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Abstract
Many iterative algorithms in computer science require repeated computation of some algebraic
expression whose input varies slightly from one iteration to the next. Although efficient data
structures have been proposed for maintaining the solution of such algebraic expressions under
low-rank updates, most of these results are only analyzed under exact arithmetic (real-RAM model
and finite fields) which may not accurately reflect the more limited complexity guarantees of real
computers. In this paper, we analyze the stability and bit complexity of such data structures for
expressions that involve the inversion, multiplication, addition, and subtraction of matrices under
the word-RAM model. We show that the bit complexity only increases linearly in the number of
matrix operations in the expression. In addition, we consider the bit complexity of maintaining
the determinant of a matrix expression. We show that the required bit complexity depends on the
logarithm of the condition number of matrices instead of the logarithm of their determinant. Finally,
we discuss rank maintenance and its connections to determinant maintenance. Our results have
wide applications ranging from computational geometry (e.g., computing the volume of a polytope)
to optimization (e.g., solving linear programs using the simplex algorithm).
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1 Introduction

Computing algebraic expressions is a workhorse of many iterative algorithms in modern
optimization, computational geometry, and dynamic algorithms. Examples include but are
not limited to interior point methods for solving linear programs [30, 15, 29, 8, 10], iterative
refinement for solving p-norm regression problems [13, 1, 2, 3, 28], semi-definite programming
[26, 27], and many algorithmic graph theory problems [33, 11, 6, 14].

Such algebraic expressions are usually represented as matrix formulas involving matrices
and operations such as inversion, multiplication, and addition/subtraction. In many iterative
algorithms, the algebraic expression does not change over the course of the algorithm, and
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10:2 The Bit Complexity of Dynamic Algebraic Formulas and Their Determinants

only low-rank updates occur to the corresponding matrices from one iteration to the next.
For example, for A, B ∈ Rn×n, if we have AB from a previous iteration and one column of
B changes in the next iteration, we can update AB in O(n2) time which is much faster than
computing AB from scratch again. This has been exploited in many iterative algorithms to
reduce the amortized cost of iteration and, therefore, the total running time of the algorithms.

A main component of this approach is the Sherman-Morrison-Woodbury (SMW) identity
(see (1)), which informally states that the inverse of a rank-k perturbation of a matrix A
can be obtained by a rank-k perturbation of A−1. Although this identity (also called inverse
maintenance) has been used from the early days of optimization and control theory [31, 32],
it was recently shown that any matrix formula involving only inversion, multiplication,
and addition/subtraction operations can be maintained under low-rank updates with the
Sherman-Morrison-Woodbury identity [9]. The main idea is to inductively construct a large
matrix whose inverse contains a block that is precisely the output of the formula.

The result of [9] is under the real-RAM model, which assumes each arithmetic operation
is carried over to infinite precision in constant time. Although this is a valid assumption
for finite fields, it does not hold over real numbers. For example, in modern computers,
floating-points are the number system of choice that only has a finite precision. Then, it
is unclear whether such inverse maintenance techniques are sufficiently stable so that the
downstream iterative algorithm outputs the correct solution (e.g., whether the iterative
optimization algorithm converges).

Very recently, [24] analyzed the SMW identity over fixed-point arithmetic and showed
that a bit complexity proportional to the logarithm of the condition number (ratio of the
largest singular value to the smallest singular value) of the corresponding matrix is sufficient
to guarantee the stability of the inverse maintenance over the word-RAM model in which the
running time of arithmetic operations is proportional to the number of bits of corresponding
numbers and only finite precision is guaranteed (and the precision itself depends on the
number of utilized bits).

This implies that in order to show that the techniques of [9] also hold over the word-RAM
model, we need to bound the condition number of the inductively constructed matrix for
arbitrary matrix formulas. Indeed, we affirmatively show that the condition number of the
constructed matrix is κO(s), where κ is an upper bound for the condition numbers of the
input matrices and s is the number of input matrices. This implies that a bit complexity of
O(s log κ) is sufficient to guarantee the stability of dynamically updating the matrix formulas.
We point out that a naive analysis would give a bound of O(2s log κ) for the bit complexity,
and our bound on the condition number is asymptotically tight since one can easily see that
the product of s matrices each with condition number κ results in a matrix with condition
number κs, e.g., consider As.

In addition, we consider the stability and bit complexity of maintaining the determinant
and rank of matrix formulas with inversion, multiplication, and addition/subtraction. An
application of maintaining the determinant is in the faster computation of the volume
of a polytope [22], and an application of the rank maintenance is in dynamic maximum
matching [34].

To maintain the determinant of a matrix formula up to a multiplicative error of (1 ± ϵ) for
0 < ϵ < 1, in addition to the inductively constructed matrix N of [9], we construct another
matrix N̂ and show that the determinant of the matrix formula is the ratio of det(N̂) to
det(N). This then allows us to use the matrix determinant lemma (see (3)) to maintain
the determinant. Although one might expect that we would require log det(N) number of
bits for determinant maintenance, we show that O(s log(κ/ϵ)) bits are sufficient. Note that
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log κ is preferable to log det since, for random matrices, the condition number is polynomial
in the dimension of the matrix with high probability [19, 20] while the determinant is
exponential [35].

We also consider rank maintenance over finite fields. This is because, under fixed-point
arithmetic, we can multiply our matrices by a large number to obtain integer matrices and
then perform all operations modulo a sufficiently large prime number (poly(n) is sufficient).
Then the rank of such matrix formula over Zp is the same as the rank of the original matrix
formula with high probability.

We believe optimizers and algorithm designers can use our results as black boxes to
analyze their algorithms under the word-RAM model. The only additional part on their
side is to analyze what error bounds can be tolerated in the corresponding algorithm while
guaranteeing the returned outputs are correct. Then, our results provide the corresponding
running time and bit complexity bounds for the required errors.

Our algorithmic results are presented as dynamic data structures in the next Section 1.1.
They cover the most common update schemes occurring in iterative algorithms, such as
updating one entry of the matrix and querying one entry or updating a column and querying
a row.

Finally, to illustrate the effectiveness of our approach and results, we discuss two example
applications. The first one, discussed in the full version, considers finding a basic solution
of a set of linear constraints in the standard form Ax = b, x ≥ 0 where A ∈ Rd×n and
n ≥ d. The operations involved in this algorithm are similar to the simplex algorithm. Beling
and Megiddo [5] presented two algorithms, a simple one with O(d2n) = O(n3) time, and a
more complicated one with O(d1.528n) = O(n2.528) time. Both these algorithms assumed
the real-RAM model (O(1) time per arithmetic operation with infinite precision). We show
that for n = O(d), by simply plugging our data structures into the simple algorithm, the
time complexity becomes Õ(n2.528 log(κ · max det)) in bit complexity (i.e., number of bit
operations). Here max det is the maximum determinant over each square d × d submatrix,
and κ is the maximum condition number over each d × d submatrix. In particular, for
matrices with log max det = poly log(n) (as is the case when modeling many combinatorial
problems as linear programs), our worst-case running time (i.e., number of bit operations) is
Õ(n2.528 log κ). Thus, not only does the simple algorithm become competitive with the more
complicated algorithm, but we also show that it can be efficiently implemented without the
real-RAM assumptions.

The second example application is for dynamically maintaining the size of the maximum
matching of a graph that goes through edge deletion, edge insertion, turning vertices on
and off, and merging vertices. We show in the full-version that our rank maintenance data
structure can be used for this purpose with a cost of O(n1.405) arithmetic operations per
update.

1.1 Our Results
Our first result is the following generic data structure that can maintain the value of any
matrix formula. Here a matrix formula is any expression that can be written using the basic
matrix operations of addition, subtraction, multiplication, and inversion.

▶ Theorem 1. Suppose we are given a matrix formula f(M1, . . . , Ms) with respective input
matrices M1, . . . Ms, where ∥Mi∥F ≤ κ for all i ∈ [s]. Let n denote the sum of the number
of rows and columns of all M1, . . . , Ms. We further assume that the result of each inversion
within f also has Frobenius-norm bounded by κ: in other words, we assume that every

ICALP 2024



10:4 The Bit Complexity of Dynamic Algebraic Formulas and Their Determinants

internal inversion-node of the computation tree has a bounded condition number. Then, for
ϵ > 0, κ > n, there exists data structures that are each initialized in time Õ(nωs log(κ/ϵ))
and have the following operations.

The data structures have the following update and query operations (where each bullet is
a different data structure)

Support entry updates and entry queries in Õ(n1.405s log(κ/ϵ)) time.
Support entry updates in Õ(n1.528s log(κ/ϵ)) time and entry queries in O(n0.528s log(κ/ϵ))
time.
Support column updates and row queries in Õ(n1.528s log(κ/ϵ)) time.
Support rank-1 updates and returning all entries of f(M1, ..., Ms) in Õ(n2s log(κ/ϵ))
time.
Support column updates and row queries in the offline model (the entire sequence of
column indices and row queries is given at the start) in Õ(nω−1s log(κ/ϵ)) update and
query time.

The outputs are all ϵ-approximate, i.e. each entry is off by at most an additive ϵ. The stated
time complexities depend on current bounds on fast matrix multiplication [37]. The precise
dependencies are stated in Theorem 4.

A similar result was previously proven in [9] using data structures from [33, 12], assuming
O(1) time per arithmetic operation and infinite precision. We extend this to the word-RAM
model by analyzing the stability of this data structure under the fixed-point arithmetic.

In addition, we show that we can also maintain other properties of f(M1, ..., Ms) while
receiving updates to the input matrices. We can maintain the determinant and the rank of
f(M1, ..., Ms). The following Theorem 2 and Theorem 3 are proven in the full version.

▶ Theorem 2. Let M1 ∈ Rn1×d1 , ..., Ms ∈ Rns×ds and n =
∑s

i=1 ni + di. Then, there
exists a dynamic determinant data structure that initializes in Õ(nωs log(κ/ϵ)) time on given
accuracy parameters ϵ > 0, κ > 2n, matrix formula f(M1, ..., Ms), and respective input
matrices M1, . . . , Ms.

The data structures support the maintenance of det(f(M1, ..., Ms)) up to a multiplicative
factor of 1 ± ϵ. They have the following update operations (each bullet is a different data
structure)

Support entry updates to any Mi in Õ(n1.405s log(κ/ϵ)) time.
Support column updates to any Mi in Õ(n1.528s log(κ/ϵ)) time.
Support rank-1 updates to any Mi in Õ(n2s log(κ/ϵ)) time.

We assume that throughout all updates, ∥f(M1, ..., Ms)∥F ≤ κ, ∥(f(M1, ..., Ms))−1∥F ≤ κ,
and ∥Mi∥F ≤ κ for all i, and the result of each inversion within f also has the Frobenius
norm bounded by κ.

▶ Theorem 3. There exists a dynamic rank data structure that initializes in O(nω) arithmetic
operations on given matrix formula f(M1, ..., Ms), and respective input matrices. Here, n is
the sum of the number of rows and columns of all M1, ..., Ms. The data structure maintains
rank(f(M1, ..., Ms)) subject to entry updates to any Mi in O(n1.405) arithmetic operations
per update.

This implies, for example, maintaining the size of the maximum matching in a dynamic
graph undergoing edge insertions and deletions, turning vertices on/off, and also merging of
vertices (see full version for details). Each such update to the graph takes O(n1.405) time.
This was previously achieved for edge insertions/deletions only [34, 12].
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Theorem 3 gives bounds for rank maintenance over finite fields. It is usually assumed
that operations over finite fields take O(1) time. However, a more realistic running time
is poly log(|F|) if an isomorphism to polynomials of degree less than d over Zp is given,
where |F| = pd is the size of the field. One approach to go beyond the finite fields for
rank maintenance is to perform the operations modulo a random prime, which preserves
the rank with constant probability. This has been leveraged in communication complexity
literature [36, 23]. See Lemma 4.1 on [36].

1.2 Preliminaries
Notation. We denote matrices with bold uppercase letters and vectors with bold lowercase
letters. We denote the Frobenius norm and the operator norm by ∥·∥F and ∥·∥2, respectively.
We define the condition number of an invertible matrix M as κ(M) := ∥M∥2 ·

∥∥M−1
∥∥

2. For
simplicity of presentation, we use κ as an upper bound for the Frobenius norm of matrices and
their inverses. However, since the condition number of matrices is scale-free, up to polynomial
factors such an upper bound is equal to the condition number. When the corresponding
matrix is clear from the context, we drop the argument and simply write κ. We denote entry
(i, j) of M by Mi,j , row i of M by Mi: and column j of M by M:j . For sets I and J , we
write (A)I, to denote the rows with indices in I, (A),J to denote the column with indices
in J , and (A)I,J to denote the submatrix with rows with indices in I and columns with
indices in J . We denote the n × n identity matrix by I(n), and use 0(i,j) to denote the i × j

all-zeros matrix. We denote the transposition of matrix M by M⊤. We use Õ notation to
omit polylogarithmic factors in n and polyloglog factors in κ/ϵ from the complexity, i.e., for
function f , Õ(f) := O(f · (log n · log log κ

ϵ )c), where c is a constant. Further, we denote the
set {1, . . . , n} by [n]. We denote the number of operations for multiplying an na × nb matrix
with an nb × nc matrix by O(nω(a,b,c)) and use O(nω) as shorthand for O(nω(1,1,1)). Finally,
for A ∈ Rm×n and i ∈ [min(m, n)], let σi denote the i’th largest singular value of A.

Sherman-Morrison-Woodbury Identity [38]. Consider an invertible matrix M ∈ Rn×n,
and matrices U ∈ Rn×r, D ∈ Rr×r, V ∈ Rr×n. If D and (M + UDV)−1 are invertible, then:

(M + UDV)−1 = M−1 − M−1U(D−1 + VM−1U)−1VM−1 (1)

Schur complement. Consider the block matrix M given by:

M =
[
A B
C D

]
,

where A and D are square matrices. Then if D is invertible, M/D := A−BD−1C is called the
Schur complement of block D of matrix M. Similarly, if A is invertible, M/A := D−CA−1B
is the Schur complement of block A of M. The Schur complement gives an inversion formula
for block matrices. Particularly, we have the following fact:

Fact. If A and M/A are invertible, then M is invertible and

M−1 =
[
A−1 + A−1B(M/A)−1CA−1 −A−1B(M/A)−1

(M/A)−1CA−1 (M/A)−1

]
.

This can be easily verified by multiplication with M.

ICALP 2024



10:6 The Bit Complexity of Dynamic Algebraic Formulas and Their Determinants

The Frobenius norm over R satisfies non-negativity, homogeneity, and the triangle
inequality. Specifically, we have that ∥A∥F ≥ 0, ∥βA∥F = |β| ∥A∥F and ∥A + B∥F ≤
∥A∥F + ∥B∥F. Finally, when the product AB is defined, the Frobenius norm obeys the
following sub-multiplicative property: ∥AB∥F ≤ ∥A∥F ∥B∥F.

Our Computational Model. Our algorithms and analysis are under the fixed-point arith-
metic. We present all of our analysis under fixed-point arithmetic except for the result of
[17] for QR decomposition which is under floating-point arithmetic but we only use that
result in a black-box way. In fixed-point arithmetic, each number is represented with a
fixed number of bits before and after the decimal point, e.g., under fixed-point arithmetic
with 6 bits, we can only present integer numbers less than 64. Addition/subtraction and
multiplication of two numbers with n bits can be done in Õ(n) time in this model by using
fast Fourier transform (FFT) – see [16, Chapter 30]. Division to an additive error of ϵ can
also be performed in Õ(n + log(1/ϵ)) time again with the help of FFT. In general, when we
mention running time, we mean the number of bit operations. Otherwise, we specify the
complexity is about the number of arithmetic operations.

Matrix Formula. Intuitively, a matrix formula is any formula involving matrices and the
basic matrix operations of adding, subtracting, multiplying, or inverting matrices. E.g.,
f(A, B, C, D) = (AB + C)−1D is a matrix formula.

Formally, a matrix formula f(M1, ..., Ms) is a directed tree, where each input Mi is a leaf,
and each matrix operation (addition, subtraction, multiplication, inversion) is an internal node.
Nodes that represent addition, subtraction, or multiplication have two children, i.e. the two
terms that are being added, subtracted, or multiplied. Inversion has only one child, the term
being inverted. For example, for node v labeled “+”, the subtree rooted at the left child and
the subtree rooted at the right child represent formulas gleft(M1, ..., Mk), gright(Mk+1, ..., Ms),
and the tree rooted at v represents f(M1, ..., Ms) = gleft(M1, ..., Mk) + gright(Mk+1, ..., Ms).

Note that since a formula is a tree, and not a DAG, and because there is no point in
inverting something twice in succession, a formula (i.e., tree) with s input matrices (i.e.,
leaves) has at most O(s) operations (i.e., internal nodes). Further, note that by formulas
being trees, a leaf (input) can be used only once. For example, (A + B)A is a formula with
3 inputs.

2 Technical Overview

Here we outline how we obtain our three main results Theorems 1–3. [9] proved a variant of
Theorem 1 that assumed the “real-RAM model”, i.e., exact arithmetic in only O(1) time per
operation. Modern computers do not provide this guarantee unless one uses up to Ω(n) bit,
substantially slowing down each arithmetic operation and the overall algorithm. We show
that the techniques by [9] also work with bounded accuracy and much smaller bit complexity.
In particular, only Õ(s log κ) bits are enough, as stated in Theorem 1.

Before we can outline how to obtain these results, we need to give a brief recap of [9]. This
is done in Section 2.1. We outline in Section 2.2 how to prove that Õ(s log κ)-bit accuracy
suffice, resulting in Theorem 1. At last, Section 2.3 outlines how to extend Theorem 1 to
maintain determinant and rank of a matrix formula, i.e., prove Theorems 2 and 3.
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𝑀1

𝑀𝑠

𝑀…

𝑁 = 𝑁−1 =

𝑓(𝑀1, … ,𝑀𝑠)

𝑀2

Figure 1 Maintaining N−1 allows us to maintain f(M1, ..., Ms).

2.1 Setting the Stage: How to Maintain Dynamic Algebraic Formulas
Dynamic Matrix Formula is the following data structures task: We are given a formula
f(M1, ..., Ms) and respective input matrices M1, ..., Ms. The entries of these matrices change
over time, and the data structure must maintain f(M1, ..., Ms) (see Theorem 1). Dynamic
Matrix Inverse is the special case f(M) = M−1, i.e., given a matrix that changes over time,
we must maintain information about its inverse. The latter problem has been studied in,
e.g., [33, 12] and there exist several data structures for this task (see Theorem 7).

Previously, [9] showed that the dynamic matrix formula for any formula can be reduced to
the special case of matrix inversion, i.e., dynamic matrix inverse. In particular, this means all
the previous data structures for dynamic matrix inverse [33, 12] or simple application of the
Sherman-Morrison-Woodbury identity (1), can also be used to maintain any general formula
f(M1, ..., Ms). [9] shows that for any formula f(M1, ..., Ms), there is a large block matrix
N, where M1, ..., Ms occur as subblocks. Further, N−1 contains a block1 that is precisely
f(M1, ..., Ms). See Figure 1. When M1, ..., Ms change over time, matrix N changes over
time, and running a dynamic matrix inverse data structures on this N allows us to maintain
N−1 and its subblock containing f(M1, ...Ms).

The issue of the reduction is that we do not know if N is well-conditioned. Under which
conditions to f and M1, ..., Ms can we guarantee that matrix N is well-conditioned? Once
we can guarantee that N is well-conditioned, we can give good error guarantees for the
dynamic matrix inverse data structures that maintain N−1 via the result of [24] regarding
the numerical stability of SMW identity (see full version for details).

We will bound both ∥N∥F and ∥N−1∥F, which gives a bound on the condition number. In
particular, we show that under reasonable assumptions on formula f and input M1, ..., Ms,
both Frobenius-norms are bounded by κO(s) (Lemma 6). With the dynamic matrix inverse
data structures’ complexities scaling in the log of these Frobenius norms (see Theorem 7),
this leads to the Õ(s log κ) factors in Theorem 1.

2.2 Bounding the Frobenius Norms
As outlined in the previous subsection, when given a matrix formula f(M1, ..., Ms), [9]
constructs a matrix N with the following properties. Matrix N contains M1, ..., Ms as
subblock, and the inverse N−1 contains a subblock that is precisely f(M1, ..., Ms), see
Figure 1. Our task is to bound the Frobenius-norm of both N and N−1, which then implies
a bound on the condition number of N. Further, data structures for maintaining N−1 have
a runtime that scales in those norms (Theorem 7).

1 The proof is constructive. Given f, M1, ..., Ms, we know N and we know which submatrix of N−1

contains f(M1, ..., Ms), i.e., we do not have to search for the subblock.
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10:8 The Bit Complexity of Dynamic Algebraic Formulas and Their Determinants

Let us briefly recap how matrix N is constructed, so we can then analyze the Frobenius-
norms of N and N−1.

Construction of N. The given formula f(M1, ..., Ms) can be represented as a tree (where
the operations like matrix product, sum, or inversion are nodes, the input matrices are
leaves, and the output is the root). The construction of N follows by induction over the
size of the tree: E.g., given some f(M1, ..., Ms) = g1(M1, ..., Mk) · g2(Mk+1, ..., Ms), by
induction hypothesis there are matrices N1, N2 where Ni contains the input matrices of
gi as blocks, and a block of N−1

i contains the evaluation of fi. These two matrices are
then combined into one larger matrix N (i.e., N contains N1, N2 as sub-blocks and thus N
contains M1, ..., Ms as sub-blocks) with the property that N−1 contains a sub-block that is
precisely g1(M1, ..., Mk) · g2(Mk+1, ...Ms).

Here we will not go into the precise construction of N for the different arithmetic
operations f(M1, ..., Ms) = g1(M1, ..., Mk) ◦ g2(Mk+1, ..., Ms). To follow the outline, it is
only important to know that we perform induction by splitting the formula f = g1 ◦ g2 at its
root into g1 and g2 to obtain two smaller matrices N1, N2. If the root is an inversion, i.e.,
f(M1, ..., Ms) = (g(M1, ..., Ms))−1, then we only have one matrix N′ where N′−1 contains
a sub-block that is g(M1, ..., Ms).

Bounding the Frobenius Norm (Section 3.1). For each possible operation ◦ ∈ {+, −, ·} at
the root: f(M1, ..., Ms) = g1(M1, ..., Mk)◦g2(Mk+1, ..., Ms) there is a different construction
for how to combine N1, N2 into a single N, such that N−1 contains f(M1, ..., Ms) as a
submatrix. We bound the Frobenius-norm of N and N−1, with respect to the Frobenius-
norms of N1, N2. This then implies a bound by induction. Since the construction of N
differs depending on the operation ◦ ∈ {+, −, ·}, we need slightly different proof for each
operation. The proofs will all follow via simple applications of triangle inequalities. Since N
is constructed so that N1, N2 are submatrices of N, simple arguments via triangle inequality
suffice. However, for the special case of f(M1, ..., Ms) = (g(M1, ..., Ms))−1, a more careful
analysis is required, which we outline below.

For N′ being the matrix constructed for formula g(M1, ..., Ms), we have sets I ′, J ′ ⊂ N
where (N′−1)I′,J′ = g(M1, ..., Ms) (i.e., this is the subblock that contains the evaluation of
g(M1, ..., Ms)). The reduction by [9] then constructs N as follows, and we state its inverse:

N =
[

N′ −I(nN′ )
,J′

I(nN′ )
I′, 0(nw,nw)

]

N−1 =
[

N′−1 − (N′−1),J′(N′−1)−1
I′,J′(N′−1)I′, (N′−1),J′(N′−1)−1

I′,J′

−(N′−1)−1
I′,J′(N′−1)I′, ((N′−1)I′,J′)−1

]

Note that the bottom right block of N−1 is precisely g(M1, ..., Ms)−1 since (N′−1)I′,J′ =
g(M1, ..., Ms). To bound the Frobenius-norm of N and N−1, we apply the triangle inequality
to

∥N∥F ≤
∥∥∥∥[

N′ 0
0 0

]∥∥∥∥
F

+

∥∥∥∥∥
[

0 −I(nN′ )
,J′

I(nN′ )
I′, 0

]∥∥∥∥∥
F

≤ ∥N′∥F +
√

|J ′| + |I ′|

We will have an upper bound on ∥N′∥F by the inductive hypothesis, so this yields an upper
bound on ∥N∥F as well.
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Using the triangle inequality similarly, we also can also bound ∥N−1∥F by

∥N−1∥F ≤
∥∥∥N′−1 − (N′−1),J′(N′−1)−1

I′,J′(N′−1)I′,

∥∥∥
F

+
∥∥∥(N′−1),J′(N′−1)−1

I′,J′

∥∥∥
F

+
∥∥∥(N′−1)−1

I′,J′(N′−1)I′,

∥∥∥
F

+
∥∥∥(N′−1)−1

I′,J′

∥∥∥
F

(2)

We can split the sum by the triangle inequality, and products using ∥AB∥F ≤ ∥A∥F∥B∥F.
If we naively upper bound ∥(N′−1)I′,∥F and ∥(N′−1),J′∥F using ∥(N′−1)∥F, we will get

∥N′−1 − (N′−1),J′(N′−1)−1
I′,J′(N′−1)I′,∥F

≤ ∥N′−1∥F + ∥(N′−1),J′∥F∥(N′−1)−1
I′,J′∥F∥(N′−1)I′,∥F

≤ ∥N′−1∥F + ∥(N′−1)−1
I′,J′∥F∥(N′−1)∥2

F

and similarly for the other three terms of (2). This will yield an upper bound for ∥N−1∥F,
but it involves ∥(N′−1)∥2

F. In particular, the upper bound gets squared for every nested
inverse gate, which will yield a bound that is in the order of κ2s (with O(s) being a bound
on the number of gates).

To improve this, we bound ∥(N′−1)I′,∥F and ∥(N′−1),J′∥F inductively as well. This
removes the dependence on ∥(N′−1)∥2

F, so the upper bound no longer gets squared in every
iteration, and becomes κO(s) instead.

2.3 Dynamic Rank and Determinant of Matrix Formulas
So far, we outlined how to maintain f(M1, ...Ms) within finite precision. This is based on a
reduction by [9] from the dynamic matrix formula to the dynamic matrix inverse. We now
explain how to extend the reduction, allowing us to also maintain det(f(M1, ..., Ms)) and
rank(f(M1, ..., Ms)).

Maintaining the Determinant. First, note that given a block matrix, we can represent its
determinant as follows

For M =
[

A B
C⊤ D

]
we have det(M) = det(A) · det(D − C⊤A−1B).

This allows for the following observation: Given n × n matrix N and sets I, J ⊂ N with
(N−1)I,J = f(M1, ..., Ms), we have (N−1)I,J = I(n)

I,[n]N
−1I(n)

[n],J and thus

N̂ =
[

N I(n)
[n],J

I(n)
I,[n] 0

]
with det(f(M1, ..., Ms)) = det(I(n)

I,[n]N
−1I(n)

[n],J) = det(N̂)/ det(N).

Thus, to maintain det(f(M1, ..., Ms)), we just need to maintain det(N̂) and det(N). Main-
taining these determinants can be done via the determinant lemma, which states:

det(N + uv⊤) = det(N)(1 + v⊤N−1u). (3)

Here adding uv⊤ is a rank-1 update and can capture updates such as changing an entry
of N (when u, v have only 1 nonzero entry each) or changing a column of N (when v has
only 1 nonzero entry). In particular, the task of maintaining det(N) reduces to the task of
repeatedly computing v⊤N−1u. This is a dynamic matrix formula (since u, v, N change
over time). For example, maintaining det(N) while N receives entry updates, requires us to
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10:10 The Bit Complexity of Dynamic Algebraic Formulas and Their Determinants

maintain f(u, v, N) = v⊤N−1u while u, v, N receive entry updates. Thus data structures
for maintaining det(f(M1, ..., Ms)) (Theorem 2) are implied by data structures for dynamic
matrix formula (Theorem 7), together with some additional error analysis performed in the
full-version. A key observation in the error analysis is that the determinant is the product
of the eigenvalues, and therefore, if we guarantee (with a sufficient number of bits) that
the eigenvalues are preserved up to a multiplicative error factor of 1 ± ϵ

10n , then we have
determinant computation up to a multiplicative error factor of 1 ± ϵ. We formalize this idea
by bounding the determinant of a matrix perturbed by a small amount – see full version for
details.

Maintaining the Rank. Let us assume that M1, ..., Ms are integer matrices, so N is an
integer matrix as well. Note that w.h.p. rank(N) is the same over Z and Zp for prime p ∼ nc

and large enough constant c. So for the rank, we do not need to worry about rounding errors
and can just focus on finite fields.

Sankowski [34] proved the following statement about matrix ranks. For any n × n matrix
M, and random n × n matrices X and Y (each entry is chosen uniformly at random from
Zp), and Ik being a partial identity (the first k diagonal entries are 1, the remaining diagonal
entries are 0), let

M =

M X 0
Y 0 In

0 In Ik


Then with high probability, det(M) ̸= 0 ⇐⇒ rank(M) ≥ n − k. In [34], this was used to
maintain the rank of M. We now generalize this to maintaining the rank of f(M1, ..., Ms).

Given a formula f(M1, ..., Ms), let g(M1, ..., Ms, P, Q, Rk) = Pf(M1, ..., Ms)Q + Rk

where

P = Q =

I 0 0
0 0 0
0 0 0

 , Rk =

 0 X 0
Y 0 I
0 I Ik

 ,

we have

g(M1, ..., Ms, P, Q, Rk) =

f(M1, ..., Ms) X 0
Y 0 In

0 In Ik


Thus, det(g(M1, ..., Ms, P, Q, Rk)) ̸= 0 ⇐⇒ rank(f(M1, ..., Ms)) ≥ n − k. So we
can track the rank of f(M1, ..., Ms) by finding and maintaining the smallest k where
det(g(M1, ..., Ms, P, Q, Rk)) ̸= 0. Note that with each changed entry to any Mi, the
rank can change by at most 1. So we can simply try increasing/decreasing k by perform-
ing a single entry update to Rk (and potentially reverting the update) to check if the
det(g(M1, ..., Ms, P, Q, Rk)) becomes 0. Note that the determinant lemma (3) breaks once
the matrix is no longer invertible.

Thus we must increase k whenever det(g(M1, ..., Ms, P, Q, Rk)) = 0. If an update causes
the determinant to become 0, we must revert that update by reverting any internal changes
of the data structure, then increase k, and then perform the reverted update again. This
way, we always guarantee det(g(M1, ..., Ms, P, Q, Rk)) ̸= 0 and that (3) never breaks. By
always maintaining the largest k where det(g(M1, ..., Ms, P, Q, Rk)) ̸= 0, we know n − k is
the rank of f(M1, ..., Ms).
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3 Dynamic Matrix Formula

In this section, we prove the first main result: a generic data structure that can maintain
the evaluation of any matrix formula f(M1, ..., Ms) while supporting updates to the input
matrices.

▶ Theorem 4 (Detailed variant of Theorem 1). Suppose we are given a matrix formula
f(M1, . . . , Ms) with respective input matrices M1, . . . Ms, where ∥Mi∥F ≤ κ for all i ∈ [s].
Let n denote the sum of the number of rows and columns of all M1, . . . , Ms. We further
assume that the result of each inversion within f also has Frobenius-norm bounded by κ: in
other words, we assume that every internal inversion-node of the computation tree has a
bounded condition number. Then, for ϵ > 0, κ > n and any 0 ≤ ν ≤ µ ≤ 1, there exists data
structures that are each initialized in time Õ(nωs log(κ/ϵ)) and have the following operations.

The data structures have the following update and query operations (where each bullet is
a different data structure)

Support entry updates and entry queries in Õ((nω(1,1,µ)−µ +nω(1,µ,ν)−ν +nµ+ν)s log(κ/ϵ))
time. This is Õ(n1.405s log(κ/ϵ)) for ν ≈ 0.543, µ ≈ 0.8612.
Support entry updates in Õ((nω(1,1,µ)−µ + n1+µ)s log(κ/ϵ)) time and entry queries in
O(nµs log(κ/ϵ)) time. This is Õ(n1.528s log(κ/ϵ)) and O(n0.528s log(κ/ϵ)) for µ ≈ 0.528.
Support column updates and row queries in Õ((nω(1,1,µ)−µ + n1+µ)s log(κ/ϵ)) time. This
is Õ(n1.528s log(κ/ϵ)) for µ ≈ 0.528.
Support rank-1 updates and returning all entries of f(M1, ..., Ms) in Õ(n2s log(κ/ϵ))
time.
Support column updates and row queries in the offline model (the entire sequence of
column indices and row queries is given at the start) in Õ(nω−1s log(κ/ϵ)) update and
query time.

The outputs are all ϵ-approximate, i.e. each entry is off by at most an additive ϵ.

The explicit upper bound exponents were obtained via the tool of [7] and use the upper
bounds on fast matrix multiplication by [37].

This result is obtained by reducing the task to the special case g(N) = N−1, where the
structure of matrix N depends on the formula f and its inputs M1, ..., Ms.

We then run data structures (Theorem 7) that can maintain N−1 while supporting
updates to N. The accuracy of these data structures depends on ∥N∥F and ∥N−1∥F , so
we must bound these Frobenius-norms. These bounds are given in Section 3.1. We then
combine the bounds with the previous reduction to obtain Theorem 1 in Section 3.2.

3.1 Norm Bounds on Construction
In this section, we bound the Frobenius norm of the matrix produced by the reduction of [8],
as well as its inverse. Formally, [8] has proven the following.

▶ Theorem 5 (Theorem 3.1 of [9]). Given a matrix formula f(A1, ..., Ap) over field F, define
n :=

∑
i∈V ni + mi where ni × mi is the dimension of Ai.

Then there exists a square matrix N of size at most O(n) × O(n), where each Ai is a
block of N. Further, if f(A1, ..., Ap) does not attempt to invert a non-invertible matrix then
(N−1)I,J = f(A1, . . . , Ap). Constructing N and I, J takes O(n2) time.

In the following Lemma 6 we retread the construction of matrix N and bound the
Frobenius-norm.
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10:12 The Bit Complexity of Dynamic Algebraic Formulas and Their Determinants

▶ Lemma 6. Let f(A1, . . . , Ap) be a matrix formula over R using s gates. Suppose matrix N,
and index sets I, and J are constructed as in Theorem 5 so that (N−1)I,J = f(A1, . . . , Ap).
Let κ ≥ maxi ni + mi ≥ 2, where ni × mi are the dimensions of Ai.

Then, if ∥A1∥F, . . . , ∥Ap∥F ≤ κ, and the Frobenius norms of outputs of intermediate
inverse gates are also bounded by κ, we have

∥N∥F ≤ κs

∥N−1∥F ≤ (10κ)2s+1.

Proof. We bound ∥N∥F and ∥N−1∥F by induction on the number of gates s. Note that the
given formula f can be represented as a tree, where the input matrices are leaves and each
operation is an internal node. For example f(M1...Mp) = g(M1, ..., Mq) + h(Mq+1, ..., Mp)
can be seen as a tree where the root node is a “+” with two subtrees for the formulas g and
h. Each node that represents an operation has 2 children (or 1 child in case of inversion). We
call the nodes also gates, e.g., inversion gate or addition gate, depending on what operation
they represent.

Theorem 5 ([8]) constructs the matrix N by induction over the number of gates, i.e.,
for each gate w some matrix Nw is constructed. This Nw is constructed as a block matrix
where some blocks are Nu, Nv where u, v are the child gates of w. We also say that “Nw is
returned by gate w”.

Suppose matrix N, and index sets I, and J are constructed as in Theorem 5 so that
(N−1)I,J = f(A1, . . . , Ap). We will show by induction on s ≥ 1 (the number of gates in f)
that:

∥N∥F ≤ κs

∥(N−1)I,J∥F ≤ 2sκ

∥(N−1)I,∥F ≤ (5κ)s

∥(N−1),J∥F ≤ (5κ)s

∥N−1∥F ≤ (10κ)2s+1

We now prove bounds on the output of our gates by assuming the induction hypothesis
that their inputs have bounded norms. We start with the base case.

Input gate. The base case is when s = 1, in which case the formula f(Mv) = Mv consists
of a single input gate. The construction by [8] for Theorem 5 defines N as

N−1 = N =
[

I(nv) Mv

0(mv,nv) −I(mv)

]
where Mv is the input matrix to the formula f and nv × mv are its dimensions. Selecting
rows with indices in I = {1, ..., mv}, and columns with indices in J = {nv + 1, ..., nv + mv},
we get

(N−1),J =
[

Mv

−I(mv)

]
,

(N−1)I, =
[
I(nv) Mv

]
,

(N−1)I,J =
[
Mv

]
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Applying the triangle inequality to

N =
[

I(nv) 0(nv,mv)

0(mv,nv) −I(mv)

]
+

[
0(nv,nv) Mv

0(mv,nv) 0(mv,mv)

]
and using the fact that

√
nv + mv ≤ κ and ∥Mv∥F ≤ κ, we get

∥N∥F ≤
√

nv + mv + ∥Mv∥F

≤ 2κ

Similarly, we have that

∥(N−1)I,J∥ ≤ ∥Mv∥F ≤ κ1

∥(N−1)I,∥ ≤ ∥Mv∥F +
√

nv ≤ 2κ ≤ (5κ)1

∥(N−1),J∥ ≤ ∥Mv∥F +
√

mv ≤ 2κ ≤ (5κ)1

∥N−1∥F ≤
√

nv + mv + ∥Mv∥F ≤ 2κ ≤ (10κ)3

We now consider the operation gates for the inductive step.

Inversion. Suppose the root gate is an inversion gate. Suppose N′ is a nN ′ × nN ′ matrix
and I ′, J ′ ⊂ Z are sets, such that (N′−1)I′,J′ is the nw × nw matrix that the child gate w

returns. The child gate is the root of a subtree with a = s − 1 ≥ 1 gates, which implies
bounds on the Frobenius-norm of N′. The construction of Theorem 5 defines

N =
[

N′ −I(nN′ )
,J′

I(nN′ )
I′, 0(nw,nw)

]

By block matrix inversion (Section 1.2), we have

N−1 =
[

N′−1 − (N′−1),J′(N′−1)−1
I′,J′(N′−1)I′, (N′−1),J′(N′−1)−1

I′,J′

−(N′−1)−1
I′,J′(N′−1)I′, (N′−1)−1

I′,J′

]

Selecting the rows with indices in I, and columns with indices in J , we get

(N−1)I, =
[
−(N′−1)−1

I′,J′(N′−1)I′, (N′−1)−1
I′,J′

]
(N−1),J =

[
(N′−1),J′(N′−1)−1

I′,J′

(N′−1)−1
I′,J′

]
(N−1)I,J =

[
(N′−1)−1

I′,J′

]
By the triangle inequality and the assumption that κ ≥ nw ≥ 1,

∥N∥F ≤ ∥N′∥F +
√

2nw

≤ 2aκ + 2κ ≤ 2sκ

By the assumption that the output of each inversion gate has Frobenius norm at most κ,

∥(N−1)I,J∥F = ∥(N′−1)−1
I′,J′∥F ≤ κ ≤ κs
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For the remaining matrices, we can bound their Frobenius norms by the sum of Frobenius
norms of their blocks, use the triangle inequality to split sums, and ∥AB∥F ≤ ∥A∥F∥B∥F to
split products, and then bound the resulting terms by the inductive hypothesis:

∥(N−1)I,∥F ≤ ∥(N′−1)−1
I′,J′∥F(1 + ∥(N′−1)I′,∥F)

≤ κ(1 + (5κ)a) ≤ κ · 2(5κ)a ≤ (5κ)a+1 = (5κ)s

∥(N−1),J∥F ≤ ∥(N′−1)−1
I′,J′∥F(1 + ∥(N′−1),J′∥F)

≤ κ(1 + (5κ)a) ≤ κ · 2(5κ)a ≤ (5κ)a+1 = (5κ)s

∥N−1∥F ≤ ∥N′−1∥F + ∥(N′−1)−1
I′,J′∥F(∥(N′−1)I′,∥F + 1)(∥(N′−1),J′∥F + 1)

≤ (10κ)2a+1 + κ((5κ)a + 1)2 ≤ (10κ)2a+1 + κ(10κ)2a

≤ (10κ)2a+3 = (10κ)2s+1

Addition and Subtraction. Suppose the root gate w is an addition gate, adding two nw ×mw

matrices. Suppose the subtree of the left child has a ≥ 1 gates and the subtree of the right
child has b ≥ 1 gates, where s = a + b + 1. Let L be the nL × nL matrix and R be the a
nR × nR matrix returned by the child gates, where (L−1)IL,JL

and (R−1)IR,JR
are nw × mw

matrices. The matrix N for parent (addition) gate w is defined as

N =


L 0 I(nL)

,JL
0

0 R I(nR)
,JR

0
I(nL)

IL, I(nR)
IR, 0 I(nw)

0 0 I(mw) 0



N−1 =


L−1 0 0 −(L−1),JL

0 R−1 0 −(R−1),JR

0 0 0 I(mw)

−(L−1)IL, −(R−1)IR, I(nw) (L−1)IL,JL
+ (R−1)IR,JR


Selecting the rows of N−1 with indices in I and columns with indices in J , we get

(N−1)I, =
[
−(L−1)IL, −(R−1)IR, I(nw) (L−1)IL,JL

+ (R−1)IR,JR

]
(N−1),J =


−(L−1),JL

−(R−1),JR

I(mw)

(L−1)IL,JL
+ (R−1)IR,JR


(N−1)I,J =

[
(L−1)IL,JL

+ (R−1)IR,JR

]
We now bound the Frobenius norms of these matrices using the bounds on ∥L∥F, ∥L−1∥F,
∥(L−1)IL,∥F, ∥(L−1),JL

∥F, ∥(L−1)IL,JL
∥F, and similarly for R−1, that we get from the

inductive hypothesis. Using the triangle inequality and the assumption that κ ≥ nw + mw,
and that ∥L∥F ≤ 2aκ and ∥R∥F ≤ 2bκ by the inductive hypothesis,

∥N∥F ≤ ∥L∥F + ∥R∥F +
√

3nw + 3mw

≤ 2aκ + 2bκ + 2κ ≤ 2(a + b + 1)κ = 2sκ
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Similarly, we get:

∥(N−1)I,J∥F ≤ ∥(L−1)IL,JL
∥F + ∥(R−1)IR,JR

∥F

≤ κa + κb ≤ 2κa+b ≤ κa+b+1 = κs

∥(N−1)I,∥F ≤ ∥(L−1)IL,∥F + ∥(R−1)IR,∥F + ∥(L−1)IL,JL
∥F + ∥(R−1)IR,JR

∥F +
√

nw

≤ (5κ)a + (5κ)b + κa + κb + κ ≤ 5(5κ)a+b ≤ (5κ)a+b+1 = (5κ)s

∥(N−1),J∥F ≤ ∥(L−1),JL
∥F + ∥(R−1),JR

∥F + ∥(L−1)IL,JL
∥F + ∥(R−1)IR,JR

∥F +
√

mw

≤ (5κ)a + (5κ)b + κa + κb + κ ≤ 5(5κ)a+b ≤ (5κ)a+b+1 = (5κ)s

∥N−1∥F ≤ ∥L−1∥F + ∥R−1∥F + ∥(L−1)IL,∥F + ∥(L−1),JL
∥F

+ ∥(R−1)IR,∥F + ∥(R−1),JR
∥F +

√
nw + mw

≤ (10κ)2a+1 + (10κ)2b+1 + 2(5κ)a + 2(5κ)b + κ

≤ 7(10κ)2a+2b+1 ≤ (10κ)2a+2b+3 = (10κ)2s+1

Subtraction gates are the same as addition gates except that the I(nR)
,JR

in the second row,
third column of N is replaced by −I(nR)

,JR
. The norm-bounding computations are then the

same except for irrelevant sign changes.

Multiplication. Suppose the root gate is a multiplication gate. Suppose the left child has
a ≥ 1 gates and the right child has b ≥ 1 gates, where s = a + b + 1. Let L be the nL × nL

matrix and R be the nR × nR matrix such that the outputs of the child gates are (L−1)IL,JL

and (R−1)IR,JR
.

N =
[

L −I(nL)
[nL],JL

I(nR)
IR,[nR]

0(nR,nL) R

]

N−1 =
[
L−1 (L−1),JL

(R−1)IR,

0 R−1

]

Selecting the rows of N−1 with indices in I is the same as taking the first row of blocks
and left-multiplying by I(nL)

IL, . Selecting columns with indices in J is the same as taking the
second column of blocks and right-multiplying by I(nR)

,JR
. Hence,

(N−1)I, =
[
(L−1)IL, (L−1)IL,JL

(R−1)IR,

]
(N−1),J =

[
(L−1),JL

(R−1)IR,JR

(R−1),JR

]
(N−1)I,J =

[
(L−1)IL,JL

(R−1)IR,JR

]
We again bound the Frobenius norms of these matrices using the bounds on ∥L∥F,

∥L−1∥F, ∥(L−1)IL,∥F, ∥(L−1),JL
∥F, ∥(L−1)IL,JL

∥F, and similarly for R−1, that we get from
the inductive hypothesis. The Frobenius norm of each block matrix is bounded by the sum of
the Frobenius norms of its blocks. Using this together with the fact that ∥AB∥F ≤ ∥A∥F∥B∥F,
we get
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∥N∥F ≤ ∥L∥F + ∥R∥F +
√

min(nL, nR)
≤ 5aκ + 5bκ + κ ≤ 5(a + b + 1)κ = 5sκ

∥(N−1)I,J∥F ≤ ∥(L−1)IL,JL
∥F∥(R−1)IR,JR

∥F

≤ κaκb ≤ κa+b+1 = κs

∥(N−1)I,∥F ≤ ∥(L−1)IL,∥F + ∥(L−1)IL,JL
∥F∥(R−1)IR,∥F

≤ (5κ)a + κa(5κ)b ≤ (5κ)a+b + (5κ)a+b ≤ (5κ)a+b+1 = (5κ)s

∥(N−1),J∥F ≤ ∥(R−1),JR
∥F + ∥(R−1)IR,JR

∥F∥(L−1),JL
∥F

≤ (5κ)b + κb(5κ)a ≤ (5κ)a+b + (5κ)a+b ≤ (5κ)a+b+1 = (5κ)s

∥N−1∥F ≤ ∥L−1∥F + ∥R−1∥F + ∥(L−1),JL
∥F∥(R−1)IR,∥F

≤ (10κ)2a+1 + (10κ)2b+1 + (5κ)a(5κ)b

≤ 3(10κ)2a+2b+1 ≤ (10κ)2a+2b+3 = (10κ)2s+1

Then by the inductive hypothesis, the claim is proven. ◀

3.2 Proof of Theorem 1

To obtain Theorem 1, we will use the following data structures (Theorem 7) by Sankowski [33],
v.d.Brand, Nanongkai and Saranurak [12]. This previous work only considered finite fields
or the real-RAM model, i.e., infinite precision with O(1) time per arithmetic operation. In
the full version, we prove that these data structures also work with finite precision and
Õ(log(κ/ϵ))-bit fixed-point arithmetic, as stated in Theorem 7.

▶ Theorem 7. There exist several dynamic matrix inverse algorithms with the following
operations. For any update vs. query time trade-off parameters 0 ≤ ν ≤ µ ≤ 1, each data
structure initializes in O(nω log κ/ϵ) time on given accuracy parameters ϵ > 0, κ > n, and
dynamic matrix Z ∈ Rn×n that is promised to stay invertible throughout all updates with
∥Z∥F , ∥Z−1∥F ≤ κ.

The data structures have the following update/query operations
1. Support entry updates and entry queries in Õ((nω(1,1,µ)−µ +nω(1,µ,ν)−ν +nµ+ν)s log(κ/ϵ))

time. This is Õ(n1.405s log(κ/ϵ)) for ν ≈ 0.543, µ ≈ 0.8612.
2. Support entry updates in Õ((nω(1,1,µ)−µ + n1+µ)s log(κ/ϵ)) time and entry queries in

O(nµs log(κ/ϵ)) time. This is Õ(n1.528s log(κ/ϵ)) and O(n0.528s log(κ/ϵ)) for µ ≈ 0.528.
3. Support rank-1 updates and returning all entries of f(M1, ..., Ms) in Õ(n2s log(κ/ϵ))

time.
4. Support column updates and row queries in the offline model (the entire sequence of

column indices and row queries is given at the start) in Õ(nω−1s log(κ/ϵ)) update and
query time.

The outputs are all ϵ-approximate, i.e., each entry is off by at most an additive ±ϵ.

By running the data structures of Theorem 7 on the matrix obtained from Theorem 5,
we obtain Theorem 1.

Proof of Theorem 4 (Theorem 1). Given the formula f(M1, ..., Ms) and its input matrices
M1, ..., Ms, where each Mi is of size ni × mi, let n =

∑
s ni + mi.
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Initialization. By Theorem 5, we can construct in O(n2) time a square O(n) × O(n) matrix,
where each Mi is a sub-block of N, and two sets I, J ⊂ Z with (N−1)I,J = f(M1, ..., Ms).

The assumption of Theorem 4 states that each ∥Mi∥F ≤ κ and each result of an inversion
gate within f also has Frobenius norm bounded by κ. Thus, by Lemma 6, we have log ∥N∥F

and log ∥N−1∥F bounded by O(s log κ).
Depending on the type of update and query that we want (i.e., entry, column, row, etc),

we run the respective data structure from Theorem 7 on N.
In total, the initialization takes Õ(nωs log(κ/ϵ)) time, dominated by the initialization of

the data structure from Theorem 7.

Updates and Queries. Since each Mi is a submatrix of N, entry, column, row, or rank-1
updates to any Mi can be modeled by an entry, column, row, or rank-1 update to N.

Likewise, querying an entry, a row, or column of f(M1, ..., Ms) can be performed by
querying an entry, or row, or column of N−1, because submatrix (N−1)I,J = f(M1, ..., Ms).
Further, the queries all have accuracy ϵ by Theorem 7.

Thus, the update and query complexity of Theorem 1 is exactly as stated in Theorem 7. ◀

4 Conclusion

We discussed the bit complexity and stability of maintaining arbitrary matrix formulas (with
inversion, multiplication, and addition/subtraction) and their determinants. In addition, we
provided data structures for maintaining the rank of matrices under finite fields and discussed
a few applications for these. We believe our data structures and analysis would provide
a useful and easy-to-use toolbox for designing iterative algorithms under the word-RAM
model. For example, to extend optimization algorithms to the word-RAM model, one is
only required to provide an analysis of what amount of errors in each step can be tolerated
without affecting the convergence. Some other applications are in computational geometry
and computer algebra problems.

A compelling future direction is to analyze the bit complexity of more complex algorithms
that use algebraic and matrix formulas and the required error bounds for these algorithms.
One interesting example is the Gram-Schmidt walk introduced for discrepancy minimiza-
tion [4] that has many applications including experimental design [25]. It is not clear how
many bits are required to guarantee such a random walk constructs a good distribution.

Another compelling direction is to investigate whether our bit complexity bounds can be
improved for certain problems. For example, in the basic solution application, we presented
bounds that depend on both the maximum determinant and maximum condition number over
all d-by-d submatrices. We know that the maximum determinant is small for combinatorial
problems and the maximum condition number is small for random matrices with high
probability. Therefore it would be interesting to investigate whether one of these terms
can be eliminated from the bit complexity bound. Another case of special problems is in
tensor Tucker decomposition, where linear regression problems with Kronecker structure are
solved [18, 21]. Although the matrices involved have a condition number exponential in the
order of the tensor, such matrices are usually not constructed explicitly.

Finally, our results hint that inverse maintenance approaches might not be as unstable
as previously assumed. It would be interesting to investigate their performance in practice.
This might require modifications to plain vanilla Sherman-Morrison-Woodbury identity.

ICALP 2024
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