will be the
backbone of our algorithms for NF computation later.

▶ Theorem 4 (Net frequency characteristic). Given a repeated string S,

ϕ(S) = |{ (x, y) ∈ Σ × Σ : f(xS) = 1 and f(Sy) = 1 and f(xSy) = 1 }| .

In the original definition of NF and in our characteristics, extensions are limited to adding
only one character to one side of the string. It is intriguing to explore the impact of longer
extensions. Surprisingly, the analogous quantity of NF with longer extensions is equal to NF.

▶ Lemma 5. Given a repeated string S, for each k ≥ 1, we have ϕ(S) = ϕk(S) where

ϕk(S) :=
∣∣{ (X, Y ) ∈ Σk × Σk : f(XS) = 1 and f(SY ) = 1 and f(XSY ) = 1

}∣∣ .

So far the definition and properties of NF have been formulated in terms of symbols from
the alphabet. To facilitate our discussion on the properties and algorithms of NF later, we
switch our focus away from symbols and reformulate NF in terms of occurrences. Recall that
the frequency of a string S is the number of occurrences of S. Analogously, the NF of S is
the number of net occurrences of S.
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a b a a b a b a a b a a b a b a a b a b a

a b a a b a b a a b a a b a b a a b a b a
Fi−2

Fi−2 Fi−2

Fi−2Fi−3

w

Fi−5 Fi−4

x y z

j1 j2

j3

Figure 1 Illustration of proof of Theorem 8. Two factorisations of F8 are depicted with rectangles.

▶ Definition 6 (Net occurrence). An occurrence (i, j) is a net occurrence if f(T [i . . . j]) ≥ 2,
f(T [i − 1 . . . j]) = 1, and f(T [i . . . j + 1]) = 1. When i = 1, f(T [i − 1 . . . j]) = 1 is assumed
to be true; when j = n, f(T [i . . . j + 1]) = 1 is assumed to be true.

When f(xS) = 1 and f(Sy) = 1, f(xSy) is either 0 or 1. But when f(T [i − 1 . . . j]) = 1 and
f(T [i . . . j + 1]) = 1, f(T [i − 1 . . . j + 1]) must be 1 and cannot be 0. Thus, the conditions in
Definition 6 do not mention the bidirectional extension, f(T [i − 1 . . . j + 1]) = 1.

Net Frequency of Fibonacci Words: A Case Study
Let Fi be the ith (finite) Fibonacci word over binary alphabet {a, b}, where F1 := b, F2 := a,
and for each i ≥ 3, Fi := Fi−1Fi−2. Note that |Fi| = fi where fi is the ith Fibonacci number.
There has been an extensive line of research on Fibonacci words, from their combinatorial
properties [19] to lower bounds and worst-case examples for strings algorithms [14].

In this section, we examine the NF of Fibonacci words, which later will help us obtain
a lower bound on the sum of lengths of strings with positive NF in a text. Specifically, we
assume i ≥ 7, we regard Fi as our input text, and we study the net frequency of Fi−2 and
Si := Fi−1[1 . . . fi−1 − 2] in Fi.

Net Frequency of Fi−2 in Fi

We begin by introducing some basic concepts in combinatorics on words [25]. A nonempty
word u is a repetition of a word w if there exist words x, y such that w = xuky for some
integer k ≥ 2. When k = 2, the repetition is called a square. A word v that is both a prefix
and a suffix of w, with v ̸= w, is called a border of w. Stronger results on the borders and
squares of Fi have been introduced before [7, 13], but for our purposes, the following suffices.

▶ Observation 7. Fi−2 is a border and a square of Fi.

Proof. We apply the recurrence and factorise Fi as follows. Occurrences of Fi−2 as a border
or a square of Fi are underlined. Fi = Fi−1 Fi−2 = Fi−2 Fi−3 Fi−2 = Fi−2 Fi−3 Fi−3 Fi−4 =
Fi−2 Fi−3 Fi−4 Fi−5 Fi−4 = Fi−2 Fi−2 Fi−5 Fi−4. ◀

▶ Theorem 8. ϕ(Fi−2) ≥ 1.

Proof. The proof is illustrated in Figure 1. In the following two factorisations of Fi,
Fi = Fi−2 Fi−3 Fi−2 and Fi = Fi−2 Fi−2 Fi−5 Fi−4, consider j1, j2, and j3, three occurrences
of Fi−2. Let w and y be the left extension characters of j2 and j3, respectively, and let x and
z be the right extension characters of j1 and j2, respectively. Using the factorisation Fi =
Fi−2 Fi−3 Fi−2, observe that w = Fi−2[fi−2], x = Fi−2[1], and y = Fi−3[fi−3]. Using the
factorisation Fi = Fi−2 Fi−2 Fi−5 Fi−4, we have z = Fi−5[1]. Thus, x = z = a, and w ̸= y

because the last character of consecutive Fibonacci words alternates. Therefore, j1 and j2
are not net occurrences of Fi−2 in Fi and only j3 is. ◀

CPM 2024
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a b a a b a b a a b a a b a b a a b a b a

a b a a b a b a a b a a b a b a a b a b a

Fi−2

Fi−2 Fi−2

Fi−2Qi

Qi

∆(1)

Fi−3

Fi−5 Fi−4

∆(0)

Figure 2 Illustration of Lemma 10 with F8. Note that Fi−5 = ab and Fi−4 = aba.

Net Frequency of Si in Fi

In the recurrence of Fibonacci word, Fi−2 is appended to Fi−1, Fi = Fi−1 Fi−2. When we
reverse the order of the concatenation and prepend Fi−2 to Fi−1, for example, notice that
F6 F5 = abaababa|abaab and F5 F6 = abaab|abaababa only differ in the last two characters.
Such property is referred to as near-commutative in [34]. In our case, we characterise the
string that is invariant under such reversion with Qi in the following definition.

▶ Definition 9 (Qi and ∆(j)). Let Qi := Fi−5 Fi−6 · · · F3 F2 be the concatenation of i − 6
consecutive Fibonacci words in decreasing length. For j ∈ {0, 1}, we define ∆(j) := ba if
j = 0, and ∆(j) := ab otherwise.

In Figure 2, Fi−4 Fi−5 and Fi−5 Fi−4 only differ in the last two characters, and their common
prefix is Qi. The alternation between ab and ba was also observed in [8], but their focus was
on capturing the length-2 suffix appended to the palindrome Fi[1 . . . fi − 2].

Observe that Fi−3 = Fi−4 Fi−5, the invariant discussed earlier is captured as follows.

▶ Lemma 10. Fi−3 = Qi ∆ (1 − (i mod 2)) and Fi−5 Fi−4 = Qi ∆(i mod 2).

Proof. Let P (i) be the statement Fi−3 = Qi ∆(1 − (i mod 2)). We prove P (i) by strong
induction. Base case: observe that F7−3 = aba, Q7 = F2 = a, and ∆(1−(7 mod 2)) = ∆(0) =
ba. Inductive step: consider k > 7, assume that P (j) holds for every j ≤ k. We now prove
P (k + 1) holds. First, Fk−2 = Fk−3 Fk−4 = Fk−4 Fk−5 Fk−4. Then, based on our inductive
hypothesis, Fk−4 = Qk−1 ∆(1 − (k − 1) mod 2) = Fk−6 Fk−7 · · · F3 F2 ∆(1 − (k − 1) mod 2).
Substituting the second Fk−4 in Fk−2, we have Fk−2 = Fk−4 Fk−5 Fk−6 Fk−7 · · · F3 F2 ∆(1−
(k − 1) mod 2) = Qk+1 ∆(1 − (k + 1) mod 2). By induction, P (i) holds for all i. Fi−5 Fi−4 =
Qi ∆(i mod 2) is proved similarly and the proof is postponed to the full version. ◀

Previously we defined Si as the length (fi−1 − 2) prefix of Fi−1, now we can see that this is
to remove ∆ (|∆| = 2). With Lemma 10, we now present the main result on the NF of Si.

▶ Theorem 11. ϕ(Si) ≥ 2.

Proof. It follows from Lemma 10 that Fi−1 = Fi−2 Fi−3 = Fi−2 Qi ∆(1 − (i mod 2)). Then,
Si = Fi−1[1 . . . fi−1 −2] = Fi−2 Qi. Consider the two occurrences of Si, observe that the right
extension characters of these occurrences are different: ∆(1 − (i mod 2))[1] ̸= ∆(i mod 2)[1].
(In Figure 2, ∆(1)[1] ̸= ∆(0)[1].) Therefore, both occurrences are net occurrences. ◀

▶ Remark 12. Theorem 8 and Theorem 11 show that there are at least three net occurrences
in Fi (one of Fi−2 and two of Si). Empirically, we have verified that these are the only three
net occurrences in Fi for each i until a reasonably large i. Future work can be done to prove
this tightness.
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Algorithm 1 for single-nf.
Input : S ← a string;

1 ϕ← 0; // the NF of S

2 ⟨l, r⟩ ← the SA interval of S;
3 for i← CRLBWT (l, r) do
4 j ← LF [i];
5 if |S| = ℓ(i) and |S| ≥ ℓ(j) then

// see Theorem 15
6 ϕ← ϕ + 1;

7 return ϕ;

Algorithm 2 for all-nf-extract.

1 N ← ∅;
// N is a multiset of strings with positive NF.
We write N |S for the NF of S in N .

2 for i← 1, . . . , n do
3 j ← LF [i];
4 if ℓ(i) ≥ ℓ(j) then
5 S ← T [Ci]; // see Definition 16
6 N|S ← N|S + 1;

7 return N ;

4 New Algorithms for Net Frequency Computation

Our reconceptualisation of NF provides a basis for computation of NF in practice. In this
section, we introduce our efficient approach for NF computation. The proofs of the results in
this section are postponed to the full version.

4.1 SINGLE-NF Algorithm

To compute the NF of a query string S, it is sufficient to enumerate the SA interval of S

and count the number of net occurrences of S. To determine which occurrence is a net
occurrence, we need to check if the relevant extensions are unique. Locating the occurrences
of the left extensions is achieved via LF mapping and checking for uniqueness is assisted by
the LCP array. For convenience, we define the following. We then observe how to determine
the uniqueness of a string as a direct consequence of a property of the LCP array.

▶ Definition 13. For each 1 ≤ i ≤ n − 1, ℓ(i) := max(LCP[i], LCP[i + 1]).

▶ Observation 14 (Uniqueness characteristic). Let ⟨l, r⟩ be the SA interval of S, and let
l ≤ i ≤ r, then S is unique if and only if |S| > ℓ(i), and S repeats if and only if |S| ≤ ℓ(i).

Now, we present the main result that underpins our single-nf algorithm.

▶ Theorem 15 (Net occurrence characteristic). Given an occurrence (s, e) in T , let S :=
T [s . . . e], i := ISA[s], and j := LF [i]. Then, (s, e) is a net occurrence if and only if
|S| = ℓ(i) and |S| ≥ ℓ(j).

Let ⟨l, r⟩ be the SA interval of S and let f be the frequency of S. With Theorem 15, we
have an O(m + f) time single-nf algorithm by exhaustively enumerating ⟨l, r⟩. Note that
it takes O(m) time to locate ⟨l, r⟩ [1] and O(f) to enumerate the interval. However, with
the data structure for CRL, we can improve this time usage. Specifically, observe that if
we preprocess the BWT of T for CRL, then, instead of enumerating each position within
⟨l, r⟩, we only need to examine each position that corresponds to a distinct character of
BWT [l . . . r]. Observe that each such character is precisely a distinct left extension character.
We write CRLBWT (l, r) for such set of positions. Our algorithm for single-nf is presented
in Algorithm 1, which takes O(m + σ) time where σ is a loose upper bound on the number
of distinct characters in BWT [l . . . r].
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4.2 ALL-NF Algorithms

From Theorem 15, observe that for each position in the suffix array, only one string occurrence
could be a net occurrence, namely, the occurrence that corresponds to a repeated string with
a unique right extension. This occurrence will be a net occurrence if the repeated string also
has a unique left extension. For convenience, we define the following.

▶ Definition 16 (Net occurrence candidate). For each i ∈ [n], let Ci := (SA[i], SA[i] + ℓ(i) − 1)
be the net occurrence candidate at position i. We write T [Ci] for the string T [SA[i] . . . SA[i] +
ℓ(i) − 1], the candidate string at position i.

In our approach for solving single-nf, Theorem 15 is applied within a SA interval. To
solve all-nf, there is an appealing direct generalisation that would apply Theorem 15 to
each candidate string in the entire suffix array. However, there is a confound: consecutive net
occurrence candidates in the suffix array do not necessarily correspond to the same string.
To mitigate this confound, we introduce a hash table representing a multiset that maps each
string with positive NF to a counter that keeps track of its NF. With this, Algorithm 2
iterates over each row of the suffix array, identifies the only net occurrence candidate Ci,
then increment the NF of T [Ci], if Ci is indeed a net occurrence.

▶ Remark 17. Algorithm 2 is natural for all-nf-extract, but cannot support all-nf-
report without the extraction first. In contrast, our second all-nf method, Algorithm 3,
which we will discuss next, supports both all-nf-extract and all-nf-report without
having to complete the other first. ⌟

We next consider the only strings that could have positive NF. A string S is branching [26]
in T if S is the longest common prefix of two distinct suffixes of T .

▶ Lemma 18. For every non-branching string S, ϕ(S) = 0.

Now, we make the following observation, which aligns with the previous result.

▶ Observation 19. Each net occurrence candidate is an occurrence of a branching string.

The SA intervals of branching strings are better known as the LCP intervals in the literature.

▶ Definition 20 (LCP interval [1]). An LCP interval of LCP value ℓ, written as ℓ-⟨l, r⟩, is an
interval ⟨l, r⟩ that satisfies the following: LCP[l] < ℓ, LCP[r + 1] < ℓ, for each l + 1 ≤ i ≤ r,
LCP[i] ≥ ℓ, and there exists l + 1 ≤ k ≤ r such that LCP[k] = ℓ,

Traversing the LCP intervals is a standard task and can be accomplished by a stack-based
algorithm: examples include Figure 7 in [17] and Algorithm 4.1 in [1]. These algorithms were
originally conceived for emulating a bottom-up traversal of the internal nodes in a suffix tree
using a suffix array and an LCP array. In a suffix tree, an internal node has multiple child
nodes and thus its corresponding string is branching.

Thus, Algorithm 3 is an adaptation of the LCP interval traversal algorithms in [1, 17]
with an integration of our NF computation. Notice that in the ith iteration of the algorithm,
we set Boolean variable for_next to true if ℓ(i) = LCP[i + 1]. That is, for_next is true if
the current net occurrence candidate that we are examining corresponds to an LCP interval
that will be pushed onto the stack in the next iteration, i + 1.

Note that the correctness of Algorithms 1–3 follows from the correctness of Theorem 15.
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Algorithm 3 for all-nf-report or all-nf-extract.

1 s← ∅;
// an empty stack; the standard stack operations used in
the algorithm are: s.push( ), s.top( ), and s.pop( )

2 s.push( ⟨0, 0, 0⟩ );
// an LCP interval len-⟨lb, rb⟩ with NF ϕ is written as
⟨len, lb, ϕ⟩; note that rb is not used in this algorithm
// ⟨0, 0, 0⟩ is the LCP interval for the empty string

3 for_next← false ;
// for_next = true indicates that the current net
occurrence is for the interval that will be pushed onto the
stack in the next iteration

4 function process_interval(I):
// I: an LCP interval

5 if I.ϕ > 0 then
6 j ← SA[I.lb];
7 S ← T [j . . . j + I .len];

// to be reported or extracted
8 ϕ(S) = I.ϕ;

9 for i← 2 . . . n do
10 lb ← i− 1;
11 while LCP[i] < s.top( ).len do
12 I ← s.pop( );
13 process_interval(I);
14 lb ← I.lb ;
15 if LCP[i] > s.top( ).len then
16 s.push( ⟨LCP[i], lb, 0 ⟩ );
17 if for_next then
18 s.top( ).ϕ← s.top( ).ϕ + 1;
19 for_next← false ;

20 j ← LF [i];
21 if ℓ(i) ≥ ℓ(j) then
22 if LCP[i] = ℓ(i) then
23 s.top( ).ϕ← s.top( ).ϕ + 1;
24 else for_next = true ;

25 while s is not empty do
26 process_interval(s.pop( ));

Analysis of the ALL-NF algorithms. When Algorithm 3 is used for all-nf-report, it
runs in O(n) time in the worst case. We can also use Algorithm 3 for all-nf-extract. To
analyse the asymptotic cost for all-nf-extract (using either Algorithm 2 or Algorithm 3),
we first define the following.

▶ Definition 21. Given an input text T , let S := {S ≺ T : ϕ(S) > 0} be the set of strings
with positive NF in T . Then, we define N :=

∑
S∈S |S| and L :=

∑
S∈S ϕ(S) · |S|.

With these definitions, we first present the following bounds.

▶ Lemma 22.
∑

S∈S ϕ(S) ≤ n and |S| ≤ n.

For all-nf-extract, when a hash table is used, Algorithm 2 takes O(L) time while
Algorithm 3 only takes O(N), both in expectation. Note that for each S ∈ S, in Algorithm 2,
S is hashed ϕ(S) times, but in Algorithm 3, S is only hashed once.

Since N ≤ L, a lower bound on N is also a lower bound on L, and an upper bound on
L is also an upper bound on N . The next two results present a lower bound on N and an
upper bound on L.

▶ Lemma 23. N ∈ Ω(n) .

Proof. We use our results on Fibonacci words. From Theorem 8 and Theorem 11, N(Fi) ≥
|Fi−2| + |Fi−2 Qi| = fi−2 +

(
fi−2 +

∑i−5
j=2 fj

)
. Using the equality

∑i
j=1 fj = fi+2 − 1, we

have L(Fi) ≥ fi−2 + (fi−2 + fi−3 − 1 − f1). With further simplification, N(Fi) ≥ fi − 2. ◀

We can similarly show that L(Fi) ≥ fi + fi−2 − 2. Next, we present an upper bound on L.

▶ Theorem 24. L ∈ O(n log δ) .

Proof. First observe that L =
∑

i∈[n] : net_occ(Ci) ℓ(i) where net_occ(Ci) denotes that Ci is a
net occurrence. Thus, L can be expressed as the sum of certain LCP values. Next, when
Ci is a net occurrence, its left extension is unique, which means LCP[i] or LCP[i + 1] is
irreducible. Notice that each irreducible LCP[i] contributes to L at most twice due to Ci or
Ci−1. It follows that L is at most twice the sum of irreducible LCP values. Using Lemma 1,
we have the desired result. ◀
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Table 1 Statistics for each dataset, T . The first three datasets are news collections. Definition 21
explains S, N , and L. As described in Section 5.1, it is practical to bound the length of each query
by 35: in parentheses, therefore, we also include the values of N and L with a length upper bound
(u.b.) of 35 on the individual strings. That is, we replace S with {S ≺ T : ϕ(S) > 0 and |S| ≤ 35}.
Also recall that L and N are used in the asymptotic costs of our all-nf algorithms.

T n (×106) |Σ| |S| N (with u.b.) L (with u.b.)
NYT 435.3 89 0.1n 1.7n (1.4n) 2.7n (2.2n)
APW 152.2 92 0.1n 1.6n (1.3n) 2.6n (2.1n)
XIE 98.9 91 0.1n 1.7n (1.4n) 2.8n (2.2n)
DNA 505.9 4 0.001n 0.5n (0.005n) 1.1n (0.007n)

5 Experiments

In this section, we evaluate the effectiveness of our single-nf and all-nf algorithms
empirically. The datasets used in our experiments are news collections from TREC 2002 [37]
and DNA sequences from Genbank [5]. Statistics are in Table 1. Relatively speaking, there
are far fewer strings with positive NF in the DNA data because, with a smaller alphabet,
the extensions of strings are less variant, and DNA is more nearly random in character
sequence than is English text. All of our experiments are conducted on a server with a
3.0GHz Intel(R) Xeon(R) Gold 6154 CPU. All the algorithms are implemented in C++ and
GCC 11.3.0 is used. Our implementation is available at https://github.com/peakergzf/
string-net-frequency.

5.1 SINGLE-NF Experiments
For the news datasets, each query string is randomly selected as a concatenation of several
consecutive space-delimited strings. We set a query-string length lower bound of 5 because
we regard very short strings as not noteworthy. We set a practical upper bound of 35 because
there are few strings longer than 35 with positive NF based on our preliminary experimental
results. For DNA, each query string is selected by randomly choosing a start and end position
from the text.

Algorithms. As discussed in Section 1, there are no prior efficient algorithms for single-
nf. Thus, we came up with two reasonable baselines, CSA and HSA, and compare their
performance against our new efficient algorithms, CRL and ASA.

CRL: presented in Algorithm 1. We implement the algorithm for coloured range listing
(CRL) following [30], which uses structures for range minimum query [9].
ASA: removing the CRL augmentation from Algorithm 1, but keeping all other aug-
mentations, hence the name augmented suffix array (ASA). Specifically, we replace
“CRLBWT (l, r)” with “⟨l, r⟩” in Line 3 of Algorithm 1.
CSA: algorithmically the same as ASA, but the data structure used is the compressed
suffix array (CSA) [32]. We use the state-of-the-art implementation of CSA from the
SDSL library (https://github.com/simongog/sdsl-lite). Specifically, their Huffman-
shaped wavelet tree [11, 12] was chosen based on our preliminary experimental results.
HSA: Hash table-augmented suffix array (HSA) is a naive baseline approach that does not
use LF, LCP, or CRL, but only augments the suffix array with hash tables to maintain
the frequencies of the extensions. These hash tables are later used to determine if an
extension is unique or not.

https://github.com/peakergzf/string-net-frequency
https://github.com/peakergzf/string-net-frequency
https://github.com/simongog/sdsl-lite
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Table 2 Average single-nf query time (in microseconds) over all the queries, repeated queries
(f ≥ 2), and queries with positive NF (ϕ > 0). The query set from NYT has 2× 106 queries in total,
38.3% repeated, while 1.4% have positive NF. The query set from DNA has 3× 106 queries in total,
51.9% repeated, while 2.5% have positive NF.

Dataset Algorithm All f ≥ 2 ϕ > 0

NYT

CRL 3.9 7.3 12.6
ASA 9.4 21.4 39.7
HSA 695.0 1813.9 3755.4
CSA 1002.1 2595.7 4884.3

DNA

CRL 6.8 10.1 5.5
ASA 64.9 122.4 3.3
HSA 5655.5 10884.9 11.8
CSA 6348.6 12209.0 10.9

The asymptotic running times of CRL, ASA, CSA, and HSA are O(m + σ),O(m + f),O(m +
f log σ), and O(m + f · σ), respectively, where σ is the size of the alphabet and the query
has length m and frequency f .

Comparing CRL against ASA, we expect CRL to be faster for more frequent queries as
ASA needs to enumerate the entire SA interval of the query string while CRL does not. ASA
is compared against CSA to illustrate the trade-off between query time and space usage: ASA
is expected to be faster while CSA is expected to be more space-efficient, and indeed this
trade-off is observed in our experiments. We also compare ASA against HSA to demonstrate
the speedup provided by the augmentations of LF and LCP.

Results. The average query time of each algorithm is presented in Table 2. Since the
results from the three news datasets exhibit similar behaviours, only the results from NYT
are included: henceforth, NYT is the representative for the three news datasets. Overall,
our approaches, CRL and ASA, outperform the baseline approaches, HSA and CSA, on
both NYT and DNA, but all the algorithms are slower on the DNA data because the query
strings are much more frequent. Notably, CRL outperforms the baseline by a factor of up to
almost 1000, across all queries, validating the improvement in the asymptotic cost. Since
non-existent and unique queries have zero NF by definition, we next specifically look at the
results on repeated queries.

All approaches are slower when the query string is repeated, as further NF computation
is required after locating the string in the data structure. For this reason we additionally
report results on queries with positive NF. For NYT, similar relative behaviours are observed,
but for DNA, all algorithms are significantly faster, likely because strings with positive NF
on DNA data are shorter and have much lower frequency. For the same reason of queries
being less frequent, ASA is faster than CRL on DNA queries with positive NF because the
advantage of CRL over ASA is more apparent when the queries are more frequent.

Further results on CRL and ASA. Previously we have seen that, empirically, the augmenta-
tion of CRL accelerates our single-nf algorithm, but is that the case for queries of different
frequency and length? We now investigate how query string frequency and length contribute
to single-nf query time of CRL and ASA.

For NYT we do not consider strings with frequency greater than 2000, as we observe that
these are rare outliers that obscure the overall trend. For each frequency f ∈ [0, 2000] (or
length l ∈ [5, 35]) and each algorithm A, a data point is plotted as the average time taken
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Figure 3 Average single-nf query time (in microseconds) of ASA and CRL against query string
frequency (left) and length (right) on the NYT dataset. Note that the y-axis on the right is scaled
logarithmically.
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Figure 4 Average single-nf query time (in microseconds) of ASA and CRL against query string
frequency (left) and length (right) on the DNA dataset. Note that the y-axis on the right is scaled
logarithmically.

by A over all the query strings with frequency f (or length l). Since there are far more
data points in the frequency plot than the length plot, we use a scatter plot for frequency
(left of Figure 3) while a line plot for length (right of Figure 3). For frequency, as we
anticipated, CRL is faster than ASA on more frequent queries. Empirically, on NYT, the
turning point seems to be around 700. Note that the plot for CRL seems more scattered,
likely because its time usage does not depend on frequency, but depends on query length. For
length, on very short queries, CRL is faster because these queries are highly frequent. Then,
generally, query time does not increase as the query strings become longer because they tend
to correspondingly become less frequent. This suggests that length is not as significant as
frequency in affecting the query time of these approaches.

We similarly examine the effect of frequency and length on ASA and CRL query time
using the DNA data. As the query strings are more frequent in DNA than in NYC, we
use a higher frequency upper bound of 5000 and the results are presented in Figure 4. The
most notable difference between the DNA and NYT is that the former has a much smaller
alphabet. Thus, the gap between ASA and CRL becomes more evident for more frequent
queries. Additionally, it is notable that the frequency plot for CRL on the DNA dataset
appears less scattered compared to the NYT plot, also because of a much smaller alphabet.

▶ Remark 25. Although asymptotically CRL is faster than ASA, we have seen that empirically
ASA is faster on less frequent queries. This suggests a hybrid algorithm that switches between
ASA and CRL depending on the frequency of the query string.
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Table 3 Asymptotic cost and average time (in seconds) for all-nf. Build involves building an
augmented suffix array including the off-the-shelf suffix array, the LCP array, and the LF mapping
of text T . See Definition 21 for L and N . Recall that N ≤ L and L ∈ O(n log δ).

Task Approach Cost Average time
NYT APW XIE DNA

Build prior alg. O(n) 186.7 61.3 39.0 219.6

Extract
Alg. 2 O(L) 38.8 13.6 8.6 6.6
Alg. 3 O(N) 100.1 33.2 21.9 76.2

Report
Alg. 2 O(L + n) 65.6 20.8 14.3 6.7
Alg. 3 O(n) 231.6 81.2 52.6 77.4

5.2 ALL-NF Experiments
In this section, we present the analyse and empirical results for the two tasks all-nf-report
and all-nf-extract. In this setting, each dataset from Table 1 is taken directly an as
input text, without having to generate queries. Each reported time is an average of five
runs. As seen in Table 3, for all-nf-extract, Algorithm 2 is consistently faster than
Algorithm 3 in practice, even though L ≥ N (see Definition 21). We believe this is because
Algorithm 2 is more cache-friendly and does not involve stack operations. Each algorithm is
slower for all-nf-report than all-nf-extract, likely due to random-access requirements.
For Algorithm 2, although DNA is the largest dataset, the method is faster than on other
datasets because there are far fewer strings with positive NF. However, this is not the case for
Algorithm 3, because it has to spend much time on other operations, regardless of whether
an occurrence is a net occurrence.

Comparing these results to those of the single-nf methods, observe that, for NYT,
calculation of NF for each string with ϕ > 0 takes on average 12.6 microseconds, or a total
of around 548.5 seconds for the complete set of such strings – which is only possible if the
set of these strings is known before the computation begins. Using all-nf, these NF values
can be determined in about 39 seconds for extraction and a further 65 seconds to report.

6 Conclusion and Future Work

Net frequency is a principled method for identifying which strings in a text are likely to be
significant or meaningful. However, to our knowledge there has been no prior investigation of
how it can be efficiently calculated. We have approached this challenge with fresh theoretical
observations of NF’s properties, which greatly simplify the original definition. We then use
these observations to underpin our efficient, practical algorithmic solutions, which involve
several augmentations to the suffix array, including LF mapping, LCP array, and solutions
to the colour range listing problem. Specifically, our approach solves single-nf in O(m + σ)
time and all-nf in O(n) time, where n and m are the length of the input text and a string,
respectively, and σ is the size of the alphabet. Our experiments on large texts showed that
our methods are indeed practical.

We showed that there are at least three net occurrences in a Fibonacci word, Fi, and
verified that these are the only three for each i until reasonably large i. Proving there are
exactly three is an avenue of future work. We also proved that Ω(n) ≤ N ≤ L ≤ O(n log δ).
Closing this gap remains an open problem. Another open question is determining a lower
bound for single-nf. We have focused on static text with exact NF computation in this
work. It would be interesting to address dynamic and streaming text and to consider how
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approximate NF calculations might trade accuracy for time and space usage improvements.
Future research could also explore how bidirectional indexes [2, 3, 4, 22] can be adapted for
NF computation.
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Abstract
We present a distance labeling scheme for an interval graph on n vertices that uses at most
3 lg n + lg lg n + O(1) bits per vertex to answer distance queries, which ask for the distance between
two given vertices, in constant time. Our labeling scheme improves the distance labeling scheme of
Gavoille and Paul for connected interval graphs which uses at most 5 lg n + O(1) bits per vertex to
achieve constant query time. Our improved space cost matches a lower bound proven by Gavoille
and Paul within additive lower order terms and is thus optimal. Based on this scheme, we further
design a 6 lg n + 2 lg lg n + O(1) bit distance labeling scheme for circular-arc graphs, with constant
distance query time, which improves the 10 lg n + O(1) bit distance labeling scheme of Gavoille and
Paul.

We give a n/2 + O(lg2 n) bit labeling scheme for chordal graphs which answers distance queries
in O(1) time. The best known lower bound is n/4 − o(n) bits.
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1 Introduction

A notion closely related to that of a centralized data structure for computing a query is the
notion of a labeling scheme. Formally introduced by Peleg [29], a labeling scheme assigns
a relatively short label to each vertex (using an encoder function), and to answer a query,
uses only the labels of the vertices involved in the query (using a decoder function). Thus a
labeling scheme can be viewed as a distributed form of a data structure, where we split the
data structure among the vertices of the graph. The distributed nature of the data structure
is highly applicable in distributed settings, where the computation only has access to the
data stored at the node and not the overall topology of the network (nor the data at other
nodes). By distributing the data structure, we avoid large centralized data structures, which
are costly and often will not fit in faster levels of memory. Furthermore, the length of the
labels are important as the labels will need to be transmitted between the nodes of a network.
Thus the quality of a labeling scheme is measured as the worst case label length (i.e. we
wish to split the data structure as evenly as possible) and the worst case time to decode
the labels to answer the query. One important property to note is that a labeling scheme
can be trivially converted to a more traditional data structure, by simply storing all the
labels. Thus the total space of a labeling scheme will be at least as much as the space for an
optimal data structure. However, it is often the case that labeling schemes will use more
overall space than the optimal data structure due to the distributed nature of the model.
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Many operations on graphs and trees have been considered in the labeling model. For
instance, labeling schemes computing adjacency in general undirected graphs [8] or in trees [4]
have been considered. In subclasses of graphs, hereditary graphs classes with at least 2Ω(n2)

members have adjacency labelings that use optimal space [10]. For trees, there are many
operations that are considered, aside from adjacency. For example, labelings checking
ancestry [15], computing the lowest/least common ancestor [21], and the ancestor at any
given depth [16]. The distance operation, which returns the distance between two vertices
of a graph, has been considered for many classes, such as general graphs [19, 5], planar
graphs [22], interval graphs [17], and trees [16]. Labeling schemes for the distance operation
is highly applicable to network routing [13, 14].

The distance operation, is a fundamental operation in graphs, and has been extensively
studied outside of the labeling model. As distance queries are able to compute adjacency
queries on unweighted graphs, the space needed is at least as much as for any data structure
or labeling for the adjacency query. One solution to the distance query is to precompute
and store the distances between all pairs of vertices, which incurs a quadratic space cost,
but for general graphs, such a space cost is unavoidable. To achieve better space costs,
work has focused on designing approximate solutions [28, 1]. For instance, Patrascu and
Roditty [28] constructs a data structure occupying O(n5/3) words of space which computes
the approximate distance within a factor of 2. Other work has focused on subclasses of graphs
which admits smaller space solutions, such as planar graphs [26, 25], interval graphs [17, 23]
and chordal graphs [31, 27].

Here we consider labeling schemes for the distance query. The graph classes we consider
are unweighted interval graphs, circular arc graphs and chordal graphs. These graphs are
intersection graphs, where the edges can be encoded in the intersection structure of sets.
That is for every vertex v, we can associate it with a set sv so that two vertices u, v are
adjacent exactly when su ∩ sv ̸= ∅. We say that the collection of sets {sv; v ∈ V } is an
intersection model of the graph. An interval graph is thus a graph where we can find an
intersection model where the sets are intervals on the real line, or simply, the intersection
graph of intervals on the real line. A circular arc graph is the intersection graph of arcs
on a circle, and a chordal graph is the intersection graph of subtrees (a set of connected
nodes, rather than an entire subtree rooted at some node) in a tree. These graphs have
nice combinatorial structures where many otherwise NP-Hard problems (such as maximum
independent set, clique etc...), can be solved on them in polynomial time. They also have
applications in compiler design [30], operations research [9] and bioinformatics [34] among
others where the specific objects they study can be modeled by these classes of graphs.

Particularly for interval graphs, there is a gap between the lower and upper bounds of a
distance labeling scheme, where the lower bound is 3 lg n−O(lg lg n) bits while the upper
bound is 5 lg n + O(1) bits [17]. And one of our aims is to close this gap and give tight results
for this class of graphs.

1.1 Related Work
For the distance labeling model, many classes of graphs have been considered. For general
graphs, a distance labeling scheme occupying lg 3

2 n + o(n) bits (about 0.795n) exists [5] with
O(1) decode (i.e time to compute the query) time along with a matching Ω(n) bit lower
bound [19]. For planar graphs, A lower bound of Ω(n1/3) is shown [19]. The best labeling
scheme uses O(

√
n) bits [22], but incurs a matching O(

√
n) decode time. With a bit more

space, a labeling scheme using O(
√

n lg n) bits can be decoded in O(lg3 n) time [22]. For
interval graphs, Gavoille and Paul [17] gave a 5 lg n + O(1) bit labeling scheme with O(1)
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decode time along with a 3 lg n− o(lg n) bit lower bound. For circular arc graphs, they gave
a 10 lg n + O(1) bit labeling scheme with O(1) decode time. For permutation graphs, Katz
et al. [24] gave a O(lg2 n) bit labeling scheme with O(lg n) decode time.

On trees, we also have a variety of queries based on the ancestor-descendant relationships,
among others:

Adjacency: determine if one vertex is the parent of another. A lg n + O(1) bit scheme
with O(1) decode time is given by Alstrup et al. [4], along with a matching lower bound.
Ancestry: determine if one vertex is an ancestor of another. A lg n + O(lg lg n) bit scheme
is given by Fraigniaud and Korman [15], and a matching lower bound is given by Alstrup
et al. [3].
Lowest common ancestor (LCA): determine the label of the lowest common ancestor of
two vertices. A 2.318 lg n + o(lg n) bit labeling scheme with O(1) decode time is given by
Gawrychowski [21], while the lower bound is 1.008 lg n bits [7]. If we also need to return
a predetermined k bit label of the lower common ancestor, then Alstrup et al. [7] gives a
labeling scheme of length (3 + k) lg n bits with O(1) decode time. If k = Θ(lg n), then a
matching Θ(lg2 n) lower bound is shown by Peleg [29].
Level ancestor: return the label of the ancestor of a vertex v at depth d. A 1

2 lg2 n+O(lg n)
bit scheme is given by Alstrup et al. [6], which matches a lower bound of 1

2 lg2 n−lg n lg lg n

of Freedman et al. [16].
Distance: return the distance between between two vertices. A 1

4 lg2 n + o(lg2 n) bit
labeling scheme is given by Freedman et al. [16], with a matching lower bound given by
Alstrup et al. [6].

We refer to the survey of Gavoille and Peleg [18], and references therein, for a survey of
labeling schemes and their applications in distributed computing.

1.2 Our Results
Our main contribution is a 3 lg n + lg lg n + O(1) bit labeling scheme for interval graphs with
O(1) decode time, which improves the 5 lg n + O(1) labeling scheme given by Gavoille and
Paul [17]. This matches the 3 lg n− o(lg n) lower bound they proved up to lower order terms.
We further note that Gavoille and Paul assumed that the interval graph is connected in
their paper, and did not discuss what do if it were disconnected, while our solution works
for general interval graphs. We also first consider connected interval graphs, and give a
3 lg n + O(1) bit distance labeling scheme with O(1) decode time, before generalizing it.

To do this, we adapt the distance algorithm on interval graphs of He et al. [23] which
uses level ancestor queries. The main advancement compared to similar structures such that
of Chen et al. [12] is the fact that a tree encoding the distances can be constructed such
that a level-order traversal of the tree gives exactly the vertices in a left to right scan of the
(left endpoints of the) intervals, and thus comparisons of these endpoints can be done by
comparing properties of the corresponding nodes of the tree. We note that Gavoille and
Paul [17] stated that such an approach using level ancestor queries was impossible, as any
labeling scheme for level ancestors queries would need Ω(lg2 n) bits [16], and this may be the
reason for the gap between upper and lower bounds (5 lg n vs 3 lg n) to exist. The key insight
for our approach is that, although we use level ancestor queries as our basis, we do not need
to compute the exact ancestor node (and thus its label), but rather some properties of that
ancestor. These properties are also not exact, but approximate (for example, rather than the
exact index of a node visited in a post-order traversal, we only need to know whether this
index is less than some integer i), which allows us to bypass the level ancestor query lower
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bound. This optimal scheme for interval graphs also immediately improves the distance
labeling scheme of circular arc graphs from 10 lg n + O(1) bits [17] to 6 lg n + 2 lg lg n + O(1)
bits, with O(1) decode time.

We then apply the labeling scheme for interval graphs to chordal graphs to obtain the
first distance labeling schemes for chordal graphs. We obtain a distance labeling scheme
of length n/2 + O(lg2 n) bits. We note that as the lower bound on chordal graphs data
structures is n2/4− o(n) bits via an enumeration argument [27, 33], any distance labeling
scheme will require n/4− o(n) bit label lengths.

2 Preliminaries

2.1 Definitions and Notation
We will use the standard graph theoretic notations. Let G = (V, E) be a graph. We set
n = |V | the number of vertices and m = |E| the number of edges. As is standard, we will
use the word-RAM model with ω = Θ(lg n) bit words.

We use the standard definitions of graph and tree operations. For graphs, the operations
we use are

adjacent(u, v) which tests if two vertices u and v are adjacent.
distance(u, v) which returns the (unweighted) distance between two vertices u and v.

For trees the standard operations we use are
depth(v) which returns the depth of node v.
lev_anc(v, d) which returns the ancestor of a node v at a given depth d.
parent(v) which returns the parent node of the given node v.
LCA(u, v) which returns the lowest (i.e. largest depth) common ancestor of two given
nodes u and v.
node_rankX(v) which returns the index of v in the X traversal of the tree, where X is
PRE, POST or LEVEL indicating a preorder, post-order or level-order (i.e. a breadth-first
traversal where we visit the children from left to right) traversal of the tree.

A labeling scheme is a distributed data structure, where each vertex of the graph
contains a piece of the data structure and queries must be computed using only those pieces
available at the relevant vertices. Formally, a distance labeling scheme for a graph G with
n vertices is a pair of functions (L, f) where L(G, v), typically referred to as a encoder or
marker algorithm, computes a label from a vertex v of G, and f , typically referred to as
a decoder algorithm, computes the distance between two vertices given their labels. That
is f(L(G, u), L(G, v)) = distanceG(u, v). The size or length of the labeling scheme is the
maximum length over all possible labels: maxG,v |L(G, v)|. We note that there is a dichotomy
between L and f , where L can be computed using information from the entire graph, f

cannot and can use only the labels, without further information about the original graph
that the labels come from.

2.2 Interval Graph
An interval graph is a graph where the intersection model is a set of closed interval on the
real line, where we write the interval as Iv = [lv, rv]. By sorting the endpoints (and breaking
ties such that left endpoints come before right endpoints to preserve the intersection, and
arbitrarily otherwise) we may assume that the endpoints are distinct integers in the range
[1, 2n]. We will name the vertices 1, . . . , n, in the order of their left endpoints, so that for
two vertices u < v we have lu < lv. We will now review some of the lemmas used in the
computation of distances in interval graphs.
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Figure 1 An interval graph on 6 vertices. The intersection model is shown on the left, while the
distance tree (blue labels next to the nodes represent post-order numbers) is shown on the right.

For each vertex v, we define its parent, parent(v), to be the minimum vertex u (i.e.
the one with minimal left endpoint) adjacent to v. This can be expressed by the following
formula: arg min{lu | ru ≥ lv}.

Using this parent-child relationship (where the root of the tree is the vertex v with
1 = v = parent(v)), we may build a tree T which we will call the distance tree, where for
each internal node, its children are in sorted order (by left endpoint).

Crucial to the data structure is the index of the nodes of the tree in some traversal of the
tree denoted by node_rankX(T, v), where X is PRE, POST or LEVEL. We will omit the tree T

when the tree being referred to is clear. The main property of this tree is that the vertex
order sorted by left endpoint is exactly the vertex order obtained in a level-order traversal of
the tree:

▶ Lemma 1 (Lemma 7 of [23]). Let G be an interval graph with distance tree T (G) and
vertices u, v. Then node_rankLEVEL(u) < node_rankLEVEL(v) if and only if lu < lv.

This is quite intuitive since we ordered the children of every node of the tree by their left
endpoints, so that the property can propagate up the tree. Furthermore, by the property of
these traversals, in the case that depth(u) = depth(v), node_rankX(u) < node_rankX(v) if
and only if lu < lv for X = PRE, POST, LEVEL, as on each level of the tree, the traversals visit
the nodes from left to right; see Figure 1.

The shortest path algorithm used in previous works [12, 2, 27, 23] is the recursive algorithm
given in Algorithm 1, for two vertices in the same connected component of the interval graph.
The correctness can be summarized as the following lemma (though not explicitly stated as
a lemma in some previous papers):

▶ Lemma 2 (Lemma 8 [27], Lemma 4,6 [12]). Let G be an interval graph with dis-
tance tree T (G), and u, v be two vertices in the same connected component of G with
node_rankLEVEL(u) < node_rankLEVEL(v) (i.e. u < v). Let the node to root path of v be
v = vdepth(v), . . . , v0 = r, and i be the first (i.e. largest) index where lvi ≤ ru. Then a shortest
path from u to v is u = vdepth(v), . . . , vi, u, and furthermore, i is depth(u)− 1, depth(u) or
depth(u) + 1.

Algorithm 1 Shortest Path computation between vertices u and v with u < v.

1: path = empty
2: while true do
3: if adjacent (u, v) then
4: path = path, v, u

5: return path
6: path = path, v

7: v ← parent(v)
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The above lemma also allows us to compute the distance, as there are at most 3 candidates
for vi, which we may check individually using lev_anc.

3 Distance Labeling in Interval Graphs

In this section, we will consider distance labeling schemes for interval graphs. We will first
assume that our graph is connected, and then generalize it to arbitrary interval graphs. As
Gavoille and Paul [17] showed, any distance labeling scheme requires at least 3 lg n−O(lg lg n)
bits. Thus, our goal is to give a labeling scheme that uses 3 lg n + lg lg n + O(1) bits matching
their lower bound up to lower order terms. We will use the distance computation method
outlined in Lemma 2 and level ancestor queries as the basis of our scheme.

3.1 Labeling Scheme for Connected Interval Graphs
Now we consider the distance computation method outlined in Lemma 2. Given two vertices
u and v such that u < v (we assume u ≠ v as that is trivial), we computed the path to the
root in the distance tree from v as v = vdepth(v), . . . , v0 and computed the first index i such
that vi is adjacent to u. In Lemma 2, we had 3 candidates for vi. We will now narrow it
down to 2 by examining the relative positions of u and v in the tree.

▶ Lemma 3. Let G be an interval graph with distance tree T . Let u and v be two vertices of
G such that u < v. Depending on the positioning of u and v we define the ancestor w (of v)
as follows:
1. Suppose that node_rankPOST(u) < node_rankPOST(v). Let w = lev_anc(v, depth(u)).
2. Suppose that node_rankPOST(u) > node_rankPOST(v). Let w = lev_anc(v, depth(u) + 1).

Then w = vi if u and w are adjacent. Otherwise, w = vi−1.

Proof. See Figure 2 for an illustration of the two cases in the lemma statement. Define
d = depth(u) if node_rankPOST(u) < node_rankPOST(v) and d = depth(u) + 1 if
node_rankPOST(u) > node_rankPOST(v). Then w = vd as defined in this lemma. By the
definition of parent, lvj

> lvj−1 for every j. Then lvj
> lvd

> lu for all j > d. Thus for
any vj with j > d, vj cannot be adjacent to u, as otherwise lvj ≤ ru and thus u would be
considered as a possible vertex in the definition of parent(vj). But as vj−1 = parent(vj),
we must have lvd

≤ lvj−1 < lu, a contradiction.
In the case where u and w are adjacent, w = vi by definition as it is the first vertex

adjacent to u on the path towards the root (Lemma 2). Otherwise, suppose that u and w

are not adjacent. By the definition of a post-order traversal, we have node_rankPOST(w) ≥
node_rankPOST(v) since ancestors are visited later in the traversal. In the first case, since
depth(w) = depth(u) and node_rankPOST(u) < node_rankPOST(v) ≤ node_rankPOST(w), we
have lu < lw. Furthermore, since depth(parent(w)) = depth(u)− 1, lparent(w) < lu because
it comes before u in a level-order traversal (it has a smaller depth). In the second case where
node_rankPOST(u) > node_rankPOST(v), because depth(w) = depth(u) + 1, we have lw > lu.
This also implies that depth(parent(w)) = depth(u). By assumption node_rankPOST(u) >

node_rankPOST(v) which implies that node_rankPOST(u) > node_rankPOST(parent(w)), so we
have lparent(w) < lu as it comes before u in a level-order traversal.

Therefore, in either situation, we have the inequalities lparent(w) < lu < lw. By definition
of parent we have rparent(w) > lw. Therefore, lparent(w) < lu < rparent(w) and thus u and
parent(w) are adjacent. Hence parent(w) is the first vertex adjacent to u on the path
towards the root from v so w = vi−1 (Lemma 2). ◀
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u

v

w = vdepth(u)

node rankpost(u) < node rankpost(v)

u

v

w = vdepth(u)+1

node rankpost(u) > node rankpost(v)

vdepth(u)

Figure 2 The two cases based on the relative positioning of u and vdepth(u) on the level depth(u).
In the first case, u is to the left of the ancestor of v, while in the second case, u to the right. The
node w, which will later be called the representative of v with respect to u, is the smallest depth
ancestor that is after u in a level-order traversal. In the first case, w would be on the same level as
u, while in the second w is on the next level.

The node w, which is the smallest depth ancestor with lw > lu (i.e. to the right of u

in the intersection model and in a level-order traversal of the tree) will be denoted as the
representative of v with respect to u. This is because to compute the distance between u and
v, it suffices to determine whether w is adjacent to u or not, and to compute the distance
between v and w. Since w is an ancestor of v, this distance is simply the difference in the
depths of w and v. We will rewrite Algorithm 1 as Algorithm 2 to take advantage of this
observation.

Algorithm 2 Distance computation between vertices u and v with u < v.

1: if node_rankPOST(u) < node_rankPOST(v) then
2: w ← lev_anc(v, depth(u))
3: else
4: w ← lev_anc(v, depth(u) + 1)
5: distance = depth(v)− depth(w)
6: if adjacent(u, w) then
7: distance = distance+1
8: else
9: distance = distance+2

10: return distance

To convert Algorithm 2 into an algorithm that uses only labels, we need to do the following
steps using only labels:
1. Test whether u < v

2. Compute depth(v) and depth(u)
3. Compute node_rankPOST(v) and node_rankPOST(u)
4. Compute (an approximation of) lev_anc
5. Compute adjacent using the approximation of lev_anc.

Our labeling scheme will consist of the following 3 integers for each vertex v, each using
⌈lg n⌉ bits:
1. depth(v)
2. node_rankPOST(v)
3. node_rankPOST(last(v))

CPM 2024



17:8 Optimal Distance Labeling Scheme for Interval Graphs

Here, last(v) is the rightmost neighbour of v (i.e. the neighbour with the largest left
endpoint). In the case where v is the rightmost vertex, the rightmost neighbour of v is to its
left, and we consider this to be an invalid case and set last(v) = nothing (and we will not
need it in our computation).

An important property of last(v) is

▶ Lemma 4. Let G be an interval graph with distance tree T . Let v be a vertex that is not
the rightmost vertex. Then every vertex w such that v < w ≤ last(v) is adjacent to v.

Proof. Let w be a vertex such that v < w ≤ last(v) (by our naming convention, this is also
an inequality on the left endpoints of these vertices). Since last(v) is adjacent to v, we have
lv < llast(v) < rv. Thus we have lv < lw ≤ llast(v) < rv, so w is adjacent to v. ◀

Now we show how to compute the steps using our labels.

Step 1: Decide if u < v. By Lemma 1, we have u < v exactly when node_rankLEVEL(u) <

node_rankLEVEL(v). If depth(u) < depth(v), then the inequality of node_rankLEVEL is implied.
Otherwise, if depth(u) = depth(v), then node_rankLEVEL(u) < node_rankLEVEL(v) if and only
if node_rankPOST(u) < node_rankPOST(v). If neither is the case, then we have v < u, so we
switch the two vertices in the algorithm.

Step 2,3: Compute depth(u), depth(v), node_rankPOST(u), node_rankPOST(v). This is
immediate as we store them as part of the label.

Step 4,5: Compute adjacent using the approximation of lev_anc. We will use
node_rankPOST(v) as our approximation of node_rankPOST(w) in our calculations. To compute
adjacent(u, w) using node_rankPOST(v), we will use the following lemma (see Figure 3):

▶ Lemma 5. Let G be an interval graph and T be its distance tree. Let u and v be two
vertices such that u < v. Let w be the representative of v with respect to u, as defined in
Lemma 3. The following two cases mirror the two cases used to define w:
Suppose that node_rankPOST(u) < node_rankPOST(v). Then u and w are adjacent if
and only if node_rankPOST(v) ≤ node_rankPOST(last(u)) or node_rankPOST(last(u)) <

node_rankPOST(u).
Suppose that node_rankPOST(u) > node_rankPOST(v). Then u and w are adjacent if and only
if node_rankPOST(v) < node_rankPOST(last(u)) < node_rankPOST(u).

Proof. First we examine the relationship between the post-order ranks of u and last(u) (i.e.
node_rankPOST(u) and node_rankPOST(last(u))). Since last(u) is the rightmost neighbour
of u, it comes after u in level-order, so depth(last(u)) ≥ depth(u). Since last(u) is
adjacent to u, lparent(last(u)) ≤ lu by the definition of parent. Thus depth(last(u)) =
depth(parent(last(u))) + 1 ≤ depth(u) + 1. Thus last(u) is either on the same level as
u or the level below. If it is on the same level as u, then as it is to the right of u, we
have node_rankPOST(u) ≤ node_rankPOST(last(u)). If it is on the level below u, then since
depth(parent(last(u))) = depth(u), we have

node_rankPOST(last(u)) < node_rankPOST(parent(last(u))) ≤ node_rankPOST(u)

Thus by checking the relationship between their post-order ranks we may determine the
depth of last(u) (and vice versa).
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u

last(u)

v

w

Figure 3 To determine if w is adjacent to u, we need to check if w lies in the shaded region
between u and last(u) in level-order. To do so, we will need to compare the relative positioning of
w and last(u) when they are on the same level. If w is on the level above last(u) (so it must come
before it in level-order), then w is in the shaded region. If w is on the level below last(u) (so it
must come after it in level-order), then w cannot be in the shaded region.

In the first case, suppose that node_rankPOST(u) < node_rankPOST(v). By the definition
of the representative of v with respect to u, depth(w) = depth(u), and w is to the right of u

on that level (so we have node_rankPOST(w) > node_rankPOST(v) > node_rankPOST(u)). By
Lemma 4, u and w are adjacent if and only if

node_rankLEVEL(w) ∈ (node_rankLEVEL(u), node_rankLEVEL(last(u))]

If depth(last(u)) = depth(u) (equivalently, node_rankPOST(last(u)) > node_rankPOST(u)),
then all three nodes are on the same level, so we may translate it them to post-order numbers as
node_rankPOST(w) ∈ (node_rankPOST(u), node_rankPOST(last(u))]. The first half is satisfied
by assumption, so we are left with just node_rankPOST(w) ≤ node_rankPOST(last(u)). If
depth(last(u)) = depth(u) + 1 (equivalently, node_rankPOST(last(u)) < node_rankPOST(u)),
then the range (node_rankLEVEL(u), node_rankLEVEL(last(u))], restricted to the level depth(u)
contains all the nodes on the level depth(u) to the right of u, which w satisfies by definition
(as it is a node on level depth(u) to the right of u). Hence, in this case, u and w are adjacent
if and only if node_rankPOST(v) ≤ node_rankPOST(last(u)) or node_rankPOST(last(u)) <

node_rankPOST(u).
In the second case, we assume that node_rankPOST(u) > node_rankPOST(v). Therefore, we

have depth(w) = depth(u)+1, and node_rankPOST(w) < node_rankPOST(u) (by the properties
of a post-order traversal). Again u and w are adjacent if and only if node_rankLEVEL(w) ∈
(node_rankLEVEL(u), node_rankLEVEL(last(u))]. If depth(last(u)) = depth(u) (equivalently,
node_rankPOST(last(u)) > node_rankPOST(u)), then as depth(w) = depth(last(u)) + 1,
w comes after last(u) in level-order, so node_rankLEVEL(last(u)) < node_rankLEVEL(w).
Therefore, w cannot be adjacent to u. If depth(last(u)) = depth(u) + 1 = depth(w)
(equivalently, node_rankPOST(last(u)) < node_rankPOST(u)), then the restriction of the range
(node_rankLEVEL(u), node_rankLEVEL(last(u))] to level depth(w) = depth(last(u)) are ex-
actly the nodes on level depth(w) in the range (−∞, node_rankLEVEL(last(u))]. Converted
to a post-order traversal, this is the range (−∞, node_rankPOST(last(u))] for those nodes on
level depth(w). w satisfies this exactly when node_rankPOST(w) ≤ node_rankPOST(last(u))
(so that node_rankPOST(v) < node_rankPOST(w) ≤ node_rankPOST(last(u))). Hence, in this
case, u and w are adjacent if and only if node_rankPOST(v) < node_rankPOST(last(u)) <

node_rankPOST(u). ◀
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Algorithm 3 Distance computation between vertices u, v by their labels L(u), L(v).

1: if depth(v) < depth(u) or (depth(v) = depth(u) and node_rankPOST(v) <

node_rankPOST(u)) then
2: switch u and v {Now we have u < v}
3: if node_rankPOST(u) < node_rankPOST(v) then
4: distance ← depth(v)− depth(u)
5: if node_rankPOST(v) ≤ node_rankPOST(last(u)) or node_rankPOST(last(u)) <

node_rankPOST(u) then
6: distance = distance+1
7: else
8: distance = distance+2
9: else

10: distance ← depth(v)− depth(u)− 1
11: if node_rankPOST(v) < node_rankPOST(last(u)) < node_rankPOST(u) then
12: distance = distance+1
13: else
14: distance = distance+2
15: return distance

To summarize the above, the decoding function f is given by algorithm 3. Note that
line 6 and line 12 corresponds to the case in Lemma 5 where u and w are adjacent. Therefore,
we add 1 to the distance from v to w to obtain the distance from v to u. In line 8 and 14, u

and w are not adjacent, but u and parent(w) are by Lemma 3, and the distance between u

and w is 2. It is clear that algorithm 3 runs in O(1) time, using only the labels of u and v.
Regarding preprocessing, we claim that if the intervals’ endpoints are given in sorted order,

then all the labels can be constructed in O(n) time. Otherwise, we can spend O(n log n)
additional time sorting the endpoints. If the interval graph is given but not an intersection
model, we may use a linear time (O(n + m)) interval graph recognition algorithm [11] to
construct an intersection model of G in sorted order. Details for preprocessing are omitted
due to space constraints. Thus we have the main theorem for this section:

▶ Theorem 6. Let G be a connected interval graph. Then there exists a distance labeling
scheme occupying at most 3⌈lg n⌉ = 3 lg n + O(1) bits per vertex and can compute distance
in O(1) time. Furthermore, if the intervals are given in sorted order, then the labels can be
constructed in O(n) time.

3.2 General Interval Graphs
Previously, we had assumed that our interval graphs were connected. For general interval
graphs, it is possible that for two vertices u and v, their labels would be identical in two
graphs, one where u and v belong to the same connected component Gj and one where they
belong to different connected components Gj and Gj′ . Thus the labels computed previously is
insufficient to compute the distance as it cannot decide if the two vertices belong to the same
connected component. As noted, Gavoille and Paul [17] assumed the graph were connected
and did not discuss how to generalize it to the disconnected case. To generalize to general
interval graphs, it suffices to be able to determine if two vertices are in the same component
or not. One way to solve this is to add lg n bits to the label to state which component the
vertex is in, but that would make the labels too costly. Instead, we will use the fact that the
label size depends on the size of the component, and the number of components of a given
size scales inversely with that size.
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Define the ranges [2i, 2i+1) for i = 0, . . . , ⌊lg n⌋. For each component Gj , the size of the
component nj falls into one of these ranges. For range [2i, 2i+1), the number of components
Gj falling into this range is at most n/2i. Thus, to identify the components, we need to
store i, the range that its size falls into, and ci, an identifier for which component in that
range. For a component of size nj falling in the range [2i, 2i+1), these identifiers use at most
lg(⌊lg n⌋ + 1) and lg(n/2i) bits respectively. Also as nj < 2i+1, each of the three integers
comprising of the labels of the vertices of Gj has size at most ⌈lg nj⌉ ≤ i + 1 bits. Thus in
total, for a component Gj of size nj ∈ [2i, 2i+1), a label has size at most

lg lg n + 1 + lg n− (i + 1) + 3(i + 1) = lg n + 2i + lg lg n + O(1)

Since i ≤ ⌊lg n⌋, this is at most 3 lg n + lg lg n + O(1) bits. Thus our extension to general
interval graphs is the following theorem.

▶ Theorem 7. Let G be an interval graph. Then there exists a distance labeling scheme
occupying at most 3 lg n + lg lg n + O(1) bits per vertex and can compute distance in O(1)
time. Furthermore, if the intervals are given in sorted order, then the labels can be constructed
in O(n) time.

Using this, we have an immediate application to circular arc graphs. Following the
framework of Gavoille and Paul [17], we unroll the circular arc graph twice. That is, we start
from the angle θ = 0 and sweep the circle twice, writing down the endpoints of the arcs. In
this fashion, each arc is recorded twice, once as its original [θ1, θ2], and once on the second
unroll, [θ1 + 2π, θ2 + 2π] 1. After unrolling, we obtain an interval graph, where each vertex
of the original circular arc graph corresponds to two vertices in the unrolled interval graph.
The distance can then be calculated using the following lemma:

▶ Lemma 8 (Lemma 3.5 [17]). For an circular arc graph G, unrolled twice into an interval
graph G̃. For every i < j, distanceG(xi, xj) = min{distanceG̃(x1

i , x1
j ), distanceG̃(x1

j , x2
i )},

where xi are sorted by their left endpoints in increasing i and x1, x2 are the two copies of the
arc x in the interval graph.

Thus it suffices to store two (interval) vertex labels for each vertex of the circular-arc
graph, and so the length of the label is 6 lg n + 2 lg lg n + O(1) bits.

▶ Corollary 9. Let G be a circular arc graph. Then there exists a distance labeling scheme
occupying at most 6 lg n + 2 lg lg n + O(1) bits per vertex and can compute distance in O(1)
time. Furthermore, if G is connected, then 6 lg n + O(1) bit labels suffices. If the arcs are
given in sorted order, then the labels can be constructed in O(n) time.

4 Chordal Graph

4.1 Background
4.1.1 Chordal Graph Structure
One of the many equivalent definitions of chordal graph is that a chordal graph is the
intersection graph of subtrees (i.e. connected sets of nodes) in a tree [20]. Thus, for a chordal
graph G, there exists a tree T and a set of subtrees {Tv; v ∈ V } of T such that two vertices

1 Some more work need to be done for arcs which contain our origin angle.
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av1
av2

av3

av4

av5

v1 v2

v3

v4

v5

Figure 4 Left: The underlying tree for a chordal graph is depicted in black. Each of the leaves
has a subtree containing only that leaf (the green dots), and these correspond to vertices v1, v2, v3.
Tv4 is depicted with a red dashed segment and Tv5 in blue bold segments. The apex of each path is
labeled. Note that every subtree has a distinct apex. Right: The chordal graph generated by this
set of subtrees.

u and v are adjacent if and only if the subtrees Tu and Tv intersect (at some node). If we
further root the tree, then each subtree Tv corresponding to a vertex v has a unique smallest
depth node av, which we will denote as the apex of the subtree (and of the vertex). To create
a data structure, we would like to make some modifications to the tree T with additional
exploitable properties.

Munro and Wu [27] showed that we may choose T such that the number of nodes is
exactly n. Furthermore, this rooted tree T and the subtrees Tv corresponding to vertices has
the property that for two vertices u and v, their apexes are distinct: au ̸= av. See Figure 4
for an example. In this way, we have a bijection between vertices of the graph G and nodes
of tree T . Thus it make sense to talk about the vertex v which corresponds to a node of T ,
and we will name the nodes of T as av for the vertex v whose apex is that node.

To characterize adjacency, we look at the relationship between the apexes of the two
vertices u and v. If the subtrees rooted at au and at av are disjoint, then the subtrees Tu

and Tv do not intersect and u and v are not adjacent. Otherwise, one of au and av is an
ancestor of the other, say au is an ancestor of av. Then u and v are adjacent exactly when
the subtree Tu corresponding to u contains the node av. Thus we may define a set of vertices
Sv at each node av of T which is the set of ancestors of av, whose subtrees contain av (i.e.
the set of ancestors which are adjacent to v).

Finally, we observe that in the degenerate case that T is a path, then all subtrees Tv

become paths. By viewing T as a subset of the real number line, we see that all subtrees Tv

are intervals, and thus the graph generated is an interval graph.

4.1.2 Chordal Graph Distance Algorithm
Munro and Wu [27] gave an algorithm computing the distance between two vertices u and v.
In the case that au is an ancestor of av (or vice versa), the problem reduces to that of an
interval graph by restricting the tree T to the path from av to the root. Otherwise, if au and
av belong to different subtrees, we first compute the lowest common ancestor ah of au and
av. We then compute the distance from h to u and from h to v (with a caveat). Since ah is
an ancestor of au and av, we reduce to the interval graph case. Analogous to the distance
tree in interval graphs, Munro and Wu construct a distance tree for chordal graphs.
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h

u v

u′ v′

parent(u′) parent(v′)

Figure 5 Left bolded (red) segment represents part of the subtree corresponding to parent(u′),
which must contain the node au′ , and the right (blue) segment for parent(v′). Here the apex au′ of
the subtree corresponding to a vertex u′ is labelled as u′. It can be seen that both parent(u′) and
parent(v′) pass through ah so they are adjacent.

We note that for a vertex v, when we restrict the tree T to the path from av to the root,
the set of vertices Sv corresponds exactly to those vertices p such that lp < lv and rp ≥ lv
(when viewing this path as a subset of the real number line, with the coordinates being
the depth of the node). Therefore, the formula (arg min{lu | ru ≥ lv}) used to define the
distance tree in interval graphs can also be applied to chordal graphs. The parent parent(v)
of a vertex v in the distance tree TD of a chordal graph is the vertex parent(v) ∈ Sv with
the smallest depth apex aparent(v). This is well-defined since the apexes are distinct.

Since this notion of parent matches the parent of an interval graph generated from T by
restricting to any path towards the root, the distance tree TD can be seen as the union of
all distance trees of interval graphs generated by taking paths from leaves of T to the root.
However, due to the multiple interval graph distance trees being unioned, we do not have
the nice ordering property in Lemma 1.

When applying the interval graph distance algorithm between u and h (and between v and
h), we reach their representatives u′ and v′, and compute distance(u, h) = distance(u, u′)+
distance(u′, h), where distance(u′, h) = 1 if u′ and h are adjacent, and distance(u′, h)
= 2 if not (a shortest path being u′, parent(u′), h, similarly for v′). Finally these two
paths must be joined. Naively, the path could be the shortest path from u to h followed
by the shortest from h to v. So depending on whether u′ and h, and v′ and h are adjacent,
the path from u′ to v′ has length either 2, 3, or 4. However, it is shown that parent(u′)
and parent(v′) are adjacent (see Figure 5), so that in the case that both u′ and v′ are not
adjacent to h, a shortest path is u′, parent(u′), parent(v′), v′ which has length 3, rather
than u′, parent(u′), h, parent(v′), v′ with length 4. Thus the distance between u′ and v′ is
either 2 or 3. Determining this distance between u′ and v′ is the bottleneck for the distance
computation as it is shown that distance(u, v) = distance(u, u′) + distance(u′, v′) +
distance(v′, v).

Munro and Wu show that the distance between u′ and v′ is 2 exactly when there exists
some vertex h′ such that h′ is adjacent to both u′ and v′ (i.e. the subtree Th′ corresponding
to h′ contains both nodes au′ and av′). See Figure 6. If u′ and v′ are both adjacent to h,
then the vertex h takes this role. However, even if u′ and v′ are not adjacent to h, such an
h′ can exist (which is independent of the adjacencies between u′ and v′ with h). Such a
vertex h′ would exist in both the sets Su′ and Sv′ , and so determining whether h′ exists is
equivalent to determining whether the intersection Su′ ∩ Sv′ = ∅.
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h

u v

u′ v′

h′

Figure 6 Part of the subtree corresponding to the vertex h′ is depicted. The vertex h′ is adjacent
to both u′ and v′ so that the distance between them is 2.

This problem of preprocessing sets to answer queries of the form: determine whether the
intersection of two of the given sets is empty, is the set intersection oracle problem. Thus
the chordal graph distance problem can be reduced to it. Munro and Wu further argued
that the set intersection oracle problem can also be reduced to the chordal graph distance
problem so that the two are equivalent (up to a constant factor of the input sizes). The set
intersection oracle problem is conjectured to be difficult (Conjecture 3 and some follow up
discussions of Pătraşcu and Roditty[28] state that, to solve it using O(1) time we must use
Ω(n2) space, even if the sets are small), so computing distances in chordal graphs quickly
would also be difficult. Munro and Wu’s [27] algorithm described above can be summarized
in the following lemma.

▶ Lemma 10. Let G be a chordal graph, T be the intersection model as described by Munro
and Wu [27] with exactly n nodes, and TD be the distance tree. Let u, v be two vertices,
and let au, av be their apexes. We consider the general case where au and av do not have
any ancestry relationship. Let h be the vertex such that ah = LCA(au, av). Let u′ be the
representative of u with respect to h, similarly for v′. Then the distance between u and v is
distance(u, v) = distance(u, u′) + distance(v, v′) + 2 + 1(C), where C is this condition:
there does not exist any vertex h′ such that Th′ contains both the nodes au′ and av′ .

4.2 Labeling Scheme
Using the above distance algorithm, our labeling scheme must be able to check/compute
the following steps.

Given two vertices u and v, determine whether one is an ancestor of the other, and if
not, locate h = LCA(T, u, v). In the positive case, it reduces to an interval graph distance
query.
Locate u′ and v′, the representatives of u and v with respect to h in TD.
Compute distance(u, u′) and distance(v, v′).
Decide the value of C for the exact distance.

Our labeling scheme will thus consist of the following:
depth(TD, v), node_rankPOST(TD, v).
A labeling scheme for LCA in T which can return depth(TD, h) and node_rankPOST(TD, h)
of the lowest common ancestor h of two vertices u and v.
A bitvector of length n/2. Its content will be defined later.
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The lowest common ancestor scheme we will use is the result of Alstrup et al. [7] which
computes arbitrary labels of the lowest common ancestor of two nodes in O(1) time.

▶ Lemma 11 (Corollary 4.1 of [7]). There exists an LCA-labeling scheme for Trees with
predefined labels of fixed length k whose worst-case label size is at most (3 + k)⌊log n⌋+ 1
bits, with O(1) decode time.

As our predefined labels that we must return are of size 2 lg n + O(1) bits, this LCA-labeling
scheme uses uses 2 lg2 n + O(lg n) bits per label.

To perform step 1, we use the LCA-labeling scheme, and check if the returned node is u or v,
by checking the label node_rankPOST(TD, h) of the returned node against node_rankPOST(TD, u)
and node_rankPOST(TD, v). If one is an ancestor of the other, we revert to the interval graph
labeling scheme. However, since we do not have node_rankPOST(last(v)), we cannot decide
whether to add 1 or 2 in Algorithm 3 (lines 5-8, 11-14). To decide this we will store which term
(+1 or +2) to add in the bitvector for deciding C as described below. Otherwise, we obtain
the distance tree TD labels of u, v and h. We again note that v′ is the representative of v with
respect to h is the node w in algorithm 2. Thus distance(v, v′) is simply depth(v)−depth(v′),
and we do not need the value node_rankPOST(last(v)) in the interval graph labeling scheme.

Finally, we need to decide the condition C. As discussed earlier, the condition is equivalent
to the set intersection oracle problem. It is conjectured that to compute it in O(1) time, it is
necessary to store the result of the queries explicitly, rather than trying to compute it from
the sets. Therefore, we will pre-compute the value of C for every pair of vertices. For a pair
of vertices u and v where one is an ancestor of the other, we do not need to decide the value
of C for this pair, as the computation of the distance between this pair of vertices reduces to
the interval graph distance case. In this case, we must determine whether to add 1 or to
add 2 in Algorithm 3. We use the bitvector C to store whether to add 1 (the bit 0) or to
add 2 (the bit 1). Thus for every vertex v, for each other vertex u, either u is an ancestor or
descendant of v, so we store in C a bit for the interval graph distance computation, or u is
not an ancestor or descendant of v in which case we store a bit for the chordal graph distance
computation of u and v. For a vertex u, the index into the bitvector is node_rankPOST(TD, u).
We may distribute this bitvector more evenly by storing the value for only those vertices u

such that (node_rankPOST(TD, u)− node_rankPOST(TD, v)) mod n ≤ n/2, so that we store
n/2 bits per vertex in the worst case. For any pair of vertices u and v, this bit for the
distance computation is stored in the bitvector of one of the vertices.

The preprocessing time is dominated by the precomputation of the condition C for all
pairs of vertices. We may compute all the results of the set intersection oracle problem via
matrix multiplication. Details are omitted due to space constraints. Thus, we obtain the
following theorem:

▶ Theorem 12. Let G be a chordal graph. Then there exists a distance labeling scheme with
maximum label size n/2 + O(lg2 n) bits which can compute distance in O(1) time. The
labels can be constructed in O(nω) time where ω < 2.371552 is the matrix multiplication
exponent [32].
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Abstract
Lyndon words are extensively studied in combinatorics on words – they play a crucial role on upper
bounding the number of runs a word can have [Bannai+, SIAM J. Comput.’17]. We can determine
Lyndon words, factorize a word into Lyndon words in lexicographically non-increasing order, and find
the Lyndon rotation of a word, all in linear time within constant additional working space. A recent
research interest emerged from the question of what happens when we change the lexicographic
order, which is at the heart of the definition of Lyndon words. In particular, the alternating order,
where the order of all odd positions becomes reversed, has been recently proposed. While a Lyndon
word is, among all its cyclic rotations, the smallest one with respect to the lexicographic order, a
Galois word exhibits the same property by exchanging the lexicographic order with the alternating
order. Unfortunately, this exchange has a large impact on the properties Galois words exhibit, which
makes it a nontrivial task to translate results from Lyndon words to Galois words. Up until now, it
has only been conjectured that linear-time algorithms with constant additional working space in the
spirit of Duval’s algorithm are possible for computing the Galois factorization or the Galois rotation.

Here, we affirm this conjecture as follows. Given a word T of length n, we can determine
whether T is a Galois word, in O(n) time with constant additional working space. Within the same
complexities, we can also determine the Galois rotation of T , and compute the Galois factorization
of T online. The last result settles Open Problem 1 in [Dolce et al., TCS 2019] for Galois words.
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1 Introduction

A Galois word is a word that is strictly smaller than all its cyclic rotations with respect to
the so-called alternating order, where symbols at odd positions are compared in the usual
lexicographic order, but symbols at the remaining positions in the opposite order. While aab
is clearly the smallest word among all its cyclic rotations aba and baa under the lexicographic
order, aab is larger than aba under the alternating order because the b in the second position
is smaller than a. In fact, aba is a Galois word. Readers familiar with Lyndon words may
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identify aab to be, nevertheless, a Lyndon word because it is strictly smaller than all its
cyclic rotations with respect to the lexicographic order. While the definition of Lyndon and
Galois words only differ by the used order, the combinatorial differences are astonishing. For
instance, on the one hand, Lyndon words cannot have proper borders, i.e., factors appearing
both as a prefix and as a suffix (but shorter than the word itself). On the other hand, Galois
words such as aba can have proper borders of odd lengths [16, Proposition 3.1].

The name Galois word has been coined by Reutenauer [16], who introduced these words
and derived the naming by a bijection of Galois words and homographic classes of Galois
numbers. In the same paper [16], Reutenauer defined a unique factorization of a generalization
of Lyndon words, a class of words covering Galois words. Here, we call this factorization Galois
factorization since we only cover Galois words within the scope of this paper. The Galois
factorization is a factorization of a word into a sequence of non-increasing Galois words. Later,
Dolce et al. [5] could characterize the first factor of the Galois factorization [5, Theorem 33],
and also provide a characterization of Galois words by their prefixes [5, Theorem 32]. However,
Dolce et al. left it as an open problem ([5, Open Problem 1]) to find a computation algorithm
similar to Duval’s algorithm [7] computing the Lyndon factorization. In this paper, we solve
this problem by introducing a factorization algorithm (Algorithm 2 and Theorem 32) in the
spirit of Duval’s algorithm, computing the Galois factorization in linear time with constant
additional working space online.

Asides from the above results, we are only aware of the following two articles dealing
with Galois words. First, Dolce et al. [6] studied generalized Lyndon-words, among them
also Galois words, with respect to infinite orders. Finally, Burcroff and Winsor [3] gave a
characterization of infinite generalized Lyndon words, and properties of how finite generalized
Lyndon words can be infinitely extended.

2 Related Work

While we covered, to the best of our knowledge, all published results explicitly dealing
with Galois words above, Galois words have a strong relation with Lyndon words and the
alternating order.

Lyndon. Regarding the former, an exhaustive list of results would go beyond the scope of
this paper. We nevertheless highlight that the Lyndon factorization (the aforementioned
factorization when outputting factors that are Lyndon words) can be computed in linear
time with constant additional space with Duval’s algorithm [7]. The same algorithm allows
us to judge whether a word is Lyndon. Shiloach [17] gave a linear-time algorithm computing
the Lyndon rotation of a primitive word T , i.e., its cyclic rotation that is Lyndon, in constant
additional working space.

Alternating Order. Regarding the latter, much work focused on implementing a Burrows–
Wheeler transform (BWT) [4] based on the alternating order. While the classic BWT sorts all
cyclic rotations of a given input word in lexicographic order, the alternating BWT [11] sorts
the cyclic rotations with respect to the alternating order. Gessel et al. [11] not only introduced
this BWT variant, but also gave an inversion to restore the original word. Subsequently,
Giancarlo et al. [12] gave a linear-time algorithm for computing the alternating BWT. To
this end, they compute the Galois rotation of the input word T , i.e., the cyclic rotation of T

that is Galois. However, their algorithm computing the Galois rotation needs an auxiliary
integer array of length n. Compared to space-efficient algorithms computing the classic
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BWT (e.g. [15] with linear time and space linear in the bit size of the input text), this is
a major bottleneck, but a necessary precomputation step of their algorithm constructing
the alternating BWT. Giancarlo et al. [12] also showed how to invert the alternating BWT
in linear time. In a follow-up [13], Giancarlo et al. put their discovered properties of the
alternating BWT into larger context by covering BWT variants based on a generalized
ordering. In that article, they also showed that the alternating BWT can be turned into a
compressed self-index that supports pattern counting queries in time linear in the pattern
length. The space of the index can be related with the number of symbol runs even when
augmented for queries to locate all pattern occurrences in the text, by adapting r-indexing [10]
techniques to the alternating BWT.

Our Contribution. This paper makes three contributions to the research on Galois words.
First, we give an algorithm (Theorem 25 and Algorithm 1) in Section 5 that checks, for a
given word of length n, whether this word is Galois, in O(n) time with constant additional
working space. Second, we give an algorithm (Theorem 32 and Algorithm 2) in Section 6
that computes the Galois factorization in O(n) time with constant additional working space
online. Finally, we show how to find the Galois rotation (Theorem 36 and Algorithm 3) in
Section 7 that in O(n) time with constant additional working space online, paving the way
for constructing the alternating BWT in o(n) working space.

We stress that, having an efficient Galois factorization algorithm allows us to merge
indexing techniques for the alternate BWT with the bijective BWT [14, 1] to give rise to a
BWT-variant that indexes Galois words, whose indexing capabilities are left as future work.

3 Preliminaries

Let Σ be a set of symbols called an alphabet. The set of words over Σ is denoted by Σ∗. The
empty word is denoted by ε. The length of a word W ∈ Σ∗ is denoted by |W |. The i-th
symbol of a word W is denoted by W [i] for 1 ≤ i ≤ |W | and the factor of W that begins at
position i and ends at position j is W [i..j] for 1 ≤ i ≤ j ≤ |W |. We define W [i..j] = ε if i > j.
A word B is a border of W if B is a prefix and a suffix of W . We say a border B of W is
proper if B ̸= W . For a word T we call an integer p ∈ [1..|T |] a period of T if T [i + p] = T [i]
for all i ∈ [1..|T | − p]. In particular, |T | is always a period of T . Let Pero(W ) and Pere(W )
be the shortest odd and even period of W if any, respectively. We set Pero(W ) = |W | + 1 or
Pere(W ) = |W | + 1 if W does not have an odd or an even period, respectively. Since the
length of a word itself is a period, a word of odd length always has an odd period and a
word of even length always has an even period. For a rational number α, let W α be the
word obtained by concatenating W α times. Let W ω be the infinite repetition of W . We
call a word V ∈ Σ∗ primitive if the fact V = Uk for some word U ∈ Σ∗ and an integer k ≥ 1
implies V = U and k = 1. We say that two words X and Y have the same length-parity if
|X| mod 2 = |Y | mod 2, i.e., their lengths are both either odd or even.

We denote the standard lexicographic order over words with ≺lex. We define the alternating
order on words as follows: Given two distinct words S and T such that Sω ≠ T ω, with the first
mismatching symbol pair at a position j, i.e., Sω[1..j − 1] = T ω[1..j − 1] and Sω[j] ̸= T ω[j],
we write S ≺alt T if either (a) j is odd and Sω[j] < T ω[j], or (b) j is even and Sω[j] > T ω[j].
In addition we denote by S =alt T if Sω = T ω. For instance, aba ≺alt aab but aab ≺lex aba;
b ≺lex bba but bba ≺alt b; aba =alt abaaba. We define ε ≻alt X for all X ∈ Σ+. We denote
by S ⪯alt T if either S ≺alt T or S =alt T . We further write S ⊏alt T if S ≺alt T but neither
S is a prefix of T nor vice versa.
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We introduce S ⊏alt T for the following reason: For two words S and T with S ≺alt T , it
is generally not true that SU ≺alt TU for all words U (e.g., ab ≺alt aba but abac ≺alt abc).
However, for ⊏alt we have:

▶ Fact 1. For two words S and T with S ⊏alt T , it holds that SU ⊏alt TU for all words U .

We also make use of the following additional facts:

▶ Fact 2. For two words S and T with Sω = T ω, there exists a primitive word U integers a

and b such that S = Ua and T = U b.

▶ Fact 3. T is non-primitive if and only if |T |/p is an integer of at least two for p being T ’s
smallest period. If Pero(T ) = |T |, then T is primitive.

▶ Example 4. We cannot switch Pero with Pere in Fact 3. A counter-example is the non-
primitive word T1 = abaaba, for which we have Pero(T1) = 3 but Pere(T1) = 6. Also, for
T2 = aa we have Pero(T2) = 1 but Pere(T2) = 2.

The following property holds for any two periods of a word.

▶ Lemma 5 ([9]). Let p and q be periods of a word T . If p + q − r ≤ |T |, then r is also a
period of T , where r is the greatest common divisor of p and q.

A word is called Galois if it is, among all its cyclic rotations, the smallest with respect to
≺alt. By definition, a Galois word has to be primitive (otherwise, it has an identical cyclic
rotation that is not strictly larger). The following properties hold of Galois words.

▶ Lemma 6 ([5, Theorem 14]). A primitive word T is Galois if and only if T is smaller than
all its suffixes, with respect to ≺alt.

▶ Lemma 7 ([5, Theorem 32]). A word T is Galois if and only if for any factorization
T = UV with U, V ∈ Σ+, one of the following condition holds: (1) U ≺alt T if |U | is even;
(2) U ≻alt T if |U | is odd.

▶ Lemma 8 ([5, Lemma 35], [16, Proposition 3.1]). If a Galois word T has a proper border
B, then the length of B is odd.

For example aba and abba are Galois words with a proper border. Unlike for Lyndon
words (cf. [7, Proposition 1.3]), it does not hold that, if U and V are Galois words then UV

is Galois if U ≺alt V . For instance, aba ≺alt c but abac is not Galois because ac ≺alt abac.

4 Characteristics of Pre-Galois Words

In this section, we define pre-Galois words and study their properties. The observations we
make here will lead us to helpful tools that we will leverage for proposing the three algorithms
in the subsequent sections, namely 1. determining Galois words, 2. computing the Galois
factorization, and 3. computing the Galois rotation of a word.

▶ Definition 9 (Pre-Galois word). A word T is a pre-Galois word if every proper suffix S of
T satisfies one or both of the following conditions: (1) S is a prefix of T ; (2) S ≻alt T .

In particular, a Galois word is pre-Galois. However, the converse is in general not true;
for example T = abaab is pre-Galois but not Galois because ab ≺alt abaab. In what follows,
we introduce a basic property of pre-Galois words.
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po + 1

T
U V

Sα c S
S U

Sα c

even

G1 X
G2

X X

Figure 1 Left: Sketch of the proofs of Lemma 11 and Lemma 12. Right: Sketch of the proof of
Lemma 14. As both Galois roots are prefixes of T , we obtain a border X of G2 with even length
which contradicts Lemma 8.

▶ Lemma 10. Let U be a word that is not pre-Galois. Then, for any word V , UV is not
pre-Galois. The contraposition is that any prefix of a pre-Galois word is pre-Galois.

Proof. By definition there exists a proper suffix S of U such that S ⊏alt U . By Fact 1,
S · V ⊏alt U · V holds. ◀

Next, we study properties of periods of pre-Galois words.

▶ Lemma 11. Let T be a pre-Galois word that has an odd period. Let po = Pero(T ) be the
shortest odd period of T . Then T [1..po] is Galois.

Proof. Let U = T [1..po] and T = UV . By Lemma 10, U is pre-Galois. Assume U is not
Galois. Then there exists a proper suffix S of U such that S is a prefix of U and S ⪯alt U .
Since po is odd and the shortest odd period of T , U is primitive according to Fact 3, and
we obtain two observations: First, by Fact 2, if Sω = Uω then S = U , a contradiction to S

being proper. Hence, S ≺alt U must hold.
Second, there exists a rational number α ≥ 1 and a symbol c ∈ Σ such that Sαc is a

prefix of U , Sω[1..|Sαc|] ≺alt Sαc, and |Sαc| < |U |. See the left of Figure 1 for a sketch. By
definition, we have Sα−1 = U [1..|Sα−1|]. If |S| is odd, we have T [|S| + 1..|T |] ⊏alt T , which
implies that T is not pre-Galois. Otherwise, if |S| is even, |U | + |Sα−1c| ≤ |T | since po is
the shortest odd period of T and therefore |T | ≥ 2|U | with |U | ≥ |Sα−1c|. Here, we have
T [|U | − |S| + 1..|U | + |Sα−1c|] = Sω[1..|Sαc|]. Therefore, T [|U | − |S| + 1..|U | + |Sα−1c|] ⊏alt
T [1..|Sαc|], which implies T is not pre-Galois. ◀

A similar property also holds for even periods.

▶ Lemma 12. Let T be a pre-Galois word that has an even period. Let pe = Pere(T ) be the
shortest even period of T . Then T [1..pe] is Galois if primitive.

Proof. We follow the proof of Lemma 11 by replacing U there with T [1..pe]. We also give
there pe the role of po. We can do that because we assume that U is primitive, so we obtain
a proper border S of U like in the previous proof. ◀

We are in particular interested in prefixes of pre-Galois words that are Galois. To formalize
this idea, we define Galois roots of a pre-Galois word as follows.

▶ Definition 13 (Galois root). Let P be a prefix of a pre-Galois word T . We call P a Galois
root of T if |P | is a period of T and P is Galois.

CPM 2024



18:6 Algorithms for Galois Words: Detection, Factorization, and Rotation

In addition to our aforementioned example T = abaab, aba is a Galois root of T . Also,
the words T [1..po] in Lemma 11 and T [1..pe] Lemma 12, are Galois roots of T if they are,
respectively, primitive. Note that a pre-Galois word T has at least one Galois root, namely
T ’s prefix of length equal to T ’s shortest period. While a pre-Lyndon word has exactly one
Lyndon root, a pre-Galois word can have two different Galois roots:

▶ Lemma 14. A pre-Galois word T can have at most two Galois roots, and their lengths
have different parities.

Proof. Assume that there are two Galois roots G1 and G2 with the same length-parity.
Then the length difference of G1 and G2 is even. Without loss of generality, suppose
that |G1| < |G2|. Then the suffix X = G2[|G1| + 1..] of G2 is also a prefix of G2 since
T = Gα

1 = Gβ
2 for rational numbers α and β. Hence, X is a border of G2 with even length,

which is impossible due to Lemma 8. See the right of Figure 1 for a sketch. ◀

In what follows, we name the odd-length and the even-length Galois root, if they exist,
by Go and Ge, respectively. By Lemma 14, they are well-defined. For example, consider
T = aba. The two prefixes ab and aba are both Galois, for which T = (ab)3/2 = (aba)1.

From Lemma 12, T [1..pe] is Galois only when it is primitive. Next, we consider the case
where T [1..pe] is not primitive.

▶ Lemma 15. Let T be an even-length pre-Galois word with no even-length Galois root, i.e.,
T [1..pe] is not primitive, where pe = Pere(T ). Then there exists Go = T [1..po] such that
T = Gk

oG′
o with k ≥ 2, where po = Pero(T ) and G′

o is a prefix of Go.

Proof. Since |T | is even, T has a period of even length. Let pe be the shortest even period
of T . By Lemma 12, U = T [1..pe] is Galois if U is primitive. Since U is not primitive and pe

is the smallest even period of T , we have Pero(T ) = po = pe/2. Thus, there is an odd-length
prefix Go = T [1..po] of U such that U = G2

o. ◀

▶ Lemma 16. Let Go be an odd-length Galois root of a pre-Galois word T = Gk
oG′

o with
k ≥ 2 and G′

o is a prefix of Go. Then T has no even-length Galois root.

Proof. Since T = Gk
oG′

o, 2|Go| is a period of T . Assume that T has a shorter even period
pe < 2|Go|. By Lemma 8, Go does not have a proper border of even length. Because the
two conditions (a) GoGo has even length and (b) pe ∈ [|Go| + 1..2|Go| − 1] would imply that
GoGo (and thus Go due to the length of pe) has a border of even length, pe must be less
than |Go|. However, by the periodicity lemma (Lemma 5), there exists an odd period shorter
than Go, which contradicts that |Go| is the shortest odd-length Galois period of T . ◀

▶ Example 17. Let T = abaa be an even-length Galois word. T has the odd-length Galois
root aba. By appending b to T , we obtain abaab, which is pre-Galois with no even-length
Galois root. T · b can be written as (aba)5/3, a fractional repetition of aba.

By Lemmas 15 and 16, if T has an even period, T [1..pe] is either Ge or G2
o.

5 Determining Galois Words

The algorithm we propose checks if a word T is Galois by reading T from left to right. For
that, we want to maintain the Galois roots of the prefix of T read so far. To this end, we
study the Galois roots of T ′ = T · z, i.e., when appending a symbol z to T . Our main
observation can be stated as follows:



D. Hendrian, D. Köppl, R. Yoshinaka, and A. Shinohara 18:7

T z

T ′

S x S y S z

pe

Figure 2 Sketch of the proof of Lemma 20. The caption pe can be also considered as po for the
latter case.

▶ Theorem 18. Let T be a pre-Galois word, po = Pero(T ), and pe = Pere(T ). Given
a symbol z, the extension T ′ = T · z is a pre-Galois word if and only if both conditions
T ′[1..|T | − po + 1] ⪯alt T ′[po + 1..|T | + 1] and T ′[1..|T | − pe + 1] ⪯alt T ′[pe + 1..|T | + 1] hold.

In what follows, we break down the statement of this theorem into two lemmas for each
direction. First, we consider the case where T ′ cannot be a pre-Galois word.

▶ Lemma 19. Let T be a pre-Galois word, po = Pero(T ), and pe = Pere(T ). Consider a
symbol z and the extension T ′ = T ·z, such that either T ′[1..|T |−po +1] ≻alt T ′[po +1..|T |+1]
or T ′[1..|T | − pe + 1] ≻alt T ′[pe + 1..|T | + 1]. Then the extension T ′ is not a pre-Galois word.

Proof. We treat here only the case involving po because the other case involving pe can be
proved similarly. If po = |T |+1, T ′[1..|T |−po+1] = T ′[po+1..|T |+1] = ε. Thus, this case does
not meet the requirements of the lemma statement. It remains to consider po ≤ |T |. For that,
suppose T ′[1..|T |−po +1] ≻alt T ′[po +1..|T |+1]. Since T ′[1..|T |−po +1] ̸= T ′[po +1..|T |+1],
T ′[po + 1..|T | + 1] not a prefix of T ′. Thus, T ′ is not pre-Galois. ◀

For all other cases, we show that T ′ is a pre-Galois word.

▶ Lemma 20. Let T be a pre-Galois word, po = Pero(T ), and pe = Pere(T ). Consider a
symbol z and the extension T ′ = T · z, such that T ′[1..|T | − po + 1] ⪯alt T ′[po + 1..|T | + 1]
and T ′[1..|T | − pe + 1] ⪯alt T ′[pe + 1..|T | + 1]. Then the extension T ′ is a pre-Galois word.

Proof. We prove the contraposition, i.e., if T ′ is not a pre-Galois word, either T ′[1..|T | −
po + 1] ≻alt T ′[po + 1..|T | + 1] or T ′[1..|T | − pe + 1] ≻alt T ′[pe + 1..|T | + 1] holds.

Suppose T ′ is not a pre-Galois word. Since T is pre-Galois and T ′ is not pre-Galois,
there exists a suffix S of T such that S is a prefix of T but S · z is not a prefix of T ′ and
S · z ≺alt T ′, i.e., S = T ′[1..|S|] and S · z ⊏alt T ′[1..|S| + 1]. In what follows we consider
three cases. The first case is that S is the empty word. But then z ≺alt T ′[1], and therefore
T ′ is not pre-Galois. The other cases concern the length-parity of T and S.

Consider T and S have the same length-parity. Since pe is even, T ′[1..|T | − pe] and S also
have the same length-parity. Since S is a proper border of T , pe ≤ |T | − |S|. Here we have
S = T ′[1..|S|] = T ′[|T |−pe −|S|+1..|T |−pe]. Let x = T ′[|S|+1] and y = T ′[|T |−pe +1]. See
Figure 2 for a sketch. Since |T | is pre-Galois, we have S ·y ⪰alt S ·x. Moreover, S ·x ≻alt S ·z
holds by T ′[1..|S| + 1] ≻alt S · z. Thus we have S · y ≻alt S · z. Since T ′[1..|T | − pe] and |S|
have the same parity, we have T ′[1..|T | − pe + 1] ≻alt T ′[pe + 1..|T | + 1].

Consider T and S have different length-parity. Since po is odd, T ′[1..|T | − po] and |S|
have the same parity. Note that S is a proper border of T thus po ≤ |T | − |S|. Here we have
S = T ′[1..|S|] = T ′[|T |−po−|S|+1..|T |−po]. Let x = T ′[|S|+1] and y = T ′[|T |−po+1]. Since
|T | is pre-Galois, we have S ·y ⪰alt S ·x. Moreover S ·x ≻alt S ·z holds by T ′[1..|S|+1] ≻alt S ·z.
Thus we have S · y ≻alt S · z. Since T ′[1..|T | − po] and |S| have the same parity, we have
T ′[1..|T | − po + 1] ≻alt T ′[po + 1..|T | + 1]. ◀
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Next we show how periods change when we append a symbol to a pre-Galois word T .
Here, we focus on po first. The cases for pe can be proven in a similar way. The claim of the
first lemma follows by definition.

▶ Lemma 21. Let T be a pre-Galois word and po = Pero(T ). Consider a symbol z and the
extension T ′ = T · z, such that z = T ′[|T | − po + 1]. Then the extension T ′ has Pero(T ′) = po.

▶ Lemma 22. Let T be a pre-Galois word and po = Pero(T ). Consider a symbol z and the
extension T ′ = T · z with T ′[1..|T | − po + 1] ≺alt T ′[po + 1..|T | + 1]. Then,

Pero(T ′) =
{

|T ′| if |T ′| is odd,
|T ′| + 1 otherwise.

Proof. If |T | has no odd period, i.e., po = |T |+1 = |T ′|, then |T | is even. Thus, |T ′| is odd and
Pero(T ′) = |T ′|. Otherwise, suppose that |T | has an odd period. Assume T ′ has odd period
p′

o < |T ′|. Thus, we have T ′[1..|T | − p′
o + 1] = T ′[p′

o + 1..|T | + 1]. Let S = T ′[1..|T | − p′
o]

and y = T ′[|T | − po + 1]. Since T is pre-Galois, we have S · z ⪯alt S · y. However, by
T ′[1..|T | − po + 1] ≺alt T ′[po + 1..|T | + 1], we have S · y ≺alt S · z, which is a contradiction.
Therefore, T ′ has no odd period p′

o with p′
o < |T ′|, which implies Pero(T ′) = |T ′| if |T ′| is

odd or Pero(T ′) = |T ′| + 1 if |T ′| is even. ◀

In a similar way, we can show the following lemmas.

▶ Lemma 23. Let T be a pre-Galois word and pe = Pere(T ). Consider a symbol z and the
extension T ′ = T · z, such that z = T ′[|T | − pe + 1]. Then the extension T ′ has Pere(T ′) = pe.

▶ Lemma 24. Let T be a pre-Galois word and pe = Pere(T ). Consider a symbol z and the
extension T ′[1..|T | − pe + 1] ≺alt T ′[pe + 1..|T | + 1]. Then,

Pere(T ′) =
{

|T ′| if |T ′| is even,
|T ′| + 1 otherwise.

With Algorithm 1 we give algorithmic instructions in how to verify whether an input
word T is Galois. For each position in T , the algorithm performs a constant number of
symbol comparisons on T . Storing only the two periods pe and po of the processed prefix up
so far, it thus runs in linear time with a constant number of words extra to the input word
T . We obtain the following theorem:

▶ Theorem 25. Given a word T , we can verify whether T is Galois in O(|T |) time with
O(1) working space.

6 Computing the Galois Factorization Online

In this section we present an online algorithm for computing the Galois factorization of a
given word. We first start with a formal definition of the Galois factorization, introduce a key
property called SPref(T ), and then show how to compute SPref(T ). The Galois factorization
of a word T is defined as follows.

▶ Definition 26 (Galois factorization). A factorization T = G1 · G2 · · · Gk is the Galois
factorization of T if Gi is Galois for 1 ≤ i ≤ k and G1 ⪰alt G2 ⪰alt · · · ⪰alt Gk holds.

It is known that every word admits just one Galois factorization (see [16, Théorème 2.1]
or [5]). We denote the Galois factorization T = G1 · G2 · · · Gk of T by GF(T ) =
(G1, G2, . . . , Gk). The Galois factorization has the following property.
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Algorithm 1 Determining whether a word is Galois, see Theorem 25.

1 Function IsGalois(T ) // Assume |T | ≥ 2, otherwise always true

2 po = 1; pe = 2;
3 for i from 2 to |T | do // Loop-Invariant: T [1..i − 1] is pre-Galois

4 if i is odd then
5 if pe < i then
6 if T [i] < T [i − pe] then return False; // Lemma 19

7 else if T [i] > T [i − pe] then pe = i + 1; // Lemma 24

8 if po < i then
9 if T [i] < T [i − po] then po = i; // Lemma 22

10 else if T [i] > T [i − po] then return False; // Lemma 19

11 else
12 if pe < i then
13 if T [i] < T [i − pe] then pe = i; // Lemma 24

14 else if T [i] > T [i − pe] then return False; // Lemma 19

15 if po < i then
16 if T [i] < T [i − po] then return False; // Lemma 19

17 else if T [i] > T [i − po] then po = i + 1; // Lemma 22

18 if po = |T | then // Is T primitive?

19 return True // T is Galois by Lemma 11

20 else if pe = |T | and pe ̸= 2po then
21 return True // T is Galois by Lemma 12 and Lemma 15.

22 return False // T is pre-Galois but not primitive (hence not Galois)

▶ Lemma 27 ([5, Theorem 33]). Let GF(T ) = (G1, G2, . . . , Gk) be the Galois factorization
of a word T of length n. Let P be the shortest non-empty prefix of T such that

P ⪰alt T if |P | is even and P ⪯alt T if |P | is odd. (1)

Then we have

P =
{

G2
1 if |G1| is odd, m is even, and m < k,

G1 otherwise,

where the integer m is the multiplicity of G1, i.e., Gi = G1 for i ≤ m, but Gm+1 ̸= G1.

We denote such P in Lemma 27 by SPref(T ). If we can compute SPref(T ) for any word
T , we can compute the Galois factorization of T by recursively computing SPref(T ) from
the suffix remaining when removing the prefix SPref(T ). To this end, we present a way to
compute SPref(T ) by using the periods of T .

▶ Lemma 28. Let T be a pre-Galois word, po = Pero(T ), and pe = Pere(T ). Consider a
symbol z and the extension T ′ = T · z, such that (a) T ′[1..|T | − po + 1] ≻alt T ′[po + 1..|T | + 1]
or (b) T ′[1..|T | − pe + 1] ≻alt T ′[pe + 1..|T | + 1] hold (both (a) and (b) can hold at the same
time). Then, for any word S, we have SPref(T ′S) = T ′[1..p] such that

p =


min{po, pe} if T ′[1..|T | − po + 1] ≻alt T ′[po + 1..|T | + 1]

and T ′[1..|T | − pe + 1] ≻alt T ′[pe + 1..|T | + 1], ((a) and (b))
po if T ′[1..|T | − pe + 1] ⪯alt T ′[pe + 1..|T | + 1], ((b) but not (a))
pe otherwise. ((a) but not (b))

(2)
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W
T ′ S
T z

T ′[1..|T | − po + 1]
x

po

T ′[po + 1..|T |+ 1]
po

pe + 1

T z

T ′

S1 x
pe pe

S2 y
p′

Figure 3 Sketch of the proof of Lemma 28 (left) and of Lemma 29 (right).

Proof. Let W = T ′S for some arbitrary word W ∈ Σ∗. Suppose T ′[1..|T | − po + 1] ≻alt
T ′[po+1..|T |+1] holds. Let x = T ′[|T |−po+1]. Since T and T ′[1..|T |−po] have different length-
parities, we have T · x ≺alt T · z, which implies T ′[1..po] ≺alt W . See the left of Figure 3 for a
sketch. Similarly, we can show that T ′[1..pe] ≺alt W if T ′[1..|T |−pe +1] ≻alt T ′[pe +1..|T |+1].

Next, we show the minimality of p. Consider a prefix X such that |X| < p. Let T [1..q] be
the longest prefix of T such that |X| is its period. Then, we have T [1..q −|X|] = T ′[|X|+1..q]
and T [1..q − |X| + 1] ̸= T ′[|X| + 1..q + 1]. Since T is pre-Galois, we have T [1..q − |X| + 1] ≺alt
T ′[|X| + 1..q + 1]. If |X| is odd, X ≻alt T [1..q + 1], otherwise if |X| is even, X ≺alt T [1..q + 1],
which does not satisfy the condition of Equation (1) in Lemma 27. ◀

By using the property shown in Lemma 28, we can compute GF(W ) by computing
SPref(W ) recursively. For example, given W = UV with U = SPref(W ), after computing
SPref(W ) to get U , we recurse on the remaining suffix V and compute SPref(V ) to get the
next factor. We can modify Algorithm 1 to output SPref(W ) in O(ℓ) time, where ℓ is the
length of the longest pre-Galois prefix of W . However, it takes time if we compute GF(W )
by the recursive procedure, especially when ℓ is much larger than |SPref(W )|. To tackle this
problem, we use the following property.

▶ Lemma 29. Let T be a pre-Galois word and pe = Pere(T ). Consider a symbol z and the
extension T ′ = T ·z, such that T ′[1..|T |−pe+1] ≻alt T ′[pe+1..|T |+1]. Let SPref(T ′) = T ′[1..p].
If p = pe and |T | ≥ 2p, we have SPref(T ′[p + 1..]) = T ′[p + 1..2p] = T ′[1..p].

Proof. Since T ′[1..|T | − pe] and T ′[pe + 1..|T | − pe] have the same length-parity, we have
T ′[pe+1..|T |−pe+1] ≻alt T ′[2pe+1..|T |+1]. Assume that T [pe+1..] has a period p′ < pe and
T ′[pe+1..|T |−p′+1] ≻alt T ′[pe+p′+1..|T |+1]. Since T is pre-Galois, T ′[1..pe] = T ′[pe+1..2pe]
has no even border. Thus p′ is odd. Let S1 = T ′[pe + 1..|T | − pe], S2 = T ′[pe + 1..|T | − p′],
x = T ′[|T |−pe+1], and y = T ′[|T |−p′+1]. By T ′[pe+1..|T |−p′+1] ≻alt T ′[pe+p′+1..|T |+1],
we have S2 ·y ≻alt S2 ·z. See the right of Figure 3 for a sketch. Since S1 and S2 have different
parities, we have S1 ·y ≺alt S1 ·z. Moreover, by T ′[pe +1..|T |−pe +1] ≻alt T ′[2pe +1..|T |+1],
we have S1 · x ≻alt S1 · z, which implies S1 · x ≻alt S1 · y. However, since T [pe + 1..] is
pre-Galois, S1 · x ⪯alt S1 · y, which contradicts S1 · x ≻alt S1 · y. Therefore, T [pe + 1..] has
no period p′ with p′ < pe. ◀

Let U = SPref(W ), |U | is even, and W = UkV for some k ≥ 2. By Lemma 29, we know
that SPref(U jV ) = U for 1 ≤ j < k without computing it explicitly. Next, we consider the
case when |SPref(W )| is odd.
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Algorithm 2 Computing the Galois factorization, as claimed in Theorem 32.

1 Function GaloisFactorization(T )
2 Append $ to T ;
3 Fact = ( ) empty list; i = 0;
4 while i ≤ |T | do
5 po = 1; pe = 2;
6 for j from 2 to |T | − i do
7 p = |T | + 2; p′

e = pe; p′
o = po;

8 if j is odd then
9 if pe < j then

10 if T [i + j] < T [i + j − pe] then p = min{p, pe}; // Lemma 28

11 else if T [i + j] > T [i + j − pe] then p′
e = j + 1; // Lemma 24

12 if po < j then
13 if T [i + j] < T [i + j − po] then p′

o = j; // Lemma 22

14 else if T [i + j] > T [i + j − po] then p = min{p, po}; // Lemma 28

15 else
16 if pe < j then
17 if T [i + j] < T [i + j − pe] then p′

e = j; // Lemma 24

18 else if T [i + j] > T [i + j − pe] then p = min{p, pe}; // Lemma 28

19 if po < j then
20 if T [i + j] < T [i + j − po] then p = min{p, po}; // Lemma 28

21 else if T [i + j] > T [i + j − po] then p′
o = j + 1; // Lemma 22

22 if p ̸= |T | + 2 then
23 while j > p do
24 if p = pe and pe = 2po then // Lemma 29

25 Append T [i..i + po − 1] and T [i + po..i + 2po − 1] to Fact;
26 else
27 Append T [i..i + p − 1] to Fact;
28 i = i + p; j = j − p;
29 p = pe;
30 break;
31 pe = p′

e; po = p′
o;

32 return Fact;

▶ Lemma 30. Let T be a pre-Galois word, po = Pero(T ), and pe = Pere(T ). Consider a
symbol z and the extension T ′ = T · z, such that T ′[1..|T | − po + 1] ≻alt T ′[po + 1..|T | + 1]. Let
P = T ′[1..p] = SPref(T ′). If p = po and |T | ≥ 3p, we have SPref(T ′[p+1..]) = T ′[p+1..3p] =
T ′[1..2p].

Proof. Since T is pre-Galois, T ′[1..po] = T ′[po + 1..2po] does not have an even border.
Thus Pero(T [po + 1..]) = po and Pere(T [po + 1..]) = 2po. Moreover, since T ′[1..|T | − po] and
T ′[po+1..|T |−po] have different parities, we have T ′[po+1..|T |−po+1] ≺alt T ′[2po+1..|T |+1].
Next, T ′[po + 1..|T | − 2po + 1] ≻alt T ′[3po + 1..|T | + 1] holds, since T ′[1..|T | − po] and
T ′[po + 1..|T | − 2po] have the same parity. Therefore, SPref(T ′[po + 1..]) = T ′[po + 1..3p] =
T ′[1..2po]. ◀
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Let U = SPref(W ), |U | is odd, and W = UkV for some k ≥ 3. By Lemmas 29 and 30,
we know that SPref(Uk−2j−1V ) = U2 for 0 ≤ j < ⌈k/2⌉ without computing it explicitly.

Lemmas 28, 29, and 30 are used to factorize a pre-Galois word when we extended it.
However, we can not use the Lemmas to factorize T when T is pre-Galois but not Galois and
the input is terminated. Although we can factorize T by finding P = SPref(T ) in Lemma 27,
we need an additional procedure to find such P . To simplify our algorithm, we append a
terminal symbol $ that is smaller than all symbols of Σ. In particular, all other symbols in
W are different from $.1 Here we show that the appended $ determines a Galois factor of
length one, thus it does not affect the factorization result.

▶ Lemma 31. Consider a symbol $ that does not appear in a word T and $ ≺ c for any
c ∈ Σ. Then, GF(T ) = (G1, G2, . . . , Gk) iff GF(T · $) = (G1, G2, . . . , Gk, $).

Proof. Let GF(T ) = (G1, G2, . . . , Gk). Here, G1 ⪰alt G2 ⪰alt . . . ⪰alt Gk. Since $ ≺ c for any
c ∈ Σ, we have G1 ⪰alt G2 ⪰alt . . . ⪰alt Gk ⪰alt $. Therefore, GF(T ·$) = (G1, G2, . . . , Gk, $).
Similarly, let GF(T · $) = (G1, G2, . . . , Gk, $). Here, G1 ⪰alt G2 ⪰alt . . . ⪰alt Gk ⪰alt $.
Therefore, GF(T ) = (G1, G2, . . . , Gk). ◀

This gives us the final ingredient for introducing the algorithmic steps for computing the
Galois factorization, which we present as pseudo code in Algorithm 2.

▶ Theorem 32. The Galois factorization of a word T can be computed in O(|T |) time and
O(1) additional working space, excluding output space.

Proof. The correctness of Algorithm 2 is proven by Lemmas 28, 29, 30, and 31. Next, we
prove the time complexity of Algorithm 2. The time complexity of the algorithm is bounded
by the number of iterations of the inner loop (Line 6). The algorithm increments j until it
finds a prefix to be factorized (Line 22). Here we show that j ≤ 3ℓ + 1, where ℓ is the length
of the factorized prefix. Let p = pe. If j < 2p + 1, it is clear that j ≤ 3ℓ + 1, where ℓ = p.
Otherwise, if j ≥ 2p + 1, the algorithm factorizes the prefix recursively k times, such that
kp ≥ j and (k + 1)p > j. Thus, we have ℓ = kp which implies j ≤ 3ℓ + 1. On the other hand,
let p = po. If j < 3p + 1, its clear that j ≤ 3ℓ + 1, where ℓ = p. Otherwise, if j ≥ 3p + 1, the
algorithm factorizes the prefix recursively k times, such that kp ≥ j and (k + 2)p > j. Thus,
we have ℓ = kp which implies j ≤ 3ℓ + 1. Therefore, the number of iterations of the inner
loop is O(|T |), since the total length of the factors is |T |. ◀

7 Computing Galois rotation

While we can infer the Lyndon rotation of a word T from the Lyndon factorization of T · T ,
the same kind of inference surprisingly does not work for Galois words [5, Example 41]. Here,
we present an algorithm computing the Galois rotation, using constant additional working
space. The algorithm is a modification of Algorithm 2. We start with formally defining the
Galois rotation of a word.

▶ Definition 33. Let W be a primitive word. A rotation T = V U is a Galois rotation of
W = UV if T is Galois.

1 Without $, the last factor we report might be just pre-Galois, not Galois. So we have to break the last
factor into Galois factors. If W ends with the unique symbol $, then $ cannot be included in another
Galois factor of W ; it has to stay alone as a Galois factor of length one, and thus we cannot end with
the last factor being just pre-Galois.
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Algorithm 3 Computing the Galois rotation of T , as claimed in Theorem 36.

1 Function GaloisRotation(T )
2 i = 0;
3 while i ≤ 3|T | do
4 po = 1; pe = 2;
5 for j from 2 to 3|T | − i do
6 p = 3|T | + 2; p′

e = pe; p′
o = po;

7 if j is odd then
8 if pe < j then
9 if T [i + j] < T [i + j − pe] then p = min{p, pe}; // Lemma 28

10 else if T [i + j] > T [i + j − pe] then p′
e = j + 1; // Lemma 24

11 if po < j then
12 if T [i + j] < T [i + j − po] then p′

o = j; // Lemma 22

13 else if T [i + j] > T [i + j − po] then p = min{p, po}; // Lemma 28

14 else
15 if pe < j then
16 if T [i + j] < T [i + j − pe] then p′

e = j; // Lemma 24

17 else if T [i + j] > T [i + j − pe] then p = min{p, pe}; // Lemma 28

18 if po < j then
19 if T [i + j] < T [i + j − po] then p = min{p, po}; // Lemma 28

20 else if T [i + j] > T [i + j − po] then p′
o = j + 1; // Lemma 22

21 if p ̸= 3|T | + 2 then
22 while j > p do
23 i = i + p; j = j − p;
24 p = pe;
25 break;
26 pe = p′

e; po = p′
o;

27 if po ≥ |T | and pe ≥ |T | then
28 return (i mod |T |) + 1;

To describe our algorithm computing Galois rotations, we study a property of the Galois
factorization for repetitions of a Galois word.

▶ Lemma 34. Let T be a Galois word and P = SPref(T k) for some rational number k ≥ 2.
Then |P | ≥ |T |.

Proof. Suppose that |P | < |T | and |P | is even. Since T is primitive, |P | is not a period of T 2

by Lemma 5. Thus, there exist a position i < 2|T | such that P ω[i] ̸= T 2[i]. Moreover, we have
P ⪰alt T k by Lemma 27, which implies P ≻alt T 2. However, we have P ≺alt T =alt T 2 by
Lemma 7, which is a contradiction. The case that |P | is odd leads to a similar contradiction,
and thus |P | ≥ |T | must hold. ◀

We then use the above property to show the following lemma, which is the core of our
algorithm.

▶ Lemma 35. Let W be the Galois rotation of a primitive word T . Given TTT = UWWV

with |U | < |T |, let GF(U) = (G1, G2, . . . , Gk) and GF(WWV ) = (H1, H2, . . . , Hl). Then we
have GF(UWWV ) = (G1, G2, . . . , Gk, H1, H2, . . . , Hl).
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Proof. For U = ε, the claim trivially holds with V = W and GF(UWWV ) = GF(WWV ) =
(H1, H2, . . . , Hl). In the rest of the proof we assume U ̸= ε. Let GF(U) = (G1, G2, . . . , Gk)
and GF(WWV ) = (H1, H2, . . . , Hl). Because W = V · U , U (and in particular Gk) is a suffix
of W . By the definition of the Galois factorization, we have G1 ⪰alt G2 ⪰alt . . . ⪰alt Gk

and H1 ⪰alt H2 ⪰alt . . . ⪰alt Hl. By showing Gk ⪰alt H1, we obtain that the factorization
(G1, G2, . . . , Gk, H1, H2, . . . , Hl) of UWWV admits the properties of the Galois factorization,
which proves the claim.

To that end, we first observe that Gk is a proper suffix of W and W is Galois, thus
Gk ≻alt W . Next, if Gk is not a prefix of W , there exists a position i ≤ |Gk| < |W | such that
Gω

k [i] ̸= W [i]. Otherwise if Gk is a prefix of W , Gk is a border of W and |W |−|Gk| is a period
of W . Assuming that |Gk| is a period of W , the greatest common divisor gcd of |Gk| and
|W | − |Gk| is a period of Gk by the periodicity lemma (Lemma 5), and gcd is a factor of |W |.
However this is impossible since W is primitive; thus |Gk| cannot be a period of W . Hence,
there exists a position i ≤ |W | such that Gω

k [i] ̸= W [i]. We therefore know that the first k

Galois factors in GF(U) and GF(UWWV ) are the same since we cannot extend Gk further
without losing the property to be Galois. Moreover, W is a prefix of H1 by Lemma 34. Thus,
there exists a position j ≤ |W | ≤ |H1| such that Gω

k [j] ̸= H1[j], which implies Gk ≻alt H1.
Therefore, we have G1 ⪰alt G2 ⪰alt . . . ⪰alt Gk ⪰alt H1 ⪰alt H2 ⪰alt . . . ⪰alt Hl, which
implies GF(UWWV ) = (G1, G2, . . . , Gk, H1, H2, . . . , Hl). ◀

With Lemma 35, we now have a tool to find the Galois rotation W of T in TTT by
determining H1 and knowing that W is a prefix of H1. Since we can write TTT = UWWV

with W = V U and |U | < |T |, the goal is to determine U . For U , we know that all its Galois
factors have even or odd periods shorter than |T |, so it suffices to find the first Galois factor
in TTT for which both periods are at least |T | long (cf. Lemma 34).

In detail, let G be the first factor of GF(TTT ) with |G| ≥ T . From Lemma 35 we
know that the Galois rotation W of a word T is the prefix of G whose length is |T |, i.e.
W = G[1..|T |]. Algorithm 3 describes an algorithm to compute the Galois rotation of an
input word T . The algorithm scans TTT sequentially from the beginning, mimicking our
Galois factorization algorithm, except that it does not output the factors. At the time where
we set po ≥ |T | and pe ≥ |T |, we know that the length of next factor we compute is |T | or
longer. At that time, we can determine G. To this end, we output the starting position i of G

when reaching the condition that po ≥ |T | and pe ≥ |T |. In a post-processing, we determine
W = (TTT )[i..i + |T | − 1], where W is the Galois rotation of T . To keep the additional
working space constant, we do not load three copies of T into memory, but use that fact that
(TTT )[k] = T [((k − 1) mod |T |) + 1] for k > |T | when processing the input TTT .

▶ Theorem 36. The Galois rotation of a word T can be computed in O(|T |) time and O(1)
additional working space.

8 Experiments

We have implemented our algorithms in C++. The software is freely available by the link
on the title page. For a short demonstration, we computed the Galois factors of files from
the Canterbury, the Calgary [2] and the Pizza&Chili corpus [8], and depict the results in
Table 1. We have omitted those files that contain a zero byte, which is prohibited in our
implementation. The experiments run on WSL with Intel Core i7-10700K CPU. To compare
the time with a standard Lyndon factorization algorithm, we used the implementation of
Duval’s algorithm from https://github.com/cp-algorithms/cp-algorithms.

https://github.com/cp-algorithms/cp-algorithms
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Table 1 Counting the number of Galois factors for various datasets. The alphabet size is denoted
by σ. Counts are listed in the # columns, together with a time evaluation with Duval’s algorithm
computing the Lyndon factorization. Upper part: The Canterbury and Calgary corpus datasets.
Lower part: The Pizza&Chili corpus datasets. Note that we used different time units for the upper
table (microseconds) and lower table (seconds).

Galois Lyndon

file σ size [KB] # time [µs] # time [µs]

alice29.txt 74 152 14 3070 3 192
asyoulik.txt 68 125 7 2435 2 134
bib 81 111 25 2372 6 110
book2 96 610 20 12 182 27 555
cp.html 86 24 7 544 8 21
fields.c 90 11 18 237 13 12
grammar.lsp 76 3 10 78 8 6
lcet10.txt 84 426 12 8599 6 438
news 98 377 24 7440 24 375
paper1 95 53 19 1016 9 40
paper2 91 82 14 1593 16 66
paper3 84 46 11 908 14 39
paper4 80 13 8 267 6 12
paper5 91 11 9 237 6 10
paper6 93 38 12 740 15 32
plrabn12.txt 81 481 4 9801 6 559
progc 92 39 15 788 12 36
progl 87 71 84 1423 77 63
progp 89 49 14 944 12 38
xargs.1 74 4 6 88 9 5

Galois Lyndon

file σ size [KB] # time [s] # time [s]

dblp.xml 97 296 135 3 5.969 15 0.294
dna 97 403 927 26 7.799 18 0.360
proteins 27 1 184 051 29 24.384 30 1.091
sources 230 210 866 23 4.307 35 0.179
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Simplified Tight Bounds for Monotone Minimal
Perfect Hashing
Dmitry Kosolobov #
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Abstract
Given an increasing sequence of integers x1, . . . , xn from a universe {0, . . . , u − 1}, the monotone
minimal perfect hash function (MMPHF) for this sequence is a data structure that answers the
following rank queries: rank(x) = i if x = xi, for i ∈ {1, . . . , n}, and rank(x) is arbitrary otherwise.
Assadi, Farach-Colton, and Kuszmaul recently presented at SODA’23 a proof of the lower bound
Ω(n min{log log log u, log n}) for the bits of space required by MMPHF, provided u ≥ n22

√
log log n

,
which is tight since there is a data structure for MMPHF that attains this space bound (and
answers the queries in O(log u) time). In this paper, we close the remaining gap by proving that, for
u ≥ (1 + ϵ)n, where ϵ > 0 is any constant, the tight lower bound is Ω(n min{log log log u

n
, log n}),

which is also attainable; we observe that, for all reasonable cases when n < u < (1 + ϵ)n, known facts
imply tight bounds, which virtually settles the problem. Along the way we substantially simplify the
proof of Assadi et al. replacing a part of their heavy combinatorial machinery by trivial observations.
However, an important part of the proof still remains complicated. This part of our paper repeats
arguments of Assadi et al. and is not novel. Nevertheless, we include it, for completeness, offering a
somewhat different perspective on these arguments.
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1 Introduction

The monotone minimal perfect hash function (MMPHF) is a data structure built on an
increasing sequence x1 < · · · < xn of integers from a universe {0, . . . , u − 1} that answers the
following rank queries: rank(x) = i if x = xi for some i, and rank(x) is arbitrary otherwise.

The MMPHF is an important basic building block for succinct data structures (e.g.,
see [2, 6, 5, 14, 13, 9]). It turns out that the relaxation that permits to return arbitrary
answers when x does not belong to the stored sequence leads to substantial memory savings:
as was shown by Belazzougui, Boldi, Pagh, and Vigna [3], it is possible to construct an
MMPHF that occupies O(n min{log log log u, log n}) bits of space with O(log u)-time queries,
which is a remarkable improvement over the Ω(n log u

n ) bits required to store the sequence
x1, . . . , xn itself.

Until very recently, the best known lower bound for the space of the MMPHF was Ω(n)
bits, which followed from the same bound for the minimal perfect hashing (see [11, 16, 17]).
In 2023, this bound was improved by Assadi, Farach-Colton, and Kuszmaul [1]: they proved
that, surprisingly, the strange space upper bound O(n min{log log log u, log n}) is actually
tight, provided u ≥ n22

√
log log n . Thus, the problem was fully settle for almost all possible u.

Their proof utilized a whole spectre of sophisticated combinatorial techniques: a “conflict
graph” of possible data structures, the fractional chromatic number for this graph, the duality
of linear programming, non-standard graph products, and intricate probabilistic arguments.
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In this paper we simplify their proof, removing all mentioned concepts except the
intricate probabilistic arguments, and we slightly extend the result: our lower bound is
Ω(n min{log log log u

n , log n}), where u ≥ (1+ϵ)n for an arbitrary constant ϵ > 0 (the Ω hides
an ϵ log 1

ϵ factor). Further, we show that this bound is tight by devising a simple extension of
the MMPHF data structure of Belazzougui et al. [3]. We also observe that, for all reasonable
cases n < u < (1 + ϵ)n, tight bounds can be obtained using known facts.

All ingredients required for our simplification were actually already present in the paper
by Assadi et al. For instance, we eventually resort to essentially the same problem of coloring
random sequences (see below) and the same probabilistic reasoning. Our extension of the
MMPHF by Belazzougui et al. [3] is also not difficult. It seems that the simpler proof and
the extension were overlooked.

The paper is organized as follows. In Section 2, we define our notation and discuss weaker
lower bounds and tight upper bounds, including our extension of the MMPHF from [3].
Section 3 provides a short way to connect the lower bound to certain colorings of the universe.
Section 4 shows how the problem can be further reduced to the coloring of certain random
sequences on a very large universe u = 22n3

; Assadi et al. make a similar reduction but
their explanation includes unnecessary non-standard graph products and does not cover the
extended range (1 + ϵ)n ≤ u. The material in all these first sections is quite easy. Finally,
Section 5 is a core of the proof, which, unfortunately, still involves complicated arguments.
This part is exactly equivalent to Lemma 4.2 in [1], which was also the most challenging part
in [1]. For the self-containment of the paper, instead of directly citing Lemma 4.2 from [1],
we decided to offer a somewhat different view on the same arguments. Depending on their
disposition, the reader might find our exposition more preferrable or vice versa; it shares the
central idea with [1] but reaches the goal through a slightly different path.

2 Tight Upper Bounds

Denote [p..q] = {k ∈ Z : p ≤ k ≤ q}, [p..q) = [p..q−1], (p..q] = [p+1..q], (p..q) = [p+1..q−1].
Throughout the text, u denotes the size of the universe [0..u), from which the hashed sequence
x1, . . . , xn is sampled, and n denotes the size of this sequence. All logarithms have base 2.
To simplify the notation, we assume that log log log u

n = Ω(1), for any u
n > 0.

Let us overview known upper bounds for the space required by the MMPHF. The MMPHF
of Belazzougui et al. [3] offers O(n log log log u) bits of space. When n22

√
log log n ≤ u ≤ 22poly(n) ,

it is tight due to the lower bound of [1]. For larger u, we can construct a perfect hash
h : [0..u) → [1..n] that occupies O(n log n) bits and bijectively maps the hashed sequence
x1, . . . , xn onto [1..n] (e.g., it might be the classical two-level scheme [12] or a more advanced
hash [4]) and we store an array A[1..n] such that, for i ∈ [1..n], A[h(xi)] is the rank of xi.
This scheme takes O(n log n) bits, which is tight when u ≥ 22poly(n) , again due to the lower
bound of [1] since n log log log 22poly(n) = Θ(n log n). For small u (like u = Θ(n)), we can
simply store a bit array B[0..u−1] such that B[x] = 1 iff x = xi. Such “data structure” takes
u bits and can answer the rank queries for the MMPHF (very slowly). With additional
o(n) bits [8, 15], one can answer in O(1) time the rank queries on this array and, also, the
following select queries: given i ∈ [1..n], return the position of the ith 1 in the array.

The described MMPHFs give the tight space upper bound O(n min{log log log u, log n}),
for u ≥ n22

√
log log n , and an upper bound O(n), for u = O(n). Let us construct an MMPHF

that occupies O(n log log log u
n ) bits, for 2n ≤ u < n22

√
log log n , which, as we show below,

is tight. (We note that a construction similar to ours was alluded in [6, 7].) We split the
range [0..u) into n buckets of length b = u

n . For i ∈ [1..n], denote by ni the number of
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elements of the sequence x1, . . . , xn that are contained in the ith bucket. We construct the
MMPHF of Belazzougui et al. for each bucket, thus consuming O(

∑n
i=1 ni log log log u

n ) =
O(n log log log u

n ) bits of space. Then, we build a bit array B[1..2n] such that B[
∑i−1

j=1 nj +i] =
1, for each i ∈ [1..n], and all other bits are zeros; it is convenient to view B as the concatenation
of bit strings 10ni , for i ∈ [1..n], where 0ni denotes a bit string with ni zeros. The bit array
B supports select queries and takes O(n) bits. To answer the rank query for x ∈ [0..u), our
MMPHF first calculates i = ⌊x/b⌋+1 (the index of the bucket containing x), then it computes
the position k of the ith 1 in the bit array B using the select query, and the answer is equal
to k − i plus the answer of the query rank(x − (i − 1)b) in the MMPHF associated with the
ith bucket. We, however, cannot afford to store n pointers to the MMPHFs associated with
the buckets. Instead, we concatenate the bit representations of these MMPHFs and construct
another bit array N of length O(n log log log u

n ) where the beginning of each MMPHF in the
concatenation is marked by 1 (and all other bits are zeros). The array N also supports the
select queries and the navigation to the MMPHF associated with the ith bucket is performed
by finding the ith 1 in the array N using the select query.

With the described data structures, we obtain tight upper bounds for all u ≥ (1 + ϵ)n,
where ϵ > 0 is an arbitrary constant. In particular, when (1 + ϵ)n ≤ u < 2n, the upper bound
O(u) is equal to O(n) and it is known to be tight: an analysis of the minimal perfect hashing
[16, 17] implies the lower bound Ω(n) for the MMPHF, provided u ≥ (1+ ϵ)n. More precisely,
the bound is (u − n) log u

u−n − O(log n), which holds for arbitrary u > n (see [4, 16, 17]).
For illustrative purposes, we rederive this bound in a proof sketch provided in Section 4.

It remains to analyse the range n < u < (1 + ϵ)n. To this end, we restrict our attention
only to matching upper and lower bounds that are greater than Ω(log n). This is a reasonable
restriction because all these data structures are usually implemented on the word RAM
model, where it is always assumed that Θ(log n) bits are available for usage. Thus, we
analyse only the first term of the difference (u − n) log u

u−n − O(log n) assuming that it is at
least twice greater than the O(log n) term. Suppose that u = (1 + α)n, where 0 < α < 1

4 and
α is not necessarily constant. Then, we obtain (u − n) log u

u−n = nα log 1+α
α = Θ(nα log 1

α ).
It is known that the bit array B[0..u−1] such that B[x] = 1, for x = xi, can be encoded
into log

(
u
n

)
bits, which can be treated as an MMPHF for the sequence x1, . . . , xn. By

the well-known entropy inequality [10], we obtain log
(

u
n

)
≤ n log u

n + (u − n) log u
u−n =

n log(1 + α) + nα log 1+α
α ≤ O(nα + nα log 1

α ) = O(nα log 1
α ), which coincides with the lower

bound (u − n) log u
u−n − O(log n) = Ω(nα log 1

α ) (rederived in Section 4) and, thus, is tight.
In particular, for constant α = ϵ, we obtain the bound Ω(n) that hides ϵ log 1

ϵ under the Ω.
Hereafter, we assume that all presented results hold for sufficiently large u. We will

mostly consider the case u ≤ 22poly(n) , which also implies sufficiently large n.

3 From Data Structures to Colorings

Let us first consider deterministic MMPHFs. Randomized MMPHFs are briefly discussed in
Remark 2 in the end of Section 4.

Given positive integers u and n < u, the MMPHF that uses S bits of space is a data
structure that can encode any increasing sequence x1 < · · · < xn from [0..u) into S bits
to support the rank queries: for x ∈ [0..u), rank(x) = i if x = xi for some i ∈ [1..n], and
rank(x) is arbitrary otherwise. We assume a very powerful model of computation: the query
algorithm has unbounded computational capabilities and has unrestricted access to its S bits
of memory. Formally, it can be modelled as a function rank : [0..u) × {0, 1}S → [1..n] that
takes as its arguments an integer x ∈ [0..u) and the content of the S-bit memory and outputs
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the rank of x in a sequence encoded in these S bits (note that the same bits might correctly
encode many different sequences); it is guaranteed that any increasing sequence x1, . . . , xn

has at least one encoding c ∈ {0, 1}S that provides correct queries for it, i.e., rank(xi, c) = i,
for i ∈ [1..n]. Our goal is to prove that such function can exist only if S ≥ Ω(n log log log u

n ),
provided (1 + ϵ)n ≤ u ≤ 22poly(n) , for constant ϵ > 0.

The function rank : [0..u) × {0, 1}S → [1..n] can be viewed as a family of 2S colorings
of the range [0..u): each “memory content” c ∈ {0, 1}S colors any x ∈ [0..u) into the
color rank(x, c), one of n colors [1..n]. We say that such a coloring encodes a sequence
x1 < · · · < xn if the color of xi is i, for i ∈ [1..n]. Note that one coloring may encode many
distinct sequences and one sequence may be encoded by different colorings of [0..u).

▶ Example 1. For u = 17, the following coloring of [0..u) (the colors are both highlighted
and denoted by indices 1–5 below) encodes the sequences 3, 6, 7, 10, 14, and 1, 2, 4, 9, 12, and
1, 6, 11, 15, 16, to name a few:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 2 1 3 3 2 3 1 4 4 3 5 2 5 4 5

We thus have deduced that the MMPHF provides a family of 2S colorings that encode all
possible sequences of size n from [0..u). Now, if we prove that any such all-encoding family
must have at least C colorings, then we will have 2S ≥ C, which implies the space lower bound
S ≥ log C. In what follows, we show that C ≥ (log log u

n )Ω(n) when (1 + ϵ)n ≤ u ≤ 22poly(n) ,
hence proving the lower bound S ≥ Ω(n log log log u

n ).

4 Coloring of Random Sequences

As in [1], we utilize the following probabilistic argument. Consider a random process that
generates size-n sequences from [0..u) in such a way that any fixed coloring of [0..u) encodes
the generated sequence with probability at most 1/C. Now if a family of colorings of [0..u)
is such that any size-n sequence from [0..u) can be encoded by some of its colorings (i.e., it
is an “all-encoding” family as the one provided by the MMPHF), then it necessarily contains
at least C colorings since any sequence generated by our random process is encoded with
probability 1 by one of the colorings. Let us illustrate this reasoning by sketching a proof of
a weaker lower bound for our problem (which can also serve as a proof of the space lower
bound for the minimal perfect hash function on size-n sequences from [0..u)).

Consider a process that generates all size-n sequences from [0..u) uniformly at random.
Fix an arbitrary coloring of [0..u) with colors [1..n]. Denote by ci the number of elements
x ∈ [0..u) with color i. Since the coloring might encode at most c1 · · · cn distinct size-n
sequences from [0..u), the probability that a random sequence is encoded by it is at most
c1 · · · cn/

(
u
n

)
. Since

∑n
i=1 ci = u, the maximum of c1 · · · cn is attained when all ci are equal,

so c1 · · · cn ≤ ( u
n )n. Thus, we obtain c1 · · · cn/

(
u
n

)
≤ ( u

n )n/
(

u
n

)
and, hence, any “all-encoding”

family must contain at least
(

u
n

)
/( u

n )n colorings, which, after applying the logarithm, implies
the space lower bound log(

(
u
n

)
/( u

n )n) for the MMPHF. Finally, the entropy inequality [10]
log

(
u
n

)
≥ n log u

n +(u−n) log u
u−n −O(log n) gives the lower bound (u−n) log u

u−n −O(log n),
which is bounded by Ω(nϵ log 1

ϵ ) = Ω(n) when (1 + ϵ)n ≤ u for constant ϵ > 0.
It is evident from this sketch that our random process must be more elaborate than a

simple random pick.
In what follows we essentially repeat the scheme from [1]. Namely, for the special case

u = 22n3

, we devise a random process generating size-n sequences from [0..u) such that any
fixed coloring encodes its generated sequence with probability at most 1/nΩ(n). Hence, the
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number of colorings in the family provided by the MMPHF is at least nΩ(n), which, after
applying the logarithm, implies the space lower bound Ω(n log n) = Ω(n log log log u

n ). All
other possible u are reduced to this special case. Let us start with this reduction.

Reduction of arbitrary u to very large u. Suppose that, for any n and u = 22n3

, we are
able to devise a random process that generates size-n sequences from [0..u) in such a way
that any coloring of [0..u) encodes the generated sequence with probability at most 1/nΩ(n).
Now let us fix arbitrary u and n such that (1 + ϵ)n ≤ u ≤ 22poly(n) , for constant ϵ > 0.
Case (i) u ≥ 22n3

. For this case, the same random process that generates size-n sequences
from [0..22n3

) ⊆ [0..u) gives the probability at most 1/nΩ(n), again implying the space
lower bound Ω(n log n) as above, which is equal to Ω(n log log log u

n ) when 22n3

≤ u ≤
22poly(n) .

Case (ii) (1 + ϵ)n ≤ u < 228
n. Since n log log log u

n = Θ(n), the lower bound Ω(n) for
this case was obtained above.

Case (iii) 228
n ≤ u < 22n3

. The key observation is that while our hypothesised random
process cannot be applied to generate sequences of size n (since u is too small), it can
generate smaller sequences, for instance, of size n̄ ≤ (log log u)1/3 (since 22n̄3

≤ u).
Accordingly, we compose a random process that generates a size-n sequence as follows: it
splits the range [0..u) into n/n̄ equal blocks of length ū = u/(n/n̄) and independently
generates a size-n̄ sequence inside the first block, a size-n̄ sequence inside the second
block, etc. The generation inside each block is performed using our hypothesised random
process, which is possible provided ū ≥ 22n̄3

. This inquality is satisfied by putting
n̄ = ⌊(log log u

n )1/3⌋ (note that n̄ ≥ 2 since u
n ≥ 228): ū ≥ u/n = 22log log u

n ≥ 22n̄3

. Fix
an arbitrary coloring of [0..u). The probability that the generated size-n sequence is
encoded by this coloring is equal to the product of n/n̄ probabilities that its independently
generated size-n̄ subsequences are encoded by the coloring restricted to the corresponding
blocks, which gives (1/n̄Ω(n̄))n/n̄ = 1/n̄Ω(n) (note that, technically, our assumption that
gives each probability 1/n̄Ω(n̄) requires the colors in the ith block to be from (in̄..(i + 1)n̄]
but, clearly, any other colors in the ith block make the probability that the corresponding
size-n̄ subsequence is encoded by this coloring even lower.) The latter, after applying
the logarithm, yields the space lower bound Ω(n log n̄), which is Ω(n log log log u

n ) when
n̄ = ⌊(log log u

n )1/3⌋.

▶ Remark 2. Using an argument akin to Yao’s principle, Assadi et al. showed that the lower
bound for randomized MMPHFs is the same as for deterministic. We repeat their argument
for completeness, albeit without their unnecessary graph products etc.

A randomized MMPHF has unrestrictedly access to a tape of random bits, which does not
take any space. Denote by X the set of all size-n sequences in [0..u). The MMPHF receives
a sequence x ∈ X and a random tape r and encodes x into a memory content dr(x) ∈ {0, 1}∗.
Thus, unlike the deterministic case, the space size depends on x ∈ X and on the randomness
r. Naturally, the space occupied by such MMPHF is defined as d = maxx∈X Er[|dr(x)|],
where the expectation is for the random r. Note that, when the tape r is fixed, the algorithm
becomes deterministic: it can be modelled as a function rankr : [0..u) × {0, 1}∗ → [1..n] that,
for any memory content c ∈ {0, 1}∗, defines a coloring of [0..u) into colors [1..n].

Denote by P a random distribution on X such that any fixed coloring of [0..u) encodes
x ∈ P with probability at most 1/C. Obviously, d = maxx∈X Er[|dr(x)|] ≥ Ex∈P Er[|dr(x)|] =
ErEx∈P [|dr(x)|]. By the averaging argument, there is a tape r∗ such that ErEx∈P [|dr(x)|] ≥
Ex∈P [|dr∗(x)|]. Therefore, Ex∈P [|dr∗(x)|] ≤ d. By Markov’s inequality, Prx∈P (|dr∗(x)| ≤
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19:6 Simplified Tight Bounds for Monotone Minimal Perfect Hashing

2d) ≥ 1
2 . Denote by M all possible memory contents dr∗(x) for all x ∈ P such that

|dr∗(x)| ≤ 2d. Evidently, we have the lower bound 1
2 log |M | ≤ d and Prx∈P (dr∗(x) ∈ M) ≥ 1

2 .
Each c ∈ M determines a coloring of [0..u). Since the probability that a random x ∈ P is
encoded by this coloring is 1

C , we have Prx∈P (dr∗(x) ∈ M) ≤ |M |
C . Thus, we obtain |M | ≥ C

2 ,
which implies the space bound d ≥ Ω(log C), the same as in the deterministic case.

5 Random Sequences on Large Universes

In this section, we always assume that u = 22n3

and n ≥ 2. Our random process generating
size-n sequences from [0..u) is essentially a variation of the process by Assadi et al. [1]. Unlike
the previous sections, it is not precisely a simplification of the arguments from [1], rather a
different perspective on them. We first overview main ideas of Assadi et al. and, then, define
our process by modifying them.

5.1 Definition of the random process
Let us fix an arbitrary coloring of the range [0..u) into colors [1..n]. On a very high level, the
random process devised by Assadi et al. is as follows: choose n − 1 lengths b2 > · · · > bn,
then pick uniformly at random x1 from [0..u), then pick uniformly at random x2 from
(x1..x1+b2), then x3 from (x2..x2+b3), etc. Intuitively, if it is highly likely that at least n

2 of
the picks xi ∈ (xi−1..xi−1+bi) were such that the fraction of elements with color i in the range
(xi−1..xi−1+bi) is at most O( 1

n ), then the probability that the randomly generated sequence
x1, . . . , xn is encoded by our fixed coloring is at most O( 1

n )n/2 = 1
nΩ(n) . Unfortunately, for

any b2, . . . , bn, there are colorings where this is not true. However, as it was shown in [1],
when picking b2, . . . , bn randomly from a certain distribution such that b2 ≫ · · · ≫ bn, one
might guarantee that, whenever we encounter a “dense” range (xi−1..xi−1+bi) where at least
an Ω( 1

n ) fraction of colors are i, the final range (xn−1..xn−1+bn) with very high probability
will contain at least a 2

n fraction of colors i. Therefore, it is highly likely that such “dense”
ranges appear less than n

2 times since otherwise the range (xn−1..xn−1+bn) has no room
for the color n of element xn as it already contains n

2 colors from [1..n), each occupying a
2
n fraction of the range. Hence, with very high probability, the random process generating
the size-n sequence will encounter such “dense” ranges (xi−1..xi−1+bi) at most n

2 times
and at least n

2 ranges will contain an O( 1
n ) fraction of the picked color, which leads to the

probability 1
nΩ(n) that the generated sequence will be encoded by our fixed coloring.

We alter the outlined scheme introducing a certain “rigid” structure into our random
process. The range [0..u) is decomposed into a hierarchy of blocks with L = nn2−n levels
(the choice of L is explained below): [0..u) is split into nn equal blocks, which are called the
blocks of level 1, each of these blocks is again split into nn equal blocks, which are the blocks
of level 2, and so on: for ℓ < L, each block of level ℓ is split into nn equal blocks of level ℓ + 1.
Thus, we have (nn)L = nnn2−n+1 blocks on the last level L. Observe that (nn)L ≤ u since
log log((nn)L) = Θ(n2 log n) ≪ n3 = log log u. For simplicity, we assume that (nn)L divides
u (otherwise we could round u to the closest multiple of (nn)L, ignoring some rightmost
elements of [0..u)). The length of the last level blocks is set to u/(nn)L (their length will not
play any role, it is set to this number just to make everything fit into u).

Our random process consists of two parts: first, we pick a sequence of levels ℓ2 < · · · < ℓn;
then, we pick the elements x1, . . . , xn. The chosen levels ℓ2, . . . , ℓn will determine the sizes
of n nested blocks from which the elements x1, . . . , xn are sampled. Formally, it is as follows
(see Fig. 1):
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1. The levels ℓ2, . . . , ℓn are chosen by consecutively constructing a sequence of nested
intervals [ℓ2..ℓ′

2) ⊃ · · · ⊃ [ℓn..ℓ′
n): whenever [ℓi..ℓ

′
i) is already chosen, for i ∈ [1..n)

(assuming [ℓ1..ℓ′
1) = [0..L)), we split [ℓi..ℓ

′
i) into nn equal disjoint intervals and pick as

[ℓi+1..ℓ′
i+1) one of them uniformly at random, except the first one containing ℓi.

2. The elements x1, . . . , xn are chosen by consecutively constructing a sequence of nested
blocks [b2..b′

2) ⊃ · · · ⊃ [bn..b′
n) from levels ℓ2, . . . , ℓn, respectively: whenever [bi..b

′
i)

is already chosen, for i ∈ [1..n) (assuming [b1..b′
1) = [0..u)), we pick xi uniformly at

random from the range [bi..b
′
i−b), where b is the block length for level ℓi+1 (recall that

b = u/(nn)ℓi+1), and choose as [bi+1..b′
i+1) the block [kb..(k+1)b) closest to the right of

xi, i.e., (k−1)b ≤ xi < kb; the element xn is chosen uniformly at random from [bn..b′
n).

ℓ1

ℓ2

ℓ3

...
...

...
...

. . .

. . .

. . .

. . .

x1

0 ux1

x2

x2

[b1..b
′
1)︷ ︸︸ ︷

︷ ︸︸ ︷[b2..b
′
2)

[b3..b
′
3)

. . .

. . .

. . .

...
...

...
...

...

...
...

...

︷︸︸︷
ℓ′2

ℓ′3

...

...

...

...

Figure 1 A schematic image of the first intervals [ℓ1..ℓ′
1), [ℓ2..ℓ′

2), [ℓ3..ℓ′
3), the first blocks [b1..b′

1),
[b2..b′

2), [b3..b′
3), and the first elements x1, x2 generated by our process. The set [0..u) is depicted as

the line at the bottom. The left vertical “ruler” depicts some levels (not all): the larger divisions
denote the levels that could be chosen as ℓ2 and the smaller divisions could be chosen as ℓ3. The
intervals [ℓ2..ℓ′

2) and [ℓ3..ℓ′
3) are painted in two shades of gray. For i ∈ [1..3], each block [bi..b

′
i) is

associated with a rectangle that includes all subblocks of [bi..b
′
i) from levels [ℓi..ℓ

′
i); the rectangles

are painted in shades of blue; we depict inside the rectangle of [bi..b
′
i) lines corresponding to levels

that could be chosen as ℓi+1 and we outline contours of blocks from the level ℓi+1. The elements
x1, x2 are chosen from [0..u) but it is convenient to draw them also on the lines corresponding to
the respective levels ℓ2 and ℓ3, so it is easier to see that the frist level-ℓ2 block to the right of x1 is
[b2..b′

2) and the first level-ℓ3 block to the right of x2 is [b3..b′
3).

We say that the process reaches a block B (respectively, a level ℓ) on the ith stage of
recursion if it assigns [bi..b

′
i) = B (respectively, ℓi = ℓ) during its work. Note that the length

of [ℓi+1..ℓ′
i+1) is L

(nn)i . Hence, the number L = nn2−n = (nn)n−1 is large enough to allow the
described n − 1 recursive splits of [0..L). We have ℓ1 < ℓ2 < · · · < ℓn (assuming ℓ1 = 0) since,
while choosing [ℓi+1..ℓ′

i+1) from [ℓi..ℓ
′
i), the process excludes from consideration the first

interval [ℓi..ℓi+ L
(nn)i ). Note that, as a byproduct, many levels from [0..L) are not reacheable.

The process can be viewed as a variation on the design of Assadi et al. restrained to the
introduced block structure. Alternatively, it can be viewed as a recursion: for i ∈ [1..n), it
takes as its input an interval [ℓi..ℓ

′
i) and a block [bi..b

′
i) from level ℓi (assuming [ℓ1..ℓ′

1) = [0..L)
and [b1..b′

1) = [0..u)), chooses randomly ℓi+1 from a set of nn − 1 evenly spaced levels in
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... . . .

. . .

...
...

...
...

. . .

. . .

. . .

. . ....... ...

0

L/ (nn)i

2L/ (nn)i

3L/ (nn)i

4L/ (nn)i
...

Figure 2 A schematic partition of all blocks into disjoint subsets for a fixed i ∈ [1..n).

(ℓi..ℓ
′
i), then picks xi, and invokes the recursion to generate the elements xi+1, . . . , xn inside

the closest level-ℓi+1 block to the right of xi, setting [ℓi+1..ℓ′
i+1) as the next interval of levels.

In this view, the process is not split into two parts and it constructs the levels and blocks
simultaneously, which is possible since the levels are chosen independently of the blocks.

The nestedness of the intervals [ℓi..ℓ
′
i) and the blocks [bi..b

′
i) implies that, whenever

the process reaches a block [bn..b′
n) on level ℓn, we can uniquely determine the sequence

of intervals [ℓ2..ℓ′
2), . . . , [ℓn..ℓ′

n) and blocks [b2..b′
2), . . . , [bn..b′

n) that were traversed. It is
instructive to keep in mind the following view (Fig. 2). Fix i ∈ [1..n). Split [0..L) into (nn)i

equal disjoint intervals: I = {[k L
(nn)i ..(k + 1) L

(nn)i )}k∈[0..(nn)i). The set of all blocks can be
partitioned into disjoint subsets as follows: each subset is determined by an interval [ℓ..ℓ′)
from I and a level-ℓ block [b..b′) and consists of all subblocks of [b..b′) from levels [ℓ..ℓ′)
(including [b..b′) itself). Then, the (i+ 1)th recursive invocation of our process (which chooses
xi+1) necessarily takes as its input an interval [ℓ..ℓ′) from I and a level-ℓ block [b..b′), and
subsequently it can reach only subblocks from the corresponding set in the partition. Note,
however, that not all subblocks are reachable since, first, some levels are unreachable, as was
noted above, and, second, the process ignores the leftmost subblock of its current block when
it chooses the next block (since this subblock is not located to the right of any element x in
the block). For the same reason, not all intervals [ℓ..ℓ′) ∈ I and level-ℓ blocks [b..b′) might
appear as inputs of the recursion.

5.2 Analysis of the random process
Fix an arbitrary coloring of [0..u) into colors [1..n], which will be used untill the end of this
section. We call a subset of [0..u) dense for color i if at least a 2

n fraction of its elements have
color i; we call it sparse otherwise. The color is not specified if it is clear from the context.

Analysis plan. For each i ∈ [1..n) and each block [bi..b
′
i) that might appear on the ith

stage of our recursion, we show that whenever the process reaches [bi..b
′
i), the level ℓi+1 it

randomly chooses (among nn − 1 choices) admits, with high probability 1 − 1
nΩ(n) , a partition

of all level-ℓi+1 blocks inside [bi..b
′
i) into two disjoint families (see Fig. 3): a “sparse” set S̄,

whose union is sparse for color i, and an “inherently dense” set D̄ of blocks, each of which is
dense for color i and almost all subblocks of D̄ on each subsequent level ℓ ∈ [ℓi+1..ℓ′

i+1) are
dense for i too, where “almost all” means that only a 1

nΩ(n) fraction of level-ℓ subblocks of
D̄ might be sparse. Thus, whenever the process chooses xi from the “inherently dense” set
on an ith stage, it will with high probability 1 − 1

nΩ(n) end up inside a block [bn..b′
n) dense

for color i, where it picks xn in the end. Therefore, to have a room for one element xn with
color n, such hits into “inherently dense” sets could happen on less than n

2 different stages
i in the recursion, with high probability. We deduce from this, like in the scheme from [1]
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outlined above, that at least n
2 stages i of the recursion pick xi from the sparse sets S̄, with

high probability, which allows us to estimate by O( 1
n ) n

2 = 1
nΩ(n) the probability that the

generated sequence is correctly colored in our fixed coloring. Now let us formalize this.

λk − 1
λk

λk + 1
λk + 2

λk+1 − 1

...
...

...
...

· · ·

[bi..b
′
i)

...
...

...
...

λk+1

Figure 3 The lines depict consecutive levels [λk − 1..λk+1] inside a block [bi..b
′
i); we assume that

[ℓi+1..ℓ′
i+1) = [λk..λk+1). The red regions denote the dense sets Dℓ, for ℓ ∈ [λk − 1..λk+1). The

image is supposed to show the case when each such Dℓ takes a large portion of Dλk−1 , so that
Dλk−1 might (approximately) serve as our “inherently dense” set D̄k for level λk in the block.

Constructing S̄ and D̄. Fix i ∈ [1..n). Let H = [ℓi..ℓ
′
i) and B = [bi..b

′
i) be, respectively, an

interval of levels and a level-ℓi block that could be reached by our process on the ith stage of
recursion (assuming that [ℓ1..ℓ′

1) = [0..L) and [b1..b′
1) = [0..u)). For ℓ ∈ H, denote by Sℓ the

union of all sparse blocks from levels [ℓi..ℓ] that are subsets of B. Due to the nestedness of
blocks, Sℓ is equal to the union of Sℓ−1 (assuming Sℓ−1 = ∅ for ℓ = ℓi) and all sparse level-ℓ
blocks that are subsets of B disjoint with Sℓ−1. Obviously, the set Sℓ is sparse. Denote
Dℓ = B \ Sℓ, the complement of Sℓ, which is equal to the union of all dense level-ℓ blocks
that are subsets of B disjoint with Sℓ (note that some dense level-ℓ blocks could be subsets
of Sℓ if they were covered by larger sparse blocks). Consult Figure 3 in what follows.

Denote λ0 = ℓi and λk = λk−1 + |H|
nn , for k ∈ [1..nn]. The intervals [λk..λk+1), for all

k ∈ [1..nn), are all possible choices for the random interval [ℓi+1..ℓ′
i+1). To choose the interval

is to choose k ∈ [1..nn). We slightly relax the scheme outlined in the plan: for each of the
choices k ∈ [1..nn), we define a set S̄k that will contain a 2

n + 1
2n/8 fraction of colors i, so it

might be not precisely sparse as in the plan. We call sets with this fraction of a given color
almost sparse. If B itself is almost sparse, we define S̄k = B and D̄k = ∅, for all k ∈ [1..nn).
Otherwise, i.e., when B is not almost sparse, we are to prove that, for a randomly chosen
level ℓi+1, with high probability 1 − 1

nΩ(n) not only the blocks composing Dℓi+1 are dense
but also most of their subblocks on levels ℓ ∈ [ℓi+1..ℓ′

i+1) are dense for color i. The sets D̄k

will be constructed using the sets Dℓi+1 with this property. So, assume that B is not almost
sparse.

Let Dℓi−1 = B. Since the sets Dℓ are nested (i.e., Dℓ−1 ⊇ Dℓ), the “fraction of space”
which any Dℓ+δ occupies inside any Dℓ is |Dℓ+δ|

|Dℓ| (a number between 0 and 1). Therefore, for
k ∈ [0..nn), the fraction of space which each of the sets Dλk

, Dλk+1, . . . , Dλk+1−1 occupies
inside the set Dλk−1 is at least qλk

= |Dλk+1−1|
|Dλk−1| . Observe that

∏nn−1
k=0 qλk

is equal to the
fraction of space that Dℓ′

i
−1 occupies in B. This product is greater than 1

2n/8 since otherwise
the fraction of colors i in B = Sℓ′

i
−1 ∪ Dℓ′

i
−1 is at most 2

n + 1
2n/8 , contrary to our assumption

that B is not almost sparse. Hence,
∏nn−1

k=0 qλk
> 1

2n/8 . The product with this many (namely
nn) factors cannot contain many even mildly small values qλk

provided the result is as large
as 1

2n/8 : indeed, if we have at least nn/2 factors that are at most 1 − 1
nn/4 , then we already

obtain (1 − 1
nn/4 )nn/2 = ((1 − 1

nn/4 )nn/4)nn/4 = O( 1
enn/4 ), much smaller than 1

2n/8 . Thus,
less than nn/2 numbers qλ1 , . . . , qλnn−1 can be less than 1 − 1

nn/4 and, for most k ∈ [1..nn),

CPM 2024



19:10 Simplified Tight Bounds for Monotone Minimal Perfect Hashing

we have qλk
≥ 1 − 1

nn/4 . Therefore, the probability that qℓi+1 < 1 − 1
nn/4 , where ℓi+1 is

chosen uniformly at random among the levels λ1, . . . , λnn−1, is at most nn/2

nn−1 = O( 1
nn/2 ). For

k ∈ [1..nn), we call the level λk abnormal for B if qλk
< 1 − 1

nn/4 , and normal otherwise.
Let us define, for each normal level λk with k ∈ [1..nn), a partition of B into an almost

sparse set S̄k and an “inherently dense” set D̄k that were announced above. One might suggest
that D̄k can be defined as Dλk

. Indeed, it seems to have the alluded property. However,
observe that even when the randomly chosen xi+1 “hits” Dλk

, the block [bi+1..b′
i+1), which

is the first level-λk block to the right of xi+1, might not be a subset of Dλk
. So, there is

no “inheritance” after hitting Dλk
. Our trick is to define D̄k as Dλk−1 minus the rightmost

blocks from level λk on each maximal interval in Dλk−1 (see Fig. 4). This trick is the
reason why we defined the number qλk

as the fraction of space that Dλk+1−1 occupies in
Dλk−1, not in Dλk

. To formalize this, let us decompose Dλk−1 into maximal intervals:
Dλk−1 = [d1..d′

1) ∪ · · · ∪ [dt..d
′
t), where d′

j < dj+1 for j ∈ [1..t). All the intervals are aligned
on block boundaries for blocks from both levels λk − 1 and λk. Denote by b the block length
on level λk. Since the block length on level λk −1 is nnb, the length of each interval is at least
nnb and the distance between the intervals is at least nnb. If Dλk−1 = B, define D̄k = B

and S̄k = ∅; otherwise, define D̄k = [d1..d′
1−b) ∪ · · · ∪ [dt..d

′
t−b) and S̄k = B \ D̄k. Hence,

S̄k is Sλk−1 plus t blocks of size b. Since S̄k contains at least t − 1 disjoint intervals each
with length at least nnb (those intervals are the distances between the intervals of Dλk−1),
these added blocks constitute at most a 2 b

nnb = 2
nn fraction of the size of Sλk−1. Hence, the

fraction of colors i in S̄k is at most 2
n + 2

nn , which is enough for S̄k to be almost sparse.

...
...

...
...

Dk
λk − 1
λk

λk + 1
λk + 2

λk+1 − 1
· · ·

λk+1

[bi..b
′
i)

...
...

...
...

Figure 4 The lines depict consecutive levels [λk − 1..λk+1] inside a block [bi..b
′
i). The level λk is

emphasized by the blue color. The red region under line representing level ℓ depicts Dℓ. The set
Dλk−1 consists of three maximal intervals; accordingly, D̄k is drawn as three thick red lines over
Dλk−1 (the gap to the right of each line represents the lacking rightmost block from level λk).

For each abnormal level λk in the block B, we call all subblocks of B from levels [λk..λk+1)
abnormal; for each normal level λk with k ∈ [1..nn), we call all sparse subblocks of Dλk−1
from levels [λk..λk+1) abnormal. Thus, for the fixed i ∈ [1..n) and the fixed level-ℓi block B

that could be reached by our process on the ith stage of recursion, we have defined abnormal
levels, abnormal blocks, and the sets D̄k and S̄k, for all normal levels λk that could be chosen
as ℓi+1 for the (i + 1)th stage of recursion. Analogously, for all i ∈ [1..n), we define abnormal
levels, abnormal blocks, and sets D̄k and S̄k for all blocks B that could possibly be reached
by our process on the ith stage of recursion. All non-abnormal blocks are called normal.
▶ Remark 3. The crucial observation about the normal blocks is as follows: if the last block
[bn..b′

n) reached by our process on the nth stage is normal, then, for each i ∈ [1..n), this last
block can be sparse for color i only if the element xi was chosen by the process from an
almost sparse set S̄k defined in the corresponding block B = [bi..b

′
i) for level ℓi+1 = λk (this

level λk must be normal for B since the last block is normal). This behaviour corresponds to
our expectations outlined in the beginning of this section: whenever xi “hits” an “inherently
dense” set D̄ corresponding to the level ℓi+1 in the block B, it is guaranteed that the last
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block [bn..b′
n) will be dense for color i, provided this last block is normal. The idea is that

the abnormal blocks are unlikely to appear as last blocks in the process and we will be able
to restrict our attention only to normal blocks.

Probability to end up in an abnormal block. For i ∈ [1..n), denote by Bi all blocks that
could possibly be reached by the process on the ith stage of recursion. Let us estimate the
probability that the last block [bn..b′

n) produced by our process is abnormal as follows:
n−1∑
i=1

∑
B∈Bi

Pr
(

the process
reaches block B

)
· Pr

(
[bn..b′

n) ends up being abnormal
after the process reaches B

)
.

For each fixed i, the second sum is through disjoint events “the process reaches block B”, for
B ∈ Bi; thus, the sum of the probabilities for these events (with the fixed i) is 1. Therefore,
if we prove that, for the fixed i and any fixed B ∈ Bi, the probability of the event “[bn..b′

n)
ends up being abnormal after the process reaches B” is at most O( 1

nn/4 ), then the total sum
is bounded as follows:
n−1∑
i=1

∑
B∈Bi

Pr
(

the process
reaches block B

)
·O

(
1

nn/4

)
=

n−1∑
i=1

O

(
1

nn/4

)
= O

( n

nn/4

)
≤ O

(
1

nn/8

)
. (1)

Suppose that the process reaches a block B on the ith stage of recursion. Case (i): it may
end up in an abnormal block [bn..b′

n) if ℓi+1 happens to be an abnormal level. The probability
of this is O( 1

nn/2 ) since, as was shown, less than nn/2 of nn − 1 possible choices for the level
ℓi+1 are abnormal and ℓi+1 is chosen uniformly at random. Case (ii): the probability that
[bn..b′

n) ends up being abnormal while ℓi+1 is normal can be estimated as follows (the sum is
taken over all normal levels among λ1, . . . , λnn−1 defined for our fixed block B):∑

ℓ ∈ [λk..λk+1)
for normal λk

Pr(ℓn = ℓ) · Pr
(

[bn..b′
n) is abnormal

block of level ℓ

)
. (2)

Since the events “ℓn = ℓ” are disjoint, the sum of Pr(ℓn = ℓ) is 1 (note that Pr(ℓn = ℓ) = 0,
for ℓ unreachable on the nth stage). Therefore, if, for any normal λk and ℓ ∈ [λk..λk+1), we
estimate by O( 1

nn/4 ) the probability that [bn..b′
n) ends up being an abnormal subblock of B

on level ℓ, then the sum (2) is upperbounded by O( 1
nn/4 ).

Our random process is designed in such a way that, for any ℓ ∈ [λk..λk+1), it reaches on
the nth stage any reacheable level-ℓ subblock of B with equal probability. Since, for any
normal level λk, we have qλk

≥ 1 − 1
nn/4 , the fraction of abnormal subblocks of B on any

level ℓ ∈ [λk..λk+1) is at most 1
nn/4 . However, not all level-ℓ subblocks are reachable since the

process always ignores the leftmost block when it chooses the block for the next stage (for
instance, when we uniformly at random pick one of level-λk subblocks of B for the recursion
to stage i + 1, we cannot choose the leftmost subblock, as it is not located to the right of any
xi ∈ B). Since the number of subblocks for the choice is always at least nn, the dismissed
leftmost subblock renders unreachable at most a 1

nn fraction of level-ℓ subblocks of B. Such
dismissals happen for each of the stages i, i + 1, . . . , n − 1. Hence, the fraction of unreachable
level-ℓ subblocks of B is at most n

nn . Consequently, the probability that one of the (equally
probable) reachable level-ℓ subblocks of B is abnormal is at most 1

nn/4 /(1 − n
nn ) = O( 1

nn/4 ).
Adding cases (i) and (ii), we obtain the probability O( 1

nn/2 + 1
nn/4 ) = O( 1

nn/4 ) to reach
an abnormal block after reaching the block B, which, due to the sum (1), leads to the total
probability O( 1

nn/8 ) that the last block [bn..b′
n) in the process ends up being abnormal.
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Probability of correct coloring. Now we estimate the probability that the increasing size-n
sequence x1, . . . , xn generated by our process is correctly encoded by our fixed coloring of
[0..u), i.e., the color of xi is i, for each i ∈ [1..n]. Suppose that the process generates a sequence
x1, . . . , xn and, during its work, reaches levels ℓ1, . . . , ℓn and blocks [b1..b′

1), . . . , [bn..b′
n) such

that the block [bn..b′
n) is normal. For each i ∈ [1..n), let [bi..b

′
i) = S̄i ∪ D̄i be the described

above partition of level-ℓi+1 subblocks of [bi..b
′
i) into an almost sparse set S̄i and an “inherently

dense” set D̄i (we use the upper indices to avoid confusion with the notation S̄k, D̄k used
for the partitions on different levels ℓi+1, not on different stages as we do now). Then, the
sequence x1, . . . , xn might be correctly encoded by our fixed coloring of [0..u) only if we had
xi ∈ S̄i, for at least n

2 stages i ∈ [1..n), since otherwise the whole block [bn..b′
n) will be dense

for at least n
2 different colors from [1..n), lacking a room for color n to paint xn ∈ [bn..b′

n)
(here we rely on Remark 3 about normal blocks above).

According to this observation, the probability that the generated sequence is correctly
encoded can be estimated by the sum of the following numbers (a) and (b):
(a) the probability that [bn..b′

n) is abnormal,
(b) the probability that the sequence x1, . . . , xn is correctly encoded, subject to the condition

that xi ∈ S̄i, for at least n
2 stages i ∈ [1..n) of the process that produced x1, . . . , xn.

This estimation covers all possible generated sequences except those for which the process
ended up in a normal block [bn..b′

n) but less than n
2 stages i ∈ [1..n) had xi ∈ S̄i; but this

case can be dismissed since the probability for such sequences to be correctly encoded is zero,
as was observed above (they have no room for color n in [bn..b′

n)). We have already deduced
that (a) is O( 1

nn/8 ). It remains to estimate (b) as 1
nΩ(n) .

Fix M ⊆ [1..n) such that |M | ≥ n
2 . Let us estimate the probability pM that the generated

sequence x1, . . . , xn is correctly encoded and satisfies the following condition: xi ∈ S̄i, for
i ∈ M , and xi ∈ D̄i, for i ̸∈ M , where i ∈ [1..n) are the stages of the process that produced
x1, . . . , xn. We then can upperbound (b) by

∑
M pM , where the sum is through all M ⊆ [1..n)

such that |M | ≥ n
2 . If we show that pM < 1

nΩ(n) , then this sum can be bounded by 2n

nΩ(n) ,
which is equal to 1

nΩ(n) . Indeed, for a fixed M and i ∈ M , when the process reaches the ith
stage of recursion, the probability that the randomly chosen xi belongs the set S̄i and has
color i is at most 2

n + 1
2n/8 ≤ 3

n since the set S̄i is almost sparse (note that the probability is
zero if S̄i = ∅). Then, the probability that xi belongs to S̄i and has color i, for all i ∈ M , is
at most ( 3

n )|M | ≤ ( 3
n )n/2 = 1

nΩ(n) .
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Abstract
The notions of synchronizing and partitioning sets are recently introduced variants of locally consistent
parsings with a great potential in problem-solving. In this paper we propose a deterministic algorithm
that constructs for a given readonly string of length n over the alphabet {0, 1, . . . , nO(1)} a variant of
a τ -partitioning set with size O(b) and τ = n

b
using O(b) space and O( 1

ϵ
n) time provided b ≥ nϵ, for

ϵ > 0. As a corollary, for b ≥ nϵ and constant ϵ > 0, we obtain linear time construction algorithms
with O(b) space on top of the string for two major small-space indexes: a sparse suffix tree, which is
a compacted trie built on b chosen suffixes of the string, and a longest common extension (LCE)
index, which occupies O(b) space and allows us to compute the longest common prefix for any pair of
substrings in O(n/b) time. For both, the O(b) construction storage is asymptotically optimal since
the tree itself takes O(b) space and any LCE index with O(n/b) query time must occupy at least
O(b) space by a known trade-off (at least for b ≥ Ω(n/ log n)). In case of arbitrary b ≥ Ω(log2 n),
we present construction algorithms for the partitioning set, sparse suffix tree, and LCE index with
O(n logb n) running time and O(b) space, thus also improving the state of the art.
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1 Introduction

Indexing data structures traditionally play a central role in algorithms on strings and in
information retrieval. Due to constantly growing volumes of data in applications, the attention
of researchers in the last decades was naturally attracted to small-space indexes. In this
paper we study two closely related small-space indexing data structures: a sparse suffix tree
and a longest common extension (LCE) index. We investigate them in the general framework
of (deterministic) locally consistent parsings that was developed by Cole and Vishkin [7],
Jeż [21, 20, 22, 19], and others [1, 11, 12, 13, 15, 28, 29, 32] (the list is not exhausting) and
was recently revitalized in the works of Birenzwige et al. [5] and Kempa and Kociumaka [25]
where two new potent concepts of partitioning and synchronizing sets were introduced.

The sparse suffix tree (SST ) for a given set of b suffixes of a string is a compacted trie
built on these suffixes. It can be viewed as the suffix tree from which all suffixes not from
the set were removed (details follow). The tree takes O(b) space on top of the input string
and can be easily constructed in O(n) time from the suffix tree, where n is the length of
the string. One can build the suffix tree in O(n) time [10] provided the letters of the string
are sortable in linear time. However, if at most O(b) space is available on top of the input,
then in general there is not enough memory for the full suffix tree and the problem, thus,
becomes much more difficult. The O(b) bound is optimal since the tree itself takes O(b)
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space. The construction problem with restricted O(b) space naturally arises in applications
of the sparse suffix tree and the sparse suffix array (which is easy to retrieve from the tree)
where we have to index data in the setting of scarce memory. As is common in algorithms on
strings, it is assumed that the input string is readonly, its letters are polynomially bounded
integers {0, 1, . . . , nO(1)}, and the space is at least polylogarithmic, i.e., b ≥ logΩ(1) n. We
note, however, that in supposed usages the memory restrictions can often be relaxed even
more to b ≥ nϵ, for constant ϵ > 0.

The O(b)-space construction problem was posed by Kärkkäinen and Ukkonen [24] who
showed how to solve it in linear time for the case of evenly spaced b suffixes. In a series of
works [2, 5, 11, 14, 18, 23], the problem was settled for the case of randomized algorithms: an
optimal linear O(b)-space Monte Carlo construction algorithm for the sparse suffix tree was
proposed by Gawrychowski and Kociumaka [14] and an optimal linear O(b)-space Las-Vegas
algorithm was described by Birenzwige et al. [5]. The latter authors also presented the
best up-to-date deterministic solution that builds the sparse suffix tree within O(b) space in
O(n log n

b ) time [5] (log is in base 2 unless explicitly stated otherwise). All these solutions
assume (as we do too) that the input string is readonly and its alphabet is {0, 1, . . . , nO(1)};
the case of rewritable inputs is apparently very different, as was shown by Prezza [30].

The LCE index, crucial in string algorithm applications, preprocesses a readonly input
string of length n so that one can answer queries lce(p, q), for any positions p and q, computing
the length of the longest common prefix of the suffixes starting at p and q. The now classical
result of Harel and Tarjan states that the LCE queries can be answered in O(1) time
provided O(n) space is used [16]. In [3] Bille et al. presented an LCE index that, for any
given user-defined parameter b, occupies O(b) space on top of the input string and answers
queries in O( n

b ) time. In [26] it was proved that this time-space trade-off is optimal provided
b ≥ Ω(n/ log n) (it is conjectured that the same trade-off lower bound holds for a much
broader range of values b; a weaker trade-off appears in [4, 6]). In view of these lower bounds,
it is therefore natural to ask how fast one can construct, for any parameter b, an LCE index
that can answer queries in O( n

b ) time using O(b) space on top of the input. The space O(b)
is optimal for this query time and the construction algorithm should not exceed it. The
issue with the data structure of [3] is that its construction time is unacceptably slow, which
motivated a series of works trying to solve this problem. As in the case of sparse suffix trees,
the problem was completely settled in the randomized setting: an optimal linear O(b)-space
Monte Carlo construction algorithm for an LCE index with O( n

b )-time queries was presented
by Gawrychowski and Kociumaka [14] and a Las-Vegas construction with the same time and
space was proposed by Birenzwige et al. [5] provided b ≥ Ω(log2 n). The best deterministic
solution is also presented in [5] and runs in O(n log n

b ) time answering queries in slightly
worse time O( n

b

√
log∗ n) provided b ≥ Ω(log n) (the previous best solution was from [34] and

it runs in O(n · n
b ) time but, for some exotic parameters b, has slightly better query time).

The input string is readonly in all these solutions and the alphabet is {0, 1, . . . , nO(1)}.
For a broad range of values b, we settle both construction problems, for sparse suffix

trees and LCE indexes, in O(b) space in the deterministic case. Specifically, given a readonly
string of length n over the alphabet {0, 1, . . . , nO(1)}, we present two algorithms: one that
constructs the sparse suffix tree, for any user-defined set of b suffixes such that b ≥ Ω(log2 n),
in O(n logb n) time using O(b) space on top of the input; and another that constructs an LCE
index with O( n

b )-time queries, for any parameter b such that b ≥ Ω(log2 n), in O(n logb n)
time using O(b) space on top of the input. This gives us optimal O(b)-space solutions
with O( 1

ϵ n) = O(n) time when b ≥ nϵ, for constant ϵ > 0, which arguably includes most
interesting cases. As can be seen in Table 1, our result beats the previous best solution in
virtually all settings since n logb n = o(n log n

b ), for b = o(n).
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Table 1 LCE indexes deterministically constructible in O(b) space on a readonly input, for
b ≥ Ω(log2 n).

Algorithm Tanimura et al. [34] Birenzwige et al. [5] Theorem 4
Query time O( n

b
log min{b, n

b
}) O( n

b

√
log∗ n) O( n

b
)

Construction in O(b) space O(n · n
b

) O(n log n
b

) O(n logb n)

In order to achieve these results, we develop a new algorithm that, for any given parameter
b ≥ Ω(log2 n), constructs a so-called τ -partitioning set of size O(b) with τ = n

b . This result
is of independent interest.

We note that there is another natural model where the input string is packed in memory
in such a way that one can read in O(1) time any Θ(logσ n) consecutive letters of the input
packed into one Θ(log n)-bit machine word, where {0, 1, . . . , σ−1} is the input alphabet. In
this case the O(n) construction time is not necessarily optimal for the sparse suffix tree and
the LCE index and one might expect to have O(n/ logσ n) time. As was shown by Kempa
and Kociumaka [25], this is indeed possible for LCE indexes in O(n/ logσ n) space. It remains
open whether one can improve our results for the O(b)-space construction in this setting;
note that the lower bound of [26] does not apply here due to its assumption of single-letter
input memory cells.

Techniques. The core of our solution is a version of locally consistent parsing developed
by Birenzwige et al. [5], the so-called τ -partitioning sets (unfortunately, we could not adapt
the more neat τ -synchronizing sets from [25] for the deterministic case). It was shown by
Birenzwige et al. that the O(b)-space construction of a sparse suffix tree or an LCE index can
be performed in linear time provided a τ -partitioning set of size O(b) with τ = n

b is given.
We define a variant of τ -partitioning sets and, for completeness, repeat the argument of
Birenzwige et al. with minor adaptations to our case. The main bulk of the text is devoted to
the description of an O(b)-space algorithm that builds a (variant of) τ -partitioning set of size
O(b) with τ = n

b in O(n logb n) time provided b ≥ Ω(log2 n), which is the main result of the
present paper. In comparison Birenzwige et al.’s algorithm for their τ -partitioning sets runs in
O(n) expected time (so that it is a Las Vegas construction) and O(b) space; their deterministic
algorithm takes O(n log τ) time but the resulting set is only τ log∗ n-partitioning. Concepts
very similar to partitioning sets appeared also in [31, 33].

Our solution combines two well-known approaches to deterministic locally consistent
parsings: the deterministic coin tossing introduced by Cole and Vishkin [7] and developed
in [1, 11, 12, 13, 15, 28, 29, 32], and the recompression invented by Jeż [19] and studied
in [17, 21, 20, 22]. The high level idea is first to use Cole and Vishkin’s technique that
constructs a τ -partitioning set of size O(b log∗ n) where τ = n

b (in our algorithm the size
is actually O(b log log log n) since we use a “truncated” version of Cole and Vishkin’s bit
reductions); second, instead of storing the set explicitly, which is impossible in O(b) space,
we construct a string R of length O(b log∗ n) in which every letter corresponds to a position
of the set and occupies o(log log n) bits so that R takes o(b log∗ n log log n) bits in total and,
thus, can be stored into O(b) machine words of size O(log n) bits; third, Jeż’s recompression
technique is iteratively applied to the string R until R is shortened to length O(b); finally, the
first technique generating a τ -partitioning set is performed again but this time we retain and
store explicitly those positions that correspond to surviving letters of the string R. There
are many hidden obstacles on this path and because of them our solution is only of purely
theoretical value in its present form due to numerous internal complications in the actual
scheme (in contrast, randomized results on synchronizing sets [9, 25] seem quite practical).
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The paper is organized as follows. In Section 2 we define τ -partitioning sets and show
how one can use them to build an LCE index. Section 3 describes the first stage of the
construction of a τ -partitioning set that is based on a modification of Cole and Vishkin’s
technique. Section 4 improves the running time of this stage from O(n log τ) to O(n logb τ).
In Section 5 the second stage based on a modification of Jeż’s recompression technique is
presented. Appendix C in the full version [27] describes separately the case of very small τ .

2 Partitioning Sets with Applications

Let us fix a readonly string s of length n whose letters s[0], s[1], . . . , s[n−1] are from a
polynomially bounded alphabet {0, 1, . . . , nO(1)}. We use s as the input in our algorithms.
As is standard, the algorithms are in the word-RAM model, their space is measured in
Θ(log n)-bit machine words, and each s[i] occupies a separate word. We write s[i..j] for
the substring s[i]s[i+1] · · · s[j], assuming it is empty if i > j; s[i..j] is called a suffix (resp.,
prefix) of s if j = n − 1 (resp., i = 0). For any string t, let |t| denote its length. We say
that t occurs at position i in s if s[i..i+|t|−1] = t. Denote [i..j] = {k ∈ Z : i ≤ k ≤ j},
(i..j] = [i..j] \ {i}, [i..j) = [i..j] \ {j}, (i..j) = [i..j) ∩ (i..j]. A number p ∈ [1..|t|] is called a
period of t if t[i] = t[i − p] for each i ∈ [p..|t|). For brevity, denote log log log n by log(3) n.
We assume that n, the length of s, is sufficiently large: larger than 2max{16,c}, where c is a
constant such that nc upper-bounds the alphabet.

Given an integer τ ∈ [4..n/2], a set of positions S ⊆ [0..n) is called a τ -partitioning set if
it satisfies the following properties:
(a) if s[i−τ..i+τ ] = s[j−τ..j+τ ] for i, j ∈ [τ..n−τ), then i ∈ S iff j ∈ S;
(b) if s[i..i+ℓ] = s[j..j+ℓ], for i, j ∈ S and some ℓ ≥ 0, then, for each d ∈ [0..ℓ−τ), i + d ∈ S

iff j + d ∈ S;
(c) if i, j ∈ S ∪ {0, n−1} with j−i > τ and (i..j) ∩ S = ∅, then the period of s[i..j] is at most

τ/4.

Our definition is inspired by the forward synchronized (τ, τ)-partitioning sets from [5,
Def. 3.1 and 6.1] but slightly differs; nevertheless, we retain the term “partitioning” to avoid
inventing unnecessary new terms for very close concepts. In the definition, (a), (b), and
(c) state, respectively, that S is locally consistent, forward synchronized, and dense: the
choice of positions depends only on short substrings around them, long enough equal right
“contexts” of positions from S are “partitioned” identically, and S has a position every τ

letters unless a long range with small period is encountered. In our construction of S a
certain converse of (c) will also hold: whenever a substring s[i..j] has a period at most τ/4,
we will have S ∩ [i + τ..j − τ ] = ∅ (see Lemma 17). This converse is not in the definition
since it is unnecessary for our applications and we will use auxiliary τ -partitioning sets not
satisfying it. The definition also implies the following convenient property of “monotonicity”.

▶ Lemma 1. For any τ ′ ≥ τ , every τ -partitioning set is also τ ′-partitioning.

Due to (c), all τ -partitioning sets in some strings have size at least Ω(n/τ). In the
remaining sections we devise algorithms that construct a τ -partitioning set of s with size
O(n/τ) (matching the lower bound) using O(n/τ) space on top of s; for technical reasons,
we assume that Ω(log2 n) space is always available, i.e., n/τ ≥ Ω(log2 n), which is a rather
mild restriction. Thus, we shall prove the following main theorem.

▶ Theorem 2. For any string of length n over an alphabet [0..nO(1)] and any τ ∈
[4..O(n/ log2 n)], one can construct in O(n logb n) time and O(b) space on top of the string
a τ -partitioning set of size O(b), for b = n/τ .
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Let us sketch how one can construct indexes with the τ -partitioning set of Theorem 2.

LCE index and sparse suffix tree. An LCE index is a data structure on s that, given a pair
of positions p and q, answers the LCE query lce(p, q) computing the length of the longest
common prefix of s[p..n−1] and s[q..n−1]. Such index can be stored in O(b) space on top of
s with O( n

b ) query time [3] and this trade-off is optimal, at least for b ≥ Ω( n
log n ) [26].

Given b suffixes s[i1..n−1], s[i2..n−1], . . . , s[ib..n−1], their sparse suffix tree [24] is a
compacted trie on these suffixes in which all edge labels are stored as pointers to corresponding
substrings of s. Thus, the tree occupies O(b) space.

Our construction scheme for these two indexes is roughly as follows: given a τ -partitioning
set S with τ = n

b and size O(b) = O(n/τ), we first build the sparse suffix tree T for the
suffixes s[j..n−1] with j ∈ S, then we use it to construct an LCE index, and, using the index,
build the sparse suffix tree for arbitrarily chosen b suffixes. We elaborate on this scheme
below; our exposition, however, is rather sketchy and some details are omitted since the
scheme is essentially the same as in [5] and is given here mostly for completeness.

To construct the sparse suffix tree T for all s[j..n−1] with j ∈ S, we apply the following
lemma. Its cumbersome formulation is motivated by its subsequent use in Section 4. In the
special case when m = n and σ = nO(1), which is of primary interest for us now, the lemma
states that T can be built in O(n) time: this case implies that m logb σ = O(n logb n) is O(n)
if b > n/ log n, and b log b is O(n) if b ≤ n/ log n, and, therefore, min{m logb σ, b log b} = O(n).
The proof essentially follows arguments of [5] and is given in Appendix A in the full version [27].

▶ Lemma 3. Given an integer τ ≥ 4 and a read-only string s of length m over an alphabet
[0..σ), let S be an “almost” τ -partitioning set of size b = Θ(m/τ): it satisfies properties
(a) and (b), but not necessarily (c). The sparse suffix tree T for all suffixes s[j..m−1] with
j ∈ S can be built in O(m + min{m logb σ, b log b}) time and O(m/τ) space on top of the
space required for s.

For our LCE index, we equip T with the lowest common ancestor (LCA) data structure [16],
which allows us to compute lce(p, q) in O(1) time for p, q ∈ S, and we preprocess an array
N [0..b−1] such that N [i] = min{j ≥ iτ : j ∈ S} for i ∈ [0..b), which allows us to calculate
min{j ≥ p : j ∈ S}, for any p, in O(τ) time by traversing jk, jk+1, . . . in S, for jk = N [⌊p/τ⌋].
In order to answer an arbitrary query lce(p, q), we first calculate p′ = min{j ≥ p + τ : j ∈ S}
and q′ = min{j ≥ q +τ : j ∈ S} in O(τ) time. If either p′ −p ≤ 2τ or q′ −q ≤ 2τ , then by the
local consistency of S, s[p..n−1] and s[q..n−1] either differ in their first 3τ positions, which
is checked naïvely, or s[p..p′] = s[q..q′] and the answer is given by p′ − p + lce(p′, q′) using T .
If min{p′ − p, q′ − q} > 2τ , then the strings s[p+τ..p′] and s[q+τ..q′] both have periods at
most τ/4 due to property (c); we compare s[p..p+2τ ] and s[q..q+2τ ] naïvely and, if there
are no mismatches, therefore, due to periodicity, s[p+τ..p′] and s[q+τ..q′] have a common
prefix of length ℓ = min{p′ − p, q′ − q} − τ ; hence, the problem is reduced to lce(p + ℓ, q + ℓ),
which can be solved as described above since either p′ − (p + ℓ) ≤ 2τ or q′ − (q + ℓ) ≤ 2τ .
We thus have proved the following theorem.

▶ Theorem 4. For any string of length n over an alphabet [0..nO(1)] and any b ≥ Ω(log2 n),
one can construct in O(n logb n) time and O(b) space on top of the string an LCE index that
can answer LCE queries in O(n/b) time.

Let us consider the construction of the SST for b suffixes s[i1..n−1],
s[i2..n−1], . . . , s[ib..n−1]. Denote by jk the kth position in a given τ -partitioning
set S of size O(b) with τ = n

b (so that j1 < · · · < j|S|). For each suffix s[iℓ..n−1], we
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compute in O(τ) time using the array N an index kℓ such that jkℓ
= min{j ≥ iℓ + τ : j ∈ S}.

It takes O(bτ) = O(n) time in total. Then, we sort all strings s[iℓ..iℓ+4τ ] in O(n) time as in
the proof of Lemma 3 and assign to them ranks rℓ (equal strings are of equal ranks). For
each k ∈ [1..|S|], we obtain from the tree T the rank r̄k of s[jk..n−1] among the suffixes
s[j..n−1] with j ∈ S. Suppose that jkℓ

≤ iℓ + 3τ , for all ℓ ∈ [1..b]. By property (a), the
equality rℓ = rℓ′ , for any ℓ, ℓ′ ∈ [1..b], implies that jkℓ

− iℓ = jkℓ′ − iℓ′ when jkℓ
− iℓ ≤ 3τ .

Then, we sort the suffixes s[iℓ..n−1] with ℓ ∈ [1..b] in O(b) time using the radix sort on
the corresponding pairs (rℓ, r̄jkℓ

). The SST can be assembled from the sorted suffixes in
O(bτ) = O(n) time using the LCE index to calculate longest common prefixes of adjacent
suffixes.

The argument is more intricate when the condition jkℓ
> iℓ + 3τ does not hold. Suppose

that jkℓ
> iℓ + 3τ , for some ℓ ∈ [1..b]. Then, by property (c), the minimal period of

s[iℓ+τ..jkℓ
] is at most τ/4. Denote this period by pℓ. We compute pℓ in O(τ) time using a

linear O(1)-space algorithm [8] and, then, we find the leftmost position tℓ > jkℓ
breaking

this period: s[tℓ] ̸= s[tℓ−pℓ]. As jkℓ
−pℓ > iℓ+2τ > jkℓ−1, we obtain s[jkℓ

−τ..jkℓ
+τ ] ̸=

s[jkℓ
−pℓ−τ..jkℓ

−pℓ+τ ] (since otherwise jkℓ
−pℓ ∈ S by property (a)) and, hence, tℓ ∈

(jkℓ
..jkℓ

+τ ]. Therefore, the computation of tℓ takes O(τ) time. Thus, all pℓ and tℓ can
be calculated in O(bτ) = O(n) total time. We then sort the strings s[tℓ..tℓ+τ ] in O(n)
time and assign to them ranks r̃ℓ. For each suffix s[iℓ..n−1] with ℓ ∈ [1..b], we associate
the tuple (rℓ, 0, 0, r̄jkℓ

) if jkℓ
≤ iℓ + 3τ , and the tuple (rℓ, dℓ, r̃ℓ, r̄jkℓ

) if jkℓ
> iℓ+3τ , where

dℓ = ±(tℓ−iℓ − n) with plus if s[tℓ] < s[tℓ−pℓ] and minus otherwise. We claim that the
order of the suffixes s[iℓ..n−1] is the same as the order of their associated tuples and, hence,
the suffixes can be sorted by sorting the tuples in O(n) time using the radix sort. We then
assemble the SST as above using the LCE index. We do not dive into the proof of the claim
since it essentially repeats similar arguments in [5]; see [5] for details.

▶ Theorem 5. For any string of length n over an alphabet [0..nO(1)] and any b ≥ Ω(log2 n),
one can construct in O(n logb n) time and O(b) space on top of the string the sparse suffix
tree for arbitrarily chosen b suffixes.

3 Refinement of Partitioning Sets

In this section we describe a process that takes the trivial partitioning set [0..n) and iteratively
refines it in ⌊log τ

24 log(3) n
⌋ phases removing some positions so that, after the kth phase, the

set is (2k+3⌊log(3) n⌋)-partitioning and has size O(n/2k); moreover, it is “almost” 2k+3-
partitioning, satisfying properties (a) and (b) but not necessarily (c) (for τ = 2k+3). In
particular, the set after the last phase is τ

2 -partitioning (and, thus, τ -partitioning by Lemma 1)
and has size O( n

τ log(3) n). Each phase processes all positions of the currently refined set
from left to right and, in an almost online fashion, chooses which of them remain in the set.
Rather than performing the phases one after another, which requires O(n) space, we run
them simultaneously feeding the positions generated by the kth phase to the (k+1)th phase.
Thus, the resulting set is produced in one pass. The set, however, has size O( n

τ log(3) n),
which is still too large to be stored in O(n/τ) space; this issue is addressed in Section 5. Let
us elaborate on the details of this process.

Throughout this section, we assume that τ ≥ 25 log(3) n and, hence, the number of phases
is non-zero; the case τ < 25 log(3) n is addressed in Appendix E in the full version [27].
Consider the kth phase, for k ≥ 1. Its input is a set Sk−1 produced by the (k−1)th phase; for
k = 1, S0 = [0..n). Denote by jh the hth position in Sk−1 (so that j1 < · · · < j|Sk−1|). The
phase processes j1, j2, . . . from left to right and decides which of them to put into the new
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set Sk ⊆ Sk−1 under construction. The decision for jh is based on the distances jh − jh−1
and jh+1 − jh, on the substrings s[jh+ℓ..jh+ℓ+2k] with ℓ ∈ [−1..4], and on certain numbers
vh−1, vh, vh+1 computed for jh−1, jh, jh+1, which we define below. For technical reasons, we
also assume j0 = −∞ and j|Sk−1|+1 = ∞, so j1 − j0 = ∞ and j|Sk−1|+1 − j|Sk−1| = ∞.

For any distinct integers x, y ≥ 0, denote by bit(x, y) the index of the lowest bit in which
the bit representations of x and y differ (the lowest bit has index 0); e.g., bit(1, 0) = 0,
bit(2, 8) = 1, bit(8, 0) = 3. It is well known that bit(x, y) can be computed in O(1) time
provided x and y occupy O(1) machine words [35]. Denote vbit(x, y) = 2 bit(x, y) + a, where
a is the bit of x with index bit(x, y); e.g., vbit(8, 0) = 7 and vbit(0, 8) = 6. Note that the bit
representation of the number vbit(x, y) is obtained from that of bit(x, y) by appending a.

Let w be the number of bits in an O(log n)-bit machine word sufficient to represent letters
from the alphabet [0..nO(1)] of s. For each jh, denote sh =

∑2k

i=0 s[jh+i]2wi. Each number sh

takes (2k+1)w bits and its bit representation coincides with that of the string s[jh..jh+2k],
when we treat this string as a number stored in memory in the little endian format. The
numbers sh are introduced merely for convenience of the exposition, they are never discerned
from their corresponding substrings s[jh..jh+2k] in the algorithm. For each jh, define
v′

h = vbit(sh, sh+1) if jh+1 − jh ≤ 2k−1 and sh ≠ sh+1, and v′
h = ∞ otherwise. Observe that

bit(sh, sh+1) = wℓ+bit(s[jh+ℓ], s[jh+1+ℓ]), where ℓ = lce(jh, jh+1); i.e., bit(sh, sh+1) is given
by an LCE query in the bit string of length wn obtained from s by substituting each letter with
its w-bit representation. Define v′′

h = vbit(v′
h, v′

h+1), v′′′
h = vbit(v′′

h, v′′
h+1), vh = vbit(v′′′

h , v′′′
h+1),

assuming vbit(x, y) = ∞ if either x = ∞ or y = ∞.
For each jh, denote by R(jh) a predicate that is true iff jh+1−jh ≤ 2k−1 and sh = sh+1;

to verify whether R(jh) holds, we always check the former condition first and only then the
latter if the former condition is satisfied.

Refinement rule. The kth phase decides to put a position jh into Sk either if ∞ > vh−1 > vh

and vh < vh+1 (i.e., vh−1 ̸= ∞ and vh is a local minimum of the sequence v1, v2, . . .), or
in three “boundary” cases: (i) jh+1 − jh > 2k−1 or jh − jh−1 > 2k−1; (ii) R(jh−1) does not
hold while R(jh), R(jh+1), R(jh+2) hold; (iii) R(jh) holds but R(jh+1) does not.

Note that we always have j1, j|Sk−1| ∈ Sk since j1−j0 = ∞ > 2k−1 and j|Sk−1|+1−j|Sk−1| =
∞ > 2k−1. For now, assume that the numbers bit(sh, sh+1), required to calculate v′

h and
R(jh), are computed by the naïve comparison of s[jh..jh+2k] and s[jh+1..jh+1+2k] in O(2k)
time (we will change it later). Thus, the process is well defined. The trick with local minima
and vbit reductions is, in essence, as in the deterministic approach of Cole and Vishkin to
locally consistent parsings [7]. In what follows we derive some properties of this approach in
order to prove that the kth phase indeed produces a (2k+3⌊log(3) n⌋)-partitioning set.

It is convenient to interpret the kth phase as follows (see Fig. 1): the sequence j1, j2, . . .

is split into maximal disjoint contiguous regions such that, for any pair of adjacent positions
jh and jh+1 inside each region, the distance jh+1 − jh is at most 2k−1 and R(jh) = R(jh+1).
Thus, the regions are of two types: all-R ({j16, . . . , j20} in Fig. 1) and all-non-R ({j1, . . . , j15}
or {j21, . . . , j25} in Fig. 1). By case (i), for each long gap jh+1 − jh > 2k−1 between regions,
we put both jh and jh+1 into Sk. In each all-R region, we put into Sk its last position due
to case (iii) and, if the length of the region is at least 3, its first position by case (ii). In each
all-non-R region, we put into Sk all local minima vh such that vh−1 ≠ ∞. Only all-non-R
regions have positions jh with vh ̸= ∞; moreover, as it turns out, only the last three or four
their positions jh have vh = ∞ whereas, for other jh, vh ̸= ∞ and vh ̸= vh+1. Lemmas 8, 9
describe all this formally; their proof is deferred to Appendix B.1 in the full version [27].
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. . .

︸ ︷︷ ︸
>2k

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10j11j12j13j14j15 j16j17j18j19j20j21 j22j23 j24j25

Figure 1 The kth phase. The heights of the dashed lines over jh are equal to vh. Encircled
positions are put into Sk: they are local minima of vh, or are at the “boundaries” of all-R regions,
or form a gap of length >2k. In the figure R(j16), . . . , R(j20) hold and R(j21) does not hold.

The goal of the fourfold vbit reduction for vh is to make vh small enough so that local
minima occur often and, thus, the resulting set Sk is not too sparse. This is the key
observation of Cole and Vishkin [7] and it is stated in Lemma 7 and directly follows from
the construction of vh and Lemma 6.

▶ Lemma 6 (see [7]). Given a string a1a2 · · · am over an alphabet [0..2u) such that ai ≠ ai+1
for any i ∈ [1..m), the string b1b2 · · · bm−1 such that bi = vbit(ai, ai+1), for i ∈ [1..m),
satisfies bi ̸= bi+1, for any i ∈ [1..m−1), and bi ∈ [0..2u).

Proof. Consider bi and bi+1. Denote ℓ = bit(ai, ai+1) and ℓ′ = bit(ai+1, ai+2). As ai, ai+1 ∈
[0..2u), we have ℓ ∈ [0..u). Hence, bi ≤ 2ℓ+1 ≤ 2u−1, which proves bi ∈ [0..2u). If bi = bi+1,
then ℓ = ℓ′ and the bits with indices ℓ and ℓ′ = ℓ in ai and ai+1 coincide; however, by the
definition of ℓ = bit(ai, ai+1), ai and ai+1 must differ in this bit, which is a contradiction. ◀

▶ Lemma 7 (see [7]). For any vh ̸= ∞ in the kth phase, we have vh ∈ [0..2 log(3) n+3).

Proof. Since v′
h ∈ [0..2nw) = [0..O(n log n)), we deduce from Lemma 6 that v′′

h ∈
[0..O(log n)), v′′′

h ∈ [0..2 log log n+O(1)), and, due to the inequality log(x+δ) ≤ log x+ δ log e
x ,

we finally obtain vh ∈ [0..2 log(3) n + 3), for sufficiently large n. ◀

The refinement rule implies that, for contiguous regions jp, jp+1, . . . , jq where R(jh) holds,
only jp and jq may be in Sk and the period of s[jp..jq + 2k] is ≤2k−1; for “dense” contiguous
regions jp, jp+1, . . . , jq where R(jh) does not hold, Lemma 6 ensure frequent local minima.
This is summarized in Lemmas 8, 9 (the proofs are in Appendix B.1 in the full version [27]).

▶ Lemma 8. Let jp, jp+1, . . . , jq be a maximal contiguous region of j1, j2, . . . such that, for
all h ∈ [p..q], R(jh) holds. Then, we have jq ∈ Sk. Further, if q − p ≥ 2 or jp − jp−1 > 2k−1,
we have jp ∈ Sk. All other positions jh in the region do not belong to Sk. The string
s[jp..jq+2k] has a period at most 2k−1.

▶ Lemma 9. Let jp, jp+1, . . . , jq be a maximal contiguous region of j1, j2, . . . such that, for
all h ∈ [p..q], R(jh) does not hold and, for h ∈ [p..q), we have jh+1 − jh ≤ 2k−1. Then,
vh ≠ ∞ for h ∈ [p..q−4], vh = ∞ for h ∈ (q−3..q], and vq−3 may be ∞ or not. Further,
for h ∈ [p..q−3], we have vh ̸= vh+1 whenever vh ≠ ∞. For h ∈ (p..q), jh ∈ Sk iff
∞ > vh−1 > vh and vh < vh+1; jp ∈ Sk iff jp − jp−1 > 2k−1; jq ∈ Sk iff jq+1 − jq > 2k−1.

By Lemmas 9 and 7, any sequence of 8 log(3) n + 12 numbers vh all of which are not ∞
contains a local minimum vh and jh will be put in Sk. Thus, we obtain the following lemma.

▶ Lemma 10. Let Sk−1 and Sk be the sets generated by the (k−1)th and kth phases. Then,
any range jℓ, jℓ+1, . . . , jm of at least 8 log(3) n + 12 consecutive positions from Sk−1 such that
vh ̸= ∞, for all h ∈ [ℓ..m], has a position from Sk.

The following intuitive lemma is very non-trivial; see Appendix B.2 in the full version [27].
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▶ Lemma 11. For any i, i′ ∈ [0..n], |Sk∩[i..i′)| ≤ 26⌈(i′−i)/2k⌉; in particular, |Sk| ≤ n/2k−6.

Now we are able to prove that Sk is a (2k+3⌊log(3) n⌋)-partitioning set and, moreover, it
is almost a 2k+3-partitioning set, in a sense. The proof technique is very similar to the one
in [5]; for brevity, we defer its detailed proof to Appendix B.2 in the full version [27].

▶ Lemma 12. The kth phase generates a (2k+3⌊log(3) n⌋)-partitioning set Sk. Moreover, Sk

is almost 2k+3-partitioning: for τ = 2k+3, it satisfies properties (a) and (b) but not (c), i.e.,
if (i..j) ∩ Sk = ∅, for i, j ∈ Sk such that 2k+3 < j−i ≤ 2k+3⌊log(3) n⌋, then s[i..j] does not
necessarily have period ≤2k+2.

4 Speeding up the Refinement Procedure

Since, for any k, |Sk| ≤ n/2k−6 by Lemma 11, it is evident that the algorithm of Section 3
takes O(|S0| + |S1| + · · · ) = O(n) time plus the time needed to calculate the numbers v′

h,
for all positions (from which the numbers vh are derived). For a given k ≥ 1, denote by jh

the hth position in Sk−1. For each jh, the number v′
h can be computed by checking whether

jh+1 − jh > 2k−1 (in this case v′
h = ∞), and, if jh+1 − jh ≤ 2k−1, by the naïve comparison of

s[jh..jh+2k] and s[jh+1..jh+1+2k] in O(2k) time. Thus, all numbers v′
h for the set Sk−1 can

be computed in O(2k|Sk−1|) = O(n) time, which leads to O(n log τ) total time for the whole
algorithm. This naïve approach can be sped up if one can perform the LCE queries that
compare s[jh..jh+2k] and s[jh+1..jh+1+2k] faster; in fact, if one can do this in O(1) time,
the overall time becomes linear. To this end, we exploit the online nature of the procedure.
Let us briefly outline the procedure again on a high level.

The algorithm runs simultaneously ⌊log τ
24 log(3) n

⌋ phases: the kth phase takes positions
from the set Sk−1 produced by the (k−1)th phase and decides which of them to feed to the
(k+1)th phase, i.e., to put into Sk (the “top” phase feeds the positions to an external procedure
described in the next section). To make the decision for jh ∈ Sk−1, the kth phase needs to
know the distance jh−jh−1 and the distances jh+ℓ−jh to the positions jh+ℓ with ℓ ∈ [1..5]
such that jh+ℓ−jh ≤ 5 · 2k−1. Then, the kth phase calculates min{2k+1, lce(jh+ℓ−1, jh+ℓ)},
for all ℓ ∈ [0..5] such that jh+ℓ−jh+ℓ−1 ≤ 2k−1 and jh+ℓ−jh ≤ 5 · 2k−1, and, based on the
distances and the LCE values, computes vh−1, vh, vh+1 and decides the fate of jh.

The key for our optimization is the locality of the decision making in the phases that is
straightforward for the described process: for any prefix s[0..d], once the positions Sk−1 ∩[0..d]
are known to the kth phase, it reports all positions from the set Sk ∩ [0..d−5 · 2k−1] and no
position from the set Sk−1 ∩ [0..d−6 · 2k−1] will be accessed by an LCE query of the kth
phase in the future. Thus, we can discard all positions Sk−1 ∩ [0..d−6 · 2k−1] and have to
focus only on positions Sk−1 ∩ (d−6 · 2k−1..∞] and LCE queries on them in the future. We
deduce from this that after processing the prefix s[0..d] by the whole algorithm, the kth
phase reports all positions from the set Sk ∩ [0..d−5

∑k−1
k′=0 2k′ ] ⊇ Sk ∩ [0..d−5 · 2k] and no

LCE query in the kth phase accesses positions from the set Sk−1 ∩ [0..d−6 · 2k] in the future.
This locality of the decision procedure guarantees that, at the time we processed a length-ℓ

prefix of the string s, for some ℓ ≥ 0, all positions from the set Sk ∩ [0..ℓ−5 · 2k] are reported
and no position from the set Sk−1 ∩ [0..ℓ−5 · 2k] will be accessed by an LCE query of the kth
phase in the future. Let us summarize this as follows.

▶ Lemma 13. Suppose we run the described ⌊log τ
24 log(3) n

⌋ phases on a string s of length n

from left to right. Then, for any k ≥ 1 and d ≥ 0, after processing the prefix s[0..d], the kth
phase reports all positions from Sk ∩ [0..d−5 · 2k] to the (k + 1)th phase and will not perform
queries lce(j, j′) on positions j, j′ ∈ Sk−1 such that min{j, j′} ≤ d − 6 · 2k in the future.

CPM 2024
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Recall that we have O(log τ) phases and at least Ω(log τ) space. Let us sketch main
techniques to speed up the algorithm. Details are given in Appendix C in the full version [27].

Suppose that τ <
√

n . We have b = Θ( n
τ ) ≥ Ω(

√
n) additional space for the algorithm

in this case. To answer all required LCE queries in constant time, when the algorithm
processes a letter s[d], the classical LCE data structure from [16] is maintained for the
leftmost substring Ci = s[i⌊

√
n⌋..(i + 3)⌊

√
n⌋ − 1] whose middle part contains the position d

(i.e. d ∈ (i + 1)⌊
√

n⌋..(i + 2)⌊
√

n⌋ − 1]). By Lemma 13, we can use the data structure to
correctly handle all queries because all LCE queries performed by the algorithm at the step
d lie within the substring Ci. Since we must build the LCE data structure for every Ci once,
the overall running time is O(n +

∑
i |Ci|) = O(n) and the occupied space is O(

√
n) = O(b).

Let us generalize this idea to the case τ ≥
√

n. Denote b = n
τ . We have O(b) < O(

√
n)

space and cannot use the scheme described above since LCE data structures for substrings
of length O(b) are not enough to answer queries of the form min{2k+1, lce(j, j′)} when
2k > Ω(b). The key idea is to group contiguous phases into “levels” and maintain SST for a
sliding window of positions in each level (in the case τ <

√
n we had a single “level” and

a sliding window of size O(
√

n)). We must choose “level” size to be large enough to build
less SSTs and fit in the O(n logb n) running time, but also the “levels” must be small to
efficiently reduce the number of positions in each level and fit all supporting data structures
in the O(b) space. To achieve this, we split evenly all ⌊log τ

24 log(3) n
⌋ phases into “levels”,

each containing Θ(log b̂) phases, where b̂ = ⌊ b
log n ⌋. For each “level”, we maintain a window

of O(b̂) positions from Sk, where k is the lowest phase in the “level”; one window spans a
substring of length O(2k b̂) and the windows change O( n

2k b̂
) times in total. Overall we use

O(b̂ log b̂) = O(b) space. By Lemma 12, the set Sk is “almost” 2k-partitioning, so we can
build SST for each “level” as in Lemma 3 in time O(2k b̂ + min{2k b̂ logb̂ n, b̂ log b̂}), which
simplifies to O(b̂ logb̂ n) for the first “level” and to O(2k b̂) for subsequent “levels”. (Note that
there are no vicious circles here: Lemma 3 is self-contained and builds its SST using only
the radix sort for strings related to its input partitioning set.) Overall we can upperbound
the running time with O(n logb n) for all O(logb n) “levels”. Thus, the described routine
builds partitioning sets Sk in time O(n logb n) and space O(b). The described sketch of the
algorithm is elaborated in details in Appendix C in the full version [27].

5 Recompression

Let S be the set produced by the last phase of the procedure from Sections 3 and 4. By
Lemma 12, S is a τ

2 -partitioning set of size O( n
τ log(3) n). Throughout this section, we assume

that τ ≥ (log(3) n)4 so that the size of S is at most O( n
(log(3) n)3 ); the case τ < (log(3) n)4 is

discussed in Appendix E in the full version [27]. In what follows we describe an algorithm
that removes positions from S transforming it into a τ -partitioning set of size O(n/τ).

Instead of storing S explicitly, which is impossible in O(n/τ) space, we construct a
related-to-S string R of length O( n

τ log(3) n) over a small alphabet such that R can be packed
into O(n/τ) machine words. Positions of S are represented, in a way, by letters of R. The
construction of R is quite intricate, which is necessary in order to guarantee that letters of
R corresponding to close positions of S (namely, positions at a distance at most τ/25) are
necessarily distinct even if the letters are not adjacent in R. This requirement is stronger
than the requirement of distinct adjacent letters that was seen, for instance, in Lemma 6
but it is achieved by similar means using vbit reductions as in Section 3. We then apply
to R a variant of the iterative process called recompression [19] that removes some letters
thus shrinking the length of R to O(n/τ). Then, the whole procedure of Sections 3–4 that



D. Kosolobov and N. Sivukhin 20:11

generated S is performed again but this time we discard all positions of S corresponding
to removed positions of the string R and store the remaining positions explicitly in a set
S∗ ⊆ S. We show that S∗ is τ -partitioning and has size O(n/τ). Let us elaborate on the
details.

The algorithm starts with an empty string R and receives positions of S from left to right
appending to the end of R new letters corresponding to the received positions. It is more
convenient to describe the algorithm as if it acted in two stages: the first stage produces a
3
4 τ -partitioning set S′ ⊆ S, for which a condition converse to property (c) holds (thus, some
positions of S are discarded already in this stage), and the second stage, for each position of
S′, appends to the end of R a letter of size O((log(3) n)2) bits. Both stages act in an almost
online fashion and, hence, can be actually executed simultaneously in one pass without the
need to store the auxiliary set S′. The separation is just for the ease of the exposition.

The first stage. The goal is to construct set S′ ⊆ S by excluding from S all positions h

for which there exist i, j ∈ S such that i < h ≤ j, j − i ≤ τ/4, and s[i..i+τ/2] = s[j..j+τ/2].
The algorithm generating S′ is as follows.

We consider all positions of S from left to right and, for each i ∈ S, process every
j ∈ (i..i+τ/4] ∩ S by comparing s[i..i+τ/2] with s[j..j+τ/2]. If s[i..i+τ/2] = s[j..j+τ/2],
then we traverse all positions of the set (i..j] ∩ S from right to left marking them for removal
until an already marked position is encountered. Since the marking procedure works from
right to left, every position is marked at most once. The position i is put into S′ iff it was
not marked previously. During the whole process, we maintain a “look-ahead” queue that
stores the positions (i..i+τ/4] ∩ S and indicates which of them were marked for removal.

Due to Lemma 11, the size of the set (i..i+τ/4] ∩ S is O(log(3) n). Therefore, the look-
ahead queue takes O(log(3) n) space, which is O(n/τ) since n/τ ≥ log2 n, and O(log(3) n)
comparisons are performed for each i. Hence, if every comparison takes O(1) time, the set S′

is constructed in O(|S| log(3) n) = O( n
τ (log(3) n)2) time, which is O(n) since τ ≥ (log(3) n)4.

Thus, it remains to explain how the comparisons can be performed.
Similar to the algorithm of Section 4, we consecutively consider substrings C ′

i = s[iτ..(i +
3)τ), for i ∈ [0..n/τ −3]: when all positions from a set S∩[iτ..(i+3)τ) are collected, we use the
algorithm of Lemma 3 to build a SST for all suffixes of the string C ′

i whose starting positions
are from S; the tree, endowed with an LCA data structure [16], is used in the procedure for
deciding which of the positions from the set S ∩ [(i + 1

2 )τ..(i + 3
2 )τ) (or S ∩ [0.. 3

2 τ) if i = 0)
should be marked for removal. Thus, after processing the last string C ′

i, all positions of S

are processed and S′ is generated. By Lemma 11, the number of suffixes in the SST for C ′
i is

O(log(3) n) and, therefore, the tree occupies O(log(3) n) ≤ O(n/τ) space and its construction
takes O(τ +log(3) n · log log(3) n) time by Lemma 3, which is O(τ) since τ ≥ (log(3) n)4. Thus,
the total construction time for all the trees in the stage is O( n

τ τ) = O(n) and the space used
is O(log(3) n) since, at every moment, at most one tree is maintained.

The following lemma shows that the transformation within the first stage does not break
τ -partitioning properties. Its proof is deferred to Appendix D.1 in the full version [27].

▶ Lemma 14. The set S′ is τ -partitioning and satisfies a converse of property (c): if a
substring s[i..j] has a period at most τ/4, then S′ ∩ [i+ 3

4 τ..j− 3
4 τ ] = ∅. Moreover, S′ is almost

3
4 τ -partitioning, meeting properties (a) and (b) with 3

4 τ in place of τ , but not necessarily (c).

The second stage. We consider all positions of S′ from left to right and, for each p ∈ S′,
append to the end of the (initially empty) string R a new carefully constructed letter
ap occupying O((log(3) n)2) bits. Thus, the string R will have length |S′| and will take

CPM 2024
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O(|S′|(log(3) n)2) = O( n
τ (log(3) n)3) bits of space, which can be stored into O(n/τ) machine

words of size O(log n) bits. The crucial property of R for us is that any two letters of R

corresponding to close positions of S′ are distinct, namely the following lemma will be proved:

▶ Lemma 15. For any p, p̄ ∈ S′, if 0 < p̄ − p ≤ τ/25, then ap ̸= ap̄.

Consider p ∈ S′. We are to describe an algorithm generating an O((log(3) n)2)-bit letter
ap for p that will be appended to the string R.

Denote by p1, p2, . . . , pm all positions of S′ ∩ (p..p+τ/25] in the increasing order. By
Lemma 11, m ≤ O(log(3) n) and, hence, there is enough space to store them. By construction,
s[p..p+ τ

2 ] ̸= s[pj ..pj+ τ
2 ], for each j ∈ [1..m]. One can compute the longest common prefix

of s[p..p+ τ
2 ] and s[pj ..pj+ τ

2 ], for any j ∈ [1..m], in O(1) time using a SST with an LCA
data structure [16] built in the first stage for a substring C ′

i = s[iτ..(i + 3)τ − 1] such that
p ∈ [iτ..(i + 3

2 )τ). (In order to have p1, p2, . . . , pm prepared, we handle p, which was reported
by the first stage after processing C ′

i, only when C ′
i+1 was processed too; thus, the first

stage maintains two SSTs: one for a substring C ′
i+1 currently under analysis and one for C ′

i,
retained for its use in the second stage.)

Denote ℓ = 26⌈log(3) n⌉. Recall that S is produced by the kth phase of the procedure
of Section 3, for k = ⌊log τ

24 log(3) n
⌋, and hence, by Lemma 11, the size of any set S ∩ [i..j],

for i ≤ j, is at most 26⌈(j − i + 1)/2k⌉. Therefore, since S′ ⊆ S and m is the size of the set
S′ ∩ (p..p+τ/25], we obtain m ≤ 26(τ/25)/ τ

2·24 log(3) n
≤ ℓ.

Let w be the number of bits in an O(log n)-bit machine word sufficient to represent
letters from the alphabet [0..nO(1)] of s. For each pj , denote tj =

∑τ/2
i=0 s[pj+i]2wi; similarly,

for p, denote t =
∑τ/2

i=0 s[p+i]2wi. As in an analogous discussion in Section 3, we do not
discern the numbers tj and t from their corresponding substrings in s and use them merely
in the analysis. The intuition behind our construction is that the numbers t, t1, t2, . . . , tm,
in principle, could have been used for the string R as letters corresponding to the positions
p, p1, p2, . . . , pm since t, t1, t2, . . . , tm are pairwise distinct (due to the definition of S′) but,
unfortunately, they occupy too much space (O(wτ) bits each). One has to reduce the space
for the letters retaining the property of distinctness. The tool capable to achieve this was
already developed in Section 3: it is the vbit reduction, a trick from Cole and Vishkin’s
deterministic locally consistent parsing [7].

We first generate for p a tuple of ℓ numbers ⟨w′
1, w′

2, . . . , w′
ℓ⟩: for j ∈ [1..ℓ], w′

j = vbit(t, tj)
if j ≤ m, and w′

j = ∞ otherwise. Since the longest common prefix of substrings s[p..p+ τ
2 ]

and s[pj ..pj+ τ
2 ], for j ∈ [1..m], can be calculated in O(1) time, the computation of the

tuple takes O(ℓ) = O(log(3) n) time. By Lemma 6, each number w′
j occupies less than

⌈log w + log τ + 1⌉ bits. Thus, we can pack the whole tuple into ℓ⌈log w + log τ + 1⌉ bits
encoding each value w′

j into ⌈log w + log τ + 1⌉ bits and representing ∞ by setting all bits
to 1. We denote this chunk of ℓ⌈log w + log τ + 1⌉ bits by t̄. In the same way, for each pi with
i ∈ [1..m], we generate a tuple ⟨w′

i,1, w′
i,2, . . . , w′

i,ℓ⟩ comparing s[pi..pi+τ/2] to s[q..q+τ/2],
for each q ∈ S′ ∩ (pi..pi+τ/25], and using the vbit reduction; the tuple is packed into a chunk
t̄i of ℓ⌈log w + log τ + 1⌉ bits. See Figure 2. For each j ∈ [1..m], the number w′

j is not equal
to ∞ and, thus, due to Lemma 6, differs from the number w′

j,j (the jth element of the tuple
⟨w′

i,1, w′
i,2, . . . , w′

i,ℓ⟩). Therefore, all the tuples – and, hence, their corresponding numbers
t̄, t̄1, t̄2, . . . , t̄m – are pairwise distinct.

The numbers t̄, t̄1, t̄2, . . . , t̄m, like the numbers t, t1, t2, . . . , tm, could have been used, in
principle, as letters for the string R but they still are too large. We therefore repeat the
same vbit reduction but now for the numbers t̄, t̄1, t̄2, . . . , t̄m in place of t, t1, t2, . . . , tm thus
generating a tuple ⟨w′′

1 , w′′
2 , . . . , w′′

ℓ ⟩: for j ∈ [1..ℓ], w′′
j = vbit(t̄, t̄j) if j ≤ m, and w′′

j = ∞
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t t1 t2 . . . tm tm+1 tm+2 tm+3 tm+4 tm+5

t̄ t̄1 t̄2 . . . t̄m t̄m+1 t̄m+2 t̄m+3

¯̄t ¯̄t1
¯̄t2 . . . ¯̄tm

¯̄tm+1

¯̄̄
t

¯̄̄
t1

¯̄̄
t2 . . .

¯̄̄
tm

ap

Figure 2 The scheme generating ap via vbit reductions. If a node t̂ has ingoing edges labeled with
t̃, t̃1, t̃2, . . . , t̃r (from left to right), then t̂ encodes a tuple ⟨w̃1, w̃2, . . . , w̃ℓ⟩ such that, for j ∈ [1..r],
w̃j = vbit(t̃, t̃j) and, for j ∈ (r..ℓ], w̃j = ∞. In the figure, the numbers t, t1, t2, . . . , tm+5 correspond
to consecutive positions p, p1, p2, . . . , pm+5 in the set S′, respectively. By looking at which of the
ingoing edges are present and which are not, one can deduce that here we have S′ ∩ (p..p+τ/25] =
{p1, . . . , pm}, S′ ∩ (p1..p1+τ/25] = {p2, . . . , pm}, S′ ∩ (p2..p2+τ/25] = {p3, . . . , pm, pm+1}, S′ ∩
(pm..pm+τ/25] = {pm+1}, S′ ∩ (pm+1..pm+1+τ/25] = {pm+2, pm+3}, S′ ∩ (pm+2..pm+2+τ/25] =
{pm+3}, S′ ∩ (pm+3..pm+3+τ/25] = {pm+4, pm+5}.

otherwise. The computation of vbit(t̄, t̄j) takes O(ℓ) time since t̄ occupies ℓ machine words of
size O(log n) bits. It follows from Lemma 6 that the tuple ⟨w′′

1 , w′′
2 , . . . , w′′

ℓ ⟩ can be packed
into a chunk ¯̄t of ℓ⌈log ℓ + log⌈log w + log τ + 1⌉ + 1⌉ bits (i.e., O(log(3) n · log log n) bits),
which already fits into one machine word. We perform analogous reductions for the positions
p1, p2, . . . , pm generating m tuples ⟨w′′

i,1, w′′
i,2, . . . , w′′

i,ℓ⟩, for i ∈ [1..m], packed into new chunks
¯̄t1, ¯̄t2, . . . , ¯̄tm, respectively. Note that, in order to produce a tuple ⟨w′′

i,1, w′′
i,2, . . . , w′′

i,ℓ⟩, for
i ∈ [1..m], that is packed into ¯̄ti, we use not only the numbers t̄i, t̄i+1, . . . , t̄m corresponding
to positions pi, pi+1, . . . , pm but also similarly computed numbers at other positions from
S′ ∩ (pi..pi+τ/25], if any. See Figure 2 for a clarification: it can be seen that the “top”
numbers include not only t, t1, . . . , tm precisely because of this.

By the same argument that proved the distinctness of t̄, t̄1, t̄2, . . . , t̄m, one can easily
show that ¯̄t, ¯̄t1, ¯̄t2, . . . , ¯̄tm are pairwise distinct. But they are still too large to be used as
letters of R. Then again, we repeat the same reductions at positions p, p1, p2, . . . , pm but
now for the numbers ¯̄t, ¯̄t1, ¯̄t2, . . . , ¯̄tm in place of t̄, t̄1, t̄2, . . . , t̄m, thus generating new chunks
¯̄̄
t,

¯̄̄
t1,

¯̄̄
t2, . . . ,

¯̄̄
tm. Finally, once more, we do the vbit reduction for ¯̄̄

t,
¯̄̄
t1,

¯̄̄
t2, . . . ,

¯̄̄
tm generating a

tuple ⟨w1, w2, . . . , wℓ⟩ such that, for j ∈ [1..ℓ], wj is vbit(¯̄̄t, ¯̄̄
tj) if j ≤ m, and ∞ otherwise.

Using the same reasoning as in the proof of Lemma 7, one can deduce from Lemma 6
that the tuple ⟨w1, w2, . . . , wℓ⟩ fits into a chunk of ℓ · 2 log log(3) n ≤ 26⌈log(3) n⌉2 bits (the
inequality holds provided n > 216) encoding each value wj into ⌈log(3) n⌉ bits and representing
∞ by setting all ⌈log(3) n⌉ bits to 1. Denote by ap this chunk of 26⌈log(3) n⌉2 bits that encodes
the tuple. We treat ap as a new letter of R that corresponds to the position p and we append
ap to the end of R. Lemma 15 follows then straightforwardly by construction.

Given p ∈ S′, the calculation of the numbers t̄,
¯̄̄
t, ap takes O(ℓ2) time. The calculation of

¯̄t requires O(ℓ3) time since each reduction vbit(t̄, t̄j) for it takes O(ℓ) time. Hence, the total
time for the construction of R is O(|S′|ℓ3) = O( n

τ (log(3) n)4), which is O(n) as τ ≥ (log(3) n)4.

Recompression. If the distance between any pair of adjacent positions of S′ is at least τ/26,
then |S′| ≤ 26n/τ and, by Lemma 14, S′ can be used as the resulting τ -partitioning set of
size O(n/τ). Unfortunately, in general, this is not the case and we have to “sparsify” S′.
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There is a one-to-one correspondence between S′ and positions of R. Using a technique
of Jeż [19] called recompression , we can remove in O(|R|) time some letters of R reducing
by a fraction 4

3 the number of pairs of adjacent letters R[i], R[i+1] whose corresponding
positions in S′ are at a distance at most τ/26. We perform such reductions until the length
of R becomes at most 214 · n/τ . The positions of S′ corresponding to remaining letters will
constitute a τ -partitioning set of size O(n/τ). In order to guarantee that this subset of S′

is τ -partitioning, we have to execute the recompression reductions gradually increasing the
distances that are of interest for us: first, we get rid of adjacent pairs with distances at most
τ/ log(3) n between them, then the threshold is increased to 2τ/ log(3) n, then 22τ/ log(3) n,
and so on until (most) adjacent pairs with distances at most 2log(4) n−6τ/ log(3) n = τ/26

between them are removed in last recompression reductions. The details follow.
Since it is impossible to store in O(n/τ) space the precise distances between positions

of S′, the information about distances needed for recompression is encoded as follows.
For each i ∈ [0..|R|) and a position p ∈ S′ corresponding to the letter R[i], we store an
array of numbers Mi[0..⌈log(4) n⌉] such that, for j ∈ [0..⌈log(4) n⌉], Mi[j] is equal to the
size of the set S′ ∩ (p..p+τ/2j ]. By Lemma 11, we have |S′ ∩ (p..p+τ ]| ≤ O(log(3) n) and,
hence, each number Mi[j] occupies O(log(4) n) bits. Therefore, all the arrays Mi can be
stored in O(|R|(log(4) n)2) ≤ O( n

τ log(3) n · (log(4) n)2) bits, which fits into O( n
τ ) machine

words of size O(log n) bits. All arrays Mi are constructed in a straightforward way in
O(|R| log(3) n) = O( n

τ (log(3) n)2) time (which is O(n) since τ ≥ (log(3) n)4) during the
left-to-right pass over S′ that generated the string R.

Our algorithm consecutively considers all numbers j ∈ [6..⌈log(4) n⌉] in decreasing order,
starting from j = ⌈log(4) n⌉. For each j, it iteratively performs a recompression procedure
reducing the number of adjacent letters R[i], R[i+1] whose corresponding positions from S′

are at a distance at most τ/2j , until R shrinks to a length at most 2j+10· n
τ . Thus, |R| ≤ 216· n

τ

after last recompression reductions for j = 6. Let us describe the recompression procedure.
Fix j ∈ [6..⌈log(4) n⌉]. To preserve property (c) of the τ -partitioning set S′ during the

sparsifications, we impose an additional restriction: a letter R[i] cannot be removed if either
i = 0 or the distance between the position p ∈ S′ corresponding to R[i] and the predecessor
of p in S′ is larger than τ/25, i.e., if Mi−1[5] = 0. The rationale is as follows: the position p

might be the right boundary of a gap in S′ of length > τ and it is dangerous to break the
gap since, once p is removed, the gap might not satisfy property (c) (the range of the string
s corresponding to the gap should have a period that is at most τ/4).

The processing of the number j starts with checking whether |R| ≤ 2j+10 · n
τ . If so, we

skip the processing of j and move to j − 1 (provided j > 6). Suppose that |R| > 2j+10 · n
τ .

Denote σ = 226⌈log(3) n⌉2 , the size of the alphabet [0..σ) of R. Then, the algorithm creates an
array P [0..σ−1][0..σ−1] filled with zeros, which occupies O(σ2) = O(227(log(3) n)2) = o(log n)
space, and collects in P statistics on pairs of adjacent letters of R whose corresponding
positions in S′ are at a distance at most τ/2j and whose first letter may be removed: namely,
we traverse all i ∈ [1..|R|) and, if Mi[j] ̸= 0 and Mi−1[5] ̸= 0, then we increase by one the
number P [R[i]][R[i+1]]. By Lemma 15, R[i] ̸= R[i + 1] when Mi[j] ̸= 0.

The core tool of the recompression technique proposed by Jeż [19] is an algorithm for
multidigraph without self-loops G = (V, E) that constructs a directed cut of size at least
⌈ |E|

4 ⌉ edges in time O(|V |2) if the graph is given by an adjacency matrix. If we interpret
P as an adjacency matrix, we can use Jeż’s technique (there are no self-loops because
R[i] ̸= R[i + 1] when Mi[j] ̸= 0 due to Lemma 15) and split the alphabet into two disjoint
subsets correspoding to the cut: [0..σ) = Σ́ ⊔ Σ̀. After that we mark for removal from R
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all indices i ∈ [1..|R|−1) for which the following conditions hold: Mi[j] ̸= 0, Mi−1[5] ̸= 0,
R[i] ∈ Σ́, and R[i+1] ∈ Σ̀. Once the sets Σ́ and Σ̀ are computed in time O(σ2) = o(log2 n),
the marking takes O(|R|) time and can be organized using a bit array of length |R|.

After the marking step we update values in all arrays Mi according to removal marks in
one right to left pass: for each i ∈ [0..|R|) and j′ ∈ [0..⌈log(4) n⌉], the new value for Mi[j′] is
the number of indices i + 1, i + 2, . . . , i + Mi[j′] that were not marked for removal, i.e., Mi[j′]
is the number of positions in the set S′ ∩ (p..p+τ/2j′ ] whose corresponding letters R[i′] will
remain in R, where p ∈ S′ is the position corresponding to R[i]. Since Mi[j′] ≤ Mi+1[j′] + 1,
for i ∈ [0..|R|−1), the pass updating M can be executed in O(|R| log(4) n) time.

Finally, we delete letters R[i] and arrays Mi, for all indices i marked for removal, thus
shrinking the length of R and the storage for Mi. We call this procedure, which marks
letters of R and removes them and their corresponding arrays Mi, the recompression. One
recompression iteration takes O(|R| log(4) n) time, where |R| is the length of R before
shrinking.

The next lemma states that the recompression shrinks the string R by a constant factor.

▶ Lemma 16. If, for j ∈ [6..⌈log(4) n⌉], before the recompression procedure there were d

non-zero numbers Mi[j] with i ∈ [1..|R|) such that Mi−1[5] ̸= 0, then the arrays Mi modified
by the procedure, for all i corresponding to unremoved positions of R, contain at most 3

4 d

non-zero numbers Mi[j] such that Mi−1[5] ̸=0.

Proof. The proof repeats an argument from [19] and [17, Lemma 7]. Consider an undirected
weighted graph G corresponding to the digraph encoded in the adjacency matrix P . By
construction of P , we have d =

∑
a ̸=b P [a][b], which follows from Lemma 15 that guarantees

R[i] ̸= R[i + 1] when Mi[j] ̸= 0. Thus, d is the sum of weights of all edges in G. Putting a
letter a into either Σ́ or Σ̀, we add to the cut at least half of the total weight of all edges
connecting a to the letters 0, 1, . . . , a−1. Therefore, the cut of G induced by Σ́ and Σ̀ has
a weight at least 1

2 d. The edges in the cut might be directed both from Σ́ to Σ̀ and in the
other direction. Switching Σ́ and Σ̀, if needed, we ensure that the direction from Σ́ to Σ̀ has
a maximal total weight, which is obviously at least 1

4 d. According to this cut, we mark for
removal from R at least 1

4 d letters R[i] such that Mi[j] ̸= 0. Hence, the number of non-zero
values Mi[j] such that Mi−1[5] ̸= 0 is reduced by 1

4 d, which gives the result of the lemma
since new non-zero values could not appear after the deletions. ◀

Suppose, for a fixed j ∈ [6..⌈log(4) n⌉], the algorithm has performed one iteration of
the recompression. Denote by S′′ the set of all positions from S′ that “survived” the
recompression for j ∈ [6..⌈log(4) n⌉] and, thus, have a corresponding letter in the updated
string R. There is a one-to-one correspondence between S′′ and letters of R. For each
i ∈ [0..|R|) and j′ ∈ [0..⌈log(4) n⌉], the number Mi[j′] in the modified arrays Mi is the size of
the set S′′ ∩ (p..p+τ/2j′ ], for a position p ∈ S′′ corresponding to i. We therefore can again
apply the recompression procedure thus further shrinking the length of R. The algorithm
first again checks whether |R| > 2j+10 · n

τ and, if so, repeats the recompression. For the
given fixed j, we do this iteratively until |R| ≤ 2j+10 · n

τ . During this process, the number
of zero values Mi[j] in the arrays Mi is always at most 2j · n

τ since the equality Mi[j] = 0
implies that S′′′ ∩ (p..p+τ/2j ] = ∅, for a set S′′′ ⊆ S′ of size |R| defined by analogy to the
definition of S′′ and for a position p ∈ S′′′ corresponding to i. Therefore, due to Lemma 16,
the condition |R| ≤ 2j+10 · n

τ eventually should be satisfied. Furthermore, as we are to show,
for each j, the condition |R| ≤ 2j+10 · n

τ holds after at most three recompression iterations.
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Given j ∈ [6..⌈log(4) n⌉), the length of R before the first iteration of the recompression for
j is at most 2j+11 · n

τ since this is a condition under which shrinking iterations stopped for
j+1. The same bound holds for j = ⌈log(4) n⌉: the initial length of R is at most 211 · n

τ log(3) n

(which is upper-bounded by 2j+11 · n
τ ) since S′ ⊆ S and S is produced by the kth phase of

the procedure of Section 3, for k = ⌊log τ
24 log(3) n

⌋, so that the size of S, by Lemma 11, is at
most 26⌈n/2k⌉ ≤ 26n/ τ

2·24 log(3) n
= 211 n

τ log(3) n. Fix j ∈ [6..⌈log(4) n⌉]. Since the number of
zero values Mi[j] is always at most 2j · n/τ and the number of zero values Mi−1[5] = 0 is at
most 25 · n

τ , three iterations of the recompression for j performed on a string R with initial
length r shrink the length of R to a length at most ( 3

4 )3r + 2j · n
τ + 25 · n

τ ≤ ( 3
4 )3r + 2 · 2j · n

τ ,
by Lemma 16. Putting r = 2j+11 · n

τ , we estimate the length of R after three iterations for j

from above by (( 3
4 )3211 + 2)2j · n

τ < 2j+10 · n
τ . That is, for each j, three iterations are enough

to reduce the length of R to at most 2j+10 · n
τ .

Thus, the total running time of all recompression procedures is O(
∑6

j=⌈log(4) n⌉ 2j+11 ·
n
τ log(4) n) = O( n

τ log(4) n), which is O(n) since τ ≥ (log(3) n)4. Observe that the most
time consuming part is in recalculations of the arrays Mi, each taking O(|R| log(4) n) time,
all other parts take O(|R|) time, i.e., O(

∑6
j=⌈log(4) n⌉ 2j+11 · n

τ ) = O( n
τ ) time is needed for

everything without the recalculations. The length of R in the end is at most 216 · n/τ , which
is a condition under which shrinking iterations stopped for j = 6.

Finally, we create a bit array E of the same length as the original string R that marks by
1 those letters that survived all iterations. Additional navigational structures for linear-time
E construction are straightforward. We then re-run whole “semi-online” algorithm that
generates the set S′ (from which the string R was constructed) but, in this time, we discard
all positions of S′ that correspond to unmarked indices in E and we store all positions
corresponding to marked indices of E explicitly in an array S∗. Since at most 216 · n/τ

indices in E are marked by 1, the size of S∗ is O(n/τ).
Finally, we have all required instruments to prove the main lemma. The proof is rather

technical and, in a way, similar to the proof of Lemma 12; it is detailed in Appendix D.2 in
the full version [27].

▶ Lemma 17. The set S∗ is τ -partitioning; also a converse of property (c) holds for S∗: if
a substring s[i..j] has a period at most τ/4, then S∗ ∩ [i + τ..j − τ ] = ∅.
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Abstract
Despite consistently yielding the best compression on repetitive text collections, the Lempel-Ziv
parsing has resisted all attempts at offering relevant guarantees on the cost to access an arbitrary
symbol. This makes it less attractive for use on compressed self-indexes and other compressed
data structures. In this paper we introduce a variant we call BAT-LZ (for Bounded Access Time
Lempel-Ziv) where the access cost is bounded by a parameter given at compression time. We design
and implement a linear-space algorithm that, in time O(n log3 n), obtains a BAT-LZ parse of a
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the longest possible phrases, and the best sources for those. Our experimentation shows that, on
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1 Introduction

The sharply growing sizes of text collections, particularly repetitive ones, has raised the
interest in compressed data structures that can maintain the texts all the time in compressed
form [43, 42, 41]. For archival purposes, the original Lempel-Ziv (LZ) compression format [36]
is preferred because it yields the least space among the methods that support compression
and decompression in polynomial time – actually, Lempel-Ziv compresses and decompresses
a text T [1 . . n] in O(n) time [48]. For using a compression format as a compressed data
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structure, however – in particular, to build a compressed text self-index on it [34] –, we
need that arbitrary text snippets T [i . . i + ℓ] can be extracted efficiently, without the need of
decompressing the whole text up to the desired snippet. Grammar compression formats [31]
allow extracting such text snippets in time O(ℓ + log n) [5, 22], which is nearly optimal [51].
So, although the compression they achieve is always lower-bounded by the size of the LZ
parse [49, 8], grammar compression algorithms are preferred over LZ compression in the
design of text indexes [42, 12], and of compressed data structures in general.

The LZ compression algorithm parses the text T into a sequence of so-called phrases,
where each phrase points backwards to a previous occurrence of it in T and stores the next
symbol in explicit form. While this yields a simple linear-time left-to-right decompression
algorithm, consider the problem of accessing a particular symbol T [i]. Unless it is the final
explicit symbol of a phrase, we must determine the text position j < i where T [i] = T [j] was
copied from. We must then determine T [j], which again may be – with low chance – the
end of a phrase, or it may – most likely – refer to an earlier symbol T [j] = T [k], with k < j.
The process continues until we hit an explicit symbol. The cost of extracting T [i] is then
proportional to the length of that referencing chain i→ j → k → . . . Despite considerable
interest in algorithms to access arbitrary text positions from the LZ compression format,
and apart from some remarkable results on restricted versions of LZ [30], there has been no
progress on the original LZ parse (which yields the strongest compression).

In this paper we introduce and study an LZ variant we call Bounded Access Time Lempel-
Ziv (BAT-LZ), which takes a compression parameter c and produces a parse where no symbol
has a referencing chain longer than c, thereby guaranteeing O(c) access time.1 As opposed to
classical LZ, BAT-LZ parses allow very fast access to the text, indeed, like a bat out of hell.

We design a Greedy BAT-LZ parser, which at each step of the compression chooses the
longest possible phrase. Finding such a phrase boils down to solving a 4-sided orthogonal
range query in a 3-dimensional grid (in rank space), where one of the coordinates undergoes
updates as the parsing proceeds. We design such a data structure, which turns out to handle
5-sided queries and support updates on the coordinate where the query is one-sided. Our data
structure handles queries and updates in time O(log3 n), yielding a greedy BAT-LZ parsing
in time O(n log3 n) and space O(n). We then design another BAT-LZ parser, referred to as
Minmax, which runs on an enhanced suffix tree. It looks for the “best” possible sources of the
chosen phrases, that is, with symbols having shorter referencing chains, while not necessarily
choosing the longest possible phrase. Finally, we combine the two ideas, resulting in our
Greedier parser, which runs again on an enhanced suffix tree. These last two algorithms, while
their running time is upper bounded by O(n3 log n), both run in decent time in practice.

We implemented and tested our three BAT-LZ parsers on various repetitive texts of
different sorts, comparing them with the original LZ parse and with two simple baselines that
ensure BAT-LZ parses without any optimization. The results show that all three algorithms
run in a few seconds per megabyte and produce much better parses than the baselines. For
values of c = O(log n) with a small constant, they produce just a small fraction of extra
phrases on top of LZ. In particular, Greedier increases the size of the LZ parse by less than
1% with c values that are about log2 n (i.e., 20–30 in our texts).

We note that, unlike the original LZ parse, a greedy parsing does not guarantee obtaining
the minimal BAT-LZ parse. Indeed, finding the optimal BAT-LZ parse has recently been
shown to be NP-hard for all constant c, and also hard to approximate for any constant
approximation ratio [10]. Our results show that, on repetitive texts, a polylog-linear time

1 A parsing like BAT-LZ was described as a baseline in the experimental results in previous work [33] of
one of the authors, but without a parsing algorithm, see Sec. 3 for more details.
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greedy algorithm can nonetheless achieve good compression while guaranteeing fast access to
text snippets. The other two algorithms are still polynomial time and offer fast access with
almost no loss in compression compared to the classical LZ-compression. In our scenarios of
interest (i.e., accessing the compressed text at random) the data is compressed only once
and accessed many times, so slower compression algorithms can be afforded in exchange for
faster access. We discuss at the end this and some other problems our work opens.

2 Basic Data Structures

A string (or text) T is a finite sequence of characters from an alphabet Σ. We write
T = T [1..n] for a string T of length n, and assume that the final character is a unique
end-of-string marker $. We index strings from 1 and write T [i..j] for the substring T [i] . . T [j],
T [i . .] for the suffix starting in position i, and T [. . j] for the prefix ending in position i.

Bitvectors and Wavelet Matrices. A bitvector B[1 . . n] can be stored using n bits, or
actually ⌈n/w⌉ words on a w-bit word machine, while providing access and updates to
arbitrary bits in constant time. If the bitvector is static (i.e., does not undergo updates) then
it can be preprocessed to answer rank queries in O(1) time using o(n) further bits [11, 39]:
rankb(B, i), where b ∈ {0, 1} and 0 ≤ i ≤ n, is the number of times bit b occurs in B[1 . . i].

A wavelet matrix [13] is a data structure that can be used, in particular, to represent a
discrete [1, n] × [1, n] grid, with exactly one point per column, using n log2 n + o(n log2 n)
bits. Let S[1 . . n] be such that S[i] is the row of the point at column i. The first wavelet
matrix level contains a bitvector B1[1 . . n] with the highest (i.e., ⌈log2 n⌉th) bit of every
value in S. For the second level, the sequence values are stably sorted by their highest bit,
and the wavelet matrix stores a bitvector B2[1 . . n] with the second highest bits in that order.
To build the third level, the values are stably sorted by their second highest bit, and so on.
Every level i also stores the number zi = rank0(Bi, n) of zeros in its bitvector.

The value S[i] can be retrieved from the wavelet matrix in O(log n) time. Its highest bit
is b1 = B1[i1], with i1 = i. The second highest bit is b2 = B2[i2], with i2 = rank0(B1, i1) if
b1 = 0 and i2 = z1 + rank1(B1, i1) if b1 = 1. The other bits are obtained analogously.

The wavelet matrix can also obtain the grid points that fall within a rectangle [x1, x2]×
[y1, y2] (i.e., the values (i, S[i]) such that x1 ≤ i ≤ x2 and y1 ≤ S[i] ≤ y2) in time O(log n),
plus O(log n) per point reported. We start at the first level, in the range B1[sp1, ep1] =
B1[x1, x2]. We then map the range into two ranges of the second level: the positions i where
B1[i] = 0 are all mapped to the range B2[sp2, ep2] = B2[rank0(B1, sp1−1)+1, rank0(B1, ep1)],
and those where B1[i] = 1 are mapped to B2[sp′

2, ep′
2] = B2[z1 + rank1(B1, sp1 − 1) + 1, z1 +

rank1(B1, ep1)]. The recursive process stops when the range becomes empty; when the
sequence of highest bits makes the possible set of values either disjoint with [y1, y2] or
included in [y1, y2]; or when we reach the last level. It can be shown that the recursion ends
in O(log n) ranges, at most two per level, so that every value in those ranges is an answer.
The corresponding y values can be obtained by tracking them downwards as explained.

These data structures, and our results, hold in the RAM model with computer word size
w = Θ(log n). The wavelet matrix is then said to use O(n) space – i.e., linear space –, which
is counted in w-bit words. The wavelet matrix is easily built in O(n log n) time, and less [40].

Another relevant functionality that can be offered within 2n + o(n) bits is the so-called
range maximum query (RMQ): given a static array A[1 . . n], we preprocess it in O(n) time
so that we can answer RMQs in O(1) time [19]: rmq(A, i, j) is a position p, i ≤ p ≤ j, such
that A[p] = max{A[k], i ≤ k ≤ j}. The data structure does not need to maintain A. In this
paper we will use RMQs where A can undergo updates, see Sec. 5.

CPM 2024



21:4 BAT-LZ out of hell

Suffix Arrays and Trees. The suffix tree [52] is a classic data structure on texts which
is able to answer efficiently many different kinds of string processing queries [24, 1], which
uses linear space and can be built in linear time [52, 38, 17, 50]. We give a brief recap; see
Gusfield [24] for more details.

The suffix tree ST(T ) of a text T is the compact trie of the suffixes of T ; it is a rooted
tree whose edges are labeled by substrings of T (stored as two pointers into T ), and whose
inner nodes are branching. The label L(v) of a node v is the concatenation of the labels
of the edges on the root-to-v path. There is a one-to-one correspondence between leaves
and suffixes of T ; leafi is then the unique leaf whose label equals the ith suffix T [i . .]. The
stringdepth sd(v) of a node v is the length of its label, and we assume sd(v) is stored in v.

The suffix array SA of T is a permutation of the index set {1, . . . , n} such that SA[i] = j

if the jth suffix of T is the ith in lexicographic order among all suffixes. The suffix array can
be computed from the suffix tree, or directly from the text, in linear time and space [47, 45].
The inverse suffix array, denoted ISA, can be computed in linear time using ISA[SA[i]] = i.

3 The Lempel-Ziv (LZ) Parsing and its Bounded Version (BAT-LZ)

The Lempel-Ziv (LZ) parsing of a text T [1 . . n] [36] produces a sequence of z “phrases”,
which are substrings of T whose concatenation is T . Each phrase is formed by the longest
substring that has an occurrence starting earlier in T , plus the character that follows it.

▶ Definition 1. A leftward parse of T [1 . . n] is a sequence of substrings T [i . . i + ℓ] (called
phrases) whose concatenation is T and such that there is an occurrence of each T [i . . i+ ℓ−1]
starting before i in T (the occurrence is called the source of the phrase). The LZ parse of T

is the leftward parse of T that, in a left-to-right process, chooses the longest possible phrases.

The algorithm moves a pointer i along T , from i = 1 to i = n. At each step, the algorithm
has already processed T [1 . . i− 1], and it must form the next phrase. As said, the phrase is
formed by (1) the longest prefix T [i . . i + ℓ− 1] of T [i . .] that has an occurrence in T starting
before position i, and (2) the next symbol T [i + ℓ]. If ℓ > 0, then the occurrence of (1),
T [s . . s+ℓ−1] = T [i . . i+ℓ−1] with s < i, is called the source of T [i . . i+ℓ−1]. Once suitable
s and ℓ have been determined, the next phrase is T [i . . i + ℓ] and the algorithm proceeds
from i← i + ℓ + 1 onwards. The phrase T [i . . i + ℓ] is encoded as the triple (s, ℓ, T [i + ℓ]),
and if ℓ = 0 we can encode just the character (T [i + ℓ]).

This greedy parsing, which maximizes the phrase length at each step, turns out to be
optimal [36], that is, it produces the least number z of phrases among all the leftward parses
of T . Further, it can be computed in O(n) time [48, 9, 46, 25, 26, 23, 20, 32, 3, 27, 21].

Note that phrases can overlap their sources, as sources must start – but not necessarily
end – before i. For example, the LZ parse of T = an−1$ is (a) (0, n− 1, $). For illustrative
purposes, we describe the parsings by writing bars, “|”, between the formed phrases. The
parsing of the example is then written as a|an−1$. To illustrate the access problem, consider
the LZ parsing of the text alabaralalabarda$ (disregard for now the numbers below):

a l a b a r a l a l a b a r d a $
0 0 1 0 1 0 1 1 2 0 2 1 2 1 0 1 0

Assume we want to extract T [11] = a. The position is the first of the 6th phrase, abard,
and it is copied from the third phrase, ab. In turn, the first position of that phrase is copied
from the first phrase, where a is stored in explicit form. We need then to follow a chain
of length two in order to extract T [11], so the length of that chain is the access cost. The
numbers we wrote below the symbols in the parse are the lengths of their chains.
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Bounded Access Time Lempel-Ziv (BAT-LZ). We define a leftward parse we call Bounded
Access Time Lempel-Ziv (BAT-LZ), which takes as a parameter the maximum length c any
chain can have. A BAT-LZ parse is a leftward parse where no chain is longer than c. Note
that we do not require a BAT-LZ parse to be of minimal size. For example, a BAT-LZ parse
for the above text with c = 1 is as follows:

a l a b a r a l a l a b a r d a $
0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0

When the LZ parse produces the phrase T [i . . i + ℓ] from the source T [s . . s + ℓ− 1] and
the extra symbol T [i + ℓ], the character T [i + ℓ] is stored in explicit form, and thus its chain
is of length zero. The chain length of every other phrase symbol, T [i + l] for 0 ≤ l < ℓ, is one
more than the chain length of its source symbol, T [s + l].

A special case occurs when sources and targets overlap. If we want to extract T [n− 1]
from T = an−1$, we could note that it is copied from T [n − 2], which is in turn copied
from T [n− 3], and so on, implying a chain of length n− 1. Instead, we can note that our
phrase T [2 . . n] overlaps its source T [1 . . n− 2]. In general, when the phrase T [i . . i + ℓ− 1]
overlaps its source T [s . . s + ℓ− 1] by 0 < b = i− s characters, this implies that the word
S = T [s . . s + ℓ− 1] = T [i . . i + ℓ− 1] has a border (a prefix which is also a suffix) of length b.
It is well known that if S has a border of length b, then S has a period p = |S| − b, see [37,
Ch. 8]. Therefore, S can be written in the form S = U ⌊|S|/p⌋V , where U is the p-length
prefix of S and V a proper prefix of U , and thus, for all l > p, S[l] = S[l mod p].

▶ Definition 2 (Chain length). Let T [i . . i + ℓ] be a phrase in a leftward parse of T [1 . . n],
whose source is T [s . . s + ℓ− 1]. The chain length of the explicit character is C[i + ℓ] = 0. If
ℓ ≤ i− s (i.e., there is no overlap between the source and the phrase), then for all 0 ≤ l < ℓ,
C[i + l] = C[s + l] + 1. Otherwise, for 0 ≤ l < i− s, the chain length is C[i + l] = C[s + l] + 1,
and for i− s ≤ l < ℓ, the chain length is C[i + l] = C[i + (l mod (i− s))].

We remark that a parsing like BAT-LZ is described as a baseline in the experimental
results of one of the current authors’ previous work [33], under the name LZ-Cost, but as no
efficient parsing algorithm was devised for it, it could be tested only on the tiny texts of the
Canterbury Corpus (https://corpus.canterbury.ac.nz). It also did not handle overlaps
between sources and targets, so it did not perform well on the text T = an. For testing the
BAT-LZ parsing on large repetitive text collections we need an efficient parsing algorithm.

4 A Greedy Parsing Algorithm for BAT-LZ

In this section we describe an algorithm that, using O(n) space and O(n log3 n) time, produces
a BAT-LZ parse of a text T [1 . . n] by maximizing the next phrase length at each step. We
then show how to reduce the time to O(n log2 n) at the price of increasing the space to
O(n log n). Of course, unlike in LZ, this greedy algorithm does not in general produce an
optimal BAT-LZ parse, since the problem is NP-hard.

▶ Definition 3. A BAT-LZ parse of T [1 . . n] with maximum chain length c is a leftward
parse of T where the chain length of no position exceeds c. A greedy BAT-LZ parse is a
BAT-LZ parse where each phrase, processed left to right, is as long as possible.

Let T [1 . . i− 1] be already processed. We call a prefix T [i . . i + ℓ− 1] of T [i . .] valid if
C[j] ≤ c for all j = i, . . . , i + ℓ− 1. A leftward parse of T is therefore a BAT-LZ parse if and
only if all phrases are valid. Our Greedy BAT-LZ parser proceeds then analogously to the

CPM 2024
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original LZ parser. At each step, it has already processed T [1 . . i− 1], and it must find the
next phrase, which is formed by (1) the longest valid prefix T [i . . i + ℓ− 1] of T [i . .] that has
an occurrence T [s . . s + ℓ− 1] with s < i, and (2) the next symbol T [i + ℓ]. In other words,
the algorithm enforces that every symbol in T [s . . s + ℓ− 1] must have a chain length less
than c, the maximum chain length allowed. The phrase T [i . . i + ℓ] is encoded just as in the
standard LZ, as a triple (s, ℓ, T [i + ℓ]).

To efficiently find s and ℓ, our BAT-LZ parsing algorithm stores the following structures:
1. The suffix array SA[1 . . n] of T , represented as a wavelet matrix [13].
2. The inverse suffix array ISA[1 . . n] of T , represented in plain form.
3. An array C[1 . . n], where C[i] is the chain length of i. Note that C[i] is defined only for

the already parsed positions of T .
4. An array D[1 . . n], where D[s] is the minimum d ≥ 0 such that C[s + d] = c. If no such a

d exists (in particular, because C[i] is defined only for the parsed prefix), then D[s] =∞
(which holds initially for all s).

5. For each level of the wavelet matrix of SA, a special dynamic RMQ data structure to
track the text positions that can be used. This structure is related to the values of D

and therefore it changes along the parsing.

Note that the definition of BAT-LZ implies that, if the source of T [i . . i + ℓ − 1] is
T [s . . s + ℓ− 1], then it must be that ℓ ≤ D[s]. This motivates the following observation:

▶ Observation 4. Let T [1 . . i− 1] be already processed. A prefix T [i . . i + ℓ− 1] of T [i . .] is
valid if and only if there exists a source T [s . . s + ℓ− 1] such that

(i) its lexicographic position satisfies ISA[s] ∈ [sp . . ep], where [sp . . ep] is the suffix array
range of T [i . . i + ℓ− 1] (i.e., T [s . . s + ℓ− 1] = T [i . . i + ℓ− 1]);

(ii) its starting position in T is s < i; and
(iii) it does not use forbidden text positions, that is, ℓ ≤ D[s].

The parsing then must find the longest valid prefix T [i . . i + ℓ− 1] of T [i . .]. We do so
by testing the consecutive values ℓ = 1, 2, . . .. Note that, once we have determined the next
phrase T [i . . i + ℓ], we must update C and D as follows: (1) C[i + l]← C[s + l] + 1 for all
0 ≤ l < ℓ, and C[i + ℓ]← 0.2, and (2) Every time we obtain C[t] = c in the previous point,
we set D[k] ← t − k for all k′ < k ≤ t, where k′ is the last position where D[k′] < ∞ (so
k′ = 0 in the beginning and we reset k′ ← t after this process).

Note that points (i) and (ii) above correspond to the classic LZ parsing problem. In
particular, they correspond to determining whether there are points in the range [sp, ep]×
[1, i− 1] of the grid represented by our wavelet matrix, which represents the points (j, SA[j]).
As the wavelet matrix answers this query in time O(log n), this yields an O(n log n) LZ parsing
algorithm. Point (iii), however, is exclusive to BAT-LZ. It can be handled by converting
the grid into a three-dimensional mesh, where we store the values (j, SA[j], D[SA[j]]) and
look for the existence of points in the range [sp, ep]× [1, i− 1]× [ℓ, n]. Note that we need to
determine whether the range is empty and, if it is not, retrieve a point from it (whose second
coordinate is the desired s). In addition, as the array D is modified along the parsing, we
need a dynamic 3-dimensional data structure: every time we modify D in point 2 above, our
data structure changes (this occurs up to n times). See Fig. 1.

2 Recall that a special case occurs if T [i . . i + ℓ − 1] overlaps T [s . . s + ℓ − 1]: we start copying from k = s
and increasing k and, whenever k = s + l = i, we restart copying from k = s.
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Figure 1 General scheme of our translation of queries onto a 3-dimensional data structure.

Our 3-dimensional problem, then, (a) is essentially a range emptiness query (where we
must return one point if there are any), (b) the search is 4-sided (though our solution handles
5-sided queries), and (c) the updates in D occur only to convert some D[k] = ∞ into a
smaller value, so each value D[k] changes at most once along the parsing process (yet, our
solution handles arbitrary updates along the coordinate where the query is one-sided). We
have found no linear-space solutions to this problem in the literature; only solutions to less
general ones or using super-linear space (indeed, more than O(n log n)): (1) linear space for
two dimensions, with O(log n) query time and O(log3+ϵ n) update time [44]; (2) linear space
for three dimensions with no updates, with O(log n/ log log n) query time [6]; (3) super-linear
space (at least O(n log1.33 n) for three dimensions), with O((log n/ log log n)2) query time
and O(log1.33+ϵ n) update time [7]. In the next section we describe our data structures for
this problem: one uses linear space and O(log3 n) query and update time; the other uses
O(n log n) space and O(log2 n) query time. This yields our first main result.

▶ Theorem 5. A Greedy BAT-LZ parse of a text T [1 . . n] can be computed using O(n) space
and O(n log3 n) time, or O(n log n) space and O(n log2 n) time.

5 A Geometric Data Structure

To solve the 3-dimensional search problem we associate, with each level of the wavelet matrix,
a data structure that represents the sequence of values D[k] in the order the text positions k

are listed in that level. Because in linear space we cannot store the actual values in every
wavelet matrix level, we store only a dynamic RMQ data structure on the internal levels,
and store the explicit values only in (the order corresponding to) the last level (in a wavelet
matrix, that final level is not the text order, thus we need another array to map it to D).

Let Dl be the array D permuted in the way it corresponds to level l of the wavelet
matrix. The dynamic RMQ structure for level l is then a heap-shaped perfectly balanced
tree Hl[1 . . n] whose leaves (implicitly) point to the entries of Dl. The nodes Hl[p] store
only one bit, 0 indicating that the maximum in the subtree is to the left and 1 indicating
that it is to the right. By navigating Hl from the root p of any subtree, moving to Hl[2p]
if Hl[p] = 0 and Hl[2p + 1] if Hl[p] = 1, we arrive in O(log n) time at the position p where
Dl[p] is maximum below that subtree. The actual value Dl[p] is obtained in other O(log n)
time by tracking position p downwards in the wavelet matrix, from level l until the last level,
where the values of D are explicitly stored. See Fig. 2 (right); ignore the query for now.
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sp1 ep1

RMQ on D1

RMQ on D2

RMQ on D3

sp2 ep2

sp3 ep3

candidate pos

candidate value

track posi-
tion along
wavelet
matrix

D

max

D3

= candidates to max

H3

= roots of subtrees covering the query interval

Figure 2 On the left, we reach a candidate area [sp3, ep3] of the wavelet matrix and must obtain
its maximum D value using the (dynamic) RMQ data structure for D3. The tree H3 for this RMQ
structure is shown on the right. Arrows point to the child holding the maximum value in D3. Blue
diamonds are the roots v1

3 , . . . , v4
3 of the subtrees that cover the query area [sp3, ep3] and red circles

are the candidates in the range. The left plot shows how we find the actual value of one of those
circles by tracking it down in the wavelet matrix.

Updates. When a value D[k] decreases from∞, we obtain its position in the top-level of the
wavelet matrix as p = ISA[k]; thus we must reflect in H1 the decrease in the value of D1[p].
By halving p successively we arrive at its ancestors, H1[ph] for ph = ⌊p/2h⌋, h = 1, 2, . . .

We traverse the path upwards, recomputing the maximum value m below ph and modifying
accordingly the bits of H1[ph]. Initially, this new maximum is m = D1[p] = D[k]. At any
point in the traversal, if the parent H1[ph] of the current node indicates that the maximum
below ph descends from the other child of ph, then we can stop updating of H1, because
decreasing D1[p] does not require further changes. Otherwise, we must obtain the maximum
value m′ below the other child of H1[ph] and compare it with m. The value m′ is obtained
in O(log n) time as explained in the previous paragraph. We set H1[ph] depending on which
is larger between m and m′, update m← max(m, m′), and continue upwards. This process
takes O(log2 n) time as we traverse all the levels of H1. We then track position p downwards
to the second level of the wavelet matrix, update H2 in the same way, and continue updating
Hl on all the wavelet matrix levels l, for a total update time of O(log3 n).

Searches. The search for a range [sp, ep]× [1, i−1]× [ℓ, n] first determines, as in the normal
wavelet matrix search algorithm, the O(log n) maximal ranges that cover [1, i− 1] along the
wavelet matrix levels l (there is at most one range per level because the range [1, i− 1] is
one-sided; otherwise there could be two), and maps [sp, ep] to [spl, epl] on each such range
(see Sec. 2), all in time O(log n). We then need to determine if there is some value Dl[p] ≥ ℓ

below some of the ranges [spl, epl] (see the top-left part of Fig. 2). Each such range is then,
again, decomposed into O(log n) maximal nodes v1

l , v2
l , . . . of Hl (see the right of Fig. 2). We

find, in O(log n) time, the maximum value of Dl below each node vj
l , stopping as soon as we

find some value ≥ ℓ. Note that we use O(log n) time to find the position of the maximum
in Dl using Hl, and then O(log n) time to find the value of that maximum by tracking the
position down in the wavelet matrix (see the bottom left of Fig. 2). Since we have O(log n)
ranges [spl, epl], each yielding O(log n) candidates vi

l , and the maximum of each candidate is
computed in O(log n) time, the whole search process takes time O(log3 n).



Zs. Lipták, F. Masillo, and G. Navarro 21:9

Generalizations. Though not necessary for our problem, we remark that our update process
can be extended to arbitrary updates on the third coordinate, D[k], not only to reductions
in value. Further, our search could support five-sided ranges, not only four-sided, because we
would still have O(log n) ranges [spl, epl] if the range of the second coordinate was two-sided.
Only the range of the third coordinate (the one supporting the updates) must be one-sided.

Faster and larger. By storing the values of Dl in each node of Hl for each wavelet matrix
level l, the space increases to O(n log n) but the time of updates and searches decreases to
O(log2 n), as we have now the maximum below any Hl[ph] readily available in O(1) time.

6 The Minmax Parsing Algorithm

We note that our Greedy BAT-LZ algorithm does not necessarily produce the smallest greedy
parse, because it may fail in choosing the best source for the longest phrase. Consider, say,
the text T = alabaralalabarda$ and c = 2. Our implementation parses it into 8 phrases as

a l a b a r a l a l a b a r d a $
0 0 1 0 2 0 1 1 2 0 2 1 0 1 0 1 0

because it chooses T [3] as the source for the 4th phrase, ar, and then T [5] has a chain of
length two and cannot be used again. If, instead, we choose T [1] as the source of the 4th
phrase, the chain of T [5] will be of length 1 and we could parse T into 7 phrases, just as the
first parse shown in Sec. 3.

Our second algorithm, the Minmax parser, always chooses a source that minimizes the
maximum chain length in the phrase, among all possible sources. It compromises however
on the length of the phrase, by not always choosing the longest admissible phrase. As we will
see, this is well worth it: Minmax always produces a much better compression than Greedy.

High-level description of the Minmax parser. Let T [1 . . i− 1] be already processed. We
will call a prefix T [i . . i + ℓ− 1] of T [i . .] admissible if it has a source T [s . . s + ℓ− 1] with
max C[s . . s + ℓ− 1] < c. We would ideally like to find the longest admissible prefix of T [i . .],
and then choose its best source if there is more than one. We will use an enhanced suffix
tree of the text; this will allow us to store additional information in the nodes. Navigating in
the suffix tree, we will then be able to choose the longest admissible prefix which ends in
some node (i.e., not necessarily the longest), and then choose the best source of this prefix.
In order to do this, we will match the current suffix T [i . .] in the usual way in the suffix
tree, using the desired information written in the nodes. As this information is dynamic,
however, we will have to update it during the algorithm. The algorithm thus proceeds by (1)
matching the suffix T [i . .] in the suffix tree and returning the next phrase and its source,
and (2) updating the annotation.

Annotation of the suffix tree. On the suffix tree of T , we annotate each node v with
three variables minmax(v), txtpos(v), and a Boolean real(v), initializing minmax(v) to +∞,
txtpos(v) to −1, and real(v) to 0. Recall that L(v) is the label of v and sd(v) its length. The
variables minmax(v) and txtpos(v) will point to the current best candidate of an occurrence
of L(v), with txtpos(v) its starting position and minmax(v) the maximum C-value within this
occurrence. The Boolean real(v) indicates whether this value is realistic (real(v) = 1), i.e., a
full occurrence with this value has already been seen, or only optimistic (real(v) = 0), meaning
that no full occurrence has yet been seen. More formally, let i be the current position, and let
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us first assume that real(v) = 1. Then minmax(v) = x if x = min{max C[s . . s + sd(v)− 1] :
T [s . . s + sd(v)− 1] = L(v) and s + sd(v)− 1 < i}, and txtpos(v) = s0 for one such s0, i.e., (i)
T [s0 . . s0 + sd(v)− 1] = L(v), (ii) s0 + sd(v)− 1 < i, and (iii) max C[s0 . . s0 + sd(v)− 1] = x.

Now let us look at the case real(v) = 0, we have yet to see an occurrence of L(v). Initially,
minmax(v) = +∞; when we encounter a non-empty prefix of L(v), of length 0 < d ≤ sd(v),
starting, say, in position s0, we update minmax(v) to max C[s0 . . s0 + d− 1] and txtpos(v)
to s0. Thus, we have seen an occurrence of a prefix of L(v) but not yet a full occurrence of
L(v), and we are optimistic since we are hoping to find a full occurrence whose max does
not exceed the current one. However, as soon as we find the first full occurrence (and set
real(v) = 1), from that point on we only update minmax(v) and txtpos(v) if we see another
full occurrence. Therefore, real(v) is updated exactly once during the algorithm.

Finding an admissible phrase and choosing its source. Let us now assume that we have
processed T [1 . . i− 1] and want to find the next phrase and source. We match T [i . .] in the
suffix tree, making sure during navigation that we only get admissible prefixes of T [i . .]. In
particular, if we are in node v and should go to child u of v next (because T [i + sd(v)] is the
first character of the edge label (v, u)), then we first check if minmax(u) < c. If so, then we
can descend to u and continue from there, skipping over the next sd(u)− sd(v) positions in
T . Otherwise, minmax(u) ≥ c and we return the new phrase (txtpos(v), sd(v), T [i + sd(v)]).
Moreover, the C-array for j = i, . . . , i + ℓ is set according to Def. 2.

Updating the suffix tree annotation. After the new phrase has been computed, we need
to update the annotations in the suffix tree. For j ≤ i + ℓ, going backward in the string, we
will update the nodes on the leaf-to-root path from leaf j. The idea is the following.

Fix j ≤ i + ℓ. The prefix T [j . . i + ℓ] of T [j . .] now has the C-array filled in, so its
max-value m = max C[j . . i + ℓ] is known. This may or may not necessitate updates in the
nodes on the path from leaf leafj to the root. First, for the leaf j itself, if i ≤ j, then the
minmax is still +∞, so we set minmax(leafj)← m. Otherwise, we are seeing a longer prefix
of T [j . .] than before, so we update minmax(leafj)← max(minmax(leafj), m). Regarding the
nodes v on the path from leafj to the root: their labels are increasingly shorter prefixes of
suffix T [j . .], so they need to be updated only as long as j + sd(v)− 1 ≥ i, since otherwise,
the prefix L(v) does not overlap with the newly assigned subinterval C[i . . i + ℓ].

So let j + sd(v) ≥ i, there are two cases. First, if j + sd(v)−1 ≤ i + ℓ, then m is a realistic
value, since the entire corresponding C-array interval has been filled in. Therefore, we can then
compute m in a more clever way by using an RMQ on C, i.e., m = RMQ(C, j, j + sd(v)− 1).
So if real(v) = 0, then we update minmax(v)← m and real(v)← 1. Otherwise (if real(v) = 1),
an update is needed only if minmax(v) > m, in which case we set minmax(v) ← m and
txtpos(v) ← j; since real(v) = 1, we have seen the label L(v) before and already had a
realistic value for its minmax value. Second, if j + sd(v)− 1 > i + ℓ, then m is an optimistic
value only, and therefore, we update the annotation of v only if real(v) = 0; in that case, we
set minmax(v)← m and txtpos(v)← j.

Finally, we use the following criterion for how far back in the string we need to go with j.
If no node in the path from leafj to the root can be effected by the new phrase, then we do
not need to consider position j at all in the current iteration. This holds if the label of the
parent node does not reach i, i.e., if j + sd(parent(leafj))− 1 < i. We compute an auxiliary
array E[1 . . n] s.t. E[j] = j + sd(parent(leafj))−1. It is easy to see that E[j] ≤ E[j′] if j < j′.
This means that, moving back-to-front, we can stop at the first j for which E[j] < i.
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Figure 3 Example of the Minmax algorithm using the suffix tree of T = alabaralalabarda$.
The vertical bars are for delimiting already parsed phrases. See Example 6 for more details.

A worst-case time complexity for a Minmax parse producing z′ phrases is O(z′n2) ⊆ O(n3),
as in principle one can consider every j ∈ [1 . . i− 1] for every new phrase T [i . . i + ℓ], traverse
the O(n) ancestors of leafj , and run an RMQ operation on each. While the RMQ structure
we use on C is dynamic, it only undergoes appends to the right, in which case it is possible
to support updates in O(1) amortized time and queries in O(1) time [18, p. 5]. We do not
know if this cubic complexity is tight, however. In practice we expect z′ to be much less
than n on highly repetitive texts, and the height of the suffix tree to be logarithmic, yielding
a time complexity of O(z′n log n), which thus becomes practical on repetitive data.

▶ Example 6. In Fig. 3, we can see the suffix tree ST for T = alabaralalabarda$ with
some additional annotations in some nodes. In this example, the first three phrases, i.e.,
a, l, and ab, have been already computed, with the corresponding chain lengths in C and
annotations in ST. The annotations exhibit non-trivial updates using the colour red, namely
updates that are different than changing the starting value for minmax, i.e., changing minmax
from +∞ to a finite value. Nodes whose annotation is not shown have not been updated
yet, therefore, they have minmax = +∞, txtpos = −1, and real = 0. The updates caused
by the new phrase ar are highlighted in blue. First, to find the longest previous factor we
have to descend to the child with label a, then we check whether the child with label ar
has minmax < c. In this case, it was not less than c (minmax = +∞), so we stopped the
search and output the new phrase ar. Then all suffixes j with 1 ≤ j ≤ 6 undergo an update
starting from the corresponding leaf; e.g., leaves 5 and 6 and corresponding ancestors get
updated to some non-initial value, whereas inner nodes with label abar, alabar, bar and
labar change real to 1 because j + sd(v)− 1 ≤ i + ℓ.
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7 The Greedier Parser: Combining Greedy with Minmax

We now combine the ideas of the Greedy and the Minmax parsers, using the enhanced suffix
tree to consider only longest admissible phrases. Consider when the Minmax algorithm stops
in a node v and returns (txtpos(v), sd(v), T [i + sd(v)]). It did not descend to the next child
u because minmax(u) = c, i.e., every occurrence of L(v) seen so far has a value c somewhere
in the C-array. However, it is possible that in one of these occurrences, the position of this c

is after L(v); in other words, that we could have gone down the edge some way towards u.
To check this, we will use the D-array from Sec. 4, in addition to the C-array and

the enhanced suffix tree. Let v and u be as before, i.e., v is parent of u, minmax(v) < c,
minmax(u) ≥ c, L(v) is a prefix of T [j . .] and T [j + sd(v)] is the first character of the label
of (v, u). Let d be the maximum value of D[k] for some occurrence of L(u) that we have
already processed, so d is the largest distance from the start of an occurrence of L(u) to the
next c in the C-array. We return (txtpos(v), sd(v), T [i + sd(v)]), as before, if d ≤ sd(v), and
(k, D[k], T [i+D[k]), where k is a leaf in u’s subtree with D[k] = d, otherwise. As for updating
the annotations, if node v has minmax(v) = c and some txtpos(v) = x, then, when performing
the traversal from leafj up to the root, we want to change txtpos(v)← j if D[j] > D[txtpos(v)].
It is easy to see that the Greedier algorithm now returns the longest admissible phrases;
otherwise, it works similarly to the Minmax algorithm. The time complexity increases to
O(z′n2 log n) ⊆ O(n3 log n), because we need dynamic RMQs on array D as well, which
undergoes updates at arbitrary positions.

8 Experiments

We implemented the BAT-LZ parsing algorithms in C, and ran our experiments on an AMD
EPYC 7343, with 32 cores at 1.5 GHz, with a 32 MB cache and 1 TB of RAM. We used the
repetitive files from Pizza&Chili (http://pizzachili.dcc.uchile.cl) and compared the
number of phrases produced by BAT-LZ using different maximum values c for the chains,
with the number of phrases produced by LZ (i.e., with no limit c). We used a classic LZ
implementation [26] where the source of each phrase is its lexicographically closest suffix.3

As a reference point, we also implemented two simple baselines that obtain a BAT-LZ
parse. The first, called BAT-LZ1, runs the classic LZ parse and then cuts the phrases at
the points where the chain lengths reach c + 1. Since the symbol becomes explicit, its chain
length becomes zero and the chain lengths of the symbols referencing it decrease by c + 1.
We should then find the new positions that reach c + 1, and so on. It is not hard to see that
this laborious postprocessing can be simulated by just adding, to the original z value of LZ,
the number of positions i where C[i] mod (c + 1) = 0.

The second baseline, BAT-LZ2, is slightly stronger: when it detects that it has produced
a text position exceeding the maximum c, it cuts the phrase there (making the symbol
explicit), and restarts the LZ parse from the next position. This gives the chance of choosing
a better phrase starting after the cut, unlike BAT-LZ1, which maintains the original source.

Despite some optimizations, our Greedy BAT-LZ parser consistently reaches the Θ(log3 n)
time complexity per text symbol, making it run at about 3 MB per minute. The Greedier
and the Minmax parsers, despite their cubic worst-case time complexity, run at a similar
pace: 1.9–4.7 MB per minute: our upper bound is utterly pessimistic, and perhaps not tight.

3 It is likely that using the variant called “rightmost LZ parse”, which chooses the rightmost source, gives
better results because it tends to distribute the uses of the sources more uniformly. Such a parse seems
to be nontrivial to compute [4, 15], however, and we are not aware of practical implementations.

http://pizzachili.dcc.uchile.cl
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Table 1 Our repetitive text collections and some statistics: alphabet size σ, length n, number z

of phrases in the LZ parse, average phrase length n/z, maximum chain length in our LZ parse, size
g of a balanced grammar, and height h of that grammar.

File σ n z n/z max c g h

coreutils 236 205,281,779 1,286,070 160 66 2,409,429 28
kernel 160 257,961,616 705,791 365 70 1,374,651 32
einstein 139 467,626,545 75,779 6,171 1,736 212,902 47
leaders 89 46,968,181 155,937 301 60 399,667 27
para 5 429,265,758 1,879,635 228 38 5,344,477 26
influenza 15 154,808,555 557,349 278 63 1,957,370 26

Table 1 shows the main characteristics of the collections chosen. We included two
versioned software repositories (coreutils and kernel, where the versioning has a tree
structure), two versioned documents (einstein and leaders, where the versioning has a
linear structure), and two biological sequence collections (para and influenza, where all
the sequences are pairwise similar). The average phrase length is in the range 160–365 and
the maximum chain length of a symbol is in the range 38–70. The exception is einstein,
which is extremely compressible and also has a very large c value.

As a point of comparison, the table also includes the grammar size and height obtained
with a balanced version of RePair [35].4 We modified the RePair grammar so as to remove
the nonterminals that are referenced only once, inserting their right-hand side in that unique
referencing place. The maximum grammar height is comparable with c as a measure of access
cost in the grammar-compressed text. We can see that the height is considerably smaller
than c, for the price of a weaker compression method.

Fig. 4 shows how the quotient between the number of phrases generated by the BAT-LZ
parsers and by the optimal number of LZ phrases evolves as we allow longer chains. It
can be seen that our Greedy BAT-LZ parser sharply outperforms the baselines in terms of
compression performance. Our Greedy parser is, in turn, outperformed by Minmax, and
Minmax is outperformed by our Greedier parser. The last one reaches a number of phrases
that is only 1% over the optimal for c as low as 20–30, which is 0.7–1.1 times log2 n.

We also show in the figures the balanced grammar method, using the values of Table 1.5
We can see that grammars are competitive, in some cases, with the simple baselines, but
not with our new algorithms, which yield much better tradeoffs. The only exception to this
analysis is einstein, which features a huge maximum c value of 1,736 and whose (extremely
low) z value is approached only with c values near 700 using our BAT-LZ parsers. On this
text, the balanced grammar offers an access time that is not achievable with our techniques.

Fig. 5 (left) zooms in the area where Greedier BAT-LZ reaches less than 10% extra space
on top of standard LZ (excluding einstein).

4 From www.dcc.uchile.cl/gnavarro/software/repair.tgz, directory bal/.
5 For a fair comparison of space, we consider a tight space needed to support fast extraction: For each of

the z phrases we count log2 n bits to point to the source, log2(n/z) bits for the length (as there are z
lengths adding up to n; the cumulative sequence of lengths also allow finding the desired phrase using
Elias-Fano codes [14, 16]), and 8 bits for the final symbol. For a grammar of size g and r symbols, we
count g log2 r bits for the right-hand sides, g log2 n bits for the expansion lengths (cumulative on the
right-hand sides to binary search them), and r log(g/r) bits to encode the rule lengths with Elias-Fano.
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Figure 4 Overhead factor of number of BAT-LZ versus LZ phrases as a function of the maximum
length c of a chain, for our different BAT-LZ parsers and a balanced grammar.

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 15  20  25  30  35  40  45  50

coreutils
kernel
leaders

para
influenza

fa
c
to
r 
o
v
e
r 
o
p
tim

a
l

maximum reference chain length

Greedier BAT-LZ

Value
0
1
2
3
4
5
6

Fr
eq

ue
nc

y

1e6 Histogram of chain length on leaders - LZ (max = 60)

0 10 20 30 40 50 60 70
Value

0
1
2
3
4
5
6

Fr
eq

ue
nc

y

1e6
Histogram of chain length on leaders - Greedier BAT-LZ (max = 20)

Figure 5 Left: detail of Fig. 4, for the Greedier BAT-LZ parser, focusing on the overheads below
10% over the LZ parse. Right: a comparison of histograms with shared x and y axis representing
the chain length values on leaders; LZ on top and Greedier BAT-LZ with c = 20 on the bottom.
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9 Discussion and Future Work

A first question is whether a Greedy BAT-LZ parsing can be produced in o(n log3 n) time
within linear space, either by solving our geometric problem faster or without recasting
the parse into a geometric problem. This question seems to be answered in a very recent
work, simultaneous with ours, that gives an O(n log σ)-time greedy algorithm [2] based
on simulating a suffix tree construction.6 This algorithm is likely to be faster than ours
in practice, but also to use much more space, which is relevant when compressing large
repetitive texts. They also propose a parse similar to our BAT-LZ2, along with others that
are incomparable to ours (in particular to Greedier, our best performing BAT-LZ parse).

Besides our reduction to a geometric problem being of independent interest, we believe
that its flexibility can be exploited to compute more sophisticated parses in O(n log3 n) time.
For example, it might compute the Greedier parse if we extend the RMQ data structure to
incorporate the additional optimization criterion (minmax of sources).

Other heuristics may also be of interest: there may be better ways to rank sources, other
than their maximum chain length. Further, we have so far focused on reducing the worst
case access time, but we might prefer to reduce the average access time. Our parsings do
reduce it (Fig. 5 right), but this is just a side effect and has not been our main aim. So we
pose as an open problem to efficiently build a leftward parse with bounded average reference
chain length whose number of phrases is minimal, or in practice close to that of classical LZ.

Another intriguing line of work is to study the compression performance of BAT-LZ.
An important result by Bannai et al. [2] shows that, letting grl be the size of the smallest
run-length context-free grammar that generates a text T , there exists a BAT-LZ parse for T

of size O(grl) if we let c = Θ(log n) with some convenient multiplying constant. This bound
is nearly optimal, because existing bounds [51] forbid the existence of BAT-LZ parses of size
O(g) – where g ≥ grl is the size of the smallest context-free grammar – with access time
c = O(log1−ϵ n) for a constant ϵ > 0. A relevant question is whether there is a BAT-LZ parse
of size O(z) – where z ≤ grl is the size of the Lempel-Ziv parse of T – with c = Θ(log n).

Finally, from an application viewpoint, it would be interesting to incorporate BAT-LZ in
the construction of the LZ-index [34] and measure how much its time performance improves
at the price of an insignificant increase in space. Obtaining an efficient bounded version of
the LZ-End parsing described in the same article [34] is also an interesting problem since
efficient parsings for unrestricted LZ-End have appeared only recently [29, 28].
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Abstract
For two strings u, v over some alphabet A, we investigate the problem of embedding u into w as a
subsequence under the presence of generalised gap constraints. A generalised gap constraint is a
triple (i, j, Ci,j), where 1 ≤ i < j ≤ |u| and Ci,j ⊆ A∗. Embedding u as a subsequence into v such
that (i, j, Ci,j) is satisfied means that if u[i] and u[j] are mapped to v[k] and v[ℓ], respectively, then
the induced gap v[k + 1..ℓ − 1] must be a string from Ci,j . This generalises the setting recently
investigated in [Day et al., ISAAC 2022], where only gap constraints of the form Ci,i+1 are considered,
as well as the setting from [Kosche et al., RP 2022], where only gap constraints of the form C1,|u|

are considered.
We show that subsequence matching under generalised gap constraints is NP-hard, and we

complement this general lower bound with a thorough (parameterised) complexity analysis. Moreover,
we identify several efficiently solvable subclasses that result from restricting the interval structure
induced by the generalised gap constraints.
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1 Introduction

For a string v = v1v2 . . . vn, where each vi is a single symbol from some alphabet Σ,
any string u = vi1vi2 . . . vik

with k ≤ n and 1 ≤ i1 < i2 < . . . < ik ≤ n is called a
subsequence (or scattered factor or subword) of v (denoted by u ⪯ v). This is formalised by
the embedding from the positions of u to the positions of v, i. e., the increasing mapping
e : {1, 2, . . . , k} → {1, 2, . . . , n} with j 7→ ij (we use the notation u ⪯e v to denote that u

is a subsequence of v via embedding e). For example, the string a b a c b b a has among its
subsequences a a a, a b c a, c b a, and a b a b b a. With respect to a a a, there exists just one
embedding, namely 1 7→ 1, 2 7→ 3, and 3 7→ 7, but there are two embeddings for c b a.

This classical concept of subsequences is employed in many different areas of computer
science: in formal languages and logics (e. g., piecewise testable languages [54, 55, 29, 30,
31, 47], or subword order and downward closures [26, 38, 37, 59]), in combinatorics on
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words [49, 23, 40, 39, 52, 44, 50, 51], for modelling concurrency [48, 53, 12], in database
theory (especially event stream processing [4, 25, 60, 33, 34, 24]). Moreover, many classical
algorithmic problems are based on subsequences, e. g., longest common subsequence [6] or
shortest common supersequence [43] (see [3, 22] and the survey [36], for recent results on
string problems concerned with subsequences). Note that the longest common subsequence
problem, in particular, has recently regained substantial interest in the context of fine-grained
complexity (see [10, 11, 1, 2]).

In this paper, we are concerned with the following special setting of subsequences recently
introduced in [17]. If a string u is a subsequence of a string v via an embedding e, then
this embedding e also induces |u| − 1 so-called gaps, i. e., the (possibly empty) factors
ve(i)+1ve(i)+2 . . . ve(i+1)−1 of v that lie strictly between the symbols where u is mapped to.
For example, a c b ⪯e a b a c b b a with e being defined by 1 7→ 1, 2 7→ 4, and 3 7→ 6 induces
the gaps b a and b. We can now restrict the subsequence relation by adding gap constraints
as follows. A string u is accompanied by |u| − 1 gap constraints C1, C2, . . . , C|u|−1 ⊆ Σ∗, and
u is a valid subsequence of a string v under these gap constraints, if u ⪯e v for an embedding
e that induces gaps from the gap constraints, i. e., the ith gap is in Ci.

Such gap-constrained subsequences allow to model situations for which classical sub-
sequences are not expressive enough. For example, if we model concurrency by shuffling
together strings that represent threads on a single processor, then fairness properties of a
scheduler usually imply that the gaps of these subsequences are not huge. Or assume that
we compute an alignment between two strings by computing a long common subsequence.
Then it is not desirable if roughly half of the positions of the common subsequence are
mapped to the beginning of the strings, while the other half is mapped to the end of the
strings, with a huge gap (say thousands of symbols) in between. In fact, an overall shorter
common subsequence that does not contain such huge gaps seems to induce a more reasonable
alignment (this setting is investigated in [3]). Another example is complex event processing:
Assume that a log-file contains a sequence of events of the run of a large system. Then we
might query this string for the situation that between some events of a job A only events
associated to a job B appear (e. g., due to unknown side-effects this leads to a failure of job
A). This can be modeled by embedding a string as a subsequence such that the gaps only
contain symbols from a certain subset of the alphabet, i. e., the events associated to job B

(such subsequence queries are investigated in [33, 34, 24]).
In [17], two types of gap constraints are considered: Length constraints C = {w ∈

Σ∗ | ℓ ≤ |w| ≤ k}, and regular constraints where C is just a regular language over Σ∗,
as well as combinations of both. In a related paper, [35], the authors went in a slightly
different direction, and were interested in subsequences appearing in bounded ranges, which
is equivalent to constraining the length of the string occurring between the first and last
symbol of the embedding, namely ve(1)+1ve(i)+2 . . . ve(m)−1. In this paper, we follow up on
the work of [17, 35], but significantly generalise the concept of gap constraints. Assume that
u ⪯e v. Instead of only considering the gaps given by the images of two consecutive positions
of u, we consider each string ve(i)+1ve(i)+2 . . . ve(j)−1 of v as a gap, where i, j ∈ {1, 2, . . . , |u|}
with i < j (note that these general gaps also might contain symbols from v that correspond to
images of e, namely e(i + 1), e(i + 2), . . . , e(j − 1)). For example, a b a c ⪯e b a a b b c a c c a b
with e defined by 1 7→ 2, 2 7→ 5, 3 7→ 7 and 4 7→ 9 induces the following gaps: The (1, 2)-gap
a b, the (2, 3)-gap c, the (3, 4)-gap c, the (1, 3)-gap a b b c, the (2, 4)-gap c a c, and the
(1, 4)-gap a b b c a c. In this more general setting, we can now add gap-constraints in an
analogous way as before. For example, the gap constraint C2,4 = {a, c}∗ for the (2, 4)-gap,
the gap constraint C1,4 = {w ∈ Σ∗ | 3 ≤ |w| ≤ 5} for the (1, 4)-gap and the gap constraint
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C2,3 = {cn | n ≥ 1} for the (2, 3)-gap. Under these gap-constraints, the embedding e

defined above is not valid: The gap constraints C2,4 and C2,3 are satisfied, but the (1, 4)-gap
a b b c a c is too long for gap constraint C1,4. However, changing 4 7→ 9 into 4 7→ 8 yields an
embedding that satisfies all gap constraints.

Our Contribution. We provide an in-depth analysis of the complexity of the matching
problem associated with the setting explained above, i. e., for given strings u, v and a set
C of generalised gap-constraints for u, decide whether or not u ⪯e v for an embedding e

that satisfies all constraints in C. We concentrate on two different kinds of constraints:
semilinear constraints of the form {w ∈ Σ∗ | |w| ∈ S}, where S is a semilinear set, and
regular constraints.

In general, this matching problem is NP-complete for both types of constraints (demon-
strating a stark contrast to the simpler setting of gap constraints investigated in [17, 35]),
and this even holds for binary alphabets and if each semilinear constraint has constant
size, and also if every regular constraint is represented by an automaton with a constant
number of states. On the other hand, if the number of constraints is bounded by a constant,
then the matching problem is solvable in polynomial-time, but, unfortunately, we obtain
W[1]-hardness even if the complete size |u| is a parameter (also for both types of constraints).
An interesting difference in complexity between the two types of constraints is pointed out
by the fact that for regular constraints the matching problem is fixed-parameter tractable if
parameterised by |u| and the maximum size of the regular constraints (measured in the size
of a DFA), while for semilinear constraints this variant stays W[1]-hard.

We then show that structurally restricting the interval structure induced by the given
constraints yields polynomial-time solvable subclasses. Moreover, if the interval structure is
completely non-intersecting, then we obtain an interesting subcase for which the matching
problem can be solved in time O(nω|C|), where O(nω) is the time needed to multiply two
n × n Boolean matrices. We complement this result by showing that an algorithm with
running time O(|w|g|C|h) with g + h < 3 would refute the strong exponential time hypothesis.
While this is not a tight lower bound, we wish to point out that, due to the form of our
algorithm, which boils down to performing O(|C|) matrix multiplications, a polynomially
stronger lower bound would have proven that matrix multiplication in quadratic time is not
possible.

Related Work. Our work extends [17, 35]. However, subsequences with various types of
gap constraints have been considered before, mainly in the field of combinatorial pattern
matching with biological motivations (see [7, 41, 42, 27] and [5, 13] for more practical papers).

2 Preliminaries

Let N = {1, 2, . . . }, N0 = N ∪ {0}. For m, n ∈ N0 let [m, n] = {k ∈ N0 | m ≤ k ≤ n} =
{m, . . . , n} and [n] = [1, n]. For some alphabet Σ and some length n ∈ N0 we define Σn as the
set of all words of length n over Σ (with Σ0 only containing the empty word ε). Furthermore
Σ∗ :=

⋃
n∈N0

Σn is the set of all words over Σ. For some w ∈ Σ∗, |w| is the length of w, w[i]
denotes the i-th character of w and w[i..j] := w[i] . . . w[j] is the substring of w from the i-th
to the j-th character (where i, j ∈ [|w|], i ≤ j).

We use deterministic and nondeterministic finite automata (DFA and NFA) as commonly
defined in the literature; as a particularity, for the sake of having succinct representations of
automata, we allow DFAs to be incomplete: given a state q of a DFA and a letter a, the

CPM 2024



22:4 Matching Subsequences with Generalised Gap Constraints

transition from q with a may be left undefined, which means that the computations of the
DFA on the inputs which lead to the respective transition are not-accepting. For a DFA or
NFA A, we denote by size(A) its total size, and by states(A) its number of states. Note that
if A is a DFA over alphabet Σ, then we have that size(A) = O(states(A)|Σ|).

A subset L ⊆ N is called linear, if there are m ∈ N0 and x0 ∈ N0, x1, . . . , xm ∈ N, such
that L = L(x0; x1, . . . , xm) := {x0 +

∑m
i=1 kixi | k1, . . . , km ∈ N0} . For m = 0, we write

L(x0) = {x0}. We can assume without loss of generality that xi ̸= xj for i ̸= j, i, j ∈ [m]. A
set S is semilinear, if it is a finite union of linear sets (see also [46]).

We assume that each integer involved in the representation of a linear set fits into constant
memory (see our discussion about the computational model at the end of this section).
Consequently, we measure the size of a linear set L = L(x0; x1, . . . , xm) as size(L) = m + 1,
and the size of a semilinear set S = L1 ∪ L2 ∪ . . . ∪ Lk is measured as size(S) =

∑k
i=1 size(Li).

In other words, size(S) is the number of integers used for defining S.

Computational Model. For the complexity analysis of the algorithmic problems described
in this paper we assume the unit-cost RAM model with logarithmic word size (see [15]). This
means that for input size N , the memory words of the model can store log N bits. Thus,
if we have input words of length N , they are over an alphabet which has at most σ ≤ N

different characters, which we can represent using the integer alphabet Σ = [σ]. As such, we
can store each character within one word of the model. Then, it is possible to read, write
and compare single characters in one unit time.

Complexity Hypotheses. Let us consider the Satisfiability problem for formulas in conjunct-
ive normal form, or CNF-Sat for short. Here, given a boolean formula F in conjunctive nor-
mal form, i.e., F = {c1, . . . , cm} and ci ⊆ {v1, . . . , vn, ¬v1, . . . , ¬vn} for variables v1, . . . , vn,
it is to be determined whether F is satisfiable. This problem was shown to be NP-hard [14].
By restricting |ci| ≤ k for all i ∈ [m] we obtain the problem of k-CNF-Sat. We will base
our lower bound on the following algorithmic hypothesis:

▶ Hypothesis 1 (Strong Exponential Time Hypothesis (SETH) [28]). For any ε > 0, there
exists a k ∈ N, such that k-CNF-Sat cannot be solved in O(2n(1−ε) poly(m)) time, where
poly(n) is an arbitrary (but fixed) polynomial function.

The Clique problem, Clique, asks, given a graph G and a number k ∈ N, whether G has
a k-clique. Hereby, a k-clique is a subset of k pairwise adjacent vertices, i.e., there is an edge
between any pair of vertices in the subset. Since CNF-Sat can be reduced to Clique [32],
the latter is also NP-hard.

The k-Orthogonal Vectors problem, k-OV, receives as inputs k sets V1, . . . , Vk each con-
taining n elements from {0, 1}d for some d ∈ ω(log n), i.e., d-dimensional boolean vectors.
The question is, whether one can select vectors v⃗i ∈ Vi for i ∈ [k] such that the vectors are
orthogonal:

∑n
j=1

∏k
i=1 v⃗i[j] = 0. It is possible to show the following lemma ([58, 57]):

▶ Lemma 2. k-OV cannot be solved in nk−ε poly(d) time for any ε > 0, unless SETH fails.

This lemma will later form the basis for the conditional lower bound in the case of
non-intersecting constraints.

3 Subsequences with Gap Constraints

An embedding is any function e : [k] → [ℓ] for some k, ℓ ∈ N with k ≤ ℓ, such that
e(1) < e(2) < . . . < e(k) (note that this also implies that 1 ≤ e(1) and e(k) ≤ ℓ). Let
Σ be some alphabet. For a string v = v1v2 . . . vn, where vi ∈ Σ for every i ∈ [n], any
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string u = vi1vi2 . . . vik
with k ≤ n and 1 ≤ i1 < i2 < . . . < ik ≤ n is called a subsequence

(or, altternatively, scattered factor or subword) of v (denoted by u ⪯ v). Every embedding
e : [k] → [|v|] with k ≤ |v| induces the subsequence ue = ve(1)ve(2) . . . ve(k) of v. If u is a
subsequence of v induced by an embedding e, then we denote this by u ⪯e v; we also say
that an embedding e witnesses u ⪯ v if u ⪯e v. When embedding a substring u[s..t] for some
s, t ∈ [|u|], s ≤ t, we use a partial embedding e : [s, t] → [n] and write u[s..t] ⪯e w.

For example, the string a b a c b b a has among its subsequences a a a, a b c a, c b a, and
a b a b b a. With respect to a a a, there exists just one embedding, namely 1 7→ 1, 2 7→ 3, and
3 7→ 7, but there are two different embeddings for c b a.

Let v ∈ Σ∗ and let e : [k] → [|v|] be an embedding. For every i, j ∈ [k] with i < j, the
string v and the embedding e induces the (i, j)-gap, which is the factor of v that occurs
strictly between the positions corresponding to the images of i and j under the embedding e,
i. e., gapv,e[i, j] = v[e(i) + 1..e(j) − 1]. If v and e are clear from the context, we also drop
this dependency in our notation, i. e., we also write gap[i, j].

As an example, consider v = a b c b c a b c a b a c and u = a c a b a. There are several
embeddings e : [|u|] → [|v|] that witness u ⪯ v. Each such embedding also induces an (i, j)-gap
for every i, j ∈ [5] with i < j. For the embedding e with e(1) = 1, e(2) = 3, e(3) = 6,
e(4) = 7, e(5) = 11 (that satisfies u ⪯e v), some of these gaps are illustrated below (note that
e is also indicated by the boxed symbols of v):

v = a

gap[1,4]︷ ︸︸ ︷
b c

gap[2,3]︷︸︸︷
b c a b

gap[4,5]︷ ︸︸ ︷
c a b︸ ︷︷ ︸

gap[1,5]

a c

A gap-constraint for a string u ∈ Σ∗ is a triple C = (i, j, L) with 1 ≤ i < j ≤ |u| and
L ⊆ Σ∗. A gap-constraint C = (i, j, L) is also called an (i, j)-gap-constraint. The component
L is also called the gap-constraint language of the gap-constraint (i, j, L). We say that a
string v and some embedding e : [|u|] → [|v|] satisfies the gap-constraint C if and only if
gapv,e[i, j] ∈ L.

As an example, let us define some gap-constraints for the string u = a c a b a: (1, 4, Σ∗),
(1, 5, {w1 c w2 c w3 | w1, w2, w3 ∈ Σ∗}), (2, 3, {w ∈ Σ∗ | |w| ≥ 5}) and (4, 5, {w ∈ Σ∗ | |w| ≤
4}). It can be easily verified that the gaps induced by the string v and the embedding
e defined above (and illustrated by the figure) satisfy all of these gap constraints, except
(2, 3, {w ∈ Σ∗ | |w| ≥ 5}) since |gapv,e[2, 3]| = 2 < 5. However, the embedding e′ defined
by e′(1) = 1, e′(2) = 3, e′(3) = 9, e′(4) = 10 and e′(5) = 11 is such that v and e′ satisfy
all of the mentioned gap-constraints (in particular, note that |gapv,e′ [2, 3]| = 5 and that
gapv,e′ [4, 5] = ε).

A set of gap-constraints for u is a set C that, for every i, j ∈ N with i < j, may contain at
most one (i, j)-gap-constraint for u. A string v and some embedding e : [|u|] → [|v|] satisfy C
if v and e satisfy every gap-constraint of C.

For strings u, v ∈ Σ∗ with |u| ≤ |v|, and a set C of gap-constraints for u, we say that u is
a C-subsequence of v, if u ⪯e v for some embedding e such that v and e satisfy C. We shall
also write u ⪯C v to denote that u is a C-subsequence of v.

The Matching Problem. The central decision problem that we investigate in this work is
the following matching problem, Match, for subsequences with gap-constraints:

Input: Two strings w ∈ Σ∗ (also called text), with |w| = n, and p ∈ Σ∗ (also called
pattern), with |p| = m ≤ n, and a non-empty set C of gap-constraints.
Question: Is p a C-subsequence of w?
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Obviously, for this matching problem it is vital how we represent gap-constraints (i, j, L),
especially the gap-constraint language L. Moreover, since every possible language membership
problem “v ∈ L?” can be expressed as the matching problem instance w = #v#, p = ##
and C = (1, 2, L), where # /∈ Σ, we clearly should restrict our setting to constraints (i, j, L)
with sufficiently simple languages L. These issues are discussed next.

Types of Gap-Constraints. A gap-constraint C = (i, j, L) (for some string) is a
regular constraint if L ∈ REG. We represent the gap-constraint language of a regular
constraint by a deterministic finite automaton (for short, DFA). In particular, size(C) =
size(L) = size(A) and states(C) = states(L) = states(A).
semilinear length constraint if there is a semi-linear set S, such that L = {w ∈ Σ∗ |
|w| ∈ S}. We represent the gap-constraint language of a semi-linear length constraint
succinctly by representing the semilinear set S in a concise way (i. e., as numbers in
binary encoding). In particular, size(C) = size(L) = size(S).

For a set C of gap constraints, let size(C) =
∑

C∈C size(C) and gapsize(C) = max{size(C) |
C ∈ C}. We have size(C) ≤ |C|gapsize(C).

Obviously, {v ∈ Σ∗ | |v| ∈ S} is regular for any semilinear set S. However, due to our
concise representation, transforming a simple length constraint into a semilinear length
constraints, or transforming a semilinear length constraint into a DFA representation may
cause an exponential size increase.

By MatchREG and MatchSLS we denote the problem Match, where all gap constraints
are regular constraints or semilinear length constraints, respectively.

For semilinear length constraints, we state the following helpful algorithmic observation.

▶ Lemma 3. For a semilinear set S and an n ∈ N, we can compute in time O(n size(S)) a
data structure that, for every x ∈ [n], allows us to answer whether x ∈ S in constant time.

A similar result can be stated for regular constraints.

▶ Lemma 4. For a regular language L ⊆ Σ∗, given by a DFA A, accepting L, and a word
w ∈ Σ∗, of length n, we can compute in time O(n2 log log n + size(A)) a data structure that,
for every i, j ∈ [n], allows us to answer whether w[i..j] ∈ L in constant time.

▶ Remark 5. For every instance (p, w, C) of MatchSLS, we assume that size(C) ≤ |w| for
every C ∈ C. This is justified, since without changing the solvability of the MatchSLS
instance, any semilinear constraint defined by some semilinear set S can be replaced by a
semilinear constraint defined by the semilinear set S ∩ {0, 1, 2, . . . , |w|}, which is represented
by at most |w| integers.

Moreover, we assume size(C) ≤ |w|2 for every regular constraint C for similar reasons.
More precisely, a regular constraint defined by a DFA M can be replaced by a constraint
defined by a DFA M ′ that accepts {w′ ∈ L(M) | w′ is a factor of w}. The number of states
and, in fact, the size of such a DFA M ′ can be upper bounded by |w|2. For instance, the
DFA M ′ can be the trie of all suffixes of w (constructed as in [19]), with the final states used
to indicate which factors of w are valid w.r.t. C.

We emphasise that working under these assumptions allows us to focus on the actual
computation done to match constrained subsequences rather than on how to deal with
over-sized constraints.
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4 Complexity of the Matching Problem: Initial Results

As parameters of the problem Match, we consider the length |p| of the pattern p to be
embedded as a subsequence, the number |C| of gap constraints, the gap description size
gapsize(C) = max{size(C) | C ∈ C}, and the alphabet size |Σ|. Recall that, by assumption, C
is always non-empty, which means that neither |C| nor gapsize(C) can be zero.

For any Match-instance, we have that |C| ≤ |p|2. Consequently, if |p| is constant or
considered a parameter, so is |C|. This means that an upper bound with respect to parameter
|C| also covers the upper bound with respect to parameter |p|, and a lower bound with respect
to parameter |p| also covers the lower bound with respect to parameter |C|. Consequently, it
is always enough to just consider at most one of these parameters.

For all possible parameter combinations, we can answer the respective complexity for
MatchREG and MatchSLS (both when the considered parameters are bounded by a constant,
or treated as parameters in terms of parameterised complexity).

From straightforward brute-force algorithms, we can conclude the following upper bounds.

▶ Theorem 6. MatchREG and MatchSLS can be solved in polynomial time for con-
stant |C|. Moreover, MatchREG is fixed parameter tractable for the combined parameter
(|p|, gapsize(C)).

These upper bounds raise the question whether MatchREG and MatchSLS are fixed
parameter tractable for the single parameter |p|, or whether MatchSLS is at least also
fixed parameter tractable for the combined parameter (|p|, gapsize(C)), as in the case of
MatchREG. Both these questions can be answered in the negative by a reduction from the
Clique problem.

For the k-Clique problem, we get an undirected graph G = (V, E) and a number
k ∈ [|V |], and we want to decide whether there is a clique of size at least k, i. e., a set
K ⊆ V with |K| ≥ k and, for every u, v ∈ K with u ̸= v, we have that {u, v} ∈ E. It is a
well-known fact that k-Clique is W[1]-hard. We will now sketch a parameterised reduction
from k-Clique to |p|-MatchSLS and to |p|-MatchREG.

Let G = (V, E) with |V | = n be a graph represented by its adjacency matrix A =
(ai,j)1≤i,j≤n (we assume that ai,i = 1 for every i ∈ [n]), and let k ∈ [|V |]. It can be
easily seen that G has a k-clique, if the k × k matrix containing only 1’s is a principal
submatrix of A, i.e., a submatrix where the set of remaining rows is the same as the set of
remaining columns. This can be described as embedding p = 01k20 as a subsequence into
w = 0a1,1a1,2 · · · a1,na2,1 · · · a2,n · · · an,1 · · · an,n0. However, the corresponding embedding e

must be such that the complete ith (1k)-block of p is embedded in the same asi,1asi,2 · · · asi,n

block of w, for some si. Furthermore, for every i ∈ [k], the first 1 of the ith (1k)-block must be
mapped to the (s1)th 1 of asi,1asi,2 · · · asi,n, the second 1 of the ith (1k)-block must be mapped
on the (s2)th 1 of asi,1asi,2 · · · asi,n, and so on. In other words, 1 ≤ s1 < s2 < . . . < sk ≤ n

are the rows and columns where we map the “all-1”-submatrix; thus, {vs1 , vs2 , . . . , vsk
}

is the clique. Obviously, we have to use the semilinear length constraints to achieve this
synchronicity.

We first force e(1) = 1 and e(k2 + 2) = n2 + 2 by constraint (1, k2 + 2, L(n2)). In the
following, we use (i, j)k and (i, j)n to refer to the position of the entries in the i-th row and
j-th column of the flattened matrices in p or w respectively (e. g. w[(i, j)n] = aij). In order
to force that e((i, i)k) = (si, si)n for every i ∈ [k] and some si ∈ [n], we use constraints
(1, (i, i)k, L(0; n + 1)), i ∈ [k] (i. e., the first 0 of p is mapped to the first 0 of w, and then
we allow only multiples of n + 1 between the images of (i, i)k and (i + 1, i + 1)k). Next, we
establish the synchronicity between the columns by requiring that the gap between e((i, j)k)
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and e((i + 1, j)k) has a size that is one smaller than a multiple of n, which is done by
constraints ((i, j)k, (i + 1, j)k, L(n − 1; n)), i ∈ [k − 1], j ∈ [k]. Finally, the constraints
((i, 1)k, (i, k)k, {0} ∪ [n − 1]), i ∈ [k], force all e((i, 1)k), e((i, 2)k), . . . , e((i, k)k) into the same
block asi,1asi,2 · · · asi,n. Note that in order to show the last step, we also have to argue with
the previously defined constraints for synchronising the columns (more precisely, we have to
show that the e((i, 1)k), . . . , e((i, k)k) cannot overlap from one row in the next one).

This is a valid reduction from k-Clique to |p|-MatchSLS (note that |p| = k2 + 2). We
can strengthen the reduction in such a way that all constraints have even constant size (note
that the constraints ((i, 1)k, (i, k)k, {0} ∪ [n − 1]) are the only non-constant sized constraints,
since {0} ∪ [n − 1] is a semilinear set of size n). To this end, we observe that for fixed s1
and sk, all gap sizes e((i, k)k) − e((i, 1)k) are the same, independent from i, namely sk − s1.
Thus, we can turn the reduction into a Turing reduction by guessing this value d = sk − s1
and then replace each non-constant ((i, 1)k, (i, k)k, {0} ∪ [n − 1]) by ((i, 1)k, (i, k)k, L(d)).

In order to obtain a reduction to MatchREG, we can simply represent all semilinear
constraints as regular constraints. Obviously, the corresponding DFAs are not of constant
size anymore. In summary, this yields the following result.

▶ Theorem 7. MatchSLS parameterised by |p| is W[1]-hard, even for constant gapsize(C)
and binary alphabet Σ, and MatchREG parameterised by |p| is W[1]-hard, even for binary
alphabet Σ.

The lower bound for MatchREG is weaker, since the parameter gapsize(C) is not constant
in the reduction. At least for a reduction from k-Clique, this is to be expected, due to the
fact that MatchREG is fixed parameter tractable with respect to the combined parameter
(|p|, gapsize(C)). So this leaves one relevant question open: Can MatchREG be solved in
polynomial time, if the parameter gapsize(C) is bounded by a constant? We can answer this
in the negative by a reduction from a variant of the SAT-problem, which we shall sketch
next.

For the problem 1-in-3-3SAT, we get a set A = {x1, x2, . . . , xn} of variables and clauses
c1, c2, . . . , cm ⊆ A with |ci| = 3 for every 1 ≤ i ≤ m. The task is to decide whether there is
a subset B ⊆ A such that |ci ∩ B| = 1 for every 1 ≤ i ≤ m. For the sake of concreteness,
we also set cj = {xℓj ,1, xℓj ,2, xℓj ,3} for every j ∈ [m], and with xℓj ,1 < xℓj ,2 < xℓj ,3 for some
order “<” on A.

We transform such an 1-in-3-3SAT-instance into two strings uA = (b #)n(b #)m and
vA = (b2 #)n(b3 #)m. For every i ∈ [n], the ith b-factor of uA and the ith b2-factor of vA are
called xi-blocks. Analogously, we denote the last m b-factors of uA and the last m b3-factors
of vA as cj-blocks for j ∈ [m].

Obviously, if uA ⪯e vA for some embedding e : [|uA|] → [|vA|], then the single b of uA’s
xi-block is mapped to either the first or the second b of vA’s xi-block, and the single b of
uA’s cj-block is mapped to either the first or the second or the third b of vA’s cj-block.
Thus, the embedding e can be interpreted as selecting a set B ⊆ A (where mapping uA’s
xi-block to the second b of vA’s xi-block is interpreted as xi ∈ B), and selecting either the
first or second or third element of cj (depending on whether uA’s cj-block is mapped to
the first, second or third b of vA’s cj-block). We can now introduce a set of regular gap
constraints that enforce the necessary synchronicity between B and the elements picked
from the clauses: Assume that xi is the pth element of cj . If e maps uA’s xi-block to the
second b of vA’s xi-block, then e must map uA’s cj-block to the pth b of vA’s cj-block,
and if e maps uA’s xi-block to the first b of vA’s xi-block, then e must map uA’s cj-block
to the qth b of vA’s cj-block for some q ∈ {1, 2, 3} \ {p}. For example, if xℓj ,2 = xi for
some i ∈ [n] and j ∈ [m], i. e., the second element of cj is xi, then we add a regular gap
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constraint (i′, j′, Li′,j′), where i′ and j′ are the positions of uA’s xi-block and uA’s cj-block,
and Li′,j′ = {b w#, #w# b, b w# b b | w ∈ {b, #}∗}. If e maps uA’s xi-block to the second b
of vA’s xi-block, then the gap between positions i′ and j′ must start with #; thus, due to the
gap constraint, it must be of the form #w# b, which is only possible if e maps uA’s cj-block
to the second b of vA’s ci-block. If e maps uA’s xi-block to the first b of vA’s xi-block,
then the gap must be of the form b w# or b w# b b, which means that e must map uA’s
cj-block to the first or third b of vA’s ci-block. Similar gap constraints can be defined for
the case that xi is the first or third element of cj . Hence, we can define gap constraints
such that there is an embedding e : [|uA|] → [|vA|] with uA ⪯e vA and e satisfies all the gap
constraints if and only if the 1-in-3-3SAT-instance is positive. Independent of the actual
1-in-3-3SAT-instance, the gap languages can be represented by DFAs with at most 8 states.
This shows the following result.

▶ Theorem 8. MatchREG is NP-complete, even for binary alphabet Σ and with gap-
constraints that can be represented by DFAs with at most 8 states.

5 Complexity of the Matching Problem: A Finer Analysis

Two representations of constraints. We start by defining two (strongly related) natural
representations of the set of constraints which is given as input to the matching problem.
Intuitively, both these representations facilitate the understanding of a set of constraints.
Then, we see how these representations can be used to approach the Match problem.

The Interval Structure of Sets of Constraints. For a constraint C = (a, b, L) we define
interval(C) := [a, b − 1]. If we have another constraint C ′ = (a′, b′, L′) (with a ̸= a′ or b ̸= b′),
we say that C is contained in C ′, written C ⊏ C ′, if interval(C) ⊊ interval(C ′). Because
this order is derived from the inclusion order ⊊, it is also a strict partial order. We denote
the corresponding covering relation with ⊏· . Furthermore, we say that C and C ′ intersect, if
interval(C) ∩ interval(C ′) ̸= ∅, and they are not comparable w.r.t. ⊏, i.e., neither of them
contains the other. Importantly, because we have b /∈ interval(C), in the case b = a′, the
constraints C and C ′ do not intersect.

The Graph Structure of Sets of Constraints. For a string p, of length m, and a set of
constraints C on p, we define a graph Gp = (Vp, Ep) as follows. The set of vertices Vp of Gp

is the set of numbers {1, . . . , m}, corresponding to the positions of p. We define the set of
undirected edges Ep as follows: Ep = {(a, b) | (a, b, L) ∈ C}∪{(i, i+1) | i ∈ [m−1]}∪{(1, m)}.
Note that in the case when we have a constraint C = (i, i + 1, L), for some i ∈ [m − 1] and L

(respectively, a constraint C(1, m, L)) we will still have a single edge connecting the nodes
i and i + 1 (respectively, 1 and m) as Ep is constructed by a set union of two sets, so the
elements in the intersection of the two sets are kept only once in the result. Moreover, we can
define a labelling function on the edges of G by the following three rules: label((i, j)) = C, if
there exists C ∈ C with C = (i, j, L); label((i, i + 1)) = (i, i + 1, Σ∗), for i ∈ [m − 1], if there
exists no C ∈ C such that C = (i, i + 1, L); and label((1, m)) = (1, m, {w ∈ Σ∗||w| ≥ m − 2}),
if there exists no C ∈ C such that C = (1, m, L). Clearly, all respective labels can be
expressed trivially both as regular languages or as semilinear sets. Intuitively, the edges of
G which correspond to constraints of C are labelled with the respective constraints. The
other edges have trivial labels: the label of the edges of the form (i, i + 1) express that, in an
embedding of p in the string v (as required in Match), the embedding of position i + 1 is
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to the right of the embedding of position i; the label of edge (1, m) simply states that at
least m − 2 symbols should occur between the embedding of position 1 and the embedding
of position m, therefore allowing for the entire pattern to be embedded.

Further, it is easy to note that this graph admits a Hamiltonian cycle, which traverses the
vertices 1, 2, . . . , m in this order. In the following, we also define two-dimensional drawing of
the graph Gp as a half-plane arc diagram: the vertices 1, 2, . . . , m are represented as points
on a horizontal line ℓ, with the edges (i, i + 1), for i ≤ m − 1 being segments of unit-length
on that line, spanning between the respective vertices i and i + 1; all other edges (i, j) are
drawn as semi-circles, whose diameter is equal to the length of (j − i), drawn in the upper
half-plane with respect to the line ℓ. In the following, we will simply call this diagram
arc-diagram, without explicitly recalling that all semicircles are drawn in the same half-plane
with respect to ℓ. In this diagram associated to Gp, we say that two edges cross if and only
if they intersect in a point of the plane which is not a vertex of Gp. See also [18] and the
references therein for a discussion on this representation of graphs.

In Figure 1 we see an example: We have p = xyzyx and C = {C = (1, 3, L1), C ′ =
(1, 4, L1), C ′′ = (3, 5, L2)}. Thus, |p| = 5 and Gp has the vertices {1, . . . , 5} and the edges
(1, 3), (1, 4), (3, 5) corresponding to the constraints of C, as well as the edges (1, 2), (2, 3), (3, 4),
(4, 5), (1, 5) (note that the edges are undirected, and the trivial labels are omitted for the sake
of readability). The figure depicts the arc diagram associated to this graph (with the semi-
circles flattened a bit, for space reasons). In the interval representation of these constraints, we
can see that C is contained in C ′ (as interval(C) = [1, 2] ⊊ interval(C ′) = [1, 3]). Furthermore,
C ′ and C ′′ intersect ([1, 3] ∩ [3, 4] ̸= ∅), while C and C ′′ do not ([1, 2] ∩ [3, 4] = ∅). Note
that two constraints (such as C and C ′′ in our example) might not intersect (according
to the interval representation), although the edges that correspond to them in the graph
representation share a common vertex; in particular, two constraints intersect if and only if
the corresponding edges cross.

p = 1
x

2
y

3
z

4
y

5
x

C

C′

C′′

Figure 1 Relations between constraints.

The two representations defined above are clearly very strongly related. However, the
graph-representation allows us to define a natural structural parameter for subsequences with
constraints, while the interval-representation will allow us to introduce a class of subsequences
with constraints which can be matched efficiently.

In the following, by MatchL,G we denote the problem Match, where all gap constraints
are from the class of languages L, with L ∈ {REG, SLS}, and the graphs corresponding to
the input gap constraints are all from the class G.

Vertex separation number and its relation to Match. Given a linear ordering σ =
(v1, . . . , vm) of the vertices of a graph G with m vertices, the vertex separation number of σ

is the smallest number s such that, for each vertex vi (with i ∈ [m]), at most s vertices of
v1, . . . , vi−1 have some vj , with j ≥ i, as neighbour. The vertex separation number vsn(G)
of G is the minimum vertex separation number over all linear orderings of G. The vertex
separation number was introduced in [20] (see also [21] and the references therein) and was
shown (e.g., in [9]) to be equal to the pathwidth of G.
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Let us briefly overview the problem of computing the vertex separation number of graphs.
Firstly, we note that checking, given a graph G with n vertices and a number k, whether
vsn(G) ≤ k is NP-complete, as it is equivalent to checking whether the pathwidth of G is at
most k. We can show that this problems remains intractable even when we restrict it to the
class of graphs with a Hamiltonian cycle, and this cycle is given as input as well.

However, this problem is linear fixed parameter tractable w.r.t. the parameter k: deciding,
for a given graph G with n vertices and a constant number k, if vsn(G) ≤ k and, if so,
computing a linear ordering of the vertices with vertex separation number at most k can be
solved in O(n) time, where the constant hidden by the O-notation depends superexponentially
on k. This follows from the results of [9], where the relation between pathwidth and vertex
separation number is established, and [8], where it is shown that, for constant k, one can
check in linear time O(n) if a graph with n vertices has pathwidth at most k, and, if so,
produce a path decomposition of that graph of width at most k.

For a constant k, let Vk be the class of all graphs G with vsn(G) ≤ k. We can show the
following meta-theorem.

▶ Theorem 9. Let k ≥ 1 be a constant integer and let L ∈ {SLS, REG}. Then, MatchL,Vk

can be solved in polynomial time: O(m2nk+1), in the case of SLS-constraints, and O(m2nk+1+
m2n2 log log n), in the case of REG-constraints. Moreover, MatchL,Vk

parameterised by k

is W[1]-hard.

Due to space restrictions, we only sketch the proof. The matching algorithm implements
a dynamic programming approach. We choose an ordering of the vertices of the graph
representing C, with vsn at most k. These vertices are, in fact, positions of p, so we find, for
q from 1 to m, embeddings for the first q positions of this ordering in w, such that all the
constraints involving only these positions are fulfilled. Given that the vsn of the respective
ordering is bounded by k, we can compute efficiently the embeddings of the first q positions
by extending the embeddings for the first q − 1 positions, as, when considering a new position
of our ordering, and checking where it can be embedded, only k of the previously embedded
positions are relevant. As such, the embeddings of the first q − 1 positions of the ordering,
which are relevant for computing the embeddings of its first q positions, can be represented
using an O(nk) size data-structure, and processed in O(nk poly(n, m)) time. This leads to a
polynomial time algorithm, with a precise runtime as stated above. The lower bound follows
from the reduction showing Theorem 7.

Non-intersecting constraints and Match. We have shown that Match can be solved
efficiently if the input gap constraints are represented by graphs with bounded vsn. However,
while this condition is sufficient to ensure that Match can be solved efficiently (as long as
the constraint-languages are in P), it is not necessary. We will exhibit in the following a
class H of gap constraints, which contains graphs with arbitrarily large vsn, and for which
MatchL,H can be solved in polynomial time, for L ∈ {REG, SLS}.

More precisely, in the following, we will consider the class H of non-intersecting gap
constraints. That is, we consider Match where the input consists of two strings v ∈ Σ∗

and p ∈ Σ∗ and a non-empty set C of gap constraints, where for any C, C ′ ∈ C we have
that interval(C) ∩ interval(C ′) ∈ {interval(C), interval(C ′), ∅}. It is immediate that H, the
class of non-intersecting gap constraints, can be described as the class of gap constraints
which are represented by outerplanar graphs which have a Hamiltonian cycle: the arc
diagram constructed for these gap constraints is already outerplanar: if C = (a, b, L) and
C ′ = (a′, b′, L′) are two non-intersecting constraints of some set of constraints C, then, in the
graph representation of this set of constraints based on arc diagrams, the edges (a, b) and
(a′, b′) do not cross (although they might share a common vertex).
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Moreover, an outerplanar graph which admits a Hamiltonian cycle can be represented
canonically as an arc diagram of a set of non-intersecting gap constraints. It is a folklore result
that if an outerplanar graph has a Hamiltonian cycle then the outer face forms its unique
Hamiltonian cycle. Moreover, every drawing of a graph in the plane may be deformed into
an arc diagram without changing its number of crossings [45], and, in the case of outerplanar
graphs this means the following. For an outerplanar graph G, we start with a drawing of
G witnessing its outerplanarity. Assume that, after a potential renaming, there exists a
traversal of the Hamiltonian cycle of the outerplanar graph (i.e., of its outer face) which
consists of the vertices 1, 2, . . . , n, in this order. We simply reposition these vertices, in the
same order 1, 2, . . . , n, on a horizontal line ℓ, such that consecutive vertices on the line are
connected by edges of length 1, and then the edge (1, n) is deformed so that it becomes
a semicircle of diameter n − 1 connecting the respective vertices, in the upper half-plane
w.r.t. ℓ. Further, each edge (a, b) is deformed to become a semicircle above the line of the
vertices, whose diameter equals the distance between vertex a and vertex b. By the result
of [45], the edges of this graph do not cross in this representation, as the initial graph was
outerplanar. But the resulting diagram is, clearly, the arc diagram corresponding to a set of
non-intersecting gap constraints.

Based on the above, we can make a series of observations. Firstly, as one can recognize
outerplanar graphs in linear time [56], we can also decide in linear time whether a set of
constraints is non-crossing. Secondly, according to [16], there are outerplanar graphs with
arbitrarily large pathwidth, so with arbitrarily large vsn. This means that there are sets of
non-intersecting gap constraints whose corresponding graph representations have arbitrarily
large vsn. Thirdly, the number of constraints in a set of non-intersecting gap constraints
is linear in the length of the string constrained by that set (as the number of edges in an
outerplanar graph with n vertices is at most 2n − 3).

We can show the following theorem (here we just sketch the proof, and only in the case
of SLS-constraints, as the REG-constraints case is identical.

▶ Theorem 10. MatchSLS,H can be solved in time O(nωK) and MatchREG,H can be solved
in time O(nωK + n2K log log n), where K is the number of constraints in the input set of
constraints C and O(nω) is the time needed to multiply two boolean matrices of size n × n.

As said, we sketch the algorithm solving MatchSLS,H in the stated complexity. Assume that
the input words are w ∈ Σn and p ∈ Σm, and C = (C1, . . . , CK), with Ci = (ai, bi, Li) for
i ∈ [K]. Firstly, we add a constraint C = (1, m, L(m − 2, 1)) to C if it does not contain any
constraint having the first two components (1, m). So, in the following, we will assume w.l.o.g.
that such a constraint (1, m, ·) always exists in C. Moreover, the number of constraints in C
is O(m) (as the graph representation of C is outerplanar).

As a first phase in our algorithm, we build the data structures from Lemma 3. Hence, by
Remark 5, after an O(n2K)-time preprocessing we can answer queries “is w[i..j] ∈ Lk?” in
O(1) time, for all i, j ∈ [n], k ∈ [K].

After this, the algorithm proceeds as follows. Because the set of constraints C is non-
intersecting, one can build in linear time the Hasse-diagram of the set of intervals associated
with the set of constraints C (w.r.t. the interval-inclusion relation), and this diagram is a tree,
whose root corresponds to the single constraint of the form (1, m, ·). Further, the algorithm
uses a dynamic programming strategy to find matches for the constraints of C in a bottom-up
fashion with respect to the Hasse-diagram of this set. The algorithm maintains the matches
for each constraint C = (a, b, L) as a Boolean n × n matrix, where the element on position
(i, j) of that matrix is true if and only if there exists a way to embed p[a..b] in w[i..j], such
that p[a] is mapped to w[i] and p[b] to w[j] in the respective embedding, and this embedding
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also fulfils C and all the constraints occurring in the sub-tree of root C in the Hasse-diagram.
This matrix can be computed efficiently, by multiplying the matrices corresponding to the
children of C (and a series of matrices corresponding to the unconstrained parts of p[a..b]).
As the number of nodes in this tree is O(K), the whole process of computing the respective
matrices for all nodes of the tree requires O(K) matrix multiplications, i.e., O(nωK) time in
total. Finally, one needs to see if there is a match of p[1..m] to some factor of v, which can
be checked in O(n2) by simply searching in the matrix computed for the root of the diagram.

The following lower bound is shown by a reduction from 3-OV.

▶ Theorem 11. For L ∈ {REG, SLS}, then MatchL,H, cannot be solved in O(|w|g|C|h)
time with g + h < 3, unless SETH fails.

The reduction proving this hardness result works as follows. In 3-OV, we are given three sets
A = {a⃗1, . . . , a⃗n}, B = {⃗b1, . . . , b⃗n} and C = {c⃗1, . . . , c⃗n} with elements from {0, 1}d, and
want to determine whether there exist i∗, j∗, k∗ ∈ [n], such that

∑j
ℓ=1 a⃗i∗ [ℓ] · b⃗j∗ [ℓ] · c⃗k∗ [ℓ] =

0. This is achieved by encoding our input sets over a constant size alphabet, via two
functions Cp and Cw, into a pattern p and a text w, respectively, as well as a set of
constraints C, such that the answer to the 3-OV problem is positive if and only if p is a
C-subsequence of w. Basically, the encoding of each d-dimensional vector of A (respectively,
B and C) is done via Cp (respectively, Cw), in such a way that (when no constraints are
considered) Cp(v⃗) is a subsequence of Cw(v⃗′) for any v⃗, v⃗′ ∈ {0, 1}d. Further, Cp and Cw

are mirrored versions of these encodings (both for bits and vectors), where the order of
the characters in the output is inverted. We can then use the original encoding for one
part of the pattern and the text and the mirrored encoding for the other part. Then,
we encode the set A in p := Cp(⃗an) . . . Cp(⃗a1) § Cp(⃗a1) . . . Cp(⃗an) and the sets B and C

in w := w0 # Cw(c⃗n) . . . Cw(c⃗1) # w0 § w0 # Cw (⃗b1) . . . Cw (⃗bn) # w0 (where x denotes the
mirror image of x, and w0 is a suitably choosen padding). To finalise our construction, we can
define constraints which ensure that an embedding of p in w is possible if and only if there
exist some i∗, j∗, k∗ such that Cp(ai∗) is embedded in Cw(bj∗), and Cp(ai∗) in Cp(ck∗), while
all the other strings Cp(at) are embedded in the paddings. Moreover, additional constraints
ensure that the simultaneous embedding of Cp(ai∗) in Cw(bj∗) and of Cp(ai∗) in Cp(ck∗)
is only possible if and only if for each component u ∈ [d] with ai∗ [u] ̸= 0, we have that
bj∗ [u] = 0 or ck∗ [u] = 0.

We conclude by noting that, while this is not a tight lower bound with respect to the upper
bound shown in Theorem 10, finding a polynomially stronger lower bound (i.e., replacing
in the statement of Theorem 11 the condition g + h < 3 with g + h < 3 + δ, for some
δ > 0) would show that matrix multiplication in quadratic time is not possible, which in
turn would solve a well-researched open problem. Indeed, the algorithm from Theorem 10
consists in a reduction from MatchL,H to O(|C|) instances of matrix multiplication, for
quadratic matrices of size |w|, so a better lower bound would mean that at least one of these
multiplications must take more than quadratic time.
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Abstract
Deterministic Finite Wheeler Automata are a natural generalisation to regular languages of the theory
of compressed data structures originated by the introduction of the Burrows-Wheeler transform.
Indeed, if we can find a Wheeler automaton recognizing a given language L, such automaton can be
used to design time and space efficient algorithms for representing and searching L.

In this paper we introduce an alternative representation of Deterministic Wheeler Automata
by showing that a natural map between strings and rational numbers in Qr0, 1q can be extended
to represent the automaton’s states as intervals in Qr0, 1q. Using this representation it emerges a
natural relationship between automata properties and some properties of real numbers. In addition,
such representation enables us to formulate problems related to automata in a numerical setting.
Although at the moment the numerical approach does not lead to time efficient algorithms, we
believe this new perspective deserves further consideration.

As a further demonstration of the convenience of this new representation, we use it to provide
a simple proof of an unexpected result on regular languages. More precisely, we compare the size
of the smallest Wheeler automaton recognizing a given language L with respect to the size of the
smallest automaton, possibly non-Wheeler, recognizing the same language. We show settings in
which there can be an exponential gap between the two sizes, and we discuss the implications of this
result on the problem of representing regular languages.

2012 ACM Subject Classification Theory of computation Ñ Pattern matching; Theory of computa-
tion Ñ Formal languages and automata theory

Keywords and phrases String Matching, Deterministic Finite Automata, Wheeler languages, Graph
Indexing, Co-lexicographical Sorting

Digital Object Identifier 10.4230/LIPIcs.CPM.2024.23

Funding Giovanni Manzini: Funded by the Italian Ministry of Health, POS 2014-2020, project
ID T4-AN-07, CUP I53C22001300001, by INdAM-GNCS Project CUP E53C23001670001 and by
PNRR ECS00000017 Tuscany Health Ecosystem, Spoke 6 CUP I53C22000780001.
Alberto Policriti: project funded under the National Recovery and Resilience Plan (NRRP), Mission
4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree
n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European
Union - NextGenerationEU. Award Number: project code CN_00000033, Concession Decree
No. 1034 of 17 June 2022 adopted by the Italian Ministry of University and Research, CUP
G23C22001110007, Project title “National Biodiversity Future Center – NBFC”.
Nicola Prezza: Funded by the European Union (ERC, REGINDEX, 101039208). Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect those of the European
Union or the European Research Council. Neither the European Union nor the granting authority
can be held responsible for them.

© Giovanni Manzini, Alberto Policriti, Nicola Prezza, and Brian Riccardi;
licensed under Creative Commons License CC-BY 4.0

35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024).
Editors: Shunsuke Inenaga and Simon J. Puglisi; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giovanni.manzini@unipi.it
https://pages.di.unipi.it/manzini/
https://orcid.org/0000-0002-5047-0196
mailto:alberto.policriti@uniud.it
https://users.dimi.uniud.it/~alberto.policriti/home/
https://orcid.org/0000-0001-8502-5896
mailto:nicola.prezza@unive.it
https://nicolaprezza.github.io/
https://orcid.org/0000-0003-3553-4953
mailto:brian.riccardi@unimib.it
https://orcid.org/0000-0002-4925-9529
https://doi.org/10.4230/LIPIcs.CPM.2024.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 The Rational Construction of a Wheeler DFA

Brian Riccardi: Received grants from the European Union’s Horizon 2020 Research and Innovation
Programme under the Marie Skłodowska-Curie grant agreement PANGAIA No. 872539, and from
MUR 2022YRB97K, PINC, Pangenome INformatiCs: from Theory to Applications.

1 Introduction

A (deterministic) automaton is a simple version of a Turing Machine, operating just moving
from left to right and using the tape just for reading a pattern (no writing). It encodes a
(very simple, testing) algorithm, operating either accepting or rejecting its input pattern. A
Wheeler automaton [1, 6] is an automaton equipped with a total order ă on its set of states
and constrained by two simple axioms that, ultimately, cast an order on the entire collection of
prefixes of accepted strings. As a matter of fact, a Wheeler automaton operates generalising to
a collection of strings the computation performed to produce the Burrows-Wheeler transform
of a string – that is, a linear and invertible permutation turning a string α into a highly
compressible and searchable equivalent [4]. Many important, practical byproducts become
available, starting with the ability to store and search the language accepted by a Wheeler
automaton in little space and time (see [5]).

A remarkable property of regular languages, not present in other settings, is that a
given language can be accepted by different automata with different properties. Hence,
a language accepted by a Wheeler automaton can be accepted also by a non-Wheeler
automaton. For an automaton A we define the width of A, widthpAq, as the minimum width
of a partial order1 on A satisfying Wheeler axioms (details given below). Since (by definition)
a Wheeler automaton Aw admits a total order, it is always widthpAwq “ 1. In [5] it is shown
that widthpAq measures the “hardness” of representing and searching A. For example, if
widthpAq “ p the automaton can be represented in Θplog pq bits per transition and there
exists a linear-space data structure solving regular expression matching in Opp2q time per
matched character.

Let L be a language accepted by a minimal (in terms of number of states) Deterministic
Finite Automaton (DFA) D as well as by a minimal Wheeler DFA (WDFA, see also Section 2)
Dw. Since either D or Dw can be used to represent the language L it is worthwhile to
compare their effectiveness for this task. To this end, in this paper we consider the problem
of bounding the size of Dw in terms of the size of D and of the width widthpDq. We prove
that even for widthpDq “ 2, a minimal Wheeler automaton Dw can have exponentially
more states than D. This result has the immediate consequence that the Wheeler automata
representation is not always the more effective: it can be algorithmically more convenient to
deal with a non-Wheeler automaton with a small width rather than working with a (minimal)
Wheeler automaton for the same language.

To provide a simple proof of the above result, we introduce a new general method for
representing automaton D (and Dw), proving that the co-lexicographic order of strings and
the ordering of a Wheeler automaton can be conveniently presented using rational numbers
and convex subsets of rational numbers in r0, 1q. This representation provides a different
perspective on some properties of automata, highlighting their connection with established
properties of real numbers. In addition, it suggests a new view for a number of problems
that we illustrate and discuss, concluding by showing that some such problems can also be
approached in an arithmetic way.

1 The width of a partial order is the maximum length of any of its anti-chains.
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2 Basics

Let Σ “ ta1, . . . , aσu denote a finite ordered alphabet of size σ. We denote by Σ˚ the set of
finite strings over Σ. The character ϵ denotes the empty string. We assume that the elements
of Σ˚ are ordered according to the co-lexicographic (co-lex) order defined as follows: given
α, β P Σ˚, we say that α is co-lex smaller than β (α ă β) if and only if α is a suffix of β or
there exist γ, α1, β1 P Σ˚ and a, b P Σ with a ă b such that α “ α1aγ and β “ β1bγ.

A Deterministic Finite-State Automaton (DFA) A “ pQ, s, δ, F q consists of a finite set
of states Q, an initial state s P Q, a set of final states F Ď Q, and a transition function
δ : Q ˆ Σ Ñ Q. We extend the transition function to words α P Σ˚ as follows: for a P Σ,
α P Σ˚, and q P Q: δpq, a ¨αq “ δpδpq, aq, αq and δpq, ϵq “ q. For q P Q we write Iq to denote
the set of strings reaching q from the initial state: Iq “ tα P Σ˚ | q “ δps, αqu. The language
L Ď Σ˚ recognised by A is the set of strings reaching a final state from the initial state:
LpAq “

Ť

qPF Iq. We denote by PrefpLq the collection of prefixes of strings in L.
▶ Remark 1. Since we are interested in L rather than in the structure of A, we tacitly
discarded from A all states that are not relevant for the definition of L. That is, we assume
that all states of A are reachable from the initial state s and reaching at least a final state
f P F . These assumptions imply that for all q P Q it is Iq ‰ H, and Iq Ď PrefpLq.

Following the literature [1, 2], we assume that the initial state s has no incoming arcs and
that A is input-consistent: p@u, v P Qqpδpu, a1q “ δpv, a2q Ñ a1 “ a2q. These assumptions
are not too restrictive since any automaton can be converted into an equivalent input-
consistent automaton by just multiplying its size by a factor of |Σ| (it is sufficient, for each
a P Σ and q P Q, to replace q by a copy qa duplicating out-going arcs and redirecting all
a-arcs entering q to qa – possibly none).
▶ Remark 2. In an input-consistent automaton all δ-arcs reaching a given state are labelled
by the same character. Thus we may shift labels from arcs to states, obtaining an equivalent
state-labelled automaton. In the following, we will denote by λpqq P Σ the character labelling
state q. For the initial state s, which does not have any incoming arc, we set λpsq “ #,
where # R Σ is smaller than any character in Σ.
▶ Remark 3. If A “ pQ, s, δ, F q is input-consistent, on the grounds of the above observation
the second argument of the transition function δ can be safely ignored assuming that δpqq “ q1

stands for δpq, λpq1qq “ q1.

▶ Definition 4. A Wheeler DFA (WDFA) A “ pQ, s, δ, F, ăq is a DFA endowed with a
binary relation ă such that pQ, ăq is a total order having the initial state s as minimum,
and the following two (Wheeler) properties are satisfied. Let v1 “ δpu1q, and v2 “ δpu2q:

i v1 ă v2 ñ λpv1q ď λpv2q;
ii pλpv1q “ λpv2q ^ v1 ă v2q ñ u1 ă u2.

Let L Ď Σ˚ be a Wheeler language, that is, a language accepted by a deterministic
Wheeler automaton. In the rest of the paper we will consider D “ pQ, s, δ, F q defined as
the DFA with the minimum number of states accepting L, and to Dw “ pQw, s, δw, Fw, ăq

defined as the WDFA with the minimum number of states accepting L. Uniqueness of D
follows from Myhill-Nerode theorem [8, 9], while uniqueness of Dw is proven in [2]. By
definition it is always |Q| ď |Qw|, but very little else is known about the relative sizes of
Q and Qw; intuitively the ratio |Qw|{|Q| is the price one has to pay for representing the
language L with a Wheeler automaton.

Definition 4 requires ă to be a total (linear) ordering of the collection of the automaton’s
states. However, in general, D does not admit such a total order. Nevertheless D always
admits a partial order satisfying (i) and (ii) of Definition 4. Let p “ widthpDq (the width of
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23:4 The Rational Construction of a Wheeler DFA

D) be the the minimum number of linear components of a partial order satisfying (i) and (ii)
of Definition 4. In [5], plenty of arguments are given to illustrate p as a good measure for
the distance of D from being Wheeler.

As established in [2, Lemma 3.4], being Dw a Wheeler automaton, given q̄ P Qw, the set
Iq̄ Ď PrefpLq of strings reaching q̄ from the initial state is an interval Iq̄ in the linear order
pPrefpLq,ăq and the collections of intervals tIq̄ | q̄ P Qwu constitutes an equivalence relation
„Dw

partitioning PrefpLq. As a matter of fact, also tIq | q P Qu constitutes an equivalence
relation „D partitioning PrefpLq – even though the Iq’s are not, in general, intervals in
pPrefpLq,ăq – and „Dw

is a refinement of „D. Hence, for any q̄ P Qw there exists a unique
q P Q, such that Iq̄ Ď Iq. In other words, even though Iq for q P Q might not be an interval,
it is always decomposable into a finite collection of intervals Iq̄’s.

▶ Example 5. The following is an example of D of width 3 where states of Dw are indexed in
such a way that Iq̄i,j Ď Iqi . The partial order of D’s states is: q1 ă q2; q3 ă q4; q5 ă q6, with
Q1 “ tq1, q2u, Q2 “ tq3, q4u, and Q3 “ tq5, q6u being a partition of Q into linearly ordered
subsets. Notice that every state of Dw is reached by interval of strings in pPrefpLq,ăq and
any state of D is reached by a finite collection of intervals of strings.

PrefpLq

Q1
Iq̄1,1 Iq̄1,2 Iq̄1,3 Iq̄2,1 Iq̄2,2

Q2
Iq̄3,1 Iq̄3,2 Iq̄4,1 Iq̄4,2

Q3
Iq̄5,1 Iq̄6,1 Iq̄6,2

▶ Remark 6. Not being Wheeler for a language means that, for some q P Q, any attempt to
produce the previously mentioned decomposition of Iq would result in the introduction of
infinitely many sub-intervals.

3 The Rational Embedding

In this section we introduce a very simple formal tool, the rational embedding, easing the
representation and analysis of automata. We begin by embedding Σ˚ into Qr0, 1q, the
half-open interval of rational numbers between 0 and 1. In what follows, we assume, without
loss of generality, that Σ “ t1, 2, . . . , σu (with the usual order of the integers).

▶ Definition 7 (The Rational Embedding of Σ˚). The Rational Embedding of Σ˚ is the map
q : Σ˚ Ñ Qr0, 1q defined as follows. For any α “ α1 . . . αm P Σ˚:

qpαq “
m
ÿ

i“1
αi ¨ pσ ` 2q´pm´i`1q.

The above embedding sends any non-empty Σ-string to a rational in p0, 1q and the empty
word to 0. In the rest of the paper we will always write the values qpαq in base σ`2 “ |Σ|`2;
note that by construction the representation will never contain the digit 0 or the digit σ ` 1
to the right of the dot sign.

▶ Example 8. Consider the string α “ α1α2 ¨ ¨ ¨αm P Σ˚. The value q on α is the rational
number qpαq written in base pσ ` 2q as qpαq “ 0.αm ¨ ¨ ¨α2α1. Notice that when α P

PrefpLqztϵu, for some L “ LpAq with A input-consistent, the most significant digit of qpαq is
the label of the state reached on A reading α.
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▶ Remark 9. Avoiding 0 and σ ` 1 – i.e. the smallest and the largest digits in base σ ` 2 –
will turn out convenient in order to make the map qp¨q injective. This assumption is used in
Corollary 21 and, clearly, it does not reduce the overall applicability of the embedding.

The fundamental property of the map qp¨q, is that the co-lex order on Σ˚ corresponds to
the order among elements of the rational embeddings of Σ˚. In formulae, denoting by ă also
the (standard) natural order on Q:

α ă β (in co-lex order) if and only if qpαq ă qpβq (as rational numbers).

Based on the rational embedding of strings we can define the rational embedding of (the
states of) a DFA.

▶ Definition 10. Let IQr0,1q be the collection of non-empty convex sets of rationals in Qr0, 1q:

IQr0,1q “ tJ Ď Qr0, 1q | J ‰ H^ p@a, c P Jqp@b P Qqpa ď b ď c ñ b P Jqu.

▶ Definition 11 (The Rational Embedding of a DFA). The Rational Embedding of A “

pQ, s, δ, F q is the map Iq : Q Ñ IQr0,1q defined as follows: for any q P Q,

Iqpqq “
č

tJ P IQr0,1q | p@α P Iqqpqpαq P Jqu.

In other words, Iqpqq is the convex closure (or convex hull) of Iq.

In the following Iqpqq will also be denoted by Iq
q and we will denote by ℓq (respectively rq)

the inf (respectively the sup) of Iq
q .

Even though determinism guarantees that q ‰ q1 implies Iq X Iq1 “ H, it might be the
case that q ‰ q1 and Iq

q X Iq
q1 ‰ H. However, [2, Theorem 4.3] implies that A is Wheeler if

and only if q ‰ q1 implies Iq
q X Iq

q1 “ H. This is shown by the following example.

▶ Example 12. As already shown in Example 5, given a D-state q P Q the co-lexicographically
ordered words in Iq can be decomposed in a finite sequence of sub-intervals that will constitute
the Dw-states. By embedding words and states in Qr0, 1q we simply reproduce this situation
on the rationals (as landscape). Below we depict the example, with intervals above referring
to states in Q and below to states in Qw:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Iq
q1

Iq
q1,1

Iq
q1,2

Iq
q1,3

Iq
q2

Iq
q2,1

Iq
q2,2

Iq
q3

Iq
q3,1

Iq
q3,2

Iq
q4

Iq
q4,1

Iq
q4,2

Iq
q5

Iq
q5,1

Iq
q6

Iq
q6,1

Iq
q6,2

Mapping each Iq to a set of real numbers Iq
q makes it possible to study automata using

tools from elementary calculus. As a first example we show that the notion of accumulation
point is related to the concept of entanglement introduced in [5, Definition 4.7]. Intuitively,
two states q and q1 are entangled when there exists an infinite co-lex-monotone sequence of
strings reaching alternatively q and q1. Below a formalization of this important notion in a
more general setting.

CPM 2024



23:6 The Rational Construction of a Wheeler DFA

▶ Definition 13. Let D be a DFA with set of states Q. A subset Q1 Ď Q is entangled if
there exists a monotone sequence pαiqiPN in PrefpLpDqq such that for all u1 P Q1 it holds
δps, αiq “ u1 for infinitely many i’s.

▶ Definition 14. We say that x P R is a left-accumulation point for a set U if there exists a
sequence of elements ui P U strictly greater than x and converging to x. Similarly, we say
that x is a right-accumulation point for U if the elements ui converging to x are all strictly
smaller than x.

▶ Lemma 15. If a value x is a left-accumulation point (resp. right-accumulation point) for
both the sets Iq

q and Iq
q1 then q and q1 are entangled.

Proof. If x is a left-accumulation point for both Iq and Iq1 from elementary calculus we
know that there exists an infinite sequence u1 ą v1 ą ¨ ¨ ¨ui ą vi ą ¨ ¨ ¨ converging to x with
ui P Iq

q and v1
i P Iq

q1 . Hence there is a sequence of strings α1 ą β1 ¨ ¨ ¨αi ą βi ą ¨ ¨ ¨ with
αi P Iq and βi P Iq1 and the states q and q1 are entangled according to Definition 4.7 in [5].
The case when x a right-accumulation point for both Iq

q and Iq
q1 is analogous. ◀

▶ Theorem 16. If D is the minimum DFA accepting L, and x is a left-accumulation point
(resp. right-accumulation point) for two distinct sets Iq

q and Iq
q1 then L is not Wheeler.

Proof. By Lemma 15 the states q and q1 are entangled. Since D is the minimum DFA
accepting L by [5, Theorem 4.21] any DFA recognizing L has width at least 2. ◀

▶ Example 17. Consider the two automata in Figure 1.

#start

1 2

3 q 3q1

5 6

#start

1 4

3 q 3q1

5 6

Figure 1 The language accepted by the automaton on the right is Wheeler, while the one accepted
by the automaton on the left is not.

The automaton on the right accepts a Wheeler language, while the one on the left does
not, the reason being that on the left 0.3̄ is a right-accumulation point for both Iq

q and Iq
q1

because of the sequences 0.31, 0.331, 0.3331, . . . and 0.32, 0.332, 0.3332, . . . (reaching q1): by
Theorem 16 the corresponding language is non Wheeler. In the automaton on the right 0.3̄ is
a right-accumulation point for Iq

q and a left-accumulation point for Iq
q1 and the automaton is

Wheeler with q ă q1. Note that, if in the left automaton we remove states 5 and 6 and make
q and q1 final, then 0.3̄ is still a right-accumulation point for both Iq

q and Iq
q1 but the resulting

automaton is not minimum so Theorem 16 do not apply: indeed the resulting language is
Wheeler.

We are particularly interested in the study of the extreme values ℓq “ inf Iq
q and rq “ sup Iq

q

as defined in Definition 11. We have the following preliminary results.

▶ Lemma 18. If L “ LpDq is Wheeler and D is the minimum DFA accepting L, then for
all pairwise distinct q, q1 P Q, we have:

ℓq “ ℓq1 Ñ pℓq P Iq
q _ ℓq1 P Iq

q1q, rq “ rq1 Ñ prq P Iq
q _ rq1 P Iq

q1q.

The same property holds if D is a WDFA accepting L.
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Proof. Assume D is the minimum DFA for the Wheeler language L. If there exist q, q1 P Q

such that ℓq “ ℓq1 and pℓq R Iq
q ^ ℓq1 R Iq

q1q then ℓq would be a left-accumulation point for
both Iq

q and Iq
q1 which is impossible by Theorem 16.

If instead D is a WDFA accepting L observe that ℓq “ ℓq1 and pℓq R Iq
q ^ ℓq1 R Iq

q1q implies
Iq

q X Iq
q1 ‰ H, which would contradict the hypothesis that D is Wheeler. The case rq “ rq1 is

entirely analogous for both kind of automata. ◀

▶ Lemma 19. If λq P L is such that qpλqq “ ℓq, then: ℓq P Iq
q if and only if λq P Iq. The

same result holds for rq as well.

Proof. See Appendix. ◀

Using Lemma 18 we can order the intervals Iq
q ’s according to their left ends ℓq’s (or their

right ends rq’s) breaking ties, when ℓq “ ℓq1 , by setting Iq
q less than Iq

q1 if ℓq P Iq
q and ℓq1 R Iq

q1

(we cannot have ℓq P Iq
q ^ ℓq P Iq

q1 since by Lemma 19 we would have Iq X I 1
q ‰ H). The

rationale for this tie-breaking rule is that ℓq P Iq
q ensures that there is an element in Iq

q which
is strictly smaller than all elements in Iq

q1 . However, we will see below (Corollary 21) that, in
fact, breaking ties will never be necessary.

Using the above ordering of the intervals we can derive a procedure to determine the
values ℓq and rq, for all q P Q.

▶ Lemma 20. Let L “ LpDq, with L Wheeler and D either minimum or Wheeler. For any
q P Q we have:

ℓq “ 0.aq,1 ¨ ¨ ¨ aq,haq,h`1 ¨ ¨ ¨ aq,h`j ,

with h ` j ď |Q|, and j “ 0 meaning that ℓq is not periodic. Moreover, j ą 0 if and only if
ℓq R Iq

q. An analogous characterisation holds for rq.

Proof. Let q0 “ s ă q1 ă . . . ă qn be the total order of Q induced by the order of the
intervals Iq

q mentioned above, that is

qi ă qi1
def

ðñ

´

ℓqi ă ℓqi1
_ pℓqi “ ℓqi1

^ ℓqi1
R Iq

qi1
q

¯

. (1)

Algorithm 1 determines the digits and the (possible) periodicity of ℓq for any state q.
After a call of left_dd pqq, let P “ tqi1 , . . . , qik´1u. It is easily seen by induction that

the digits determined aq,1 ¨ ¨ ¨ aq,k´1 are, in fact, the first k ´ 1 digits of ℓq. Upon exit of
left_dd pqq, k ´ 1 “ h ` j ă |Q| and the algorithm stops in one of the following two cases:
1. qik

“ s, or
2. qik

“ qik1 , for some k1 P t1, . . . , k ´ 1u.

In the first case h “ k ´ 1, j “ 0, and ℓq “ 0.aq,1 ¨ ¨ ¨ aq,h, as determined by left_dd pqq. In
the second case h “ k1 ´ 1, j “ k ´ k1, and our claim is that

ℓq “ 0.aq,1 ¨ ¨ ¨ aq,haq,h`1 ¨ ¨ ¨ aq,h`j .

In fact, in this case it is easy to produce a sequence of strings reaching q whose rational
embeddings converge to ℓq. Take, for example, β labelling a simple path from s to qik1 and
consider the following infinite sequence of words reaching q: for i P N,

βpaq,h`j ¨ ¨ ¨ aq,h`1q
iaq,h ¨ ¨ ¨ aq,1.

CPM 2024



23:8 The Rational Construction of a Wheeler DFA

Algorithm 1 left_digits_detector (q) (left_dd (q)).

k Ð 1; // initialise a counter for visited states (and for the digits)
qik

Ð q; // set the first state (and digit)
P Ð H; // P will store visited states
while qik

‰ s and qik
R P do // stop when s or a state in P is reached

P Ð P Y tqik
u;

aq,k Ð λpqik
q;

k Ð k ` 1;
ik Ð min

␣

k1 | δpqk1q “ qik´1

(

; // use the ordering (1)
if qik

“ s then // ℓq is not periodic
h Ð k ´ 1;
j Ð 0;

else // qik
is a previously visited state: set periodicity

let k1 ă k such that qik
“ qik1

h Ð k1 ´ 1
j Ð k ´ k1;

By construction we have that, for any i P N,

qpβpaq,h`j ¨ ¨ ¨ aq,h`1q
i`1aq,h ¨ ¨ ¨ aq,1q ă qpβpaq,h`j ¨ ¨ ¨ aq,h`1q

iaq,h ¨ ¨ ¨ aq,1q,

and that:

ℓq “ lim
iÑ8

qpβpaq,h`j ¨ ¨ ¨ aq,h`1q
iaq,h ¨ ¨ ¨ aq,1q. ◀

Using the characterisation of ℓq and rq provided by Lemma 20 we can strengthen Lemma 18
and prove that different Iq

q ’s have always different left and right limits.

▶ Corollary 21. Let L “ LpDq, with L Wheeler and D either minimum or Wheeler. Then,
for any pairwise distinct q, q1 P Q we have: ℓq ‰ ℓq1 and rq ‰ rq1 .

Proof. See Appendix. ◀

The above corollary clarifies that any state q P Q can be uniquely characterised by a rational
number or, equivalently, by a string of at most |Q| ´ 1 characters.

▶ Theorem 22. If L “ LpDq “ LpDwq, with L Wheeler and D either minimum or Wheeler,
then for all q P Q, we have ℓq, rq P Q.

Proof. Follows directly from Lemma 20. ◀

▶ Remark 23. We can give examples of automata D such that, for some q P Q, Iq
q includes

Cauchy sequences of rational embeddings of strings converging to irrational numbers – as a
matter of fact, this easily follows from the fact that the language Σ˚ is Wheeler. However,
Theorem 22 ensures that such irrational limits of (encodings of) words will never occur
as endpoints of Iq

q ’s. In fact, Lemma 20, exploiting the linear order of the reals, used by
algorithm left_dd to direct the search, shows that – not surprisingly, being D a finite
automaton – a finite representation of the bounding elements of Iq

q ’s, can be given.
Corollary 21 immediately implies that the existence of distinct states with equal left

(right) limits guarantees non-Wheelerness. The converse of the above result is, in general,
not true as illustrated by the following example.
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▶ Example 24. The automaton in Figure 2 is such that Iq
q “ r0.51, 0.56s and Iq

q1 “ r0.52, 0.57s.
However, the value 0.5 is a left-accumulation point for both q and q1. By Theorem 16 the
accepted language is not Wheeler even if all the left and right limit are distinct.

#start

1 6 72

5q 5 q1

3 4

Figure 2 States q and q1 in the above automaton are entangled by Lemma 15; however ℓq ‰ ℓq1

and rq ‰ rq1 .

4 On the number of states of the minimum WDFA

Given Dw “ pQw, sw, δw, Fw, ăq minimum (in the number of states) WDFA accepting a
Wheeler language L “ LpDq, with D “ pQ, s, δ, F q minimum DFA accepting L, we want to
study the relationship between the size of Dw and D.

Consider the collection of intervals
␣

Iq
q | q P Qw

(

. Since Dw is Wheeler, as already
observed we have that for pairwise distinct q, q1 P Qw, Iq

q X Iq
q1 “ H. This is, in general, not

the case for D and below we prove that the size of Dw can be exponential in the size of D,
even in case widthpDq “ 2.

Below we give a simple example of automaton D1 accepting a Wheeler language but
such that the minimum WDFA D1

w has size exponential in the size of |D1|. Let D1 be the
automaton in Figure 3.

#start

1

2

3
q1

1

w1

2
s1

3
q2

. . . . . . 3
qn

1

wn

2
sn

3
t

Figure 3 The depicted DFA is accepting a Wheeler (finite) language and the minimum accepting
Wheeler DFA accepting the same language has size exponential in n.

L “ LpD1q, being finite, is Wheeler [2]. Moreover, any Wheeler automaton accepting L
must have a number of states exponential in n. In fact, given any pair of strings α, γ P It

such that qpαq ă qpγq, it is easy to find a β P Iqn
such that qpαq ă qpβq ă qpγq. Since there

are exponentially many pairwise distinct strings reaching state t, in a Wheeler automaton
the set It must be partitioned into an exponential number of sub-intervals. Hence, state t

must be “split” into exponentially many states of Dw and the size of Dw must be exponential
in n.
▶ Remark 25. The automaton D1 of Figure 3 has widthpD1q “ n. Hence, one could think
that the explosion in the number of states is exponential in the width of the minimum
automaton accepting a given language. Below we show that this is not the case, providing
an example of automaton whose width is just 2 but the explosion still occurs.
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23:10 The Rational Construction of a Wheeler DFA

Consider the DFA D2 of Figure 4, where, for example, state si labeled 5i stands for a sequence
of i states si,1, . . . , si,i, all labeled 5. That is:

5i

si

stands for 5
si,1

. . . i times . . . 5
si,i

and, analogously, for states s1i, wi and w1
i, for i P t1, . . . , nu. Furthermore, we say that states

si,j and s1i,j are twins – the same goes for all other states and their primed version.

#

1

3

2

4

7

q11

7

q1i

6

z1
i

5i`1w1
i

6

x1
i

5i s1i

7

q1i`1

. . .. . . 7

q1n

8

t1

7
q1

6
zi

7
qi

5i`1wi

6
xi

5i si

7
qi`1

. . .. . . 7
qn

8
t

Figure 4 The automaton D2. The gadget between qi and qi`1, consisting of states zi, xi, wi, si,
(and, analogously, the gadget between q1

i and q1
i`1) is deployed for i “ 1, . . . , n ´ 1. Notice that the

i-th copy consists of 2i ` 4 states overall since each label 5i expands to i states.

Table 1 Left and right limits of Iq for different kinds of states from automaton D2. Intervals of
states denoted by different letters are clearly non-intersecting except in the case of t with t1.

State type Left limit Right limit
si,j 0.5j6675i67 . . . 0.5j6675i´1667 . . .

wi,j 0.5j675i67 . . . 0.5j675i´1667 . . .

xi 0.6675i67 . . . 0.6675i´1667 . . .

zi 0.675i67 . . . 0.675i´1667 . . .

qi 0.75i67 . . . 0.75i´1667 . . .

t 0.85n67 . . . 0.8875n´1667 . . .

t1 0.875n67 . . . 0.875n´1667 . . .

Our goal is to show that D2 has width equal to 2. The following two lemmas, whose
proofs can be found in the appendix, ensure that non-empty intersection of intervals happens
only between twin states.

▶ Lemma 26. Let u, v states of any automaton. If λpuq ‰ λpvq, then Iq
u X Iq

v “ H.

▶ Lemma 27. Let D2 be the automaton in Figure 4. Let u, v be a pair of distinct states of
D2 such that λpuq “ λpvq. Then, Iq

u X Iq
v ‰ H if and only if u and v are twins.

By above lemmas it follows:
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▶ Lemma 28. Let D2 be the automaton of Figure 4. Then, widthpD2q “ 2.

D2 accepts a (finite) Wheeler language, but its minimum Wheeler automaton has expo-
nential size in n. The fact that D2

w has size exponential in n is verified observing that strings
reaching t and t1 are interleaved, analogously to D1.

▶ Theorem 29. Let L “ LpDq “ LpDwq, with L Wheeler, D minimum, Dw minimum
Wheeler, and let fp¨, ¨q be such that |Dw| “ Op fp|D|, widthpDqq q. Then, for any k, p P N,
fpn, pq R Opnk ` 2pq.

5 Left and right limits: the arithmetic way

In this section we describe an alternative way to determine the left and right limit of the
intervals defining the rational embedding of the automaton. Our starting point is the following
lemma (proof in Appendix) establishing an arithmetic relationship between the left values
ℓq’s. An analogous result holds for the right values rq’s.

▶ Lemma 30. Given D “ pQ, s, δ, F q, DFA accepting L Wheeler, and q P Qztsu, there exists
a unique q1 P Q such that δpq1q “ q and pσ ` 2q ¨ ℓq “ λpqq ` ℓq1 .

In the following we use RQ to denote the set of real-valued vectors indexed by elements
of Q. Given x P RQ and q P Q we write xq to denote the entry associated to q. Similarly we
use QQ to denote the set of rational-valued vectors. We write ℓ to denote the vector in QQ

containing the left limits ℓq with q P Q.
Lemma 30 suggests a way of computing left (and right) limits through constraint pro-

gramming [3, 11]. Formally, for the left case, we consider the problem of finding the set of
all real-valued vectors x P RQ that satisfy the following constraint satisfaction program, that
we name PLeft :

p1q xs “ 0,

p2q 0 ă xq ă 1, p@q P Qztsuq

p3q pσ ` 2q ¨ xq “ λpqq ` min
␣

xq1 | δpq1q “ q
(

, p@q P Qztsuq

We now prove that the vector ℓ P QQ of left limits is the only solution of the above
program. As a first step, we make sure that PLeft is complete, that is, the vector ℓ satisfies
constraints (1–3).

▶ Lemma 31. Let L be a Wheeler language, and D “ pQ, s, δ, F q be either minimum or
Wheeler accepting L, and let ℓ P QQ be the vector of left limits. Then, ℓ is a solution of PLeft.

Proof. First of all, notice that constraints (1) and (2) of PLeft are clearly satisfied by ℓ.
Consider the order ăQ of the states of D defined by: q ăQ q1

def
ðñ ℓq ă ℓq1 . The order is

well-defined and total in virtue of Corollary 21. By Lemma 30, for every state q ‰ s there
exists a unique q1 P δ´1pqq such that pσ ` 2q ¨ ℓq “ λpqq ` ℓq1 . Moreover, from the proof of
Lemma 20 we know that q1 “ min

ăQ

δ´1pqq. By definition of ăQ we have:

q1 “ min
ăQ

δ´1pqq ðñ ℓq1 “ min
␣

ℓq2 | q2 P δ´1pqq
(

,

thus satisfying constraint (3). ◀

To prove that ℓ is the only solution we need the notion of px, qq-min-path.
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23:12 The Rational Construction of a Wheeler DFA

▶ Definition 32. Let D “ pQ, s, δ, F q be a DFA, x P RQ, and q P Q. We say that an infinite
sequence of states pqiqiě1 is a px, qq-min-path in D if the following hold:
1. q1 “ q,
2. p@i ě 1qpδpqi`1q “ qi _ qi “ qi`1 “ sq,
3. p@i ě 1qpxqi`1 “ min txq1 | δpq1q “ qiu _ qi “ qi`1 “ sq.

Roughly speaking, a px, qq-min-path is a path in the automaton that follows (backward)
states whose associated x-value is minimum. It does not come as a surprise that if pq1, q2, . . . q

is a px, qq-min-path, then for every j ě 1 we have that pqj , qj`1, . . . q is a px, qjq-min-path as
well: the proof of this simple fact follows directly from Definition 32.

Furthermore, when x P RQ is a solution of PLeft , px, qq-min-paths spell out precisely xq’s
digits. Formally:

▶ Lemma 33. Let x P RQ be a solution of PLeft, q P Q, and let pqiqiě1 be any px, qq-min-path.
Then, for every j ě 1, the j-th digit of xq is λpqjq.

Proof. See Appendix. ◀

▶ Corollary 34. If x P RQ is a solution of PLeft, then for every q P Q the first digit of xq is
λpqq.

Proof. Follows immediately from Definition 32 and Lemma 33. ◀

We can now state the main result of this section.

▶ Theorem 35. Let D “ pQ, s, δ, F q be either minimum or Wheeler accepting L Wheeler,
and ℓ P QQ be the vector of left limits. Then, PLeft always admits ℓ as its unique solution.

Proof. By Lemma 31 we know that ℓ is a solution of PLeft . Let x be a generic solution of
PLeft , and denote by xq,j the j-th digit of xq. Suppose, for the sake of contradiction, that
there exists some state q P Q such that xq ‰ ℓq, let q be any for which xq and ℓq have the
shortest prefix of digits in common, and let j be the length of such prefix. By Corollary 34,
j ě 1. Let pqiqiě1 and pq1iqiě1 be, respectively, any px, qq-min-path and pℓ, qq-min-path. By
Lemma 33 and hypothesis on q, it holds:
1. p@i ď jqpλpqiq “ xq,i “ ℓq,i “ λpq1iqq, and
2. λpqj`1q “ xq,j`1 ‰ ℓq,j`1 “ λpq1j`1q.
Consider the case λpqj`1q ă λpq1j`1q (the other case is symmetric). By minimality of the
choice of q, the first j digits of both xq2 and ℓq2 are the same. Similarly, the first j digits of
both ℓq1

2
and xq1

2
are the same. Therefore, ℓq2 ă ℓq1

2
contradicting the hypothesis that pq1iqiě1

was a pl, qq-min-path. ◀

Program PLeft can be implemented as a Mixed Integer Program, whose solution is, in
general, computationally hard to obtain [10]. The fact that a graph-oriented approach can
compute the left limits in polynomial time [7], justifies the following:

▶ Conjecture 36. There exists a linear programming model equivalent to PLeft.

We give a partial answer to Conjecture 36. Let π : Q Ñ Q be the parent function, i.e.
πpqq “ q1 if and only if q1 is the unique state mandated by Lemma 30 (with πpsq “ s). Indeed,
π is precisely what has been computed in [7, Section 4] in the form of a pruned automaton.
Consider matrix Π P t0, 1u|Q|ˆ|Q| such that Πi,j “ 1 if and only if πpiq “ j. Combining PLeft
and Theorem 35, we express the problem of computing vector ℓ of left limits given vector λ

of characters as the unique solution of:
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xs “ 0,

p@q ‰ sqp0 ă xq ă 1q,
pσ ` 2q ¨ x “ λ ` Π⊺ ¨ x

The third equation reminds of the condition for x to be an eigenvector of Π⊺, with λ acting
as a corrective term. This intuition can be made formal. In fact, if we denote by I the
|Q| ˆ |Q| identity matrix, it is easily verified that:

ˆ

Π⊺ I

0 pσ ` 2qI

˙

¨

ˆ

x

λ

˙

“ pσ ` 2q
ˆ

x

λ

˙

As already stated, we consider the above model unsatisfactory since we would need to
know Π in advance. Finally, for the right limits case, we define the constraint satisfaction
program PRight by substituting max for min in p3q of PLeft :

p3˚q pσ ` 2q ¨ xq “ λpqq ` max
␣

xq1 | δpq1q “ q
(

, p@q P Qztsuq

The discussion made for PLeft computing ℓ can be translated into a discussion for PRight
computing the vector of right limits r by exchanging min-arguments into max-arguments.
The key observation is that Lemma 33, rephrased in terms of max-paths, still holds.

6 Conclusions

One of the goals of this paper was to study the problem of building, given a Wheeler language
presented by its minimum accepting automaton, a Wheeler accepting automaton of minimum
size. Such minimum Wheeler DFA is proved to be, in general, exponential in size with
respect to the size of the minimum input DFA. The lower bound is proved by exhibiting an
example of DFA whose size explodes exponentially when we perform the “splits” necessary
to guarantee the order characterizing Wheeler-ness. Moreover, and most importantly, this
happens even when the width of the input DFA is just 2. We point out that the latter
phenomenon is a sort of exception: for most classic operations, once the width is fixed we
are able to put polynomial bounds on their complexity.

The above result is illustrated while introducing a simple view on DFAs and WDFAs, that
starts from a mapping of strings into rational numbers. According to this rational embedding,
automaton’s states can be (over)approximated by convex sets (intervals) of rational numbers
and the basic Wheeler properties turn out to be translated into ordering and non-intersecting
constraint on the collection of states-intervals. Moreover, a characterisation of the number of
digits necessary to identify left and right limits of states-intervals can be carried out analysing
the underlying automaton’s transition function and using the Wheeler order of its states.

The latter technique suggests also that the infinite alternation of strings reaching different
states (the so-called entanglement of states) can be linked with the existence, position, and
distribution of accumulation points of the collection of embedding of prefixes of strings
on the r0, 1q half-open interval of the real line. An interesting further direction of study
is the characterisation of order-types obtainable by rationals corresponding to embedding
of prefixes of general, not necessarily Wheeler, languages. The final section is devoted to
propose a further angle from which the problem of determining digits of limiting rationals
can be approached, namely constraint programming.
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A Proofs

Proof of Lemma 19. Since Iq
q is the convex closure of Iq, it is Iq Ď Iq

q and the “if” implication
is immediate. If it were ℓ R Iq ^ ℓq P Iq

q , by considering U “ Iqztℓqu we would get a convex
set U Ě Iq strictly contained in Iq

q which is a contradiction. ◀

Proof of Corollary 21. We deal with left limits only since the argument for right limits is
entirely similar. If both ℓq and ℓq1 are not periodic, by Lemma 20 and the fact that D is
deterministic it must be the case that ℓq ‰ ℓq1 .

Otherwise, by Lemma 18 we have that, say, ℓq P Iq
q and ℓq1 R Iq

q1 . By Lemma 20 this means
that ℓq1 is a periodic rational while ℓq is not. Since the largest digit of Σ will never label a
state (see Remark 9), the two rational numbers ℓq and ℓq1 cannot possibly be equal. ◀

Proof of Lemma 26. Suppose, without loss of generality, that λpuq ă λpvq. It is clear that:

ru “ 0.λpuq ¨ ¨ ¨ ă 0.λpvq ¨ ¨ ¨ “ ℓv.

Thus, their respective intervals do not intersect. ◀

Proof of Lemma 27. pðq The case for t and t1 is clearly true (see Table 1). Consider two
twin states u and u1, respectively from the top and the bottom level of D2. By construction,
there exist α, β P Σ˚ such that:
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0.α1 ă 0.α2 ă 0.β3 ă 0.β4

“ “ “ “

ℓu ℓu1 ru ru1

Thus, Iq
u X Iq

u1 ‰ H.
pñq We prove the contrapositive. The case for states denoted by different letters is simple

(see again Table 1). Let u and v be two non-twin states denoted by the same letter and
different indexes, and suppose, without loss of generality, that u “ si,j and v “ si1,j1 (all
other cases are proved in a similar way). We have two cases. If j “ j1 and i ă i1, then:

rv “ 0.5j6675i5i1´i´1667 ¨ ¨ ¨ ă 0.5j6675i67 ¨ ¨ ¨ “ ℓu

and their respective intervals do not intersect. Otherwise, if j ă j1, then:

rv “ 0.5j5j1
´j667 ¨ ¨ ¨ ă 0.5j667 ¨ ¨ ¨ “ ℓu

and, again, their respective intervals do not intersect. ◀

Proof of Lemma 30. By Lemma 20, we have:

ℓq “ 0.aq,1 ¨ ¨ ¨ aq,haq,h`1 ¨ ¨ ¨ aq,h`j “ 0.λpqqaq,2 ¨ ¨ ¨ aq,haq,h`1 ¨ ¨ ¨ aq,h`j .

Let q1 be the first state visited after q by left_dd (q), we have:

ℓq1 “

#

0.aq,2 ¨ ¨ ¨ aq,haq,h`1 ¨ ¨ ¨ aq,h`j , if h ą 0,

0.aq,2 ¨ ¨ ¨ aq,j´1λpqq, if h “ 0.

Since all the above values are expressed in base σ ` 2 it is

pσ ` 2q ¨ ℓq “ λpqq.aq,2 ¨ ¨ ¨ aq,haq,h`1 ¨ ¨ ¨ aq,h`j “ λpqq ` ℓq1

as claimed. The uniqueness of q1 follows from Corollary 21. ◀

Proof of Lemma 33. First of all, the unique px, sq-min-path is ps, s, . . . q. Therefore, the
j-th digit of xs is λpsq for every j. If q ‰ s, we prove the lemma by induction on j ě 1. In
what follows, we denote by xq,j the j-th digit of xq, and we let pqiqiě1 be any px, qq-min-path.
Base. By Definition 32 and constraints of PLeft we have λpq1q ď pσ ` 2q ¨ xq ă λpq1q ` 1.

Thus, xq,1 “ λpq1q.
Step. Let j ą 1, and suppose the property holds for every state and every j1 ă j. Sequence

pq2, q3, . . . q is a px, q2q-min-path. Thus:

xq,j “ xq2,j´1 pConstraint 3 of PLeft and Def. 32q
“ λpqjq pInduction hypothesis on q2 and j ´ 1q

◀
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1 Introduction

Periodicity and repetitive structure in strings are important concepts in the field of stringology
and have applications in various areas, such as pattern matching and data compression. A
string u is called a period-string (or simply a period) of string T if T = uku′ holds for some
positive integer k and some prefix u′ of u. While periods accurately capture the repetitive
structure of strings, the definition is too restrictive. In contrast, alternative concepts that
capture a sort of periodicity with relaxed conditions have been studied. A cover (a.k.a. quasi-
period) of a string is a typical example of such a concept [5, 6]. A string v is called a cover of
T if every character in T lies within some occurrence of v. In other words, T can be written as
a repetition of occurrences of v that are allowed to overlap. By definition, a cover of T must
occur as both a prefix and a suffix of T , and such string is called a border of T . Therefore, a
cover of T is necessarily a border of T . For instance, v = aba is a cover for S = abaababa,
and v is both a prefix and a suffix of T . Then, the string v = aba of length 3 can be regarded
as an “almost” period-string in S while the shortest period-string of S is abaab of length
5. Thus, covers can potentially discover quasi-repetitive structures not captured by periods.
The concept of covers (initially termed quasi-periods) was introduced by Apostolico and
Ehrenfeucht [5, 6]. Subsequently, an algorithm to compute the shortest cover offline in
linear time was proposed by Apostolico et al. [7]. Furthermore, an online and linear-time
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24:2 Shortest Cover After Edit

method was presented by Breslauer [9]. Gawrychowski et al. explored cover computations in
streaming models [14]. In their problem setting, the computational complexity is stochastic.
Other related work on covers can be found in the survey paper by Mhaskar and Smyth [20].

In this paper, we investigate the changes in the shortest cover of a string T when T

is edited and design algorithms to compute it. As mentioned above, the shortest cover
of T is necessarily a border of T , so we first consider how to compute borders when T

is edited. To the best of our knowledge, there is only one explicitly-stated result on the
computation of borders in a dynamic setting: the longest border of a string S (equivalently,
the smallest period of S) can be maintained in O(|S|o(1)) time per character substitution
operation (Corollary 19 of [2]). Also, although is not stated explicitly, an O(log3 n)-time
(w.h.p.) algorithm can be obtained by using the results on the PILLAR model in dynamic
strings [11]. We are unsure whether their results can be applied to compute the shortest
cover in a dynamic string. Instead, we focus on studying the changes in covers when a factor
is edited only once. We believe that this work will be the first step towards the computation
of covers for a fully-dynamic string. We now introduce two problems: the LBAE (longest
border after-edit) query and the SCAE (shortest cover after-edit) query for the input string
T of length n. The LBAE query (resp., the SCAE query) is, given an edit operation on the
original string T as a query, to compute the longest border (resp., the shortest cover) of the
edited string. We note that, after we answer a query, the edit operation is discarded. That is,
the following edit operations are also applied to the original string T . This type of problem
is called the after-edit model [3]. Also, in our problems, the edit operation includes insertion,
deletion, or substitution of strings of length one or more. Our main contribution is designing
an O(n)-size data structure that can answer both LBAE and SCAE queries in O(ℓ log n) time,
where ℓ is the length of the string being inserted or substituted. The data structures can be
constructed in O(n) time.

Related Work on After-Edit Model

The after-edit model was formulated by Amir et al. [3]. They proposed an algorithm to
compute the longest common factor (LCF) of two strings in the after-edit model. This
problem allows editing operations on only one of the two strings. Abedin et al. [1] subsequently
improved their results. Later, Amir et al. [4] generalized this problem to a fully-dynamic
model and proposed an algorithm that maintains the LCF in Õ(n 2

3 ) time1 per edit operation.
Charalampopoulos et al. [10] improved the maintenance time to amortized Õ(1) time with
high probability per substitution operation. Urabe et al. [23] addressed the problem of
computing the longest Lyndon factor (LLF) of a string in the after-edit model. The insights
gained from their work were later applied to solve the problem of computing the LLF of a
fully-dynamic string [4]. Problems of computing the longest palindromic factor and unique
palindromic factors in a string were also considered in the after-edit model [13, 12, 21].

2 Preliminaries

2.1 Basic Definitions and Notations
Strings. Let Σ be an alphabet. An element in Σ is called a character. An element in Σ⋆ is
called a string. The length of a string S is denoted by |S|. The string of length 0 is called
the empty string and is denoted by ε. If a string S can be written as a concatenation of

1 The Õ(·) notation hides poly-logarithmic factors.
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three strings p, f and s, i.e., S = pfs, then p, f and s are called a prefix, a factor, and a
suffix of S, respectively. Also, if |p| < |S| holds, p is called a proper prefix of S. Similarly,
s is called a proper suffix of S if |s| < |S| holds. For any integer i, j with 1 ≤ i ≤ j ≤ |S|,
we denote by T [i] the i-th character of S, and by T [i..j] the factor of S starting at position
i and ending at position j. For convenience, let T [i′..j′] = ε for any i′, j′ with i′ > j′. For
two strings S and T , we denote by LCP(S, T ) the longest common prefix of S and T . Also,
we denote by lcp(S, T ) the length of LCP(S, T ). If f = S[i..i + |f | − 1] holds, we say that f

occurs at position i in S. Let occS(f) = {i | f = S[i..i + |f | − 1]} be the set of occurrences of
f in S. Further let coverS(f) = {p | p ∈ [i, i + |f | − 1] for some i ∈ occS(f)} be the set of
positions in S that are covered by some occurrence of f in S. A string f is called a cover of
S if coverS(f) = {1, . . . , |S|} holds. A string b is called a border of a non-empty string S if b

is both a proper prefix of S and a proper suffix of S. We say that S has a border b when b is
a border of S. By definition, any non-empty string has a border ε. If a string S has a border
b, integer p = |S| − |b| is called a period of S. We sometimes call the smallest period of S

the period of S. Similarly, we call the longest border of S the border of S, and the shortest
cover of S the cover of S. Also, we denote by per(S), bord(S), and cov(S) the period of S,
the border of S, and the cover of S, respectively. The rational number |S|/per(S) is called
the exponent of S. We say that S is periodic if per(S) ≤ |S|/2. A string S is said to be
superprimitive if cov(S) = S.

After-edit Model. The after-edit model is, given an edit operation on the input string T as a
query, to compute the desired objects on the edited string T ′ that is obtained by applying the
edit operation to T . Note that in the after-edit model, each query, namely each edit operation,
is discarded after we finish computing the desired objects on T ′, so the next edit operation
will be applied to the original string T . In this paper, edit operations consist of inserting a
string and substituting a factor with another string. Note that factor substitutions contain
factor deletions since substituting a factor with the empty string ε is identical to deleting
the factor. We denote an edit operation as ϕ(i, j, w) where 1 ≤ j ≤ |T |, 1 ≤ i ≤ j + 1 and
w ∈ Σ⋆: if i ≤ j, ϕ(i, j, w) means to substitute T [i..j] for w. If i = j + 1, ϕ(i, j, w) means to
insert w just after T [i− 1]. In both cases, the resulting string is T ′ = T [1..i− 1]wT [j + 1..|T |]
and thus T ′[i..i + |w| − 1] = w. For a given query ϕ(i, j, w), let Li,j = T [1..i − 1] and
Ri,j = T [j + 1..|T |]. We will omit the subscripts when they are clear from the context. Thus,
T ′ = LwR. We consider the two following problems with the after-edit model:

LBAE (Longest Border After-Edit) query✓ ✏
Preprocess: A string T of length n.
Query: An edit-operation ϕ(i, j, w).
Output: The longest border of T ′ = Li,jwRi,j .✒ ✑
SCAE (Shortest Cover After-Edit) query✓ ✏

Preprocess: A string T of length n.
Query: An edit-operation ϕ(i, j, w).
Output: The shortest cover of T ′ = Li,jwRi,j .✒ ✑

In the following, we fix the input string T of arbitrary length n > 0. Also, we assume that
the computation model in this paper is the word-RAM model with word size Ω(log n). We
further assume that the alphabet Σ is linearly-sortable, i.e., we can sort n characters from
the input string in O(n) time.

CPM 2024
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2.2 Combinatorial Properties of Borders and Covers
This subsection describes known properties of borders and covers.

Periodicity of Borders

Let us consider partitioning the set BT of borders of a string T of length n. Let G1, G2, . . . , Gm

be the sets of borders of T such that {G1, G2, . . . , Gm} is a partition of BT and for each
set, all borders in the same set have the same smallest period. Let pk be the period of
borders belonging to Gk. Without loss of generality, we assume that they are indexed so
that pk > pk+1 for every 1 ≤ k < m. We call Gk the k-th group. Then, the following fact is
known:

▶ Proposition 1 ([17, 16]). For the partition {G1, G2, . . . , Gm} of BT defined above, the
following statements hold:
1. For each 1 ≤ k ≤ m, the lengths of borders in the k-th group can be represented as a

single arithmetic progression with common difference pk.
2. If a group contains at least three elements, the borders in the group except for the shortest

one are guaranteed to be periodic.
3. The number m of sets is in O(log n).

Properties of Covers

The following lemma summarizes some basic properties of covers, which we will use later.

▶ Lemma 2 ([9, 22]). For any string T , the following statements hold.
1. The cover cov(T ) of T is either cov(bord(T )) or T itself.
2. cov(T ) is superprimitive and non-periodic.
3. Let v be a cover of T , and u be a factor of T which is shorter than v. Then u is a cover

of T if and only if u is a cover of v.

2.3 Algorithmic Tools
This subsection shows algorithmic tools we will use later.

Border Array and Border-group Array

The border array BT of a string T is an array of length n such that BT [i] stores the length of
the border of T [1..i] for each 1 ≤ i ≤ n. Also, for convenience, let BT [0] = 0 for any string T .
There is a well-known online algorithm for linear-time computation of the border array (e.g.,
see [15]). While the worst-case running time of the algorithm is O(n) per a character, it can
be made O(log n) by constructing B with the strict border array proposed in [17].

▶ Lemma 3 ([15, 17]). For each 1 ≤ i ≤ n, if we have T [1..i − 1] and BT [1..i−1], then we
can compute BT [1..i] in worst-case O(log n) time and amortized O(1) time given the next
character T [i].

Next, we introduce a data structure closely related to the border array. The border-group
array BGT of a string T is an array of length n such that, for each 1 ≤ i ≤ n, BGT [i] stores
the length of the shortest border of T [1..i] whose smallest period equals per(T [1..i]) if such
a border exists, and BGT [i] = i otherwise. By definition, if T [1..i] is a border of T and
it belongs to group Gk, then BGT [i] stores the first (the smallest) term of the arithmetic
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a b a b a b a a b a b a b a a b a

0 0 0 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10
1 2 2 2 2 2 2 7 7 7 7 7 7 7 7 7 7
- - 1 2 2 2 2 1 2 2 2 2 2 2 7 7 7
1 2 3 2 3 2 3 8 9 10 11 12 13 14 8 9 10

i
T [i]
BT [i]

per(T [1.. i])
per(bord(T [1.. i]))

BGT [i]

Figure 1 An example of a border array and a border-group array. For position i = 7, the period
of T [1..7] is 2. All borders of T [1..7] are ababa, aba, a, and ε. Also, their smallest periods are 2, 2,
1, and 0, respectively. Thus BGT [7] = |aba| = 3. For position i = 8, the period of T [1..8] is 7. Any
border of T [1..8] does not have period 7, and thus BGT [8] = i = 8.

progression representing the lengths of borders in Gk. This is why we named BGT the
border-group array. Also, the common difference pk = i− BT [i] can be obtained from BT if
BGT [i] ̸= i. See Figure 1 for an example. We can compute the border-group array in linear
time in an online manner together with BT . Before proving it, we note a fact about periods.

▶ Proposition 4. If u is a factor of v, then per(u) ≤ per(v).

▶ Lemma 5. For each 1 < i ≤ n, if we have T [1..i− 1], BT [1..i−1], and BGT [1..i−1], then we
can compute BGT [1..i] in amortized O(1) time given the next character T [i].

Proof. By definition, BT [1..1] = [0] and BGT [1..1] = [1]. Assume that we have BT [1..i−1],
BGT [1..i−1], and T [1..i] for i ≥ 2. By Lemma 3, we can obtain BT [1..i] in amortized O(1) time.
Now let p = i−BT [1..i][i] and q = BT [1..i][i]−BT [1..i][BT [1..i][i]], meaning that p = per(T [1..i])
and q = per(bord(T [1..i])). If p = q, then we set BGT [1..i][i] = BGT [1..i−1][BT [1..i][i]] since
per(T [1..i]) = per(bord(T [1..i])). Otherwise, per(T [1..i]) > per(bord(T [1..i])), and thus, the
period of any border of T [1..i] is smaller than per(T [1..i]) by Proposition 4. Hence we set
BGT [1..i][i] = i. The running time of the algorithm is (amortized) O(1). ◀

Longest Common Extension Query

The longest common extension query (in short, LCE query) is, given positions i and j within
T , to compute lcp(T [i..|T |], T [j..|T |]). We denote the answer of the query as lceT (i, j). We
heavily use the following result in our algorithms.

▶ Lemma 6 (E.g., [8]). We can answer any LCE query in O(1) time after O(n)-time and
space preprocessing on the input string T .

Prefix Table

The prefix table ZS of a string S of length m is an array of length m such that ZS [i] =
LCP(S, S[i..m]) for each 1 ≤ i ≤ m.

▶ Lemma 7 ([19, 15]). Given a string S of length m over a general unordered alphabet, we
can compute the prefix table ZS in O(m) time2.

We emphasize that this linear-time algorithm does not require linearly-sortability of the
alphabet.

2 The algorithm described in [15] is known as Z-algorithm, so we use Z to represent the prefix table.
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L w R

b RRb

 =T′ 

Figure 2 A border of T ′ which is longer than R is written as bR where b is a border of Lw.

Internal Pattern Matching

The internal pattern matching query (in short, IPM query) is, given two factors u, v of T

with |v| ≤ 2|u|, to compute the occurrences of u in v. The output is represented as an
arithmetic progression due to the lengths constraint and periodicity [18]. If u occurs in v, we
denote by rightend(u, v) the ending position of the rightmost occurrence of u in v.

▶ Lemma 8 ([18]). We can answer any IPM query in O(1) time after O(n)-time and space
preprocessing on the input string T ,

3 Longest Border After Edit

This section proposes an algorithm to solve the LBAE problem. In the following, we assume
that |L| ≥ |R| and |w| ≤ |L|/2 for a fixed query ϕ(i, j, w). Because, when |L| < |R|, running
our algorithm on the reversal inputs can answer LBAE queries without growing complexities.
Also, if |w| > |L|/2, then |w| > |T ′|/5 holds since T ′ = LwR and |L| ≥ |R|. We can obtain
the border of T ′ in O(|T ′|) = O(|w|) time by computing the border array of T ′ from scratch.

We compute the border of T ′ in the following two steps. Step 1: Find the longest border
of T ′ which is longer than R. Step 2: Find the longest border of T ′ of length at most |R| if
nothing is found in step 1. Step 2 can be done in constant time by pre-computing all borders
of T and the longest border of T of length at most k for each k with 1 ≤ k ≤ n. Thus
we focus on step 1, i.e., how to find the longest border of T ′ which is longer than R. We
observe that such a border is the concatenation of some border of Lw and R (see Figure 2).
By pre-computing the border array BT , the border array BLw of Lw can be computed in
O(|w| log n) time starting from BL = BT [1..|L|] (Lemma 3). Let bLw be the border of Lw.
There are two cases: (i) |bLw| ≤ |w| or (ii) |bLw| > |w|. We call the former case the short
border case and the latter case the long border case.

3.1 Short Border Case
In this case, the length of the border of T ′ = LwR is at most |bLwR| ≤ |wR| ≤ |Lw|, so
its prefix-occurrence ends within Lw. Also, for any border b of Lw, string bR is a border
of T ′ if and only if lceT ′(|b|+ 1, |Lw|+ 1) = |R| holds. Thus, we pick up each border b of
Lw in descending order of length and check whether bR is a border of T ′ by computing
lceT ′(|b|+ 1, |Lw|+ 1). Since Lw has at most |w| borders, constant-time LCE computation
results in a total of O(|w|) time. If |b|+ |R| ≤ |L| then we can use the LCE data structure
on the original string T since lceT ′(|b|+ 1, |Lw|+ 1) = lceT (|b|+ 1, j + 1) holds. Otherwise,
we may compute the longest common prefix of w and some suffix of R, which cannot be
computed by applying LCE queries on T naïvely. To resolve this issue, we compute the
prefix table ZW of W in O(|W |) = O(|w|) time where W = w · R[|R| − |w|+ 1..|R|] is the
concatenation of w and the length-|w| suffix of R. Note that |R| > |w| holds here since
|R| > |L| − |b| ≥ |L| − |w| ≥ |w| by the assumptions in this case. Then the longest common
prefix of w and any suffix of R of length at most |w| is obtained in constant time, and so is
lceT ′(|b|+ 1, |Lw|+ 1). Therefore, we can compute lceT ′(|b|+ 1, |Lw|+ 1) for all borders b of
Lw in a total of O(|w| log n) time.
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L w RL w R =T′ 

bLw

 =T′ 

bLw

bLw

w

bLw

w

Figure 3 Left: If bLw is not longer than L, then w occurs within L as a suffix of the prefix-
occurrence of bLw in L. Right: If bLw is longer than L, then w occurs within L because of the
periodicity of bLw.

3.2 Long Border Case
Firstly, we give some observations for the long border case; |bLw| > |w|. If |bLw| ≤ |L|, then
w = L[|bLw| − |w| + 1..|bLw|] holds. If |bLw| > |L|, then the period pLw of Lw is pLw =
|Lw| − |bLw| < |Lw| − |L| = |w|. Let k be the smallest integer such that kpLw ≥ |w|. Since
k ≥ 2, kpLw ≤ 2(k−1)pLw < 2|w| ≤ |L| holds. Thus w = L[|L|−kpLw + 1..|L|−kpLw + |w|]
holds (see also Figure 3). Thus, in both cases, w occurs within L, which is a factor of the
original T . From this observation, any single LCE query on T ′ can be simulated by constant
times LCE queries on T because any LCE query on w = T ′[|L|+1..|L|+ |w|] can be simulated
by a constant number of LCE queries on another occurrence of w within L. Therefore, in
the following, we use the fact that any LCE query on T ′ = LwR can be answered in O(1)
time as a black box.

Now, we show some properties of the border of T ′. As we mentioned in Proposition 1,
the sets of borders of Lw can be partitioned into m ∈ O(log n) groups w.r.t. their smallest
periods. Let G1, G2, . . . , Gm be the groups such that pk > pk+1 for every 1 ≤ k < m, where
pk is the period of borders in Gk. Next, let us assume that there exists a border of T ′ which
is longer than R. Let b⋆ be the border of Lw such that b⋆R is the border of T ′. Further let
k⋆ be the index of the group to which b⋆ belongs. There are three cases: (i) b⋆ is periodic
and per(b⋆) = pk⋆ = per(b⋆R), (ii) b⋆ is periodic and per(b⋆) = pk⋆ ̸= per(b⋆R), or (iii) b⋆ is
not periodic. The first two cases are illustrated in Figure 4. For the case (i), the following
lemma holds. Here, for a group Gk, let αk be the exponent of the longest prefix of T ′ with
period pk.

▶ Lemma 9. If b⋆ is periodic and pk⋆ = per(b⋆R), then |b⋆| ≤ αk⋆pk⋆ − |R| holds.

Proof. Assume the contrary that |b⋆| > αk⋆pk⋆−|R| holds. Then |b⋆R|/pk⋆ > αk⋆ holds. This
contradicts the maximality of αk⋆ since b⋆R occurs as a prefix of T ′ and per(b⋆R) = pk⋆ . ◀

For the case (ii), the following lemma holds. Here, for a group Gk, let rk = lceT ′(|T ′| − |R| −
pk + 1, |T ′| − |R|+ 1).

▶ Lemma 10. If b⋆ is periodic and pk⋆ ̸= per(b⋆R), then |b⋆| = αk⋆pk⋆ − rk⋆ holds.

Proof. Since the period of b⋆ is pk⋆ , the longest prefix of T ′[|T ′|− |b⋆R|+ 1..|T ′|] with period
pk⋆ is of length |b⋆| + rk⋆ . Thus, by the definition of αk⋆ , αk⋆pk⋆ = |b⋆| + rk⋆ holds since
T ′[1..|b⋆R|] = T ′[|T ′| − |b⋆R|+ 1..|T ′|]. Therefore, |b⋆| = αk⋆pk⋆ − rk⋆ . ◀

Clearly, if pk⋆ = per(b⋆R), then rk⋆ = |R| holds. Hence, by combining the two above lemmas,
we obtain the next corollary:
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L w R =T′ 

b⋆ Rb⋆ R
pk⋆

L w R =T′ 

b⋆ R
pk⋆

b⋆ R
pk⋆

rk⋆

Figure 4 Left: Illustration for the case (i) b⋆ is periodic and per(b⋆) = pk⋆ = per(b⋆R). The period
pk⋆ repeats five times and a little more in T ′. Then |b⋆| is at most the length of the repetition minus
|R| (Lemma 9). Right: Illustration for the case (ii) b⋆ is periodic and per(b⋆) = pk⋆ ≠ per(b⋆R).
Since the maximal repetition of period pk⋆ ends within R, the length |b| is equal to the length of
the maximal repetition minus rk⋆ where rk⋆ is the length of the suffix of the repetition that enters
R (Lemma 10).

▶ Corollary 11. If b⋆ is periodic, then b⋆ is the longest border of Lw whose length is at most
αk⋆pk⋆ − rk⋆ .

Based on this corollary, we design an algorithm to answer the LBAE queries.

Algorithm

The idea of our algorithm is as follows: given a query, we first initialize candidates-set C = ∅,
which will be a set of candidates for the length of the border of T ′. Next, for each group of
borders of Lw, we calculate a constant number of candidates from the group and add their
lengths to the candidates-set C (the details are described below). In the end, we choose the
maximum from C and output it.

Now we consider the k-th group Gk for a fixed k and how to calculate candidates. If
|Gk| ≤ 2, we just try to extend each border in Gk to the right by using LCE queries on T ′,
and if the extension reaches the right-end of T ′, we add its length to C. Note that we do
not care about the periodicity of borders here. Otherwise, we compute αk and rk by using
LCE queries on T ′. Let b̃k be the longest element in Gk whose length is at most αkpk − rk,
if such a border exists. If b̃k is defined, we check whether b̃kR is a border of T ′ or not, again
by using an LCE query on T ′. If b̃kR is a border of T ′, we add its length to C. Also, we
similarly check whether bmin

k R is a border of T ′, and if so, add its length to C, where bmin
k is

the shortest element in Gk, which may be non-periodic.

Correctness

If a group Gk contains at least three elements, the borders in Gk except for the shortest one
are periodic (Proposition 1). Namely, any non-periodic border of Lw is either an element
of a group whose size is at most two, or the shortest element of a group whose size is at
least three. Both cases are completely taken care of by our algorithm. For periodic borders,
it is sufficient to check the longest border b̃k of Lw whose length is at most αkpk − rk for
each group Gk by Corollary 11. Therefore, the length of the border of T ′ must belong to the
candidates-set C obtained at the end of our algorithm.

Running Time

Given a query ϕ(i, j, w), we can obtain the border array BLw and the border-group array
BGLw in O(|w| log n) time from BT [1..|L|] and BGT [1..|L|] (Lemmas 3 and 5). Thus, by using
those arrays, while we scan the groups G1, . . . , Gm, we can determine whether the current
group Gk has at least three elements or not, and compute the first term and the common
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difference of the arithmetic progression representing the current group Gk both in constant
time. All the other operations consist of LCE queries on T ′ and basic arithmetic operations,
which can be done in constant time. Finally, we choose the maximum from C, which can be
done O(|C|) time. Since we add at most two elements to C when we process each group, the
size of C is in O(m). Thus the total running time is in O(|w| log n + m) ⊆ O(|w| log n) since
m ∈ O(log n).

To summarize this section, we obtain the following theorem.

▶ Theorem 12. The longest border after-edit query can be answered in O(ℓ log n) time after
O(n)-time preprocessing, where ℓ is the length of the string to be inserted or substituted
specified in the query.

4 Shortest Cover After Edit

This section proposes an algorithm to solve the SCAE problem. Firstly, we give additional
notations and tools. For a string S and an integer k with 1 ≤ k ≤ |S|, range(S, k) denotes
the largest integer r such that S[1..k] can cover S[1..r]. Next, we give definitions of two
arrays C(T ) and R(T ) introduced in [9]. The former C(T ) is called the cover array and
stores the length of the cover of each prefix of T , i.e., C(T )[k] = |cov(T [1..k])| for each k

with 1 ≤ k ≤ n. For convenience, let C(T )[0] = 0. The latter R(T ) is called the range
array that stores the values of range function only for superprimitive prefixes of T , i.e., for
each k, R(T )[k] = range(T, k) if cov(T [1..k]) = T [1..k], and otherwise R(T )[k] = 0, meaning
undefined. Cover array and range array can be computed in O(n) time given T in an online
manner [9]. In describing our algorithm, we use the next lemma:

▶ Lemma 13. Assume that we already have data structure DT consisting of the IPM data
structure on T of Lemma 8, border array B(T ), cover array C(T ), range array R(T ), and
an array R⋆ of size n initialized with 0. Given a query ϕ(i, j, w), we can enhance DT in
O(|w| log n) time so that we can obtain cov((Lw)[1..k]) for any k with 1 ≤ k ≤ |Lw| and
range(Lw, k′) for any k′ such that 1 ≤ k′ ≤ |L| and cov(L[1..k′]) = L[1..k′] in O(1) time.

Due to lack of space, we only give the idea of the proof of Lemma 13. To prove the lemma,
we first review Breslauer’s algorithm [9] that computes C(T ) and R(T ) for a given string T

in an online manner (Algorithm 1). By Lemma 3, we can compute B(Lw) in O(|w| log n)
time if B(L) and w are given. Since Algorithm 1 runs in an online manner, if we have C(L)
and R(L) in addition to B(Lw), then it is easy to obtain C(Lw) and R(Lw) in O(|w|) time
by running Algorithm 1 starting from the (|L| + 1)-th iteration. However, we only have
C(T ) and R(T ), not C(L) and R(L). The idea of our algorithm for Lemma 13 is to simulate
C(L · w[1..t− 1]) and R(L · w[1..t− 1]) while iterating the while-loop of Algorithm 1 from
t = 1 (idx = |L|+ 1) to t = |w| (idx = |L|+ |w|). We also show a complete pseudocode in
Algorithm 2.

Note that we can prepare the input DT of Lemma 13 in O(n) time for a given T .

Overview of Our Algorithm for SCAE Queries

To compute the cover of T ′, we first run the LBAE algorithm of Section 3. Then, there are
two cases: (i) The non-periodic case, where the length of bord(T ′) is smaller than |T ′|/2, or
(ii) the periodic case, the other case.
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Algorithm 1 Algorithm to compute C(T ) proposed in [9].

Require: The border array B(T ) of string T , and two arrays C[0..n] = R[0..n] = 0.
Ensure: C = C(T ) and R = R(T )

1: idx ← 1
2: while idx ≤ n do
3: clen ← C[B(T )[idx ]] ▷ clen < idx always holds.
4: if clen > 0 and R[clen] ≥ idx − clen then
5: C[idx ]← clen
6: R[clen]← idx ▷ When T [1..idx ] is not superprimitive, R[clen] is updated to idx .
7: else
8: C[idx ]← idx
9: R[idx ]← idx ▷ When T [1..idx ] is superprimitive, R[idx ] is newly defined.

10: end if
11: idx ← idx + 1
12: end while

4.1 Non-periodic Case
Let b = bord(T ′) and c = cov(b). By the first statement of Lemma 2, cov(T ′) = cov(bord(T ′))
if cov(bord(T ′)) can cover T ′, and cov(T ′) = T ′ otherwise. In the following, we consider how
to determine whether c = cov(bord(T ′)) is a cover of T ′ or not.

Let s be the maximum length of the prefix of Lw that c can cover. Further let t be the
maximum length of the suffix of wR that c can cover if |c| ≤ |wR|, and t = |c| otherwise. By
Lemma 13, the values of s and t can be obtained in O(|w| log n) time by computing values
of range(Lw, |c|) and range((wR)R, |c|) since c = cov(b) is superprimitive (by the second
statement of Lemma 2), where (wR)R denotes the reversal of wR. If s + t ≥ |T ′| then c is a
cover of T ′. Thus, cov(T ′) = c, and the algorithm is terminated.

We consider the other case, where s + t < |T ′|. The inequality s + t < |T ′| means that
the occurrences of c within Lw or wR cannot cover the middle factor T ′[s + 1..|T ′| − t] of
T ′. Thus, if c is a cover of T ′ when s + t < |T ′|, then c must have an occurrence that starts
in L and ends in R. Such an occurrence can be written as a concatenation of some border
of Lw which is longer than w and some (non-empty) prefix of R. Similar to the method in
Section 3.2, we group the borders of Lw using their periods and process them for each group.
Again, let G1, . . . , Gm be the groups sorted in descending order of their smallest periods.

Let us fix a group Gk arbitrarily. If |Gk| ≤ 2, we simply try to extend each border in Gk

to the right by using LCE queries. Now we use the following claim:

▷ Claim 14. For a border z of Lw with |z| > |w|, the value of lceT ′(|z|+ 1, |Lw|+ 1) can be
computed in constant time by using the LCE data structure of Lemma 6 on T .

This claim can be proven by similar arguments as in the first paragraph of Section 3.2. Thus,
the case of |Gk| ≤ 2 can be processed in constant time. If |Gk| > 2, we use the period pk of
borders in Gk. Let αk be the exponent of the longest prefix of T ′ with period pk. Further let
rk = lceT ′(|T ′|− |R|−pk +1, |T ′|− |R|+1). Note that αkpk < |c| since c is a prefix of T ′ and
is non-periodic. See also Figure 5. By using LCE queries on T ′, αk and rk can be computed
in constant time. For a border z in Gk, T ′[|z|+ 1..|c|] = T ′[|Lw|+ 1..|Lw|+ |c| − |z|] holds
only if |z| = αkpk − rk. Thus, the only candidate for a border in Gk which can be extended
to the right enough is of length exactly αkpk − rk if it exists. The existence of such a border
can be determined in constant time since the lengths of the borders in Gk are represented
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Algorithm 2 Algorithm to compute data structures which can simulate C(Lw) and R(Lw).

Require: B(T ), C(T ), R(T ), R⋆[1..n] = 0, and ϕ(i, j, w).
Ensure: (i) Cw[1..|w|] = C(Lw)[|L|+ 1..|Lw|] and (ii) R⋆[k] = R(Lw)[k] if 1 ≤ k ≤ |Lw| and

R(T )[k] ̸= R(Lw)[k] > |L|, and R⋆[k] = 0 otherwise.
1: idx ← |L|+ 1 ▷ Starting from (|L|+ 1)-th position.
2: while idx ≤ |Lw| do
3: clen ← C(T )[B(T )[idx ]]
4: if clen > 0 then ▷ T [1..clen] is superprimitive.
5: if R⋆[clen] ̸= 0 then
6: r ← R⋆[clen]
7: else if R(T )[clen] ≤ |L| then
8: r ← R(T )[clen]
9: else ▷ R⋆[clen] = 0 and R(T )[clen] > |L|

10: r ← rightend(T [1..clen], T [|L| − 2clen + 2..|L|])
11: end if
12: if r ≥ idx − clen then ▷ r = R(L · w[1..idx − |L|])[clen]
13: Cw[idx − |L|]← clen
14: R⋆[clen]← idx ▷ (Lw)[1..idx ] is not superprimitive.
15: idx ← idx + 1
16: continue ▷ Go to the next iteration.
17: end if
18: end if
19: Cw[idx − |L|]← idx
20: R⋆[idx ]← idx ▷ (Lw)[1..idx ] is superprimitive.
21: idx ← idx + 1
22: end while

as an arithmetic progression. If such a border of length αkpk − rk exists, then we check
whether it can be extended to the desired string c by querying an LCE. Therefore, the total
computation time is O(1) for a single group Gk, and O(log n) time in total for all groups
since there are O(log n) groups.

To summarize, we can compute cov(T ′) in O(|w| log n) for the non-periodic case.

4.2 Periodic Case
In this case, T ′ can be written as (uv)ku for some integer k ≥ 2 and strings u, v with
|uv| = per(T ′) since T ′ is periodic. By the third statement of Lemma 2, cov(T ′) = cov(uvu)
holds since uvu is a cover of T ′. Thus, in the following, we focus on how to compute cov(uvu).
We further divide this case into two sub-cases depending on the relation between the lengths
of uvu and Lw.

If |uvu| ≤ |Lw|, then uvu is a prefix of Lw. Thus, by Lemma 13, cov(uvu) =
cov((Lw)[1..|uvu|]) can be computed in O(|w| log n) time.

If |uvu| > |Lw|, then T ′ = uvuvu since |uvu| > n/2. We call the factor T [|uv|+1..|uvu|] =
u the second occurrence of u. Also, since |L| ≥ |R| = |T ′| − |Lw| > |T ′| − |uvu| = |vu|, both
R and L are longer than uv. Thus vu is a suffix of R and uv is a prefix of L. Now let us
consider the border of uvu.

▶ Lemma 15. If the period of a string T ′ = uvuvu is |uv|, then the border of uvu is not
longer than |uv|.
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pk pk

z

L w R =T′ 

c

z

rk
αkpk

Figure 5 Illustration for the non-periodic case. Here, c is non-periodic, z is some border of
Lw, and pk is the period of z. If there is an occurrence of c starting in R and ending in R, then
|z| = αkpk − rk must hold since c is non-periodic.

 =T′ 

b

p

u v u v u

L w R

b

Figure 6 Illustration for a contradiction if we assume that uvu has a border which is longer than
|uv|. Since T ′ = uvuvu, if uvu has a period which is smaller than |u| then T ′ also has the same
period.

Proof. If uvu has a border that is longer than |uv|, uvu has a period p which is smaller than
|u|. Then the length-p prefix of the second occurrence of u repeats to the left and the right
until it reaches both ends of T ′ (see Figure 6). This contradicts that per(T ′) = |uv|. ◀

Therefore, the border of uvu is identical to the longest border of T whose length is at most
|uv|, which can be obtained in constant time after O(n)-time preprocessing as in step 2 of
Section 3. By the first statement of Lemma 2, cov(uvu) is either cov(bord(uvu)) or uvu.
Since |bord(uvu)| ≤ |uv| < |Lw|, cov(bord(uvu)) can be obtained in O(|w| log n) time by
Lemma 13. Let x = cov(bord(uvu)). Thanks to Lemma 16 below, we do not have to scan
O(log n) groups, unlike the non-periodic case.

▶ Lemma 16. When |uvu| > |Lw|, string x = cov(bord(uvu)) covers uvu if and only if
range(Lw, |x|) ≥ |uvu| −max{|u|, |x|} holds.

Proof. Let r = range(Lw, |x|). We divide the proof into three cases.
The case when |x| ≤ |u|/2: In this case, x is a border of u and the occurrence of x as

the prefix of the second occurrence of u ends within Lw. ( =⇒ ) If x covers uvu, then
r ≥ |uv|+ |x| > |uv| = |uvu| − |u|. (⇐= ) If r ≥ |uvu| − |u| = |uv| holds, then x covers
uvx and u. Hence x covers uvu (see the left figure of Figure 7).

The case when |u|/2 < |x| ≤ |u|: In this case, x is a border of u and its prefix-suffix
occurrences in u share the center position ⌈|u|/2⌉ of u. ( =⇒ ) Assume the contrary, i.e.,
x covers uvu and r < |uv|. Since x covers uvu, there exists an occurrence of x that covers
position r + 1. Also, since r < |uv|, the occurrence does not end within Lw. Thus, the
occurrence must cover the center position ⌈|u|/2⌉ of the second occurrence of u. Now,
there are three distinct occurrences of x that cover the same position ⌈|u|/2⌉, however, it
contradicts that x = cov(bord(uvu)) is non-periodic (the second statement of Lemma 2).
( ⇐= ) Similar to the previous case, if r ≥ |uvu| − |u| = |uv| holds, then x covers uvx

and u. Hence x covers uvu.
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x
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x

x

|uvu | − |u | |uvu | − |x |
x

Figure 7 Left: Illustration for the case |x| ≤ |u|. Right: Illustration for the case |x| > |u|.

The case when |x| > |u|: Let s = |uvu| − |x|. In this case, x occurs at positions s + 1 and
|uv|+ 1. Thus, the occurrences share position |uv|+ 1, which is the first position of the
second occurrence of u (see the right figure of Figure 7). ( =⇒ ) Assume the contrary, i.e.,
x covers uvu and r < s. Similar to the previous case, there must be an occurrence of x

such that the occurrence covers position r + 1 and does not end within Lw. Then, there
are three distinct occurrences of x that cover the same position |uv|+ 1, which leads to a
contradiction with the fact that x is non-periodic. ( ⇐= ) This statement is trivial by
the definitions and the conditions. ◀

Therefore, if range(Lw, |x|) ≥ |uvu|−max{|u|, |x|} then the cover of uvu is x. Otherwise, the
cover of uvu is uvu itself. Further, by Lemma 13, the value of range(Lw, |x|) can be obtained
in O(|w| log n) time since x = cov(bord(uvu)) is superprimitive and |x| ≤ |uv| < |Lw|.

To summarize, we can compute cov(T ′) in O(|w| log n) for the periodic case.
Finally, we have shown the main theorem of this paper:

▶ Theorem 17. The shortest cover after-edit query can be answered in O(ℓ log n) time after
O(n)-time preprocessing, where ℓ is the length of the string to be inserted or substituted
specified in the query.

5 Conclusions and Discussions

In this paper, we introduced the problem of computing the longest border and the shortest
cover in the after-edit model. For each problem, we proposed a data structure that can be
constructed in O(n) time and can answer any query in O(ℓ log n) time where n is the length
of the input string, and ℓ is the length of the string to be inserted or replaced.

As a direction for future research, we are interested in improving the running time. For
LBAE queries, when the edit operation involves a single character, an O(log(min{log n, σ}))
query time can be achieved by exploiting the periodicity of the border: we pre-compute
all one-mismatch borders and store the triple of mismatch position, mismatch character,
and the mismatch border length for each mismatch border. The number of such triples
is in O(n). Furthermore, the number of triples for each position is O(min{log n, σ}) due
to the periodicity of borders. Thus, by employing a binary search on the triples for the
query position, the query time is O(log(min{log n, σ})). However, this algorithm stores all
mismatch borders and cannot be straightforwardly extended to editing strings of length two
or more. It is an open question whether the query time of LBAE and SCAE queries can be
improved to O(ℓ + log log n) for an edit operation of length-ℓ string in general. Furthermore,
applying the results obtained in this paper to a more general problem setting, particularly
the computation of borders/covers in a fully-dynamic string, is a future work that needs
further exploration.
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Abstract
Any function f with domain {1, . . . , m} and co-domain {1, . . . , n} induces a natural map from words
of length n to those of length m: the ith letter of the output word (1 ≤ i ≤ m) is given by the
f(i)th letter of the input word. We study this map in the case where f is a surjection satisfying the
condition |f(i+1)−f(i)| ≤ 1 for 1 ≤ i < m. Intuitively, we think of f as describing a “walk” on a
word u, visiting every position, and yielding a word w as the sequence of letters encountered en route.
If such an f exists, we say that u generates w. Call a word primitive if it is not generated by any
word shorter than itself. We show that every word has, up to reversal, a unique primitive generator.
Observing that, if a word contains a non-trivial palindrome, it can generate the same word via
essentially different walks, we obtain conditions under which, for a chosen pair of walks f and g,
those walks yield the same word when applied to a given primitive word. Although the original
impulse for studying primitive generators comes from their application to decision procedures in
logic, we end, by way of further motivation, with an analysis of the primitive generators for certain
word sequences defined via morphisms.
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1 Introduction

Take any word over some alphabet, and, if it is non-empty, go to any letter in that word.
Now repeat the following any number of times (possibly zero): scan the current letter, and
print it out; then either remain at the current letter, or move one letter to the left (if possible)
or move one letter to the right (if possible). In effect, we are going for a walk on the input
word. Since any unvisited prefix or suffix of the input word cannot influence the word we
print out, they may as well be ablated; letting u be the factor of the input word comprising
the scanned letters, and w the word printed out, we say that u generates w. It is obvious
that every word generates itself and its reversal, and that all other words it generates are
strictly longer than itself. We ask about the converse of generation. Given a word w, what
words u generate it? Call a word primitive if it is not generated by any word shorter than
itself. It is easy to see that every word must have a generator that is itself primitive. We
show that this primitive generator is in fact unique up to reversal. On the other hand, while
primitive generators are unique, the generating walks need not be, and this leads us to ask,
for a given pair of walks, whether we can characterize those primitive words u for which they
output the same word w. We answer this question in terms of the palindromes contained
in u. Specifically, for a primitive word u, the locations and lengths of the palindromes it
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(a) Example of generation.
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a x b x̃ a x b
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X

(b) The minimal leg J = [V, W ] (of length ℓ) of some walk.

Figure 1 Generation and minimal legs.

contains determine which pairs of walks yield identical outputs on u. As an illustration of
the naturalness of the notion of primitive generator, we consider word sequences over the
alphabet {1, . . . , k} generated by the generalized Rauzy morphism σ, which maps the letter
k to the word 1, and any other letter i (1 ≤ i < k) to the two-letter word 1 · (i+1). Setting
α

(k)
1 = 1 and α(k)

n+1 = σ(α(k)
n ) for all n ≥ 1, we obtain the word sequence {α(k)

n }n≥1. We show
that every word in this sequence from the kth onwards has the same primitive generator.

2 Principal results

Fix some alphabet Σ. We use a, b, c . . . to stand for letters of Σ, and u, v, w, . . . to stand
for words over Σ. The concatenation of two words u and v is denoted uv, or sometimes,
for clarity, u · v. For integers i, k we write [i, k] to mean the set {j ∈ Z | i ≤ j ≤ k}. If
u = a1 · · · an is a (possibly empty) word over Σ, and f : [1,m] → [1, n] is a function, we write
uf to denote the word af(1) · · · af(m) of length m. We think of f as telling us where in the
word u we should be at each time point in the interval [1,m]. Define a walk to be a surjection
f : [1,m] → [1, n] satisfying |f(i+1)−f(i)| ≤ 1 for all i (1 ≤ i < m). These conditions ensure
that, as we move through the letters af(1) · · · af(m), we never change our position in u by
more than one letter at a time, and we visit every position of u at least once. If w = uf for f
a walk, we say that u generates w. We may picture a walk as a piecewise linear function, with
the generated word superimposed on the abscissa and the generating word on the ordinate.
Fig. 1a shows how u = cbadefgh generates w = abcbaaadefedadefghgf.

If u = a1 · · · an is a word, denote the length of u by |u| = n, and the reversal of u by
ũ = an · · · a1. Generation is evidently reflexive and reverse-reflexive: every word generates
both itself and its reversal. Moreover, if u generates w, then |u| ≤ |w|; in fact, u and ũ are
the only words of length |u| generated by u. We call u primitive if it is not generated by
any word shorter than itself – equivalently, if it is generated only by itself and its reversal.
For example, babcd and abcbcd are not primitive, because they are generated by abcd; but
abcbda is primitive. Since the composition of two walks is a walk, generation is transitive: if
u generates v and v generates w, then u generates w. Define a primitive generator of w to be
a primitive word that generates w. It follows easily from the above remarks that every word
w has some primitive generator u, and indeed, ũ as well, since the reversal of a primitive
generator of w is obviously also a primitive generator of w. The principal result of this paper
is that there are no others:

▶ Theorem 1. The primitive generator of any word is unique up to reversal.
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As an immediate consequence, if u is the primitive generator of w, and v generates w, then u
generates v. Theorem 1 is relatively surprising: let u and v be primitive words. Now suppose
we go for a walk on u and, independently, go for a walk on v; recalling the stipulation that
the two walks visit every position in the words they apply to, the theorem says that, provided
only that u ̸= v and u ̸= ṽ, there is no possibility of coordinating these walks so that the
sequences of visited letters are the same.

A palindrome is a word u such that u = ũ; a non-trivial palindrome is one of length at
least 2. If u is a non-trivial palindrome, then it is not primitive. Indeed, if |u| is even, then u
has a double letter in the middle, and so is certainly not primitive (it is generated by the
word in which one of the occurrences of the doubled letter is deleted); if |u| is odd, then it is
generated by its prefix of length (|u|+1)/2 < |u| (start at the beginning, go just over half
way, then return to the start). Call a word uniliteral if it is of the form an for some letter a
and some n ≥ 0. Note that the empty word ϵ counts as uniliteral.

▶ Corollary 2. Every uniliteral word has precisely one primitive generator; all others have
precisely two.

Proof. By Theorem 1, if w is any word, its primitive generators are of the form u and ũ for
some word u. The first statement of the corollary is obvious: if w = ϵ then u = ũ = ϵ; and if
u = an for some n (n ≥ 1), then u = ũ = a. If w is not uniliteral, then |u| > 1. But since
non-trivial palindromes cannot be primitive, u ̸= ũ. ◀

Yet another way of stating Theorem 1 is to say that, for any fixed word w, the equation
uf = w has exactly one primitive solution for u, up to reversal. The same is not true, however,
of solutions for f , even if we fix the choice of primitive generator (either u or ũ). Indeed,
u = abcbd is one of the two primitive generators of w = abcbcbd, but we have uf = w for
f : [1, 7] → [1, 5] given by either of the courses of values [1, 2, 3, 4, 3, 4, 5] or [1, 2, 3, 2, 3, 4, 5].
Let u be a primitive word. Say that u is perfect if uf = ug implies f = g for any walks f and
g on u. Thus, abcbd is primitive but not perfect. On the other hand, it is easy to characterize
those primitive words that are perfect:

▶ Theorem 3. Let u be a word. Then u is perfect if and only if it contains no non-trivial
palindrome as a factor.

Theorem 3 tells us that generating walks are uniquely determined as long as the primitive
generator u does not contain a non-trivial palindrome, but gives us little information if u
does contain a non-trivial palindrome. In that case, we would like a characterization of which
pairs of walks on u yield identical words. We answer this question in terms of the positions
of the palindromes contained in u. Let u = a1 · · · an be a word. We denote the ith letter of
u by u[i] = ai, and the factor of u from the ith to jth letters by u[i, j] = ai · · · aj . If u[i, j]
is a non-trivial palindrome, call the ordered pair ⟨i, j⟩ a defect of u, and denote the set of
defects of u by ∆u. Regarding ∆u as a binary relation on the set [1, n], we write ∆∗

u for its
equivalence closure, the smallest reflexive, symmetric and transitive relation including ∆u.
The interplay between defects and walks is then summed up in the following theorem.

▶ Theorem 4. Let u be a primitive word of length n, and f , g walks with domain [1,m] and
co-domain [1, n]. Then uf = ug if and only if ⟨f(i), g(i)⟩ ∈ ∆∗

u for all i ∈ [1,m].

The motivation for the study of primitive generators comes from the study of the decision
problem in (fragments of) first-order logic, in presentations where the logical variables
are taken to be x1, x2, . . . , and all signatures are assumed to be purely relational. Call
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a first-order formula φ index-normal if, for any quantified sub-formula Qxkψ of φ, ψ
is a Boolean combination of formulas that are either atomic with free variables among
x1, . . . , xk, or have as their major connective a quantifier binding xk+1. By re-indexing
variables, any first-order formula can easily be written as a logically equivalent index-normal
formula. We call an index-normal formula adjacent if, in any atomic sub-formula, the indices
of neighbouring arguments never differ by more than 1. For example, an atomic sub-formula
p(x4, x4, x5, x4, x3) is allowed, but an atomic sub-formula q(x1, x3) is not. It was shown in [1]
that the problem of determining validity for adjacent formulas is decidable. A key notion
in analysing this fragment is that of an adjacent type. Let A be a structure interpreting
some relational signature, and ā a tuple of elements from its domain, A. Define the adjacent
type of ā (in A) to be the set of all adjacent atomic formulas q(x̄) satisfied by ā in A. If we
think now of ā as a word over the (possibly infinite) alphabet A, it can easily be shown that
the adjacent type of ā is determined by the adjacent type of its primitive generator. Thus,
models of formulas can be unambiguously constructed by specifying only the adjacent types
of primitive tuples, a crucial technique in establishing decidability of satisfiability.

Notwithstanding its logical genealogy, the concept of primitive generator may be of
interest in its own right within the field of string combinatorics. For illustration, consider the
sequences of words {α(k)

n }n≥1 over the alphabet {1, . . . , k}, defined by setting α(k)
1 = 1 and

α
(k)
n+1 = σ(α(k)

n ), where σ : {1, . . . , k}∗ → {1, . . . , k}∗ is the monoid endomorphism given by

σ(i) =
{

1 · (i+ 1) if i < k

1 if i = k.

(Here, the operator · represents string concatenation, not integer multiplication!) For k = 2,
we obtain the so-called Fibonacci word sequence 1, 12, 121, 12112, . . . ; for k = 3, we obtain
the tribonacci word sequence 1, 12, 1213, 1213121, . . . ; and so on. A simple induction
shows that, for all k ≥ 2 and all n > k, α(k)

n = α
(k)
n−1α

(k)
n−2 · · ·α(k)

n−k. In other words, each
element of the sequence {α(k)

n }n≥1 after the kth is the concatenation, in reverse order, of
the previous k elements; for this reason, the word sequence obtained is referred to as the
k-bonacci word sequence. A simple proof also shows that α(k)

n is always a left-prefix of α(k)
n+1,

so that we may speak of the infinite word ω(k) defined by taking the limit limn→∞ α
(k)
n in

the obvious sense. Thus, the infinite word ω(2) = 12112 · · · is the (infinite) Fibonacci word,
and ω(3) = 1213121 · · · the (infinite) tribonacci word. The Fibonacci word is an example of a
Sturmian word (see, e.g. [3, Ch. 6] for an extensive treatment). The morphism yielding the
tribonacci word is sometimes called the Rauzy morphism [6, p. 149] (see also [4, Secs. 10.7
and 10.8]). Intriguingly, for a fixed k, all but the first k elements of {α(k)

n }n≥1 share the
same primitive generator:

▶ Theorem 5. For all k ≥ 2, there exists a word γk such that, for all n ≥ k, γk is the
primitive generator of α(k)

n .

The proof of Theorem 5 exploits a feature of the words α(k)
n that is obvious when one

computes a few examples: they are riddled with palindromes. As one might then expect in
view of Theorem 4, for all k and all n ≥ k, the primitive generator γk generates α(k)

n via
many different walks – in fact via walks beginning at any position of γk occupied by the
letter 1.
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3 Uniqueness of primitive generators

The following terminology will be useful. (Refer to Fig. 1a for motivation.) Let f : [1,m] →
[1, n] be a walk, with m > 1. By a leg of f , we mean a maximal interval [i, j] ⊆ [1,m] such
that, for h in the range i ≤ h < j, the difference d = f(h+1)−f(h) is constant. We speak
of a descending, flat or ascending leg, depending on whether d is −1, 0 or 1. The length of
the leg is j−i. A leg [i, j] is initial if i = 1, final if j = m, terminal if it is either initial or
final, and internal if it is not terminal. A number h which forms the boundary between two
consecutive legs will be called a waypoint. We count the numbers 1 and m as waypoints by
courtesy, and refer to them as terminal waypoints; all other waypoints are internal. Thus, a
walk consists of a sequence of legs from one waypoint to another. If h is an internal waypoint
where the change is from an increasing to a decreasing leg, we call h a peak; if the change is
from a decreasing to an increasing leg, we call it a trough. Not all waypoints need be peaks
or troughs, because some legs may be flat; however, it is these waypoints that will chiefly
concern us in the sequel.

▶ Lemma 6. A word u is not primitive if and only if it is of any of the following forms, where
a, b are letters and x, y, z are words: (i) xaay, (ii) bx̃axby, (iii) ybx̃axb or (iv) yaxbx̃axbz.

Proof. Straightforward: see full version [5]. ◀

In the sequel, we shall primarily employ the if-direction of Lemma 6. It easily follows
from Cases (i) and (ii) of Lemma 6 that, over the alphabet {1, 2}, there are exactly five
primitive words: ϵ, 1, 2, 12, and 21. However, over any larger alphabet, there are infinitely
many. For example, over the alphabet {1, 2, 3}, the set of primitive words is easily seen to be
given by the regular expression [(ϵ+3+23)(123)∗(ϵ+1+12)]+ [(ϵ+2+32)(132)∗(ϵ+1+13)].
Over alphabets of any finite size, the set of primitive words is context-sensitive. This follows
from the fact that the four patterns of Lemma 6 define context-sensitive languages, together
with the standard Boolean closure properties of context-sensitive languages.

We shall occasionally need to consider a broader class of functions than walks. Define a
stroll to be a function f : [1,m] → [1, n] satisfying |f(i+1)−f(i)| ≤ 1 for all i (1 ≤ i < m).
Thus, a walk is a stroll which is surjective. Let f : [1,m] → [1, n] be a stroll. If f(i) = f(j) for
some i, j (1 < i < j < m) define the function f ′ : [1,m−j+i] → [1, n] by setting f ′(h) = f(h)
if 1 ≤ h ≤ i, and f ′(h) = f(h+j−i) otherwise. Intuitively, f ′ is just like f , but with the
interval [i, j−1] – equivalently, the interval [i+1, j] – removed. Evidently, f ′ is a also a stroll,
and we denote it by f/[i, j]. For the cases i = 1 or j = m, we change the definition slightly,
as no analogue of the condition f(i) = f(j) is required. Specifically if 1 ≤ i < j ≤ m, define
the functions f ′ : [1,m−j + 1] → [1, n] and f ′′ : [1, i] → [1, n] by f ′(h) = f(j+h−1) and
f ′′(h) = f(h). Intuitively, f ′ is just like f , but with the interval [1, j−1] removed, and f ′′ is
just like f , but with the interval [i+1,m] removed. Again f ′ and f ′′ are also strolls, and we
denote them by f/[1, j] and f/[i,m], respectively.

With these preliminaries behind us, we give an outline sketch of the proof Theorem 1.
The proof proceeds by contradiction, supposing that u and v are primitive words such that
neither u = v nor u = ṽ, and w is a word generated from u by some walk f and from v by
some walk g. Write |w| = m. Crucially, we may assume without loss of generality that w
is a shortest counterexample – that is, a shortest word for which such u, v, f and g exist.
Observe that, since u and v are primitive, they feature no immediately repeated letter. So
suppose w does – i.e. is of the form w = xaay for some words x, y and letter a. Letting
i = |x|+1, we must therefore have f(i) = f(i+1) and g(i) = g(i+1). Now let f ′ = f/[i, i+1],
g′ = g/[i, i+1] and w′ = w[1, i] · w[i+2,m]. We see that f ′ is surjective if f is, and similarly
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25:6 Walking on Words

for g′, and moreover that w′ = uf ′ = vg′ , contrary to the assumption that w is shortest.
Hence w contains no immediately repeated letters, whence all legs of f and g are either
increasing or decreasing, and all internal waypoints are either peaks or troughs.

We claim first that at least one of f or g must have an internal waypoint. For if not, we
have w = u or w = ũ and w = v or w = ṽ, whence u = v or u = ṽ, contrary to assumption.
It then follows that both f and g have an internal waypoint. For suppose f has an internal
waypoint (either a peak or a trough); then w is not primitive. But if g does not have an
internal waypoint, w = v or w = ṽ, contrary to the assumption that v is primitive.

We use upper case letters in the sequel to denote integers in the range [1, n] which are
somehow significant for the walks f or g: note that these need not be waypoints. Let ℓ
denote the minimal length of a leg on either of the walks f or g. Without loss of generality,
we may take this minimum to be achieved on a leg of f , say [V,W ].

We suppose for the present that this leg is internal. Fig. 1b illustrates this situation where V
is a peak and W a trough; but nothing essential would change if it were the other way around.
Write U = V − ℓ and X = W+ℓ. By the minimality of [V,W ] (assumed internal), U ≥ 1 and
X ≤ m; moreover, f is monotone on [U, V ], [V,W ] and [W,X]. Now let w[U ] = a, w[V ] = b

and w[U+1, V − 1] = x. Since V is a waypoint on f , w[W ] = a and w[V+1,W − 1] = x̃.
Similarly, w[X] = b and w[W+1, X−1] = ˜̃x = x. We see immediately that g must have
a waypoint in the interval [U+1, X−1], for otherwise, v (or ṽ) contains a factor axbx̃axb,
contrary to the assumption that v is primitive (Lemma 6, case (iv)). Let Y be the waypoint
on g which is closest to either of V or W . Replacing w by its reversal if necessary, assume
that |Y−V | ≤ |Y −W |, and write k = |Y−V |. We consider possible values of k ∈ [0, ℓ−1] in
turn, deriving a contradiction in each case.

Case (i): k = 0 (i.e. Y = V ). For definiteness, let us suppose that Y is a peak, rather than
a trough, but the reasoning is entirely unaffected by this determination. By the minimality of
the leg [V,W ], g has no other waypoints in the interval [U+1,W − 1], and g(U) = g(W ). By
inspection of Fig. 1b, it is also clear from the minimality of the leg [V,W ] that f ′ = f/[U,W ]
is surjective (and hence a walk). We see immediately that the stroll g′ = g/[U,W ] is not
surjective. Indeed, if it were, writing w′ = w[1, U ] ·w[W+1, n], we would have w′ = uf ′ = vg′ ,
contrary to the assumption that w is a shortest counterexample. In other words, there are
positions of v which g reaches over the range [U+1,W −1]) that it does not reach outside this
range. It follows that the position g(V ) = g(Y ) in the string v is actually terminal. (Since we
are assuming that Y is a peak, g(Y ) = |v|; but the following reasoning is unaffected if Y is a
trough and g(Y ) = 1.) It also follows that W itself cannot be a waypoint of g. For otherwise,
the leg following W , which is of length at least ℓ, covers all values in g([U,W ]), thus ensuring
that g′ is surjective, which we have just shown to be false. However, g must have some
waypoint in [V+1, X − 1]. For if not, then g is decreasing between V and X (remember
that g(Y ) = g(V ) = |v|), and thus v has a suffix bx̃axb, contrary to the assumption that v
is primitive (Lemma 6 case (iii)). By the minimality of the leg [V,W ], we see that there is
exactly one such waypoint, say Z. Since we have already shown that Y is the only waypoint
on g in [U+1,W−1], and that W is not a waypoint on g, it follows that Z ∈ [W+1, X−1].

Now let j = Z − W . (Thus, 1 ≤ j < ℓ.) If j > 1
2ℓ, we obtain the situation depicted

in Fig. 2a. Since g has a waypoint at Z and remembering that w[W+1, X − 1] = x and
w[X] = b, we see that x has the form ybzcz̃ for some strings y and z and some letter
c = w[Z]. But we also know that g(V ) = g(Y ) = |v|, the final position of v, so that v has
a suffix xb = (ybzcz̃)b, and hence the suffix bzcz̃b, contrary to the assumption that v is
primitive (Lemma 6 case (iii)). Furthermore, if j = 1

2ℓ, then, by the same reasoning, x has
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(a) The condition j = Z − W > 1
2 ℓ.
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(b) The condition j = Z − W < 1
2 ℓ.

Figure 2 The walk g has waypoints at Y = V and at Z.

the form zcz̃ and a = b. Again then, v has a suffix bzcz̃b, contrary to the assumption that
v is primitive. We conclude that j < 1

2ℓ, and we obtain the situation depicted in Fig. 2b.
Now let c = w[Z] and y = w[W+1, Z−1]. By considering the waypoint Z on g, we see
that w[Z,Z+j] = cỹa, whence w[W,W+2j] = aycỹa. By considering the waypoint W on f ,
we see that also w[W−2j,W ] = aycỹa, whence w[W−2j,W+j] = aycỹayc. But there are
no waypoints of g strictly between V = Y < W−2j and Z, whence ṽ contains the factor
aycỹayc, contrary to the supposition that v is primitive (Lemma 6 case (iv)).

Case (ii): 1 ≤ k ≤ 1
3 ℓ. We may have either Y > V or Y < V : Fig. 3a shows the former

case; however, the reasoning in the latter is almost identical. Let w[V ] = b and w[Y ] = c.
Furthermore, let w[V+1, Y − 1] = y. Since V is a waypoint of f , we have w[V−k] = c and
w[V−k+1, V−1] = ỹ, whence w[Y−2k, Y ] = w[V−k, Y ] = cỹbyc. Since Y is a waypoint of
g, we have w[Y, Y+2k] = cỹbyc, whence w[V, V+3k] = bycỹbyc. And since ℓ ≥ 3k, there is
no waypoint on f in the interval w[V+1, V+3k − 1], whence ũ contains the factor bycỹbyc,
contrary to the assumption that u is primitive (Lemma 6 case (iv)).

Case (iii): 1
3 ℓ < k < 1

2 ℓ. Again, in this case, we may have either Y > V or Y < V .
This time (for variety) assume the latter; however, the reasoning in the former case is
almost identical. Thus, we have the situation depicted in Fig. 3b. Let w[V ] = b, w[Y ] = c

and w[Y+1, V−1] = y. Since Y is a waypoint on g, we see that w[Y − k] = b and
w[Y−k+1, Y−1] = ỹ, whence w[V−2k, V ] = w[Y−k, V ] = bỹcyb. Since V is a waypoint on
f , we see that also w[V, V+2k] = bỹcyb. Thus, u contains the factor bỹcyb and v contains
the factor cybỹc; moreover w[Y, Y+3k] = cybỹcyb.

Now let Z be the next waypoint on g after Y . It is immediate that Z−Y < 3k, since
otherwise, v contains the factor cybỹcyc, contrary to the assumption that v is primitive
(Lemma 6 case (iv)). We consider three possibilities for the point Z, depending on where,
exactly, Z is positioned in [V+k, V+2k] = [Y+2k, Y+3k]. The three possibilities are
indicated in Fig. 4, which shows the detail of Fig. 3b in that interval. Suppose (a) that
V+k < Z < V+ 3

2k. Then, by inspection of Fig. 4a, y must be of the form xdx̃cz for some
letter d and strings x and z. But we have already argued that u contains the factor

bỹcyb = b(xdx̃cz)−1c(xdx̃cz)b = b(z̃cxdx̃)c(xdx̃cz)b
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(a) Condition k ≤ 1
3 ℓ; for illustration, Y > V .
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2 ℓ; for illustration, Y < V .

Figure 3 The walk g has a waypoint at Y with k = |V − Y | ≥ 1.

V + k

V + 2k

Z

c d c b

x x̃ z

(a) Z < V + 3
2 k.

V + k
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Z

b d b

x x̃

(b) Z = V + 3
2 k.

V + k

V + 2k

Z

c b d b

z x x̃

(c) Z > V + 3
2 k.

Figure 4 The location of Z with respect to V + 3
2 k in Case (iii).

and hence the factor cxdx̃cxd contrary to the assumption that u is primitive (Lemma 6 case
(iv)). Suppose (b) that Z = V+ 3

2k. Then, by inspection of Fig. 4b, y must be of the form
xdx̃ for some letter d and string x, and furthermore, b = c. But in that case u contains the
factor

bỹcyb = c(xdx̃)−1c(xdx̃)c = c(xdx̃)c(xdx̃)c

and hence the factor cxdx̃cxd again. Suppose (c) that V+ 3
2k < Z < V+2k. Then by

inspection of Fig. 4c, y must be of the form zbxdx̃ for some letter d and strings x and z. But
we have already argued that v contains the factor

cybỹc = c(zbxdx̃)b(zbxdx̃)−1c = c(zbxdx̃)b(xdx̃bz̃)c

and hence the factor bxdx̃bxd, again contrary to the assumption that u is primitive. This
eliminates all possibilities for the position of Z, and thus yields the desired contradiction.
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x a y b ỹ a y b ỹ b z
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ỹ
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f

g

Figure 5 Distinct walks f (solid) and g (dashed and solid) on u = xaybỹaz such that uf = ug.

The remaining cases, where k > ℓ/2, or where the shortest leg is initial or final, are omitted
because of space restrictions. See full version [5] for a complete proof.

4 Uniqueness of walks

In this short section, we prove Theorem 3, which states that a word is perfect if and only if
it contains no non-trivial palindrome as a factor.

For the only-if direction, suppose that u contains a non-trivial palindrome. If that
palindrome is odd, so that u has the form xaybỹaz, then the word xaybỹaybỹaz is generated
via the distinct walks f and g illustrated in Fig. 5. If the contained palindrome is even, so
that u has the form xaaz, then the word xaaaz is generated via distinct walks, one of which
pauses for one step on the first a, and the other on the second.

For the converse, suppose for contradiction that u is a word of length n containing no
non-trivial palindromes, for which there exist walks f and g such that uf = ug but f ̸= g.
Let u, f and g be chosen so that m = |uf | = |ug| is minimal. If f(i) = f(i+ 1) for some i, we
have g(i) = g(i+ 1), since otherwise, u contains a repeated letter, and therefore a palindrome
of length 2, contrary to assumption. But if both f(i) = f(i+ 1) and g(i) = g(i+ 1), then
the functions f ′ = f/[i, i+ 1] and g′ = g/[i, i+ 1] are defined, and are obviously walks, and
moreover we have uf ′ = ug′ and f ′ ̸= g′, contradicting the minimality of m. Hence, we
may assume that neither f nor g is ever stationary. We claim that f and g have the same
waypoints. For if i is an internal waypoint for f but not for g, we have f(i−1) = f(i+1),
u[g(i−1)] = u[f(i−1)] and u[g(i+1)] = u[f(i+1)], whence u[g(i−1)] = u[g(i+1)], so that
u contains an odd, non-trivial palindrome centred at g(i), contrary to assumption. This
establishes the claim that f and g have the same waypoints. Since u is certainly not itself a
non-trivial palindrome and f ̸= g, the walks f and g must have at least one internal waypoint
between them. Now take a shortest leg of f (which must also be a shortest leg of g), say
[j, j+ ℓ]. Suppose first that [j, j+ ℓ] is an internal leg (i.e. j < 1 and j+ ℓ < m). To visualize
the situation suppose V = j and W = j + ℓ in Fig. 1b. Taking into account the legs either
side, we see that f(j) = f(j + 2ℓ) and g(j) = g(j + 2ℓ), and moreover that f ′ = f/[j, j + 2ℓ]
and g′ = g/[j, j + 2ℓ] map [1,m − 2ℓ] surjectively onto [1, n]. Clearly, uf ′ = ug′ . But f
and g have the same waypoints over the interval [j, j + 2ℓ], whence f ̸= g implies f ′ ̸= g′,
contradicting the minimality of m. The cases where the shortest leg is terminal are handled
similarly.
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5 Words yielding the same results on distinct walks

In this section, we sketch the ideas behind the proof of Theorem 4, allowing us to characterize
those primitive words which are solutions of a given equation uf = ug, for walks f and g.

Let f ′ : [1,m] → [1, n] be a walk. If 1 ≤ j ≤ m, then the function f : [1,m+ 1] → [1, n]
given by

f(i) =
{
f ′(i) if i ≤ j

f ′(i−1) otherwise

is also a walk, longer by one step. We call f the hesitation on f ′ at j, as it arises by executing
f ′ up to and including the jth step, then pausing for one step, before continuing as normal.
We next proceed to define an operation of vacillation on f ′, also producing a strictly longer
walk. This operation has three forms, depending on whether it occurs at the start, in the
middle, or at the end of the walk. For any k (1 ≤ k < m), we define the initial vacillation
on f ′ over [1, k+1] to be the walk f : [1,m+k] → [1, n] given by

f(i) =
{
f ′(k+1−(i−1)) if i ≤ k + 1
f ′(i−k) otherwise.

Thus f arises by executing the first k + 1 steps of f ′ in reverse order and then continuing to
execute f ′ from the second step as normal. Likewise, we define the final vacillation on f ′

over [m−k,m] to be the walk f : [1,m+k] → [1, n] given by

f(i) =
{
f ′(i) if i ≤ m

f ′(m−(i−m)) otherwise.

Thus f arises by executing f ′ as normal and then repeating the k steps preceding the last in
reverse order. Finally, for any j (1 < j < m), and any k (1 ≤ k < j), we define the internal
vacillation on f ′ over [j−k, j] to be the walk f : [1,m+2k] → [1, n] given by

f(i) =


f ′(i) if i ≤ j

f ′(j−(i−j)) if j < i ≤ j + k

f ′(i− 2k) otherwise.

Thus f arises by executing f ′ up to the jth step, reversing the previous k steps back to the
(j−k)th step and then continuing from the (j − k + 1)th step as normal. A vacillation on f ′

is an initial, internal or final vacillation on f ′.
Let f ′ : [1,m] → [1, n] again be a walk. We proceed to define an operation of reflection on

f ′, producing a stroll (not necessarily surjective) of the same length. For any k (1 ≤ k < m),
we take the initial reflection on f ′ over [1, k+1] to be the function f defined on the domain
[1,m] by setting

f(i) =
{
f ′(k+1)−(f ′(i)−f ′(k+1)) if i ≤ k + 1
f ′(i) otherwise.

Thus f arises by reflecting the segment of f ′ over the interval [1, k+1] in the horizontal axis
positioned at height f ′(k + 1), and then continuing as normal (Fig. 6a). Likewise, we take
the final reflection on f ′ over [m−k,m] to be the function f defined on [1,m] by setting

f(i) =
{
f ′(m−k)−(f ′(i)−f ′(m−k)) if i ≥ m−k
f ′(i) otherwise.
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(c) Final.

Figure 6 The stroll f (dashed and solid) is a reflection on the walk f ′ (solid) over I (shaded).

Thus f arises by executing f ′ as normal up to the (m−k)th step, and then thereafter reflecting
the remaining segment of f ′ in the horizontal axis positioned at height f ′(m−k) (Fig. 6c).
Finally, for integers j, k (1 < j < m, 1 ≤ k ≤ min(j−1,m−j)) such that f ′(j−k) = f ′(j+k),
the internal reflection on f ′ over [j−k, j+k] is the function f defined on [1,m] by setting

f(i) =
{
f ′(j−k)−(f ′(i)−f ′(j−k)) if j−k ≤ i ≤ j+k
f ′(i) otherwise.

Thus f arises by executing f ′ up to the point j−k, then reflecting the segment of f ′ over the
interval [j−k, j+ k] in the horizontal axis positioned at height f ′(j−k) = f ′(j+k), thereafter
executing f ′ as normal (Fig. 6b). A reflection on f ′ is an initial, internal or final reflection
on f ′. As defined above, reflections can take values in the range [−n+1, 2n−1]; accordingly,
we call a reflection proper if all its values are within the interval [1, n], and in that case we
take the resulting function to have co-domain [1, n]. We shall only ever be concerned with
proper reflections in the sequel; and a proper reflection on a walk (more generally, on a stroll)
is evidently a stroll; there is no a priori requirement for it to be surjective.

Reflections are of most interest in connection with walks on words containing odd
palindromes. Let f ′ : [1,m] → [1, n] be a stroll, and u be a word of length n. We say that a
reflection f on f ′ is admissible for u if it is either: (i) an initial reflection over [1, k+1], and
u has a palindrome of length 2k+1 centred at f ′(k+1); (ii) a final reflection over [m−k,m],
and u has a palindrome of length 2k+1 centred at f ′(m−k); or (iii) an internal reflection
over [j−k, j+k], and u has a palindrome of length 2k+1 centred at f ′(j−k) = f ′(j+k). We
see by inspection of Fig. 6 that, if f is a reflection on f ′ admissible for u, then uf = uf ′ .

Suppose now f ′ and g′ are walks with domain [1,m] and co-domain [1, n]. If f and g are
hesitations on f ′ and g′, respectively, at some common point, we say that the pair of walks
⟨f, g⟩ is a hesitation on the pair ⟨f ′, g′⟩; similarly, if f and g are vacillations on f ′ and g′

over some common interval, we say that the pair of walks ⟨f, g⟩ is a vacillation on the pair
⟨f ′, g′⟩. Evidently, if u is a word such that uf ′ = ug′ and ⟨f, g⟩ is a hesitation or vacillation
on ⟨f ′, g′⟩, then uf = ug. If now f is a reflection on f ′ over some interval, we say that ⟨f, g′⟩
is a reflection on ⟨f ′, g′⟩, and also that ⟨g′, f⟩ is a reflection on ⟨g′, f ′⟩. Evidently, if the
reflection in question is (proper and) admissible for some word u such that uf ′ = ug′ , then
uf = ug′ . Note that hesitations/vacillations on pairs of strolls are hesitations/vacillations on
both of the strolls in question, while reflections on pairs of strolls are reflections on either of
the strolls in question.

Now let f ′ and g′ be walks, and suppose u is a word of length m such that uf ′ = ug′ . We
have seen that, if ⟨f, g⟩ is a hesitation or vacillation on ⟨f ′, g′⟩, or is a reflection on ⟨f ′, g′⟩
admissible for u, then uf = ug. The principal result of this section states that, for primitive
words, this is essentially the only way in which we can arrive at distinct walks f and g such
that uf = ug.
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▶ Lemma 7. Let u be a primitive word of length n, and let f and g be walks with domain
[1,m] and co-domain [1, n] such that uf = ug. Then there exist sequences of walks {fs}t

s=0
and {gs}t

s=0, all having co-domain [1, n], satisfying: (i) f0 = g0 is monotone; (ii) for all s
(0 ≤ s < t), ⟨fs+1, gs+1⟩ is a hesitation on ⟨fs, gs⟩, a vacillation on ⟨fs, gs⟩, or a reflection
on ⟨fs, gs⟩ admissible for u; and (iii) ft = f and gt = g.

Proof. Similar in character to the proof of Theorem 1. See full version [5] for details. ◀

Lemma 7 gives us everything we need for the proof of Theorem 4, which states that, for
a primitive word u of length n, and walks f, g : [1,m] → [1, n], we have uf = ug if and only
if ⟨f(i), g(i)⟩ ∈ ∆∗

u for all i ∈ [1,m]. Recall that ∆∗
u is the equivalence closure of ∆u, the

defect set of u.
The if-direction is almost trivial. Indeed, ⟨j, k⟩ ∈ ∆u certainly implies u[j] = u[k], whence

⟨j, k⟩ ∈ ∆∗
u also implies u[j] = u[k]. Thus, if ⟨f(i), g(i)⟩ ∈ ∆∗

u for all i ∈ [1,m], then
u[f(i)] = u[g(i)] for all i ∈ [1,m], which is to say uf = ug.

For the only-if direction, we suppose that uf = ug. By Lemma 7, we may decompose the
pair of walks ⟨f, g⟩ into a series {⟨fs, gs⟩}t

s=0 such that: (i) f0 = g0; (ii) for all s (0 ≤ s < t),
the pair ⟨fs+1, gs+1⟩ is obtained by performing a hesitation, vacillation, or an admissible (for
u) reflection on ⟨fs, gs⟩; and (iii) ⟨ft, gt⟩ = ⟨f, g⟩. We establish that the following holds for
all s (0 ≤ s ≤ t):

⟨fs(i), gs(i)⟩ ∈ ∆∗
u for all i in the domain of fs (= the domain of gs). (1)

Putting s = t then secures the required condition.
We proceed by induction on s. For the base case, where s = 0, we have f0 = g0, and

there is nothing to do. For the inductive step, we suppose (1), and show that the same holds
with s replaced by s+ 1. We have three cases.

Case 1. ⟨fs+1, gs+1⟩ is obtained by a hesitation on ⟨fs, gs⟩ at j. If i ≤ j then fs+1(i) = fs(i)
and gs+1(i) = gs(i); and by (1), ⟨fs(i), gs(i)⟩ ∈ ∆∗

u. If i > j then fs+1(i) = fs(i−1) and
gs+1(i) = gs(i−1); and by (1), ⟨fs(i−1), gs(i−1)⟩ ∈ ∆∗

u. Either way, ⟨fs+1(i), gs+1(i)⟩ ∈ ∆∗
u.

Case 2. ⟨fs+1, gs+1⟩ is a vacillation on ⟨fs, gs⟩. We consider the case of an internal
vacillation over some interval over [j−k, j]; initial and final vacillations are handled similarly.
Again, if i ≤ j then fs+1(i) = fs(i) and gs+1(i) = gs(i); and by (1), ⟨fs(i), gs(i)⟩ ∈ ∆∗

u.
If j < i ≤ j+k, then fs+1(i) = fs(j−(i−j)) and gs+1(i) = gs(j−(i−j)); and by (1),
⟨fs(j−(i−j)), gs(j−(i−j))⟩ ∈ ∆∗

u. Finally, if i > j+k, then fs+1(i) = fs(i−2k) and gs+1(i) =
gs(i−2k); and by (1), ⟨fs(i−2k), gs(i−2k)⟩ ∈ ∆∗

u.

Case 3. ⟨fs+1, gs+1⟩ is the result of a reflection on ⟨fs, gs⟩ over some interval [j−k, j+k],
with the reflection in question admissible for u. By exchanging f and g if necessary, we may
assume that fs+1 is a reflection on fs over [j−k, j+k], and gs+1 = gs; it does not matter
for the ensuing argument whether the reflection in question is internal, initial or final. If
i ̸∈ [j−k, j+k], then fs+1(i) = fs(i) and gs+1(i) = gs(i); and by (1), ⟨fs(i), gs(i)⟩ ∈ ∆∗

u.
So suppose i ∈ [j−k, k+j]. Since the reflection over [j−k, j+k] is admissible, the factor
u[fs(j−k), fs(j+k)] is a palindrome. Moreover, from the definition of reflection, either
u[fs+1(i), fs(i)] or u[fs(i), fs+1(i)] is a palindromic factor of u (depending on whether
fs+1(i) ≤ fs(i) or fs+1(i) ≥ fs(i)). That is, either ⟨fs+1(i), fs(i)⟩ ∈ ∆u or ⟨fs(i), fs+1(i)⟩ ∈
∆u. But by (1), ⟨fs(i), gs(i)⟩ = ⟨fs(i), gs+1(i)⟩ ∈ ∆∗

u. Hence ⟨fs+1(i), gs+1(i)⟩ ∈ ∆∗
u, again

as required. This concludes the induction, and hence the proof of the only-if direction.
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▶ Corollary 8. Let v1 and v2 be primitive words of length n. Then v1 and v2 satisfy the same
equations uf = ug, where f and g are walks with co-domain [1, n], if and only if ∆v1 = ∆v2 .

Proof. The if-direction is immediate from Theorem 4. For the only-if direction, suppose
v1 and v2 satisfy the same equations uf = ug. If v1 contains a non-trivial palindrome of
(necessarily odd) length, say, 2k + 1 centred at i, let f and g be walks as depicted in Fig. 5,
diverging at i and re-converging at i+ 2k. Thus vf

1 = vg
1 and hence vf

2 = vg
2 . But considering

f and g over the interval [i, i + k], the equation vf
2 = vg

2 clearly implies that v2 has a a
palindrome of length 2k + 1 centred at f(i) = g(i) = i, whence ∆v2 ⊇ ∆v1 . By symmetry,
∆v1 ⊇ ∆v2 ◀

For a treatment of the problem of finding palindromes in words, see [2, Ch. 8].

6 Primitive generators of some morphic words

In this section, we prove Theorem 5, which states that, for each k ≥ 2, all elements of the
k-bonacci sequence {α(k)

n }n≥1 from the kth onwards have the same primitive generator. In
the sequel, we employ decorated versions of α, β, γ as constants denoting words.

We work with an alternative, recursive definition of the words α(k)
n . For all k ≥ 1, let

βk = β′
k · k, where β′

k is recursively defined by setting β′
1 = ε and β′

k+1 = β′
k · k · β′

k for
all k ≥ 1. Now define, for any k ≥ 2 the sequence {α(k)

n }n≥1 by declaring, for all n ≥ 1:
α

(k)
n = βn if n ≤ k, and α(k)

n = α
(k)
n−1α

(k)
n−2 · · ·α(k)

n−k otherwise. A simple induction shows that
this definition of the α(k)

n coincides with that given in the introduction via morphisms. We
remark that |βk| = 2k−1, for all k ≥ 1.

We now define the primitive generators promised by Theorem 5. For all k ≥ 2, let
γ′

k = (k−1) · β′
k−1 and γk = γ′

k · k. We remark that |γk| = 2k−2+1, for all k ≥ 2. The
following two claims are easily proved by induction.

▷ Claim 9. For all k ≥ 2, β′
k is a palindrome over {1, . . . , k−1} containing exactly one

occurrence of k−1 (in the middle); thus βk contains exactly one occurrence of k−1 (at
position |βk|/2) and exactly one occurrence of k (at the end). For all k ≥ 3, γk contains
exactly one occurrence of each of k (at the end), k−1 (at the beginning) and k−2 (in the
middle).

▷ Claim 10. For all k ≥ 2, any position in the word γk is either occupied by the letter 1 or
is next to a position occupied by the letter 1.

▷ Claim 11. For all k ≥ 2, γk is primitive.

Proof. By induction on k. Certainly, γ2 = 12 is primitive. For k ≥ 2, by Claim 9, γk+1 =
k · β′

k−1 · (k−1) · β′
k−1 · (k + 1) contains exactly one occurrence of each of k+1, k and k−1.

Considering the forms given by the four cases of Lemma 6, we see that γk+1 does not have a
prefix or suffix which is a non-trivial palindrome, and that any occurrence of either of the
patterns aa or axbx̃axb must be contained in one of the embedded occurrences of β′

k−1 and
hence in γk. By inductive hypothesis, γk is primitive, and therefore does not contain either
of these patterns. But then γk+1 is primitive by Lemma 6. ◁

▷ Claim 12. Let k ≥ 2. For all h (1 ≤ h ≤ |γ′
k|) such that γ′

k[h] = 1, there exists a walk f
such that: (i) β′

k = (γ′
k)f ; (ii) f(1) = h; and (iii) f(|β′

k|) = |γ′
k|.
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Figure 7 Proof of Claim 12: g (solid lines) is a shifted copy of a walk f on γ′
k yielding β′

k; g′

(solid and dashed lines) is a final reflection on g over [J, m]; f ′ (solid, dashed and dotted lines) is a
walk on γ′

k+1 = k · β′
k · (k+1) yielding β′

k+1 = β′
k · k · β′

k.

Proof. We proceed by induction on k. For k = 2 and k = 3, the result is trivial, since
β′

2 = γ′
2 = 1, β′

3 = 121 and γ′
3 = 21. Now suppose the claim holds for the value k ≥ 3. For

convenience, we write m = |β′
k| and n = |γ′

k| = |β′
k−1|+1 (so m = 2n−1.). Remembering

that β′
k+1 = βk · (k+1) · βk, and γ′

k+1 = k · β′
k−1 · (k − 1) · β′

k−1 = k · β′
k−1 · γ′

k, we have
|β′

k+1| = 2m+1 and |γ′
k+1| = 2n. To show that the claim also holds for the value k+1, pick

any h′ satisfying (1 ≤ h′ ≤ 2n) such that γ′
k+1[h′] = 1. We show that there exists a walk

f ′ : [1, 2m+1] → [1, 2n] such that β′
k+1 = (γ′

k+1)f ′ , f ′(1) = h′, and f ′(2m+ 1) = 2n.
Assume for the time being that h′ > n+1, that is to say, h′ is a position in γ′

k+1 =
k · β′

k−1 · (k − 1) · β′
k−1 occupied by a 1 and lying in the second copy of β′

k−1. Then
h = h′ −n is a position in γ′

k = (k− 1) · β′
k−1 occupied by a 1, so by inductive hypothesis, let

f : [1,m] → [1, n] be a walk such that β′
k = (γ′

k)f , f(1) = h, and f(m) = n. By Claim 9, β′
k

contains exactly one occurrence of k−1 (this will be exactly in the middle), and γ′
k likewise

contains exactly one occurrence of k−1 (this will be at the very beginning). Thus, f reaches
the value 1 at just one point, namely J = (m + 1)/2, and is otherwise strictly greater.
(In fact, it is obvious that f must be a straight line from J onwards.) We first define a
stroll g : [1,m] → [1, 2n] given by g(i) = f(i)+n (Fig. 7, solid lines). Thus, g(1) = h′, and
g(m) = 2n. Moreover, g reaches the value n+1 at just one point, namely J = (m+1)/2, and
is otherwise strictly greater, as illustrated. Now let g′ be the (final) reflection on g over the
interval [J,m] (Fig. 7, first solid, then dashed lines). Thus, g′ is a stroll on γ′

k+1 satisfying
g′(1) = h′ and g′(m) = 2. Moreover, since β′

k = β′
k−1 · (k − 1) · β′

k−1 is a palindrome, we see
by inspection that (γ′

k+1)g′ = (γ′
k+1)g = (γ′

k)f = β′
k. We now construct the desired walk

f ′ : [1, 2m+ 1] → [1, 2n]. For i ∈ [1,m], we set f ′(i) = g′(i). Since f ′(m) = g′(m) = 2, we set
f ′(m+ 1) = 1, and then proceed to define f ′ over the positions to the right, corresponding
to the second copy of β′

k in the word β′
k+1 = β′

k · k · β′
k. But this we can do by drawing a

straight line, as shown in (Fig. 7). By inspection, f ′ has the required properties.
Finally, we consider the case where h′ ≤ n+1. Since γ′

k+1[h′] = 1 we in fact have
2 ≤ h′ ≤ n. And since β′

k is a palindrome, we may replace h′ with the value (n+1)+((n+1)−h)
(i.e. reflect in the horizontal axis at height n+1) and construct f ′ as before. To re-adjust so
that f ′(1) has the correct value, perform an initial reflection on f ′ over the interval [1, J ].

◁
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Figure 8 Proof of Claim 14 (schematic drawing): thin lines depict f1, f̃2 and f3; thick lines
denote the results f̃ ′

2 and f ′
3 of performing initial reflections.

▷ Claim 13. Let k ≥ 2. For all h (1 ≤ h ≤ |γk|) such that γk[h] = 1, there exists a walk f
such that: (i) γf

k = βk; (ii) f(1) = h; and (iii) f(|βk|) = |γk|.

Proof. Take the walk guaranteed by Claim 12, and, noting that the final letters of βk and γk

are both k, extend f by setting f(|βk|) = |γk|. ◁

▷ Claim 14. Let k ≥ 2. For all h (1 ≤ h ≤ |γn|) such that γk[h] = 1, and for all p (1 ≤ p < k)
there exists a walk g such that: (i) γf

k = βkβk−1 · · ·βk−p and (ii) f(1) = h.

Proof. Since β2β1 = 121 and γ2 = 12, the claim is immediate for k = 2. Hence we
may assume k ≥ 3. By Claim 13, let f1 be a walk on γk yielding βk with f1(1) = h

and f1(|βk|) = |γk|. Since f is a walk, and βk contains only one occurrence of k, we
have f1(|βk|−1) = |γk|−1. Set g1 = f1. By Claim 9, β′

k−2 is a palindrome, whence
γk = (k−1) · β′

k−1 · k = (k−1) ·
(
β′

k−2 · (k−2) · β′
k−2

)
· k = γ̃k−1 · β′

k−2 · k. Noting that the
penultimate position of γk−1 is always occupied by the letter 1, by Claim 13 let f2 be a walk
on γk−1 yielding the word βk−1, with f2(1) = |γk−1|−1. By Claim 9, f2(i) = 1 only when
i = |βk−1|/2, since that is the only position of βk−1 occupied by the letter k−2. It follows
that the function f̃2 defined by f̃2(i) = |γk−1|−(f2(i)−1) is a walk on γ̃k−1 yielding the word
βk−1 with f̃2(1) = 2, and achieving its maximum value f(i) = |γk−1| only at i = |βk−1|/2.
Now regarding f̃2 as a stroll on γk = γ̃k−1 · β′

k−2 · k, let f̃ ′
2 be the initial reflection on f̃2 over

the interval [1, |βk−1|/2]. Since γk = (k − 1) · β′
k−1 · k , with β′

k−1 a palindrome, it follows
that the stroll f̃ ′

2 on γk also yields the same result as f̃2, namely βk−1. Now let g2 be the
result of appending f̃ ′

2 to g1, as shown in the shaded part of Fig. 8. (Most of the curves
drawn schematically here will actually be straight lines, but no matter.) Formally, we define
g2 : [1, |βk| + |βk−1|] → [1, |γk|] to be the function:

g2(i) =
{
g1(i) if 1 ≤ i ≤ |βk|
f̃ ′

2(i− |βk|) if |βk| < i ≤ |βk| + |βk−1|.

Since g1(|βk|) = |γk| and f̃ ′
2(1) = |γk|−1, we see that g2 is indeed a walk on γk as shown

(i.e. with no jumps), yielding βkβk−1. We remark that g2(|βk| + |βk−1|) = 1. Notice that we
needed to invert f2 to yield f̃2, so as to make the latter’s reflection f̃ ′

2 join up to the end of
g1 properly.
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We now repeat the above procedure, as shown in the unshaded part of Fig. 8. By Claim 13,
and noting that the penultimate position of γk−2 is occupied by the letter 1, let f3 be a walk
on γk−2 yielding the word βk−2, with f3(1) = |γk−2|−1. By Claim 9, f3(i) = 1 only when
i = |βk−2|/2, since that is the only position of βk−2 occupied by the letter k − 3. Observing
that γk−1 = γ̃k−2 · β′

k−3 · k, and hence γ̃k−1 = k · β̃′
k−3 · γk−2, we see that, by shifting f3

upwards by |k · β̃′
k−2|, we can regard it as a stroll on γk. This (shifted) stroll reaches its

minimum value |k · β̃′
k−3| + 1 exactly once in the middle of its range. Let f ′

3 be the initial
reflection on of this stroll over the interval [1, |βk−2|/2]. Since γ̃k−1 = (k − 1) · β′

k−2 · (k−2)
with β′

k−2 a palindrome, we see by inspection that the stroll f ′
3 on γk yields the same

result as f3, namely βk−2. Now take g3 to be the result of appending f ′
3 to g2, just as we

earlier appended f̃ ′
2 to g1. Thus, g3 is a walk on γk yielding βkβk−1βk−2. Notice that f3,

unlike f2, did not need to be inverted to make its reflection f ′
3 join up to the end of g2.

Evidently, this process may be continued until we obtain the desired walk gp+1 on γk yielding
βkβk−1 · · ·βk−p, with the inversion step (producing f̃h from f̃h) required only when h is even.

◁

We now prove Theorem 5, establishing by induction the following slightly stronger claim.

▷ Claim 15. Fix k ≥ 2. For all n ≥ k and for all h (1 ≤ h ≤ |γk|) such that γn[h] = 1, there
exists a walk f such that α(k)

n = γf
k and f(1) = h.

Proof. If n = k, then α
(k)
n = βk, and the result is immediate from Claim 13. If n = k+1,

then α
(k)
n = βkβk−1 · · ·β1, and the result is immediate from Claim 14, setting p = k−1.

For the inductive step we suppose n ≥ k+2 and assume the result holds for values smaller
than n. We consider first the slightly easier case where n ≥ 2k. Set h1 = h. Writing
α

(k)
n = α

(k)
n−1 · · ·α(k)

n−k, by inductive hypothesis, let g1 be a walk such that α(k)
n−1 = γg1

k and
g1(1) = h1. Now let h′

1 be the final value of g1, that is, g1(|α(k)
n−1|) = h′

1. By Claim 10, there
exists h2 such that |h2−h′

1| ≤ 1, and γk[h2] = 1. Again, by inductive hypothesis, let g2 be a
walk such that α(k)

n−2 = γg2
k and g2(1) = h2. Let h′

2 be the final value of g2, and let h3 be
such that |h3−h′

2| ≤ 1, and γk[h3] = 1. Proceed in the same way, obtaining walks g3, . . . , gk.
Taking f to be the result of concatenating g1, g2, g3, . . . , gk in the obvious fashion yields the
desired walk.

If 2k > n ≥ k+2, then we have α(k)
n = α

(k)
n−1α

(k)
n−2 · · ·α(k)

k+1βkβk−1 · · ·βk−p, where p =
2k−n. We begin as in the previous paragraph: setting h1 = h, by inductive hypothesis,
let g1 be a walk such that α(k)

n−1 = γg1
k and g1(1) = h1. Now let h′

1 be the final value of
g1, that is, g1(|α(k)

n−1|) = h′
1. By Claim 10, there exists h2 such that |h2−h′

1| ≤ 1, and
γk[h2] = 1. Now continue as before so as to obtain walks g2, g3 . . . , with respective starting
points h2, h3, . . . , but stopping when we have obtained gk−p−1, and the following starting
point hk−p. Observe that concatenating g1, g2, g3, . . . , gk−p−1 gives a walk on γk which yields
the word α

(k)
n−1α

(k)
n−2 · · ·α(k)

k+1. By Claim 14, choose gk−p to be a walk on γk yielding the
word βkβk−1 · · ·βk−p and with gk−p(1) = hk−p. Taking f to be the result of concatenating
g1, g2, g3, . . . , gk−p establishes the claim. ◁

References
1 Bartosz Bednarczyk, Daumantas Kojelis, and Ian Pratt-Hartmann. On the Limits of Decision:

the Adjacent Fragment of First-Order Logic. In Kousha Etessami, Uriel Feige, and Gabriele
Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming
(ICALP 2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages
111:1–111:21, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.



I. Pratt-Hartmann 25:17

2 M. Crochemore and W. Rytter. Jewels of stringology. World Scientific, Singapore and River
Edge, NJ, 2002.

3 N. Pytheas Fogg. Substitutions in Dynamics, Arithmetics and Combinatorics. Number 1794
in Lecture Notes in Mathematics, edited by V. Berthé, S. Ferenczi, C. Mauduit, and A. Siegel.
Springer Verlag, Berlin, Heidelberg, New York, 2002.

4 M. Lothaire. Applied Combinatorics on Words. Encyclopedia of Mathematics and its Applica-
tions. Cambridge University Press, Cambridge, 2005.

5 Ian Pratt-Hartmann. Walking on words (v.2), 2024. arXiv:2208.08913.
6 Gérard Rauzy. Nombres algébriques et substitutions. Bulletin de la Société Mathématique de

France, 110:147–178, 1982.

CPM 2024

https://arxiv.org/abs/2208.08913




A Data Structure for the Maximum-Sum Segment
Problem with Offsets
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Abstract
Consider a variant of the maximum-sum segment problem for a sequence X0 of n real numbers,
which asks an arbitrary contiguous subsequence of Xa that maximizes the sum of its elements for
any given real number a, where Xa is the sequence obtained by subtracting a from each element
in X0. Although this problem can be solved in O(n) time from scratch for any given X0 and a,
appropriate data structures for X0 could support efficient queries of the solution for arbitrary a. We
propose an O(n log2 n)-time, O(n)-space algorithm that takes X0 as input and outputs such a data
structure supporting O(log n)-time queries.
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1 Introduction

Given a sequence of real numbers, the maximum-sum segment (MSS) problem, also known as
the maximum subarray problem, is to find an arbitrary segment (contiguous subsequence) of
the sequence that maximizes the sum of its elements, which we call an MSS of the sequence.
This problem has many applications in various industrial and academic fields such as image
processing [7], pattern recognition [12], and biological sequence analysis [16]. For example,
in biological sequence analysis, when the similarity between amino acids at corresponding
positions in multiple amino acid sequences encoding homologous proteins is given as a score,
the most highly conserved region of the sequences that is expected to play an important
role [15] can be found by solving this problem [16].

The MSS problem is solvable in linear time by Kadane’s algorithm, as surveyed in [2].
Due to the existence of applications in biological sequence analysis, various variants and
related problems of the MSS problem have also been considered. Chen and Chao [3] designed
a linear-time constructible data structure that supports constant-time queries of an MSS for
any segment of the sequence. A maximal local MSS is a local MSS that is not a segment of
any local MSS other than it, where a local MSS is a segment that has itself as its only MSS.
Ruzzo and Tompa [13] showed that all distinct maximal local MSSs can be determined in
linear time, and Sakai [14] designed a linear-time constructible data structure supporting
constant-time queries of the maximal local MSS of any given segment that contains any
given position. Bangtsson and Chen [1] showed that an arbitrarily given number of non-
overlapping segments that maximize the sum of all their elements can be found in linear
time. Yu et al. [17] considered the MSS problem where each element of the input sequence is
uncertain within a specific interval and proposed a linear-time algorithm for this problem.
The density of a segment is defined as the mean of all elements in the segment. Cheng et
al. [4] considered the MSS problem with the condition that the density of the segment to be
found is between given lower and upper bounds and showed that the problem is solvable
in linearithmic time, or in linear time if we do not adopt the upper bound condition. The
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Figure 1 Part of an alignment of a pair of homologous amino acid sequences, the score sequence
by BLOSUM62 for it, and the same score sequence with offset 2, where thick frames represent the
MSSs of the score sequences.

maximum-density segment problem [8, 10, 11] consists of finding an arbitrary segment of
length between given lower and upper bounds that maximizes the density. Chung and Lu [5]
showed that this problem is solvable in linear time.

The present article considers another variant of the MSS problem. Before presenting
the definition, we discuss the motivation that led us to conceive this new variant. As an
application of the MSS problem, consider finding a highly conserved region in a given pair
of homologous amino acid sequences u1u2 · · · un and v1v2 · · · vn with the ith amino acids
ui and vi appearing at the corresponding positions. For any pair of amino acids u and
v, let score(u, v) be the logarithm of the ratio of the observed frequency to the expected
frequency of u appearing U and v appearing V at the corresponding positions over all
pairs of homologous amino acid sequences U and V . From this definition, score(u, v) can be
regarded as representing the similarity between amino acids u and v based on the likelihood of
substitution as an accepted mutation. Tables designed to consist of score(u, v) approximations
are available as typical amino acid substitution matrices, including PAM matrices [6] and
BLOSUMs [9]. Since the larger score(u, v) is, the more similar amino acids u and v are, one
might think that finding an MSS of score(u1, v1)score(u2, v2) · · · score(un, vn) would yield a
highly conserved region with respect to u1u2 · · · un and v1v2 · · · vn. However, the obtained
MSS may be unnecessarily large due to the low threshold level for treating amino acids u and
v as sufficiently similar. To resolve this undesirable situation, we can raise the low threshold
level as we wish by treating the score(u, v) value as decreased by a specific value that is set
as an offset. Figure 1 shows an example of how introducing such an offset changes the MSS,
in which, instead of score(u, v)s, values from BLOSUM62, one of BLOSUMs [9], are used.
To obtain a highly conserved region as desired, it will be necessary to carefully adjust the
offset, in some cases by more of a trial-and-error approach. It is possible to obtain the MSS
by running Kadane’s algorithm for each offset that is assumed to be appropriate. However, if
a more efficient way to obtain the MSS for any given offset is available, this is the way to go.

The new variant of the MSS problem we consider is as follows. Let an offset-MSS data
structure for a sequence X0 of n real numbers be a data structure that supports queries of an
arbitrary MSS of Xa for any real number a, where Xa denotes the sequence obtained from
X0 by subtracting a from each element. This type of query can arise when no firm meaning
is evident in the value of each element in X0 compared to 0 and only the relative differences
in the values of elements are meaningful. This is because the MSS found can vary depending
on the threshold level that separates positive from negative. For example, as mentioned
earlier, in biological sequence analysis, by adjusting the criteria that separate whether each
pair of amino acids is treated as similar or dissimilar, new regions may be identified as highly
conserved in homologous amino acid sequences. In this article, we propose a straightforward
O(n)-space offset-MSS data structure for X0 supporting O(log n)-time queries and design an
O(n log2 n)-time, O(n)-space algorithm that constructs this data structure.
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2 Preliminaries

Let n be an arbitrary positive integer and let X0 be an arbitrary sequence of n real numbers.
For any real number a, let Xa denote the sequence obtained by replacing each element x

of X0 with x − a. For any index pair (i, j) with 1 ≤ i ≤ j + 1 ≤ n + 1, let Xa(i, j) denote
the contiguous subsequence consisting of the ith through jth elements of Xa. Note that
Xa(i, j) is non-empty (resp. empty), if i ≤ j (resp. i = j + 1). Let Sa(i, j) denote the sum
of all elements in Xa(i, j), if i ≤ j, or 0, otherwise. A maximum-sum segment (an MSS) of
Xa(i, j) is an arbitrary index pair (g, h) with i ≤ g ≤ h + 1 ≤ j + 1 that maximizes Sa(g, h).
We define an offset-MSS data structure for X0 as a data structure that supports queries of
an arbitrary MSS of Xa for any real number a. Our aim is to design an efficient algorithm
that outputs an efficient offset-MSS data structure for X0. We assume that X0 is given as an
array of the sums S0(1, k) for all indices k with 0 ≤ k ≤ n in ascending order of k, so that
S0(i, j) can be determined as S0(1, j) − S0(1, i − 1) in O(1) time.

As an efficient offset-MSS data structure for X0, we consider a partition of the whole set
of real numbers into several intervals each with a common MSS. More precisely, our goal is
to design an efficient algorithm that finds a sequence consisting of O(n) pairs (θ, (i, j)) of a
real number θ and an index pair (i, j) with 1 ≤ i ≤ j + 1 ≤ n + 1 in descending order of θ

such that for any real number a, if (θ, (i, j)) is the last element with θ > a in the sequence,
then (i, j) is an MSS of Xa. Let OMSSX0 denote an arbitrary such sequence. Apparently,
OMSSX0 can be used as an offset-MSS data structure, which supports O(log n)-time queries
by performing a binary search.

Below we introduce the terminology and notations used to design our algorithm. For any
real number a and any index pair (i, j) with 1 ≤ i ≤ j + 1 ≤ n + 1, let Xa(i, j) be called
pref/suff-positive, if both Sa(i, k) and Sa(k, j) are positive for any index k with i ≤ k ≤ j.
Let α(i, j) denote the least real number such that Xα(i,j)(i, j) is not pref/suff-positive, if
i ≤ j, or ∞, otherwise. Let κ(i, j) denote an arbitrary index k with i ≤ k ≤ j such that
at least one of Sα(i,j)(i, k) = 0 or Sα(i,j)(k, j) = 0, if i ≤ j, or be undefined, otherwise. For
any index pair (i, j) with 1 ≤ i ≤ j ≤ n, let δ(i, j) denote the real number a such that
Sa(i, j) = 0, which is given as the density of X0(i, j), i.e., the mean S0(i, j)/(j − i + 1) of
all elements in X0(i, j). As demonstrated in [10], it is useful to incorporate a geometric
perspective when dealing with density and considering convex hulls. For any set P of distinct
points (p, w) in the two-dimensional plane, we define the lower (resp. upper) convex hull of
P to be the polygonal chain with the smallest number of points in P as vertices such that
for any point (p, w) in P , there exists a pair of consecutive vertices the straight line between
which passes through a point (p, w′) with w′ ≤ w (resp. w′ ≥ w).

3 Algorithm constructing an offset-MSS data structure

In this section, we show that OMSSX0 exists and design Algorithm findOMSS as an algorithm
that finds OMSSX0 in O(n log2 n) time and O(n) space.

Algorithm findOMSS finds OMSSX0 based on a technique that divides the problem of
finding an MSS into two subproblems, which is presented in the following lemma.

▶ Lemma 1. For any real number a and any index pair (i, j) with 1 ≤ i ≤ j ≤ n, if Xa(i, j)
is pref/suff-positive, then (i, j) is the only MSS of Xa(i, j); otherwise, at least one of an
arbitrary MSS of Xa(i, κ(i, j) − 1) and an arbitrary MSS of Xa(κ(i, j) + 1, j) is an MSS of
Xa(i, j).
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Table 1 Notations used in Section 3.1.

Notation Definition

κ′(i, j) An arbitrary index k with i ≤ k ≤ j that minimizes δ(i, k)
κ′(i, g, h) An arbitrary index k with g ≤ k ≤ h that minimizes δ(i, k)

H(g, h) The lower convex hull for all two-dimensional points (k, S0(1, k)) with
g ≤ k ≤ h

K′(g, h) The sequence of all indices k with g ≤ k ≤ h such that (k, S0(1, k)) is a
vertex of H(g, h) in ascending order

K′ The set of sequences K′(g, h) for all canonical index pairs (g, h), where
(g, h) is canonical if 1 ≤ g ≤ h ≤ n, h − g + 1 is a power of two, and
both g − 1 and h are divisible by h− g + 1

k(g, h⋆) The greatest index that is shared by K′(g, h) and K′(g, h⋆), where (g, h)
is a canonical index pair with g < h and h⋆ = (g + h− 1)/2

k(g⋆, h) The greatest index that is shared by K′(g, h) and K′(g⋆, h), where (g, h)
is a canonical index pair with g < h and g⋆ = (g + h + 1)/2

K′ The forest of binary trees such that the set of vertices consists of all
canonical index pairs (g, h) and each vertex (g, h) with g < h has as
children (g, h⋆) with label k(g, h⋆) and (g⋆, h) with label k(g⋆, h), which
is the O(n)-time constructible data structure that supports O(log2 n)-
time queries of κ′(i, j) for any index pair (i, j) with 1 ≤ i ≤ j ≤ n we
propose

K′ An implementation of K′, which is defined as the array of arrays K′[l]
with 0 ≤ l ≤ ⌊log2 n⌋ − 1, where K′[l] consists of elements K′[l][m]
with 1 ≤ m ≤ 2⌊n/2l+1⌋, each containing the label of the vertex
(2l(m− 1) + 1, 2lm) of K′

Proof. Let (g, h) be an arbitrary index pair with i ≤ g ≤ h ≤ j. If Xa(i, j) is pref/suff-
positive and i < g (resp. h < j), then Sa(i, g − 1) is positive (resp. non-negative) and
Sa(h + 1, j) is non-negative (resp. positive), implying that Sa(i, j) > Sa(g, h). Suppose that
Xa(i, j) is not pref/suff-positive and g ≤ κ(i, j) ≤ h. By symmetry, it suffices to show that
if Sα(i,j)(i, κ(i, j)) = 0, then Sa(κ(i, j) + 1, h) ≥ Sa(g, h). Since Sα(i,j)(i, g − 1) ≥ 0 due to
definition of α(i, j), Sα(i,j)(g, κ(i, j)) ≤ 0. Therefore, Sα(i,j)(κ(i, j) + 1, h) ≥ Sα(i,j)(g, h),
which implies that Sa(κ(i, j) + 1, h) ≥ Sa(g, h) due to a ≥ α(i, j). ◀

Whenever applying Lemma 1, we need α(i, j) to investigate whether Xa(i, j) is pref/suff-
positive, and κ(i, j) if it is not. To support time-efficient queries of α(i, j) and κ(i, j), one
might think of a lookup table as a naive data structure, which supports O(1)-time queries.
However, it takes O(n2) time to construct it and also requires O(n2) space to store it. We
design another data structure by taking a different approach to reduce preprocessing time
and space requirement to O(n) but manage to achieve O(log2 n)-time queries.

The remaining part of this section is organized as follows. We first propose an O(n)-time
constructible data structure that supports O(log2 n)-time queries of α(i, j) and κ(i, j) for
any index pair (i, j) with 1 ≤ i ≤ j ≤ n in Section 3.1, and then design Algorithm findOMSS
using this data structure in Section 3.2.

3.1 Data structure supporting queries of α(i, j) and κ(i, j)
The data structure we propose to support queries of α(i, j) and κ(i, j) consists of two
symmetric components, K ′ and K ′′. This symmetry is based on the following reduction
of the problem of determining α(i, j) into two symmetric subproblems. Let κ′(i, j) (resp.
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Figure 2 Lower convex hulls H(1, 4), H(5, 8), H(9, 12), H(13, 16), and H(17, 20) for a concrete
example of X0 shown at the bottom, where each point (k, S0(1, k)) with 1 ≤ k ≤ 20 is indicated by
a solid bullet, if it is a vertex of the hulls, or an open bullet, otherwise.

κ′′(i, j)) denote an arbitrary index k with i ≤ k ≤ j that minimizes δ(i, k) (resp. δ(k, j)).
Hence, α(i, j) is equal to the minimum of δ(i, κ′(i, j)) and δ(κ′′(i, j), j). Furthermore, if
δ(i, κ′(i, j)) = α(i, j) (resp. δ(κ′(i, j), j) > α(i, j)), then κ′(i, j) (resp. κ′′(i, j)) satisfies the
condition of κ(i, j). Based on this reduction, if K ′ supports O(log2 n)-time queries of κ′(i, j)
and K ′′ supports O(log2 n)-time queries of κ′′(i, j), then α(i, j) and κ(i, j) can be determined
in O(log2 n) time. By symmetry, we will henceforth focus only on designing K ′ as a data
structure that can be constructed in O(n) time and supports O(log2 n)-time queries of κ′(i, j)
for any index pair (i, j) with 1 ≤ i ≤ j ≤ n.

This section introduces many other notations besides κ′(i, j) and K ′. Table 1 summarizes
such notations.

Our strategy to achieve O(log2 n)-time queries of κ′(i, j) is to reduce the problem of
finding κ′(i, j) to the subproblems of finding certain O(log n) candidates from which κ′(i, j)
can be found and to design a data structure that supports O(log n)-time queries of the
candidate. For any index pair (g, h) with 1 ≤ g ≤ h ≤ n, let K ′(g, h) denote the sequence of
all indices k with g ≤ k ≤ h such that (k, S0(1, k)) is a vertex of H(g, h) in ascending order,
where H(g, h) denotes the lower convex hull for all two-dimensional points (k, S0(1, k)) with
g ≤ k ≤ h (see Figure 2). Below is a key lemma that will serve as the foundation for our
strategy.

▶ Lemma 2. For any indices i, g, and h with 1 ≤ i ≤ g ≤ h ≤ n, a binary search of K ′(g, h)
finds an index k with g ≤ k ≤ h that minimizes δ(i, k).

Proof. For any index k with g ≤ k ≤ h, δ(i, k) is equal to the slope (S0(1, k) − S0(1, i −
1))/(k −(i−1)) of the straight line passing through points (i−1, S0(1, i−1)) and (k, S0(1, k)).
Thus, the lemma follows from the fact that for any index k with g ≤ k ≤ h that minimizes
δ(i, k), the line passing though (i, S0(1, i−1)) is tangent to H(g, h) at vertex (k, S0(1, k)). ◀
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Figure 3 Set K′ for the same X0 as Figure 2 shown at the bottom, where all elements in K′(g, h)
for each canonical index pair (g, h) are presented as indices in the rectangle lying between positions
g and h and, for example, the highlighted indices represent κ′(7, 7, 8), κ′(7, 9, 16), and κ′(7, 17, 20),
which are obtained as candidates for determining κ′(7, 20) (= 12).

A naive data structure immediately suggested by Lemma 2, which consists of sequences
K ′(i, j) for all index pairs (i, j) with 1 ≤ i ≤ j ≤ n, supports O(log n)-time queries of
κ′(i, j) but consumes O(n3) space. Thus, we cannot adopt this naive data structure as is.
However, by carefully choosing its particular subset, we can obtain an O(n log n)-space data
structure that supports O(log2 n)-time queries. This subset, which we denote by K′, consists
of sequences K ′(g, h) for all index pairs (g, h) with 1 ≤ g ≤ h ≤ n such that h − g + 1 is a
power of two and both g − 1 and h are divisible by h − g + 1 (see Figure 3). We call any
such index pair (g, h) canonical. Note that K′ can be stored in O(n log n) space because
for any power ℓ of two with 1 ≤ ℓ ≤ n, there exist at most n/ℓ canonical pairs (g, h) such
that h − g + 1 = ℓ, each having K ′(g, h) that can be stored in O(ℓ) space. The interval of
indices represented by any index pair (i, j) with 1 ≤ i ≤ j ≤ n is partitioned into O(log n)
intervals each represented by a canonical index pair (g, h). By applying Lemma 2 to each of
such O(log n) canonical index pairs (g, h), we can obtain O(log n) candidates κ′(i, g, h) in
O(log2 n) time, where κ′(i, g, h) denotes an arbitrary index k with g ≤ k ≤ h that minimizes
δ(i, k). Any of the candidates κ′(i, g, h) that minimizes δ(i, κ′(i, g, h)) satisfies the condition
of κ′(i, j).

The only reason that K′ cannot be adopted as K ′ is that the space required to store it is
O(n log n), not O(n). To resolve this issue, we define K ′ by removing duplicate information
from K′. We do this based on the fact that K ′(g, h) for any canonical index pair (g, h)
with g < h can recursively be represented by K ′(g, h⋆), K ′(g⋆, h), and two specific indices,
where h⋆ = (g + h − 1)/2 and g⋆ = (g + h + 1)/2 (= h⋆ + 1). One of the specific indices
is the greatest element of K ′(g, h⋆) that is shared by K ′(g, h) and the other is the least
element of K ′(g⋆, h) that is shared by K ′(g, h). Let k(g, h⋆) and k(g⋆, h) denote these indices,
respectively. Note that the concatenation of the prefix of K ′(g, h⋆) with k(g, h⋆) as the
last element followed by the suffix of K ′(g⋆, h) with k(g⋆, h) as the first element constitutes
K ′(g, h). This can be verified because K ′(g, h), K ′(g, h⋆), and K ′(g⋆, h) are defined to
represent all vertices of the lower convex hulls H(g, h), H(g, h⋆), and H(g⋆, h), respectively.
For example, if X0 is the same as Figure 2, then K ′(1, 8) = ⟨1, 3, 8⟩ can be represented by
K ′(1, 4) = ⟨1, 3, 4⟩, K ′(5, 8) = ⟨5, 8⟩, k(1, 4) = 3, and k(5, 8) = 8 in this manner. Thus, in our
recursive representation, the only information that must be explicitly retained with respect
to (g, h) to recover K ′(g, h) is indices k(g, h⋆) and k(g⋆, h).
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Figure 4 Forest K′ for the same X0 as Figure 2 shown at the bottom, where each rectangle lying
between positions g and h indicates vertex (g, h), the position of each edge represents its label, and the
shaded areas indicate the ranges between k⊢ and k⊣ when tracing paths by Algorithm determineKappa
presented in Algorithm 2 to determine κ′(7, 20).

Based on the ideas discussed above, we define K ′ as a forest of binary trees as follows
(see also Figure 4). The set of vertices in K ′ consists of all canonical index pairs (g, h) with
1 ≤ g ≤ h ≤ n. Each vertex (g, h) with g < h has two children, (g, h⋆) and (g⋆, h), where
h⋆ = (g + h − 1)/2 and g⋆ = (g + h + 1)/2. Furthermore, the edge between (g, h) and
(g, h⋆) is labeled with k(g, h⋆), the greatest index in K ′(g, h⋆) that is shared by K ′(g, h).
Analogously, the edge between (g, h) and (g⋆, h) is labeled with k(g⋆, h), the least index in
K ′(g⋆, h) that is shared by K ′(g, h). Any vertex (g, h) with g = h is a leaf. Since the number
of all canonical index pairs is O(n), K ′ can be stored in O(n) space, unlike the case of K′,
which requires O(n log n) space.

We implement K ′ as an array K′ of arrays K′[l] with 0 ≤ l ≤ ⌊log2 n⌋ − 1, where K′[l]
consists of elements K′[l][m] with 1 ≤ m ≤ 2⌊n/2l+1⌋, each containing the label of the edge
between vertex (2l(m − 1) + 1, 2lm) and its parent. Algorithm 1 presents a pseudo-code of
Algorithm constructK, which we propose as an algorithm that constructs K′ in O(n) time.
The correctness of the algorithm and the execution time are shown in the following lemma.

▶ Lemma 3. Algorithm constructK outputs K′ in O(n) time as an implementation of forest
K ′.

Proof. For any index l with 0 ≤ l ≤ ⌊log2 n⌋, let K′
l denote the array of sequences K ′(g, h)

for all of the ⌊n/2l⌋ canonical index pairs (g, h) with 1 ≤ g ≤ h ≤ n and h − g + 1 = 2l

in ascending order of g. To construct K′ in O(n) time, Algorithm constructK initializes K∗
to K′

0 (by line 2) and updates it from K′
l−1 to K′

l (by lines 4 through 15) for each index l

from 1 to ⌊log2 n⌋. In this process, when K ′(g, h⋆) and K(g⋆, h) in K′
l−1 are merged into

K ′(g, h) in K′
l, two labels k(g, h⋆) and k(g⋆, h) are also obtained, where (g, h⋆) and (g⋆, h)

are children of (g, h). Let l and m be the indices such that h = 2lm (= 2l−1 · 2m) and hence
h⋆ = 2l−1(2m − 1). The loop executed by lines 5 through 13 for l and m repeatedly deletes
the last element k−1 of the current prefix of K ′(g, h⋆) stored in K∗[2m−1], if (k−1, S0(1, k−1))
is not a vertex of H(g, h), or the first element k1 of the current suffix of K ′(g⋆, h) stored
in K∗[2m], otherwise, until both (k−1, S0(1, k−1)) and (k1, S0(1, k1)) are vertices of H(g, h).
If the condition of line 8 holds, then (k−1, S0(1, k−1)) is not a vertex of H(g, h) because it
is on or above the straight line passing through (k−2, S0(1, k−2)) and (k1, S0(1, k1)). The
analogy holds for k1. Furthermore, if neither of the conditions in lines 8 and 10 holds,
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Algorithm 1 A pseudo-code of Algorithm constructK.

1 K′ ← an array of arrays K′[l] with 0 ≤ l ≤ ⌊log2 n⌋ − 1 each consisting of elements K′[l][m]
with 1 ≤ m ≤ 2⌊n/2l+1⌋;

2 K∗ ← an array of n elements K∗[k] with 1 ≤ k ≤ n each initialized to a bidirectional linked
list consisting of a single element k;

3 foreach l from 1 to ⌊log2 n⌋ do
4 foreach m from 1 to ⌊n/2l⌋ do
5 while not broken do
6 k−1, k−2 ← the last and second last elements of K∗[2m− 1], respectively;
7 k1, k2 ← the first and second elements of K∗[2m], respectively;
8 if k−2 exists and δ(k−2 + 1, k−1) ≥ δ(k−2 + 1, k1) then
9 delete k−1 from K∗[2m− 1]

10 else if k2 exists and δ(k−1 + 1, k2) ≥ δ(k1 + 1, k2) then
11 delete k1 from K∗[2m]
12 else
13 break

14 K′[l − 1][2m− 1]← k−1; K′[l − 1][2m]← k1;
15 K∗[m]← the concatenation of K∗[2m− 1] followed by K∗[2m]

16 output K′ as an implementation of K′

then both (k−1, S0(1, k−1)) and (k1, S0(1, k1)) are vertices of H(g, h). This is because the
lower convex hull for the existing (k−2, S0(1, k−2)), (k−1, S0(1, k−1)), (k1, S0(1, k1)), and
(k2, S0(1, k2)) has all of them as vertices. Thus, just after the loop is broken by line 13,
k−1 = k(g, h⋆) and k1 = k(g⋆, h), which are respectively stored as appropriate elements of
K′ by line 14. In addition, the concatenation of the eventual prefix of K ′(g, h⋆) followed
by the eventual suffix of K ′(g⋆, h) constitutes K ′(g, h), which is stored in K∗[m] by line 15.
Therefore, Algorithm constructK outputs K′ correctly.

Each element of K∗ is implemented as a bidirectional linked list and line 15 directly
concatenates the lists pointed to by K∗[2m−1] and K∗[2m], respectively, and sets the resulting
list to the one pointed to by K∗[m] in O(1) time. Hence, the algorithm runs in time linear in
the sum of the number of canonical index pairs and the number of indices deleted by lines 9
and 11, both of which are O(n). ◀

As an algorithm that allows array K′ to support O(log2 n)-time queries of κ′(i, j), we
propose Algorithm determineKappa(i, j) a pseudo-code of which is presented in Algorithm 2.

▶ Lemma 4. Forest K ′, implemented as array K′, supports O(log2 n)-time queries of κ′(i, j)
for any index pair (i, j) with 1 ≤ i ≤ j ≤ n by executing Algorithm determineKappa(i, j).

Proof. Algorithm determineKappa(i, j) consists of two phases.
The first phase is executed by lines 1 through 7 to decompose (i, j) into a sequence C of

O(log n) canonical index pairs (g, h) in a straightforward way. Obviously, this phase runs in
O(log n) time.

The second phase determines indices κ′(i, g, h) for all canonical index pairs (g, h) in C
to determine κ′(i, j) by executing lines 8 through 19. For each such (g, h), lines 10 through
16 determine κ′(i, g, h) based on Lemma 2 without having K ′(g, h) explicitly. The binary
search in Lemma 2 is done by tracing the path from (g, h) to (κ′(i, g, h), κ′(i, g, h)). In this
tracing process, two indices k⊢ and k⊣ are maintained so that whenever an internal vertex
(e, f) is visited, for any index k with e ≤ k ≤ f , k is an element of K ′(g, h) if and only if
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Algorithm 2 A pseudo-code of Algorithm determineKappa(i, j).

1 C← an empty sequence;
2 ȷ̃← 2⌊log2 n⌋; ı̃← 2⌊log2 n⌋ + 1;
3 foreach l from ⌊log2 n⌋ to 1 in descending order do
4 if i ≤ ȷ̃− 2l + 1 and ȷ̃ ≤ j then append (ȷ̃− 2l + 1, ȷ̃) to C;
5 if i ≤ ȷ̃− 2l + 1 then ȷ̃← ȷ̃− 2l;
6 if i ≤ ı̃ and ı̃ + 2l − 1 ≤ j then append (̃ı, ı̃ + 2l − 1) to C;
7 if ı̃ + 2l − 1 ≤ j then ı̃← ı̃ + 2l;
8 δ ←∞;
9 foreach (g, h) in C do

10 l← log2(h− g + 1); m← h/2l; k⊢ ← g; k⊣ ← h;
11 while l > 0 do
12 k◁ ← K′[l − 1][2m− 1]; k▷ ← K′[l − 1][2m];
13 if k⊣ < k▷ or (k⊢ ≤ k◁ and δ(i, k◁) ≤ δ(i, k▷)) then
14 k⊣ ← min(k⊣, k◁); l← l − 1; m← 2m− 1
15 else
16 k⊢ ← max(k⊢, k▷); l← l − 1; m← 2m

17 if δ(i, m) < δ then
18 κ′ ← m; δ ← δ(i, m)

19 output κ′ as κ′(i, j)

k⊢ ≤ k ≤ k⊣ and k is an element of K ′(e, f). Obviously, we can maintain k⊢ and k⊣ by
initializing k⊢ and k⊣ to g and h, respectively, and updating k⊣ (resp. k⊢) to the minimum
(resp. maximum) of k⊣ (resp. k⊢) and k(e, f⋆) (resp. k(e⋆, f)), if (e, f⋆) (resp. (e⋆, f)) is
chosen as the next vertex to visit after (e, f), where f⋆ = (e+f −1)/2 and e⋆ = (e+f +1)/2.
To guarantee that e ≤ κ′(i, g, h) ≤ f for any vertex (e, f) visited in the trace, the next
vertex to visit after (e, f) is chosen as follows. If k⊣ < k(e⋆, f) (resp. k(e, f⋆) < k⊢),
then (e, f⋆) (resp. (e⋆, f)) is chosen, because K ′(e⋆, f) (resp. K ′(e, f⋆)) shares no element
with K ′(g, h). On the other hand, if both k⊢ ≤ k(e, f⋆) and k(e⋆, f) ≤ k⊣, then k(e, f⋆)
and k(e⋆, f) are consecutive elements in K ′(g, h). Therefore, in such cases, it follows from
Lemma 2 that we can choose (e, f⋆), if δ(i, k(e, f⋆)) ≤ δ(i, k(e⋆, f)), or (e⋆, f), otherwise. If
we represent (e, f) by indices l = log2(f − e + 1) and m = f/2l, then (e, f⋆) (resp. (e⋆, f))
is represented by l − 1 and 2m − 1 (resp. 2m), implying that k(e, f⋆) = K′[l − 1][2m − 1]
(resp. k(e⋆, f) = K′[l − 1][2m]). Adopting this representation, lines 10 through 16 trace
the path from (g, h) to (κ′(i, g, h), κ′(i, g, h)) in the manner described above, and hence the
resulting m represents κ′(i, g, h). After this trace, κ′ and δ are updated by lines 17 and
18 so that δ represents the maximum value of δ(i, κ′(i, g, h)) for κ′(i, g, h) obtained so far
and κ′ represents the first κ′(i, g, h) found that satisfies δ(i, κ′(i, g, h)) = δ. Thus, line 19
outputs κ′(i, j) correctly. The execution time of this phase is O(log2 n) because the number
of elements (g, h) in C is O(log n) and the number of vertices in the path from each such
(g, h) to (κ′(i, g, h), κ′(i, g, h)) is O(log n). ◀

We define K ′′ as the forest K ′ for the reversed X0, which can be constructed in O(n)
time due to Lemma 3. Since κ′(i, j) for the reversed X0 represents κ′′((n + 1) − j, (n + 1) − i)
for the original X0 by symmetry, Lemmas 4 implies that K ′′ can support O(log2 n)-time
queries of κ′′(i, j) for any index pair (i, j) with 1 ≤ i ≤ j ≤ n. Thus, the following theorem
immediately follows from Lemmas 3 and 4.
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Figure 5 Tree τ(1, 18) for the same X0 as Figure 2 shown at the bottom, where each vertex (g, h)
with g ≤ h is indicated by a rectangle lying between positions g and h with α(g, h) as the label and
each vertex (g, h) with g = h + 1 is represented as a bullet between positions h and g.

▶ Theorem 5. Forests K ′ and K ′′ can be constructed in O(n) time and support O(log2 n)-time
queries of α(i, j) and κ(i, j) for any index pair (i, j) with 1 ≤ i ≤ j ≤ n.

3.2 Offset-MSS data structure supporting O(log n)-time queries
To design Algorithm findOMSS, we consider a tree T from which a vertex (i, j) can be chosen
as an MSS of Xa for any real number a. After defining T based on Lemma 1, we analyze
how the vertices of T used to construct OMSSX0 can be chosen.

Lemma 1 gives us the MSS of Xa specifically if a < α(1, n), but only inductive candidates
otherwise. We define T as a tree that presents explicit rather than inductive candidates,
even if a ≥ α(1, n). More precisely, T is defined as a tree such that all vertices (g, h) with
α(i, j) ≤ a < α(g, h) constitute the set of candidates, where (i, j) is the parent of (g, h).
Our idea to realize such a tree T is to divide the problem of finding an MSS of Xa(i, j) for
any real number a with a ≥ α(i, j) into the problems of finding an MSS of Xa(g, h) with
α(g, h) > α(i, j) by applying Lemma 1 incrementally to define the set of children (g, h) of
each internal vertex (i, j). Thus, formally, the set of children of any internal vertex (i, j)
in T is defined as the set of leaves of the tree τ(i, j) introduced below. For any index pair
(i, j) with 1 ≤ i ≤ j ≤ n, let τ(i, j) denote the tree such that (i, j) is the root, any vertex
(g, h) with g ≤ h such that Xα(i,j)(g, h) is not pref/suff-positive (i.e., α(g, h) ≤ α(i, j)) has
two children (g, κ(g, h) − 1) and (κ(g, h) + 1, h), and any other vertex is a leaf (see Figure 5).
Although the topology of τ(i, j) is not uniquely defined in general due to the ambiguity of
κ(g, h), it is not difficult to verify that the set of leaves is unique. Let T denote the tree
such that the root is (1, n), any vertex (i, j) with i ≤ j has all leaves of τ(i, j) as its children,
and any other vertex is a leaf (see Figure 6). The following lemma claims that T has the
property we intend.

▶ Lemma 6. For any real number a, if a < α(1, n), then (1, n) is an MSS of Xa; otherwise,
any vertex (g, h) with α(i, j) ≤ a < α(g, h) in T that maximizes Sa(g, h) is an MSS of Xa,
where (i, j) is the parent of (g, h).

Proof. If a < α(1, n), then the lemma immediately follows from Lemma 1. Suppose that
a ≥ α(1, n). Consider an arbitrary series C of sets C of vertices in T such that

the first set consists only of (1, n),
any set C containing at least one internal vertex (i, j) with α(i, j) ≤ a as an element is
followed by the set obtained from C by replacing arbitrary such element (i, j) with all
children of τ(i, j), and
any element (g, h) in the last set satisfies that α(g, h) > a.
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Figure 6 Tree T for the same X0 as Figure 5 shown at the bottom, drawn in the same manner
as Figure 5.

Since α(g, h) > α(i, j) for any leaf (g, h) of τ(i, j), the last set of C exists and consists of
all vertices (g, h) in T such that α(i, j) ≤ a < α(g, h), where (i, j) is the parent of (g, h). It
follows from Lemma 1 that any element (g, h) in the last set of C is the only MSS of Xa(g, h).
Thus, if the last set in C has an element (g, h) such that any MSS of Xa(g, h) is an MSS of
Xa, then the lemma holds. For any index pair (i, j) with 1 ≤ i ≤ j ≤ n, if a ≥ α(i, j), then
there exists a leaf (g, h) of τ(i, j) such that any MSS of Xa(g, h) is an MSS of Xa(i, j). This
implies by induction that any set in C has an element (g, h) such that any MSS of Xa(g, h)
is an MSS of Xa. ◀

Lemma 6 provides a set of vertices in T from which we can find an MSS of Xa. However,
this candidate set varies with a. Furthermore, even if the same set is given for different real
numbers a, the vertex (g, h) that is an MSS of Xa may differ from each other. For example,
if we consider X0 in Figure 6, then Lemma 6 claims that an MSS of X12.4 and an MSS
of X12.6 can be found from the same candidates (4, 6), (8, 8), and (14, 18) (ignoring empty
candidates such as (1, 0)) and we can verify that (14, 18) is the only MSS of X12.4 while (4, 6)
is the only MSS of X12.6. Instead of adopting the set of candidates suggested by Lemma 6
as is, we can consider a specific set of candidates that is not altered by a. Those candidates
are introduced below. Let P denote the set of all lengths p with 0 ≤ p ≤ n such that T

has at least one vertex (i, j) with j − i + 1 = p. For any length p in P , let wp denote the
maximum of S0(i, j) over all vertices (i, j) in T such that j − i + 1 = p and let (ip, jp) denote
an arbitrary such vertex (i, j) in T that achieves wp. The following lemma claims that these
vertices (ip, jp) can be thought of as the candidates.

▶ Lemma 7. For any real number a and any length p in P that maximizes Sa(ip, jp), (ip, jp)
is an MSS of Xa.

Proof. It imediately follows from Lemma 6 that any vertex (g, h) in T that maximizes
Sa(g, h) is an MSS of Xa. For any such vertex (g, h), (ip, jp) is also an MSS of Xa, where
p = h − g + 1, because Sa(g, h) = S0(g, h) − ap ≤ wp − ap = S0(ip, jp) − ap = Sa(ip, jp). ◀
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Figure 7 Two-dimensional points (p, wp) with (ip, jp) as the label for all lengths p in P used
to determine OMSSX0 as the sequence of (∞, (1, 0)), (21, (15, 15)), (29/2, (4, 6)), (25/2, (14, 18)),
(32/3, (1, 8)), (10, (1, 18)), and (16/3, (1, 21)) in this order, where X0 is the same as Figure 5 and each
pair of adjacent vertices (q, wq) and (p, wp) of H is connected by a line with its slope (wp−wq)/(p−q)
as the label.

We are now ready to define OMSSX0 as the offset-MSS data structure we propose. Recall
that OMSSX0 is a sequence of O(n) pairs (θ, (i, j)) in descending order of θ such that for
any real number a, if (θ, (i, j)) is the last element with θ > a, then (i, j) is an MSS of Xa.
As (i, j) of each such element (θ, (i, j)), we adopt (ip, jp) for an appropriate length p in P .
To find such lengths p, we treat (p, wp) for any length p in P as a two-dimensional point and
consider the upper convex hull H for all the points (p, wp) (see Figure 7). Note that (0, 0) is
a vertex of H. We define OMSSX0 as consisting of pairs (θp, (ip, jp)) for all vertices (p, wp)
of H. As threshold θp, we adopt ∞, if p = 0, or (wp − wq)/(p − q), otherwise, where (q, wq)
is the vertex of H that is adjacent to (p, wp) such that q < p. The following theorem shows
the correctness of OMSSX0 as an offset-MSS data structure.

▶ Theorem 8. For any real number a, (ip, jp) is an MSS of Xa, where (θp, (ip, jp)) is the
last element in OMSSX0 such that θp > a.

Proof. Let q be arbitrary length in P such that q < p. Since (p, wp) is a vertex of H, the
slope (wp − wq)/(p − q) of the straight line passing through (q, wq) and (p, wp) is greater
than a. This implies that Sa(iq, jq) = wq − aq < wp − ap = Sa(ip, jp). Analogously, for any
length q in P such that q > p, Sa(iq, jq) ≤ Sa(ip, jp) because (wq − wp)/(q − p) ≤ a. Thus,
the theorem follows from Lemma 7. ◀

Algorithm findOMSS can be designed according to definition of OMSSX0 . Algorithm 3
presents a pseudo-code of the algorithm, excluding the data structure proposed in Section 3.1
to support O(log2 n)-time queries of α(i, j) and κ(i, j). The algorithm consists of the following
two phases.

The first phase. Lines 1 through 13 determine pairs (ip, jp) for all lengths p in P by
enumerating all internal vertices (i, j) in T . During the enumeration, element W[p] of array
W for any length p with 1 ≤ p ≤ n is used to store the maximum of S0(i, j) over all vertices
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Algorithm 3 A pseudo-code of Algorithm findOMSS.

1 W, I, J← arrays of n elements each initialized to 0;
2 T← a stack containing a single element (1, n);
3 while T is non-empty do
4 pop (i, j) from T;
5 if W[p] < w, where p = j − i + 1 and w = S0(i, j), then
6 W[p]← w; I[p]← i; J[p]← j

7 tau← a stack containing a single element (i, j);
8 while tau is non-empty do
9 pop (g, h) from tau;

10 if α(g, h) ≤ α(i, j) then
11 push (g, κ(g, h)− 1) to tau; push (κ(g, h) + 1, h) to tau
12 else if g ≤ h then
13 push (g, h) to T

14 H← a sequence consisting of a single element (0, 0);
15 foreach p from 1 to n do
16 if W[p] > 0 then
17 while H has more than one element and (W[p]− wq)/(p− q) ≥ (W[p]− wr)/(p− r),

where (q, wq) and (r, wr) are the last and second last elements in H, respectively, do
18 delete the last element (q, wq) from H
19 append (p, W[p]) to H

20 OMSS← a sequence consisting of a single element (∞, (1, 0));
21 foreach (p, wp) in H from the second element to the last in this order do
22 append ((wp − wq)/(p− q), (I[p], J[p])) to OMSS, where (q, wq) is the element

immediately followed by (p, wp) in H
23 output OMSS as OMSSX0

(i, j) with j − i + 1 = p in T enumerated up to the present time, if any, or 0, otherwise. In
addition, elements I[p] of array I and J[p] of array J are used to indicate the first vertex (i, j)
achieving W[p]. Therefore, after executing this phase, for any length p with 1 ≤ p ≤ n, if p is
an element of P , then W[p], I[p], and J[p] represent wp, ip, and jp, respectively; otherwise
W[p] = 0. To enumerate all internal vertices in T , two stacks T and tau are used. Since there
is no need to maintain the topology of T , T is used to store all internal vertices of T already
found but whose children are not yet determined. After initializing T to a stack containing
(1, n) as the only element (by line 2), each such internal vertex (i, j) of T is popped from
T (by line 4), treated as a new vertex found to update W, I, and J (by lines 5 and 6), and
decomposed into its children (by lines 7 through 13). To decompose (i, j) into its children,
tau is used to store all vertices of τ(i, j) that have found but not yet been determined to
be leaves or not. After initializing tau to a stack containing (i, j) as the only element (by
line 7), each element (g, h) is popped from tau (by line 9) and if (g, h) is not a leaf of τ(i, j),
then its children are pushed to tau (by lines 10 and 11); otherwise, if (g, h) is an internal
node of T , then (g, h) is pushed to T (by lines 12 and 13). For any internal vertex (i, j) of
T and any internal vertex (g, h) of τ(i, j), there exists a distinct index k with 1 ≤ k ≤ n

that corresponds to (g, h). Thus, it follows from Lemma 4 that this phase is executed in
O(n log2 n) time.

The second phase. Lines 14 through 23 determine H to construct OMSSX0 . For any length
p with 1 ≤ p ≤ n, let Hp be the upper convex hull for points (q, wp) for all lengths q in P

such that q ≤ p, so that Hn = H . The sequence of all vertices (q, w) of Hp in ascending order
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of q for each length p from 0 to n is inductively constructed as sequence H. After initializing
H to a sequence consisting of (0, w0) as the only element (by line 14), for any length p in
P other than 0 in ascending order, each element (q, wq) in H that is not a vertex of Hp is
removed one by one in descending order of q (by lines 17 and 18) and (p, wp) is appended
to H (by line 19). Since the sequence of all vertices (p, w) of H is eventually obtained as H,
OMSSX0 is constructed as sequence OMSS in a straightforward manner (by lines 20 through
22). To update H from H0 to Hn, (p, W[p]) for any index p in P is appended to H exactly
once and any such element is deleted from H at most once. Therefore, this phase is executed
in O(n) time.

Due to the above, together with Lemma 3, we immediately have the following theorem.

▶ Theorem 9. Algorithm findOMSS, including the data structure supporting O(log2 n)-time
queries of α(i, j) and κ(i, j) proposed in Section 3.1, outputs OMSSX0 as an O(n)-space
offset-MSS data structure for X0 supporting O(log n)-time queries in O(n log2 n) time and
O(n) space.

4 Conclusive remarks

The present article considered the offset maximum-sum segment problem, a variant of the
maximum-sum segment problem for a sequence X0 of n real numbers, which asks an arbitrary
contiguous subsequence of Xa that maximizes the sum of its elements for any given real
number a, where Xa is the sequence obtained by subtracting a from each element in X0. An
O(n log2 n)-time, O(n)-space algorithm that outputs a data structure supporting O(log n)-
time queries of the solution of the offset maximum-sum segment problem was proposed.
Further improvements in query time would be unlikely. This is because the data structure
output by the proposed algorithm partitions the entire set of real numbers into O(n) intervals,
and the offset maximum-sum problem has a distinct solution in common for all real numbers
a in each interval. It remains to be clarified whether or not the upper bound on the time
complexity of finding such a data structure can be improved from O(n log2 n).
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Abstract
In this paper, we study for the first time the Diverse Longest Common Subsequences (LCSs) problem
under Hamming distance. Given a set of a constant number of input strings, the problem asks
to decide if there exists some subset X of K longest common subsequences whose diversity is no
less than a specified threshold ∆, where we consider two types of diversities of a set X of strings
of equal length: the Sum diversity and the Min diversity defined as the sum and the minimum
of the pairwise Hamming distance between any two strings in X , respectively. We analyze the
computational complexity of the respective problems with Sum- and Min-diversity measures, called
the Max-Sum and Max-Min Diverse LCSs, respectively, considering both approximation algorithms
and parameterized complexity. Our results are summarized as follows. When K is bounded, both
problems are polynomial time solvable. In contrast, when K is unbounded, both problems become
NP-hard, while Max-Sum Diverse LCSs problem admits a PTAS. Furthermore, we analyze the
parameterized complexity of both problems with combinations of parameters K and r, where r is the
length of the candidate strings to be selected. Importantly, all positive results above are proven in a
more general setting, where an input is an edge-labeled directed acyclic graph (DAG) that succinctly
represents a set of strings of the same length. Negative results are proven in the setting where an
input is explicitly given as a set of strings. The latter results are equipped with an encoding such a
set as the longest common subsequences of a specific input string set.
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27:2 Finding Diverse Strings and Longest Common Subsequences

1 Introduction

The problem of finding a longest common subsequence (LCS) of a set of m strings, called the
LCS problem, is a fundamental problem in computer science, extensively studied in theory and
applications for over fifty years [8, 31, 33, 38, 41]. In application areas such as computational
biology, pattern recognition, and data compression, longest common subsequences are used
for consensus pattern discovery and multiple sequence alignment [25, 41]. It is also common
to use the length of longest common subsequence as a similarity measure between two strings.
For example, Table 1 shows longest common subsequences (underlined) of the input strings
X1 = ABABCDDEE and Y1 = ABCBAEEDD.

Table 1 Longest common subsequences of two input strings X1 and Y1 over Σ = {A, B, C, D, E}.

ϵ, A, B, C, D, E, AA, AB, AC, AD, AE, BA, . . . , CD, CE, DD, EE,
ABA, ABB, ABC, ABD, . . . , CEE, ABAD, ABAE, ABBD, . . . , BCEE ,

ABADD, ABAEE, ABBDD, ABBEE, ABCDD, ABCEE

The LCS problem can be solved in polynomial time for constant m ⩾ 2 using dynamic
programming by Irving and Fraser [33] requiring O(nm) time, where n is the maximum
length of m strings. When m is unrestricted, LCS is NP-complete [38]. From the view of
parameterized complexity, Bodlaender, Downey, Fellows, and Wareham [8] showed that the
problem is W[t]-hard parameterized with m for all t, is W[2]-hard parameterized with the
length ℓ of a longest common subsequence, and is W[1]-complete parameterized with ℓ and
m. Bulteau, Jones, Niedermeier, and Tantau [9] presented a fixed-paraemter tractable (FPT)
algorithm with different parameterization.

Recent years have seen increasing interest in efficient methods for finding a diverse set
of solutions [5, 20, 27, 39]. Formally, let (F , d) be a distance space with a set F of feasible
solutions and a distance d : F × F → R⩾0, where d(X, Y ) denotes the distance between two
solutions X, Y ∈ F . We consider two diversity measures for a subset X = {X1, . . . , XK} ⊆ F
of solutions:

Dsum
d (X ) :=

∑
i<j d(Xi, Xj), (Sum diversity), (1)

Dmin
d (X ) := mini<j d(Xi, Xj), (Min diversity)· (2)

For τ ∈ {sum, min}, a subset X ⊆ F of feasible solutions is said to be ∆-diverse w.r.t. Dτ
d (or

simply, diverse) if Dτ
d(X ) ⩾ ∆ for a given ∆ ⩾ 0. Generally, the Max-Sum (resp. Max-Min)

Diverse Solutions problem related to a combinatorial optimization problem Π is the
problem of, given an input I to Π and a nonnegative number ∆ ⩾ 0, deciding if there exists
a subset X ⊆ SolΠ(I) of K solutions on I such that Dsum

d (X ) ⩾ ∆ (resp. Dmin
d (X ) ⩾ ∆),

where SolΠ(I) ⊆ F is the set of solutions on I. For many distance spaces related to
combinatorial optimization problems, both problems are known to be computationally hard
with unbounded K [5, 6, 11,18,20,27–29,34,45].

In this paper, we consider the problem of finding a diverse set of solutions for longest
common subsequences of a set S of input strings under Hamming distance. The task is
to select K longest common subsequences, maximizing the minimum pairwise Hamming
distance among them. In general, a set of m strings of length n may have exponentially
many longest common subsequences in n. Hence, efficiently finding such a diverse subset of
solutions for longest common subsequences is challenging.
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Let dH(X, Y ) denote the Hamming distance between two strings X, Y ∈ Σr of the equal
length r ⩾ 0, called r-strings. Throughout this paper, we consider two diversity measures
over sets of equi-length strings, the Sum-diversity Dsum

dH
and the Min-diversity Dmin

dH
under

the Hamming distance dH . Let LCS(S) denotes the set of all longest common subsequences
of a set S of strings. Now, we state our first problem.

▶ Problem 1 (Diverse LCSs with Diversity Measure Dτ
dH

).
Input: Integers K, r ⩾ 1, and ∆ ⩾ 0, and a set S = {S1, . . . , Sm} of m ⩾ 2 strings over Σ of

length at most r ;
Question: Is there some set X ⊆ LCS(S) of longest common subsequences of S such that
|X | = K and Dτ

dH
(X ) ⩾ ∆?

Then, we analyze the computational complexity of Diverse LCSs from the viewpoints
of approximation algorithms [43] and parameterized complexity [15,22]. For proving positive
results for the case that K is bounded, actually, we work with a more general setting in
which a set of strings to select is implicitly represented by the language L(G) accepted by
an edge-labeled DAG G, called a Σ-DAG. This is motivated by the fact implicit within the
well-known algorithm for K-LCSs by Irving and Fraser [33] that the set LCS(S) can be
succinctly represented by such a Σ-DAG (see Lemma 2). In contrast, negative results will be
proven in the setting where an input is explicitly given as a set of strings.

Let τ ∈ {sum, min} be any diversity type. Below, we state the modified version of the
problem, where an input string set is an arbitrary set of equi-length strings, no longer a set
of LCSs, and it is implicitly represented by either a Σ-DAG G or the set L itself.

▶ Problem 2 (Diverse String Set with Diversity Measure Dτ
dH

).
Input: Integers K, r, and ∆, and a Σ-DAG G for a set L(G) ⊆ Σr of r-strings.
Question: Decide if there exists some subset X ⊆ L(G) such that |X | = K and Dτ

dH
(X ) ⩾ ∆.

Main results. Let K ⩾ 1, r > 0, and ∆ ⩾ 0 be integers and Σ be an alphabet. The
underlying distance is always Hamming distance dH over r-strings. In Diverse String Set,
we assume that an input string set L ⊆ Σr of r-strings is represented by either a Σ-DAG G

or the set L itself. In Diverse LCS, we assume that the number m = |S| of strings in an
input set S is assumed to be constant throughout. Then, the main results of this paper are
summarized as follows.
1. When K is bounded, both Max-Sum and Max-Min versions of Diverse String Set

and Diverse LCSs can be solved in polynomial time using dynamic programming (DP).
(see Theorem 6, Theorem 8)

2. When K is part of the input, the Max-Sum version of Diverse String Set and Diverse
LCSs admit a PTAS by local search showing that the Hamming distance is a metric of
negative type1. (see Theorem 13)

3. Both of the Max-Sum and Max-Min versions of Diverse String Set and Diverse
LCSs are fixed-parameter tractable (FPT) when parameterized by K and r (see The-
orem 15, Theorem 16). These results are shown by combining Alon, Yuster, and Zwick’s
color coding technique [1] and the DP method in Result 1 above.

4. When K is part of the input, the Max-Sum and Max-Min versions of Diverse String
Set and Diverse LCSs are NP-hard for any constant r ⩾ 3 (Theorem 17, Corollary 20).

5. When parameterized by K, the Max-Sum and Max-Min versions of Diverse String
Set and Diverse LCSs are W[1]-hard (see Theorem 18, Corollary 21).

1 It is a finite metric satisfying a class of inequalities of negative type [16]. For definition, see Sec. 4.
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Table 2 Summary of results on Diverse String Set and Diverse LCSs under Hamming
distance, where K, r, and ∆ stand for the number, length, and diversity threshold for a subset X of
r-strings, and α: const, param, and input indicate that α is a constant, a parameter, and part of an
input, respectively. A representation of an input set L is both of Σ-DAG and LCS otherwise stated.

Problem Type K: const K: param K: input

Max-Sum
Diverse
String Set
& LCS

Exact Poly-Time
(Theorem 8)

W[1]-hard on Σ-DAG
(Theorem 18))

W[1]-hard on LCS
(Corollary 21))

NP-hard on Σ-DAG
if r ⩾ 3:const
(Theorem 17)
NP-hard on LCS
(Corollary 20)

Approx.
or FPT

— FPT if r: param
(Theorem 16)

PTAS
(Theorem 13)

Max-Min
Diverse
String Set
& LCS

Exact Poly-Time
(Theorem 6)

W[1]-hard on Σ-DAG
(Theorem 18)

W[1]-hard on LCS
(Corollary 21)

NP-hard on Σ-DAG
if r ⩾ 3:const
(Theorem 17)
NP-hard on LCS
(Corollary 20)

Approx.
or FPT

— FPT if r: param
(Theorem 15)

Open

A summary of these results is presented in Table 2. We remark that the Diverse String
Set problem coincides the original LCS problem when K = 1. It is generally believed that a
W[1]-hard problem is unlikely to be FPT [17,22]. Future work includes the approximability of
the Max-Min version of both problems for unbounded K, and extending our results to other
distances and metrics over strings, e.g., edit distance [35,44] and normalized edit distance [21].

1.1 Related work
Diversity maximization for point sets in metric space and graphs has been studied since
1970s under various names in the literature [7,10,11,18,29,34,40,42] (see Ravi, Rosenkrantz,
and Tayi [40] and Chandra and Halldórsson [11] for overview). There are two major
versions: Max-Min version is known as remote-edge, p-Dispersion, and Max-Min Facility
Dispersion [18, 42, 45]; Max-Sum version is known as remote-clique, Maxisum Dispersion,
and Max-Average Facility Dispersion [7, 10, 29, 40]. Both problems are shown to be NP-hard
with unbounded K for general distance and metrics (with triangle inequality) [18, 29], while
they are polynomial time solvable for 1- and 2-dimensional ℓ2-spaces [45]. It is trivially
solvable in nO(k) time for bounded K.

Diversity maximization in combinatorial problems. However, extending these results for
finding diverse solutions to combinatorial problems is challenging [5, 20]. While methods
such as random sampling, enumeration, and top-K optimization are commonly used for
increasing the diversity of solution sets in optimization, they lack theoretical guarantee of
the diversity [5, 6, 20, 27]. In this direction, Baste, Fellows, Jaffke, Masarík, de Oliveira
Oliveira, Philip, and Rosamond [5, 6] pioneered the study of finding diverse solutions in
combinatorial problems, investigating the parameterized complexity of well-know graph
problems such as Vertex Cover [6]. Subsequently, Hanaka, Kiyomi, Kobayashi, Kobayashi,
Kurita, and Otachi [28] explored the fixed-parameter tractability of finding various subgraphs.
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They further proposed a framework for approximating diverse solutions, leading to efficient
approximation algorithms for diverse matchings, and diverse minimum cuts [27]. While
previous work has focused on diverse solutions in graphs and set families, the complexity of
finding diverse solutions in string problems remains unexplored. Arrighi, Fernau, de Oliveira
Oliveira, and Wolf [2] conducted one of the first studies in this direction, investigating a
problem of finding a diverse set of subsequence-minimal synchronizing words.

DAG-based representation for all LCSs have appeared from time to time in the
literature. The LCS algorithm by Irving and Fraser [33] for more than two strings can be seen
as DP on a grid DAG for LCSs. Lu and Lin’s parallel algorithm [37] for LCS used a similar
grid DAG. Hakata and Imai [26] presented a faster algorithm based on a DAG of dominant
matches. Conte, Grossi, Punzi, and Uno [12] and Hirota and Sakai [30] independently
proposed DAGs of maximal common subsequences of two strings for enumeration.

The relationship between Hamming distance and other metrics has been explored
in string and geometric algorithms. Lipsky and Porat [36] presented linear-time reductions
from String Matching problems under Hamming distance to equivalent problems under
ℓ1-metric. Gionis, Indyk, and Motwani [24] used an isometry (a distance preserving mapping)
from an ℓ1-metric to Hamming distance over binary strings with a polynomial increase
in dimension. Cormode and Muthukrishnan [14] showed an efficient ℓ1-embedding of edit
distance allowing moves over strings into ℓ1-metric with small distortion. Despite these
advancements, existing techniques haven’t been successfully applied to our problems.

2 Preliminaries

We denote by Z, N = {x ∈ Z | x ⩾ 0}, R, and R⩾0 = {x ∈ R | x ⩾ 0} the sets of all integers,
all non-negative integers, all real numbers, and all non-negative real numbers, respectively.
For any n ∈ N, [n] denotes the set {1, . . . , n}. Let A be any set. Then, |A| denotes the
cardinality of A. Throughout, our model of computation is the word RAM, where the space
is measured in Θ(log n)-bit machine words.

Let Σ be an alphabet of σ symbols. For any n ⩾ 0, Σn and Σ∗ denote the sets of all
strings of length n and all finite strings over Σ, respectively. Let X = a1 . . . an ∈ Σn be any
string. Then, the length of X is denoted by |X| = n. For any 1 ⩽ i, j ⩽ n, X[i··j] denotes
the substring ai . . . aj if i ⩽ j and the empty string ε otherwise. A string set or a language
is a set L = {X1, . . . , Xn} ⊆ Σ∗ of n ⩾ 0 strings over Σ. The total length of a string set L

is denoted by ||L|| =
∑

X∈L |X|, while the length of the longest strings in L is denoted by
maxlen(L) := maxS∈L |S|. For any r ⩾ 0, we call any string X an r-string if its length is r,
i.e., X ∈ Σr. Any string set L is said to be of equi-length if L ⊆ Σr for some r ⩾ 0.

2.1 Σ-DAGs
A Σ-labeled directed acyclic graph (Σ-DAG, for short) is an edge-labeled directed acyclic
graph (DAG) G = (V, E, s, t) satisfying: (i) V is a set of vertices; (ii) E ⊆ V × Σ× V is a
set of labeled directed edges, where each edge e = (v, c, w) in E is labeled with a symbol
c = lab(e) taken from Σ; (iii) G has the unique source s and sink t in V such that every vertex
lies on a path from s to t. We define the size of G as the number size(G) of its labeled edges.
From (iii) above, G contains no unreachable nodes. For any vertex v in V , we denote the set
of its outgoing edges by E+(v) = { (v, c, w) ∈ E | w ∈ V }. Any path P = (e1, . . . , en) ∈ En

of length n spells out a string str(P ) = lab(e1) · · · lab(en) ∈ Σn of length n, where n ⩾ 0. A
Σ-DAG G represents the string set, or language, denoted L(G) ⊆ Σ∗, as the collection of
all strings spelled out by its (s, t)-paths. Essentially, G is equivalent to a non-deterministic
finite automaton (NFA) [32] over Σ with initial and final states s and t, and without ε-edges.
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Fig. 1a shows an example of Σ-DAG representing the set of six longest common sub-
sequences of two strings in Table 1. Sometimes, a Σ-DAG can succinctly represent a string
set by its language L(G). Actually, the size of G can be logarithmic in |L(G)| in the best
case,2 while size(G) can be arbitrary larger than ||L(G)|| (see Lemma 14 in Sec. 5).

▶ Remark 1. For any set L of strings over Σ, the following properties hold: (1) there exists a
Σ-DAG G such that L(G) = L and size(G) ⩽ ||L||. (2) Moreover, G can be constructed from
L in O(||L||f(σ)) time, where f(n) is the query time of search and insert operation on a
dictionary with n elements. (3) Suppose that a Σ-DAG G represents a set of strings L ⊆ Σ∗.
If L ⊆ Σr for r ⩾ 0, then all paths from the source s to any vertex v spell out strings of the
same length, say d ⩽ r.

Proof. (1) We can construct a trie T for a set L of strings over Σ, which is a deterministic
finite automaton for recognizing L in the shape of a rooted trees and has at most O(||L||)
vertices and edges. By identifying all leaves of T to form the sink, we obtain a Σ-DAG with
||L|| edges for L. (2) It is not hard to see that the trie T can be built in O(||L|| log σ) time
from L. (3) In what follows, we denote the string spelled out by any path π in G by str(π).
Suppose by contradiction that G has some pair of paths π1 and π2 ∈ E∗ from s to a vertex v

such that |str(π1)| − |str(π2)| > 0 (*). By assumption (iii) in the definition of a Σ-DAG, the
vertex v is contained in some (s, t)-path in G. Therefore, we have some path θ that connects
v to t. By concatenating πk and θ, we have two (s, t)-paths τk = πk · θ for all k = 1, 2.
Then, we observe from claim (*) that |str(τ1)| − |str(τ2)| = |str(π1 · θ)| − |str(π2 · θ)| =
(|str(π1)|+ |str(θ)|)− (|str(π2)|+ |str(θ)|) = |str(π1)|− |str(π2)| > 0· On the other hand, we
have L(G) contains both of str(π1) and str(π2) since τ1 and τ2 are (s, t)-paths. This means
that L(G) contains two strings of distinct lengths, and this contradicts that L(G) ⊆ Σr for
some r ⩾ 1. Hence, all paths from s to v have the same length. Hence, (3) is proved. ◀

By Property (3) of Remark 1, we define the depth of a vertex v in G by the length
depth(v) of any path P from the source s to v, called a length-d prefix (path). In other
words, depth(v) = |str(P )|. Then, the vertex set V is partitioned into a collection of disjoint
subsets V0 = {s} ∪ · · · ∪ Vr = {t}, where Vd is the subset of all vertices with depth d for all
d ∈ [r] ∪ {0}.

2.2 Longest common subsequences
A string X is a subsequence of another string Y if X is obtained from Y by removing some
characters retaining the order. X is a common subsequence (CS) of any set S = {S1, . . . , Sm}
of m strings if X is a subsequence of any member of S. A CS of S is called a longest common
subsequence (LCS) if it has the maximum length among all CSs of S. We denote by CS(S)
and LCS(S), respectively, the sets of all CSs and all LCSs of S. Naturally, all LCSs in
LCS(S) have the same length, denoted by 0 ⩽ lcs(S) ⩽ minS∈S |S|. While a string set S
can contain exponentially many LCSs compared to the total length ||S|| of its strings, we
can readily see the next lemma.

▶ Lemma 2 (Σ-DAG for LCSs). For any constant m ⩾ 1 and any set S = {S1, . . . , Sm} ⊆ Σ∗

of m strings, there exists a Σ-DAG G of polynomial size in ℓ := maxlen(S) such that
L(G) = LCS(S), and G can be computed in polynomial time in ℓ.

2 For example, for any r ⩾ 1, the language L = {a, b}r over an alphabet Σ = {a, b} consists of |L| = 2r

strings, while it can be represented by a Σ-DAG with 2r edges.
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(a) An input Σ-DAG G1. (b) An example run of Algorithm 1 for K = 3.

Figure 1 Illustration of Algorithm 1 based on dynamic programming. In (a) a Σ-DAG G1

represents six LCSs in Table 1. In (b), circles and arrows indicate the states of the algorithm, which
are K-tuples of vertices of G1, and transition between them, respectively. All states are associated
with a set of K × K-weight matrices, which are shown only for the sink ttt in the figure.

Proof. By Irving and Fraser’s algorithm [33], we can construct a m-dimensional grid graph
N in O(ℓm) time and space, where (i) the source and sink are s = (0, . . . , 0) and t =
(|S1|, . . . , |Sm|), respectively; (ii) edge labels are symbols from Σ ∪ {ε}; (iii) the number of
edges is size(N) =

∏m
i=1 |Si| ⩽ O(ℓm); and (iv) all of (s, t)-paths spell out LCS(S). Then,

application of the ε-removal algorithm [32] yields a Σ-DAG G in O(|Σ| · size(N)) time and
space, where G has O(|Σ| · size(N)) = O(|Σ|ℓm) edges. ◀

▶ Remark 3. As a direct consequence of Lemma 2, we observe that if Max-Min (resp. Max-
Sum) Diverse String Set can be solved in f(M, K, r, ∆) time and g(M, K, r, ∆) space on a
given input DAG G of size M = size(G), then Max-Min (resp. Max-Sum) Diverse LCSs on
S ⊆ Σr can be solvable in t = O(|Σ| · ℓm +f(ℓm, K, r, ∆)) time and s = O(ℓm +g(ℓm, K, r, δ))
space, where ℓ = maxlen(S), since size(G) = O(ℓm).

From Remark 3, for any constant m ⩾ 2, there exist a polynomial time reduction from
Max-Min (resp. Max-Sum) Diverse LCSs for m strings to Max-Min (resp. Max-Sum)
Diverse String Set on Σ-DAGs, where the distance measure is Hamming distance.

2.3 Computational complexity

A problem with parameter κ is said to be fixed-parameter tractable (FPT) if there is an
algorithm that solves it, whose running time on an instance x is upperbounded by f(κ(x))·|x|c
for a computable function f(κ) and constant c > 0. A many-one reduction ϕ is called an
FPT-reduction if it can be computed in FPT and the parameter κ(ϕ(x)) is upper-bounded
by a computable function of κ(x). For notions not defined here, we refer to Ausiello et al. [3]
for approximability and to Flum and Grohe [22] for parameterized complexity.

3 Exact Algorithms for Bounded Number of Diverse Strings

In this section, we show that both of Max-Min and Max-Sum versions of Diverse String
Set problems can be solved by dynamic programming in polynomial time and space in the
size an input Σ-DAG and integers r and ∆ for any constant K. The corresponding results
for Diverse LCSs problems will immediately follow from Remark 3.
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27:8 Finding Diverse Strings and Longest Common Subsequences

3.1 Computing Max-Min Diverse Solutions
We describe our dynamic programming algorithm for the Max-Min Diverse String Set
problem. Given an Σ-DAG G = (V, E, s, t) with n vertices, representing a set L(G) ⊆ Σr of
r-strings, we consider integers ∆ ⩾ 0, r ⩾ 0, and constant K ⩾ 1. A brute-force approach
could solve the problem in O(|L(G)|K) time by enumerating all combinations of K (s, t)-paths
in G and selecting a ∆-diverse solution X ⊆ L(G). However, this is impractical even for
constant K because |L(G)| can be exponential in the number of edges.

The DP-table. A straightforward method to solve the problem is enumerating all combina-
tions of K-tuples of paths from s to t to find the best K-tuple. However, the number of such
K-tuples can be exponential in r. Instead, our DP-algorithm keeps track of only all possible
patterns of their pairwise Hamming distances. Furthermore, it is sufficient to record only
Hamming distance up to a given threshold ∆. In this way, we can efficiently computes the
best combination of K paths provided that the number of patterns is manageable.

Formally, we let d (0 ⩽ d ⩽ r) be any integer and P = (P1, . . . , PK) ∈ (Ed)K be any
K-tuple of length-d paths starting from the sink s and ending at some nodes. Then, we
define the pattern of K-tuple P by the pair Pattern(P ) = (w, Z), where

w = (w1, . . . , wK) ∈ V K
d is the K-tuple of vertices in G, called a state, such that for all

i ∈ [K], the i-th path Pi starts from the source s and ends at the i-th vertex wi of w.
Z = (Zi,j)i<j ∈ [∆ ∪ {0}]K×K is an upper triangular matrix, called the weight matrix
for P . For all 1 ⩽ i < j ⩽ K, Zi,j = min(∆, dH(str(Pi), str(Pj))) ∈ [∆ ∪ {0}] is the
Hamming distance between the string labels of Pi and Pj truncated by the threshold ∆.

Our algorithm constructs as the DP-table Weights = (Weights(w, Z))w,Z , which is a
Boolean-valued table that associates a collection of weight matrices Z to each state w such
that Z belongs to the collection if and only if Weights(w, Z) = 1. See Fig. 1 for example.
Formally, we define Weights as follows.

▶ Definition 4. Weights : V K × [∆ ∪ {0}]K×K → {0, 1} is a Boolean table such that for
every K-tuple of vertices w ∈ V K and weight matrix Z ∈ [∆ ∪ {0}]K×K , Weights(w, Z) = 1
holds if and only if (w, Z) = Pattern(P ) holds for some 0 ⩽ d ⩽ r and some K-tuple
P ∈ (Ed)K of length-d paths from the source s to w in G.

We estimate the size of the table Weights. Since Z takes at most Γ = O(∆K2
K2) distinct

values, it can be encoded in log Γ = O(K2 log ∆) bits. Therefore, Weights has at most
|V |K × Γ = O(∆K2

K2MK) entries, where M = size(G). Consequently, for constant K,
Weights can be stored in a multi-dimensional table of polynomial size in M and ∆ supporting
random access in constant expected time or O(log log(|V | ·∆)) worst-case time [13,46].

Computation of the DP-table. We denote the K-tuples of copies of the source s and sink
t by s := (s, . . . , s) and t := (t, . . . , t) ∈ V K , respectively, as the initial and final states. The
zero matrix Zero = (Zeroi,j)i<j is a special matrix where Zeroi,j = 0 for all i < j. Now, we
present the recurrence for the DP-table Weights.

▶ Lemma 5 (recurrence for Weights). For any 0 ⩽ d ⩽ r, any w ∈ V K and any Z =
(Zi,j)i<j ∈ [∆ ∪ {0}]K×K , the entry Weights(w, Z) ∈ {0, 1} satisfies the following:
(1) Base case: If w = s and Z = Zero, then Weights(w, Z) = 1.
(2) Induction case: If w ̸= s and all vertices in w have the same depth d (1 ⩽ d ⩽ r), namely,

w ∈ V K
d , then Weights(w, z) = 1 if and only if there exist
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Algorithm 1 An exact algorithm for solving Max-Min Diverse r-String problem. Given
a Σ-DAG G = (V, E, s, t) representing a set L(G) of r-strings and integers K ⩾ 1, ∆ ⩾ 0,
decide if there exists some ∆-diverse set of K r-strings in L(G).

1 Set Weights(s, Z) := 0 for all Z ∈ [∆ ∪ {0}]K×K , and set Weights(s, Zero)← 1;
2 for d← 1, . . . , r do
3 for v ← (v1, . . . , vK) ∈ (Vd)K do
4 for (v1, c1, w1) ∈ E+(v1), . . . , (vK , cK , wK) ∈ E+(vK) do
5 Set w ← (w1, . . . , wK);
6 for U ∈ [∆ ∪ {0}]K×K such that Weights(v, U) = 1 do
7 Set Z = (Zi,j)i<j with Zi,j ← min(∆, Ui,j + 1{ci ̸= cj }), ∀i, j ∈ [K];
8 Set Weights(w, Z)← 1 ; ▷Update

9 Answer YES if Weights(t, Z) := 1 and Dmin
dH

(Z) ⩾ ∆ for some Z, and NO otherwise;

v = (vi)K
i=1 ∈ V K

d−1 such that each vi is a parent of wi, i.e., (vi, ci, wi) ∈ E, and
U = (Ui,j)i<j ∈ [∆ ∪ {0}]K×K such that (i) Weights(v, U) = 1, and (ii) Zi,j =
min(∆, Ui,j + 1{ci ̸= cj }) for all 1 ⩽ i < j ⩽ K.

(3) Otherwise: Weights(w, Z) = 0.

Proof. The proof is straightforward by induction on 0 ⩽ d ⩽ r. Thus, we omit the detail. ◀

Fig. 1b shows an example run of Algorithm 1 on a Σ-DAG G1 in Fig. 1a representing the
string set L(G1) = LCS(X1, Y1), where squares indicate weight matrices. From Lemma 5,
we show Theorem 6 on the correctness and time complexity of Algorithm 1.

▶ Theorem 6 (Polynomial time complexity of Max-Min Diverse String Set). For any K ⩾ 1 and
∆ ⩾ 0, Algorithm 1 solves Max-Min Diverse String Set in O(∆K2

K2MK(log |V |+log ∆))
time and space when an input string set L is represented by a Σ-DAG, where M = size(G) is
the number of edges in G.

3.2 Computing Max-Sum Diverse Solutions
We can solve Max-Sum Diverse String Set by modifying Algorithm 1 as fol-
lows. For computing the Max-Sum diversity, we only need to maintain the sum z =∑

i<j dH(str(Pi), str(Pj)) of all pairwise Hamming distances instead of the entire (K ×K)-
weight matrix Z.

The new table Weights′. For any w = (w1, . . . , wK) of the same depth 0 ⩽ d ⩽ r and any
integer 0 ⩽ z ⩽ rK, we define: Weights′(w, z) = 1 if and only if there exists a K-tuple of
length-d prefix paths (P1, . . . , PK) ∈ (Ed)K from s to w1, . . . , wK , respectively, such that
the sum of their pairwise Hamming distances is z, namely, z =

∑
i<j dH(str(Pi), str(Pj)).

▶ Lemma 7 (recurrence for Weights′). For any w = (w1, . . . , wK) ∈ V K and any integer
0 ⩽ z ⩽ rK, the entry Weights′(w, z) ∈ {0, 1} satisfies the following:
(1) Base case: If w = s and z = 0, then Weights(w, z) = 1.
(2) Induction case: If w ̸= s and all vertices in w have the same depth d (1 ⩽ d ⩽ r), namely,

w ∈ V K
d , then Weights(w, z) = 1 if and only if there exist

v = (vi)K
i=1 ∈ V K

d−1 such that each vi is a parent of wi, i.e., (vi, ci, wi) ∈ E, and
0 ⩽ u ⩽ rK such that (i) Weights(v, u) = 1, and (ii) z = min(∆, u +∑

i<j 1{ci ̸= cj }).
(3) Otherwise: Weights(w, z) = 0.
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Algorithm 2 A (1 − 2/K)-approximation algorithm for Max-Sum Diversification for a
metric d of negative type on X .

1 procedure LocalSearch(D, K, d);
2 X ← arbitrary K solutions in D;
3 for i← 1, . . . , ⌈K(K−1)

(K+1) ln (K+2)(K−1)2

4 ⌉ do
4 for X ∈ X such that D \ X ̸= ∅ do
5 Y ← argmax

Y ∈D\X

∑
X′∈X \{X}

d(X ′, Y );

6 X ← (X \ {X}) ∪ {Y };

7 Output X ;

From the above modification of Algorithm 1 and Lemma 7, we have Theorem 8. From
this theorem, we see that the Max-Sum version of Diverse String Set can be solved
faster than the Max-Min version by factor of O(∆K−1).

▶ Theorem 8 (Polynomial time complexity of Max-Sum Diverse String Set). For any constant
K ⩾ 1, the modified version of Algorithm 1 solves Max-Sum Diverse String Set under
Hamming Distance in O(∆K2MK(log |V |+ log ∆)) time and space, where M = size(G) is
the number of edges in G and the input set L is represented by a Σ-DAG.

4 Approximation Algorithm for Unbounded Number of Diverse Strings

To solve Max-Sum Diverse String Set for unbounded K, we first introduce a local search
procedure, proposed by Cevallos, Eisenbrand, and Zenklusen [10], for computing approximate
diverse solutions in general finite metric spaces (see [16]). Then, we explain how to apply
this algorithm to our problem in the space of equi-length strings equipped with Hamming
distance.

Let D = {x1, . . . , xn} be a finite set of n ⩾ 1 elements. A semi-metric is a function
d : D × D → R⩾0 satisfying the following conditions (i)–(iii): (i) d(x, x) = 0, ∀x ∈ D; (ii)
d(x, y) = d(y, x), ∀x, y ∈ D; (iii) d(x, z) ⩽ d(x, y) + d(y, z), ∀x, y, z ∈ D (triangle inequalities).
Consider an inequality condition, called a negative inequality:

b⊤D b :=
∑

i<j bibjd(xi, xj) ⩽ 0, ∀b = (b1, . . . , bn) ∈ Zn, (3)

where b is a column vector and D = (dij) with dij = d(xi, xj). For the vector b above,
we define

∑
b :=

∑n
i=1 bi. A semi-metric d is said to be of negative type if it satisfies the

inequalities Eq. (3) for all b ∈ Zn such that
∑

b = 0. The class NEG of semi-metrics of
negative type satisfies the following properties.

▶ Lemma 9 (Deza and Laurent [16]). For the class NEG, the following properties hold: (1)
All ℓ1-metrics over Rr are semi-metrics of negative type in NEG for any r ⩾ 1. (2) The
class NEG is closed under linear combination with nonnegative coefficients in R⩾0.

In Algorithm 2, we show a local search procedure LocalSearch, proposed by Cevallos et
al. [10], for computing a diverse solution X ⊆ D with |X | = K approximately maximizing its
Max-Sum diversity under a given semi-metric d : D×D → R⩾0 on a finite metric space D of
n points. The Farthest Point problem refer to the subproblem for computing Y at Line 5.
When the distance d is a semi-metric of negative type, they showed the following theorem.
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Algorithm 3 An exact algorithm for solving the Max-Sum Farthest r-String problem.
Given a Σ-DAG G for a set L(G) ⊆ Σr, a set X = {X1, . . . , XK} ⊆ Σr, and an integer
∆ ⩾ 0, it decides if there exists a Y ∈ L(G) such that Dsum

dH
(X , Y ) ⩾ ∆.

1 Set Weights(s, z) := 0 for all z ∈ [∆]+, and Weights(s, 0) := 1;
2 for d := 1, . . . , r do
3 for v ∈ Vd and (v, c, w) ∈ E+(v) do
4 for 0 ⩽ u ⩽ ∆ such that Weights(v, u) := 1 do
5 Set Weights(w, z) := 1 for z := u +

∑
i∈[K] 1{c ̸= Xi[d]} ; ▷Update

6 Answer YES if Weights(t, ∆) = 1, and NO otherwise ; ▷Decide

▶ Theorem 10 (Cevallos et al. [10]). Suppose that d is a metric of negative type over X in
which the Farthest Point problem can be solved in polynomial time. For any K ⩾ 1, the
procedure LocalSearch in Algorithm 2 has approximation ratio (1− 2

K ).

We show that the Hamming distance actually has the desired property.

▶ Lemma 11. For any integer r ⩾ 1, the Hamming distance dH over the set Σr of r-strings
is a semi-metric of negative type over Σr.

Proof. Let Σ = [σ] be any alphabet. We give an isometry ϕ (see Sec. 1.1) from the Hamming
distance (Σr, dH) to the ℓ1-metric (W, dℓ1) over a subset W of Rm for m = rσ. For any
symbol i ∈ Σ, we extend ϕ by ϕΣ(i) := 0i−1(0·5)0σ−i ∈ {0, 0·5}σ be a bitvector with 0·5 at
i-th position and 0 at other bit positions such that for each c, c′ ∈ Σ, ||ϕΣ(c)− ϕΣ(c′)||1 =
1{c ̸= c′ } · For any r-string S = S[1] . . . S[r] ∈ Σr, we let ϕ(S) := ϕΣ(S[1]) · · ·ϕΣ(S[r]) ∈W ,
where W := {0, 0·5}m and m := rσ. For any S, S′ ∈ Σr, we can show dℓ1(ϕ(S), ϕ(S′)) =
||ϕ(S)j − ϕ(S′)j ||1 =

∑
i∈[r] ||ϕΣ(S[i]) − ϕΣ(S′[i])||1 =

∑
i∈[r] 1{S[i] ̸= S′[i]} = dH(S, S′)·

Thus, ϕ : Σr → W is an isometry [16] from (Σr, dH) to ({0, 0·5}m, dℓ1). By Lemma 9,
ℓ1-metric is a metric of negative type [10,16], and thus, the lemma is proved. ◀

The remaining thing is efficiently solving the string version of the subproblem, called the
Farthest String problem, that given a set X ′ ⊆ Σr, asks to find the farthest Y from all
elements in X ′ by maximizing the sum Dsum

dH
(X ′, Y ) :=

∑
X′∈X ′ dH(X ′, Y ) over all elements

Y ∈ L(G) \ X ′. For the class of r-strings, we show the next lemma.

▶ Lemma 12 (Farthest r-String). For any K ⩾ 1 and ∆ ⩾ 0, given G and X ′ ⊆ L(G),
Algorithm 3 computes the farthest r-string Y ∈ L(G) that maximizes Dsum

dH
(X ′, Y ) over all

r-strings in L(G) in O(K∆M) time and space, where M is the number of edges in G.

Proof. The procedure in Algorithm 3 solves the decision version of Max-Sum Farthest
r-String. Since it is obtained from Algorithm 1 by fixing K − 1 paths and searching only a
remaining path in G, its correctness and time complexity immediately follows from that of
Theorem 6. It is easy to modify Algorithm 3 to compute such Y that maximizes Dsum

dH
(X ′, Y )

by recording the parent pair (v, y) of each (w, z) and then tracing back. ◀

Combining Theorem 10, Lemma 12, and Lemma 11, we obtain the following theorem on
the existence of a polynomial time approximation scheme (PTAS) [3] for Max-Sum Diverse
String Set on Σ-DAGs. From Theorem 13 and Remark 3, the corresponding result for
Max-Sum Diverse LCSs will immediately follow.
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Figure 2 Illustration of the proof for Lemma 14, where dashed lines indicates a correspondence φ.

▶ Theorem 13 (PTAS for unbounded K). When K is part of an input, Max-Sum Diverse
String Set problem on a Σ-DAG G admits PTAS.

Proof. We show the theorem following the discussion of [10, 27]. Let ε > 0 be any constant.
Suppose that ε < 2/K holds. Then, K < 2/ε, and thus, K is a constant. In this case,
by Theorem 6, we can exactly solve the problem in polynomial time using Algorithm 1.
Otherwise, 2/K ⩽ ε. Then, the (1− 2/K) approximation algorithm in Algorithm 2 equipped
with Algorithm 3 achieves factor 1 − ε since dH is a negative type metric by Lemma 11.
Hence, Max-Sum Diverse String Set admits a PTAS. This completes the proof. ◀

5 FPT Algorithms for Bounded Number and Length of Diverse Strings

In this section, we present fixed-parameter tractable (FPT) algorithms for the Max-Min
and Max-Sum Diverse String Set parameterized with combinations of K and r. Recall
that a problem parameterized with κ is said to be fixed-parameter tractable if there exists an
algorithm for the problem running on an input x in time f(κ(x)) · |x|c for some computable
function f(κ) and constant c > 0 [22].

For our purpose, we combine the color-coding technique by Alon, Yuster, and Zwick [1]
and the algorithms in Sec. 3. Consider a random C-coloring c : Σ→ C from a set C of k ⩾ 1
colors, which assigns a color c(a) chosen from C randomly and independently to each a ∈ Σ.
By applying this C-coloring to all each edges of an input Σ-DAG G, we obtain the C-colored
DAG, called a C-DAG, and denote it by c(G). We show a lemma on reduction of c(G).

▶ Lemma 14 (computing a reduced C-DAG in FPT). For any set C of k colors, there exists
some C-DAG H obtained by reducing c(G) such that L(H) = L(c(G)) and ||H|| ⩽ kr.
Furthermore, such a C-DAG H can be computed from G and C in tpre = O(kr · size(G))
time and space.

Proof. We show a proof sketch. Since L(G) ⊆ Σr, we see that the C-DAG c(G) represents
L(c(G)) ⊆ Cr of size at most ||L(c(G))|| ⩽ kr. By Remark 1, there exists a C-DAG H for
L(H) = L(c(G)) with at most kr edges. However, it is not straightforward how to compute
such a succinct H directly from G and c in O(kr · size(G)) time and space since ||L(G)|| can
be much larger than kr + size(G). We build a trie T for L(H) top-down using breadth-first
search of G from the source s by maintaining a correspondence φ ⊆ V × U between vertices
V in G and vertices U in T (Fig. 2). Then, we identify all leaves of T to make the sink t.
This runs in O(kr · size(G)) time and O(kr + size(G)) space. ◀

Fig. 2 illustrates computation of reduced C-DAG H from an input Σ-DAG G over
alphabet Σ = {A, B, C, D} in Lemma 14, which shows G (left), a random coloring c on
C = {a, b}, a colored C-DAG c(G) (middle), and a reduced C-DAG H in the form of trie T

(right). Combining Lemma 14, Theorem 6, and Alon et al. [1], we show the next theorem.
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▶ Theorem 15. When r and K are parameters, the Max-Min Diverse String Set on a
Σ-DAG for r-strings is fixed-parameter tractable (FPT), where size(G) is an input.

Proof. We show a sketch of the proof. We show a randomized algorithm using Alon et al.’s
color-coding technique [1]. Let L(G) ⊆ Σr, k = rK, and C = [rK]. We assume without loss
of generality that ∆ ⩽ r. We randomly color edges of G from C. Then, we perform two
phases below.

Preprocessing phase: Using the FPT-algorithm of Lemma 14, reduce the colored C-DAG
c(G) with size(G) into another C-DAG H with L(H) = L(c(G)) ⊆ Cr and size bounded
by (rK)r. Lemma 14 shows that this requires tpre = O((rK)r · size(G)) time and space.
Search phase: Find a ∆-diverse subset Y in L(H) of size |Y| = K from H using a modified
version of Algorithm 1 in Sec. 3 (details in footnote3). If such Y exists and c is invertible,
then X = c−1(Y) is a ∆-diverse solution for the original problem. The search phase takes
tsearch = O(K2∆K2(rK)rK) =: g(K, r) time, where ∆ ⩽ r is used.

With the probability p = (rK)!/(rK)rK ⩾ 2−rK , for C = [rK], the random C-coloring
yields a colorful ∆-diverse subset Y = c(X ) ⊆ L(H). Repeating the above process 2rK times
and derandomizing it using Alon et al. [1] yields an FPT algorithm with total running time
t = 2rKr log(rK)(tpre + tsearch) = f(K, r, ∆) · size(G), where f(K, r, ∆) = O(2rKr log(rK) ·
{(rK)r + g(K, r)}) depends only on parameters r and K. This completes the proof. ◀

Similarly, we obtain the following result for Max-Sum Diversity.

▶ Theorem 16. When r and K are parameters, the Max-Sum Diverse String Set on Σ-graphs
for r-strings is fixed-parameter tractable (FPT), where size(G) is part of an input.

Proof. The proof proceeds by a similar discussion to the one in the proof of Theorem 15.
The only difference is the time complexity of tsearch. In the case of Max-Sum diversity,
the search time of the modified algorithm in Theorem 8 is tsearch = O(∆K2MK), where
M = size(G). By substituting M ⩽ (rK)k for tsearch, we have tsearch = g′(K, r)∆, where
g′(K, r) := O(K2(rK)rK). Since g′(K, r) depends only on parameters, the claim follows. ◀

6 Hardness results

To complement the positive results in Sec. 3 and Sec. 4, we show some negative results in
classic and parameterized complexity. In what follows, σ = |Σ| is an alphabet size, K is
the number of strings to select, r is the length of equi-length strings, and ∆ is a diversity
threshold. In all results below, we assume that σ are constants, and without loss of generality
from Remark 1 that an input set L of r-strings is explicitly given as the set itself.

6.1 Hardness of Diverse String Set for Unbounded K

Firstly, we observe the NP-hardness of Max-Min and Max-Sum Diverse String Set
holds for unbounded K even for constants r ⩾ 3.

▶ Theorem 17 (NP-hardness for unbounded K). When K is part of an input, Max-Min
and Max-Sum Diverse String Set on Σ-graphs for r-strings are NP-hard even for any
constant r ⩾ 3.

3 This modification of Algorithm 1 is easily done at Line 7 of Algorithm 1 by replacing the term
1{ lab(ei) ̸= lab(ej)} with the term 1{{c(lab(ei)) ̸= c(lab(ej))} ∧ {lab(ei) ̸= lab(ej)}}.
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1

5

2

3

4

12 13 14 15 23 24 25 34 35 45
S1 1 1 1 0 1 1 1 1 1 1
S2 2 2 2 2 2 2 0 2 2 2
S3 3 3 3 3 3 3 3 0 3 3
S4 4 4 4 4 4 4 4 0 4 4
S5 5 5 5 0 5 5 0 5 5 5

Figure 3 An example of reduction for the proof of Theorem 18 in the case of n = 5, consisting of
an instance G of Clique, with a vertex set V = {1, . . . , 5} and a edge set E ⊆ E = {12, 13, . . . , 45}
(left), and the associated instance F = {S1, . . . , Sn} of Diverse r-String Set, where F contains
n = 5 r-strings with r = |E| = 10 (right). Shadowed cells indicate the occurrences of symbol 0.

Proof. We reduce an NP-hard problem 3DM [23] to Max-Min Diverse String Set by
a trivial reduction. Recall that given an instance consists of sets A = B = C = [n] for
some n ⩾ 1 and a set family F ⊆ [n]3, and 3DM asks if there exists some subset M ⊆ F

that is a matching, that is, any two vectors X, Y ∈ M have no position i ∈ [3] at which
the corresponding symbols agree, i.e., X[i] = Y [i]. Then, we construct an instance of
Max-Min Diverse String Set with r = 3 with an alphabet Σ = A ∪B ∪ C, a string set
L = F ⊆ Σ3, integers K = n and ∆ = r = 3. Obviously, this transformation is polynomial
time computable. Then, it is not hard to see that for any M ⊆ F , M is a matching if and
only if Dmin

dH
(M) ⩾ ∆ holds. On the other hand, for Max-Min Diverse String Set, if

we let ∆′ =
(

K
2
)

then for any M ⊆ F , M is a matching if and only if Dsum
dH

(M) ⩾ ∆′ holds.
Combining the above arguments, the theorem is proved. ◀

We remark that 3DM is shown to be in FPT by Fellows, Knauer, Nishimura, Ragde,
Rosamond, Stege, Thilikos, and Whitesides [19]. Besides, we showed in Sec. 5 that Diverse
r-String Set is FPT when parameterized with K +r (Max-Sum) or K +r +∆ (Max-Min),
respectively. We show that the latter problem is W[1]-hard parameterized with K.

▶ Theorem 18 (W[1]-hardness of the string set and Σ-DAG versions for unbounded K). When
parameterized with K, Max-Min and Max-Sum Diverse String Set for a set L of
r-strings are W[1]-hard whether a string set L is represented by either a string set L or a
Σ-DAG for L, where r and ∆ are part of an input.

Proof. We establish the W[1]-hardness of Max-Min Diverse String Set with parameter
K by reduction from Clique with parameter K. This builds on the NP-hardness of r-Set
packing in Ausiello et al. [4] with minor modifications (see also [19]). Given a graph
G = (V, E) with n vertices and a parameter K ∈ N, where V = [n] and E ⊆ E , we let
E := { {i, j} | i, j ∈ V, i ̸= j }. We define the transformation ϕ1 from ⟨G, K⟩ to ⟨Σ, r, F, ∆⟩
and κ(K) = K as follows. We let Σ = [n] ∪ {0}, r = |E| =

(
n
2
)
, and ∆ = r. We view

each r-string S as a mapping S : E → Σ assigning symbol S(e) ∈ Σ to each unordered pair
e ∈ E . We construct a family F = { Si | i ∈ V } of r-strings such that G has a clique of K

elements if and only if there exists a subset M ⊆ F with (a) size |M | ⩾ κ(K) = K, and
(b) diversity dH(S, S′) ⩾ r = ∆ for all distinct S, S′ ∈ M (*). Each r-string Si is defined
based on the existence of the edges in E: (i) Si(e) = 0 if (i ∈ e) ∧ (e ̸∈ E), and (ii) Si(e) = i

otherwise. By definition, dH(Si, Sj) ⩽ r. We show that for any i, j ∈ E , Si and Sj have
conflicts at all positions, i.e. dH(Si, Sj) = r, if and only if {i, j} ∈ E. See Fig. 3 for example
of F . To see the correctness, suppose that e = {i, j} ̸∈ E. Then, it follows from (i) that
Si(e) = Sj(e) = 0 since (i ∈ e)∧ (j ∈ e)∧ e ̸∈ E. Conversely, if e′ = {i, j} ∈ E, the condition
(i) Si(e) = Sj(e) = 0 does not hold for any e ∈ E because if e ̸= e′, one of (i ∈ e) and (j ∈ e)
does not hold, and if e = e′, e ̸∈ E does not hold. This proves the claim (*). Since ϕ1 and κ

form an FPT-reduction. The theorem is proved. ◀
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In this subsection, we show the hardness results of Diverse LCSs for unbounded K in
classic and parameterized settings by reducing them to those of Diverse String Set
in Sec. 6.1.

▶ Theorem 19. Under Hamming distance, Max-Min (resp. Max-Sum) Diverse String
Set for m ⩾ 2 strings parameterized with K is FPT-reducible to Max-Min (resp. Max-Sum)
Diverse LCSs for two string (m = 2) parameterized with K, where m is part of an input.
Moreover, the reduction is also a polynomial time reduction from Max-Min (resp. Max-Sum)
Diverse String Set to Max-Min (resp. Max-Sum) Diverse LCSs.

We defer the proof of Theorem 19 in Sec. 6.1.1. Combining Theorem 17, Theorem 18,
and Theorem 19, we have the corollaries.

▶ Corollary 20 (NP-hardness). When K is part of an input, Max-Min and Max-Sum
Diverse LCSs for two r-strings are NP-hard, where r and ∆ are part of an input.

▶ Corollary 21 (W[1]-hardness). When parameterized with K, Max-Min and Max-Sum
Diverse LCSs for two r-strings are W[1]-hard, where r and ∆ are part of an input.

6.1.1 Proof for Theorem 19
In this subsection, we show the proof of Theorem 19, which is deferred in the previous section.
Suppose that we are given an instance of Max-Sum Diverse String Set consisting of
integers K, r ⩾ 1, ∆ ⩾ 0, and any set L = {Xi}s

i=1 ⊆ Σr of r-strings, where s = |L| ⩾ 2. We
let Ξ = { ai,j , bi,j | i, j ∈ [s] } be a set of mutually distinct symbols, and Γ = Σ ∪ Ξ be a new
alphabet with Σ ∩ Ξ = ∅. We let T = {Ti := PiXiQi}s

i=1 be the set of s strings of length
|Ti| = r + 2s over Γ, where Pi := ai1 . . . ais ∈ Γs, Qi := bi1 . . . bis ∈ Γs, ∀i ∈ [s].

Now, we construct two input strings S1 and S2 over Γ in an instance of Max-Min Diverse
LCSs so that LCS(S1,S2) = T . For all i ∈ [s], we factorize each strings Ti of length (r + 2s)
into three substrings Ai, Wi, Bi ∈ Γ+, called segments, such that Ti = Ai ·Wi ·Bi such that
(i) We partition Pi into Pi = Ai · Ai, where Ai := Pi[1··s− i + 1] is the prefix with length
s− i + 1 and Ai = Pi[s− i + 2··s] is the suffix with length i−1 of Pi. (ii) We partition Qi into
Qi = Bi ·Bi, where Bi = Qi[1··s− i] is the prefix with length s− i and Bi := Qi[s− i+1··s] is
the suffix with length i of Qi. (iii) We obtain a string Wi := Ai ·Xi ·Bi with length r + s− 1
from Xi by prepending and appending Ai and Bi to Xi. Let A = {Ai }s

i=1, B = {Bi }s
i=1,

and W = {Wi }s
i=1 be the groups of the segments of the same types. See Fig. 4a for examples

of A,B, and W . Then, we define the set S = {S1, S2} of two input strings S1 and S2 of the
same length |S1| = |S2| = s(r + 2s) by:

S1 =
∏s

i=1 Ai ·
∏s

i=1 Wi ·
∏s

i=1 Bi = (A1 · · ·As) · (W1 · · ·Ws) · (B1 · · ·Bs),

S2 =
∏1

i=s Ti =
∏1

i=s(Ai ·Wi ·Bi) = (As ·Ws ·Bs) · · · (A1 ·W1 ·B1)· (4)

Fig. 4b shows an example of S for s = 4. We observe the following properties of
S: (P1) S1 and S2 are segment-wise permutations of each other; (P2) if all segments in
any group Z = {Zi}s

i=1 ∈ {A,B,W} occur one of two input strings, say S1, in the order
Z1, . . . , Zs, then they occur in the other, say S2, in the reverse order Zs, . . . , Z1; (P3) Ai’s
(resp. Bi’s) appear in S2 from left to right in the order As, . . . , A1 (resp. Bs, . . . , B1); (P4)
A and B satisfy |A1| > · · · > |As| and |B1| < · · · < |Bs|. We associate a bipartite graph
B(S) = (V = V1 ∪ V2, E) to S, where (i) Vk consists of all positions in Sk for k = 1, 2, and
(ii) E ⊆ V1 × V2 is an edge set such that e = (i1, i2) ∈ E if and only if both ends of e have
the same label S1[i1] = S2[i2] ∈ Σ. Any sequence M = ((ik, jk))ℓ

k=1 ∈ Eℓ of ℓ edges is an
(ordered) matching if i1 ̸= j1 and i2 ̸= j2, and is non-crossing if (i1 < j1) and (i2 < j2).
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T4 A4 A4 X4 B4

T3 A3 A3 X3 B3 B3

T2 A2 A2 X2 B2 B2

1 2 3 4 5 6 7 8 9 10 11

T1 A1 X1 B1 B1
W1

W2

W3

W4

P1 Q1X1

P4 Q4

P3 Q3

P2 Q2

(a) The set T .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

A1 A2 A3 A4 W1 W2 W3 W4 B1 B2 B3 B4

A4 W4 B4 A3 W3 B3 A2 W2 B2 A1 W1 B1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

S2

S1

(b) Input strings S1 and S2.

Figure 4 Construction of the FPT-reduction from Max-Min Diverse String Set to Max-Min
Diverse LCS in the proof of Theorem 19, where s = 4. We show (a) the set T of s r-strings and
(b) a pair of input strings S1 and S2. Red and blue parallelograms, respectively, indicate allowed
and prohibited matchings between the copies of blocks T3 = A3W3B3 in S1 and S2.

▶ Lemma 22. For any M ⊆ V1 × V2 and any ℓ ⩾ 0, B(S) has a non-crossing matching M

of size ℓ if and only if S1 and S2 have a common subsequence C with length ℓ of S1 and S2.
Moreover, the length ℓ = |M | is maximum if and only if C ∈ LCS(S1, S2).

Proof. If there exists a non-crossing matching M = { (ik, jk) | k ∈ [ℓ] } ⊆ E of size ℓ ⩾ 0, we
can order the edges in the increasing order such that iπ(1) < · · · < iπ(ℓ), jπ(1) < · · · < jπ(ℓ) for
some permutation π on [ℓ]. Then, the string S1(M) := S1[iπ(1)] · · ·S1[iπ(ℓ)] ∈ Σℓ (equivalently,
S2(M) := S2[j1] · · ·S2[jℓ]) forms the common subsequence associated to M . ◀

In Lemma 22, we call a non-crossing ordered matching M associated with a common
subsequence C a matching labeled with C. We show the next lemma.

▶ Lemma 23. LCS(S1, S2) = { Tj | i ∈ [s] }, where Tj = Pj ·Xj ·Qj for all j ∈ [s].

Proof. We first observe that each segment Z ∈ Σ+ in each group Z within {A,B,W} occurs
exactly once in each of S1 and S2, respectively, as a consecutive substring. Consequently,
For each Z in Z, B(S) has exactly one non-crossing matching MZ labeled with Z connecting
the occurrences of Z in S1 and S2. From (P2), we show the next claim.

▷ Claim 24. If B(S) contains any inclusion-wise maximal non-crossing matching M∗, it
connects exactly one segment Z from each of three groups A,B, and W.

From Claim 24, we assume that a maximum (thus, inclusion-maximal) non-crossing
matching M∗ contains submatches labeled with segments Ai, Wj , Bk one from each group
in any order, where i, j, k ∈ [s]. Then, M must contain Ai, Wj , Bk in this order, namely,
Ai ·Wj ·Bk ∈ CS(S1, S2) because some edges cross otherwise (see Fig. 4b). Therefore, we
have that the concatenation Tj∗ := Aj∗ ·Wj∗ ·Bj∗ belongs to CS(S1, S2), and it always has
a matching in B(S1, S2). From (P3) and (P4), we can show the next claim.

▷ Claim 25. If M∗ is maximal and contains Ai ·Wj∗ ·Bk, then i = j∗ = k holds.

From Claim 25, we conclude that Tj∗ = Aj ·Wj · Bj is the all and only members of
LCS(S1, S2) for all j ∈ [s]. Since Aj ·Wj ·Bj = Pj ·Xj ·Bj = Tj , the lemma is proved. ◀

Using Lemma 23, we finish the proof for Theorem 19.

Proof for Theorem 19. Recall that integers K, r ⩾ 1, ∆ ⩾ 0, and a string set L =
{X1, . . . , Xs} ⊆ Σr of r-strings form an instance of Max-Min Diverse String Set.
Let ∆′ := ∆ + 2s, K ′ = κ(K) := K, and S = {S1, S2} ⊆ Γ∗ be the associated instance of
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Max-Min Diverse LCS for two input strings. Since the parameter κ(K) = K depends
only on K, it is obvious that this transformation can be computed in FPT. We show that
this forms an FPT-reduction from the former problem to the latter problem. By Lemma 23,
we have the next claim.

▷ Claim 26. For any i, j ∈ [s], dH(Ti, Tj) = dH(Xi, Xj) + 2s.

Proof of Claim 26. By Lemma 23, LCS(S1, S2) = { Tj | i ∈ [K] }. By construction, Tj =
Pj · Xj · Qj and |Pj | = |Qj | = s, and dH(Pi, Pj) = dH(Qi, Qj) = s for any i, j ∈ [s], i ̸=
j. Therefore, we can decompose dH(Ti, Tj) by dH(Ti, Tj) = dH(Pi, Pj) + dH(Xi, Xj) +
dH(Qi, Qj) = dH(Xi, Xj) + 2s ◁

Suppose that Y ⊆ LCS(S1, S2) is any feasible solution such that |Y| = K ′ for Max-Sum
Diverse LCSs, where K ′ = K. From Lemma 23, we can put Y = {Tij}j∈J for some
J ⊆ [s]. From Claim 26, we can see that Dmin

dH
(Y) = Dmin

dH
(X ) + 2s, where X = {Xj}j∈J

is a solution for Max-Min Diverse String Set. Thus, Dmin
dH

(X ) ⩾ ∆ if and only if
Dmin

dH
(Y) ⩾ ∆ + 2s = ∆′. This shows that the transformation properly forms NP- and

FPT-reductions. To obtain NP- and FPT-reductions for the Max-Sum version, we keep
K and S = {S1, S2} in the previous proof, and modify ∆′ := ∆ + 2s

(
K
2
)′, where

(
K
2
)′ :=

{(i, j) ∈
(

K
2
)
| i ̸= j}. From Claim 26, we have that Dsum

dH
(Y) = Dsum

dH
(X ) + 2s

(
K
2
)′, and

the correctness of the reduction immediately follows. Combining the above arguments, the
theorem is proved. ◀
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Abstract
Minimizers sampling is one of the most widely-used mechanisms for sampling strings [Roberts et al.,
Bioinformatics 2004]. Let S = S[1] . . . S[n] be a string over a totally ordered alphabet Σ. Further let
w ≥ 2 and k ≥ 1 be two integers. The minimizer of S[i . . i + w + k − 2] is the smallest position in
[i, i + w − 1] where the lexicographically smallest length-k substring of S[i . . i + w + k − 2] starts.
The set of minimizers over all i ∈ [1, n − w − k + 2] is the set Mw,k(S) of the minimizers of S.

We consider the following basic problem:

Given S, w, and k, can we efficiently compute a total order on Σ that minimizes |Mw,k(S)|?

We show that this is unlikely by proving that the problem is NP-hard for any w ≥ 3 and k ≥ 1.
Our result provides theoretical justification as to why there exist no exact algorithms for minimizing
the minimizers samples, while there exists a plethora of heuristics for the same purpose.
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1 Introduction

The minimizers sampling mechanism has been introduced independently by Schleimer et
al. [17] and by Roberts et al. [16]. Since its inception, it has been employed ubiquitously in
modern sequence analysis methods underlying some of the most widely-used tools [11, 12, 19].

Let S = S[1] . . . S[n] be a string over a totally ordered alphabet Σ. Further let w ≥ 2
and k ≥ 1 be two integers. The minimizer of the fragment S[i . . i + w + k − 2] of S is the
smallest position in [i, i + w − 1] where the lexicographically smallest length-k substring of
S[i . . i + w + k − 2] starts. We then define the set Mw,k(S) of the minimizers of S as the set
of the minimizers positions over all fragments S[i . . i + w + k − 2], for i ∈ [1, n − w − k + 2].
Every fragment S[i . . i + w + k − 2] containing w length-k fragments is called a window of S.

▶ Example 1. Let S = aacaaacgcta, w = 3, and k = 3. Assuming a < c < g < t, we have
that Mw,k(S) = {1, 4, 5, 6, 7}. The minimizers positions are colored red: S = aacaaacgcta.
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Note that by choosing the smallest position in [i, i + w − 1] where the lexicographically
smallest length-k substring starts, we resolve ties in case the latter substring has multiple
occurrences in a window.

It is easy to prove that minimizers samples enjoy the following three useful properties [23]:
Property 1 (approximately uniform sampling): Every fragment of length at least
w + k − 1 of S has at least one representative position sampled by the mechanism.
Property 2 (local consistency): Exact matches between fragments of length at least
ℓ ≥ w + k − 1 of S are preserved by means of having the same (relative) representative
positions sampled by the mechanism.
Property 3 (left-to-right parsing): The minimizer selected by any fragment of length
w + k − 1 comes at or after the minimizers positions selected by all previous windows.

Since Properties 1 to 3 hold unconditionally, and since the ordering of letters does not
affect the correctness of algorithms using minimizers samples [6, 18, 14, 1], one would like to
choose the ordering that minimizes the resulting sample as a means to improve the space
occupied by the underlying data structures; contrast Example 1 to the following example.

▶ Example 2. Let S = aacaaacgcta, w = 3, and k = 3. Assuming c < a < g < t, we have
that Mw,k(S) = {3, 6, 7}. The minimizers positions are colored red: S = aacaaacgcta. In
fact, this ordering is a best solution in minimizing |Mw,k(S)|, together with the orderings
c < g < t < a and c < g < a < t, which both, as well, result in |Mw,k(S)| = 3.

Our Problem. We next formalize the problem of computing a best such total order on Σ:

Minimizing the Minimizers
Input: A string S ∈ Σn and two integers w ≥ 2 and k ≥ 1.
Output: A total order on Σ that minimizes |Mw,k(S)|.

Motivation. A lot of effort has been devoted by the bioinformatics community to designing
practical algorithms for minimizing the resulting minimizers sample [3, 4, 15, 21, 8, 22, 7].
Most of these approaches consider the space of all orderings on Σk (the set of all possible
length-k strings on Σ) instead of the ones on Σ; and employ heuristics to choose some ordering
resulting in a small sample (see Section 3 for a discussion). To illustrate the impact of
reordering on the number of minimizers, we considered two real-world datasets and measured
the difference in the number of minimizers between the worst and best reordering, among
those we could consider in a reasonable amount of time. The first dataset we considered is
the complete genome of Escherichia coli str. K-12 substr. MG1655. For selecting minimizers,
we considered different orderings on Σk. We thus mapped every length-k substring to its
lexicographic rank in {A,C,G,T}k (assuming A < C < G < T) constructing a new string S

over [1, |Σ|k]. We then computed |Mw,1(S)| for different values of (w, k) and orderings on
[1, |Σ|k]. It should be clear that this corresponds to computing the size of Mw,k for the
original sequence over {A,C,G,T}. The second dataset is the complete genome of SARS-
CoV-2 OL663976.1. Figure 1 shows the min and max values of the size of the obtained
minimizers samples. The results in Figure 1 clearly show the impact of alphabet reordering
on |Mw,1(S)|: the gap between the min and max is quite significant as in all cases we have
2 min < max. Note that we had to terminate the exploration of the whole space of orderings
when 2 min < max was achieved; hence the presented gaps are not even the largest possible.

This begs the question:

Given S, w, and k, can we efficiently compute a total order on Σ that minimizes |Mw,k(S)|?
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(a) Complete genome of Escherichia coli. (b) Complete genome of SARS-CoV-2.

Figure 1 The min and max values of the size of the minimizers sample, among some of the
possible orderings of [1, |Σ|k], on two real datasets using a range of (w, k) parameter values.

Our Contribution. We answer this basic question in the negative. Let us first define the
decision version of Minimizing the Minimizers.

Minimizing the Minimizers (Decision)
Input: A string S ∈ Σn and three integers w ≥ 2, k ≥ 1, and ℓ > 0.
Output: Is there a total order on Σ such that |Mw,k(S)| ≤ ℓ?

Our main contribution in this paper is the following result.

▶ Theorem 3. Minimizing the Minimizers (Decision) is NP-complete if w ≥ 3 and
k ≥ 1.

Theorem 3 provides theoretical justification as to why there exist no exact algorithms for
minimizing the minimizers samples, while there exists a plethora of heuristics for the same
purpose. Notably, Theorem 3 almost completes the complexity landscape of the Minimizing
the Minimizers problem – the only exception is the case w = 2 and k ≥ 1. To cover all
practically interesting combinations of input parameters w and k (i.e., for any w ≥ 3 and
k ≥ 1), we design a non-trivial reduction from the feedback arc set problem [9].

The reduction we present is specifically for the case in which the size of the alphabet Σ
is variable. If |Σ| is bounded by a constant, the problem can be solved in polynomial time:
one can simply iterate over the |Σ|! permutations of the alphabet, compute the number of
minimizers for each ordering in linear time [13], and output a globally best ordering.

Other Related Work. Choosing a best total order on Σ is generally not new; it has also
been investigated in other contexts, e.g., for choosing a best total order for minimizing
the number of runs in the Burrows-Wheeler transform [2]; for choosing a best total order
for minimizing (or maximizing) the number of factors in a Lyndon factorization [5]; or for
choosing a best total order for minimizing the number of bidirectional string anchors [14].

Paper Organization. Section 2 presents the proof of Theorem 3. Section 3 presents a
discussion on orderings on Σk in light of Theorem 3. Final remarks are presented in Section 4.
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2 Minimizing the Minimizers is NP-complete

We show that the Minimizing the Minimizers problem is NP-hard by a reduction from the
well-known Feedback Arc Set problem [9]. Let us first formally define the latter problem.

Feedback Arc Set
Input: A directed graph G = (V, A).
Output: A set F ⊆ A of minimum size such that (V, A \ F ) contains no directed cycles.

We call any such F ⊆ A a feedback arc set. The decision version of the Feedback Arc
Set problem is naturally defined as follows.

Feedback Arc Set (Decision)
Input: A directed graph G = (V, A) and an integer ℓ′ > 0.
Output: Is there a set F ⊆ A such that (V, A \ F ) contains no directed cycles and
|F | ≤ ℓ′?

An equivalent way of phrasing this problem is to find an ordering on the set V of the
graph’s vertices, such that the number of arcs (u, v) with u > v is minimal [20]. Then this is
a topological ordering of the graph (V, A \ F ), and will be analogous to the alphabet ordering
in the Minimizing the Minimizers problem; see [14] for a similar application of this idea.1
If Minimizing the Minimizers is then solved on the instance constructed by our reduction,
producing a total order on V , taking all arcs (u, v) with u > v should produce a feedback
arc set of minimum size, solving the original instance of the Feedback Arc Set problem.

2.1 Overview of the Technique
Given any instance G = (V, A) of Feedback Arc Set, we will construct a string S over
alphabet V and of length polynomial in |A|. Specifically, we define string S as follows:

S =
∏

(a,b)∈A

T q+4
ab ,

where Tab is a string consisting of the letters a and b, whose length depends only on w and k,
and q is an integer polynomial in |A|, both of which will be defined later. The product

∏
of

some strings is defined as their concatenation, and Xq denotes q concatenations of string X

starting with the empty string; e.g., if X = ab and q = 4, we have Xq = (ab)4 = abababab.
String Tab will be designed such that each occurrence, referred to as a block, will contain

few minimizers if a < b in the alphabet ordering, and many minimizers if b < a, analogous to
the “penalty” of removing the arc (a, b) as part of the feedback arc set. We denote by Ma<b

the number of minimizers starting within some occurrence of Tab in S, provided that this
Tab is both preceded and followed by at least two other occurrences of Tab (i.e., the middle q

blocks), when a < b in the alphabet ordering. We respectively denote by Mb<a the number
of minimizers starting in such a block when b < a in the alphabet ordering. This will allow
us (see Figure 2) to express the total number of minimizers in S in terms of |F |, the size of
the feedback arc set, minus some discrepancy denoted by λ. This discrepancy is determined
by the blocks Tab that are not preceded or followed by two occurrences of Tab itself; namely,
those that occur near some Tcd, for another arc (c, d), or those that occur near the start or
the end of S.

1 Our proof is more general and thus involved because it works for any values w ≥ 3 and k ≥ 1, whereas
the reduction from [14] works only for some fixed parameter values.
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Tab Tab Tab Tab Tab Tab Tab Tab Tab Tab

q

arc (a, b)
Tcd Tcd Tcd Tcd Tcd Tcd Tcd Tcd Tcd Tcd

q

arc (c, d)
Tef Tef Tef Tef Tef Tef Tef Tef Tef Tef

q

arc (e, f)

Figure 2 Illustration of the structure of string S, with the different gadgets for different arcs in
G. The highlighted blocks are the ones for which the minimizers are counted in Ma<b and Mb<a.

Let us start by showing an upper and a lower bound on the discrepancy λ.

▶ Lemma 4. |A| − 1 ≤ λ ≤ 4 · |A| · |Tab| if |Tab| ≥ 1
4 (w + k − 1).

Proof. We are counting the number of minimizers in q blocks of Tab, for each arc (a, b). Note
that we ignore four blocks for each arc, which is 4 · |A| blocks of length |Tab| in total. This is
4 · |A| · |Tab| positions in total, which gives the upper bound on the number of disregarded
minimizers. For the lower bound, note that, by hypothesis, four consecutive blocks are at
least as long as a single minimizer window, meaning at least one minimizer must be missed
among the four blocks surrounding the border between each pair of consecutive arcs. The
lower bound follows by the fact that for |A| arcs we have |A| − 1 such borders. ◀

Given the values Ma<b, Mb<a, and λ, we can express the total number of minimizers as
a function of some feedback arc set F : if an arc (a, b) is part of the feedback arc set, this
corresponds to b < a in the alphabet ordering, so the corresponding blocks Tab will each
have Mb<a minimizers, whereas if (a, b) is not in F , we have a < b and the blocks will each
have Ma<b minimizers. Using these values, we can define the number of minimizers in S

given some feedback arc set F as

Mw,k(S, F ) = q · Mb<a · |F | + q · Ma<b · (|A| − |F |) + λ

= q · (Mb<a − Ma<b) · |F | + q · Ma<b · |A| + λ. (1)

With this in mind, we can prove the following relationship between Mw,k(S, F ) and |F |:

▶ Lemma 5. Let ℓ′ be some positive integer and let ℓ = q ·(Mb<a−Ma<b)·(ℓ′+1)+q ·Ma<b ·|A|.
If Mb<a > Ma<b, |Tab| ≥ 1

4 (w + k − 1), and q is chosen such that λ < q · (Mb<a − Ma<b),
then Mw,k(S, F ) ≤ ℓ if and only if |F | ≤ ℓ′.

Proof. By hypothesis, Mb<a − Ma<b is positive, thus, by Equation 1, Mw,k(S, F ) grows
linearly with |F |. Suppose we have a feedback arc set F with |F | ≤ ℓ′. Consider the
alphabet ordering inducing F and let λ be the corresponding discrepancy for Mw,k(S, F ).
By hypothesis, we have λ < q · (Mb<a − Ma<b). Substituting the bounds on |F | and λ into
Equation 1 gives

Mw,k(S, F ) ≤ q · (Mb<a − Ma<b) · ℓ′ + q · Ma<b · |A| + q · (Mb<a − Ma<b)
= q · (Mb<a − Ma<b) · (ℓ′ + 1) + q · Ma<b · |A| = ℓ,

completing the proof in one direction.
For the other direction, suppose we have picked F such that Mw,k(S, F ) ≤ ℓ and assume

that |F | ≥ ℓ′ + 1 towards a contradiction. Then we have the following two inequalities:

Mw,k(S, F ) ≤ ℓ = q · (Mb<a − Ma<b) · (ℓ′ + 1) + q · Ma<b · |A|
Mw,k(S, F ) ≥ q · (Mb<a − Ma<b) · (ℓ′ + 1) + q · Ma<b · |A| + λ. (by Equation 1)

By Lemma 4, for any non-trivial instance with |A| > 1, λ is strictly positive, meaning these
inequalities are contradictory. Therefore, if Mw,k(S, F ) ≤ ℓ, it must be that |F | ≤ ℓ′. ◀

CPM 2024
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Given w and k, we must determine a string Tab such that Mb<a > Ma<b and |Tab| ≥
1
4 (w + k − 1). We then simply have to choose some q, which is polynomial in |A|, satisfying
λ < q · (Mb<a − Ma<b). At that point we will have constructed a string S for which it holds
that the feedback arc set induced by the minimum set of minimizers is also a minimum
feedback arc set on G, thus completing the reduction.

The following three subsections address the Tab construction:
Section 2.2: w ≥ k + 2 (Case A);
Section 2.3: w = 3 and k ≥ 2 (Case B);
Section 2.4: 3 < w < k + 2 (Case C).

It should be clear that the above sections cover all the cases for w ≥ 3 and k ≥ 1.
Section 2.5 puts everything together to complete the proof.

2.2 Case A: w ≥ k + 2
▶ Lemma 6. Let Tab = abw−1, for w ≥ k + 2. Then Ma<b = 1 and Mb<a = w − k.

Proof. The block has length w; inspect Figure 3. Recall that, for the window starting at
position i, the candidates for its minimizer are the length-k fragments starting at positions
[i, i + w − 1]. Therefore, for every window starting in a block Tab (provided it is succeeded
by another Tab), a candidate minimizer is abk−1; so if a < b, each Tab will contain just one
minimizer. Thus we have Ma<b = 1.

For b < a, consider that Tab contains w − k occurrences of bk, and that for each window,
at least one of the candidates for its minimizer is bk. Since there is no length-k substring that
is lexicographically smaller than bk, each occurrence of bk (and nothing else) is a minimizer,
so it follows that Mb<a = w − k. Note that Mb<a > Ma<b only if w ≥ k + 2. ◀

a b b b b b b a b b b b b ba b b b b b b

k

Figure 3 Illustration of 3 copies of Tab in S for w = 7 and k = 4, along with its respective
minimizers when a < b (top) and when b < a (bottom). It can be seen that Ma<b = 1 and Mb<a = 3.

2.3 Case B: w = 3 and k ≥ 2
▶ Lemma 7. Let Tab = (ab)tbb with t =

⌈
w+k

2
⌉
, for w = 3 and k ≥ 2. Then Ma<b =

⌊
k
2
⌋

+ 3
and Mb<a =

⌊
k
2
⌋

+ 4.

Proof. Since w = 3, for every window, the minimizer is one out of three length-k fragments;
inspect Figure 4. Every a in the block has a b before it. For any window starting at a
position preceding an a, two of the candidates start with a b and the other starts with an a.
As an example consider the window babab preceding an a in Figure 4. We have that the first
and the third candidates start with a b and the second starts with an a. Therefore, if a < b,
the candidate starting with an a will be chosen and every a in Tab is a minimizer. Only
the window starting at the third-to-last position of the block will not consider any length-k
substring starting with an a as its minimizer, as therein we have three b’s occurring in a row.
Since k ≥ 2, the last b of the block will be chosen if a < b. Thus, Ma<b counts every a and
one b, which gives:
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Ma<b = t + 1 =
⌈

w + k

2

⌉
+ 1 =

⌈
3 + k

2

⌉
+ 1 =

⌊
k + 2

2

⌋
+ 1 + 1 =

⌊
k

2

⌋
+ 3.

For Mb<a, we apply the same logic to conclude that every b surrounded by a’s is a minimizer,
which accounts for all b’s except the final three, which occur at positions [2t, 2t + 2]:

For the window starting at position 2t, the three minimizer candidates start, respectively,
with bb, bb and ba. Since k ≥ 2, the first candidate (2t) will be the minimizer because it
is lexicographically a smallest and the leftmost (b < a).
For the window starting at position 2t + 1, the first two candidates start, respectively,
with bb and ba, and the third starts with an a. The first candidate (2t + 1) will be the
minimizer, because it is lexicographically smaller (b < a).
For the window starting at position 2t + 2, the first and third candidates start with a b
whereas the second starts with an a. The third candidate starts at the second position of
the next Tab-block. Since 2t > k + 1, this candidate consists of only baba . . . alternating
for k letters. It is equal to the first candidate, so by tie-breaking the first candidate
(2t + 2) is the minimizer as it is the leftmost.

Thus, every b in the block will be a minimizer if b < a, and we have:

Mb<a = t + 2 =
⌈

3 + k

2

⌉
+ 2 =

⌊
k

2

⌋
+ 4. ◀

a b a b a b b b a b a b a b b ba b a b a b b b

Figure 4 Tab for w = 3 and k = 3, with its respective minimizers. The last b is a minimizer even
when a < b, because w = 3. In this situation, Ma<b = 4 and Mb<a = 5.

2.4 Case C: 3 < w < k + 2
▶ Lemma 8. Let Tab = (ab)tbb with t =

⌈
w+k

2
⌉
, for 3 < w < k + 2. Then

if k is even, Ma<b = k
2 + 2 + p and Mb<a = k

2 + 3 + p, where p = (w + k) mod 2;
if k is odd, Ma<b =

⌊
k
2
⌋

+ 3 and Mb<a =
⌊

k
2
⌋

+ 4.

Proof. Every length-w fragment of the block contains at least one a and at least one b;
inspect Figure 5. Because of this, only a’s will be minimizers if a < b and only b’s if b < a
(unlike when w = 3, as shown in Section 2.3). We start by counting Ma<b. Suppose we
are determining the minimizer at position i. Every candidate we consider is a string of
alternating a’s and b’s (starting with an a), in which potentially one a is substituted by a
b (if the length-k fragment contains the bbb at the end of the block). A lexicographically
smallest length-k fragment is one in which this extra b appears the latest, or not at all.

First, we will consider the number of length-k fragments in which the extra b does not occur.
For these fragments, it is the case that no other fragment in the block is lexicographically
smaller when a < b, so it is automatically picked as minimizer at the position corresponding to
the start of the length-k fragment. The extra b appears at position 2t + 1 in the block, so this
applies to all length-k fragments starting with an a that end before position 2t+1. That is, all
a’s up to (and including) position i = 2t−(k−1) = 2

⌈
w+k

2
⌉
−k+1 = w+k+p−k+1 = w+p+1,

where p = (w + k) mod 2.
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Next, we consider the length-k fragments that do include the extra b. At any position
past i, the smallest candidate will be the first one starting with an a, unless one of the
candidates appears in the next Tab-block, in which case the minimizer will be the first position
of this next block (because this candidate does not include the extra b and is therefore
smaller than any candidate before it). Specifically, this is the case if position |Tab| + 1 is
one of the w candidates. Therefore, all windows starting at positions up to and including
j = |Tab| + 1 − w = (2⌈ w+k

2 ⌉ + 2) + 1 − w = w + k + 3 + p − w = k + p + 3 will have as
their minimizer the first position with an a, meaning that all a’s up to position j + 1 are
minimizers.

a b a b a b a b b b a b a b a b a b b ba b a b a b a b b b

k

w

i

j

Figure 5 Tab for w = 4 and k = 4, showing the positions i and j for counting Ma<b. Position i is
the final position at which the length-k fragment does not contain bb, whereas j is the final position
for which the starting position of the next Tab-block is not a candidate. When a < b, the minimizers
in the block are all a’s up to position max{i, j + 1}.

We now have that all a’s up to position i = w+p+1 and all a’s up to position j+1 = k+p+4
are minimizers. Thus we need to count the a’s up to position max{w + p + 1, k + p + 4}.
Because, by hypothesis, w < k + 2, this maximum is equal to k + p + 4. The first k + p + 4
letters of the block are alternating a’s and b’s, so we get

Ma<b =
⌈

k + p + 4
2

⌉
=

⌈
k + p

2

⌉
+ 2 =

{
k
2 + 2 + p if k is even;⌊

k
2
⌋

+ 3 if k is odd.

Next, we compute Mb<a. We start by showing that the final three b’s in Tab are all
minimizers. There is only one length-k fragment that starts with bbb and one that starts
with bba, so the first two of these final b’s will both be minimizers for the windows that start
with bbb and bba. For the window that starts at the third b, which is position |Tab|, note
that the entire window does not contain bb at all; it consists of only alternating b’s and a’s
as the window has length w + k − 1 whereas the next occurrence of bb is after w + k + p

positions. Because the window does not contain bb, none of its candidates are smaller than
baba . . . alternating, which first appears at the start of the window. Therefore, the third b
is also a minimizer.

The rest of the minimizers consist of two sets. The first set corresponds to positions
for which no candidate is smaller than baba . . . (alternating for k letters). These are all
positions with a b, up to a certain position i (to be computed later), after which there will
also be a smaller minimizer candidate, i.e., one that contains bb; inspect Figure 6. This is
the second set of minimizers: ones that start with b and contain bb at some point. These
are all positions with a b from some position j onwards.

We start by computing j. Position j is the first position such that the length-k fragment
starting at j starts with a b and contains bb. If k is odd, the fragment ends at position 2t + 2
with bbb as suffix; if k is even, the fragment ends at position 2t + 1 with bb as suffix. We
have

j =
{

2t + 1 − k + 1 = w + p + 2 if k is even;
2t + 2 − k + 1 = w + p + 3 if k is odd.
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a b a b a b a b b b a b a b a b a b b ba b a b a b a b b b

kw

i j

Figure 6 Tab for w = 4 and k = 4, showing the positions i and j when counting Mb<a: j is the
position of the first b at which the corresponding length-k fragment contains bb; i is the last position
at which j is not a candidate for its minimizer. When b < a, the minimizers in this block are all b’s
up to position i + 1 and all b’s from position j onwards.

Note that j = w + p + 2 + (k mod 2). Every b from position j onwards is a minimizer. This
includes the three b’s at the end of the pattern (at positions 2t through 2t + 2), as well as
the ones between positions j and 2t − 1 (both inclusive). Thus we have

3 +
⌊

2t − j

2

⌋
= 3 +

⌊
w + k + p − (w + p + 2 + (k mod 2))

2

⌋
= 3 +

⌊
k − 2 − (k mod 2)

2

⌋
= 2 +

⌊
k

2

⌋
b’s from position j onwards.

Next, we compute i and count the number of b’s up to i. We take the last position
for which the length-k fragment starting at j is not a candidate. This is i = j − w. The
minimizer for the window starting at position i + 1 is the length-k fragment starting at j,
since this is the only candidate that contains bb. However, if there is a b at position i + 1,2
then i + 1 will still be a minimizer: when we take the minimizer for position i, the length-k
fragment containing bb will not be a candidate so it will take the first length-k fragment
starting with a b, which is at position i + 1. Therefore, we count all b’s that appear up to
i + 1:⌊

i + 1
2

⌋
=

⌊
j − w + 1

2

⌋
=

⌊
(w + p + 2 + (k mod 2)) − w + 1

2

⌋
=

⌊
p + 3 + (k mod 2)

2

⌋
=1 +

⌊
1 + p + (k mod 2)

2

⌋
=

{
1 + p if k is even;
2 if k is odd.

Adding the two numbers of b’s together gives (inspect Figure 7):

Mb<a = 2 +
⌊

k

2

⌋
+

{
1 + p if k is even;
2 if k is odd;

=
{

k
2 + 3 + p if k is even;⌊

k
2
⌋

+ 4 if k is odd.
◀

2.5 Wrapping up the Reduction
Proof of Theorem 3. Minimizing the Minimizers (Decision) asks whether or not there
exists some ordering on Σ such that a string S ∈ Σn has at most ℓ minimizers for parameters
w and k. Given w, k and an ordering on Σ, one can compute the number of minimizers

2 Consider the case when Tab = abababababbb with w = 5 and k = 4. For this block, we have i = 3 and
j = 8. Indeed i = j − w = 3 and at position i + 1 = 4 of the block we have a b. Position 4 will be
selected as the minimizer for the window starting at position 3.
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a b a b a b a b b b a b a b a b a b b ba b a b a b a b b b

Figure 7 Tab for w = 4 and k = 4, showing its minimizers for a < b (top) and b < a (bottom). In
this situation, Ma<b = 4 and Mb<a = 5.

for those parameters in linear time [13, Theorem 3]. Therefore, one can use an alphabet
ordering as a certificate to verify a YES instance of Minimizing the Minimizers (Decision)
simply by comparing the computed number of minimizers to ℓ. This proves that the
Minimizing the Minimizers (Decision) problem is in NP. To prove that Minimizing
the Minimizers (Decision) is NP-hard, we use a reduction from Feedback Arc Set
(Decision) (see Section 2 for definition), which is a well-known NP-complete problem [9].

We are given an instance G = (V, A) of Feedback Arc Set and an integer ℓ′, and we
are asked to check if G contains a feedback arc set with at most ℓ′ arcs. We will construct
an instance S of Minimizing the Minimizers (Decision), for given parameters w ≥ 3 and
k ≥ 1, such that: the minimum number of minimizers in S, over all alphabet orderings, is at
most some value ℓ if and only if G contains a feedback arc set of size at most ℓ′.

By Lemma 4, we have λ ≤ 4 · |A| · |Tab|. Given w and k, we must determine a string
Tab such that Mb<a > Ma<b and |Tab| ≥ 1

4 (w + k − 1), and also choose some q satisfying
λ < q · (Mb<a − Ma<b) (see Lemma 5). Let Σ = V and let S =

∏
(a,b)∈A T q+4

ab , with Tab and
q to be determined depending on w and k.

Case A: w ≥ k + 2. Let Tab = abw−1, so |Tab| = w. Since, by hypothesis, the maximal
value of k is w − 2, and since |Tab| = w, we have that 4|Tab| ≥ 2w − 3. Thus, the condition
on the length of Tab always holds. By Lemma 6, Mb<a − Ma<b = w − k − 1. We choose
q = 4 · w · |A| + 1, so that λ ≤ 4 · |A| · w < q · (w − k − 1). Thus, λ < q · (Mb<a − Ma<b).

Case B and Case C: w < k + 2. Let Tab = (ab)tbb for t =
⌈

w+k
2

⌉
. We have |Tab| =

2t + 2 = 2(
⌈

w+k
2

⌉
) + 2 = w + k + p + 2, where p = (w + k) mod 2. The condition on the

length of Tab always holds because w + k + p + 2 > w + k − 1.
If w = 3, then by Lemma 7, Mb<a − Ma<b =

⌊
k
2
⌋

+ 4 − (
⌊

k
2
⌋

+ 3) = 1.
If w > 3, then by Lemma 8:

if k is even, Mb<a − Ma<b = k
2 + 3 + p − ( k

2 + 2 + p) = 1;
if k is odd, Mb<a − Ma<b =

⌊
k
2
⌋

+ 4 − (
⌊

k
2
⌋

+ 3) = 1.

In any case, Mb<a − Ma<b = 1. We choose q = 4 · |A| · (w + k + 3) + 1, so that
λ ≤ 4 · |A| · (w + k + p + 2) < q. Thus, λ < q · (Mb<a − Ma<b).

Finally, we set ℓ = q · (Mb<a − Ma<b) · (ℓ′ + 1) + q · Ma<b · |A|. By Lemma 5, we have
that Mw,k(S, F ) ≤ ℓ if and only if |F | ≤ ℓ′; in other words, G contains a feedback arc set of
size at most ℓ′ if and only if S has an alphabet ordering with at most ℓ minimizers.

Hence we have shown that (G, ℓ′) is a YES instance of Minimizing the Minimizers
(Decision) if and only if (S, ℓ) is a YES instance of Feedback Arc Set (Decision).
Moreover, the length of S is (q + 4) · |A| · |Tab|, with Tab being of polynomial length, so the
reduction can be performed in polynomial time. The existence of a polynomial-time reduction
from Feedback Arc Set (Decision) to Minimizing the Minimizers (Decision) proves
our claim: Minimizing the Minimizers (Decision) is NP-complete if w ≥ 3 and k ≥ 1. ◀
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3 Considering the Orderings on Σk

Most of the existing approaches for minimizing the minimizers samples consider the space
of all orderings on Σk instead of the ones on Σ. Such an approach has the advantage of an
easy and efficient construction of the sample by using a rolling hash function h : Σk → N,
such as the popular Karp-Rabin fingerprints [10]; this results in a random ordering on Σk

that usually performs well in practice [23]. Let us denote by Minimizing the Minimizers
(≤ Σk) the version of Minimizing the Minimizers that seeks to minimize |Mw,k(S)| by
choosing a best ordering on Σk (instead of a best ordering on Σ). It is easy to see that any
algorithm solving Minimizing the Minimizers solves also Minimizing the Minimizers
(≤ Σk) with a polynomial number of extra steps: We use an arbitrary ranking function rank
from the set of length-k substrings of S to [1, n − k + 1]. We construct the string S′ such
that S′[i] = rank(S[i . . i + k − 1]), for each i ∈ [1, n − k + 1]. Let Σ′ be the set of all letters
in S′. It should be clear that |Σ′| ≤ n because S has no more than n substrings of length
k. We then solve the Minimizing the Minimizers problem with input Σ := Σ′, S := S′,
w := w, and k := 1. It is then easy to verify that an optimal solution to Minimizing the
Minimizers for this instance implies an optimal solution to Minimizing the Minimizers
(≤ Σk) for the original instance. We thus conclude that Minimizing the Minimizers is at
least as hard as Minimizing the Minimizers (≤ Σk); they are clearly equivalent for k = 1.

▶ Example 9. Let S = aacaaacgcta, w = 3, and k = 3. We construct the string S′ =
235124687 over Σ′ = [1, 8] and solve Minimizing the Minimizers with w = 3, k = 1, and
Σ = Σ′. Assuming 1 < 3 < 5 < 6 < 2 < 4 < 7 < 8, M3,1(S′) = M3,3(S) = {2, 4, 7}. The
minimizers positions are colored red: S′ = 235124687. This is one of many best orderings.

Another advantage of Minimizing the Minimizers (≤ Σk) is that a best ordering on
Σk is at least as good as a best ordering on Σ at minimizing the resulting sample. Indeed
this is because every ordering on Σ implies an ordering on Σk but not the reverse.

Unfortunately, Minimizing the Minimizers (≤ Σk) comes with a major disadvantage.
Suppose we had an algorithm solving Minimizing the Minimizers (≤ Σk) (either exactly
or with a good approximation ratio or heuristically) and applied it to a string S of length n,
with parameters w and k. Now, in order to compare a query string Q to S, the first step
would be to compute the minimizers of Q, but to ensure local consistency (Property 2), we
would need access to the ordering output by the hypothetical algorithm. The size of the
ordering is O(min(|Σ|k, n)) and storing this defeats the purpose of creating a sketch for S.
This is when it might be more appropriate to use Minimizing the Minimizers instead.

Since Minimizing the Minimizers is NP-hard for w ≥ 3 and k = 1, Minimizing the
Minimizers (≤ Σ1) is NP-hard for w ≥ 3; hence the following corollary of Theorem 3.

▶ Corollary 10. Minimizing the Minimizers (≤ Σ1) is NP-hard if w ≥ 3.

4 Final Remarks

The most immediate open questions are:

Is Minimizing the Minimizers NP-hard for w = 2 and k ≥ 1?

Is Minimizing the Minimizers (≤ Σk) NP-hard for k > 1?
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