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Abstract
Since 1968, one of the simplest open questions in the theory of hash tables has been to prove anything
nontrivial about the correctness of quadratic probing. We make the first tangible progress towards
this goal, showing that there exists a positive-constant load factor at which quadratic probing
is a constant-expected-time hash table. Our analysis applies more generally to any fixed-offset
open-addressing hash table, and extends to higher load factors in the case where the hash table
examines blocks of some size B = ω(1).
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1 Introduction

The field of open-addressed hash tables began with the introduction of linear probing in the
1950s [35, 24, 25]. Although early work [35] conjectured that linear probing should scale well
to high load factors, with an insertion time of O(x) at load factor 1−1/x, subsequent analyses
by Knuth [24] (unpublished) and by Konheim and Weiss [26] (published in 1966) showed
that this is not the case. Due to clustering effects, in which elements group together to form
long continuous runs of occupied slots, the true expected insertion time is asymptotically
larger than researchers had hoped for, evaluating to Θ(x2).

In the late 1960s, this prompted researchers to propose alternative hashing algorithms
that preserved the simplicity (and in some cases data locality) of linear probing, while
mitigating the clustering effects. Two solutions, in particular, emerged as natural alternatives,
double hashing, which was introduced by de Balbine in his 1968 thesis [4] (and proposed
independently by Bell and Kaman in 1970 [7]); and quadratic probing, which was introduced
by Maurer in 1968 [32] and then refined by other sets of authors through the 1970s [5, 22,
16, 36].

Despite their data-structural simplicity, double hashing and quadratic probing proved
far harder to analyze than linear probing. It wasn’t until 1976, in a breakthrough paper
by Guibas and Szemeredi [19], that double hashing was finally partially analyzed: they
proved that, so long as the load factor of the hash table is at most ≈ 0.28, the hash table is
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103:2 Towards an Analysis of Quadratic Probing

guaranteed to support constant-expected-time operations. This constant was subsequently
improved to ≈ 0.31 in 1978 [20], which remained the state of the art until 1988, when Lueker
[30, 31] finally extended the analysis to apply to all load factors. In particular, Lueker showed
a coupling between double hashing and uniform probing, proving that the expected insertion
times are within a 1 + o(1) factor of each other.

The coupling techniques [19, 20, 21, 30, 31] that allowed for an analysis of double hashing
do not extend to quadratic probing. It has remained an open question for more than five
decades to prove anything nontrivial about the behavior of quadratic-probing hash tables. It
is not even known, for example, whether quadratic-probing is a constant-time data structure
when used at a load factor of 0.001.

Linear Probing vs Double Hashing vs Quadratic Probing

Let us take a moment to briefly define the three hash-table designs described above. In
each case, elements are stored in an array of some size n, and the load factor of the hash
table is defined to be the fraction of slots that are occupied. To insert an element x, a
sequence p1(x), p2(x), . . . of array positions are examined until an unoccupied spot is found
for x. Where the three hash-table designs differ is in the choice of probe sequence: linear
probing uses pi(x) = h(x) + i mod n, where h(x) ∈ [n] is a random hash; double hashing
uses pi(x) = h1(x) + ih2(x) mod n, where h1(x), h2(x) ∈ [n] are both random hashes; and
quadratic probing uses pi(x) = h(x) + (i− 1)2 mod n, where again h(x) ∈ [n] is a random
hash.

The analysis of linear probing [24, 26] hinges on the observation that, if an insertion x

takes time k, there must be an array interval of the form I = [h(x) − j, h(x) + k − 1], for
some j ≥ 0, such that the number of elements y with hashes h(y) ∈ I is at least |I| = j + k.
Thus, the analysis of linear probing reduces directly to the analysis of how many elements
hash into each interval in the hash table. The analysis of double hashing [19, 20, 21, 30, 31]
relies on the fact that the probe sequence pi(x) = h1(x) + ih2(x) mod n is in some formal
sense nearly as random as the fully random probe sequence pi(x) = hi(x), where h1, h2, . . .

are all independent hash functions.
Quadratic probing, on the other hand, sits in an unfortunate middle ground. It lacks

the clean interval-based structure of linear probing – if an insertion x collides with another
element y in position pi(x) = h(x) + (i− 1)2 mod n, then there is nothing substantive that
we can say about the array interval [h(x), h(y)]. But it is not comparable to a fully random
probe sequence – indeed, elements x and y with hashes h(x) and h(y) that are close together,
are far more likely to interact than are a random pair of elements. The interactions between
pairs of elements follow an apparently chaotic combinatorial structure: if an insertion x

collides with another element y in position pi(x) = h(x) + (i− 1)2 mod n, then the same
element x would not have interacted with y at all if y’s hash had been 1 smaller; and, similarly,
y might have been in a different position entirely had any of the elements it interacted with
had even slightly different hashes, etc.

Yet, empirically, quadratic probing is an excellent hash table design [38, 32, 11, 15, 12,
6, 18, 23, 39, 40]. It preserves much of the data locality that makes linear probing special
[38] while also empirically eliminating the asymptotic clustering effects that make linear
probing bad [32]. It is recommended in textbooks and courses [11, 15, 12, 6, 18, 23, 39, 40],
and is even used as the underlying design (with some modifications we will discuss later) for
Google’s in-house and open-source hash tables [1]. Thus, the problem would truly seem to
be one of algorithm analysis rather than one of algorithm design.
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This Paper: A Partial Analysis of Quadratic Probing

We give the first analysis for quadratic-probing hash tables at low load factors. We show
that, at any load factor less than roughly 0.089, the expected time per operation is O(1).
In fact, our analysis applies not just to quadratic probing, but to any fixed-offset probing
scheme, i.e., to any hash table that, like linear and quadratic probing, inserts elements via a
probe sequence of the form pi(x) = h(x) + f(i) for some f(i).

▶ Theorem 1. There exists a positive constant α ≥ 0.089 such that all fixed-offset open
addressing hash tables support constant-time insertions at load factor α and below. Moreover,
the insertion time is bounded above by a geometric random variable with mean O(1).

The proof of Theorem 1 in Section 3 is achieved by a witness argument in which we
construct two objects (a witness set S and a witness transcript T ) that must exist in order
for the insertion time to be large. The witness set S has the property that each individual
option for S has only a very small probability of occurring. The witness transcript T , on the
other hand, has the property there are only a relatively small number of options for what T
can be. Finally, the relationship between the two (and, in particular, the fact T can be used
to recover S), allows us to bound the probability of such a pair (S, T ) existing at all.

The specific constant, 0.089, that we get from Theorem 1 stems from the careful enumer-
ation of a family of strings that we call witness strings (i.e., candidates for the transcript
T ). Through a mixture of algebraic and combinatorial arguments, we obtain tight bounds
on the growth rate for the family – this rate, in turn, dictates the best constant that we can
get in our proof of Theorem 1.

Finally, in Section 4, we turn our attention to chunked fixed-offset open addressing, in
which the probe sequence used is actually of the form

pi(x) = h(x) +B · f(⌊i/B⌋) + (i− 1)

for some chunk size B. The use of chunking is quite common in practice, as it reduces
cache misses and allows for the use of hardware vectorization. A notable example is the hash
table used at Google [1], which uses chunked quadratic probing with chunk size B = 16.

Our final result is an analysis of any chunk fixed-offset open-addressing scheme. We show
that, when B = ω(1), such schemes can successfully handle load factors of the form 1 − o(1).

▶ Theorem 2. There exists a constant α ∈ (0, 1) such that the following is true. Consider a
chunked fixed-offset open-addressed hash table with chunk size B. Any insertion of an element
x at a load factor α = 1 − 1/q satisfying q ≤ α

√
B/ logB takes expected time at most O(q2).

Moreover, the insertion time is bounded above by a geometric random variable with mean
O(q2).

We remark that, in general, the time/space tradeoff in Theorem 2 is nearly tight in
the sense that linear probing (which is a trivial example of chunked open addressing) does,
indeed, require Θ(q2) time per insertion.

Other related work

In the half century since quadratic probing and double hashing were introduced, there
has been a great deal of additional work on hash-table design. Notable examples include
Cuckoo hashing [34], which allows for worst-case bounds on query time (and which has the
interesting feature that, depending on the parameters with which it is implemented, there
are genuine load-factor thresholds above which it cannot be used [34, 17, 14]); Robin-Hood
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103:4 Towards an Analysis of Quadratic Probing

hashing [2, 10], which reorders elements in ways that reduce query time; graveyard hashing [9],
which strategically leaves gaps within a linear probing hash table to reduce clustering; and
many others [25]. In addition to these relatively practical designs, there has also been a
great deal of progress on the theoretical extremes of how space/time efficient a hash table
can be [29, 3, 13, 37]. In fact, recent works by Bender et al. [8] and by Li et al. [27, 28] close
off the basic theoretical question of how space-efficient a hash table can be subject to a given
set of time bounds. For a detailed but somewhat out-of-date survey, see Knuth’s [25] 1998
edition of the Art of Computer Programming, Vol. 3.

2 Preliminaries

Let h : U → [n] be a random hash function, and let r1, r2, . . . , rn−1 ∈ N be a permutation of
the numbers 1 through n− 1. Consider an open-addressing hash table with capacity n in
which, to insert an element x ∈ U , we place it in the first available position from the sequence
h(x), h(x) + r1, h(x) + r2, . . . (the positions wrap around, so position n+ 1 is the same as
position 1). Such a hash table is said to perform fixed-offset open-addressing with offset
sequence r1, r2, . . .. The hash table is said to support constant time insertions at load
factor 0 < α ≤ 1 and below if, when the hash table is filled to a α-fraction full, each of the
insertions is guaranteed to take constant expected time.

Additionally, a fixed-offset open-addressing scheme is said to be chunked (with chunk
size B) if the {ri}’s are broken into consecutive blocks of size B. That is, for each i ≥ 0,
and j ∈ {0, . . . , B − 1}, we have riB+j = riB + j.

One subtlety in the definition of fixed-offset open-addressing is the requirement that
r1, r2, . . . , rn−1 form a permutation of [n− 1]. We will see that, if our analysis is taking place
at load factor 1 − 1/q, the time per insertion is at most a geometric random variable with
mean O(1 + q2) (see Theorems 1 and 2), meaning that with probability 1 − 1/ poly(n), the
hash table only ever uses the first O((1 + q2) logn) terms of any probe sequence. Therefore it
is not strictly necessary to require that r1, r2, . . . , rn−1 are all distinct. It suffices for the probe
sequence to satisfy the weaker requirement that r1, r2, . . . , rO((1+q2) log n) are distinct, and to
assume that the hash table is rebuilt from scratch if any operation ever takes ω((1 + q2) logn)
time. This distinction is important since the probe sequence used by quadratic probing is
not a permutation for all table-sizes n [25], but is trivially guaranteed to have distinct entries
for all of its first Ω(

√
n) terms.

Finally, the reader may wonder whether our analyses can be extended to support deletions
in addition to insertions and queries. Here there is a larger issue: quadratic probing does
not natively support deletions. If one tries to implement deletions by simply removing items,
then the query algorithm gets broken (it can no longer terminate when it sees a free slot) [25].
The standard way to implement deletions while preserving the correctness of queries is to
use tombstones [9], which formally reduce the problem to the insertion-only setting.

3 Analysis for Sufficiently Small Constant Load Factors

In this section, we will show that there exists a universal load factor α ≥ 0.089 below which
all fixed-offset open-addressing schemes are guaranteed to achieve O(1)-time operations.

▶ Theorem 1. There exists a positive constant α ≥ 0.089 such that all fixed-offset open
addressing hash tables support constant-time insertions at load factor α and below. Moreover,
the insertion time is bounded above by a geometric random variable with mean O(1).
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▶ Corollary 3. There exists a positive constant α ≥ 0.089 such that quadratic probing supports
constant-time insertions at load factor α and below.

Let r1, r2, . . . be the offset sequence used by the hash table, and as a convention set
r0 = 0. Consider a sequence of up to αn insertions, followed by one additional insertion of
an element x. Let D denote the state of the hash table when x is inserted, and for each
element x that was inserted in the past, let index(x,D) be the index i such that x resides in
position h(x) + ri.

Given a set S ⊆ [n] we say that an element x ∈ D conflicts with S if h(x) ̸∈ S and
if h(x) + ri is in S for some i ≤ index(x,D). Moreover, if h(x) + rk is the first element
of h(x), h(x) + r1, h(x) + r2, . . . to appear in the set S, then we say that the pair (x, k)
conflicts with S at position j = h(x) + rk. Finally, we define Conflicts(S, j), which is
referred to as a conflict set, to be the set of pairs that conflict with S at position j ∈ S, i.e.,

Conflicts(S, j) = {(x, k) | x ∈ D,

1 ≤ k = min{i | h(x) + ri ∈ S}, h(x) + rk = j, k ≤ index(x,D)}.

We want to bound the probability that, when insertion x occurs, all of positions h(x), h(x)+
r1, . . . , h(x) + rℓ−1 are already occupied for some large ℓ, i.e., the insertion takes time greater
than ℓ. Using the idea of a conflict set, we design a protocol BuildWitnesses (Algorithm 1)
that takes as inputs D, h(x), and ℓ, and returns a witness set S along with a witness
transcript T . The witness set S will be a subset of [n], and the witness transcript T will be
a trinary string.

As we shall see, the basic idea is that, if the insertion of h(x) into D takes time at least ℓ,
then the BuildWitnesses(D,h(x), ℓ) protocol will return a pair (S, T ) such that:

the set S ⊆ [n] is quite large, satisfying |S| ≥ ℓ;
there are at least |S| elements x ∈ D satisfying h(x) ∈ S;
the set S is fully determined by the triple (h(x), ℓ, T );
and the transcript T is a trinary string of length O(|S|).

We will then be able to argue that the probability of such a pair of objects existing is very
small, at most 2−Ω(ℓ). Thus, by analyzing BuildWitnesses, we will be able to indirectly
arrive at a proof of Theorem 1. We emphasize that, although this approach uses an algorithm
(BuildWitnesses) as part of the analysis, it is not an algorithm that actually gets executed
by the hash table – it is simply for the sake of analysis.

Before we can dive into the analysis, we must show that Algorithm 1 terminates.

▶ Lemma 4. Algorithm 1 terminates within finite time.

Proof. First observe that Line 14 only adds elements to S that are not already in S. Since
elements are never removed from S, it follows that each j ∈ [n] can also be added to S (and
therefore to Unprocessed) at most once. Since each phase (i.e., each iteration of Line 4)
removes an item from Unprocessed, there can be at most n phases. Furthermore, since each
iteration of Lines 11–15 increases the size of S, there can be at most n total iterations of
lines 11–15. Therefore, the algorithm completes its construction of the witness objects S and
T within O(n) time. ◀

Next, we turn our attention to establishing the properties of S and T , along with their
relationship to one another. Specifically, we will need the following three lemmas.

▶ Lemma 5. Suppose the insertion x takes time greater than ℓ (that is, the length of the
probe sequence is greater than ℓ). Then the witness set S has size at least ℓ, and at least |S|
elements x ∈ D have hashes h(x) ∈ S.

ICALP 2024



103:6 Towards an Analysis of Quadratic Probing

Algorithm 1

1: procedure BuildWitnesses(D,h(x), ℓ)
2: Set Unprocessed = {h(x), h(x) + r1, h(x) + r2, . . . , h(x) + rℓ−1}.
3: Set S = Unprocessed and T = (0)ℓ−1 ◦ 1.
4: while |Unprocessed| > 0 do ▷ Each iteration is called a phase.
5: Let j = max{Unprocessed}.
6: Remove j from Unprocessed.
7: Append 2 to T .
8: while true do
9: Let Conflicts(S, j) = {(x, k) | x ∈ D, 1 ≤ k = min{i | h(x) + ri ∈ S},

10: h(x) + rk = j, k ≤ index(x,D)}.
11: if |Conflicts(S, j)| > 0 then
12: Let k = maxk{(x, k) ∈ Conflicts(S, j) for some x}.
13: Let x be an arbitrary element in {x | (x, k) ∈ Conflicts(S, j)}.
14: Add h(x), h(x) + r1, h(x) + r2, . . . , h(x) + rk−1 to Unprocessed and to S.
15: Append (0)k−1 ◦ 1 to T .
16: else
17: End while loop.
18: return (S, T )

Proof. The fact that S has size at least ℓ is immediate from the initialization of S in
BuildWitnesses. To prove that at least |S| elements x ∈ D have hashes h(x) ∈ S, we will
show a stronger claim: that every position in S is occupied by an element x whose hash h(x)
is in S.

First, observe that, by design, every position in S is occupied. Indeed, by the assump-
tion that x’s insertion takes time greater than ℓ, we know that h(x), h(x) + r1, h(x) +
r2, . . . , h(x)+rℓ−1 (the positions initially placed in S) are all occupied. And by the definition
of Conflicts(S, j), we know that the positions added by Line 14 are also always occupied.

Now suppose for contradiction that some position s ∈ S contains an element x whose hash
h(x) is not in S. Then x must conflict with S, and, in particular, x must be part of a pair
(x, k) that conflicts with S at some position j ∈ S. Now consider the phase that processed
j, and define S′ to be the state of S at the end of the phase. Because the phase ended, we
must have had Conflicts(S′, j) = ∅. But, because (x, k) conflicts with S at position j, and
since j ∈ S′ ⊆ S, it must be that (x, k) also conflicts with S′ at position j. This means that
(x, k) ∈ Conflicts(S′, j), which is a contradiction. ◀

▶ Lemma 6. Given the witness transcript T , along with h(x) and ℓ, one can reconstruct the
witness set S.

Proof. This is accomplished by the WitnessStringToSet protocol (Algorithm 2). The
basic idea is that we can use the witness transcript T to simulate the execution of BuildWit-
nesses. Namely, we can use 2s in T to determine boundaries between phases; and then we
can use runs of 0s in T to determine the value of k that is used in each iteration of the inner
while loop. This allows for us to fully reconstruct the witness set S using just T, h(x), ℓ. ◀

▶ Lemma 7. The witness transcript T is a trinary string of length 2|S|.

Proof. Each time that we append a 2 to T , we remove an element from Unprocessed. We
do this |S| times, so there are |S| 2s in T . Each time we append a string (0)k−1 ◦ 1 to T , we
also add k elements to S (and vice-versa). Thus, the total number of 0s and 1s in T is |S|.
It follows that T is a trinary string of length 2|S|. ◀



W. Kuszmaul and Z. Xi 103:7

Algorithm 2

1: procedure WitnessStringToSet(h(x), ℓ, T )
2: Set Unprocessed = {h(x), h(x) + r1, h(x) + r2, . . . , h(x) + rℓ−1}.
3: Set S = Unprocessed.
4: Remove prefix (0)ℓ−1 ◦ 1 from T .
5: while |Unprocessed| > 0 do
6: Let j = maxj∈Unprocessed j.
7: Remove j from Unprocessed.
8: while first character of T is not a 2 do
9: Let k − 1 be the number of 0s at the start of T before the first 1.

10: Define g = j − rk.
11: Add g, g + r1, g + r2, . . . , g + rk−1 to Unprocessed and to S.
12: Remove first k characters of T , which are (0)k−1 ◦ 1.
13: Remove first character of T , which is a 2.
14: return S

In addition to these structural lemmas, we will need a basic concentration bound on the
probability that |S| elements hash to a set S of some size.

▶ Lemma 8. Let α = 1/e−Ω(1). Consider a set A of αn elements, each with random hashes
in [n]. Let B ⊆ [n] be a set of some size k. The probability that at least k elements from A

have hashes in B is at most
(
(1 + o(1))αe(1−α))k, where the o-notation is in terms of k.

Proof. By a standard Poisson approximation (see, e.g., Theorem 5.10 in [33]), and because
the event of at least k elements hashing to B is monotone (adding more elements never
undoes the event), we have that the probability of at least k elements hashing to B is at
most 2 Pr[Poisson(αk) ≥ k]. This, in turn is

2
∑
j≥k

Pr[Poisson(αk) = j]

= 2
∑
j≥k

(αk)je−αk

j!

≤ 2
∑
j≥k

2o(j)(αk)je−αk/(jj/ej) (by Stirling’s approximation)

≤ 2
∑
j≥k

2o(j)αje−αk+j

= 2e−αk
∑
j≥k

(αe · (1 + o(1)))j

= O
(
e−αk(αe · (1 + o(1)))k

)
(since α = 1/e− Ω(1))

=
(
(1 + o(1))αe1−α

)k
. ◀

Putting these lemmas together, we can now prove a weak version of Theorem 1 in which
we do not seek to optimize the constant α.

▶ Theorem 9. There exists a positive constant α such that all fixed-offset open addressing
hash tables support constant-time insertions at load factor α and below. Moreover, the
insertion time is bounded above by a geometric random variable with mean O(1).

ICALP 2024



103:8 Towards an Analysis of Quadratic Probing

Proof. Let us bound the probability that the insertion of x, which takes place at a load
factor of at most α, takes time greater than ℓ > 0. Let S and T be the witness set and
witness transcript produced by BuildWitnesses(D,h(x), ℓ).

Suppose the insertion takes time greater than ℓ. Then, by Lemma 5, witness set S has
some size q ≥ ℓ and has the property that at least q elements x ∈ D satisfy h(x) ∈ S.

Define Sq to be the set of options for what S could be if its size is q, conditioned on
h(x) and ℓ. For each R ∈ Sq, let XR be the event that |{x ∈ D | h(x) ∈ R}| ≥ q. Then,
in order for the insertion of x to take time greater than ℓ, event XR must occur for some
R ∈

⋃
q≥ℓ Sq. By a union bound, the probability of this happening is at most∑

q≥ℓ

∑
R∈Sq

Pr[XR].

By Lemma 8, and assuming that α ≤ e−1 − Ω(1), this is at most∑
q≥ℓ

(
|Sq| · ((1 + o(1)) · αe1−α)q

)
. (1)

To bound |Sq|, observe that by Lemma 6, each set R ∈ Sq corresponds to a unique witness
transcript T ∈ [3]2q. Thus |Sq| ≤ 9q, which allows us to bound (1) by∑

q≥ℓ

(
9 · (1 + o(1)) · αe1−α

)q
. (2)

Supposing that αe1−α < 1/9, this sum evaluates to e−Ω(ℓ). In other words, the probability
of the insertion x taking time greater than ℓ is exponentially small in ℓ. This means that the
insertion takes O(1) expected time. ◀

To improve upon the constant α and obtain the full version of Theorem 1, we will need a
tighter bound on the number of witness transcripts corresponding to a witness set of size ℓ.

We begin by defining an infinite family of strings that contains all possible witness
transcripts. Define a witness phrase to be a string of the form

P = (0)i1 ◦ 1 ◦ (0)i2 ◦ 1 ◦ · · · ◦ (0)ik ◦ 1

where 0 ≤ i1 < i2 < · · · < ik. Define a witness string to be a string of the form

W = P1 ◦ 2 ◦ P2 ◦ 2 ◦ P3 ◦ · · · ◦ Pj ◦ 2,

where each of P1, P2, . . . , Pj are witness phrases. The number j is referred to as W ’s phrase
count, and the number of 0s and 1s in W is referred to as W ’s zero/one count.

Let Wa,b be the set of witness strings with zero/one-count a and phrase-count b. Notice,
in particular, that Wm,m contains all witness transcripts that correspond to witness sets of
size m. In Section 3.1, we will prove the following proposition, which characterizes the exact
growth rate of |Wm,m|.

Let u ∈ (0, 1) minimize the quantity

f(u) = u−1
∞∏

i=1
(1 + ui).

Then,

|Wm,m| = f(u)(1−o(1))m.
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Note that, since log f(u) = log u−1 +
∑

i log(1 + ui) is within a constant factor of
log u−1 +

∑
i u

i, we know that f(u) converges for any u ∈ (0, 1), and that f(u) has a
minimum value (since f(u) → ∞ as either u → 0 or u → 1).

A manual calculation shows that f(u) minimizes to slightly smaller than 4.51. It follows
that the number of witness strings corresponding to witness sets of size m is at most O(4.51m).
Plugging this into the proof of Theorem 9, (2) becomes∑

q≥ℓ

(
4.51 · (1 + o(1)) · αe1−α

)q
.

In order so that, as before, this sum comes out to e−Ω(ℓ), we need that αe1−α < 1/4.51.
Another manual calculation tells us that it suffices to have α ≤ 0.089. With this modification
to the proof of Theorem 9, we get Theorem 1.

3.1 Proof of Proposition 3
In this subsection, we complete the final component needed to prove Theorem 1, namely, the
proof of Proposition 3, restated below.

Let u ∈ (0, 1) minimize the quantity

f(u) = u−1
∞∏

i=1
(1 + ui).

Then,

|Wm,m| = f(u)(1−o(1))m.

We begin by reinterpreting |Wk,m| as the coefficient of xk in a certain polynomial G(x).

▶ Lemma 10. Consider the formal power series

G(x) =
( ∞∏

i=1
(1 + xi)

)m

=
∑

i

gix
i, (3)

where the gi’s denote the coefficients of G, and where x is a formal variable. Then, the
coefficient gk is precisely equal to |Wk,m|.

Proof. The coefficient of xk in
∞∏

i=1
(1 + xi)

is equal to the number of witness phrases with zero/one-count k; and so the coefficient gk of
xk in( ∞∏

i=1
(1 + xi)

)m

is equal to the number of ways to pick m witness phrases with total one-count k. This, in
turn, is precisely |Wk,m|. ◀
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Using a simple argument about what happens when we evaluate the polynomial G(x) at
a given value u ≥ 0, we can obtain the upper-bound side of Proposition 3.

▶ Lemma 11. For any u ≥ 0, we have

|Wm,m| ≤ f(u)m.

Proof. Let G be the formal power series from Lemma 10, and let f(u) be the function
defined in Proposition 3. For any u ≥ 0, we have

f(u)m = G(u)/um =
∑

i

giu
i/um ≥ gmu

m/um = gm = |Wm,m|. ◀

The lower bound is a bit more tricky. The main step is to re-interpret G(px)/G(p) (where
p ∈ (0, 1) and x is a formal variable) as the generating function for a random variable X(p)

(this reinterpretation is a trick of the analysis, since X(p) does not appear anywhere in
the original problem formulation), and then prove a concentration bound on that random
variable.

We begin by establishing some basic conventions for discussing the generating function of
a random variable. Supposing that A is a random variable that takes non-negative integer
values, we define the generating function for A to be the formal power series

f(x) =
∑
i≥0

Pr[A = i] · xi.

We will make extensive use of two standard facts:
Fact 1: Given any formal power series f(x) such that f(1) exists, the polynomial
f(x)/f(1) is the generating function for some random variable.
Fact 2: Given two generating functions f(x) and g(x) for random variables A and B,
the polynomial f(x)g(x) is the generating function for the random variable C obtained
by summing independent copies of A and B.

With these properties in mind, we now argue that, for the formal power series G(x) from
Lemma 11, there exists some p ∈ Θ(1) ∩ (1 − Θ(1)) such that G(px)/G(p) is the generating
function for some well-behaved random variable. We will then be able to obtain our lower
bound by analyzing the properties of this random variable.

▶ Lemma 12. Consider the formal power series

G(x) =
( ∞∏

i=1
(1 + xi)

)m

=
∑

i

gix
i.

Then there exists p ∈ Θ(1) ∩ (1 − Θ(1)) such that

G(p)(x) = G(px)
G(p) =

∑
i

g
(p)
i xi

is the generating function for a random variable X with mean m and standard deviation
O(

√
m).

Proof. By design, for any p ∈ (0, 1), we have that
∑

i g
(p)
i = G(p)(1) = 1, so by Fact 1,

G(p)(x) is the generating function for some random variable X(p). We will show that there
exists some p ∈ (0, 1), satisfying p = Θ(1) ∩ (1 − Θ(1)), such that E[X(p)] = m; and that for
any p = 1 − Θ(1), the standard deviation of X(p) is Θ(

√
m).
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First observe that

G(p)(x) = G(px)
G(p) =

(∏∞
i=1(1 + (px)i)∏∞

i=1(1 + pi)

)m

.

It follows by Facts 1 and 2 that X(p) can be interpreted as the sum of m independent random
variables X(p)

1 , . . . , X
(p)
m where each X

(i)
j has generating function∏∞

i=1(1 + (px)i)∏∞
i=1(1 + pi)

.

Observe that, when p = 0, we have E[X(p)
i ] = 0, and as p → 1, we have E[X(p)

i ] → ∞. Thus,
there must exist some p ∈ (0, 1) such that E[X(p)

i ] = 1. Since this choice of p is oblivious to
m, it must be that p = Θ(1) ∩ (1 − Θ(1)). This value of p gives us E[X(p)] = m, as desired.

Having chosen p, it remains to show that the standard deviation of X(p) is O(
√
m),

or equivalently, that the variance of X(p) is O(m). Since X(p) =
∑m

j=1 X
(p)
j is a sum of

independent random variables, it suffices to show that each X
(p)
j has variance O(1). Notice,

however, that the generating function for X(p)
j can be written as

∞∏
i=1

(1 + (px)i)
(1 + pi) =

∞∏
i=1

H(p,i)(x)
H(p,i)(1)

,

where H(p,i)(x) is the formal power series 1 + (px)i. By Facts 1 and 2, it follows that we can
interpret X(p)

j as a sum of independent random variables Y (p)
j,1 , Y

(p)
j,2 , . . . where each Y (p)

j,i has
generating function (1+(px)i)

(1+pi) . This means that

var(X(p)
j ) =

∑
i

var(Y (p)
j,i ) ≤

∑
i

E[(Y (p)
j,i )2] =

∑
i

pii2

(1 + pi) = O(1),

where the final equality uses p = 1 − Θ(1). As noted above, this implies that X(p) has
variance O(m), which completes the proof. ◀

We will also need a straightforward lemma bounding |Wm±k,m| in terms of |Wm,m|
(multiplicatively) for small k.

▶ Lemma 13. For any 0 ≤ k < m, we have that

|Wm−k,m| ≤ |Wm,m|

and that

|Wm+k,m| ≤ 2O(k log m)|Wm,m|.

Proof. Given a string s ∈ Wm−k,m, we can obtain a string ϕ(s) ∈ Wm,m by taking the final
run of 1s in s and extending the length of that run by k. This function is injective, implying
that |Wm−k,m| ≤ |Wm,m|.

Given a string s ∈ Wm+k,m, it is possible to remove some set of O(k) characters (zeros
and ones) in order to obtain a valid string s′ ∈ Wm,m; let ψ(s) be the lexicographically
smallest such string s′ that one can achieve in this way. For a given s′ ∈ Wm,m, we can
bound |ψ−1(s′)| ≤ 2O(k log m), since there are at most 2O(k log m) ways to add O(k) characters
to get a string s ∈ Wm+k,m. It follows that |Wm+k,m| ≤ 2O(k log m)|Wm,m|. ◀
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Finally, we can put the pieces together in order to get the lower-bound side of Proposition 3.

▶ Lemma 14. Let

f(u) = u−1
∞∏

i=1
(1 + ui).

Then, there exists p ∈ (0, 1) such that

f(p)m ≤ 2o(m)|Wm,m|.

Proof. Consider the formal power series

G(x) =
( ∞∏

i=1
(1 + xi)

)m

=
∑

i

gix
i.

By Lemma 12, there exists p ∈ Θ(1) ∩ (1 − Θ(1)) such that

G(p)(x) = G(px)
G(p) =

∑
i

g
(p)
i xi

is the generating function for a random variable X with mean m and standard deviation
O(

√
m). By Chebyshev’s inequality, at least half of X’s probability mass must be concentrated

between m−O(
√
m) and m+O(

√
m). That is, for some positive constant d,

d
√

m∑
k=−d

√
m

g
(p)
m+k ≥ 1

2

∞∑
i=0

g
(p)
i .

Since g(p)
i = pigi/G(p), we can multiply both sides by G(p) to get

d
√

m∑
k=−d

√
m

pm+kgm+k ≥ 1
2

∞∑
i=0

pigi.

Since p = Θ(1) and since gm+k = |Wm+k,m| ≤ 2O(|k| log m)|Wm,m| (by Lemmas 10 and 13),
we have that each term pm+kgm+k in the left sum is at most

2O(
√

m log m)pm+k|Wm,m| = 2O(
√

m log m)pm|Wm,m|.

This means that the entire left sum is at most

O(
√
m)2O(

√
m log m)|Wm,m| ≤ 2o(m)pm|Wm,m|.

Therefore,
∞∑

i=0
pigi ≤ 2o(m)pm|Wm,m|,

which implies that

G(p)/pm ≤ 2o(m)|Wm,m|.

Finally, since G(p)/pm = f(p)m, the proof is complete. ◀
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4 Chunked Fixed-Offset Open Addressing

We now turn our attention to obtaining bounds for chunked fixed-offset open-addressed hash
tables. Recall that a fixed-offset open-addressed hash table is said to be chunked with chunk-
size B if, for each i ≥ 0 and j ∈ {0, . . . , B − 1}, we have riB+j = riB + j. As terminology,
for a given element x, we will refer to the sequence h(x) + riB , . . . , h(x) + riB+B−1 as the
i-th block in x’s probe sequence. Our goal will be to prove the following theorem.

▶ Theorem 2. There exists a constant α ∈ (0, 1) such that the following is true. Consider a
chunked fixed-offset open-addressed hash table with chunk size B. Any insertion of an element
x at a load factor α = 1 − 1/q satisfying q ≤ α

√
B/ logB takes expected time at most O(q2).

Moreover, the insertion time is bounded above by a geometric random variable with mean
O(q2).

The theorem can be interpreted as saying that, whenever B = ω(1), it is possible to
support load factors of the form α = 1 − q were q = o(1). We remark that the time bound
O(q2) is optimal in general, since linear probing is an example of a chunked open-addressed
hash table that has insertion time Θ(q2) at load factor 1 − q.

We will prove Theorem 2 with a slightly more intricate analysis of the BuildWitnesses
procedure from Section 3. To do this, we must first define the notion of an analytical run.

In lines 2 and 14 of BuildWitnesses, when we add some sequence Q = h(x), h(x)+r1, . . .

to Unprocessed, we can break the positions that we add into analytical runs, where the
first (up to) B entries of Q form the first analytical run, the next (up to) B entries form the
next analytical run, and so on. The execution of the line creates ⌈|Q|/B⌉ analytical runs,
and all but the final one have size B.

Say that two analytical runs r1, r2 (not necessarily created by the same iteration of
Line 14) are adjacent if they represent sub-intervals of the form [i, j] and [j + 1, k] for some
i, j, k. Finally, define the adjusted size of an analytical run r to be B if the sequence Q
that added r to S satisfied |Q| ≥ B or if the analytical run r was created by Line 2 of the
algorithm, and define the adjusted size to be |r| otherwise.

A critical step in the proof of Theorem 2 is to observe that, whenever two analytical runs
are adjacent, their adjusted sizes must sum to at least B.

▶ Lemma 15. Consider the execution of BuildWitnesses(D,h(u), ℓ) for some ℓ > 0.
Consider two adjacent analytical runs r1, r2 with adjusted sizes s1, s2. Then s1 + s2 ≥ B.

Proof. Let x1 and x2 be the elements that created runs r1 and r2. Let t1 and t2 be the
iterations at which x1 and x2 are added to S by BuildWitnesses, let Conflicts1 and
Conflicts2 be the conflict sets that are constructed in the while-loop iterations that add x1
and x2 to S, and let S1 and S2 be the states of S immediately before x1 and x2 are added
to S, respectively.

If either of r1 or r2 have adjusted size B, then the claim is trivial. We can therefore
assume without loss of generality that r1, r2 are the first runs in the probe sequences for x1
and x2 and that |r1|, |r2| < B. Note that, as immediate consequences, we have that r1 and
r2 were created by Line 14 of BuildWitnesses (rather than Line 2); that h(x1) < h(x2);
and that x2 was added to S before x1 (i.e., t2 < t1).

Let ℓ be the right endpoint of r2. We claim that

ℓ ≥ h(x1) +B − 1. (4)

This would imply that |r1| + |r2| ≥ ℓ− h(x1) + 1 ≥ B, completing the proof.
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Suppose for contradiction that (4) does not hold. Let (x2, k2) ∈ Conflicts2 be the pair
containing x2 in Conflicts2. Then the final position ℓ of run r2 satisfies ℓ+ 1 = h(x2) + k2,
and Conflicts2 = Conflicts(S2, ℓ+ 1) expands to

{(x, k) | x ∈ D,

1 ≤ k = min{i | h(x) + ri ∈ S2}, h(x) + rk = ℓ+ 1, k ≤ index(x,D)}.

We will show that this forces the pair (x1, ℓ− h(x1) + 1) to be in Conflicts2. But the fact
that h(x1) < h(x2) means that BuildWitnesses will rather select (x1, ℓ− h(x1) + 1) than
(x2, ℓ − h(x2) + 1) from Conflicts2 (see Line 12 of BuildWitnesses). This contradicts
the fact that x2 is added to S at iteration t2 in the execution of BuildWitnesses.

It remains to prove that (x1, ℓ− h(x1) + 1) ∈ Conflicts2. Since ℓ < h(x1) +B − 1 (by
assumption) and since h(x1) < h(x2), we know that ℓ+ 1 = h(x1) +k1 for some k2 < k1 < B.
To prove that (x1, k1) ∈ Conflicts2, we must show that

k1 = min{i | h(x1) + ri ∈ S2} (5)

and that

k1 ≤ index(x1, D). (6)

We begin by showing (5). The fact that (x2, k2) ∈ Conflicts2 tells us that k2 =
min{i | h(x2) + ri ∈ S2}, which implies that h(x2), h(x2) + 1, . . . , ℓ ̸∈ S2. The fact that
(x1, h(x2) − h(x1)) ∈ Conflicts1 tells us that h(x2) − h(x1) = min{i | h(x1) + ri ∈ S1},
which implies that h(x1), h(x1) + 1, . . . , h(x2) − 1 ̸∈ S1. Since BuildWitnesses always
processes max{Unprocessed}, we know that, between iterations t2 and t1, BuildWitnesses
processes only values of j satisfying j ≥ h(x2). Thus S2 ∩ [h(x2)−1] ⊆ S1 ∩ [h(x2)−1]. So the
fact that h(x1), h(x1)+1, . . . , h(x2)−1 ̸∈ S1 implies that h(x1), h(x1)+1, . . . , h(x2)−1 ̸∈ S2.
Therefore, h(x1), h(x1) + 1, . . . , ℓ ̸∈ S2, which implies (5).

Finally, we complete the proof by establishing (6). If we had k1 = ℓ + 1 − h(x1) >
index(x1, D), then x1 would have to reside in one of positions h(x1), h(x1) + 1, . . . , ℓ. If x1
resides in any of positions h(x2), . . . , ℓ− 1, then at time t2 < t1, that position must have been
vacant, which implies that x2 could have used it – but this contradicts the fact that x2 created
run r2. On the other hand, if x1 resides in any of positions h(x1), h(x1) + 1, . . . , h(x2) − 1,
then x1 does not conflict with position h(x2), which contradicts the fact that x1 created run
r1. Thus, x1 does not reside in any of positions h(x1), h(x1) + 1, . . . , ℓ, which means that
k1 = ℓ+ 1 − h(x1) ≤ index(x1, D). ◀

We can build on Lemma 15 to make a claim about the average size of all of the analytical
runs, namely that, if the analytical runs are not all adjacent, then their average (non-
adjusted!) size must be Ω(B). It may see odd at first glance that we need to separate out
the case where all of the analytical runs are adjacent, but we will see later on that this case
actually behaves very differently from the other cases. (Indeed, it is the case that causes the
insertion time to be O(q2) instead of O(1)!)

▶ Lemma 16. Consider the execution of BuildWitnesses(D,h(u), ℓ) for some ℓ > 0. Let
r1, r2, . . . , rj be the analytical runs that we add to Unprocessed during the execution of the
algorithm. If r1, r2, . . . , rj are not all adjacent, then

∑j
i=1 |ri| ≥ B and

1
j

j∑
i=1

|ri| ≥ Ω(B).
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Proof. Define s1, s2, . . . , sj be the sizes of the analytical runs and let s′
1, s

′
2, . . . , s

′
j to be the

adjusted sizes of the analytical runs. Since r1, r2, . . . , rj are not all adjacent, we know that at
least one ri satisfies |si| = B (namely, the first time we add an ri that is not adjacent with
the other rjs added so far). Therefore, the lemma is immediately true if j = O(1). Suppose
for the rest of the proof that j = ω(1).

With the possible exception of the first analytical run added by Line 2 (recall analytical
runs created by Line 2 automatically have adjusted size B), we have that for every analytical
run r whose true size si is smaller than its adjusted size s′

i, there is some run with true size
B. Indeed, such a run r must be the final analytical run added by some iteration of Line 14,
and that that iteration of Line 14 must have added at least one analytical run with true size
B. It follows that

B +
j∑

i=1
si ≥ 1

2

j∑
i=1

s′
i.

Because j = ω(1), this implies

o(B) + 1
j

j∑
i=1

si ≥ Ω
(

1
j

j∑
i=1

s′
i

)
.

Thus, to complete the proof, it suffices to show that the right side is Ω(B).
Now consider a maximal sequence of adjacent analytical runs ra1 , ra2 , ra3 , . . . , rak

. If
k = 1, then the adjusted size of the run ra1 is guaranteed to be B (because either its true
size is B and it was created by Line 14, or it was created by Line 2 which only creates
analytical runs with adjusted sizes of B). If k > 1, then Lemma 15 tells us that the runs
ra1 , ra2 , ra3 , . . . , rak

have adjusted sizes summing to at least ⌊k/2⌋ ·B ≥ kB/3.
Therefore, the average adjusted size over all analytical runs is at least B/3. This means

that

1
2j

j∑
i=1

s′
i ≥ B/6,

which completes the proof. ◀

Finally, using the fact that the average analytical run size is Ω(B), we can obtain a bound
on the number of runs of 0s, 1s, and 2s in the witness transcript T . (Here, we are using the
term “run” in the string sense, e.g., a run of 0s is a maximal sequence of consecutive zeros in
the string.)

▶ Lemma 17. Consider the execution of BuildWitnesses(D,h(u), ℓ) for some ℓ > 0 and
suppose that the analytical runs that are created are not all adjacent. Then the resulting
witness transcript T is a trinary string that has at most O(|T |/B) runs of 0s, 1s, and 2s.

Proof. Let s1, s2, . . . , sj be the sizes of the analytical runs that we add to Unprocessed
during the execution of the algorithm. The total number of 1s and 0s in T is exactly

∑
i sj ,

and the total number of 2s in T is also exactly
∑

i sj , so |T | = 2
∑

i sj . On the other hand,
both the number of 1s in T and the number of runs of 0s in T are bounded by j. It follows
that the total number of runs of 0s and 1s in T is at most 2j, which by Lemma 16 is at most
O(
∑

i si/B) = O(|T |/B). The number of runs of 2s is at most one greater than the number
of runs of 0s and 1s (this is true for any trinary string), so the total number of runs overall
in T is at most O(|T |/B). ◀
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The fact that the witness transcript T has so few runs will lead to a much smaller bound
on the number of options for T than we had in the non-chunked setting. This is the key insight
that makes it possible to prove Theorem 2. As noted earlier, the proof actually separates into
two cases, the case where the analytical runs are all adjacent (this case contributes O(q2) to
the running time) and the case where they are not (this case contributes only O(1) to the
running time, and is where we make use of the previous lemmas).

Proof of Theorem 2. Suppose the insertion takes time t ≥ 0, and let us bound Pr[t > ℓ] for
some ℓ. Consider the execution of BuildWitnesses(D,h(u), ℓ), producing witness set S
and witness transcript T . Let r1, r2, . . . be the analytical runs produced by the algorithm.
Let C be the indicator random variable for the event that r1, r2, . . . are all adjacent, and let
C be the indicator random variable for the event that they are not all adjacent.

We begin by considering the event C = 1. In this case, the witness set S is a contiguous
interval [i, j] containing h(u). By Lemma 5, if t > ℓ, then at least |S| ≥ ℓ elements y in the
hash table have hashes h(y) ∈ V . From the standard analysis of linear-probing hash tables
(e.g., Lemma 15 of [9]), we know that the probability of any such interval S existing is at
most 2−Ω(ℓ/q2). We have therefore shown that

Pr[tC > ℓ] ≤ 2−Ω(ℓ/q2).

So, E[tC] = O(q2) and for any j ≥ 1, Pr[tC > jq2] ≤ 2−Ω(j).
Now, for the rest of the proof, consider the event C. Define t = tC. We will complete the

proof by showing that E[t] = O(1) and that for any j ≥ 1, Pr[t > jq2] ≤ 2−Ω(j).
Supposing that C occurs, we have by Lemma 16 that |T | ≥ B. We also have trivially that

|T | ≥ ℓ, so |T | ≥ max(B, ℓ). The fact that we only need to consider |T | ≥ max(B, ℓ) will be
important through the rest of the proof.

By Lemma 17, T has at most O(|T |/B) runs. By standard counting arguments, the
number of trinary strings of length ℓ′ with O(ℓ′/B) runs is at most BO(ℓ′/B). It follows, that
for a given length ℓ′ > max(B, ℓ) for T , the number of options for what T could be is at
most BO(ℓ′/B). Since the witness set S is fully determined by T , and is exactly half of T ’s
size (Lemma 7), the number of options for S of a given size ℓ′′ ≥ max(B, ℓ)/2 is at most
BO(ℓ′′/B).

On the other hand, if the insertion took time more than ℓ, then, in order for a given
option for S to occur, there would need to be at least |S| elements y in the hash table
satisfying h(y) ∈ S (Lemma 5). For a given set S, the expected number of elements y
satisfying h(y) ∈ S is

α|S| ≤ (1 − 1/(c
√
B/ logB))|S| = |S| −

√
S logB√
Bα

√
|S|.

By a Chernoff bound, the probability of a given candidate witness set S of size ℓ′′ ≥
max(B, ℓ)/2 having ℓ′′ elements hash to it is at most

2−Ω(|S| log B/(Bα2)) = B−Ω(ℓ′′/B)/α2
.

Taking a union bound over all BO(ℓ′′/B) options for S, the probability that any S of size
ℓ′′ ≥ max(B, ℓ)/2 occurs is at most

BO(ℓ′′/B)B−Ω(ℓ′′/B)/α2
.

Setting α to be a sufficiently small positive constant, this is at most

1/B10ℓ′′/B .
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Summing over all ℓ′′ ≥ max(B, ℓ)/2, the probability that BuildWitnesses(D,h(u), ℓ)
produces a saturated witness set S of size at least max(B, ℓ)/2 is at most∑

ℓ′′≥max(B,ℓ)/2

1/B10ℓ′′/B ≤ 1/Bmax(B,ℓ)/B .

But, the only way that t ≥ ℓ can occur is if such a witness set S is produced. Thus

Pr[t ≥ ℓ] ≤ 1/Bmax(B,ℓ)/B = BB/2+ℓ/(2B) ≤ q−Ω(q2 log q+ℓ/(q2 log q)) ≤ q−Ω(q2 log q) ·2−Ω(ℓ/q2).

It follows that E[t] ≤ O(1), and that, for j ≥ 1, Pr[t > jq2] ≤ 2−Ω(j), as desired. ◀
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