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Abstract
We present a simple and provably optimal non-adaptive cell probe data structure for the static
dictionary problem. Our data structure supports storing a set of n key-value pairs from [u] × [u]
using s words of space and answering key lookup queries in t = O(lg(u/n)/ lg(s/n)) non-adaptive
probes. This generalizes a solution to the membership problem (i.e., where no values are associated
with keys) due to Buhrman et al. We also present matching lower bounds for the non-adaptive static
membership problem in the deterministic setting. Our lower bound implies that both our dictionary
algorithm and the preceding membership algorithm are optimal, and in particular that there is an
inherent complexity gap in these problems between no adaptivity and one round of adaptivity (with
which hashing-based algorithms solve these problems in constant time).

Using the ideas underlying our data structure, we also obtain the first implementation of a
n-wise independent family of hash functions with optimal evaluation time in the cell probe model.
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1 Introduction

The static membership problem is arguably the simplest and most fundamental data structure
problem. In this problem, the input is a set S of n integer keys x1, . . . , xn ∈ [u] = {0, . . . , u−1}
and the goal is to store them in a data structure, such that given a query key x ∈ [u], the
data structure supports reporting whether x ∈ S.

The classic solution to the membership problem is to use hashing, suggested as early as
by Tarjan-Yao [23]. The textbook hashing-based solution is hashing with chaining, where one
draws a random hash function h : [u] → [m] and creates an array A with m = O(n) entries.
Each entry A[i] of the array stores a linked list of all keys x ∈ S such that h(x) = i. To
answer a membership query for x, we compute h(x) and scan the linked list in entry A[h(x)].
If h is drawn from a universal family of hash functions, the time to answer queries is O(1)
in expectation. The expected query time can be made worst case O(1) using e.g. perfect
hashing [11] or (static) Cuckoo hashing [16, 17]. All of the above solutions may also be
easily extended to solve the dictionary problem in which the data to be stored is a set of n

key-value pairs {(xi, yi)}n
i=1. Upon a query x, the data structure must return the value yi

such that xi = x, or report that no such pair exists.

1.1 Adaptivity and Membership
A common feature of all hashing based solutions to the membership and dictionary problem,
is that they are adaptive. That is, the memory locations they access depend heavily on the
random choice of hash functions. In particular, to answer a query we first need to read the
description of the chosen hash function, and only based on that we can compute the next
memory cells we should access. A non-adaptive data structure has the property that the
memory cells to access on a query x are completely determined from x itself. Non-adaptive
data structures are studied for several reasons, a common type being computational settings
in which interaction with memory is either expensive or limited. Non-adaptive data structures
allow retrieving all necessary memory cells in parallel when answering a query, circumventing
any memory-access related latency. This property also allows simpler implementation of
the data structure under cryptographic settings, such as encrypted computation with Fully
Homomorphic Encryption (see [25] for more details on the importance of non-adaptive
querying in cryptography).

In this work, we present a non-adaptive dictionary algorithm in which a query needs
to only access logarithmically many memory cells, and also prove a matching lower bound
(which holds even for the static membership problem).

Unlike the textbook solution of hashing with chaining, which requires many rounds of
adaptivity due to scanning a linked list, other solutions (e.g., cuckoo hashing) only need one
round of adaptivity (i.e., first they read the description of the hash function, and then read
memory cells that are determined only by the query and the hash function). Our results
imply that a single round of adaptivity is necessary and sufficient to reduce the query time
from super-constant to constant.

The Cell Probe Model. The cell probe model by Yao [24] is the de-facto model for proving
data structure lower bounds. In this model, a data structure consists of a memory of s cells
with integer addresses 0, . . . , s − 1, each storing w bits. Computation is free of charge in this
model and only the number of memory cells accessed/probed when answering a query counts
towards the query time. A lower bound in the cell probe model thus applies to any data
structure implementable in the classic word-RAM upper bound model.
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Previous Work. Buhrman, Miltersen, Radhakrishnan and Venkatesh [6] showed that it is
possible to store a data structure of size O(n lg u) bits such that membership queries can be
answered in O(lg u) non-adaptive bit probes (i.e., the cell probe model with w = 1). This
of course implies a membership data structure with O(lg u) probes in the cell probe model,
but it is not clear how to extend it to solve the dictionary problem with the same time and
space complexity. Furthermore, the data structure by Buhrman et al. is non-explicit in the
sense that they give a randomized argument showing existence of an efficient data structure.
Buhrman et al. also show a lower bound of t = Ω(lg(u/n)/ lg(s/n)) bit probes. In the setting
where n is polynomially smaller than u and s is O(n) this matches the upper bound up to
constant factors (but it is possible that a tighter analysis can be made). Alon and Feige [1]
as well as Garg and Radhakrishnan [12] studied space lower bounds for dictionary data
structures with three non-adaptive probes in the bit probe model. The best lower bound
shows that space of s = Ω(

√
un) is necessary.

Berger et al. [3] study the non-adaptive dictionary problem, but in the I/O model, i.e.,
a single memory access can retrieve B ≥ 1 keys or values. In the Word RAM model this
corresponds to having word size B lg u. This means that their strongest results for the
dictionary problem would require word size Ω(lg(n) lg(u)) – as we will see later, our results
hold for word size lg u.

Brody et al. [5] present a dynamic non-adaptive data structure for the predecessor search
problem, allowing insertions and deletions of keys while supporting predecessor queries in
O(lg u) probes. A predecessor query for a key x must return the largest x′ ∈ S such that
x′ ≤ x. Such a data structure clearly also supports membership queries. However, their data
structure critically uses s = Θ(2w) = Θ(u) memory. For the membership problem in this
setting, a bit-vector with constant time operations suffices. Brody et al. [5] however prove
that for dynamic data structures for predecessor search, this query time is optimal even with
Θ(u) space. Boninger et al. [4] as well as Ramamoorthy and Rao [21] also study lower bounds
for the non-adaptive dynamic predecessor problem. Relating their results to the non-adaptive
static dictionary problem, the two works show query time must be t = Ω(lg u/ lg w) and
t = Ω(lg u/(lg lg u + lg w)) respectively in the cell probe model. To our knowledge, these are
the highest known lower bounds for the static, non-adaptive dictionary problem.

This still leaves open the problem of obtaining an optimal static and non-adaptive
membership data structure, in both the word-RAM model, and in the cell probe model.

Our Contribution. In this work, we present a simple and optimal non-adaptive cell probe
data structure for the dictionary and membership problem:

▶ Theorem 1. For any s = Ω(n), there is a non-adaptive static cell probe data structure for
the dictionary problem, storing n key-value pairs (xi, yi) ∈ [u] × [u] using s memory cells of
w = Θ(lg u) bits and answering queries in t = O(lg(u/n)/ lg(s/n)) probes.

As stated in the theorem, our data structure is implemented in the cell probe model,
meaning that we treat computation as free of charge. Implementing the data structure in
the more standard upper bound model, the word-RAM, would require the construction of a
certain type of explicit bipartite expander graph.

Compared to prior works (such as [6, 3]), our construction shows that we may rely on
a significantly weaker expansion argument. Past constructions required an orientability
argument to assign memory to keys that required expanders with a strong unique-neighbors
property. In contrast, our construction utilizes weaker non-contractive expanders to argue
that there is sufficient capacity to accommodate storage of all keys (using Hall’s theorem).

ICALP 2024
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This directly translates to a logarithmic improvement in space usage. Namely, we only
require the existence of t-left-regular bipartite graphs with expansion factor one; however our
bipartite graph is highly imbalanced. Our expansion property corresponds to an imbalanced
disperser, and therefore is well-studied and has other applications (e.g., [13]). Such dispersers
exist by a counting argument, but it remains an open problem to obtain explicit constructions.
A recent work [2] constructs explicit expanders that may be plugged into our construction to
obtain an explicit RAM upper bound. However, this incurs a poly-logarithmic blowup and
obtaining a tight explicit RAM upper bound would require better explicit expanders.

We also present a matching lower bound for the non-adaptive dictionary and membership
problem in the cell probe model:

▶ Theorem 2. For any non-adaptive static cell probe data structure for the dictionary
problem storing n key-value pairs (xi, yi) ∈ [u] × [u] using s memory cells of w bits and
answering queries in t probes must satisfy

t = Ω
(

min
{

n lg(u/n)
w

,
lg(u/n)

lg(sw/(n lg(u/n)))

})
.

Our lower bound shows that adaptivity is crucial to obtain constant query time. In
particular, non-adaptive data structures require super-constant query time while well-known
constructions with adaptivity (such as cuckoo hashing) can obtain constant query time.

We note that our lower bound peaks higher compared to the prior best lower bounds. For
standard parameters of u = n1+O(1) and w = Θ(lg u), our lower bound shows that optimal
space constructions with s = O(n) require query time t = Ω(lg u) in the cell probe model. In
contrast, prior works [4, 21] obtain lower bounds of t = Ω(lg u/ lg lg u).

1.2 Hash Functions with High Independence
When using hash functions in the design of data structures and algorithms, it is often
assumed for simplicity of analysis that truly random hash functions are available. Such a
hash function h : [u] → [m] maps each key independently to a uniform random value in [m].
Or said differently, when drawing the random hash function h, we choose a uniform random
function in the family of hash functions H consisting of all (deterministic) functions from [u]
to [m]. Implementing such a hash function in practice is often infeasible as it requires u lg m

random bits and thus the storage requirement may completely dominate that of any data
structure making use of the hash function.

Fortunately, much weaker hash functions suffice in many applications. The simplest
property of a family of hash functions H ⊆ [u] → [m], is that it is universal [7]. A universal
family of hash functions has the property that for a uniform random h ∈ H, it holds for
every pair of keys x ̸= y ∈ [u] that Pr[h(x) = h(y)] ≤ 1/m. Universal hashing for instance
suffices for implementing hashing with chaining with expected constant time membership
queries, but is not sufficient for implementing Cuckoo hashing [9]. The next step up from
universal hashing is the notion of n-wise independent hashing. A family of hash functions H
is n-wise independent if, for h drawn uniformly from H, it holds for any set of n distinct keys
x1, . . . , xn that h(x1), . . . , h(xn) are independent and uniformly random (or nearly uniformly
random). The prototypical example of an n-wise independent family of hash function (with
nearly uniform hash values) is

H :=
{

hα0,...,αn−1(x) =
(

n−1∑
i=0

αix
i mod p

)
mod m | α0, . . . , αn−1 ∈ [p]

}
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where p is any prime greater than or equal to u. That is, to draw a hash function h from H,
we sample α0, . . . , αn−1 uniformly and independently in [p] and let h(x) be the evaluation of
the polynomial (

∑
i αix

i mod p) mod m.1 Clearly, the evaluation time of this hash function
is Θ(n). Whether it is possible to implement n-wise independent hash functions with faster
evaluation time has been the focus of much research. On the lower bound side, Siegel [22]
proved that any implementation of an n-wise independent hash function h : [u] → [m] using
s memory cells of w = Θ(lg u) bits, must probe at least t = Ω(min{lg(u/n)/ lg(s/n), n})
memory cells to evaluate h. The hash function above matches the second term in the
minimum. For the first term, the result that comes closest is a recursive form of tabulation
hashing by Christiani et al. [8] that gives an n-wise independent family of hash functions
that can be implemented using s = O(nu1/c) space and evaluation time t = O(c lg c)
for any c = O(lg u/ lg n). Rewriting the space bound gives c = lg u/ lg(s/n) and thus
t = O(lg(u) lg(lg(u)/ lg(s/n))/ lg(s/n)). This is about a lg lg u factor away from the lower
bound of Siegel in terms of the query time t. This algorithm is adaptive and requires
s ≥ n1+Ω(1) as they need lg u/ lg(s/n) = O(lg u/ lg n).

Our Contribution. Designing an optimal n-wise independent family of hash functions thus
remains open, with or without adaptivity. In this work, we show how to implement such a
function in the cell probe model (where computation is free):

▶ Theorem 3. For any s = Ω(n) and p = Ω(u), there is a non-adaptive static cell probe
data structure for storing an n-wise independent hash function h : [u] → Fp using s memory
cells of w = Θ(lg p) bits and answering evaluation queries in t = O(lg(u/n)/ lg(s/n)) probes.

We remark that Siegel’s lower bound holds in the cell probe model, and thus our data structure
is optimal. Furthermore, Siegel’s lower bound holds also for adaptive data structures, whereas
ours is even non-adaptive. Compared to the work of Christiani et al., we have a faster
evaluation time and only require s = Ω(n). The downside is of course that our solution is
only implemented in the cell probe model. Implementing our hash function in the word-RAM
model would require the same type of explicit expander graph as for implementing our
non-adaptive dictionary (and a bit more), further motivating the study of such expanders
(see Section 5).

To compare with previous techniques, we note that the majority of prior works (such
as [15, 10, 8]) consider adaptive constructions. The original work of Siegel [22] did not directly
study non-adaptivity. However, Lemma 2 in [22] can be used to construct a non-adaptive
construction in the cell probe model using a suitable expander graph. Our construction leads
to a better (and tight) upper bound in addition to being simpler by replacing polynomials
with a simple sum of memory cells.

2 Non-Adaptive Dictionaries

We consider the dictionary problem where we are to preprocess a set X of n key-value pairs
from [u] × [u] into a data structure, such that given an x ∈ [u], we can quickly return the
corresponding value y such that (x, y) ∈ X or conclude that no such y exists. We assume
that any for any key x, there is at most one value y such that (x, y) ∈ X.

1 Technically, this hash function is only approximately n-wise independent, in the sense that the hash
values of any n keys are independent, but only approximately uniform random.

ICALP 2024
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We focus on non-adaptive data structures in the cell probe model. Non-adaptive means
that the memory cells probed on a query depends only on x. We assume u = Ω(n) and that
the cell size w is Θ(lg u).

As mentioned in Section 1, we base our data structure on expander graphs. We recall the
standard definitions of bipartite expanders in the following:

▶ Definition 4. A (u, s, t)-bipartite graph with u left vertices, s right vertices and left degree
t is specified by a function Γ : [u] × [t] → [s], where Γ(x, y) denotes the yth neighbor of x.
For a set S ⊆ [u], we write Γ(S) to denote its neighbors {Γ(x, y) : x ∈ S, y ∈ [t]}.

▶ Definition 5. A bipartite graph Γ : [u] × [t] → [s] is a (K, A)-expander if for every set
S ⊆ [u] with |S| = K, we have |Γ(S)| ≥ A · K. It is a (≤ Kmax, A)-expander if it is a
(K, A)-expander for every K ≤ Kmax.

The literature on bipartite expanders, see e.g. [13], is focused on graphs with near-optimal
expansion A = (1 − ε)t, i.e. very close to the largest possible expansion with degree t.
However, for our non-adaptive dictionaries, we need significantly less expansion. We call
such expanders non-contractive and define them as follows:

▶ Definition 6. A bipartite graph Γ : [u] × [t] → [s] is a (≤ Kmax)-non-contractive expander
if it is a (≤ Kmax, 1)-expander.

Said in words, a bipartite is a (≤ Kmax)-non-contractive expander, if every set of at most
K ≤ Kmax left-nodes has at least K neighbors.

Before presenting our dictionary, we present the second ingredient in our dictionary,
namely Hall’s marriage theorem. For a bipartite graph with left-vertices X, right-vertices Y

and edges E, an X-perfect matching is a subset of disjoint edges from E such that every
vertex in X has an edge. Hall’s theorem then gives the following:

▶ Theorem 7 (Hall’s Marriage Theorem). A bipartite graph with left-vertices X and right-
vertices Y has an X-perfect matching if and only if for every subset S ⊆ X, the set of
neighbors Γ(S) satisfies |Γ(S)| ≥ |S|.

With these ingredients, we are ready to present our dictionary.

Dictionary from Non-Contractive Expander. Given a set of n key-value pairs X =
{(xi, yi)}n

i=1 ⊂ [u] × [u] and a space budget of s memory cells, we build a data structure as
follows:

Construction. Initialize s memory cells and let Γ : [u] × [t] → [s] be a (≤ n)-non-
contractive expander for some t. Construct the bipartite graph G with a left-vertex for each
xi and a right vertex for each of the s memory cells. Add an edge from xi to each of the
nodes Γ(xi, j) for i = 0, . . . , t − 1. Note that this is a subgraph of the bipartite (≤ n)-non-
contractive expander corresponding to Γ. It follows that for every subset S ⊆ {xi}n

i=1, we
have |Γ(S)| ≥ |S|. We now invoke Hall’s Marriage Theorem (Theorem 7) to conclude the
existence of an {xi}n

i=1-perfect matching on G. Let M = {(xi, vi)}n
i=1 denote the edges of

the matching. For each such edge (xi, vi), we store the key-value pair (xi, yi) in the memory
cell of address vi. For all remaining s − n memory cells, we store a special Nil value.

Querying. Given a query x ∈ [u], we query the t memory cells of address Γ(x, i) for
i = 0, . . . , t − 1. If any of them stores a pair (x, y), we return y. Otherwise, we return Nil to
indicate that no pair (x, y) exists in X.
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Analysis. Correctness follows immediately from Hall’s Marriage Theorem. The space
usage is s memory cells of w = Θ(lg u) bits and the query time is t. The required perfect
matching M can be computed in poly(n, s) times after performing O(nt) queries to obtain
the edges of the subgraph induced by the left-vertices {xi}n

i=1. We thus have the following
result:

▶ Lemma 8. Given a bipartite (≤ n)-non-contractive expander Γ : [u] × [t] → [s], there is a
non-adaptive dictionary for storing a set of n key-value pairs using s cells of w = Θ(lg u)
bits and answering queries in t evaluations of Γ and t memory probes. The dictionary can be
constructed in poly(n, s) time plus O(nt) evaluations of Γ.

Lemma 8 thus gives us a way of obtaining a non-adaptive dictionary from an expander.
What remains is to give expanders with good parameters. As mentioned, we do not have
optimal explicit constructions of such expanders. However, for the cell probe model where
computation is free of charge, we merely need the existence of Γ and not that it is efficiently
computable. Concretely, a probabilistic argument gives the following:

▶ Lemma 9. For any s ≥ 2n and any u ≥ n, there exists a (non-explicit) (≤ n)-non-
contractive expander Γ : [u] × [t] → [s] with t = lg(u/n)/ lg(s/n) + 5.

Combining Lemma 8 and Lemma 9 implies our Theorem 1.

Non-Explicit Expander. In the following, we prove Lemma 9. For this, consider drawing
Γ : [u] × [t] → [s] uniformly among all such functions/expanders. That is, we let Γ(x, y)
be uniform random and independently chosen in [s] for each x ∈ [u] and y ∈ [t]. For each
S ⊆ [u] with |S| ≤ n and each T ⊆ [s] with |T | = |S| − 1, define an event ES,T that occurs if
Γ(S) ⊆ T . We have that Γ is a (≤ n)-non-contractive expander if none of the events ES,T

occur. For a fixed ES,T , we have Pr[ES,T ] = (|T |/s)t|S| and thus a union bound implies

Pr[Γ is not a (≤ n)-non-contractive expander] ≤∑
S,T

Pr[ES,T ] =

n∑
i=1

∑
S⊆[u]:|S|=i

∑
T ⊆[s]:|T |=i−1

Pr[ES,T ] ≤

n∑
i=1

(
u

i

)(
s

i

)
(i/s)ti ≤

n∑
i=1

(eu/i)i(es/i)i(i/s)ti =

n∑
i=1

(
e2uit−2

st−1

)i

≤

n∑
i=1

(
e2(u/n)(n/s)t−1)i

.

For s ≥ 2n and t ≥ lg(u/n)/ lg(s/n) + 5, this is at most
∑n

i=1(e2/16)i < 1 and thus proves
Lemma 9.

ICALP 2024
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3 Hashing

In this section, we show how to construct a n-wise independent hash function with fast
evaluation in the cell probe model. As a data structure problem, such a data structure has a
query h(x) for each x ∈ [u]. Upon construction, the data structure draws a random seed
and initializes s memory cells of w bits. The data structure satisfies that the values h(x) are
uniform random in Fp and n-wise independent. Here the randomness is over the choice of
random seed.

Similarly to our dictionary, our hashing data structures makes use of a bipartite expander.
However, we need a (very) slightly stronger expansion property. Concretely, we assume the
availability of a (≤ n, 2)-expander Γ : [u] × [t] → [s] (rather than a (≤ n, 1)-expander). The
expander Γ thus satisfies that for any S ⊆ [u] with |S| ≤ n, we have |Γ(S)| ≥ 2|S|.

In addition to the (≤ n, 2)-expander Γ, we also need another function assigning weights
to the edges of Γ. We say that Π : [u] × [t] → Fp makes Γ useful if the following holds:
Construct from (Γ, Π) the u × s matrix AΓ,Π such that entry (x, y) equals∑

j:Γ(x,j)=y

Π(x, j) mod p

We have that (Γ, Π) is useful if every subset of n rows in AΓ,Π is a linearly independent set
of vector over Fs

p. We show later that for any (≤ n, 2)-expander Γ, there exists at least one
Π making Γ useful:

▶ Lemma 10. If Γ : [u] × [t] → [s] is a (≤ n, 2)-expander, then for p ≥ 2eu, there exists a
Π : [u] × [t] → Fp such that (Γ, Π) is useful.

In the cell probe model, we may assume that Γ and Π are free to evaluate and are known
to a data structure since computation is free of charge. With such a pair (Γ, Π) we may now
construct our data structure for n-wise independent hashing.

Construction. Initialize the data structure by filling each of the s memory cells by
uniformly and independently chosen values in Fp (the seed). Let z0, . . . , zs−1 denote the
values in the memory cells.

Querying. To evaluate h(x) for an x ∈ [u], compute and return the value

t−1∑
j=0

Π(x, j)zΓ(x,j) mod p.

Analysis. Observe that the value returned on the query x equals

t−1∑
j=0

Π(x, j)zΓ(x,j) mod p ≡
s−1∑
y=0

∑
j:Γ(x,j)=y

Π(x, j)zΓ(x,j) mod p.

But this is the same as (AΓ,Πz)x, i.e. the inner product of the x’th row of AΓ,Π with the
randomly drawn vector z. Since the rows of AΓ,Π are n-wise independent and z is drawn
uniformly, we conclude that the query values h(0), . . . , h(u − 1) are n-wise independent as
well. The query time is t probes and the space usage is s cells of lg p bits. We thus conclude

▶ Lemma 11. Given a bipartite (≤ n, 2) expander Γ : [u] × [t] → [s] and a p ≥ 2eu, there is
a cell probe data structure for evaluating an n-wise independent hash function h : [u] → Fp

using s cells of w = Θ(lg p) bits and answering queries in t cell probes.
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An argument similar to the proof of Lemma 9, we show the existence of the desired expanders:

▶ Lemma 12. For any s ≥ 2n and any u ≥ n, there exists a (non-explicit) (≤ n, 2) expander
Γ : [u] × [t] → [s] with t = 2 lg(u/n)/ lg(s/n) + 4.

Combining Lemma 12, Lemma 10 and Lemma 11 proves Theorem 3.
What remains is to prove Lemma 10 and Lemma 12. We start with Lemma 10.

Proof of Lemma 10. We give a probabilistic argument. Let Γ : [u] × [t] → [s] be a (≤ n, 2)-
expander. Draw Π : [u] × [t] → Fp by letting Π(x, j) be chosen uniformly and independently
from Fp. Define an event Eβ for every β ∈ Fu

p with 1 ≤ ∥β∥0 ≤ n (∥β∥0 gives the number of
non-zeros) that occurs if βAΓ,Π = 0. We have that (Γ, Π) is useful if none of the events Eβ

occur.
Consider one of these events Eβ . Since Γ is a (≤ n, 2)-expander, we have that the set of

rows in AΓ,Π corresponding to non-zero coefficients of β have at least 2∥β∥0 distinct columns
containing an entry that is chosen uniformly at random and independently from Fp. We thus
have Pr[Eβ ] ≤ p−2∥β∥0 . A union bound finally implies:

Pr[(Γ, Π) is not useful] ≤
n∑

i=1

∑
β∈Fu

p :∥β∥0=i

Pr[Eβ ] ≤

n∑
i=1

(
u

i

)
pip−2i ≤

n∑
i=1

(eu/(ip))i.

For p ≥ 2eu, this is less than 1, which concludes the proof of Lemma 10. ◀

Lastly, we prove Lemma 12.

Proof of Lemma 12. The proof follows that of Lemma 9 uneventfully. Draw Γ randomly,
with each Γ(x, y) uniform and independently chosen in [s]. Again, we define an event ES,T

for each S ⊆ [u] with |S| ≤ n and each T ⊆ [s] with |T | = 2|S| − 1. The event ES,T occurs if
Γ(S) ⊆ T . We have

Pr[Γ is not an (≤ n, 2)-expander] ≤∑
S,T

Pr[ES,T ] ≤

n∑
i=1

(
u

i

)(
s

2i

)
((2i)/s)ti ≤

n∑
i=1

(eu/i)i(s/(2i))2i((2i)/s)ti =

n∑
i=1

(
eu(2i)t−3

st−2

)i

≤

n∑
i=1

(
e(u/n)(2n/s)t−2)i

For s ≥ 4n and t ≥ 2 lg(u/n)/ lg(s/n) + 4 ≥ lg(u/n)/ lg(s/(2n)) + 4, this is less than 1,
completing the proof of Lemma 12. ◀

ICALP 2024



104:10 Optimal Non-Adaptive Cell Probe Dictionaries and Hashing

4 Lower Bound for Non-Adaptive Dictionaries

In this section, we prove cell probe lower bounds for non-adaptive dictionaries supporting
membership queries (is x in the input set X?).

We adapt the “cell-sampling” technique from [18]. Roughly speaking, this proof technique
shows that there exists a not-too-large subset of cells C ⊆ [s] such that a large number of
queries will only probe cells in C (we say such queries are resolved by C) assuming that the
query time of the cell probe data structure is impossibly small. For adaptive and static data
structures, it can be observed that the subset of cells C will be different for varying choices
of the n input key-value pairs as the probed cells during queries can depend on the memory
representation.

For our non-adaptive lower bound, we make the critical observation that the subset of
sampled cells C need not depend on the n input key-value pairs. In particular, non-adaptive
queries must choose the probed cells without any knowledge of the memory representation.
As a result, we are able to separate the adaptive and non-adaptive setting for the dictionary
problem and successfully prove a matching lower bound to our constructions as follows:

Proof of Theorem 2. Assume the space usage of a data structure is s cells of w bits each.
We assume for the proof that sw ≥ 6n lg(u/n). For smaller space usage, we can always pad
with dummy memory cells.

For a query x ∈ [u], let p(x) ⊆ [s] denote the indices of the memory cells probed on
query x.

By averaging, for any q with t ≤ q ≤ s, there is a set of q memory cells C ⊆ [s] such that
u
(

s−t
q−t

)
/
(

s
q

)
queries x have p(x) ⊆ C. Fix such a set C. Assume for the sake of contradiction

that

t ≤ (1/4) min
{

q,
lg(u/n)

lg(sw/(n lg(u/n)))

}
.

Then we have

u ·
(

s−t
q−t

)(
s
q

) = u · q(q − 1) · · · (q − t + 1)
s(s − 1) · · · (s − t + 1) ≥ u ·

(
(3/4)q

s

)t

.

Letting q = (1/4)n lg(u/n)/w, this is at least u ·
(

(3/16)n lg(u/n)
sw

)t

≥ u ·
(

n lg(u/n)
sw

)2t

≥
u
√

n/u =
√

un.
Let U ⊆ [u] denote the set of queries x with p(x) ⊆ C. Notice that the memory cells

in C serve as a membership data structure for the universe U and inputs X ⊆ U of size n.
Hence the number of bits in C must be at least lg

(|U |
n

)
≥ (1/2)n lg(u/n). But the cells only

have qw = (1/4)n lg(u/n) bits, a contradiction. We thus conclude:

t = Ω
(

min
{

n lg(u/n)
w

,
lg(u/n)

lg(sw/(n lg(u/n)))

})
. ◀

5 Conclusion and Open Problems

In this work, we presented optimal non-adaptive cell probe dictionaries and data structures
for evaluating n-wise independent hash functions. Our upper bounds rely on the existence
of bipartite expanders with quite weak expansion properties, namely (≤ n, 1) and (≤ n, 2)-
bipartite expanders. If efficient explicit constructions of such expanders were to be developed,
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they would immediately allow us to implement our dictionary in the standard word-RAM
model. They would also go a long way towards a word-RAM implementation of n-wise
independent hashing. We thus view our results as strong motivation for further research
into such expanders. In personal communication with Bruno Bauwens and Marius Zimand,
they have given a preliminary proof that an exciting explicit construction with s = O(n) and
t = (lg u)O(1) exists, thus taking a first step towards an optimal word-RAM implementation.

Next, we remark that our non-explicit constructions of (≤ n, 1) and (≤ n, 2) expanders
are essentially optimal. Concretely, a result of Radhakrishnan and Ta-Shma [20] shows that
any (u, s, t)-bipartite graph with expansion 1 requires t = Ω(lg(u/n)/ lg(s/n)). In more
detail, Theorem 1.5 (a) of [20] proves that if G is a (u, s, t)-bipartite graph that is an (n, ϵ)
disperser (every set of n left-nodes has at least (1 − ε)s right-nodes), then for ε > 1/2, the
left-degree, t, is Ω(lg(u/n)/ lg(1/(1 − ε))). Since a (≤ n, 1)-non-contractive expander is also
an (n, ϵ)-disperser with (1 − ϵ) = n/s, the lower bound t = Ω(lg(u/n)/ lg(s/n)) follows.

Finally, we also observe a near-equivalence between non-adaptive data structures for
evaluating n-wise independent hash functions and non-constructive bipartite expanders.
Concretely, assume we have a word-RAM data structure for evaluating an n-wise independent
hash function from [u] to [u] and assume w = lg u for simplicity. If the data structure uses s

space and answers queries in t time (including memory lookups and computation), then we
may obtain an explicit expander from the data structure. Concretely, we form a right node
for every memory cell, a left node for every query and an edge corresponding to each cell
probed on a query. Now observe that if there was a set of n left nodes S with |Γ(S)| < n, then
from those |Γ(S)| memory cells, the data structure has to return n independent and uniform
random values in [u]. But the cells only have |Γ(S)|w < n lg u bits, i.e. a contradiction.
Hence the resulting expander is non-contractive. If the query time of the data structure was
t, we may obtain the edges incident to a left node simply by running the corresponding query
algorithm. Since the query algorithm runs in t time, it clearly accesses at most t right nodes
and computing the nodes to access can also be done in t time. A similar connection was
observed by [8].
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