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Abstract
The paper revisits the Robust s-t Path problem, one of the most fundamental problems in robust
optimization. In the problem, we are given a directed graph with n vertices and k distinct cost
functions (scenarios) defined over edges, and aim to choose an s-t path such that the total cost of
the path is always provable no matter which scenario is realized. Viewing each cost function as an
agent, our goal is to find a fair s-t path, which minimizes the maximum cost among all agents. The
problem is NP-hard to approximate within a factor of o(log k) unless NP ⊆ DTIME(npoly log n), and
the best-known approximation ratio is Õ(

√
n), which is based on the natural flow linear program.

A longstanding open question is whether we can achieve a polylogarithmic approximation for the
problem; it remains open even if a quasi-polynomial running time is allowed.

Our main result is a O(log n log k) approximation for the Robust s-t Path problem in quasi-
polynomial time, solving the open question in the quasi-polynomial time regime. The algorithm is
built on a novel linear program formulation for a decision-tree-type structure, which enables us to
overcome the Ω(

√
n) integrality gap for the natural flow LP. Furthermore, we show that for graphs

with bounded treewidth, the quasi-polynomial running time can be improved to a polynomial. We
hope our techniques can offer new insights into this problem and other related problems in robust
optimization.
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1 Introduction

Robust optimization under uncertainty [5, 6, 17, 26] is one of the most important and
challenging computational tasks in the real world. Uncertainty arises in many scenarios. For
instance, the travel time for a road segment might be uncertain due to traffic jams. The
paper revisits the Robust s-t Path problem [18], a cornerstone problem in the area of robust
optimization. In the problem, there are several edge cost functions for a given graph and the
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EA
T

C
S

© Shi Li, Chenyang Xu, and Ruilong Zhang;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 106; pp. 106:1–106:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shili@nju.edu.cn
https://orcid.org/0000-0001-9140-9415
mailto:cyxu@sei.ecnu.edu.cn
https://orcid.org/0000-0002-6837-2906
mailto:ruilongzhang.cn@gmail.com
https://orcid.org/0000-0002-4859-2661
https://doi.org/10.4230/LIPIcs.ICALP.2024.106
https://arxiv.org/abs/2305.16439
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


106:2 Polylogarithmic Approximations for Robust s-t Path

goal is to find an s-t path that minimizes the maximum cost across all the cost functions.
Apart from serving a model for handling uncertainty, robustness also offers a method to
integrate multiple objectives and fairness requirements.

In a routing network, each link (or edge) typically possesses multiple attributes, such as
usage cost and delay. By representing each attribute as a cost function, we can formulate
the multi-objective routing problem as our model [14, 15, 31]. In the context of fairness
computation, diverse edge cost functions can be interpreted as various perspectives of agents
on the edges. Our objective is to identify a public path that can accommodate these
perspectives under the notion of min-max fairness [1, 27, 30].

The Robust s-t Path problem was initially studied by [18], and since then it has received
widespread attention due to its broad applicability. In [18], the authors demonstrated that
the problem is strongly NP-Hard even when there are only two scenarios. Later, [2] considers
the problem with the constant number of scenarios, and shows that the problem admits a
fully polynomial-time approximation scheme (FPTAS). When the number k of scenarios is
part of the input, simply computing the shortest path w.r.t the summation of the k cost
functions can obtain an approximation ratio of k. Kasperski and Zielinski [20] proved that the
problem is hard to approximate within a factor of o(log k) unless NP ⊆ DTIME(npoly log n).
Whether a polylogarithmic approximation can be achieved has been open ever since. A
recent breakthrough in the approximation ratio is made by Kasperski and Zielinski [23] in
which they gave a flow-LP-based algorithm that is Õ(

√
n)-approximate, where we use Õ to

hide a polylogarithmic factor. They further showed that their analysis is nearly tight by
proving an integrality gap of Ω(

√
n) for the flow LP.

It should be noted that Bilò et al. [7] studied the ℓq-norm shortest path problem which is a
generalized version of robust s-t path, i.e., the problem aims to find a s-t path P to minimize
the value of

(∑
i∈[k] ci(P)q

)1/q

, where ci(P) is agent i’s cost for the selected path P. Their
algorithm [7, Algorithm 2]) extends the classical Dijkstra algorithm by replacing the distance
with the ℓq-norm metric. Our directed graph is a DAG, so the Dijkstra-type algorithm
becomes a dynamic programming-type algorithm, with nodes processed using a topological
order. So, their algorithm just stores the best path in the ℓq-norm for every node. It is
claimed in [7, Theorem 14] that such an algorithm achieves O(min{q, log k})-approximation
for the ℓq-norm shortest path problem. However, unfortunately, there exists a crucial error
in the analysis. In the full version [25], we give a hard instance on a series-parallel graph
for the algorithm and show that the approximation ratio is at least k1−1/q. In other words,
when q = O(log k), the proposed algorithm [7, Algorithm 2] is O(k)-approximate for the
robust s-t problem.

1.1 Our Contributions
This paper makes significant progress in closing the gap between the known upper and
the lower bound for Robust s-t Path. We show that for two natural graph classes, a
polylogarithmic approximation can be obtained in polynomial time; while for general graphs,
there exists a polylogarithmic approximated algorithm running in a quasi-polynomial time.
The following formalizes the model and summarizes our main results.

The Robust s-t Path Problem. Consider a directed graph G(V, E) with n vertices and m

edges. There are k scenarios (also referred to as “agents” hereafter), where each scenario i ∈ [k]
has an edge cost function ci : E → R≥0. Given two specified vertices s and t in the graph,
the goal is to find an s-t path P that minimizes maxi∈[k] ci(P), where ci(P) :=

∑
e∈P ci(e).
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Main Result 1 (Theorem 1). There is a randomized polynomial-time O(H log k)-approxi-
mation algorithm for Robust s-t Path for directed series-parallel graphs, where H is the
height of the decomposition tree of the series-parallel graph and k is the number of agents.

Our first result is on the class of series-parallel graphs (Section 2), which are used by [20]
to demonstrate a lower bound of Ω(log1−ϵ k) (for any ϵ > 0) for the Robust s-t Path problem.
We begin by showing that the natural flow linear program (LP) for this class has integrality
gaps of Ω(k) and Ω(

√
n). The gaps hold even when we integrate the knowledge of the

optimum cost to the LP to circumvent some obvious gap instances. This result aligns with
the prior findings of [23], but our constructed instance is significantly simpler. It is worth
noting that most prior algorithms in the existing literature rely on the flow LP mentioned
above, and thus, their approximation ratios cannot be better than O(min{k,

√
n}).

To overcome the gap, we develop a novel linear program based on the decomposition tree
of series-parallel graphs and demonstrate that a dependent randomized rounding algorithm
for the LP obtains an approximation ratio of O(H log k). Particularly, for the hard instance
that leads to a lower bound Ω(log1−ϵ k) (for any ϵ > 0) stated in [20], our algorithm can
return a O(log log n log k)-approximate solution, which is nearly tight since there is only a
O(log log n)-gap; the detailed discussion can be found in the full version [25].

Main Result 2 (Theorem 8). Given a directed graph with bounded treewidth, there is a
randomized algorithm that obtains an approximation ratio of O(log n log k) in polynomial
time, where n is the number of vertices and k is the number of agents.

We then consider graphs with bounded treewidth (Section 3). When the treewidth is
2, it becomes the class of series-parallel graphs. Therefore, combining the above two
results gives a O(min{H, log n} · log k)-approximation for series-parallel graphs. Besides
series-parallel graphs, the graph class includes many other common graphs, such as trees,
pseudoforests, Cactus graphs, outerplanar graphs, and Halin graphs. In this part, we employ
the nice properties provided by the treewidth decomposition of these graphs and obtain a
polylogarithmic approximation.

Main Result 3 (Theorem 12). Given any directed graph, there is a randomized algorithm
that obtains a O(log n log k)-approximate solution in quasi-polynomial time, where n is the
number of vertices and k is the number of agents. Moreover, any quasi-polynomial time
algorithm for Robust s-t Path has an approximation lower bound of Ω(log1−ϵ k) (even on
series-parallel graphs) under the assumption that NP ⊈ DTIME(npoly log n).

Finally, we consider general graphs (Section 4). The algorithm is also LP-based, following
a similar framework as the algorithm for series-parallel graphs. The main challenge here is
that we no longer have a simple tree structure for general graphs. To address this issue, we
construct a decision-tree-type tree structure for the given graph and write a linear program
based on it. Our algorithm then builds on this new LP to give the first polylogarithmic
approximation for general graphs. Additionally, we show that the lower bound of Ω(log1−ϵ k)
can be extended to the algorithms running in quasi-polynomial time, i.e., the problem is still
hard to approximate within o(log k) even if we allow quasi-polynomial time algorithms. This
part is omitted in this version and can be found in the full version [25].

Main Result 4. For the problems of Robust s-t Path, weighted independent set, and
spanning tree under the maximin criteria, it is NP-Hard to determine whether their instances
have zero-cost optimal solutions or not. This implies that these problems do not admit any
polynomial time α-approximate algorithm unless P = NP, where α is an arbitrary function
of the input.

ICALP 2024
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The paper also considers the maximin criteria, where the goal is to maximize the minimum
cost among all agents. By observing that the classic algorithms (e.g., Dijkstra’s algorithm)
that work for the shortest path problem on DAGs (directed acyclic graphs) also work for
the longest path problem on DAGs, one might expect that the maximin criteria is also a
candidate objective to investigate the robustness of the s-t path problem, i.e., finding an
s-t path P such that mini∈[k] ci(P) is maximized. We demonstrate this is not the case by
providing a strong lower bound for the problem under the maximin criteria. Our reduction
builds on a variant of the set cover problem. Employing a similar basic idea of the reduction,
we also show that the maximin weighted independent set problem on trees or interval graphs
is not approximable. This constitutes a strong lower bound for this problem, while the
previous works [24, 28] only show the NP-Hardness. Our reduction idea can further be
extended to the maximin spanning tree problem, which implies that the robust spanning
tree problem is also not approximable under the maximin objective. This part is completely
omitted in this version and can be found in the full version [25].

1.2 Other Related Works
Robust Minimax Combinatorial Optimization. Robust minimax optimization under dif-
ferent combinatorial structures has been extensively studied in the past three decades.
See [3, 22] for a survey. Many problems that are polynomial-time solvable in the normal
setting are shown to be NP-hard in the robust minimax setting: spanning trees, s-t cuts, and
perfect matching on bipartite graphs [22]. Besides these fundamental problems, the minimax
submodular ranking problem was studied in [10] very recently. For the minimax spanning
tree, a O(log k/ log log k)-approximation algorithm is known [9], which is almost tight by the
lower bound of Ω(log1−ϵ k) (for any ϵ > 0) stated in [21]. The problem of minimax perfect
matching has a lower bound of Ω(log1−ϵ k) (for any ϵ > 0) [20], while the best upper bound
so far is still O(k) which is trivial. In the case where k is a constant, fully polynomial time
approximation schemes are known for spanning trees, perfect matching, knapsacks, and s-t
paths [3, 4, 22, 29].

Multiobjective s-t Path. Finding an s-t path is a fundamental problem in multi-objective
optimization [15]. An Excellent survey of multiobjective combinatorial optimization, including
multiobjective s-t path, can be found in [11]. Typically, we are given a directed graph
G := (V, E). Each edge e ∈ E has a positive cost vector c(e) := (c1(e), . . . , ck(e)). For every
s-t path P ⊆ E, we have a cost vector c(P) = (c1(P), . . . , ck(P)) with ci(P) =

∑
e∈P ci(e).

The goal is to compute an s-t path P such that P is Pareto optimal. An s-t path is called
Pareto optimal if there is no other s-t path that makes one objective better off without
making another worse off. Not surprisingly, this problem has been shown to be NP-hard
even if the cost vector only has two coordinates [32] in which the problem is called the
bi-objective s-t path minimization problem. Bi-objective s-t path minimization has also been
studied extensively [14, 31], in which researchers mainly focus on the exact algorithms with
exponential running time. In addition, a fully polynomial time approximation scheme is
proposed by [29].

Fair Allocation with Public Goods. By observing the minimax objective as a fairness
criterion, our problem shares some similarities with the problem of public goods, which was
first used to distinguish the previous private goods by Conitzer et al. [12] in the field of fair
division. Specifically, there is a multiagent system and different agents hold different opinions
about the same goods. And, they aim to select a feasible set of goods to satisfy the various
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fairness notions, such as propositional share or its generalization [12, 16]. In [16], they study
some constraints of goods, i.e., the selected goods must form a matching or matroid. The
minimax criterion is quite different from other fairness measures in the fair division field,
which leads to different techniques.

1.3 Roadmap
Section 2 and Section 3 present results on series-parallel graphs and bounded-treewidth
graphs, respectively. Subsequently, in Section 4, the general graph case is considered. Section 5
finally concludes the paper. Due to space constraints, all the results on the maximin criteria
are deferred to the full version of the paper.Note that we focus on high-level descriptions
of our methods in the main body. Some formal descriptions and proofs (including lemma
statements) can be found in the corresponding appendices.

2 Series-Parallel Graphs

In this section, we show that there is a randomized algorithm that achieves O(H log k)
approximation for series-parallel graphs, where H is the height of the series-parallel graph’s
decomposition tree; its meaning will be clear later. The algorithm can be viewed as a
warm-up example for the general graph, as the algorithm for the general graph follows a
similar algorithmic framework. Formally, we shall show the following theorem (Theorem 1)
in this section. We only present the LP formulation and the complete algorithm due to space
limits. All proofs can be found in the paper’s full version.

▶ Theorem 1. Given any series-parallel graph G, there is a polynomial time algorithm that
returns a O(H log k)-approximation solution with probability at least 1− ( 1

k + 1
kH ) for robust

s-t path, where H is the height of G’s decomposition tree and k is the number of agents.

In Section 2.1, we give the basic concepts and properties of the series-parallel graphs,
which we will use later to build our linear programming formulation. In Section 2.2, we
formally present our LP formulation. We give the complete and rounding algorithm in
Section 2.3. Finally, we show the analysis in Section 2.4.

2.1 Basic Concepts
▶ Definition 2 (Series-Parallel Graph). A directed graph G := (V, E, s, t) with source s and
sink t is called a series-parallel graph, if it contains a single edge from s to t, or it can be
built inductively using the following series and parallel composition operations. The series
composition of two-terminal graphs G1 := (V1, E1, s1, t1) and G2 := (V2, E2, s2, t2) is to
identify t1 and s2, and let s1 and t2 be the new source and sink in the resulting graph. The
parallel composition of two-terminal graphs G1 := (V1, E1, s1, t1) and G2 := (V2, E2, s2, t2)
is to identify s1 with s2 and t1 with t2 respectively, and let s1 = s2 and t1 = t2 be the new
source and sink.

A series-parallel graph can be represented in a natural way by a tree structure that
describes how to assemble some small graphs into a final series-parallel graph through series
and parallel composition. Such a tree structure is commonly called the decomposition tree of
the series-parallel graph in the literature [33]. Formally, a decomposition tree T := (V, E) of
a series-parallel graph G := (V, E) is a tree such that (i) each leaf node u ∈ V corresponds
an edge in E; (ii) each internal node is either a series or parallel node; (iii) the child nodes of
a parallel (resp. series) node must be leaf nodes or series (resp. parallel) nodes. The series

ICALP 2024
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(resp. parallel) node corresponds to the series (resp. parallel) composition, and they are used
to indicate how to merge the small subgraphs of its child nodes. The subgraph Gu of a node
u is a subgraph of G such that Gu only contains those edges corresponding to the leaf nodes
in the subtree rooted at u. Let H be the height of T. Given a series-parallel graph, it is
known that its decomposition tree can be built in linear time by the standard series-parallel
graph recognition algorithm [33]. An example can be found in Figure 1.

s t

e1

e2

e9
e17

e18

P

S S

P P P
A B C

e17 e2e1 e9 e18

e3 e5 e4 e6 e13 e15 e14 e16 e7 e10 e11 e8 e12

S S S S S S

G := (V,E)

T := (V,E)

Figure 1 An example of the decomposition tree of a series-parallel graph. The series-parallel
graph G := (V, E) is shown on the left and its decomposition tree T := (V, E) is shown on the right.
Each leaf node in T corresponds to an edge in E. Each internal node is either a series node S or a
parallel node P. And it indicates how to merge the child nodes’ subgraph. For example, consider the
S node and its two child nodes e13 and e15. Then, the subgraph of this S node is e13 → e15 which
merges its two child nodes’ subgraph via the series composition. And also, the subgraph of this S
node’s parent corresponds to the subgraph B in G, which merges e13 → e15 and e14 → e16 via the
parallel composition. An s-t path corresponds to a feasible subtree (Definition 3). For example, the
feasible subtree T′ can be converted to an s-t path e2 → e8 → e12 → e18.

We remark that the children of a parallel node are unordered, and for a series node, the
children should be considered as ordered. However, for the s-t path problem, the order is not
important, as permuting the children of a series node will lead to an equivalent instance.

We aim to give a linear program based on the decomposition tree T. Clearly, not all
subtrees of T correspond to an s-t path of G. In the following, we introduce the concept of a
special subtree of T called feasible subtree (Definition 3), which is able to be converted into
an s-t path.

▶ Definition 3 (Feasible Subtree). A subtree T′ of T is called a feasible subtree if and only if
(i) T′ includes the root node of T; (ii) for every series node s in T′, T′ includes all child
nodes of s; (iii) for every parallel node p in T′, T′ includes exactly one child node of p.

It now remains to define a cost function fi : 2V → R≥0 according to the cost function ci.
Since each edge corresponds to a unique leaf node in T, it is easy to define fi by ci: for each
v ∈ V, fi(v) := ci(e) if node v corresponds to some edge e; otherwise fi(v) := 0. Formally,
we have the following simple observation (Observation 4).

▶ Observation 4. Given any series-parallel graph G := (V, E) and its decomposition tree
T := (V, E), fix an arbitrary agent i ∈ [k], any s-t path P of G with the cost ci(P) corresponds
to a feasible subtree T′ of T with the cost fi(T′) such that fi(T′) = ci(P) and vice versa.
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2.2 LP Formulation
Given any series-parallel graph G := (V, E), we first employ the standard doubling technique
to enhance the linear program. Given a guess of the optimal objective value GS, we discard
those edges e such that there exists an agent i ∈ [k] with ci(e) > GS. Clearly, these
discarded edges cannot belong to the optimal solution. Then, we run the series-parallel graph
recognition algorithm [33] to construct a decomposition tree T := (V, E) of the series-parallel
graph. See Algorithm 1 for the complete description.

The linear program is shown in (Tree-LP). For an internal node v ∈ V, use child(v) and
Λ(v) to denote its children and descendants in the tree, respectively. Let P (T) and S(T) be
the set of parallel and series nodes in T. For each node v, xv is a relaxed indicator variable
denoting whether v is selected or not. The three constraints (2), (3) and (4) correspond to
the three conditions stated in Definition 3 respectively, in order to ensure that the solution
is a feasible subtree. The first constraint type (1) is a bit subtle, and it is the key that
allows us to surpass the pessimistic Ω(k) and Ω(

√
n) integrality gap. In these constraints,∑

u∈Λ(v) xu · fi(u) denotes the cost of the selected subtree rooted at v with respect to agent
i. Thus, when v = r, the constraint implies that for any agent, the total cost of all the
selected nodes must be at most xr ·OPT = OPT. For the cases that v ̸= r, these constraints
do not affect the feasible region of integer solutions since xv is either 1 or 0, but they can
reduce the fractional solution’s feasible region dramatically by restricting the contribution of
each subtree Λ(v). A more detailed discussion is given in the full version of the paper.

(Tree-LP)∑
u∈Λ(v)

xu · fi(u) ≤ xv · GS, ∀i ∈ [k],∀v ∈ V (1)

xr = 1, (2)∑
u∈child(v)

xu = xv, ∀v ∈ P (T) (3)

xu = xv, ∀v ∈ S(T), u ∈ child(v) (4)
xv ≥ 0, ∀v ∈ V (5)

2.3 Algorithms
This section formally describes the complete algorithm (Algorithm 1) for series-parallel
graphs. The main algorithm mainly consists of two steps: the doubling step (lines 2-13 of
Algorithm 1) and the rounding algorithm (Algorithm 2). After finishing the doubling step,
we obtain a fractional solution x∗ with the value of GS that is close to the optimal solution
OPT (Observation 5). Then, we shall employ a dependent rounding algorithm to obtain a
feasible subtree based on x∗. This dependent randomized rounding algorithm selects nodes
level by level, starting from the top of T and proceeding downwards. For parallel nodes,
the algorithm selects one of its child nodes with a probability determined by the optimal
fractional solution x∗. For series nodes, the algorithm selects all of its child nodes with a
probability of 1, ensuring that the resulting subtree is always feasible. A formal description
of the algorithm can be found in Algorithm 2.

2.4 Analysis
This section analyzes the performance of our algorithm. We start by describing a simple
observation (Observation 5). Let T′ be the subtree returned by Algorithm 2. Recall that H

is the height of T.

ICALP 2024
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Algorithm 1 The Complete Algorithm for Series-Parallel Graphs.

Input: A series-parallel graph G := (V, E) with k cost functions ci : 2E → R≥0, i ∈ [k].
Output: An s-t path P ⊆ E.

1: flag← true; GS← maxi∈[k]
∑

e∈E ci(e).
2: while flag = true do
3: E′ ← { e ∈ E | ∃i ∈ [k] s.t. ci(e) > GS }.
4: E ← E \ E′; G← (V, E′).
5: Compute the tree decomposition T := (V, E) of G by [33].
6: Solve the linear program (Tree-LP).
7: if (Tree-LP) has a feasible solution then
8: Let x∗ be a feasible solution to (Tree-LP).
9: GS← GS

2 .
10: else
11: flag← false.
12: end if
13: end while
14: Run Algorithm 2 with the optimal solution x∗ to obtain a feasible subtree T′ of T.
15: Convert T′ into an s-t path P.
16: return P.

▶ Observation 5. Let GS∗ be the guessing value at the beginning of the last round of the
while-loop (lines 2-13 of Algorithm 1). Then, we have GS∗ ≤ 2 ·OPT2.

To show that the approximation ratio is O(H log k) with a constant probability, a natural
step is to first bound the expectation of our solution. We first state some intuition. According
to the description of the rounding scheme, it is easy to see that for each agent i,

E[fi(T′)] =
∑
e∈E

ci(e) Pr[e ∈ T′] = GS∗.

Then by Markov inequality, we have for each agent i,

Pr[fi(T′) ≥ H log k · GS∗] ≤ 1
H log k

.

However, the above inequality is not sufficient because proving Theorem 1 needs to show that
Pr[∀i ∈ [k], fi(T′) ≥ H log k ·GS∗] is at most 1

k + 1
kH . To address this issue, we need to employ

an analysis technique called Moment Method, which is widely used in the literature [13, 19].
More formally, we aim to show the following key lemma (Lemma 6); a similar proof can also
be found in [13].

▶ Lemma 6. For any agent i ∈ [k], we have E[exp
(
ln(1 + 1

2H ) · fi(T′)
)
] ≤ 1 + 1

H .

Proof. We prove the theorem inductively. First, consider the case that H = 1, i.e., the
decomposition tree T only contains a root r. Since xr = 1, there is no randomness in selecting
T′. Thus, we have for any z ≥ 1,

E
[
z

fi(T′)
GS∗

]
= z

xr·fi(r)
GS∗ ≤ z,

where the last inequality uses constraint (1) in (Tree-LP).

2 One can get a more accurate lower bound of the optimal solution (e.g., GS∗ ≤ (1 + ϵ) · OPT for any
ϵ > 0) by the standard binary search technique.
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Algorithm 2 Dependent Randomized Rounding.

Input: A tree structure T(V, E) rooted at r; a fractional solution x∗ ∈ [0, 1]|V|.
Output: A feasible subtree T′.

1: Initially, set T′ ← ∅ and a vertex queue Q ← {r}.
2: while Q ≠ ∅ do
3: Use v to represent the front element of Q.
4: T′ ← T′ ∪ {v}, Q ← Q \ {v}.
5: if v is a parallel node then
6: Pick one node u ∈ child(v) randomly such that u is chosen with probability xu

xv
.

7: Q ← Q∪ {u}.
8: end if
9: if v is a series node then

10: for each u ∈ child(v) do
11: Q ← Q∪ {u}.
12: end for
13: end if
14: end while
15: return T′.

To streamline the analysis, we continue considering the case that H = 2. We further
distinguish two subcases: (i) root r is a parallel node; (ii) root r is a series node. For the
first subcase, Algorithm 2 selects exactly one child v ∈ child(r) with probability xv/xr = xv.
According to the law of total expectation and only leaves in T have non-zero costs, we have

E
[
z

fi(T′)
GS∗

]
=

∑
v∈child(r)

Pr[v ∈ T′] · E
[
z

fi(Λ′(v))
GS∗

∣∣∣∣v ∈ T′
]

,

where Λ′(v) := Λ(v) ∩T′. Observing that once conditioned on v ∈ T′, the conclusion for
the H = 1 case can be used to bound the expectation, we have

E
[
z

fi(T′)
GS∗

]
=

∑
v∈child(r)

Pr[v ∈ T′] · E
[
z

fi(Λ′(v))
GS∗

∣∣∣∣v ∈ T′
]

,

=
∑

v∈child(r)

xv · z
fi(v)
GS∗

≤
∑

v∈child(r)

xv ·
(

1 + (z − 1) · fi(v)
GS∗

)
(Constraint (1) and zr ≤ 1 + r(z − 1)∀z > 0, r ∈ [0, 1])

=

 ∑
v∈child(r)

xv

 + (z − 1) ·
∑

v∈child(r) xv · fi(v)
GS∗

= 1 + (z − 1) ·
∑

v∈Λ(r) xv · fi(v)
GS∗ (Constraint (3))

≤ e(z−1)·

∑
v∈Λ(r)

xv·fi(v)

GS∗ . (1 + x ≤ ex)
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For the second subcase, according to Constraint (4), we have xv = xr = 1 for each
xv ∈ child(r), and therefore,

E
[
z

fi(T′)
GS∗

]
= E

[
z

∑
v∈child(r)fi(Λ′(v))

GS∗

]
≤ z

∑
v∈Λ(r)

xv·fi(v)

GS∗ .

Since z ≤ ez−1, combing the two subcases, we have that when H = 2,

E
[
z

fi(T′)
GS∗

]
≤ (e(z−1))

∑
v∈Λ(r)

xv·fi(v)

GS∗ .

The above inequality shows that as the height increases by 1, the upper bound of the
expectation grows exponentially. Furthermore, when the height increases from 1 to H, we
can obtain a sequence z1 = z, z2, . . . , zH , where zh = ezh−1−1 for each h > 1, and have

E
[
z

fi(T′)
GS∗

]
≤ z

∑
v∈Λ(r)

xv·fi(v)

GS∗
h ,

for any T with height h by almost the same analysis as above. Due to Constraint (1), we
have

∑
v∈Λ(r) xv · fi(v) ≤ GS∗, and thus, E

[
z

fi(T′)
GS∗

]
is at most zh.

Finally, to obtain the claimed upper bound, we set z = 1 + 1
2H such that zh ≤ 1 + 1

H ,
and complete the proof. ◀

▶ Lemma 7. Consider an arbitrary agent i, Algorithm 2 returns a feasible subtree T′ such
that fi(T′) ≤ 4H · log k · GS with high probability, where H is the height of the decomposition
tree of the series-parallel graph and GS is a guess of the optimal objective value such that the
corresponding (Tree-LP) admits a feasible solution.

Lemma 7 can be proved by Lemma 6 and Markov bound. Theorem 1 can be proved by
Lemma 7 and union bound. All proofs are deferred to the full version of the paper.

3 Graphs with Bounded Treewidth

This section considers robust s-t path on graphs with bounded treewidth. We mainly show
the following theorem. Noting that any series-parallel graph has a treewidth of 2, this result
improves upon the above O(H log k) ratio for series-parallel graphs with large H.

▶ Theorem 8. Given any directed graph G with treewidth tw(G) ≤ ℓ, there is an algorithm
that returns a O(log n log k)-approximate solution in poly(n) · nO(ℓ2) time with probability
at least 1− ( 1

k + 1
k log n ) for robust s-t path, where n is the number of vertices and k is the

number of agents.

3.1 Algorithmic Framework
The basic idea of the algorithm is to reduce our problem to the tree labeling problem which
was proposed by Dinitz et al. [13] very recently. In their paper, they provided a randomized
algorithm for the tree label problem. Applying the algorithm to our reduced instance can
obtain an s-t path whose expected cost with respect to each agent is bounded. Finally, we
employ the concentration inequalities to show that with high probability, the returned path
is a polylogarithmic approximation solution. To ensure the reduction’s correctness, we also
need to utilize some other tools. The complete description of our algorithm can be found in
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the full version of the paper. Due to space limitations, in the main body, we only focus on
the core of our algorithm – the reduction to tree labeling. Before introducing the reduction,
it is necessary to restate the definition of tree labeling and the result proved in [13].

The Tree-labeling Problem. Consider a binary tree T(V, E) rooted at r ∈ V. For each
node v ∈ V, there is a finite set Lv of labels for v. Let L :=

⋃
v∈V Lv be the set of all

possible labels. The output is a label assignment L := (lv ∈ Lv)v∈V of the node set V, that
satisfies the consistency and cost constraints.

(Consistency Constraints) For every internal node v of T with two children u and w
(u or w is possibly empty), we are given a set Γ(v) ⊆ Lu × Lv × Lw. A valid labeling
L = (lv ∈ Lv)v∈V must satisfy (lu, lv, lw) ∈ Γ(v) for every internal node v.
(Cost Constraints) There are k additive cost functions f1, . . . , fk defined over the
labels, i.e., for each i ∈ [k], fi : L → R≥0. For each i ∈ [k], a valid labeling L needs to
satisfy fi(L) :=

∑
v∈V fi(lv) ≤ 1.

A label assignment L := (lv ∈ Lv)v∈V is called consistent if it satisfies the consistency
constraints; it is valid if it satisfies both the consistency and cost constraints. Let H be the
height of T and let ∆ := maxv∈V|Lv| be the maximum size of any label set. Let n be the
number of nodes in T. In [13], they show the following result.

▶ Lemma 9 ([13]). Given a tree labeling instance such that the instance admits a valid label
assignment. There is a randomized algorithm that in time poly(n) ·∆O(H) outputs a consistent
label assignment L such that for every i ∈ [k], we have E

[
exp

(
ln(1 + 1

2H ) · fi(L)
)]
≤ 1 + 1

H .

3.2 Reduction Intuition
In this section, we give some intuition of our reduction. The formal description and an
example can be found in the next section (Section 3.3). Given any directed graph with
bounded treewidth, we aim to construct a tree-labeling instance such that the solution to
the constructed tree-labeling instance can be converted into an s-t path of the original graph
with some cost-preserved property. Note that the treewidth decomposition T(V, E) of any
input graph G can be computed efficiently [8]. We directly let the treewidth decomposition
T be the binary tree in the reduced tree-labeling instance. The following shows how to
construct the labels and the corresponding constraints such that a feasible label assignment
can be successfully transformed into an s-t path.

Label Construction. For a graph’s treewidth decomposition, each node v ∈ T corresponds
to a node subset X(v) of the original graph. Each edge in the original graph is guaranteed to
be covered by some X(v), which is the completeness property of a tree decomposition. Use
C(v) to denote the edges covered by node v ∈ T. Without loss of generality, we can assume
that s and t are included in any node v ∈ T and each edge is assigned to a unique C(v).
The label of a node v is a vector of |C(v)|+ |X(v)| · (|X(v)| − 1) dimensions, where the first
|C(v)| dimensions correspond to the edges covered by it and the last |X(v)| · (|X(v)| − 1)
dimensions correspond to all the vertex pairs in X(v). The intuition is the following. To
ensure that a feasible label assignment can be translated to an s-t path, we first need to
assign a “choosing indicator” to each edge to imply whether the edge is selected or not.
However, having the choosing indicators is not enough because we only know some edges
have been picked, but cannot determine whether s and t are connected. Thus, we introduce a
“connectivity indicator” for each vertex pair (a, b) in X(v) to indicate whether a is connected
to b by the selected edges covered in the subtree rooted at node v.
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Constraint Construction. The cost constraints are used to bound the total cost of the
selected edges. They can be obtained easily by letting the normalized cost of the edges
selected by each label assignment be the corresponding cost. For the consistency constraints,
the purpose of designing them is to ensure that s is connected to t, and the connectivity
indicators can truthfully reflect the connectivity of the subgraph formed by the selected
edges. To achieve the former requirement, we define that a label assignment is feasible only
if the connectivity indicator of (s, t) in the root r is 1; while for the latter requirement, the
constraint construction is still natural, but we note that proving such “local3” constraints are
able to capture the global connectivity is non-trivial. Consider an arbitrary node u and its
two children v, w. We can construct a subgraph where the vertex set is X(u)∪X(v)∪X(w).
Add an edge (a, b) in the subgraph if the connectivity indicator of (a, b) is 1 in one of the
two children or the choosing indicator of edge (a, b) in node u is 1. A label is feasible if the
connectivity indicator of node u is consistent with the connectivity in this subgraph. Note
that this subgraph may not contain all nodes that occur in the subtree rooted at u. Thus, to
prove the efficiency of these constraints, we further need to show that there does not exist a
vertex pair in u that is connected by u’s subtree but not connected in the above subgraph.
We formally show this claim in the paper’s full version. The proof heavily relies on the
connectivity property of a tree decomposition. Briefly speaking, a graph’s tree decomposition
can guarantee that all nodes in the tree containing the same node in the original graph form
a connected subtree. This nice property allows us to show that the connectivity between
vertices can be continuously propagated between nodes in T.

3.3 Tree-labeling Instance Construction

Given an arbitrary node v ∈ V, we also use v to denote the vertices included in node v, i.e.,
v ⊆ V . Let Ev ⊆ E be the set of edges such that, for any edge (a, b) in Ev, node v is the
highest node that contains (a, b). Note that an edge (a, b) may be included in more than one
node in T but the highest node that includes (a, b) is unique. For any node v ∈ V, we have
two types of labels: choosing label and connectivity label. For each edge (a, b) (or e) in Ev,
the choosing label chng(a, b) = 1 or (or chng(e) = 1) indicates that the edge is chosen in
current label assignment; otherwise, the edge is not chosen. For each pair of vertices (p, q) in
v, the connectivity label conn(p, q) = 1 indicates that there is a P ⊆ E path from p to q such
that every edge in P is chosen in some nodes of the subtree rooted at node v; otherwise, p

and q are not connected. Note that conn(p, q) and conn(q, p) are two different labels since G

is a directed graph. Let Lv be the set of all possible labels and lv ∈ Lv be a specific label of
node v. We remark that the size of Lv is related to the treewidth of G. Since the treewidth
of G is a constant, |Lv| is also constant. See the proof of Theorem 8 for details.

To ensure the feasibility of label assignments for obtaining an s-t path in T, arbitrarily
picking labels for each node is not a viable solution. Instead, we define a local constraint
that applies to every adjacent set of three nodes u, v, w in T, where u and w are the child
nodes of v. The purpose of this local constraint is to guarantee that all label assignments
are capable of producing an s-t path. For every node v and its two children u and w, let
CP(v) := Lu×Lv×Lw be the set of all possible label combinations of these three nodes, i.e.,
CP(v) is the Cartesian product of Lu, Lv, Lw. Note that u or w may not exist. In this case,
we refer to u or w as empty nodes and CP(v) is defined as the Lv × Lw (or Lu × Lv or Lv).

3 Consistency constraints in the tree-labeling problem are “local” constraints because the feasibility of a
node u’s label is only influenced by its child nodes.
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▶ Definition 10 (Feasible Label Assignment). A label assignment L := (lv)v∈V is a feasible
label assignment if, for each v ∈ V and its two children u and w (u and w maybe empty
nodes), lv ∈ CP(v) satisfies the following three constraints:
(C1) (Choosing Constraints) For each edge (a, b) ∈ Ev, if (a, b) is chosen, then a and b

are connected and vice versa. Namely, chng(a, b) = 1 if and only if conn(a, b) = 1.
(C2) (Connectivity Constraints) For each vertex pair (p, q) in v, vertex p and vertex q

are connected (i.e. conn(p, q) = 1) if and only if the following statement is true: there
is a vertex sequence (p, v1, . . . , vd, q) such that every two adjacent vertices (a, b) in the
sequence are connected in some nodes in u, v, w, i.e., conn(a, b) = 1 in some nodes in
u, v, w for each pair of adjacent vertices.

(C3) (Feasibility Constraints) If v is the root of T, then the source s and sink t are
connected, i.e., conn(s, t) = 1 must be true in the root.

Given a feasible label assignment L, an edge (p, q) ∈ E is chosen by L if (p, q)’s choosing
label is 1 in L. (C1) defines the connectivity of each edge in E. If an edge (a, b) is chosen by
a label assignment, then vertex a and b are connected. (C2) is the most important constraint
which defines the connectivity of each pair of vertices in v. In the case where v is a leaf
node, u and w would be empty nodes and thus this constraint is equivalent to (C1). In the
case where v is not a leaf node, an arbitrary vertices pair (a, b) in v are connected if the
connected segments in u, v, w can be merged into a path from a to b. In Lemma 11, we show
that such a local constraint is sufficient to describe the connectivity of vertex a and b in the
subtree rooted at v. (C3) ensures that a feasible label assignment must contain an s-t path,
i.e., source s and sink t are connected.

Consider an arbitrary feasible label assignment L, then L has the following crucial
property (Lemma 11) by our definition. We shall use this property later to show that any
feasible label assignment can be converted into an s-t path of the original graph. It is worth
noting that an s-t path corresponds to a unique feasible label assignment, but a feasible label
assignment may contain multiple s-t paths. An example is shown in Figure 2.

▶ Lemma 11. Given an arbitrary feasible label assignment L := (lv)v∈V, consider an
arbitrary node v ∈ V. For any vertices pair (p, q) in v, there is a path P ⊆ E from p to q

such that every edge in P is chosen in some nodes in the subtree rooted at v if and only if
(a, b) has a connectivity label of 1 in v.

To complete the instance construction, we also need to define an appropriate label cost
function for each node in T. It shall be used to connect the cost of our problem to the
tree-labeling problem. This part, together with the proofs of Lemma 11 and Theorem 8, are
deferred to the paper’s full version.

4 General Graphs

We shall follow the same algorithmic framework stated in Section 2 and show the following
result (Theorem 12). Namely, we first construct a tree structure and set up a linear program
based on the tree. Then, we employ the same rounding algorithm (Algorithm 2) to obtain a
feasible subtree and convert it back to an s-t path in the original graph. The following states
some intuition to construct such a tree. We defer the formal descriptions of the construction,
the LP formulation, the algorithm, and the analysis to the full version of the paper.

▶ Theorem 12. Given any directed graph G, there is an algorithm that returns a
O(log n log k)-approximate solution in poly(n) · nO(log n) time with probability at least
1− ( 1

k + 1
k log n ) for robust s-t path, where n is the number of vertices and k is the number of

agents.
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sdft ∅ (s, d), (s, t), (d, t)
sdet (d, e) (d, e), (d, t), (e, t)
scdt ∅ (s, d)
seht (e, h), (h, t) (e, h), (h, t)
sbdt (s, b), (b, d) (s, b), (b, d)
sadt ∅ ∅

Nodes chng(·) = 1 conn(·) = 1

sdft ∅ (s, d), (s, t), (d, t)
sdet (d, e) (d, e), (d, t), (e, t)
scdt (c, t) (s, d), (c, t)
seht (e, h), (h, t) (e, h), (h, t)
sbdt (s, b), (b, d) (s, b), (b, d)
sadt (a, d) (a, d)

s b d e h
t

a

c

{(d, f), (f, t)}

{(d, e)} {(s, c), (c, t)}

{(e, h), (h, t)} {(s, b), (b, d)} {(s, a), (a, d)} (iv)

(v)

(vi)

Figure 2 An example of the reduction. The subfigure (i) is the given directed graph. Then, we
compute a tree decomposition with the logarithmic depth and add s and t to all nodes, which is
shown in subfigure (ii). The edge set next to each node in subfigure (ii) is its corresponding Ev. For
example, the edge set Er for root node r is { (d, f), (f, t) } since r is the highest node that contains
edge (d, f) and (f, t). Subfigure (iii) is an s-t path of the given directed graph and subfigure (iv) is
the corresponding label assignment of the s-t path in (iii) in which we only list these labels with the
value of 1. The complete label of each node is obtained by merging these single labels, e.g., for the
root r, lr consists of 14 bits (2 choosing labels and 12 connectivity labels). In these 14 bits, only
conn(s, d), conn(s, t), conn(d, t) has a value of 1 and all the remaining 11 labels have a value of 0.
Subfigure (v) shows another example and subfigure (vi) is its corresponding label assignment.

In Section 2, we use a tree-based linear program to break through the Ω(k) and Ω(
√

n)
integrality gap of the flow LP. However, on general graphs, we no longer have such a natural
tree structure as in series-parallel graphs.To still obtain a polylogarithmic approximation,
we construct a decision-tree-type metatree that maps every s-t path in the graph to a
corresponding subtree in the metatree.

Metatree Construction Intuition. The basic idea of the meta tree construction is to
iteratively guess the possible middle vertex of an s-t path. There are at most n possibilities
for this middle vertex. Once we determine the middle vertex of the s-t path, say it is a, the
whole path can be partitioned into two subpaths – path s-a and path a-t. We then recur
on the obtained subpaths till level O(log n); the sufficiency of O(log n)’s levels will be clear
later. This process gives us a natural tree structure T with O(log n) depth. We define two
types of nodes in T. The first node type is referred to as splitting node. Each splitting node
corresponds to a (sub-)path. It has n children, where each child represents a choice of the
(sub-)path’s middle vertex. The algorithm needs to ensure that only one of these children
can be selected. The second node type is called merging node. A merging node has to be a
child of a splitting node in T and represents a scheme for selecting a middle vertex. Further,
a merging node has two splitting nodes as its children, corresponding to the two obtained
subpaths by this scheme. We can view such a node as being used to merge its two children
(subpaths). The algorithm needs to ensure that both children are selected simultaneously.
See the paper’s full version for more details of the construction.

As one may observe, a splitting (resp. merging) node in our metatree plays the same role
as a parallel (resp. series) node in the decomposition tree of the series-parallel graph. Thus,
the LP for the general graph is similar to (Tree-LP) and we can still use the same rounding
algorithm. Consider an s-t path P of length n. If we write P in the form of a binary tree by
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s-t

s-s-t s-t-ts-a-t

s-s s-t s-a a-t s-t t-t

s-as-s a-t t-ts-s s-s s-s s-t t-t t-tt-ts-t

T1

T2

T3

s t

a

1 1

3

G

Figure 3 An example for the metatree T construction. The given directed graph G is shown
in the up-left corner. Since there are three vertices in G, T will consist of five levels because the
height of T is 2⌈log n⌉ + 1. The dashed subtree T1 corresponds to the path s → t of G. The dotted
subtree T2 represents the path s → a → t of G. The dash-dotted subtree T3 also corresponds to
the path s → t.

guessing the middle vertex of each subpath, it will have at most ⌈log n⌉ levels. Thus, we can
let the recursive tree T terminate at level O(log n), and therefore, its size is quasi-polynomial
O(nlog n) since each node has at most n children. From Section 2, we know that the rounding
algorithm is able to find a O(H log k)-approximate solution where H is the height of the tree.
This also provides the intuition for the approximation ratio O(log n log k) since the height of
T is O(log n) (specifically, H = 2⌈log n⌉+ 1).

We now define a feasible subtree for T. Recalling the feasible subtrees (Definition 3) on
series-parallel graphs, unfortunately, we cannot use the same definition for general graphs.
This is because not all leaf nodes in the constructed tree T correspond to edges in G. We
refer to a subtree that satisfies three conditions in Definition 3 as a consistent subtree. To
ensure that the subtree can be translated to an s-t path, one more condition is needed.

▶ Definition 13 (Feasible Subtree for General Graphs). A subtree T′ ⊆ T is called feasible if
and only if (i) T′ is consistent; (ii) each leaf node corresponds to either an edge or a single
vertex in G.

An example can be found in Figure 3. As one might be concerned, using a different
definition of the feasible subtree may require a different LP formulation for general graphs,
since a natural adaptation of (Tree-LP) can only find a consistent subtree. This issue can
be fixed easily by directly disabling the infeasible leaf nodes in the linear program. See the
paper’s full version for more details of the LP formulation.

5 Conclusion

This paper considers the robust s-t path problem and proposes polylogarithmic approximation
algorithms on different graph classes. For graphs with bounded treewidth, we obtain a
O(log n log k)-approximate polynomial algorithm which partially answers the open question
in [23]. For general graphs, we prove that there is a quasipolynomial algorithm that is
O(log n log k)-approximate which leaves a logarithmic gap. Our approaches are based on a
novel linear program that enables us to get rid of the Ω(k) and Ω(

√
n) integrality gap from

the natural linear program. We also investigate the robustness of the s-t path, weighted
independent set, and spanning tree under the maximin criteria and show some hardness
results.
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There leave several future works. Closing the gap for robust s-t path still remains open.
It is thus interesting to investigate whether there exists a better approximation upper bound
or a tighter lower bound. We can also look at other robust optimization problems, e.g.,
the robust perfect matching problem. The best approximation known to date for robust
matching is still O(k) which can be achieved by a trivial algorithm. Since there exists a
strong connection between s-t path and min-cost perfect matching, it would be intriguing to
explore whether our methods can be applied to improving the upper bound of the robust
matching problem.
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