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Abstract
For an undirected unweighted graph G = (V, E) with n vertices and m edges, let d(u, v) denote the
distance from u ∈ V to v ∈ V in G. An (α, β)-stretch approximate distance oracle (ADO) for G is a
data structure that given u, v ∈ V returns in constant (or near constant) time a value d̂(u, v) such
that d(u, v) ≤ d̂(u, v) ≤ α · d(u, v) + β, for some reals α > 1, β.

Thorup and Zwick [34] showed that one cannot beat stretch 3 with subquadratic space (in terms
of n) for general graphs. Pǎtraşcu and Roditty [27] showed that one can obtain stretch 2 using
O(m1/3n4/3) space, and so if m is subquadratic in n then the space usage is also subquadratic.
Moreover, Pǎtraşcu and Roditty [27] showed that one cannot beat stretch 2 with subquadratic space
even for graphs where m = Õ(n), based on the set-intersection hypothesis.

In this paper we explore the conditions for which an ADO can beat stretch 2 while using
subquadratic space. In particular, we show that if the maximum degree in G is ∆G ≤ O(n1/k−ε)
for some 0 < ε ≤ 1/k, then there exists an ADO for G that uses Õ(n2− kε

3 ) space and has a
(2, 1 − k)-stretch. For k = 2 this result implies a subquadratic sub-2 stretch ADO for graphs with
∆G ≤ O(n1/2−ε).

Moreover, we prove a conditional lower bound, based on the set intersection hypothesis, which
states that for any positive integer k ≤ log n, obtaining a sub- k+2

k
stretch for graphs with ∆G =

Θ(n1/k) requires Ω̃(n2) space. Thus, for graphs with maximum degree Θ(n1/2), obtaining a sub-2
stretch requires Ω̃(n2) space.
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1 Introduction

One of the most fundamental and classic problems in algorithmic research is the task of
computing distances in graphs. Formally, given an undirected unweighted graph G = (V, E),
|V | = n and |E| = m, the distance between two vertices u, v ∈ V , denoted d(u, v), is the
length of a shortest path between u and v. A central problem in distance computations is
the all-pairs shortest paths (APSP) problem [18, 10, 20, 16, 37, 12, 22] where the objective is
to compute the distances between every pair of vertices in the graph. A main disadvantage
in handling the output of the APSP problem is that storing the distances between every
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pair of vertices in the graph requires Ω(n2) space. As in many other problems in computer
science, the lack of space efficiency in solving the APSP problem has motivated researchers
to search for a tradeoff between space and accuracy. As a result, one central form of the
APSP problem emerging from this line of research is constructing an approximate distance
oracle where we sacrifice accuracy for space efficiency.

Approximate Distance Oracles. An approximate distance oracle (ADO) is a space efficient
data structure that produces distance estimations between any two vertices in the graph in
constant or near-constant time. Formally, given two vertices, u, v ∈ V , an ADO returns an
estimation d̂(u, v) for the distance between u and v that satisfies: d(u, v) ≤ d̂(u, v) ≤ α·d(u, v),
for some real α > 1 which is called the stretch of the ADO. If the estimation of the ADO
satisfies d(u, v) ≤ d̂(u, v) ≤ max{d(u, v), α · d(u, v) + β} for some reals α > 1 and β (which
can be negative), we say that the stretch of the ADO is an (α, β)-stretch.

ADO for general graphs. ADOs were originally presented by Thorup and Zwick [34] who
designed a randomized algorithm that for any positive integer k constructs an ADO for
weighted undirected graphs in O(kmn1/k) time that uses O(kn1+1/k) space and returns a
2k − 1-stretch in O(k) query time.

Thorup and Zwick [34] showed that the space usage of their ADO construction for their
given stretch is optimal for general graphs based on the girth conjecture of Erdős. Moreover,
for stretch 3 (when k = 2), the appropriate case of the girth conjecture is known to be true
(due to complete bipartite graphs), and so the quadratic (in n) space lower bound for this
case is unconditional. Notice that constructing an exact distance oracle in quadratic space is
trivial.

In the case where one allows for an additive error, Pǎtraşcu and Roditty [27] designed an
algorithm which constructs a (2, 1)-stretch ADO for unweighted graphs using O(n5/3) space
and O(1) query time. Their result demonstrates that in such a case the multiplicative error
can be reduced while still using subquadratic space.

ADO for sparse graphs. The (conditional) lower bound of Thorup and Zwick [34] does
not apply to sparser graphs with m = o(n1+1/k), and indeed additional results show that it
is possible to use subquadratic space and return a sub-3 stretch in such cases. Specifically,
Pǎtraşcu and Roditty [27], designed an algorithm that constructs a 2-stretch ADO using
O(m1/3n4/3) space, and so for subquadratic m the space usage is subquadratic. Pǎtraşcu,
Roditty and Thorup [28] presented additional tradeoffs for sub-3 stretch using subquadratic
space for graphs where m = Õ(n)1. Roditty and Tov [30] improved the stretch of the ADO
presented by Thorup and Zwick [34] while using the same space for graphs with m = Õ(n).

Conditional lower bounds and set-intersection. Pǎtraşcu and Roditty [27] proved a lower
bound for the space usage of sub-2 stretch ADOs (i.e., ADOs which satisfy d(u, v) ≤
d̂(u, v) < 2d(u, v)) that holds (even) for sparse graphs, conditioned on the space usage for
data structures that solve the following set intersection problem.

▶ Problem 1. Let X = logc N for a large enough constant c. Construct a data structure
that preprocesses sets S1, . . . , SN ⊆ [X], and answers queries of the form “does Si intersect
Sj?” in constant time.

1 Throughout this paper we use ∼ when suppressing poly-logarithmic factors in asymptotic complexities.



T. Kopelowitz, A. Korin, and L. Roditty 101:3

The lower bound proof by Pǎtraşcu and Roditty [27] is based on the following hypothesis.

▶ Hypothesis 2 ([27, 31, 17]). A data structure that solves Problem 1 requires Ω̃(N2) space.

Since understanding the reduction by Pǎtraşcu and Roditty [27] is useful for our results,
we provide an overview of their reduction tailored to our needs. Given an instance of
Problem 1, we construct a 3 layered graph, where edges are only between adjacent layers,
as follows. The first layer is VL = {v1, . . . , vN }, the second layer is VM = X, and the third
layer is VR = {u1, . . . , uN }. Vertices vi and ui represent Si, and so for each set Si and each
x ∈ Si, we add edges (vi, x) and (x, ui). Notice that the graph contains Θ(N) vertices. It is
straightforward to observe that Si ∩ Sj ̸= ∅ if and only if there is a path of length 2 between
vi and uj . Moreover, since the graph is a 3 layered graph and the representatives of the sets
are at the outer layers, there are no paths of length 3 between representatives of sets. Thus,
one can solve Problem 1 using a solution to the following problem (for a = 2 and b = 4).

▶ Problem 3. For positive integers a and b, an (a, b)-distinguisher oracle for a graph
G = (V, E), is a data structure that, given u, v ∈ V establishes in constant time whether
d(u, v) ≤ a or d(u, v) ≥ b. If a < d(u, v) < b then the data structure can return any arbitrary
answer.

We conclude that a (2, 4)-distinguisher oracle that uses f(n) space can be used to solve
Problem 1 using f(N) space by applying the oracle onto the 3 layered graph. Finally, since
a sub-2 stretch ADO is a (2, 4)-distinguisher oracle, any sub-2 stretch ADO must use at least
Ω(n2) space.

1.1 Main results: When can we beat stretch 2 with subquadratic space?
The line of work by [27, 28, 30] is a natural research path given the observation that the
(conditional) lower bounds of [34] apply only to graphs with m = Ω(n1+1/k). Similarly, a
natural goal, which we address in this paper, is to understand for which families of graphs
can an ADO beat stretch 2 using subquadratic space. In particular, the conditional lower
bound proof of Pǎtraşcu and Roditty [27] does not apply to graphs with maximum degree of
n

1
2 −Ω(1), since in such graphs the number of paths of length 2 is n2−Ω(1), and so constructing

a subquadratic space (2, 4)-distinguisher oracle is straightforward (by explicitly storing all
length 2 paths).

Thus, a natural goal, which we investigate in this paper, is to understand the relationship
between the maximum degree of G, denoted by ∆G, and the best possible stretch obtainable
for an ADO using subquadratic space. To address this question, we present two main results.
The first result is an upper bound for ∆G = n

1
k −Ω(1) which is summarized in the following

Theorem.

▶ Theorem 4. For any graph G, positive real constant c, and positive integer k for which
∆G ≤ cn

1
k −ε for some real 0 < ε ≤ 1/k, there exists an ADO for G that uses Õ(ckn2− kε

3 )
space and has a (2, 1 − k)-stretch.

For k = 2, Theorem 4 implies a subquadratic sub-2 stretch ADO for graphs for which
∆G ≤ n

1
2 −Ω(1).

The second result is a conditional lower bound, conditioned on Hypothesis 2, that applies
when ∆G = Θ(n1/k), for all integers k ≥ 1 2. The conditional lower bound is summarized in
the following Theorem.

2 The case k = 1 was proven by Thorup and Zwick [34] to hold unconditionally. Thus, Theorem 5 focuses
on k ≥ 2.

ICALP 2024
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k

stretch

1

2

1 2 3 d(u, v) − 1d(u, v) − 2,

yLB = k+2
k

yUB = 2d(u,v)+1−k
d(u,v)

Figure 1 A comparison between the upper bound for graphs with ∆G ≤ O(n 1
k

−ε) (Theorem 4)
and the lower bound for graphs with ∆G = Θ(n 1

k ) (Theorem 5). The figure demonstrates the stretch
as a function of k for a fixed (sufficiently large) value of d(u, v). The curves intersect at 2 < k1 < 3
and at d(u, v) − 2 < k2 < d(u, v) − 1 which implies that for k = 1, 2 the ADO from Theorem 4 for
graphs with ∆G ≤ O(n 1

k
−ε) produces a better stretch than the best possible stretch for graphs with

∆G = Θ(n 1
k ). On the other hand, the intersection point k2 does not provide strong enough results;

see the discussion following the statement of Theorem 5.

▶ Theorem 5. Let 2 ≤ k ≤ log n. Assuming Hypothesis 2, a sub- k+2
k stretch ADO for graphs

with n vertices and maximum degree Θ(n1/k) must use Ω̃(n2) space.

When k = 2, the lower bound of Theorem 5 implies that Theorem 4 is essentially optimal, in
the sense that there is no ADO for graphs with a maximum degree of Θ(n1/2) that still uses
subquadratic space and has a sub-2 stretch.

For larger values of k, although the upper and lower bounds are defined only for integer
values of k, the values lie on two curves: yUB = 2d(u,v)+1−k

d(u,v) for the upper bound and
yLB = k+2

k for the lower bound. See Figure 1 for a depiction and comparison of the two
curves for a fixed value of d(u, v). When d(u, v) ≤ 6 (which is not the case shown in Figure 1),
the upper bound will always produce a stretch which is equal or smaller to the lower bound.
Otherwise, the curves intersect at 2 < k1 < 3 and d(u, v) − 2 < k2 < d(u, v) − 1. We
emphasize that the bounds on k1 are independent of d(u, v), and so for k = 1, 2, the fact that
the upper bound curve is beneath the lower bound curve is relevant for all for all possible
distances. On the other hand, the bounds on k2 depend on d(u, v), and so while it is true
that for a fixed value of large enough d(u, v) there are many values of k for which the ADO
of Theorem 4 provides an approximation which beats the lower bound, it is also true that for
any integer value of k ≥ 3 there will always exist some distances for which the upper bound is
above the lower bound. Thus, the intersection at k2 is unfortunately not meaningful enough.

1.2 Organization
The rest of this paper is organized as follows. In Section 1.3 we provide an overview of
the main ideas used in this paper. In Section 1.4 we survey some additional related work.
In Section 2 we provide some definitions that are used in the more technical parts of the
paper. In Section 3 we prove some useful lemmas that are used in the proof of Theorem 4,
which is described in Section 4 together with the construction of our new ADO. In Section 5
we prove Theorem 5. Finally, in Section 6 we provide some conclusions and describe a natural
open problem.
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1.3 Overview of Results and Techniques
In this section we describe an overview of the intuition and techniques used to obtain our
main results.

1.3.1 Upper Bound: A New ADO
Since our new ADO is based on the ADO of Agarwal and Godfrey [4], that has a (2, 1)-stretch
and uses Õ(n5/3) space (which simplifies the ADO of [27]), we provide an overview of the
construction of their ADO.

The ADO constructed by Agarwal and Godfrey [4] uses the concept of bunches and
clusters introduced by Thorup and Zwick [33]. Following the conventions of Thorup and
Zwick [33, 34], for a vertex v ∈ V and set A ⊆ V , let pA(v) be the vertex in A which is
closest to v (breaking ties arbitrarily). The bunch BA(v) of v with respect to A is defined
as BA(v) = {w ∈ V | d(v, w) < d(v, pA(v))}. The cluster CA(w) of w with respect to A is
defined as CA(w) = {v ∈ V | d(w, v) < d(v, pA(v))}. We omit A from the notation when
it is clear from context. Thorup and Zwick [33] presented an algorithm that computes
a set A of size Õ(s) such that |B(v)|, |C(v)| ≤ 4n/s, for every v ∈ V . The ADO of
Agarwal and Godfrey [4] uses a hitting set A of size Õ(n2/3) such that for every v ∈ V ,
|B(v)|, |C(v)| ≤ O(n1/3).

Given two vertices u, v ∈ V , the ADO first tests whether B(u) ∩ B(v) ̸= ∅, and, if so,
then the ADO returns the exact distance d(u, v). The method for testing whether the two
bunches intersect is based on the observation (which follows from the definitions of bunch
and cluster) that B(u) ∩ B(v) ̸= ∅ if and only if u ∈ C(B(v))3. Thus, each vertex v ∈ V

stores the exact distances to all vertices in C(B(v)), and now, the case of B(u) ∩ B(v) ̸= ∅
costs constant time and returns an exact distance. To deal with the case of B(u) ∩ B(v) = ∅,
the oracle stores the distances of pairs in V × A, and the ADO returns the minimum of either
the length of the shortest path between u and v passing through p(u) or the length of the
shortest path between u and v passing through p(v). The space usage is O(n5/3) for storing
C(B(v)) for every v ∈ V , and Õ(n|A|) = Õ(n5/3) for storing the distances for all pairs in
V × A.

Intuition for the new ADO. Our new ADO construction is based on the following intuition
regarding the ADO construction of Agarwal and Godfrey [4]. If we enlarge B(u) by moving
p(u) to a further vertex (from u), then we would increase the likelihood of B(u) ∩ B(v) ̸= ∅,
and so the ADO would return exact distances for more pairs of vertices. However, in such
a case, the quality guarantee on the stretch obtained by approximating d(u, v) with the
shortest path from u to v that passes through p(u) becomes worse. Part of the challenge is
to balance the size of B(u) which affects the usefulness of the intersections and the role of
p(u) when approximating the distances.

Our approach, intuitively, is to separate the definition of p(u) used for the approximations
and the set chosen for the intersections. Specifically, the definition of p(u) remains unchanged
relative to A (we do however change the size of A), but instead of testing whether B(u) ∩
B(v) ̸= ∅, we use a larger set N(u) (which contains B(u)), and test whether N(u) ∩ B(v) ̸= ∅
(or B(u) ∩ N(v) ̸= ∅). Testing whether N(u) ∩ B(v) ̸= ∅ is implemented by storing all of
the distances between u and vertices in C(N(u)). We remark that one may consider the
possibility of testing whether N(u) ∩ N(v) ̸= ∅ instead of testing whether N(u) ∩ B(v) ̸= ∅,
however, such an approach seems to require too much space.

3 For S ⊆ V , let C(S) =
⋃

u∈S

C(u).

ICALP 2024
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Recall that Agarwal and Godfrey [4] obtained a (2, 1)-stretch. In our algorithm, we
choose N(u) in such a way that when N(u) ∩ B(v) = ∅ then minx∈B(u),y∈B(v){d(x, y)} > k

if ∆G ≤ n
1
k −Ω(1), which ends up reducing the additive component of the stretch by at least

k (see Claim 13). Thus, the approximation of the ADO is always at most (2, 1 − k), which is
less than stretch 2 for k ≥ 2.

1.3.2 Conditional Lower bound
In Section 5 we prove the following lemma, which directly implies Theorem 5 since a sub- k+2

k

stretch ADO is also a (k, k + 2)-distinguisher oracle.

▶ Lemma 6. Let 2 ≤ k ≤ log n. Assuming Hypothesis 2, any (k, k + 2)-distinguisher oracle
for graphs with n vertices and maximum degree Θ(n1/k) must use Ω̃(n2) space.

Notice that it is straightforward to construct a (k, k + 2)-distinguisher oracle for graphs
with n vertices and maximum degree Θ(n 1

k −ε) in O(n2−kε) space by storing all pairs of
vertices at distance exactly k. Thus, Lemma 6 shows that such a construction is essentially
optimal.

The challenges. There are two issues that need to be addressed in order to extend the
reduction by Pǎtraşcu and Roditty [27] in a way that proves Lemma 6. The first is to adjust
the distances so that Si ∩ Sj ̸= ∅ if and only if d(vi, uj) = k, and otherwise, d(vi, uj) ≥ k + 2.
The second issue is that the degrees of vertices in VM need to be adjusted to be at most
Õ(N1/k). In order to simplify our intuitive explanation, we focus our attention to the special
case where X = {x} has only one element.

One straightforward way of dealing with the first issue is to replace vertex x ∈ VM with
a path Px = (w1, . . . , wk−1) of length k − 2, and for each Si that contains x we add edges
(vi, w1) and (wk−1, ui). Thus, the constructed graph would be a k + 1 layered graph. The
number of vertices in such a graph is O(k + N) = O(N), and the distance between vertices in
the first and last layers are k + 2q for some integer q ≥ 0. However, we still need to address
the second issue of bounding the maximum degree, since w1 and wk−1 may have a very high
degree corresponding to the number of sets containing x.

On the other hand, one initial idea (that does not work) for dealing with the second issue
is to replace x ∈ VM (in the original 3 layered graph) with N vertices y1, y2, . . . , yN , and for
each Si that contains x we add edges (vi, yi) and (yi, ui). Now the maximum degree of each
node is constant, however, for i ̸= j such that x ∈ Si ∩ Sj , there is no path from vi to uj .
This idea is missing the functionality of the path Px which allows us to connect more than
one pair of vertices from VL × VR.

Combining approaches. Our reduction makes use of an underlying k + 1 layered infrastruc-
ture graph L, commonly known as the butterfly graph (see [26, 28]), which has the following
three properties: (i) each layer contains N vertices, (ii) there is a path of length k from
every vertex in the first layer to every vertex in the last layer, and (iii) the degree of every
vertex is at most 2N1/k. The layers of L are numbered 0 to k. The vertices in each layer
are (separately) indexed with integers from 1 to N , and the construction of L is based on
the base N1/k representation of the these indices: for 1 ≤ t ≤ k, vertices from layer t − 1
are connected with vertices from layer t if and only if the base N1/k representation of their
corresponding indices are the same, except for possibly the t’th digit. Similar to before, we
denote the first layer of L by VL = {v1, . . . , vN } and the last layer by VR = {u1, . . . , uN }.
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Finally, we construct a k + 1 layered graph Gx which is intuitively obtained by removing
from L edges touching either vi or ui for every Si that does not contain x. Thus, in Gx, if
x ∈ Si ∩ Sj then there is a path of length k from vi to uj in Gx, and otherwise, there is no
path from vi to uj in Gx.

We remark that in the general case, where |X| may be larger than 1, we combine Gx

for different x ∈ X in a special way, and so we may introduce paths from vi to uj even if
Si ∩ Sj = ∅. However, since the resulting graph is still a k + 1 layered graph, and we are
interested in paths between vertices in the first layer and vertices in the last layer, the lengths
of such paths must be at least k + 2. Thus, a (k, k + 2)-distinguisher oracle on the combined
graph suffices for solving Problem 1. See Section 5 for more details.

1.4 Additional related work
Different aspects of Thorup and Zwick [34] ADOs were studied since they were introduced
for the first time. Chechik [14, 13] reduced the query time from O(k) to O(1), while keeping
the stretch and the space unchanged. (See also [36, 23].) Roditty, Thorup, and Zwick [29]
presented a deterministic algorithm that constructs an ADO in Õ(mn1/k) time while keeping
the stretch and the space unchanged. Baswana and Kavitha [9] presented an algorithm
with O(n2 log n) running time4. Baswana, Goyaland and Sen [8] presented an Õ(n2) time
algorithm that computes a (2, 3)-distance oracle with Õ(n5/3) space. Sommer [32] presented
an Õ(n2) time algorithm that computes a (2, 1)-distance oracle with Õ(n5/3) space. Akav
and Roditty [7] presented the first sub-quadratic time algorithm that constructs an ADO
with stretch better than 3. They presented an O(n2−ϵ)-time algorithm that constructs a
ADO with O(n11/6) space and (2 + ϵ, 5)-stretch. Chechik and Zhang [15] improved the
result of Akav and Roditty [7]. Among their results is an O(m + n1.987) time algorithm that
constructs an ADO with (2, 3)-stretch and Õ(n5/3) space. Following the work by Pǎtraşcu
and Roditty [27] who constructed an ADO for unweighted graphs that uses O(n5/3) space
and returns a (2, 1)-stretch in O(1) time, Abraham and Gavoille [2] extended the ADO by
Pǎtraşcu and Roditty [27] for all even stretch values, by constructing for any integer k ≥ 2,
an ADO of size Õ(n1+2/(2k−1)) with a (2k − 2, 1)-stretch returned in O(k) time. Pǎtraşcu,
Roditty and Thorup [28] focused on analyzing sparse graphs where m = Õ(n) and noted
that both the ADOs by Thorup and Zwick [34], and the ADOs by Abraham and Gavoille [2]
use a space complexity that can be described by the curve S(α, m) = Õ(m1+2/(α+1)) where
α is the stretch of the ADO and m is the number of edges in the graph. Pǎtraşcu, Roditty
and Thorup [28] extended the curve S(α, m) to work for non integer stretch values α > 2.
Although our research focuses on constant query time ADOs, another branch of research
includes ADOs that have non constant query time [6, 24, 5, 3, 11].

In the lower bound regime, the problem of constructing a (2, 4)-distinguisher oracle
was analyzed from the perspective of time complexity as well. For graphs with degree
of at most n1/2, the problem of determining for each edge in the graph whether it is
in a triangle in O(n2−ε) time for some ε > 0 was shown to be hard under either the
3SUM [25, 21] or APSP [35] hypotheses. Since there exists a standard reduction from the
problem of determining for each edge in the graph whether it is in a triangle to the problem
of constructing a (2, 4)-distinguisher oracle (see [1]), a (2, 4)-distinguisher oracle is also hard
to construct in subquadratic time for graphs with degree of at most n1/2 under either the
3SUM or APSP hypotheses.

4 For k = 2 the query time is O(log n). For k > 2 the query time is O(k).

ICALP 2024
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The problem of constructing a (k, k + 2)-distinguisher oracle for a general integer k ≥ 2
was also studied in the past in terms of time complexity. Dor, Halperin and Zwick [19]
showed that if all distances in an undirected n vertex graph can be approximated with an
additive error of at most 1 in O(A(n)) time, then Boolean matrix multiplication on matrices
of size n × n can also be performed in O(A(n)) time. Dor, Halperin and Zwick [19] conclude
that constructing a (k, k + 2)-distinguisher oracle for an integer k ≥ 2 is at least as hard as
multiplying two Boolean matrices.

2 Preliminaries

Let dG(u, v) be the distance between vertices u and v in the graph G. The eccentricity of a
vertex v ∈ V in a graph G, denoted by eccG(v), is defined as eccG(v) = maxu∈V {dG(v, u)}.
The diameter of G is defined as diamG = maxv∈V {eccG(v)} and the radius of G is defined
as radG = minv∈V {eccG(v)}.

The eccentricity of a vertex v can be thought of as the distance between v and the last
vertex met during a Breadth First Search (BFS) of the graph starting at v. Since our goal
is to construct an ADO that uses subquadratic space, we cannot afford to store a separate
BFS tree for each vertex. Instead, the construction algorithm of the ADO from Theorem 4
will store only a partial BFS tree for each vertex by truncating the BFS scan after some
number of vertices. Motivated by this notion of a truncated scan, we introduce the following
generalization of eccentricity which turns out to be useful for our purposes.

Let NG(v, s) be the first s vertices met during a BFS5 starting from v in the graph G, i.e.,
the s closest vertices to v (excluding v). If s is not an integer, then let N(v, s) = N(v, ⌊s⌋).
For an integer r ≥ 0, define LG(v, r) = {u ∈ V \ {v} | dG(u, v) = r} and TG(v, r) = {u ∈
V | 0 < dG(u, v) ≤ r}. Notice that TG(v, r) =

r⋃
i=1

LG(v, i). For any real 1 ≤ s ≤ n − 1,

define eccG(v, s) to be the maximum integer k ∈ [0, eccG(v)] for which TG(v, k) ⊆ NG(v, s).
Notice that eccG(v, n − 1) = eccG(v). Define radG(s) = minv∈V {eccG(v, s)}. Notice that
radG(n − 1) = radG. We omit the subscript G when using the definitions above whenever G

is clear from context.

3 Useful Lemmas

In this section we prove several useful properties of the graph attributes defined in Section 2
which will be used throughout the paper.

The following observation and corollary address the relationship between T (v, r) and
N(v, s), and follow from the definition of BFS.

▶ Observation 7. Let G = (V, E) be an unweighted undirected graph, with |V | = n. For
any v ∈ V and integers s and r such that 1 ≤ s < n and 1 ≤ r ≤ diamG, either (i)
T (v, r) ⊂ N(v, s), (ii) N(v, s) ⊂ T (v, r), or (iii) N(v, s) = T (v, r)

▶ Corollary 8. Let G = (V, E) be an unweighted undirected graph, with |V | = n. For any
v ∈ V and integers s and r such that 1 ≤ s < n and 1 ≤ r ≤ diamG, (i) if |T (v, r)| < |N(v, s)|
then T (v, r) ⊂ N(v, s), (ii) if |N(v, s)| < |T (v, r)| then N(v, s) ⊂ T (v, r), and (iii) if
|N(v, s)| = |T (v, r)| then N(v, s) = T (v, r).

The following useful property addresses the relationship between T (v, r) and N(v, s) for
the special cases where either r = ecc(v, s) or r = ecc(v, s) + 1.

5 The traversal order of vertices in the same layer during the BFS execution does not matter as long as
the order is consistent.
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▶ Property 9. Let G = (V, E) be an unweighted undirected graph, with |V | = n. For any
v ∈ V and integer s such that 1 ≤ s < n, we have: (i) T (v, ecc(v, s)) ⊆ N(v, s), and (ii) if
s < n − 1, then T (v, ecc(v, s) + 1) ̸⊆ N(v, s) .

Proof. By definition, ecc(v, s) is the largest integer k ∈ [0, ecc(v)] for which T (v, k) ⊆ N(v, s).
Thus, (i) T (v, ecc(v, s)) ⊆ N(v, s), and (ii) if ecc(v, s) < ecc(v) then T (v, ecc(v, s) + 1) ̸⊆
N(v, s). If s < n − 1, it must be that ecc(v, s) < ecc(v), since if we assume towards a
contradiction that ecc(v, s) = ecc(v) for some s < n − 1 then T (v, ecc(v, s)) = T (v, ecc(v)) =
V \{v} = N(v, n−1) but on the other hand, by definition of ecc(v, s), we have T (v, ecc(v, s)) ⊆
N(v, s) ⊂ N(v, n − 1), which is a contradiction. ◀

The following lemma states that eccG(v, s) exhibits a behavior that is similar to the
behavior of the distance function which cannot decrease when removing edges and vertices
from G.

▶ Lemma 10. Let G = (V, E) be an unweighted undirected graph, V ′ ⊆ V , and let G′ be the
subgraph of G induced by the vertices in V ′. For any vertex v ∈ V ′ and for any integer s

such that 1 ≤ s < |V ′|, it holds that eccG(v, s) ≤ eccG′(v, s).

Proof. Given an integer 1 ≤ s < |V ′|, let r = eccG(v, s) and r′ = eccG′(v, s). We want
to show that r ≤ r′. By definition of eccG′(v, s), r′ = eccG′(v, s) is the largest value for
which TG′(v, r′) ⊆ NG′(v, s). Thus, in order to show that r ≤ r′, it suffices to show that
TG′(v, r) ⊆ NG′(v, s).

For any vertex pair u, w ∈ V ′, we have dG(u, w) ≤ dG′(u, w) since G′ is a subgraph of G.
Thus,

TG′(v, r) = {u ∈ V ′ | 0 < dG′(v, u) ≤ r}
⊆ {u ∈ V | 0 < dG(v, u) ≤ r}
= TG(v, r)
⊆
↑

Property 9

NG(v, s).

This implies that |TG′(v, r)| ≤ |NG(v, s)| = s = |NG′(v, s)|. By Corollary 8, since |TG′(v, r)| ≤
|NG′(v, s)| then TG′(v, r) ⊆ NG′(v, s), as required. ◀

3.1 The Logarithmic-Like Behavior of Eccentricity
In the following lemma, which is an important ingredient in the analysis of our new ADO, we
show that ecc(v, s) satisfies a logarithmic-like behavior. Specifically, log(xy) = log x + log y.
The reason for this behavior is that the number of vertices in each layer of a BFS tree expands
in a similar way to an exponential function. For a tree-graph G with minimum degree δ rooted
at a vertex v, for integers 0 ≤ i < t < ecc(v) it holds that |L(v, t)| ≥ δi · |L(v, t − i)|. Since
the number of vertices in every layer of the rooted tree grows exponentially, the eccentricity
ecc(v, s) grows logarithmically (in relation to s). Unlike in trees where the expansion of the
number of vertices in every layer of a BFS can be analyzed using δ, for general graphs, in
order to achieve a lower bound for the expansion rate of the eccentricity of the vertices, we
use radG(s) instead.

▶ Lemma 11. Let G = (V, E) be an unweighted undirected graph, with |V | = n. For
any vertex v ∈ V and integers s1, s2 ≥ 1 such that s1(s2 + 1) < n − 1, it holds that
eccG(v, s1(s2 + 1)) ≥ eccG(v, s1) + radG(s2).

ICALP 2024



101:10 On the Space Usage of Approximate Distance Oracles with Sub-2 Stretch

Proof. Assume towards a contradiction that eccG(v, s1(s2 + 1)) < eccG(v, s1) + radG(s2).
Thus, eccG(v, s1(s2 + 1)) + 1 ≤ eccG(v, s1) + radG(s2).

Let TBF S be a BFS tree rooted at v in graph G. Let ℓ = |L(v, eccG(v, s1))| and let
u1, u2, . . . , uℓ be the vertices in L(v, eccG(v, s1)). For any i, where 1 ≤ i ≤ ℓ, let Vi be the
set of descendant of ui in TBF S and let Gi be the graph induced by Vi in G6.

Let µ = mini∈[1,ℓ]{eccGi(ui, s2)}. We will show that:

{u ∈ V | eccG(v, s1) < dG(v, u) ≤ eccG(v, s1) + µ} ⊆
ℓ⋃

i=1
NGi(ui, s2). (1)

Let w ∈ {u ∈ V | eccG(v, s1) < dG(v, u) ≤ eccG(v, s1) + µ}. By the definition of BFS, since
dG(v, w) > eccG(v, s1), w must be a descendant of some vertex uj , and so w ∈ Vj . Since
TBF S is a shortest path tree rooted at v and since w ∈ Vj , it must be that dG(v, w) =
dG(v, uj)+dG(uj , w) = eccG(v, s1)+dG(uj , w). By definition of w, dG(v, w) ≤ eccG(v, s1)+µ.
Thus, eccG(v, s1) + dG(uj , w) ≤ eccG(v, s1) + µ and so dG(uj , w) ≤ µ.

By definition, TGj (uj , eccGj (uj , s2)) = {x | x ∈ Vj ∧ 0 < dGj (uj , x) ≤ eccGj (uj , s2)}.
Since TBF S is a shortest path tree, for any y ∈ Vj it must be that dGj

(uj , y) = dG(uj , y).
Thus, TGj (uj , eccGj (uj , s2)) = {x | x ∈ Vj ∧ 0 < dG(uj , x) ≤ eccGj (uj , s2)}.

Since w ∈ Vj , and since dG(uj , w) ≤ µ ≤ eccGj
(uj , s2), then w ∈ TGj

(uj , eccGj
(uj , s2)).

By Property 9, TGj
(uj , eccGj

(uj , s2)) ⊆ NGj
(uj , s2). It follows that every vertex in {u ∈ V |

eccG(v, s1) < dG(v, u) ≤ eccG(v, s1) + µ} must be included in NGi
(ui, s2) for some i, thus

confirming Equation (1).
By Property 9, {u ∈ V | 0 < dG(v, u) ≤ eccG(v, s1)} = T (v, eccG(v, s1)) ⊆ N(v, s1).

Combining with Equation (1) we have that {u ∈ V | 0 < dG(v, u) ≤ eccG(v, s1)} ∪ {u ∈ V |

eccG(v, s1) < dG(v, u) ≤ eccG(v, s1) + µ} ⊆ N(v, s1) ∪
(

ℓ⋃
i=1

NGi
(ui, s2)

)
, and so:

{u ∈ V | 0 < dG(v, u) ≤ eccG(v, s1) + µ} = T (v, eccG(v, s1) + µ)

⊆ N(v, s1) ∪

(
ℓ⋃

i=1
NGi(ui, s2)

)
.

Now,

eccG(v, s1) + µ =
↑

definition of µ

eccG(v, s1) + min
i∈[1,ℓ]

{eccGi
(ui, s2)}

≥
↑

by Lemma 10

eccG(v, s1) + min
i∈[1,ℓ]

{eccG(ui, s2)}

≥ eccG(v, s1) + min
u∈V

{eccG(u, s2)}

=
↑

definition of radG(s2)

eccG(v, s1) + radG(s2)

≥
↑

assumption

eccG(v, s1(s2 + 1)) + 1.

6 It is important to note that for all scans referenced in this proof, which include a BFS procedure of G
starting at v and BFS procedures of Gi starting at ui for 1 ≤ i ≤ ℓ, we require a consistent order of
scanning, i.e., that for a given 1 ≤ i ≤ ℓ, and vertices x, x′ ∈ Vi ⊆ V , if x is scanned before x′ in G then
x should also be scanned before x′ in Gi (and vice versa). This is a valid requirement since for any
vertices y, y′ ∈ Vi ⊆ V , dG(v, y) ≤ dG(v, y′) if and only if dGi

(ui, y) ≤ dGi
(ui, y′).
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Thus, T (v, eccG(v, s1(s2 + 1)) + 1) ⊆ T (v, eccG(v, s1) + µ) ⊆ N(v, s1) ∪
(

ℓ⋃
i=1

NGi(ui, s2)
)

.

Notice that ℓ ≤ s1, since, by Property 9, ℓ = |L(v, eccG(v, s1))| ≤ |T (v, eccG(v, s1))| ≤
N(v, s1) = s1. Therefore,

|T (v, eccG(v, s1(s2 + 1)) + 1)| ≤ |N(v, s1) ∪

(
ℓ⋃

i=1
NGi(ui, s2)

)
|

≤ |N(v, s1)| +
ℓ∑

i=1
|NGi

(ui, s2)|

≤ s1 + ℓ · s2

≤ s1 + s1 · s2

= s1(1 + s2)
= |N(v, s1(s2 + 1))|.

By Corollary 8, it follows that T (v, eccG(v, s1(s2 + 1)) + 1) ⊆ N(v, s1(s2 + 1)), which
contradicts Property 9. ◀

4 The new ADO

In this section we prove Theorem 4 by introducing a new ADO which uses subquadratic space
and produces a (2, 1 − k)-stretch for graphs for which ∆G ≤ O(n1/k−ε) for a positive integer
k and real constant 0 < ε ≤ 1/k. The ADO is parameterized by a parameter 0 ≤ α < 1/3
which quantifies the tradeoff between the space and the stretch of the ADO. When α = 0 the
ADO is very similar to the ADO of Agarwal and Godfrey [4] which uses Õ(n5/3) space and
has a (2, 1)-stretch. For 0 < α < 1/3, the ADO uses additional space and is able to improve
the stretch of the ADO for the family of graphs for which ∆G ≤ O(n3α/k) .

4.1 The Construction Algorithm
The description of our construction algorithm follows the notations and definitions described
in Section 1.3.1. The construction begins with an algorithm of Thorup and Zwick [33] that
computes a set A of size Õ(s) such that |B(v)|, |C(v)| ≤ 4n/s, for every v ∈ V . In our case
we set s = n2/3+α, thus |A| = Õ(n2/3+α) and |B(v)|, |C(v)| ≤ 4n1/3−α, for every v ∈ V .

For every vertex v ∈ V , the ADO explicitly stores the distances between v and every
vertex in C(N(v, 16ĉ n1/3+2α)) for some constant ĉ to be decided later. In addition, for every
vertex v ∈ V the ADO stores p(v), d(v, p(v)) and the distances between v and every vertex
in A.

A distance query between vertices u and v is answered as follows. If one of the
following conditions holds (i) u ∈ A or v ∈ A, (ii) u ∈ C(N(v, 16ĉ n1/3+2α)) or v ∈
C(N(u, 16ĉ n1/3+2α)) , then the exact distance is returned. Otherwise, the ADO returns
d̂(u, v) = min{d(u, p(u)) + d(p(u), v), d(u, p(v)) + d(p(v), v)}. Notice that the query time is
constant.

In Claim 12, we show that the space complexity of the ADO is Õ(ĉn5/3+α) and in
Claim 13, we show that the ADO satisfies a (2, 1 − rad(ĉn3α))-stretch.

▷ Claim 12. The space complexity of the ADO is Õ(ĉn5/3+α).
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a bu v

B(u) B(v)

N
(
u, 16n 1/3 + 2α )

1 d(u, a) d(v, b)2 3 3 2 1

x

d(u, x)

P (u, v)

Figure 2 A query for u, v ∈ V in the case that N(u, 16ĉ n1/3+2α) ∩ B(v) = ∅. Since x ∈
N(u, 16ĉ n1/3+2α), b ∈ B(v) and x and b are both on a shortest path between u and v, it must be
that d(u, x) ≤ d(u, b) − 1.

Proof. Storing p(v), d(v, p(v)) and the distances between v and every vertex in A, for all
vertices v ∈ V , uses Õ(n · n2/3+α) = Õ(n5/3+α) space. As mentioned in the construction
phase, |B(v)|, |C(v)| ≤ O(n1/3−α) for every v ∈ V . Thus, storing the distances between
every vertex v and C(N(v, 16ĉ n1/3+2α)) requires O(n · n1/3−α · 16ĉ n1/3+2α) = Õ(ĉn5/3+α)
space as well, leading to an overall space complexity of Õ(ĉn5/3+α). ◁

▷ Claim 13. The distance estimation d̂(u, v) returned by the ADO satisfies d(u, v) ≤
d̂(u, v) ≤ 2d(u, v) + 1 − rad(ĉn3α).

Proof. Notice that d(u, v) ≤ d̂(u, v) since the ADO always returns a length of some path in
the graph between u and v. It is left to show that d̂(u, v) ≤ 2d(u, v) + 1 − rad(ĉn3α).

If the exact distance is stored in the ADO then d̂(u, v) = d(u, v) and the claim follows.
Consider the case that the exact distance is not stored. This implies that u, v /∈ A and
v /∈ C(N(u, 16ĉ n1/3+2α)). Assume towards a contradiction that N(u, 16ĉ n1/3+2α)∩B(v) ̸= ∅
and let w be a vertex such that w ∈ N(u, 16ĉ n1/3+2α) ∩ B(v). From the definitions of bunch
and cluster, we have that w ∈ B(v) if and only if v ∈ C(w). Thus, v ∈ C(w), and since
w ∈ N(u, 16ĉ n1/3+2α), it must be that v ∈ C(N(u, 16ĉ n1/3+2α)) which is a contradiction.
Thus, we have that N(u, 16ĉ n1/3+2α) ∩ B(v) = ∅.

Let P (u, v) be a shortest path between u and v. Let a be the furthest vertex from u in
B(u) ∩ P (u, v), let x be the furthest vertex from u in N(u, 16ĉ n1/3+2α) ∩ P (u, v) and let b

be the furthest vertex from v in B(v) ∩ P (u, v) (see Figure 2). Notice that, by definition of
x and ecc(v, s), if T (u, d(u, x)) ⊆ N(u, 16ĉ n1/3+2α) then d(u, x) = ecc(u, 16ĉ n1/3+2α) and if
T (u, d(u, x)) ̸⊆ N(u, 16ĉ n1/3+2α) then d(u, x) = ecc(u, 16ĉ n1/3+2α) + 1. Thus, we get that
d(u, x) ≥ ecc(u, 16ĉ n1/3+2α).

Since N(u, 16ĉ n1/3+2α) ∩ B(v) = ∅, x ∈ N(u, 16ĉ n1/3+2α), b ∈ B(v) and x and b are
both on a shortest path between u and v, it must be that d(u, x) ≤ d(u, b) − 1. Since
b is on a shortest path between u and v, it holds that d(u, b) = d(u, v) − d(v, b), and so
d(u, x) ≤ d(u, v) − d(v, b) − 1. Since d(u, x) ≥ ecc(u, 16ĉ n1/3+2α), it follows that:

ecc(u, 16ĉ n1/3+2α) ≤ d(u, v) − d(v, b) − 1. (2)

By Lemma 11, ecc(u,
⌈
4n1/3−α

⌉
) + rad(

⌈
ĉn3α

⌉
) ≤ ecc(u, (4n1/3−α + 1)(ĉn3α + 2)). Since

a ∈ B(u) and |B(u)| ≤ 4n1/3−α, it follows from the definitions of ecc(v, s) and bunch that
d(u, a) ≤ ecc(u, 4n1/3−α). We have that:
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d(u, a) + rad(ĉn3α) ≤ ecc(u, 4n1/3−α) + rad(ĉn3α)

≤ ecc(u,
⌈
4n1/3−α

⌉
) + rad(

⌈
ĉn3α

⌉
)

≤ ecc(u, (4n1/3−α + 1)(ĉn3α + 2))

≤ ecc(u, 16ĉ n1/3+2α)
≤
↑

Equation (2)

d(u, v) − d(v, b) − 1.

Thus, d(u, a) + d(b, v) ≤ d(u, v) − rad(ĉn3α) − 1. It follows that:

2 min{d(u, a), d(b, v)} ≤ d(u, v) − rad(ĉn3α) − 1. (3)

Notice that by the definitions of bunch, a and p(u), it holds that d(u, p(u)) = d(u, a) + 1.
Similarly, d(v, p(v)) = d(v, b) + 1. Thus:

d̂(u, v) ≤ min{d(u, p(u)) + d(p(u), v), d(u, p(v)) + d(p(v), v)}
≤
↑

triangle inequallity

min{2d(u, p(u)) + d(u, v), 2d(v, p(v)) + d(u, v)}

=
↑

d(u, p(u)) = d(u, a) + 1 and d(v, p(v)) = d(v, b) + 1

min{2(d(u, a) + 1) + d(u, v), 2(d(v, b) + 1) + d(u, v)}

≤ 2 min{d(u, a), d(v, b)} + 2 + d(u, v) (4)
≤
↑

Equation (3)

d(u, v) − rad(ĉn3α) + 1 + d(u, v)

= 2d(u, v) + 1 − rad(ĉn3α). (5)

◁

By combining our ADO construction with Claims 12 and 13 we have proven the following
lemma.

▶ Lemma 14. For any graph G with n vertices, real 0 ≤ α < 1
3 and constant ĉ ≥ 1, it is

possible to construct an ADO that uses Õ(ĉn
5
3 +α) space and has a (2, 1 − rad(ĉn3α))-stretch.

4.2 Proof of Main Upper Bound Theorem
The following lemma connects ∆G and rad(s), which is the last ingredient needed for proving
Theorem 4.

▶ Lemma 15. Let G = (V, E) be an unweighted undirected graph, with |V | = n. For any
real s such that 1 ≤ s < n, it holds that radG(s) ≥ ⌊log∆G

(s/2)⌋.

Proof. For any vertex v and integer t ≥ 1, T (v, t) cannot include more than ∆G ·
∑t−1

i=0(∆G −
1)i vertices. Since ∆G, t ≥ 1 we have that ∆G ·

∑t−1
i=0(∆G − 1)i ≤ 2 · ∆t

G and so for any
integer t ≥ 1 such that 2 · ∆t

G < n it must be that T (v, t) ⊆ N(v, 2 · ∆t
G). By definition,

ecc(v, s) is equal to the largest integer x ∈ [0, ecc(v)] for which T (v, x) ⊆ N(v, s). Thus,
t ≤ ecc(v, 2 · ∆t

G). Since t ≤ ecc(v, 2 · ∆t
G) for any vertex v, it follows from the definition of

rad(s) = minv∈V {ecc(v, s)} that t ≤ rad(2 · ∆t
G). Setting s ≥ 2 · ∆t

G, or t ≤ log∆G
(s/2), it

follows that for any integer t such that t ≤ log∆G
(s/2) it must be that t ≤ rad(2·∆t

G) ≤ rad(s).
Thus, ⌊log∆G

(s/2)⌋ ≤ rad(s). ◀
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Finally, we are ready to prove Theorem 4.

Proof of Theorem 4. It holds that k = ⌊log∆G
(∆k

G)⌋ ≤ ⌊log∆G
(ckn1−kε)⌋, and by Lemma

15, ⌊log∆G
(ckn1−kε)⌋ ≤ radG(2ckn1−kε). Thus, the ADO from Lemma 14 constructed

for G using α = 1−kε
3 and ĉ = 2ck uses Õ(ckn2− kε

3 ) space and produces a distance es-
timation that satisfies d(u, v) ≤ d̂(u, v) ≤ max{d(u, v), 2d(u, v) + 1 − radG(2ckn1−kε)} ≤
max{d(u, v), 2d(u, v) + 1 − k}. ◀

5 Reduction from the Set Intersection Problem

Proof of Lemma 6. Given an instance of Problem 1, we construct a graph G with n = Õ(N)
vertices and ∆G = O(n1/k), such that a (k, k + 2)-distinguisher oracle for G solves the
instance of Problem 1.

We begin by focusing on a k + 1 layered graph L = (VL, EL), which we call the infrastruc-
ture graph. The infrastructure graph has three important properties: (i) each layer contains
N vertices, (ii) there is a path of length k from every vertex in the first layer to every vertex
in the last layer, and (iii) the degree of every vertex is at most 2N1/k.

We then construct for each x ∈ X a graph Gx = (Vx, Ex), which is a subgraph of (a
copy of) L, by removing some of the edges between the first (last) and second (second to
last) layers of L in a way that expresses which sets contain x and which do not. Finally, we
construct the graph G which is specialized union of all of the graphs Gx for all x ∈ X, and
enables solving the instance of Problem 1 by using a (k, k + 2)-distinguisher oracle on G.

The infrastructure graph. The infrastructure graph L is a k + 1 layered graph where each
layer contains N vertices, and each layer of N vertices is locally indexed from 1 to N . The
layers are numbered 0 to k.

The edges of L are defined using the following labels. Assign a label ℓ(v) to every vertex v

in L which is the k digit representation in base7 N1/k of the local index (an integer between
1 and N) of v. Then, for every 1 ≤ t ≤ k, connect u from layer t − 1 with v from layer t if
and only if the digits of ℓ(u) and the digits of ℓ(v) all match, except for possibly the t’th
digit. It is straightforward to observe (since each digit has N1/k options) that the degree
of every vertex in L is 2N1/k, except for the vertices in the first and last layers which have
degree N1/k. The following claim shows that there is a path of length k from every vertex in
the first layer and every vertex in the last layer.

▷ Claim 16. Let v be a vertex in the first layer of L and let u be a vertex in the last layer
of L. Then there exists a path of length k from u to v in L.

Proof. We describe the path of length k between u and v. For any 0 ≤ t ≤ k, consider the
vertex wt in layer t of L with the label of the following form: the first t digits are the first t

digits of ℓ(u), and the last k − t digits are the last k − t digits of ℓ(v). Thus, for 0 ≤ t ≤ k − 1,
the edge (wt, wt+1) is in L since ℓ(wt) and ℓ(wt+1) are the same, except for possibly the
(t + 1)-th digit. The set of edges which we described form a path of length k between
v and u. ◁

7 We assume for convenience that N1/k is an integer, since otherwise, one can increase N slightly without
affecting the asymptotic complexities.
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Constructing Gx. We construct Vx by making copies of each vertex in VL. Denote
the first layer of L by VL = {v1, . . . , vN } and the last layer by VR = {u1, . . . , uN }. Let
Êx = {(vi, w)|x /∈ Si ∧ (vi, w) ∈ EL} ∪ {(ui, w)|x /∈ Si ∧ (ui, w) ∈ EL}. Thus, Êx is the set of
edges in L that touch vertices in the first or last layers whose index corresponds to the index
of sets that do not contain x. We construct Ex by making copies of all edges in EL \ Êx.
The reason for removing the edges in Êx is so that vertices in the first and last layers of Gx

whose edges are in Êx are not connected to any other vertex in Gx. Thus, for each vi (uj)
in the first (last) layer of Gx, x ∈ Si if and only if there are edges between vi (uj) and the
second (second to last) layer in Gx. By Claim 16, if Si ∩ Sj ≠ ∅ then there exists a path
of length k between vi and uj , and otherwise, there is no path in Gx between vi and uj .
Finally, since Gx is a partial copy of L, the maximum degree in Gx is 2N1/k.

Constructing G. We construct the k + 1 layered graph G by performing the following
special union of Gx for all x: for 1 ≤ t ≤ k − 1 the t’th layer of G is the union of the t’th layer
of all of the Gx graphs taken over all x ∈ X. Thus, each of the k − 1 inner layers (excluding
the first and last layer of G) has |X|N vertices. For the first (last) layer G, instead of taking
the union of all of the first (last) layers from all of the Gx graphs, we merge them all into
one layer of N vertices. So the i’th vertex in the first (last) layer of G is a vertex obtained
by merging the i’th vertex in the first (last) layer of every Gx, for all x ∈ X. Thus, the first
and last layers of Gx contain N vertices each. Since the vertices in the first and last layer of
G correspond directly to the vertices VL and VR in L, respectively, we treat the first layer
of G as VL = {v1, . . . vn} and the last layer of G by VR = {u1, . . . , uN }. Thus, each node in
VL ∪ VR has maximum degree at most |X|N1/k = Õ(N1/k).

Answering a set intersection query. Notice that for a set intersection query between Si

and Sj , if Si ∩ Sj ̸= ∅, then there exists some x ∈ Si ∩ Sj , and since G contains Gx as a
subgraph, the distance between vi and uj is at most (and actually exactly) k. On the other
hand, if there exists a path P of length k between vi and uj , then by the construction of
G, P must be completely contained within some Gx for some x ∈ X. By the construction
of Gx, and specifically Ex, the existence of P in Gx implies that x ∈ Si and x ∈ Sj . So, in
such a case Si ∩ Sj ̸= ∅.

Notice that, since G is a k + 1 layered graph, any path between a vertex in the first layer
and a vertex in the last layer must be of length k + 2q for some integer q ≥ 0. Thus, to
answer a set intersection query, it suffices to establish whether the distance in G between
vi and uj is either k or at least k + 2, which the (k, k + 2)-distinguisher oracle returns in
constant time.

Analysis. We conclude that a (k, k + 2)-distinguisher oracle for graphs with n = Õ(N)
vertices and maximum degree Õ(n1/k) also solves the instance of Problem 1 (of size N).
Thus, according to Hypothesis 2, an ADO for graphs with n = Õ(N) vertices, for which the
maximum degree is Õ(n1/k), must use Õ(N2) = Õ(n2) space. We note that the maximum
degree can be reduced to O(n1/k) by artificially adding Õ(n) = Õ(N) isolated vertices
to G. ◀

6 Conclusions and Open Problems

In this paper we provide an algorithm (Theorem 4) and a conditional lower bound (Theorem 5)
for subquadratic space ADOs as a function of the maximum degree. As mentioned in Section 1,
the case of k = 2 in Theorem 5 essentially matches the upper bound of Theorem 4. Although
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the upper bound from Theorem 4 improves the additive approximation of the ADO for larger
values of k, a natural remaining open problem is whether it is also possible to reduce the
multiplicative approximation of the ADO and design a sub- k+2

k stretch ADO for graphs with
maximum degree Θ(n 1

k −Ω(1)) while using subquadratic space for integers k ≥ 3.
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