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Abstract
I survey recent work on symmetric computation. A number of strands of work, from logic, circuit
complexity, combinatorial optimization and other areas have converged on similar notions of symmetry
in computation. This write-up of an invited talk gives a whirlwind tour through the results and
pointers to the relevant literature.
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Introduction
In the 1980s, descriptive complexity was a new approach to the problems of complexity
theory. It carried the hope that methods from logic, particularly finite model theory, could
be deployed to settle the difficult questions of complexity. It was one of many promising
approaches at the time but the hard problems of complexity proved resistant to all of them.
An amusing article from ACM Sigact News in 1996 [24] imagines the many possible titles of a
paper announcing a resolution of the P vs.NP question. One of them is through Immerman’s
approach to descriptive complexity which recasts the question of separting P from NP as
the question of separating the expressive power of fixed point logic FP from existential
second-order logic on ordered structures. This captures the essential gap between the promise
of descriptive complexity and its delivery. The methods from finite model theory that it
makes available for proving inexpressibility in logics such as FP work well on unordered
structures. But, the correspondence with complexity classes works well on ordered structures.

A more recent viewpoint on this is that the inexpressibility results from finite model
theory establish lower bounds for restricted, symmetric models of computation. This is
exemplified by the results of [2, 21], which show that the logic FPC (fixed-point logic with
counting) corresponds to a natural model of symmetric circuits. The logic FPC is a natural
and powerful logic within P for which unconditional lower bounds have been proved (see [11]
for an overview).

Understanding the inexpressibilty methods of descriptive complexity as lower bounds
for symmetric models of computation leads to a number of interesting further directions
of investigation, which I review in the present talk. In particular, I look at the following
directions.
1. We can extend the expressive power of FPC by considering more powerful operations

than counting, while remaining within P. These give rise to further notions of symmetric
computation, essentially weakening the symmetry restriction. Recently lower bounds
have been obtained for these as well.

2. We can investigate what efficient algorithms can be implemented within these symmetric
models. It turns out that many natural algorithmic methods are symmetric and therefore
subject to the lower bound methods of descriptive complexity.
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1:2 Limits of Symmetric Computation

3. We can look at symmetry as it arises in other models of computation, and see to what
extent asymmetry is used as a resource. I illustrate this with two cases, that of linear
programs and of arithmetic circuits.

4. We relate the lower bounds to other classifications of problems according to their symmet-
ries. In particular, the very successful classification of constraint satisfaction problems
into tractable and intractable ones is based on a different, but related notion of symmetry.

In the following, after a brief introduction of the relationship between FPC and symmetric
circuits, I give a summary of each of the above directions. The main aim is to provide
pointers to the relevant literature and to identify fertile directions for future work. Formal
definitions, statements of the results and proofs may be found in the cited literature.

FPC and symmetric circuits
The symmetry restriction we are considering is most clearly explained in a circuit model
of computation. Recall that any decision problem L ⊆ {0, 1}∗ can be seen as a family of
Boolean functions (fn)n∈ω where fn : {0, 1}n → {0, 1}. Moreover, each function fn can
be described by a circuit Cn: a directed acyclic graph with n inputs and gates labelled by
Boolean functions from some fixed basis, such as ∧, ∨, ¬ or extensions with a majority gate
or threshold gates. The language L is decidable in polynomial time if, and only if, it has
such a family of circuits that is P-uniform. In other words, the circuit Cn can be constructed
in poly(n) time. One fact to note here is that when we consider what Boolean functions we
can use in the basis, we are restricted to symmetric functions. These are functions whose
value depends only on the number of 1s and 0s in the input and not on the order in which
the inputs appear. The functions ∧, ∨, ¬, majority and threshold all have this property.
This is necessary in order for the circuit to be defined as a DAG with no further structure
on it, such as an order of the gates.

When we consider decision problems on structures such as graphs, we are typically
interested in deciding properties that are invariant under graph isomorphisms. A key
perspective of descriptive complexity is that we consider formalisms in which only such
properties can be expressed. In the context of circuit complexity, we can consider a property
P of (directed) graphs as being given by a family of Boolean functions (pn)n∈ω where
pn : {0, 1}n×n → {0, 1} takes the adjacency matrix of a graph and maps it to 1 just in case
the graph has property P . Such Boolean functions have natural symmetries in the sense
that for any permutation π of [n], we have pn(x) = pn(xπ) where the string xπ is defined
to have xπ

ij = xπ(i)π(j). We say that a circuit C computing pn is symmetric if this action
of permutations π ∈ Sn on the inputs always extends to an automorphism of the circuit C

itself.
The key result from [2] is that a graph property is definable in FPC (for a formal definition

of FPC, I refer the reader to [11]) if, and only if, it is decidable by a P -uniform family of
symmetric circuits. The result there is stated for circuits with threshold gates (indeed, just
a majority gate would suffice) but, as observed in [21], adding further symmetric Boolean
functions to the basis does not change it. Thus, we get quite a robust notion of symmetric
polynomial-time computation and it corresponds exactly to definability in FPC. Moreover,
while I have stated it here for graphs, it is proved more generally for finite relational structures.

The important aspect of the connection between FPC definability and decidability with
symmetric circuits is that we have methods for proving inexpressibility results in FPC and
these yield proofs of unconditional lower bounds for symmetric circuits. In particular, FPC
definable classes of graphs exhibit stronger invariance conditions than just being closed under
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isomorphism. This is made precise by considering the Weisfeiler-Leman (WL) equivalences.
For a precise definition of the k-dimensional Weisfeiler-Leman equivalence, see [17, Sec. 2].
Here we just note that this is, for any fixed k, a coarser relation than graph isomorphism.
The connection with FPC definability comes from the fact that for any property P of graphs
that is definable by a formula of FPC, there is a constant k such that P is invariant under
k-dimensional WL equivalence.

Cai et al. [10] first showed that there is no fixed value of k for which k-dimensional WL
equivalence is the same as isomorphism, and this leads to a construction of a class of graphs
in P which is not FPC definable. This fundamental construction has been at the heart
of many lower bounds since. That is, most results showing that some property P is not
definable in FPC and therefore not decidable by symmetric circuits proceed by showing that
P is not invariant under k-dimensional WL for any fixed k. Graph properties for which this
has been shown include Hamiltonicity and 3-colourability.

Symmetric algorithms
The fact that we can prove unconditional lower bounds for classes of symmetric circuits
would not be so interesting if these classes formed a very weak model of computation.
It turns out, however, that many natural algorithmic techniques are in fact symmetric.
First of all, it is worth recalling some of the original motivation for the interest of finite
model theory in computer science, which came from the study of database query languages
(see [31]). Languages for querying relational databases, based on first-order logic and its
extensions, naturally give rise to symmetric algorithms (in the precise sense of symmetric
circuits considered above) when automatically compiled (see, for instance, the connection
to circuits given in [23, 29]). In this sense, FPC provides a good formal model of database
query languages that extend the relational calculus with recursion and counting mechanisms.
When FPC was first introduced [27] it was proposed as a possible language in which all
polynomial-time decidable queries could be expressed. Even after Cai et al. showed that
this was not the case, it was often said that all natural polynomial-time decidable properties
are expressible in FPC. One way to understand this is that problems for which the obvious
algorithm is in polynomial time can usually be formulated in FPC. However, the power
of FPC, and hence of symmetric computation, is surprising and a number of problems for
which the polynomial-time algorithms are far from trivial have been shown nonetheless to
admit symmetric algorithms. A few are worth highlighting.

The most significant one is Grohe’s monumental work [26] showing that any polynomial-
time decidable property of graphs excluding some fixed minor is in FPC, and so invariant
under k-WL equivalence for some fixed k. In [3], my co-authors and I show that the ellipsoid
method for optimizing linear programs can be expressed in FPC, and so many natural
combinatorial optimization problems have bounded WL dimension. In particular this is true
of the problem of determining the size of a maximum matching in a graph. The result can
be further extended to hierarchies of semi-definite programs [19, 6]. This shows that some of
our most powerful techniques for constructing efficient algorithms can be implemented in a
way that is symmetry preserving.

Linear-algebraic extensions
While many powerful algorithmic techniques can be implemented symmetrically, there are
some simple efficient algorithms that just cannot be symmetrized without an exponential
blow-up. It has been observed that the construction of Cai et al. essentially shows that
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1:4 Limits of Symmetric Computation

the problem of solving systems of linear equations over a a finite field cannot be expressed
in FPC [4]. It follows that the Gaussian elimination algorithm cannot be implemented
symmetrically. Indeed, since linear algebra, and more generally equation-solving, provides
a rich source of examples of problems that cannot be expressed in FPC [12], research in
descriptive complexity has investigated extensions of this logic with linear-algebraic operators.
The resultung logics are provably more expressive than FPC. Here I want to point to
connections of these with symmetric circuits, and with approximations of isomorphism
stronger than the WL equivalences.

The first proposed extension of FPC by means of linear-algebraic operators was fixed-point
logic with rank (FPR), which allows for operators that compute the rank of a matrix over a
finite field [14, 25]. The expressive power of this logic has been shown to be characterized
by symmetric circuits with rank gates [21]. To make this work, we need to modify the
definition of circuit. To be precise, the Boolean function computed by a rank gate is not
a fully symmetric function and so we can no longer think of a circuit as a DAG. It needs
to have additional structure to give a matrix structure to the inputs of a rank gate. This
relaxed notion of circuit gives a weaker requirement of symmetry which can be formalized
and used to give a circuit characterization of FPR.

In order to study the expressiveness of FPR, a strengthening of the family of WL
equivalences was defined in [16] which we call the invertible map (IM) equivalences. The
WL equivalences can be seen as giving, on a fixed graph G, a partition of the k-tuples of
vertices that approximates the partition into orbits of the automorphism group. The k-WL
partition is the coarsest partition of the k-tuples of G into classes P1, . . . , Pt satisfying a
natural stability condition. This condition says that two tuples u and v in the same class Pi

cannot be distinguished by counting the number of substitutions we can make in them to get
a tuple in class Pj . The k-IM equivalences (denoted ≡k

IM) are similarly defined but with a
different stability condition. This essentially amounts to saying that the partition P1, . . . , Pt

cannot be further refined using linear algebraic operators over fields of characteristic p where
p is a prime from some fixed set Ω. Technical details of the definition and characterization in
terms of linear algebraic operators can be found in [13].

In a breakthrough result, Lichter [28] has shown that there is no constant k for which
≡k

IM is the same as isomorphism. The implications of this construction for the expressive
power of any extension of FPC with linear-algebraic operators are spelled out in [15].

Symmetry and asymmetry in other models
Once we recognize symmetry as a feature of algorithms, it makes sense to identify how it
appears in other models of computation, beyond logic and circuits. It is, of course, built in
as a natural feature in the logics we study in descriptive complexity. And we have identified
the corresponding notion in the context of circuits. One aim of identifying meaningful
restrictions by symmetry in various models of computation is to see how asymmetry (or
symmetry-breaking) is a resource and how it trades off with other computational resources.
In this section, I aim to provide pointers to two specific models where we have obtained
interesting insights by analysing symmetric restrictions to natural known computational
paradigms.

The first is that of linear programming. I noted above that the ellipsoid method for
solving linear programs can be implemented symmetrically. Moreover, when combinatorial
problems are formualted as linear programs, the programs have natural symmetries inherited
from the problem. Symmetric linear programs in this sense were studied by Yannakakis [32].
The focus there was on linear programs, or extended formulations. For example, consider
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graphs over the vertex set [n]. We can consider these as functions G : X → {0, 1} where
X = {xij | i, j ∈ [n]} is the set of potential edges. Equivalently, we can think of G as a 0-1
valued vector in the Euclidean space RX . A collection of graphs is then a set P ⊆ {0, 1}X and
various graph optimization problems can be expressed as optimizing a linear function over P .
If we can represent the convex hull conv(P ) as the projection of a polytope Q ⊆ RX×Y using
additional variables Y , with a number of facets polynomial in n, we can solve these problems
in polynomial time. Yannakakis proved that the travelling salesman and matching polytopes
do not have such polynomial-size symmetric extended formulations. The notion of symmetry
is the natural one. Any permutation of [n] has a natural action on X and hence on RX . The
symmetry requirement says that for any such permutation π ∈ Sn we can find a permutation
σ of Y such that for xy ∈ RX×Y , xy ∈ Q if, and only if, π(x)σ(y) ∈ Q. While the lower
bound proof of Yannakakis relies heavily on the notion of symmetry, it turns out that this
is not essential to the result as Rothvoß [30] obtains exponential lower bounds without the
assumption.

We can consider another way of representing the set P ⊆ {0, 1}X as a linear program.
We say that a polytope P ⊆ RX recognizes P if P ⊆ P and {0, 1}X \ P is disjoint from P.
Now, a class of graphs that is decidable in polynomial time necessarily is recognized by
a polynomial-size family of extended formulations. But, what classes are recognized by
symmetric such families? It turns out that they are exactly the classes of bounded WL
dimension. In other words those that are recognized by (possibly non-uniform) families of
polynomial-size symmetric circuits with threshold gates [5].

Another computational model where the assumption of symmetry has revealed remarkable
structure is that of arithmetic circuits. Formally, an arithmetic circuit over a field K and
a set of variables X is a directed acyclic graph where every input (i.e. node of indegree
0) is labelled by an element of X or an element of K, and every internal node is labelled
either + (a sum gate) or × (a product gate). A distinguished output gate can then be seen
as computing a polynomial in the ring K[X]. Two polynomials (strictly speaking they are
families of polynomials) that are much studied in the field are the determinant and the
permanent. They are both defined on a set of variables X representing the entries of an n × n

matrix, so X = {xij | 1 ≤ i, j ≤ n}. It is known that there are polynomial-size circuits for
computing the determinant det(X) while it is conjectured that there are no polynomial-size
circuits for computing the permanent perm(X). Both det(X) and perm(X) are invariant
under permutations of the variables X which are induced by the natural action of Sn. So, it
makes sense to ask whether these polynomials can be computed by polynomial-size symmetric
circuits. It turns out [20] that this is the case for the determinant but provably not for the
permanent. Furthermore, these polynomials have symmetries that go beyond the action of
Sn simultaneously on rows and columns. For example, the permanent is invariant under any
permutation of the rows and columns of the matrix and the determinant under separate
permutations of the rows and columns that have the same sign. We are able to establish lower
bounds for arithmetic circuits assuming these more stringent symmetry requirements [22].
This provides an interesting case study in the tradeoff between symmetry and other resources,
in this case circuit size. The lower bounds are obtained by adapting proof methods from
finite model theory, even though the connection to logic is now remote.

Constraint satisfaction problems
One of the great breakthroughs in theoretical computer science in recent years was the
dichotomy theorem for constraint satisfaction problems (CSP) proved independently by
Bulatov [8] and Zhuk [33]. A specific CSP is given by a finite relational structure D: the
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1:6 Limits of Symmetric Computation

domain D along with a collection of relations R1, . . . , Rm on it. An instance to be solved
is specified by a similar relational structure V: the set V of variables and for each relation
Ri, a set of tuples from V whose interpretation must be in the relation. A solution is just a
homomorphism from V to D. It turns out that the computational complexity of determining
whether a given instance is solvable is completely determined by the algebraic structure of
the so-called clone of polymorphisms of D [9]. Looking at the polymorphism clones of a
structure, rather than the automorphism groups is a different notion of symmetry which is
more relevant when we are interested in the homomorphisms between structures. Nonetheless,
there is a potentially intriguing relationship between the two notions of symmetry.

While the Bulatov-Zhuk dichotomy theorem classifies all CSP into two classes: those
that are solvable in polynomial time and those that are NP-complete, for our purposes a
trifurcation of CSP is interesting. That is, we can further subdivide the polynomial-time
solvable problems into those that have bounded width and those that do not. The CSP of
bounded width can be solved by means of a simple algorithm, known as local consistency [7].
This is parameterized by a natural number k. Since, for fixed k, the k-local consistency check
is a polynomial-time algorithm, all bounded-width CSP admit a polynomial-time algorithm.
However, the converse is not true. A number of CSP are known which are efficiently solvable,
but do not have bounded width. It turns out that a CSP has bounded width if, and only
if, the collection of satisfiable instances has bounded WL dimension (see [4, 7, 18]). Thus,
there is apparently a close relationship between the k-dimensional WL approximation of
isomorphism and the k-local consistency method for approximating homomorphism. This
relationship is made precise in the category theoretic framework we developed in [1].

It remains an open question whether we can similarly characterize all tractable CSP,
i.e. those with a near-unanimity polymorphism by some (perhaps tractable) approximation
of isomorphism. Indeed, it is conceivable that the invertible map equivalences serve this
purpose. Could it be that for every such CSP there is a k such that the collection of satisfiable
instances is invariant under ≡k

IM? Converesely, could it be that for every CSP that does not
admit such a polymorphism (i.e. those that we know to be NP-complete) is not invariant
under ≡k

IM for any k?

Conclusion
We have discovered that symmetry arises in many forms in the analysis of computation, and
is an important property of structured data, such as graphs and also of algorithms that work
on this data. Symmetry in algorithms arises naturally when algorithms are automatically
generated from high-level specifications. At the same time, symmetry-breaking can be an
important method to improve efficiency of algorithmic procedures, and this is demonstrated
by the unconditional lower bounds we have for symmetric algorithms for some problems,
where efficient symmetry-breaking algorithms are known. The emerging theory of upper
and lower bounds for symmetric computation pulls together a number of distinct strands
within theoretical computer science, and draws in diverse mathematical methods with many
promising directions to follow.
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